WO2020184911A1 - 림프구의 종양 반응성 예측용 마커 및 이의 용도 - Google Patents

림프구의 종양 반응성 예측용 마커 및 이의 용도 Download PDF

Info

Publication number
WO2020184911A1
WO2020184911A1 PCT/KR2020/003157 KR2020003157W WO2020184911A1 WO 2020184911 A1 WO2020184911 A1 WO 2020184911A1 KR 2020003157 W KR2020003157 W KR 2020003157W WO 2020184911 A1 WO2020184911 A1 WO 2020184911A1
Authority
WO
WIPO (PCT)
Prior art keywords
genbank accession
accession number
gene
lymphocytes
genes
Prior art date
Application number
PCT/KR2020/003157
Other languages
English (en)
French (fr)
Inventor
이희진
공경엽
이희재
서정한
임경백
Original Assignee
재단법인 아산사회복지재단
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 아산사회복지재단, 울산대학교 산학협력단 filed Critical 재단법인 아산사회복지재단
Priority to JP2021553000A priority Critical patent/JP2022523842A/ja
Priority to CN202080034349.0A priority patent/CN113853443A/zh
Priority to US17/436,948 priority patent/US20220251652A1/en
Priority to EP20768993.6A priority patent/EP3936624A4/en
Priority claimed from KR1020200028098A external-priority patent/KR102197723B1/ko
Publication of WO2020184911A1 publication Critical patent/WO2020184911A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • the present invention relates to a marker for predicting tumor reactivity of lymphocytes, a composition for predicting tumor reactivity, and a method for predicting tumor reactivity.
  • immunotherapy includes vaccines that target tumor-associated antigens, monoclonal antibodies that prevent T cell fatigue due to overexpression of inhibitory receptors, and tumor necrosis factor that activates T lymphocytes by activating co-stimulatory receptors of T lymphocytes.
  • tumor necrosis factor, TNF tumor necrosis factor receptor superfamily
  • treatment targeting immunosuppressive factors cell therapy using natural kiler cells (NK cells) or tumor-specific T lymphocytes.
  • immunotherapy using antibodies that recognize immunosuppressive factors has been found to be effective in tumors such as malignant melanoma, but antibody-based treatment is Since it targets an antigen located on the surface, there is a disadvantage that it cannot be applied to an antigen within a cell.
  • immunotherapy includes vaccines that target tumor-associated antigens, monoclonal antibodies that prevent T cell fatigue due to overexpression of inhibitory receptors, and tumor necrosis factor that activates T lymphocytes by activating co-stimulatory receptors of T lymphocytes.
  • tumor necrosis factor, TNF tumor necrosis factor receptor superfamily
  • treatment targeting immunosuppressive factors cell therapy using natural kiler cells (NK cells) or tumor-specific T lymphocytes.
  • immunotherapy using antibodies that recognize immunosuppressive factors has been found to be effective in tumors such as malignant melanoma, but antibody-based treatment is Since it targets an antigen located on the surface, there is a disadvantage that it cannot be applied to an antigen within a cell.
  • Immunomodulatory cell therapy is a therapy used for the purpose of treating diseases by activating the body's immune response using immune cells.
  • Immunomodulatory cell therapy is mainly developed as an indication for cancer treatment, and because it obtains therapeutic effect by activating immune function by administering immune cells directly to the patient, it is differentiated from surgical therapy, anticancer drugs, or radiation therapy used for conventional cancer treatment. It is a field that is expected to occupy a major part of new bio drugs in the future with the treatment mechanism and efficacy.
  • T-cell-based cell therapy products are typically T cells that have penetrated the patient's tumor tissue.
  • TIL tumor-infiltrating lymphocytes
  • TCR tumor-infiltrating lymphocytes
  • CAR chimeric antigen receptor
  • Tumor-infiltrating lymphocytes are lymphocytes that exist in tumor tissues.A patient's tumor tissue is collected, T cells capable of killing tumor cells are isolated, proliferated, and then administered to the patient again. Solid carcinoma capable of (biopsy) is mainly being studied. TIL is the first immunomodulatory cell therapy using T cells to study its efficacy in clinical practice.Through Dr. Steven Rosenberg's team at the National Cancer Institute in the United States, TIL is administered to patients with metastatic melanoma to have anticancer effects. This paper was first reported in 1988, and so far, no serious side effects have been reported by TIL administration. However, it is a technical disadvantage that the process of isolating tumor-specific T cells from tumor tissue is complicated and the yield is low.
  • Interleukin-2 (IL-2) is used to enhance anticancer efficacy. ) Is administered together, and the problem of side effects caused by IL-2 administered at a high concentration must also be resolved (Science. 2015 Apr 3;348(6230):62-8.).
  • the present inventors are not limited to tumor tissues, but are not limited to tumor tissues from lymphocytes isolated and cultured in the body. Research efforts were made to find a genetic marker capable of efficiently selecting only lymphocytes exhibiting specific activity for, and as a result, 17 types of markers were discovered, and the present invention was completed based on this.
  • the present inventors have conducted research efforts using lymphocytes isolated from tumor tissues of breast cancer patients in order to discover a genetic marker that can effectively select lymphocytes exhibiting tumor-specific reactivity, and as a result, discover a total of 17 types of genetic biomarkers and investigate their effectiveness.
  • the present invention was completed by verification.
  • an object of the present invention is to provide a composition for predicting tumor reactivity of lymphocytes.
  • the present invention is the mRNA of the ITGA6 (Genbank accession number: NM_000210.4, NM_001079818.3, NM_001316306.2, NM_001365529.2 and NM_001365530.2) gene or the gene It provides a composition for predicting tumor reactivity of lymphocytes, including an agent measuring the level of a protein encoded by.
  • the composition is ATP6V0A1 (Genbank accession number: NM_001130020.3, NM_001130021.3, NM_001378522.1, NM_001378523.1 and NM_001378530.1), ARRDC3 (Genbank accession) number: NM_001329670.2, NM_001329671.2, NM_001329672.2 and NM_020801.4), CD23 (Genbank accession number: NM_001207019.2, NM_001220500.2 and NM_002002.4), CD200 (Genbank accession number: NM_001004196.
  • NM_001318826.1, NM_001318828.1, NM_001318830.1 and NM_001365851.2 CD300C (Genbank accession number: NM_006678.5), CYSLTR1 (Genbank accession number: NM_001282186.1, NM_001282187.2, NM_001282188.2 and NM_006639.4), ITGB1 (Genbank accession number: NM_002211.4, NM_033668.2 and NM_133376.2), MBOAT2 (Genbank accession number: NM_001321265.2, NM_001321266.2, NM_001321267.
  • RNA of one or more genes selected from the group consisting of or an agent for measuring the level of the protein encoded by the gene further Can include.
  • the present invention is ATP6V0A1 (Genbank access (accession) number: NM_001130020.3, NM_001130021.3, NM_001378522.1, NM_001378523.1 and NM_001378530.1), MBOAT2 (Genbank access (accession) number: NM_001321265.2, NM_001321266.
  • PTPN13 Genbank accession number: NM_006264.3, NM_080683.3, NM_080684.3 and NM_080685.2
  • TCN2 Genbank accession number: NM_000355.4 and NM_001184726.1
  • TSPAN2 Genbank accession number: NM_001308315.1, NM_001308316.1 and NM_005725.6 of three or more genes selected from the group consisting of mRNA or a preparation for measuring the level of the protein encoded by the gene It provides a composition for predicting tumor reactivity of lymphocytes comprising a.
  • the composition may include an agent for measuring the level of mRNA of the ATP6V0A1, MBOAT2 and TSPAN2 genes or the protein encoded by the gene.
  • the composition may include an agent for measuring the level of the mRNA of the PTPN13, TCN2 and TSPAN2 genes or the protein encoded by the gene.
  • the composition is ARRDC3 (Genbank accession number: NM_001329670.2, NM_001329671.2, NM_001329672.2 and NM_020801.4), CD23 (Genbank accession) number: NM_001207019.2 , NM_001220500.2 and NM_002002.4), CD200 (Genbank accession number: NM_001004196.3, NM_001318826.1, NM_001318828.1, NM_001318830.1 and NM_001365851.2), CD300C (Genbank accession number: NM_006678 .5), CYSLTR1 (Genbank accession number: NM_001282186.1, NM_001282187.2, NM_001282188.2 and NM_006639.4), ITGA6 (Genbank accession number: NM_000210.4, NM_001079818.3, NM_001316306.2 , NM_
  • the lymphocyte may be isolated from tumor tissue, blood, or body fluid.
  • the agent for measuring the mRNA level may be a sense and antisense primer or a probe that complementarily binds to the mRNA of a gene.
  • the agent for measuring the protein level may be an antibody that specifically binds to a protein encoded by a gene.
  • lymphocytes with tumor-specific activity can be selectively selected from various body-derived lymphocytes, an effective immunotherapy agent can be produced based on this. Therefore, by using the genetic marker according to the present invention, a predictive model capable of predicting the tumor reactivity of cultured lymphocytes can be constructed, and by predicting the reactivity of lymphocytes, an effective immunotherapy agent can be selected by more accurately selecting lymphocytes specific to the tumor. Will be able to produce.
  • lymphocytes can be separated from internal tissues, blood, or body fluids more simply by a non-invasive method, and only lymphocytes with tumor-specific activity can be selected and used for immunotherapy. It is expected to have a wide range of applications.
  • Figure 1 shows the ratio of IFN- ⁇ secreted when autologous breast cancer cells and TIL are simultaneously cultured compared to the control group in which only tumor-infiltrating lymphocytes (TIL) exist, and the expression values of each gene in TIL showing reactivity to tumor cells. This is the result of analyzing genes showing a significant correlation (p ⁇ 0.05) by examining the correlation with Spearman Correlation.
  • Figure 2a is the expression level difference according to the reactivity of the TIL for each of the six genes confirmed to have a significant correlation with the presence or absence of tumor-specific reactivity of the TIL derived from a triple negative breast cancer patient among the 17 genes derived in Example 2 Is the result of quantification.
  • 2B is a result of quantifying the difference in the expression level of ITGA6 according to tumor-specific reactivity in all TILs (CD45+), NKT cells and T cells, which were found to have a significant correlation with the expression of ITGA6 among TIL types.
  • 3A is a result of principal component (PCA) analysis on TILs derived from 15 patients with triple negative breast cancer.
  • 3B is a result showing the expression levels of 17 genes derived in Example 2 for TIL derived from a triple negative breast cancer patient as a heat map.
  • FIG. 3C is a Biplot graph showing the results of PCA analysis of FIG. 3A, showing the patient-derived TIL sample and the 17 genes together.
  • FIG. 3D is a result of the analysis of FIG. 3C showing the expression levels of six genes that appear to be related to the reactive group as a heat map.
  • FIG. 4A is a diagram illustrating each combination consisting of 2 to 17 genes and their variables in consideration of the interaction between the 17 genes, and then performing a regression analysis to confirm the 10 gene combinations showing the highest prediction accuracy, and The result is a heat map showing the expression level of the gene combination after deriving the 13 combinations of variables.
  • 4B is a result of showing the expression level of each gene constituting the combination (No. 2) showing the largest negative coefficient value among the combination variables as a heat map.
  • 4C is a result showing the expression level of each gene constituting the combination (No. 7) showing the largest positive coefficient value as a heat map.
  • FIGS. 4B and 4C shows heat map results for 8 genes that are not common among genes constituting the combination of FIGS. 4B and 4C.
  • 5A and 5B are the results of drawing ROC curves for each gene combination consisting of 2 to 8 genes in consideration of the interaction between the 8 genes of FIG. 4D and deriving AUC values according thereto.
  • 6A and 6B show that the model consisting of three genes exhibits the highest performance as a result of regression analysis and random forest machine learning analysis, and then derive 10 gene combination variables and draw ROC curves for each of them to obtain AUC values. This is the result derived.
  • 6C and 6D are results showing six combinations having an AUC value of 0.7 or more in the results of FIGS. 6A and 6B and respectively showing their ROC curves.
  • 6E is a result of analyzing the accuracy of predicting tumor reactivity by performing a Confusion Matrix analysis on the six combination variables.
  • the present inventors discovered a total of 17 genes as a result of research efforts using lymphocytes isolated from tumor tissues of breast cancer patients in order to discover a genetic marker capable of effectively selecting lymphocytes exhibiting tumor-specific activity, and their effectiveness
  • the present invention was completed by verification.
  • the present invention comprises the mRNA of the gene ITGA6 (Genbank accession number: NM_000210.4, NM_001079818.3, NM_001316306.2, NM_001365529.2 and NM_001365530.2) gene or the protein encoded by the gene, tumor reactivity of lymphocytes It provides a marker composition for prediction.
  • ITGA6 Genebank accession number: NM_000210.4, NM_001079818.3, NM_001316306.2, NM_001365529.2 and NM_001365530.2
  • the marker composition is ATP6V0A1 (Genbank accession number: NM_001130020.3, NM_001130021.3, NM_001378522.1, NM_001378523.1 and NM_001378530.1), ARRDC3 (Genbank accession) number: NM_001329670.2, NM_001329671.2 , NM_001329672.2 and NM_020801.4), CD23 (Genbank accession number: NM_001207019.2, NM_001220500.2 and NM_002002.4), CD200 (Genbank accession number: NM_001004196.3, NM_001318826.1, NM_001318828 .1, NM_001318830.1 and NM_001365851.2), CD300C (Genbank accession number: NM_006678.5), CYSLTR1 (Genbank accession number: NM_001282186.1, NM_001282187.2, NM_001282
  • the present invention provides a composition for predicting tumor reactivity of lymphocytes and a kit for predicting tumor reactivity of lymphocytes comprising the composition, including an agent measuring the level of the mRNA of the ITGA6 gene or the protein encoded by the gene.
  • composition is mRNA of one or more genes selected from the group consisting of ATP6V0A1, ARRDC3, CD23, CD200, CD300C, CYSLTR1, ITGB1, MBOAT2, Met, MYO9A, PTPN13, S100P, SECTM1, TCN2, TSPAN2 and VSIG1, or the gene is It may further include an agent for measuring the level of the encoding protein.
  • the present invention provides a method of providing information for predicting tumor reactivity of lymphocytes, comprising measuring the level of the mRNA of the ITGA6 gene or the protein encoded by the gene.
  • the prediction method is the mRNA of one or more genes selected from the group consisting of ATP6V0A1, ARRDC3, CD23, CD200, CD300C, CYSLTR1, ITGB1, MBOAT2, Met, MYO9A, PTPN13, S100P, SECTM1, TCN2, TSPAN2 and VSIG1 or the gene. It may further comprise the step of measuring the level of the protein encoded by.
  • the present inventors used lymphocytes isolated from tumor tissues of 15 triple-negative breast cancer patients for a total of 17 genetic markers.
  • TIL tumor-infiltrating lymphocytes
  • the expression level of ITGA6 among the genes was determined to be reactivity to tumor cells. It was confirmed that the TIL derived from the indicated patient, in particular, was significantly higher in total TIL, NKT cells, and T cells (see Example 3).
  • ITGA6 is a more effective marker gene for predicting tumor reactivity of patient-derived TIL in breast cancer patients.
  • lymphocytes recognize tumor cells in tumor tissues, more preferably autologous tumor tissues, as antigens, and react thereto, thereby inducing an immune response. It means to predict whether it can induce anticancer effect.
  • the lymphocytes may be isolated from body tissues, blood, or body fluids including tumor tissues, and the body fluids may be ascites fluid, pleural fluid, and biliary fluid containing lymphocytes, but are limited thereto. It is not.
  • the tumor may be preferably breast cancer, more preferably triple negative breast cancer, but is not limited thereto.
  • the present inventors analyzed the effectiveness of various combination models for predicting tumor responsiveness for 17 genes differentially expressed in Example 2 through machine learning analysis. As a result, it was confirmed that the combination model consisting of three genes has the highest prediction accuracy, and specifically, it was confirmed that the combination of ATP6V0A1*TSPAN2*MBOAT2 and PTPN13*TCN2*TSPAN2 showed significant tumor response prediction performance among the combination variables. (See Examples 4 and 5).
  • the present invention is ATP6V0A1 (Genbank accession number: NM_001130020.3, NM_001130021.3, NM_001378522.1, NM_001378523.1 and NM_001378530.1), MBOAT2 (Genbank accession) number: NM_001321265.2, NM_001321266.2, NM_001321267.2 and NM_138799.4), PTPN13 (Genbank accession number: NM_006264.3, NM_080683.3, NM_080684.3 and NM_080685.2), TCN2 (Genbank accession) Number: NM_000355.4 and NM_001184726.1) and TSPAN2 (Genbank accession number: NM_001308315.1, NM_001308316.1 and NM_005725.6) of three or more genes selected from the group consisting of mRNA or the gene encoding It provides a marker composition for predicting tumor
  • the marker composition may include the mRNA of the ATP6V0A1, MBOAT2 and TSPAN2 genes or the protein encoded by the gene, and the marker composition includes the mRNA of the PTPN13, TCN2 and TSPAN2 gene or the protein encoded by the gene. It may include, but is not limited thereto.
  • the marker composition is ARRDC3 (Genbank accession number: NM_001329670.2, NM_001329671.2, NM_001329672.2 and NM_020801.4), CD23 (Genbank accession) number: NM_001207019.2, NM_001220500.2 and NM_002002.4 ), CD200 (Genbank accession number: NM_001004196.3, NM_001318826.1, NM_001318828.1, NM_001318830.1 and NM_001365851.2), CD300C (Genbank accession number: NM_006678.5), CYSLTR1 (Genbank access (accession) number: NM_001282186.1, NM_001282187.2, NM_001282188.2 and NM_006639.4), ITGA6 (Genbank accession number: NM_000210.4, NM_001079818.3, NM_001316306.2, NM_001365529.2
  • the present invention is a composition for predicting tumor reactivity of lymphocytes, comprising an agent for measuring the level of mRNA of three or more genes selected from the group consisting of ATP6V0A1, MBOAT2, PTPN13, TCN2 and TSPAN2 or the protein encoded by the gene, and It provides a kit for predicting tumor reactivity of lymphocytes comprising the composition.
  • the composition may include an agent for measuring the level of the mRNA of the ATP6V0A1, MBOAT2 and TSPAN2 genes or the protein encoded by the gene, and the composition is also the mRNA of the PTPN13, TCN2 and TSPAN2 genes or the gene is encoded It may include, but is not limited to, an agent for measuring the protein level.
  • composition is ARRDC3, CD23, CD200, CD300C, CYSLTR1, ITGA6, ITGB1, Met, MYO9A, S100P, SECTM1 and VSIG1 mRNA of one or more genes selected from the group consisting of a preparation for measuring the level of the protein encoded by the gene It may further include.
  • the present invention includes the step of measuring the level of the mRNA of three or more genes selected from the group consisting of ATP6V0A1, MBOAT2, PTPN13, TCN2 and TSPAN2 or the protein encoded by the gene, information for predicting tumor reactivity of lymphocytes Provide a method of delivery.
  • the prediction method is to measure the mRNA of one or more genes selected from the group consisting of ARRDC3, CD23, CD200, CD300C, CYSLTR1, ITGA6, ITGB1, Met, MYO9A, S100P, SECTM1 and VSIG1, or the level of the protein encoded by the gene. It may further include a step.
  • the agent for measuring the mRNA level may be a sense and antisense primer that complementarily binds to the mRNA of a gene, but is not limited thereto.
  • primer used in the present invention refers to a short gene sequence that serves as the starting point of DNA synthesis, and refers to an oligonucleotide synthesized for use in diagnosis, DNA sequencing, or the like.
  • the primers may be synthesized and used in a length of usually 15 to 30 base pairs, but may vary depending on the purpose of use, and may be modified by methylation or capping by a known method.
  • probe refers to a nucleic acid capable of specifically binding to an mRNA having a length of several to hundreds of bases produced through enzymatic chemical separation or purification or synthesis.
  • the presence or absence of mRNA can be confirmed by labeling radioactive isotopes or enzymes, and it can be designed and modified by a known method.
  • the agent for measuring the protein level may be an antibody that specifically binds to a protein encoded by a gene, but is not limited thereto.
  • antibody used in the present invention includes immunoglobulin molecules immunologically reactive with a specific antigen, and includes both monoclonal and polyclonal antibodies.
  • the antibody includes all forms produced by genetic engineering such as chimeric antibodies (eg, humanized murine antibodies) and heterologous antibodies (eg, bispecific antibodies).
  • the kit for predicting tumor reactivity of lymphocytes according to the present invention is composed of a composition, solution, or device containing one or more other components suitable for an analysis method.
  • the lymphocyte may be isolated from tissue, blood, or body fluid derived from a subject, but is not limited thereto.
  • the subject may preferably be a breast cancer patient, more preferably a triple negative breast cancer patient, but is not limited thereto.
  • the term "method of providing information for predicting tumor reactivity of lymphocytes" used in the present invention is a preliminary step for immunotherapy using lymphocytes and provides necessary objective basic information to select only lymphocytes exhibiting specific activity in tumor cells. Is to do.
  • the mRNA level is polymerase chain reaction (PCR), reverse transcription polymerase chain reaction (RT-PCR), real-time polymerase chain reaction (Real-time PCR), RNase protection by conventional methods known in the art. It may be measured by one or more methods selected from the group consisting of RNase protection assay (RPA), microarray, and northern blotting, but is not limited thereto.
  • PCR polymerase chain reaction
  • RT-PCR reverse transcription polymerase chain reaction
  • Real-time PCR real-time polymerase chain reaction
  • RNase protection assay RPA
  • microarray microarray
  • northern blotting but is not limited thereto.
  • the protein level is a conventional method known in the art, Western blotting, radioimmunoassay (RIA), radioimmunodiffusion, enzyme immunoassay (ELISA), immunoprecipitation. 1 selected from the group consisting of immunoprecipitation, flow cytometry, immunofluorescence, ouchterlony, complement fixation assay, and protein chip It can be measured through more than one species method, but is not limited thereto.
  • TIL tumor-infiltrating lymphocytes
  • the cultured TIL was filtered through a 40 ⁇ m pore nylon mesh filter to remove tumor tissues and residues, and then centrifuged at 1,500 rpm for 5 minutes.After checking the number of cells and viability, the next experiment was performed. It was kept frozen until proceeding.
  • the TIL isolated by the above method was irradiated (50 Gy) obtained from a healthy donor and 10% together with allogeneic peripheral blood mononuclear cells (PBMCs).
  • REP medium (50% RPMI 1640 and 50% AIM) containing FBS, 1 ⁇ ZellShield, 1,000 IU/mL human recombinant IL-2, and 30 ng/mL human anti-CD3 antibody (OKT3, Miltenyi Biotec, Bergisch Gladbach, Germany) -V medium, Life Technologies).
  • the REP medium was newly added every 2 or 3 days, and after 14 days cultured post-REP TILs (TILs) were collected and cryopreserved.
  • the breast cancer tissue fragment obtained by the method of Example 1-1 was prepared in a digestion buffer, that is, 2% FBS, 1x penicillin/streptomycin, Invitrogen, CA, USA), 10 ⁇ g/mL insulin (Life technologies), 10 ng/mL EGF (Invitrogen), and 1 ⁇ collagenase/hyaluronidase (collagenase/hyaluronidase, Gendepot, Barker, TX, USA) were added In the presence of DMEM-F12 medium (Life Technologies) for 1 hour at 37 °C, 5% CO 2 was incubated in an incubator to allow degradation.
  • a digestion buffer that is, 2% FBS, 1x penicillin/streptomycin, Invitrogen, CA, USA
  • 10 ⁇ g/mL insulin Life technologies
  • 10 ng/mL EGF Invitrogen
  • 1 ⁇ collagenase/hyaluronidase collagenase/hyaluronidase, Gendepot, Barker,
  • the pellet obtained from the degraded tissue was centrifuged at 80 xg for 30 seconds, then resuspended in 0.25% trypsin/EDTA, and then separated into single cells by pipetting.
  • the suspension containing single cells was filtered through a 100 ⁇ m pore filter, washed with a cold HBSS (Hank's balanced salt solution) solution containing 2% FBS, and then centrifuged at 300 xg for 5 minutes to obtain single cancer cells.
  • the dissociated cells obtained by the above method were 2% FBS, 5 ng/mL human recombinant EGF, 0.3 ⁇ g/mL hydrocortisone (Sigma-Aldrich, St.
  • Example 1-1 In order to evaluate the potential functionality of TILs mass-proliferated by the method of Example 1-1, 1 x 10 5 TILs per well in a 96-well plate were 24 with 32.4 nM PMA and 1 ⁇ g/mL inomycin. Stimulated for hours. Thereafter, the culture plate was centrifuged at 1,500 rpm for 5 minutes, the supernatant was collected, and then the IFN- ⁇ protein level was measured through ELISA analysis.
  • TIL tumor necrosis factor
  • 4 x 10 5 TILs were co-cultured with 1 x 10 5 autologous breast cancer cells for 24 hours in a 96-well plate, and then the supernatant was collected and analyzed by ELISA.
  • the level of IFN- ⁇ protein secreted from TIL was measured through the method.
  • the ELISA performed in this example was performed according to the manufacturer's protocol using an ELISA kit (K0331121, Koma Biotech, Seoul, Korea). Briefly, each well was washed with a washing solution, and then samples, standards and blanks were added to each well and incubated for 2 hours at room temperature, and all tests were performed twice or three times. After removing the liquid, the plate was washed with a washing solution, biotinylated detection antibody was added, and incubated at room temperature for 2 hours. Thereafter, the plate was washed again, streptavidin-horesradish peroxidase conjugate was added, and then incubated at 37° C. for 30 minutes.
  • Example 1-3 the amount of IFN- ⁇ secreted from TIL when simultaneously cultured with autologous tumor cells is divided by the amount of IFN- ⁇ secreted when TIL is alone, and the ratio was calculated, and when the value was 2 or more, it was defined as being reactive.
  • TIL derived from 15 triple-negative breast cancer (TNBC) patients were cultured with breast cancer cells derived from each patient, and as a result, 6 patients showed reactivity.
  • TNBC triple-negative breast cancer
  • the second method of 1-5 as a result of analyzing genes differentially expressed in the group of 6 patients who showed responsiveness and 9 patients who did not show responsiveness, it was confirmed that a total of 709 expressions were differentially expressed among 13,827 genes.
  • 17 genes expressed on the cell surface are shown in Table 1 below. Live cells can be selected through a method such as FACS based on the genes expressed on the cell surface.
  • the present inventors conducted the following experiment to verify the effectiveness of the 17 gene markers derived through Example 2 as a marker capable of selecting tumor-specific lymphocytes.
  • TNBC-REP TIL TIL
  • TIL immune cells
  • the present inventors can predict the reactivity and non-reactivity to tumors through a machine learning method using the tumor size and the presence or absence of neoadjuvant chemotherapy (NAC) targeting the 17 marker genes derived through Example 2 above.
  • NAC neoadjuvant chemotherapy
  • An analysis was conducted to derive a biomarker gene. To this end, the analysis was conducted using logistic regression among several machine learning methods.
  • PCA Principal Component Analysis
  • the expression level of 17 kinds of genes in each patient-derived TIL was analyzed and analyzed with a heatmap, and the results of the patient-derived samples showing reactivity were indicated in green.
  • the PTPN13 gene showed a high expression level in the reactive group
  • the MET gene showed a low expression level in the NAC-treated sample.
  • the PCA analysis result of FIG. 3A was shown as a Biplot graph, and samples and genes were displayed together to analyze which genes affect each group.
  • FIG. 3D the expression level was mainly high in the sample in which the PTPN13 gene was reactive. It was confirmed that it did not appear.
  • the present inventors analyzed the 17 genes derived through Example 2 to find an effective marker combination for selecting lymphocytes having tumor-specific reactivity.
  • the result of heat map analysis using 10 genes corresponding to the second combination with a negative coefficient value is shown in FIG. 4B, and the coefficient value of the combination was -9.30E-05.
  • the 10 genes of No. 7 representing the positive number with the largest coefficient value 4 genes that are not in common are indicated by green circles.
  • the MET and ATP6V0A1 genes showed a tendency to show a low level of expression when NAC was performed, and the PTPN13 gene showed a high level of expression mainly in the reactive group.
  • the result of heat map analysis using 10 genes corresponding to the 7th combination with a positive coefficient value is shown in FIG. 4C, and the coefficient value of the 10 gene combinations was 8.92E-04.
  • the other four genes that are not included in the ten genes of No. 2 were indicated by green circles, and as a result of analyzing the heat map results, among the four genes, TSPAN2 and MYO9A genes tended to have low expression levels in the NAC sample.
  • the CD300C gene showed a tendency to have a high expression level when NAC was performed.
  • the present inventors analyzed by drawing a heat map with only a total of 8 genes that are not common in each of the 2 and 7 combinations having positive and negative coefficient values, but also the expression level of each gene differs according to the presence or absence of reactivity. It was confirmed that it did not appear. Accordingly, the present inventors calculated the interaction of the eight genes, namely, MET, ATP6V0A1, S100P, PTPN13, CD23, TCN2, TSPAN2, and MBOAT2, and analyzed by machine learning.
  • the present inventors conducted an experiment to discover an effective marker combination capable of predicting tumor reactivity using the eight genes derived through Example 5-1.
  • the interaction between the genes was first obtained using the PolynomialFeatures library in consideration of the interaction between the eight genes, and feature selection was performed using lasso, and the results are shown in Table 9 below. Shown in.
  • Example 5-2 As a result of the analysis of Example 5-2, it was confirmed that the tumor reactivity prediction performance of the model consisting of a combination of three genes was the highest when the number of interactions in common was 3 through regression analysis and random forest analysis. They drew an ROC curve for each of the 10 features representing the positive coefficient values composed of three types of genes.
  • 6A and 6B show 10 gene combinations in a table, and ROC curves for all 10 features are drawn, respectively, and FIGS. 6C and 6D show that the AUC value is 0.7 or more among the cases with positive coefficient values (2 , 5, 6, 8, 9, and 10) are used to draw the ROC curve, respectively.
  • the present inventors compared the performance of the model composed of each combination by drawing a confusion matrix for each of the six features having the AUC value of 0.7 or more. As a result, it was confirmed that all three features 8 and 10 matched the reactivity (represented by 1) as shown in FIG. 6e, and the accuracy was higher than that of other features even in non-reactive (represented by 0). .
  • the genetic marker according to the present invention it is possible to separate lymphocytes from body tissues, blood, or body fluids more easily by non-invasive methods, predicting their tumor reactivity, and select tumor-specific lymphocytes. Based on this, an effective immunotherapeutic agent can be produced, and the lymphocyte selection marker having tumor-specific reactivity is expected to be widely used in the field of immunotherapy.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 림프구의 종양 반응성 예측용 마커, 종양 반응성 예측용 조성물, 및 종양 반응성 예측방법에 관한 것이다. 본 발명에 따른 유전자 마커를 이용하여 배양된 림프구의 종양 반응성을 예측할 수 있는 예측모델을 구축할 수 있고, 이를 통해 림프구의 반응성을 예측함으로써 보다 정확하게 종양에 특이적인 림프구를 선별하여 효과적인 면역치료제를 생산할 수 있을 것이다. 또한, 상기 유전자 마커를 이용하면 종래 침습적인 방법에서 벗어나 체내 조직, 혈액, 또는 체액 등으로부터 보다 간편하게 비침습적인 방법으로 림프구를 분리하고 종양에 특이적인 활성을 갖는 림프구만을 선별하여 면역치료에 이용할 수 있어 응용 범위가 넓을 것으로 기대된다.

Description

림프구의 종양 반응성 예측용 마커 및 이의 용도
본 발명은 림프구의 종양 반응성 예측용 마커, 종양 반응성 예측용 조성물, 및 종양 반응성 예측방법에 관한 것이다.
최근 종양에서 면역인자의 중요성이 밝혀지면서 면역관련 인자들을 이용한 치료법들이 활발히 개발되고 있다. 예컨대, 면역치료에는 종양관련 항원을 표적으로 하는 백신, 억제 수용체(inhibitory receptor)의 과발현에 의한 T 세포 피로화를 막는 단클론항체, T 림프구의 공동자극 수용체를 활성화하여 T 림프구를 활성화 시키는 종양괴사인자(tumor necrosis factor, TNF) 수용체 superfamily의 사용, 면역억제 인자를 표적으로 하는 치료, 자연살해세포(natural kiler cells; NK cells) 또는 종양 특이 T 림프구를 이용한 세포치료법 등이 있다. 최근에는 면역억제 인자를 인지하는 항체(immune checkpoint inhibitor, anti-PD1, anti-CTLA4 antibody)를 이용한 면역치료가 악성 흑색종 등의 종양에서 효과가 있는 것으로 밝혀졌으나, 항체를 기반으로 한 치료는 세포 표면에 위치한 항원을 표적으로 하므로 세포 내에 있는 항원에는 적용이 불가능한 단점이 있다.
자연살해세포 또는 종양 특이 T 림프구를 이용한 세포치최근 종양에서 면역인자의 중요성이 밝혀지면서 면역관련 인자들을 이용한 치료법들이 활발히 개발되고 있다. 예컨대, 면역치료에는 종양관련 항원을 표적으로 하는 백신, 억제 수용체(inhibitory receptor)의 과발현에 의한 T 세포 피로화를 막는 단클론항체, T 림프구의 공동자극 수용체를 활성화하여 T 림프구를 활성화 시키는 종양괴사인자(tumor necrosis factor, TNF) 수용체 superfamily의 사용, 면역억제 인자를 표적으로 하는 치료, 자연살해세포(natural kiler cells; NK cells) 또는 종양 특이 T 림프구를 이용한 세포치료법 등이 있다. 최근에는 면역억제 인자를 인지하는 항체(immune checkpoint inhibitor, anti-PD1, anti-CTLA4 antibody)를 이용한 면역치료가 악성 흑색종 등의 종양에서 효과가 있는 것으로 밝혀졌으나, 항체를 기반으로 한 치료는 세포 표면에 위치한 항원을 표적으로하므로 세포 내에 있는 항원에는 적용이 불가능한 단점이 있다.
자연살해세포 또는 종양 특이 T 림프구를 이용한 세포치료법 등을 면역조절 세포치료제라고 하며, 이는 면역세포를 이용하여 체내의 면역반응을 활성화시켜 질병을 치료할 목적으로 사용되는 치료법이다. 면역조절 세포치료제는 주로 암 치료를 적응증으로 개발되고 있으며, 환자에게 직접 면역세포를 투여하여 면역 기능을 활성화함으로써 치료 효과를 얻기 때문에 기존의 암 치료에 이용되는 수술요법, 항암제나 방사선 치료와는 차별화되는 치료 기전 및 효능으로, 향후 바이오 신약의 주요한 부분을 차지할 것으로 예상되는 분야이다.
면역조절 세포치료제의 종류로는 크게 림포카인 활성 세포(LAK), 수지상세포, 및 T 세포 기반 치료제가 있으며, T 세포를 기반으로 한 세포치료제로는 대표적으로 환자의 종양 조직에 침투한 T 세포를 증식시켜 제조하는 종양침윤 T 세포(tumor-infiltrating lymphocytes; TIL)와 환자의 T 세포를 분리하여 T 세포 수용체(T cell receptor; TCR)나 키메릭 항원 수용체(chimeric antigen receptor; CAR)의 유전자를 도입하는 T 세포 수용체 발현 T 세포(TCR-modified T cell, TCR-T), 키메릭 항원 수용체 발현 T 세포(CAR-modified T cell, CAR-T)로 크게 구분할 수 있다.
종양침윤 T 세포(Tumor-infiltrating lymphocytes; TIL)는 종양 조직에 존재하는 림프구로써 환자의 종양 조직을 채취하여 종양 세포 살상능력이 있는 T 세포들을 분리하여 이를 증식시킨 다음 환자에게 다시 투여하는 것으로, 생검(biopsy)이 가능한 고형암종이 주로 연구되고 있다. TIL은 T 세포를 이용한 면역조절 세포치료제 중 가장 먼저 임상에서의 효능이 연구된 것으로, 미국의 국립암연구소(National Cancer Institute)의 Steven Rosenberg 박사팀을 통해 전이성 흑색종 환자에서 TIL을 투여하여 항암 효과를 관찰한 논문이 1988년 처음으로 보고되었으며, 현재까지 TIL 투여에 의한 심각한 부작용이 보고된 적은 없다. 그러나 종양 조직에서 종양 특이적인 T 세포를 분리하는 공정이 복잡하고 그 수율이 낮은 것이 기술적인 단점이며, 또한 LAK의 경우와 유사하게 항암 효능의 증강을 위해 인터루킨-2(Interleukin-2; IL-2)를 같이 투여하는데, 고농도로 투여된 IL-2에 의한 부작용 문제도 해결되어야 하는 실정이다(Science. 2015 Apr 3;348(6230):62-8.).
따라서 상기와 같은 종래 TIL을 이용한 세포치료제의 한계점을 극복하고 보다 효과적인 T 세포 면역 세포치료제의 개발을 위해, 본 발명자들은 종양조직에 국한되지 않고 비침습적인 방법으로 체내에서 분리하여 배양한 림프구로부터 종양에 대한 특이적인 활성을 나타내는 림프구만을 효율적으로 선별할 수 있는 유전자 마커를 찾기 위해 연구 노력하였으며, 그 결과 17종의 마커를 발굴하였는바 이에 기초하여 본 발명을 완성하였다.
본 발명자들은 종양 특이적 반응성을 나타내는 림프구를 효과적으로 선별할 수 있는 유전자 마커를 발굴하기 위하여, 유방암 환자의 종양조직에서 분리한 림프구를 이용해 연구 노력한 결과 총 17종의 유전자 바이오마커를 발굴하고 이의 유효성을 검증함으로써 본 발명을 완성하였다.
이에, 본 발명은 림프구의 종양 반응성 예측용 조성물을 제공하는 것을 목적으로 한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 ITGA6(Genbank 접근(accession) 번호: NM_000210.4, NM_001079818.3, NM_001316306.2, NM_001365529.2 및 NM_001365530.2) 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 포함하는, 림프구의 종양 반응성 예측용 조성물을 제공한다.
본 발명의 일구현예로, 상기 조성물은 ATP6V0A1(Genbank 접근(accession) 번호: NM_001130020.3, NM_001130021.3, NM_001378522.1, NM_001378523.1 및 NM_001378530.1), ARRDC3(Genbank 접근(accession) 번호: NM_001329670.2, NM_001329671.2, NM_001329672.2 및 NM_020801.4), CD23(Genbank 접근(accession) 번호: NM_001207019.2, NM_001220500.2 및 NM_002002.4), CD200(Genbank 접근(accession) 번호: NM_001004196.3, NM_001318826.1, NM_001318828.1, NM_001318830.1 및 NM_001365851.2), CD300C(Genbank 접근(accession) 번호: NM_006678.5), CYSLTR1(Genbank 접근(accession) 번호: NM_001282186.1, NM_001282187.2, NM_001282188.2 및 NM_006639.4), ITGB1(Genbank 접근(accession) 번호: NM_002211.4, NM_033668.2 및 NM_133376.2), MBOAT2(Genbank 접근(accession) 번호: NM_001321265.2, NM_001321266.2, NM_001321267.2 및 NM_138799.4), Met(Genbank 접근(accession) 번호: NM_000245.4, NM_001127500.3, NM_001324401.2 및 NM_001324402.2), MYO9A(Genbank 접근(accession) 번호: NM_006901.4), PTPN13(Genbank 접근(accession) 번호: NM_006264.3, NM_080683.3, NM_080684.3 및 NM_080685.2), S100P(Genbank 접근(accession) 번호: NM_005980.3), SECTM1(Genbank 접근(accession) 번호: NM_003004.3), TCN2(Genbank 접근(accession) 번호: NM_000355.4 및 NM_001184726.1), TSPAN2(Genbank 접근(accession) 번호: NM_001308315.1, NM_001308316.1 및 NM_005725.6) 및 VSIG1(Genbank 접근(accession) 번호: NM_001170553.1 및 NM_182607.5)으로 구성된 군에서 선택되는 1종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 더 포함할 수 있다.
또한, 본 발명은 ATP6V0A1(Genbank 접근(accession) 번호: NM_001130020.3, NM_001130021.3, NM_001378522.1, NM_001378523.1 및 NM_001378530.1), MBOAT2(Genbank 접근(accession) 번호: NM_001321265.2, NM_001321266.2, NM_001321267.2 및 NM_138799.4), PTPN13(Genbank 접근(accession) 번호: NM_006264.3, NM_080683.3, NM_080684.3 및 NM_080685.2), TCN2(Genbank 접근(accession) 번호: NM_000355.4 및 NM_001184726.1) 및 TSPAN2(Genbank 접근(accession) 번호: NM_001308315.1, NM_001308316.1 및 NM_005725.6)로 이루어진 군에서 선택되는 3종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 포함하는, 림프구의 종양 반응성 예측용 조성물을 제공한다.
본 발명의 일구현예로, 상기 조성물은 ATP6V0A1, MBOAT2 및 TSPAN2 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 포함할 수 있다.
본 발명의 다른 구현예로, 상기 조성물은 PTPN13, TCN2 및 TSPAN2 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 포함할 수 있다.
본 발명의 또 다른 구현예로, 상기 조성물은 ARRDC3(Genbank 접근(accession) 번호: NM_001329670.2, NM_001329671.2, NM_001329672.2 및 NM_020801.4), CD23(Genbank 접근(accession) 번호: NM_001207019.2, NM_001220500.2 및 NM_002002.4), CD200(Genbank 접근(accession) 번호: NM_001004196.3, NM_001318826.1, NM_001318828.1, NM_001318830.1 및 NM_001365851.2), CD300C(Genbank 접근(accession) 번호: NM_006678.5), CYSLTR1(Genbank 접근(accession) 번호: NM_001282186.1, NM_001282187.2, NM_001282188.2 및 NM_006639.4), ITGA6(Genbank 접근(accession) 번호: NM_000210.4, NM_001079818.3, NM_001316306.2, NM_001365529.2 및 NM_001365530.2), ITGB1(Genbank 접근(accession) 번호: NM_002211.4, NM_033668.2 및 NM_133376.2), Met(Genbank 접근(accession) 번호: NM_000245.4, NM_001127500.3, NM_001324401.2 및 NM_001324402.2), MYO9A(Genbank 접근(accession) 번호: NM_006901.4), S100P(Genbank 접근(accession) 번호: NM_005980.3), SECTM1(Genbank 접근(accession) 번호: NM_003004.3) 및 VSIG1(Genbank 접근(accession) 번호: NM_001170553.1 및 NM_182607.5)으로 구성된 군에서 선택되는 1종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 더 포함할 수 있다.
본 발명의 또 다른 구현예로, 상기 림프구는 종양 조직, 혈액, 또는 체액에서 분리된 것일 수 있다.
본 발명의 또 다른 구현예로, 상기 mRNA 수준을 측정하는 제제는 유전자의 mRNA에 상보적으로 결합하는 센스 및 안티센스 프라이머, 또는 프로브일 수 있다.
본 발명의 또 다른 구현예로, 상기 단백질 수준을 측정하는 제제는 유전자가 코딩하는 단백질에 특이적으로 결합하는 항체일 수 있다.
다양한 체내 유래 림프구에서 종양에 특이적인 활성을 갖는 림프구만을 선택적으로 선별할 수 있으면 이를 기반으로 효과적인 면역치료제를 생산할 수 있다. 따라서 본 발명에 따른 유전자 마커를 이용하여 배양된 림프구의 종양 반응성을 예측할 수 있는 예측모델을 구축할 수 있고, 이를 통해 림프구의 반응성을 예측함으로써 보다 정확하게 종양에 특이적인 림프구를 선별하여 효과적인 면역치료제를 생산할 수 있을 것이다. 또한, 상기 유전자 마커를 이용하면 종래 침습적인 방법에서 벗어나 체내 조직, 혈액, 또는 체액 등으로부터 보다 간편하게 비침습적인 방법으로 림프구를 분리하고 종양에 특이적인 활성을 갖는 림프구만을 선별하여 면역치료에 이용할 수 있어 응용 범위가 넓을 것으로 기대된다.
도 1은 종양침윤림프구(TIL)만 존재하는 대조군에 비해 자가유래 유방암세포와 TIL을 동시 배양하였을 때 분비되는 IFN-γ의 비율과, 종양세포에 반응성을 보인 TIL에서의 각 유전자의 발현 값을 이변량 상관분석(Spearman Correlation)으로 상관성을 조사하여 유의한 상관관계(p<0.05)를 보이는 유전자를 분석한 결과를 나타낸 것이다.
도 2a는 실시예 2에서 도출된 17개 유전자 가운데 삼중음성유방암 환자 유래 TIL의 종양 특이적 반응성 유무와 유의적 상관관계를 갖는 것으로 확인된 6개 유전자 각각에 대하여 상기 TIL의 반응성에 따른 발현수준 차이를 정량화한 결과이다.
도 2b는 TIL 종류 중 ITGA6의 발현과 유의한 상관관계가 있는 것으로 파악된 전체 TIL(CD45+), NKT 세포 및 T 세포에서 종양 특이적 반응성에 따른 ITGA6의 발현수준 차이를 정량화한 결과이다.
도 3a는 15명의 삼중음성유방암 환자 유래 TIL에 대하여 주성분(PCA) 분석을 실시한 결과이다.
도 3b는 삼중음성유방암 환자 유래 TIL에 대하여 실시예 2에서 도출된 17개 유전자의 발현수준을 히트맵으로 나타낸 결과이다.
도 3c는 상기 도 3a의 PCA 분석 결과를 Biplot 그래프로 나타내어 환자 유래 TIL 샘플과 상기 17개 유전자들을 함께 표시한 결과이다.
도 3d는 상기 도 3c의 분석 결과 반응성을 갖는 그룹과 관련이 있는 것으로 보이는 6개 유전자의 발현수준을 히트맵으로 나타낸 결과이다.
도 4a는 상기 17개 유전자간의 상호작용을 고려하여 2 내지 17개 유전자로 구성된 각 조합 및 이의 변수를 도출한 다음, 회귀분석을 실시하여 가장 높은 예측 정확도를 나타낸 10개 유전자 조합을 확인하고 이에 대하여 13가지 조합의 변수를 도출한 후 유전자 조합의 발현수준을 히트맵으로 나타낸 결과이다.
도 4b는 상기 조합 변수 중 가장 큰 음의 coefficient 값을 나타낸 조합(2번)을 구성하는 각 유전자들의 발현수준을 히트맵으로 나타낸 결과이다.
도 4c는 가장 큰 양의 coefficient 값을 나타낸 조합(7번)을 구성하는 각 유전자들의 발현수준을 히트맵으로 나타낸 결과이다.
도 4d는 상기 도 4b 및 도 4c의 조합을 구성하는 유전자들 중 공통되지 않는 8개 유전자에 대한 히트맵 결과를 나타낸 것이다.
도 5a 및 도 5b는 상기 도 4d의 8개 유전자 간의 상호작용을 고려하여 2~8개 유전자로 구성된 각 유전자 조합에 대하여 ROC 커브를 각각 그리고 이에 따른 AUC 값을 도출한 결과이다.
도 6a 및 도 6b는 회귀분석 및 랜덤 포레스트 기계학습 분석 결과 3개 유전자로 구성된 모델이 가장 높은 성능을 나타내는 것을 확인하여, 10가지 유전자 조합 변수를 도출하고 이들 각각에 대한 ROC 커브를 그려 AUC 값을 도출한 결과이다.
도 6c 및 도 6d는 상기 도 6a 및 도 6b의 결과에서 AUC 값이 0.7 이상인 6개 조합을 표시하고 이의 ROC 커브를 각각 나타낸 결과이다.
도 6e는 상기 6개 조합 변수에 대하여 Confusion Matrix 분석을 실시해 종양에 대한 반응성 예측 정확도를 분석한 결과이다.
본 발명자들은 종양 특이적 활성을 나타내는 림프구를 효과적으로 선별할 수 있는 유전자 마커를 발굴하기 위하여, 유방암 환자의 종양조직에서 분리한 림프구를 이용해 연구 노력한 결과 총 17종의 유전자를 발굴하였고, 이들의 유효성을 검증함으로써 본 발명을 완성하였다.
이하, 본 발명을 자세히 설명한다.
본 발명은 ITGA6(Genbank 접근(accession) 번호: NM_000210.4, NM_001079818.3, NM_001316306.2, NM_001365529.2 및 NM_001365530.2) 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질을 포함하는, 림프구의 종양 반응성 예측용 마커 조성물을 제공한다.
상기 마커 조성물은 ATP6V0A1(Genbank 접근(accession) 번호: NM_001130020.3, NM_001130021.3, NM_001378522.1, NM_001378523.1 및 NM_001378530.1), ARRDC3(Genbank 접근(accession) 번호: NM_001329670.2, NM_001329671.2, NM_001329672.2 및 NM_020801.4), CD23(Genbank 접근(accession) 번호: NM_001207019.2, NM_001220500.2 및 NM_002002.4), CD200(Genbank 접근(accession) 번호: NM_001004196.3, NM_001318826.1, NM_001318828.1, NM_001318830.1 및 NM_001365851.2), CD300C(Genbank 접근(accession) 번호: NM_006678.5), CYSLTR1(Genbank 접근(accession) 번호: NM_001282186.1, NM_001282187.2, NM_001282188.2 및 NM_006639.4), ITGB1(Genbank 접근(accession) 번호: NM_002211.4, NM_033668.2 및 NM_133376.2), MBOAT2(Genbank 접근(accession) 번호: NM_001321265.2, NM_001321266.2, NM_001321267.2 및 NM_138799.4), Met(Genbank 접근(accession) 번호: NM_000245.4, NM_001127500.3, NM_001324401.2 및 NM_001324402.2), MYO9A(Genbank 접근(accession) 번호: NM_006901.4), PTPN13(Genbank 접근(accession) 번호: NM_006264.3, NM_080683.3, NM_080684.3 및 NM_080685.2), S100P(Genbank 접근(accession) 번호: NM_005980.3), SECTM1(Genbank 접근(accession) 번호: NM_003004.3), TCN2(Genbank 접근(accession) 번호: NM_000355.4 및 NM_001184726.1), TSPAN2(Genbank 접근(accession) 번호: NM_001308315.1, NM_001308316.1 및 NM_005725.6) 및 VSIG1(Genbank 접근(accession) 번호: NM_001170553.1 및 NM_182607.5)으로 구성된 군에서 선택되는 1종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질을 더 포함할 수 있다.
또한, 본 발명은 ITGA6 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 포함하는, 림프구의 종양 반응성 예측용 조성물 및 상기 조성물을 포함하는, 림프구의 종양 반응성 예측용 키트를 제공한다.
상기 조성물은 ATP6V0A1, ARRDC3, CD23, CD200, CD300C, CYSLTR1, ITGB1, MBOAT2, Met, MYO9A, PTPN13, S100P, SECTM1, TCN2, TSPAN2 및 VSIG1으로 구성된 군에서 선택되는 1종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 더 포함할 수 있다.
또한, 본 발명은 ITGA6 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 단계를 포함하는, 림프구의 종양 반응성 예측을 위한 정보제공방법을 제공한다.
상기 예측방법은 ATP6V0A1, ARRDC3, CD23, CD200, CD300C, CYSLTR1, ITGB1, MBOAT2, Met, MYO9A, PTPN13, S100P, SECTM1, TCN2, TSPAN2 및 VSIG1으로 구성된 군에서 선택되는 1종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 단계를 더 포함할 수 있다.
본 발명자들은 구체적인 실시예를 통해 종양 특이적 활성을 나타내는 림프구를 효과적으로 선별할 수 있는 유전자 마커를 발굴하기 위하여, 15명의 삼중음성유방암 환자의 종양조직에서 분리한 림프구를 이용하여 총 17종의 유전자 마커를 발굴하였다. 보다 상세하게 본 발명의 일실시예에서는, 15명의 삼중음성유방암 환자로부터 유래된 종양침윤림프구(TIL)를 각 환자 유래 유방암세포와 공동 배양한 결과 6명의 환자에서 반응성을 보인 것을 확인하였다. 반응성을 보인 6명의 환자군과 반응성을 보이지 않은 9명의 환자군에서 차별적으로 발현되는 유전자를 분석한 결과 총 709개 유전자의 발현이 차별적으로 나타난 것을 확인하였으며, 상기 유전자들 중 세포표면에서 발현되는 17개 유전자 즉, Met, CD200, ITGB1, PTPN13, CYSLTR1, VSIG1, MBOAT2, MYO9A, CD23, S100P, SECTM1, CD300C, TSPAN2, ARRDC3, ITGA6, TCN2 및 ATP6V0A1을 선별하였다(실시예 2 참조).
나아가 본 발명의 다른 실시예에서는, 삼중음성유방암 환자 유래 TIL의 종양 특이적 반응성과 상기 17개 유전자의 발현수준 간의 상관관계를 분석한 결과 상기 유전자들 가운데 ITGA6의 발현수준이 종양세포에 대한 반응성을 나타내는 환자 유래 TIL, 특히 전체 TIL, NKT 세포 및 T 세포에서 유의하게 높게 나타난 것을 확인하였다(실시예 3 참조).
상기 결과는 ITGA6가 유방암 환자에서 환자 유래 TIL의 종양 반응성을 예측하는데 더욱 유효한 마커 유전자임을 입증하는 것이다.
본 발명에서 사용되는 용어, “림프구의 종양 반응성 예측”이란 림프구가 종양 조직, 보다 바람직하게는 자가유래 종양 조직 내 종양세포를 항원으로 인식하고 이에 반응하여, 면역반응 유도를 통해 결과적으로 종양에 대한 항암효과를 유도할 수 있는지 여부를 예측하는 것을 의미한다.
본 발명에 있어서, 상기 림프구는 종양 조직을 포함하는 체내 조직, 혈액, 또는 체액에서 분리된 것일 수 있고, 상기 체액은 림프구가 포함되어 있는 복수액, 흉수액 및 담도액 등일 수 있으나, 이에 제한되는 것은 아니다.
상기 종양은 바람직하게는 유방암일 수 있고, 더욱 바람직하게는 삼중음성유방암일 수 있으나, 이에 제한되는 것은 아니다.
본 발명자들은 또 다른 실시예에서, 기계학습 분석을 통해 실시예 2에서 차등적으로 발현된 17개 유전자에 대하여 다양한 조합 모델의 종양 반응성 예측 성능에 대한 유효성을 분석하였다. 그 결과, 3개 유전자로 구성된 조합 모델이 가장 예측 정확도가 높은 것으로 확인되었으며, 구체적으로 조합 변수 가운데 ATP6V0A1*TSPAN2*MBOAT2 및 PTPN13*TCN2*TSPAN2 조합의 경우 유의한 종양 반응성 예측 성능을 나타내는 것을 확인하였다(실시예 4 및 5 참조).
이에 본 발명의 다른 양태로서, 본 발명은 ATP6V0A1(Genbank 접근(accession) 번호: NM_001130020.3, NM_001130021.3, NM_001378522.1, NM_001378523.1 및 NM_001378530.1), MBOAT2(Genbank 접근(accession) 번호: NM_001321265.2, NM_001321266.2, NM_001321267.2 및 NM_138799.4), PTPN13(Genbank 접근(accession) 번호: NM_006264.3, NM_080683.3, NM_080684.3 및 NM_080685.2), TCN2(Genbank 접근(accession) 번호: NM_000355.4 및 NM_001184726.1) 및 TSPAN2(Genbank 접근(accession) 번호: NM_001308315.1, NM_001308316.1 및 NM_005725.6)로 이루어진 군에서 선택되는 3종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질을 포함하는, 림프구의 종양 반응성 예측용 마커 조성물을 제공한다.
보다 바람직하게, 상기 마커 조성물은 ATP6V0A1, MBOAT2 및 TSPAN2 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질을 포함할 수 있고, 또한 상기 마커 조성물은 PTPN13, TCN2 및 TSPAN2 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질을 포함할 수 있으나, 이에 제한되지 않는다.
상기 마커 조성물은 ARRDC3(Genbank 접근(accession) 번호: NM_001329670.2, NM_001329671.2, NM_001329672.2 및 NM_020801.4), CD23(Genbank 접근(accession) 번호: NM_001207019.2, NM_001220500.2 및 NM_002002.4), CD200(Genbank 접근(accession) 번호: NM_001004196.3, NM_001318826.1, NM_001318828.1, NM_001318830.1 및 NM_001365851.2), CD300C(Genbank 접근(accession) 번호: NM_006678.5), CYSLTR1(Genbank 접근(accession) 번호: NM_001282186.1, NM_001282187.2, NM_001282188.2 및 NM_006639.4), ITGA6(Genbank 접근(accession) 번호: NM_000210.4, NM_001079818.3, NM_001316306.2, NM_001365529.2 및 NM_001365530.2), ITGB1(Genbank 접근(accession) 번호: NM_002211.4, NM_033668.2 및 NM_133376.2), Met(Genbank 접근(accession) 번호: NM_000245.4, NM_001127500.3, NM_001324401.2 및 NM_001324402.2), MYO9A(Genbank 접근(accession) 번호: NM_006901.4), S100P(Genbank 접근(accession) 번호: NM_005980.3), SECTM1(Genbank 접근(accession) 번호: NM_003004.3) 및 VSIG1(Genbank 접근(accession) 번호: NM_001170553.1 및 NM_182607.5)으로 구성된 군에서 선택되는 1종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질을 더 포함할 수 있다.
또한, 본 발명은 ATP6V0A1, MBOAT2, PTPN13, TCN2 및 TSPAN2로 이루어진 군에서 선택되는 3종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 포함하는, 림프구의 종양 반응성 예측용 조성물 및 상기 조성물을 포함하는 림프구의 종양 반응성 예측용 키트를 제공한다.
보다 바람직하게, 상기 조성물은 ATP6V0A1, MBOAT2 및 TSPAN2 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 포함할 수 있고, 또한 상기 조성물은 PTPN13, TCN2 및 TSPAN2 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 포함할 수 있으나, 이에 제한되지 않는다.
상기 조성물은 ARRDC3, CD23, CD200, CD300C, CYSLTR1, ITGA6, ITGB1, Met, MYO9A, S100P, SECTM1 및 VSIG1으로 구성된 군에서 선택되는 1종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 더 포함할 수 있다.
또한, 본 발명은 ATP6V0A1, MBOAT2, PTPN13, TCN2 및 TSPAN2로 이루어진 군에서 선택되는 3종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 단계를 포함하는, 림프구의 종양 반응성 예측을 위한 정보제공방법을 제공한다.
상기 예측방법은 ARRDC3, CD23, CD200, CD300C, CYSLTR1, ITGA6, ITGB1, Met, MYO9A, S100P, SECTM1 및 VSIG1으로 구성된 군에서 선택되는 1종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 단계를 더 포함할 수 있다.
본 발명에 있어서, 상기 mRNA 수준을 측정하는 제제는 유전자의 mRNA에 상보적으로 결합하는 센스 및 안티센스 프라이머일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 사용되는 용어, “프라이머(Primer)”란 DNA 합성의 기시점이 되는 짧은 유전자 서열로서, 진단, DNA 시퀀싱 등에 이용할 목적으로 합성된 올리고뉴클레오티드를 의미한다. 상기 프라이머들은 통상적으로 15 내지 30 염기쌍의 길이로 합성하여 사용할 수 있으나 사용 목적에 따라 달라질 수 있으며, 공지된 방법으로 메틸화, 캡화 등으로 변형시킬 수 있다.
본 발명에서 사용되는 용어, “프로브(Probe)”란 효소 화학적인 분리정제 또는 합성과정을 거쳐 제작된 수 염기 내지 수백 염기 길이의 mRNA와 특이적으로 결합할 수 있는 핵산을 의미한다. 방사성 동위원소나 효소 등을 표지하여 mRNA의 존재 유무를 확인할 수 있으며, 공지된 방법으로 디자인하고 변형시켜 사용할 수 있다.
본 발명에 있어서, 상기 단백질 수준을 측정하는 제제는 유전자가 코딩하는 단백질에 특이적으로 결합하는 항체일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 사용되는 용어, “항체”는 면역학적으로 특정 항원과 반응성을 갖는 면역글로불린 분자를 포함하며, 단클론(monoclonal) 항체 및 다클론(polyclonal) 항체를 모두 포함한다. 또한, 상기 항체는 키메라성 항체(예를 들면, 인간화 뮤린 항체) 및 이종결합항체(예를 들면, 양특이성 항체)와 같은 유전공학에 의해 생산된 형태를 모두 포함한다.
본 발명에 따른 림프구의 종양 반응성 예측용 키트는 분석 방법에 적합한 한 종류 또는 그 이상의 다른 구성성분을 포함하는 조성물, 용액 또는 장치로 구성된다.
본 발명에 따른 림프구의 종양 반응성 예측을 위한 정보제공방법에 있어서, 상기 림프구는 피검자 유래 조직, 혈액, 또는 체액에서 에서 분리된 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 피검자는 바람직하게는 유방암 환자일 수 있고, 더욱 바람직하게는 삼중음성유방암 환자일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 사용되는 용어 “림프구의 종양 반응성 예측을 위한 정보제공방법”은 림프구를 이용한 면역치료를 위한 예비적 단계로써 종양세포에 특이적 활성을 나타내는 림프구만을 선별할 수 있는 필요한 객관적인 기초정보를 제공하는 것이다.
본 발명에 있어서, 상기 mRNA 수준은 당업계에 알려진 통상적인 방법으로 중합효소연쇄반응(PCR), 역전사 중합효소연쇄반응(RT-PCR), 실시간 중합효소연쇄반응(Real-time PCR), RNase 보호 분석법(RNase protection assay; RPA), 마이크로어레이(microarray), 및 노던 블롯팅(northern blotting)으로 이루어진 군으로부터 선택되는 1종 이상의 방법을 통해 측정될 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 단백질 수준은 당업계에 알려진 통상적인 방법으로 웨스턴 블롯팅(western blotting), 방사선면역분석법(radioimmunoassay; RIA), 방사 면역 확산법(radioimmunodiffusion), 효소면역분석법(ELISA), 면역침강법(immunoprecipitation), 유세포분석법(flow cytometry), 면역형광염색법(immunofluorescence), 오우크테로니(ouchterlony), 보체 고정 분석법(complement fixation assay), 및 단백질 칩(protein chip)으로 이루어진 군으로부터 선택되는 1종 이상의 방법을 통해 측정될 수 있으나, 이에 제한되는 것은 아니다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실시예]
실시예 1. 실험준비 및 실험방법
1-1. 종양침윤림프구의 배양
종양침윤림프구(TIL)를 분리하고 배양하기 위해, 먼저 수술 직후의 유방암 조직을 수집한 다음 실험실로 옮겨 2시간 내에 상기 종양 조직으로부터 TIL을 단리한 후, 하기와 같은 방법에 따라 배양하였다. 이때, 사용된 상기 모든 유방암 조직은 유방암 전이가 있는 림프절에서 유래한 유방암 조직을 제외하고 유방에서 유래한 것만을 이용하였다. 보다 구체적으로, 종양 조직을 1X ZellShield 항생제제(Minerva Biolabs, Berlin, Germany)가 포함된 인산 완충액(PBS, pH 7.4, Biowest)으로 세척하고 직경 1 mm의 조각으로 절제하였다. 이후 상기 조직으로부터 TIL을 단리하기 위해, 10% 소태아혈청(FBS, Corning, VA, USA), 1× ZellShield, 50 nM 2-머캅토에탄올(2-mercaptoethanol, Life Technologies, NY, USA) 및 1,000 IU/mL 인간 재조합 IL-2(Miltenyi Biotec, Auburn, CA, USA)가 포함된 RPMI 1640 배지(Life technologies, NY, USA)가 2 mL씩 담긴 24-웰 플레이트에 각 웰 당 2조각씩 분주한 후 14일 동안 5% CO2 배양기에서 37℃로 배양하였다. 배양 기간 동안 2일에 한 번씩 배지의 절반을 교체해 주었으며, 배지 색이 붉은 색에서 노란색으로 바뀌면 세포를 두 개 웰로 나누어 주었다. 14일 후 종양 조직 및 잔여물을 제거하기 위해 배양된 TIL을 40 μm 극공(pore)의 나일론 메쉬 여과기에 거른 다음, 1,500 rpm에서 5분 동안 원심분리하였으며, 세포 수 및 생존율을 확인한 후 다음 실험이 진행되기 전까지 동결보존하였다.
한편, 추가적인 급속 증식(rapid expansion; REP)을 위해, 상기 방법으로 분리한 TIL을 건강한 공여자로부터 얻은 방사선 조사(50 Gy)된 동종의 말초혈액단핵세포(peripheral blood mononuclear cells; PBMCs)와 함께 10% FBS, 1× ZellShield, 1,000 IU/mL 인간 재조합 IL-2, 및 30ng/mL 인간 항-CD3 항체(OKT3, Miltenyi Biotec, Bergisch Gladbach, Germany)가 포함된 REP 배지(50% RPMI 1640 및 50% AIM-V 배지, Life Technologies)에서 배양하였다. 상기 REP 배지는 2일 또는 3일마다 새로 첨가하였고, 14일 후 배양된 TIL(post-REP TILs)을 수집하여 동결보존하였다.
1-2. 일차 암세포 배양
종양조직에서 일차 암세포를 분리 및 배양하기 위하여, 상기 실시예 1-1의 방법으로 얻은 유방암 조직 조각을 분해 완충액(digestion buffer) 즉, 2% FBS, 1x 페니실린/스트렙토마이신(penicillin/streptomycin, Invitrogen, CA, USA), 10㎍/mL 인슐린(Life technologies), 10ng/mL EGF(Invitrogen), 및 1× 콜라게나제/히알루로니다제(collagenase/hyaluronidase, Gendepot, Barker, TX, USA)가 첨가된 DMEM-F12 배지(Life Technologies)의 존재 하에 1시간 동안 37℃, 5% CO2 배양기에서 배양하여 분해되도록 하였다. 이후 분해된 조직에서 얻어진 펠렛을 80 x g에서 30초 동안 원심분리한 다음 0.25% 트립신/EDTA에서 재현탁하고 피펫팅하여 단일세포로 분리하였다. 단일세포가 포함된 현탁액을 100μm 공극 여과기로 여과하고 2% FBS가 포함된 차가운 HBSS(Hank’s balanced salt solution) 용액으로 세척한 다음, 300 x g에서 5분 동안 원심분리하여 단일 암세포를 수득하였다. 상기 방법으로 얻어진 해리된 세포를 2% FBS, 5ng/mL 인간 재조합 EGF, 0.3㎍/mL 하이드로코르티손(Sigma-Aldrich, St. Louis), 0.5ng/mL 콜레라 톡신(Sigma-Aldrich), 5nM 3,3′, 5-트리요오드-L-티로닌(3,3′,5-triiodo-L-thyronine, Sigma-Aldrich), 0.5nM 베타-에스트라디올(β-estradiol, Sigma-Aldrich), 5μM 이소프로테레놀 염산염(isoproterenol hydrochloride, Sigma-Aldrich), 50nM 에탄올아민(ethanolamine, Sigma-Aldrich), 50nM O-포스포릴에탄올아민(O-phosphorylethanolamine, Sigma-Aldrich), 1× 인슐린/트렌스페린/셀레늄, 및 1% 페니실린/스트렙토마이신이 첨가된 DMEM/F12 (1:1) 배지(Life Technologies)를 이용해 콜라겐 I이 코팅된 100mm 플레이트(Corning)에서 37℃, CO2 배양기로 배양하였다. 이후 최소 2회 계대배양한 후 동결보존하였다.
1-3. 종양침윤림프구의 반응성 평가
상기 실시예 1-1의 방법으로 대량 증식시킨 TIL의 잠재적인 기능성을 평가하기 위하여, 96웰 플레이트에서 웰 당 1 x 105개의 TIL을 32.4nM PMA 및 1㎍/mL 이노마이신(ionomycin)으로 24시간 동안 자극시켰다. 이후 배양 플레이트를 1,500 rpm에서 5분 동안 원심분리하고, 상등액을 수집한 다음, ELISA 분석을 통해 IFN-γ 단백질 수준을 측정하였다.
또한, TIL의 자가 유래 암세포에 대한 반응성을 조사하기 위해, 96웰 플레이트에서 4 x 105개의 TIL을 1 x 105개의 자가 유래 유방암 세포와 24시간 동안 공동 배양한 다음, 상등액을 수집하여 ELISA 분석을 통해 TIL에서 분비된 IFN-γ 단백질 수준을 측정하였다.
1-4. ELISA 분석
본 실시예에서 수행한 ELISA는 ELISA 키트(K0331121, Koma Biotech, Seoul, Korea)를 사용하여 제조사의 프로토콜에 따라 실시하였다. 간략히, 각 웰을 세척 용액으로 세척 한 다음, 샘플, 표준물질 및 블랭크를 각 웰에 첨가하고 실온에서 2시간 동안 배양하였으며, 모든 테스트는 2회 또는 3회 실시하였다. 이후 액체를 제거한 다음, 플레이트를 세척 용액으로 세척하고 비오틴화된 검출 항체를 첨가한 후 실온에서 2시간 동안 배양하였다. 이후 다시 플레이트를 세척하고 스트렙타비딘-홀스레디쉬 퍼옥시다제 컨쥬게이트(Strepavidin-horesradish peroxidase conjugate)를 첨가한 다음 37℃에서 30분 동안 배양하였다. 세척 후, 3, 3', 5, 5'-테트라메틸벤지딘(tetramethylbenzidine) 용액을 첨가하고, 적절한 발색을 위해 실온에서 배양하였다. 정지 용액을 각 웰에 첨가한 후 마이크로플레이트 판독기(Spectramax 340PC, Molecular Devices)로 450 nm 흡광도에서 IFN-γ 수준을 측정하였다.
1-5. 통계분석
자가 유래 종양세포에 대한 특이적 활성을 갖는 림프구를 구분할 수 있는 유전자 마커를 발굴하기 위해, 하기와 같은 방법으로 통계분석을 진행하였다.
1) 상기 실시예 1-3의 방법에 따라 자가 유래 종양세포와 동시 배양 시 TIL에서 분비되는 IFN-γ의 양을 TIL이 단독으로 있을 때 분비되는 IFN-γ의 양으로 나누어 그 비율(ratio)을 구하고, 그 값이 2 이상일 때 반응성이 있는 것으로 정의하였음.
2) 상기 1) 분석을 통해 나타난 종양에 대한 반응성이 있는 군과 반응성이 없는 군의 배양된 TIL에서 RNA를 추출하고 전사체 서열분석(transcriptome sequencing)을 실시하여 차별적으로 발현되는 유전자를 분석하였으며, 발현수준이 2배 이상 차이나는 유전자를 차별 발현된 것으로 정의하였음.
3) 종양세포와 동시 배양 시 TILs에서 분비된 IFN-γ의 양을 종양침윤림프구가 단독으로 있을 때 분비되는 IFN-γ의 양으로 나누어 구한 ratio와 각 유전자의 발현 값을 이변량 상관분석(Spearman Correlation)을 통해 조사하여 유의한 상관관계(p < 0.05)를 보이는 유전자 군을 선별하였음.
실시예 2. 종양 특이적 림프구 선별 마커 탐색
상기 실시예 1-3의 방법에 따라 15명의 삼중음성유방암(Triple-negative breast cancer; TNBC) 환자로부터 유래된 TIL을 각 환자 유래 유방암세포와 배양한 결과 6명의 환자에서 반응성을 보였다. 이어서 상기 1-5의 두 번째 방법에 따라 반응성을 보인 6명의 환자군과 반응성을 보이지 않은 9명의 환자군에서 차별적으로 발현되는 유전자를 분석한 결과 13,827개 유전자 가운데 총 709개의 발현이 차별적으로 나타난 것을 확인하였으며, 상기 유전자들 중 세포표면에서 발현되는 17개 유전자를 하기 표 1에 나타내었다. 상기 세포표면에서 발현되는 유전자들을 기반으로 FACS 등의 방법을 통해 살아있는 세포를 선별할 수 있다.
나아가 도 1의 결과에서 볼 수 있는 바와 같이 상기 실시예 1-5의 세 번째 방법으로 개시된 상관분석을 통해서 IFN-γ 비율과 유의한 상관성을 보인 유전자는 총 1,923개로 나타났으며, 상기 차별적으로 발현되는 709개 유전자들에서 공통적으로 존재하는 유전자는 총 46개임을 확인하였다. 하기 표 1의 17개 유전자 중에서 상기 46개 유전자에 포함되는 유전자는 상단에 존재하는 8개 유전자임을 확인하였다.
유전자 Official full name
Met MET proto-oncogene, receptor tyrosine kinase
CD200 CD200 molecule
ITGB1 (CD29) integrin subunit beta 1
PTPN13 protein tyrosine phosphatase non-receptor type 13
CYSLTR1 cysteinyl leukotriene receptor 1
VSIG1 V-set and immunoglobulin domain containing 1
MBOAT2 membrane bound O-acyltransferase domain containing 2
MYO9A myosin IXA
CD23 Fc fragment of IgE receptor II; FCER2
S100P S100 calcium binding protein P
SECTM1 secreted and transmembrane 1
CD300C CD300c molecule
TSPAN2 tetraspanin 2
ARRDC3 arrestin domain containing 3
ITGA6 (CD49f) integrin subunit alpha 6
TCN2 transcobalamin 2
ATP6V0A1 ATPase H+ transporting V0 subunit a1
실시예 3. 종양 반응성 예측용 마커 유전자의 유효성 검증
3-1. TNBC-REP TIL의 종양 특이적 반응성과 17종 유전자의 발현수준 간의 상관관계 분석
본 발명자들은 상기 실시예 2를 통해 도출된 17개의 유전자 마커에 대하여 종양 특이적 림프구를 선별할 수 있는 마커로써 유효성을 검증하기 위하여 하기와 같은 실험을 진행하였다.
먼저 14명의 삼중음성유방암 환자에서 분리하여 급속 증식시킨 TIL(TNBC-REP TIL) 각각에서 상기 실시예 2에서 도출된 17개 유전자의 발현수준을 FACS를 이용하여 측정하였으며, 그 결과를 하기 표 2에 나타내었다.
Sample: reacti- vity CD23 ITGB1 ITGA6 CD200 CD300c Met S100P TSP AN ARRDC3 ATP6 VOA CYS LTR1 MBOAT2 MY09A PTPN13 SEC TM1 TCN2 VSIG1
BC1544 0 0.1 100.0 7.0 0.3 46.8 0.1 0.1 0.0 0.1 0.3 0.8 0.3 0.0 0.1 0.6 0.1 0.6
BC16048 0 0.3 100.0 4.1 1.9 67.1 0.1 0.0 0.0 0.2 0.2 0.9 0.6 0.1 0.1 0.9 0.1 0.5
BC16092 1 0.0 100.0 33.9 6.9 68.4 0.1 0.0 0.0 0.1 0.1 0.2 0.2 0.1 0.0 0.5 0.1 0.1
BC16126 0 0.1 99.9 5.5 0.3 40.2 0.2 0.1 0.0 0.2 0.3 0.6 0.4 0.0 0.1 0.6 0.1 0.1
BC16127 1 0.2 99.8 80.9 0.5 34.7 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.3 0.0 0.0
BC16143 0 0.8 99.9 59.8 0.6 14.4 0.2 0.0 0.0 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.4
BC16147 1 0.6 99.6 43.9 1.1 23.6 0.2 0.0 0.0 0.1 0.3 0.2 0.2 0.0 0.0 0.5 0.1 0.2
BC16151 0 0.1 99.6 31.5 0.3 34.2 0.2 0.1 0.0 0.1 0.2 0.4 0.4 0.1 0.0 0.3 0.2 0.2
BC16154 1 0.1 100.0 81.0 3.5 93.8 0.1 0.0 0.0 0.0 0.6 0.1 0.2 0.0 0.0 0.1 0.1 0.0
BC16158 1 5.4 99.0 68.2 4.3 49.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.2 0.0 0.1
BC16166 0 0.2 100.0 22.5 1.2 9.5 0.2 0.1 0.0 0.1 0.3 0.1 0.4 0.1 0.0 0.5 0.1 0.1
BC16208 0 0.5 99.7 14.7 0.7 57.3 0.2 0.1 0.0 0.2 0.2 0.2 0.1 0.0 0.0 0.2 0.1 0.2
BC16223 0 0.0 99.8 7.1 0.3 19.8 0.3 0.1 0.0 0.1 0.3 0.9 0.8 0.1 0.1 0.4 0.1 0.3
BC17009 0 0.0 99.8 38.4 0.2 56.2 0.3 0.0 0.0 0.2 0.3 0.2 0.2 0.0 0.1 0.5 0.1 0.0
나아가 반응성이 있는 TIL(reactivity=1)과 반응성이 없는 TIL(reactivity=0)의 세포에서 발현되는 유전자들의 발현수준 간에 유의적인 차이가 있는지 여부를 알아보기 위해 SPSS 통계분석을 실시하였다. 그 결과, 하기 표 3에서 볼 수 있는 바와 같이 17개 유전자 가운데 ITGA6, CD200, S100P, ARRDC3, CYSLTR1 및 VSIG1에서 유의적 차이가 나는 것을 확인하였다.
CD23 ITGB1 ITGA6 CD200 CD300c Met S100P TSPAN ARRDC3
Mann-Whitney의 U 18.000 18.500 3.000 6.000 14.000 8.500 7.500 22.500 .000
Wilcoxon의 W 63.000 33.500 48.000 51.000 59.000 23.500 22.500 37.500 15.000
Z -.610 -.549 -2.600 -2.225 -1.133 -2.032 -2.327 .000 -3.003
근사 유의확률(양측) .542 .583 .009 .026 .257 .042 .020 1.000 .003
정확한 유의확률[2* (단측유의확률)] .606b .606b .007b .029b .298b .060b .042b 1.000b .001b
정확한 유의확률 (양측) .571 .610 .007 .025 .298 .073 .031 1.000 .001
정확한 유의확률 (단측) .290 .327 .003 .013 .149 .048 .028 1.000 .000
점 확률 .019 .045 .001 .004 .029 .045 .028 1.000 .000
ATP6 VOA CYS LTR1 MBOAT2 MY09A PTPN13 SEC TM1 TCN2 VSIG1
Mann-Whitney의 U 15.500 6.000 10.500 20.500 11.000 14.500 14.500 7.500
Wilcoxon의 W 30.500 21.000 25.500 35.500 26.000 29.500 29.500 22.500
Z -.944 -2.202 -1.605 -.267 -1.533 -1.068 -1.069 -2.002
근사 유의확률(양측) .345 .028 .108 .789 .125 .286 .285 .045
정확한 유의확률[2* (단측유의확률)] .364b .029b .112b .797b .147b .298b .298b .042b
정확한 유의확률 (양측) .375 .027 .118 .823 .147 .313 .315 .045
정확한 유의확률 (단측) .188 .013 .059 .411 .073 .156 .159 .022
점 확률 .018 .002 .008 .025 .017 .014 .020 .003
구체적으로 상기 6개 유전자 각각에 대하여 반응성에 따른 발현수준 차이를 정량적으로 그래프화한 결과, 도 2a에 나타낸 바와 같이 ITGA6와 CD200은 반응성이 없는 그룹(00)과 비교하여 반응성이 있는 그룹의 TIL(1.00)에서 발현수준이 더 높은 것으로 나타났으며, 나머지 S100P, ARRDC3, CYSLTR1 및 VSIGI의 경우에는 반응성이 있는 그룹의 TIL에서 발현수준이 더 낮게 나타났다. 이에, 상기 결과로부터 반응성이 있는 TIL을 선별하기 위한 마커로써 발현수준이 증가한 ITGA6와 CD200을 선별하고 하기 실험을 진행하였다.
3-2. TIL 종류별 ITGA6와 CD200의 발현수준 분석
본 발명자들은 상기 실시예 3-1에서 선별한 ITGA6와 CD200의 발현이 종양에 침윤한 면역세포(TIL) 중 어떤 세포에서 차이가 나는지 알아보고자 하였다. 이를 위해, TIL을 CD3, CD4, CD8, CD56 항체와 ITGA6 또는 CD200을 같이 염색하여 FACS 분석을 실시한 후, 전체 TIL(CD45+), NKT 세포(CD45+CD56+CD3+), T 세포(CD45+CD56-CD3+), CD4 T 세포 (CD45+CD56-CD3+CD4+CD8-) 및 CD8 T 세포(CD45+CD56-CD3+CD4-CD8+) 각각에서 ITGA6 및 CD200의 발현을 분석하였으며, 그 결과를 하기 표 4 및 표 5에 각각 나타내었다.
Sample ITGA6+ CD45 ITGA6+ NKT cells ITGA6+ T cells ITGA6+ CD4 T cells ITGA6+ CD8 T cells
BC1544 15.9 2.47 12.7 21.6 3.09
BC16048 11.7 4.65 11.4 30.5 4.35
BC16092 47 59.6 43.9 50 48
BC16126 10.6 13.1 8.76 48.9 10.5
BC16127 88.5 77.3 86.5 96 77.5
BC16143 77.3 72.7 72.6 74 59
BC16147 55.4 26.5 50.7 63.7 41.7
BC16151 41.6 24.6 37.7 76.2 40.5
BC16154 89 50 87.5 89.5 41.6
BC16158 78.9 72.2 75.7 85.3 38.6
BC16166 31.3 22.8 27.5 65.6 19.6
BC16208 13.7 12.2 11.4 41.8 13.8
BC16223 24.8 9.69 21.7 28.2 14.6
BC17009 53.8 25.7 54.2 92.7 52.2
Sample CD200+ CD45 CD200+ NKT cells CD200+ T cells CD200+ CD4 T cells CD200+ CD8 T cells
BC1544 0.5 1.33 0.26 0.34 0.2
BC16048 4.33 3 2.84 7.24 0.73
BC16092 9.45 15.1 6.84 3.66 8.59
BC16126 0.33 0.85 0.22 0.49 0.1
BC16127 0.42 0.92 0.14 0.33 0.061
BC16143 0.98 25 0.52 0.61 0.43
BC16147 1.38 5.36 0.81 1.68 0.074
BC16151 0.23 1.89 0.11 0.66 0.11
BC16154 6.45 4.35 3.8 4.25 4.12
BC16158 9.22 21.4 6.1 8.07 0
BC16166 1.9 10.1 1.12 5.57 0.036
BC16208 1.12 3.59 0.7 1.02 0.12
BC16223 1.8 1.75 1.31 4.03 0.51
BC17009 1.15 6.29 0.28 1.44 0.19
나아가 SPSS 프로그램을 이용하여 통계분석을 실시한 결과, 하기 표 6 및 도 2b에서 볼 수 있는 바와 같이 전체 TIL(CD45+)과, NKT 세포 및 T 세포에서 반응성 없는 그룹에 비해 반응성 있는 그룹에서 ITGA6의 발현이 유의적으로 높게 발현된 것을 확인하였다. 그러나 CD200의 경우에는 전체 TIL뿐만 아니라 NKT 세포 및 T 세포에서도 유의한 발현의 차이를 보이지 않았다. 이러한 결과로부터 CD200은 실험적 변수로 판단하였고, ITGA6를 종양 특이적 림프구 반응성 예측 마커로 선별하였다.
CD200_ CD45 CD200_ NKT CD200_ T CD200_ CD4T CD200_ CD8T ITGA6_ CD45 ITGA6_ NKT ITGA6_ T ITGA6_ CD4T ITGA6_ CD8T
Mann-Whitney의 U 10.000 16.000 11.000 17.000 20.000 3.000 4.000 4.000 10.000 9.000
Wilcoxon의 W 55.000 61.000 56.000 62.000 35.000 48.000 49.000 49.000 55.000 54.000
Z -1.667 -.867 -1.533 -.733 -.333 -2.600 -2.467 -2.469 -1.667 -1.800
근사 유의확률 (양측) .096 .386 .125 .463 .739 .009 .014 .014 .096 .072
정확한 유의확률[2*(단측유의확률)] .112b .438b .147b .518b .797b .007b .012b .012b .112b .083b
정확한 유의확률 (양측) .112 .438 .147 .518 .797 .007 .012 .011 .112 .083
정확한 유의확률 (단측) .056 .219 .073 .259 .399 .003 .006 .006 .056 .041
점 확률 .014 .037 .017 .040 .049 .001 .002 .002 .014 .011
실시예 4. 기계학습 방법을 통한 종양 반응성 예측용 마커 유전자의 유효성 검증
본 발명자들은 상기 실시예 2를 통해 도출된 17개 마커 유전자를 대상으로 종양 크기 및 선행항암화학요법(neoadjuvant chemotherapy; NAC)의 유무를 이용한 기계학습 방법을 통해 종양에 대한 반응성과 비반응성을 예측할 수 있는 바이오마커 유전자를 도출하기 위한 분석을 진행하였다. 이를 위해 여러 기계학습 방법 중 로지스틱 회귀 분석(Logistic regression)법을 이용해 분석을 진행하였다.
먼저, 15명의 삼중음성유방암 환자 유래 TIL에 대하여 주성분 분석(Principal Component Analysis; PCA)을 실시하였다. 그 결과, 도 3a에 나타낸 바와 같이 반응성 여부에 따라 반응성 그룹(Active)과 비반응성 그룹(Non-active)의 두 개 클러스터로 분명하게 구분되지는 않았지만 몇 개의 클러스터가 관찰되었다.
다음으로, 각 환자유래 TIL에서 17종 유전자의 발현수준을 분석하여 히트맵(Heatmap)으로 분석을 실시하였으며, 반응성을 보인 환자 유래 샘플의 결과는 초록색으로 표시하였다. 분석 결과, 도 3b에서 볼 수 있는 바와 같이 17개 유전자 가운데 PTPN13 유전자가 반응성을 보이는 그룹에서 주로 높은 발현수준을 보였고, MET 유전자는 NAC를 진행한 샘플에서 낮은 발현수준을 보였다.
또한, 상기 도 3a의 PCA 분석 결과를 Biplot 그래프로 나타내어 샘플과 유전자들을 함께 표시하여 각 그룹에 어떤 유전자들이 영향을 미치는지 분석한 결과, 도 3c에서 볼 수 있는 바와 같이 SECTM1, PTPN13, S100P, CD200, TCN2 및 FCER2(CD23) 유전자가 BC16110 샘플을 제외한 반응성을 갖는 그룹과 관련이 있는 것을 확인하였다. 나아가 상기 6종류의 유전자를 이용해 히트맵을 그려 분석한 결과, 도 3d에 나타낸 바와 같이 PTPN13 유전자가 반응성을 갖는 샘플에서 발현수준이 주로 높게 나타났으며, PTPN13 이외의 유전자에서는 뚜렷한 발현수준의 차이가 나타나지 않은 것을 확인하였다.
실시예 5. 종양 반응성 예측용 마커 유전자 조합 발굴 및 유효성 검증
5-1. 10개 유전자로 구성된 조합 도출 및 분석
본 발명자들은 상기 실시예 2를 통해 도출된 17개의 유전자들을 대상으로 종양 특이적 반응성을 갖는 림프구 선별을 위한 유효한 마커 조합을 발굴하기 위해 분석을 진행하였다.
보다 구체적으로, 17종류의 차등적으로 발현된 유전자들 간의 상호작용(interaction)을 고려하여 기계학습을 진행하기 위해 먼저 sklearn에서 제공하는 PolynomialFeatures 라이브러리를 사용해서 각 유전자들 사이의 interaction을 구하였다. 그 결과, 변수(Feature)의 수가 너무 많아 lasso를 사용해 feature 선별을 진행하였으며 그 결과는 하기 표 7에 나타낸 바와 같다.
Feature interaction Feature의 수
2 136 -> 10
3 680 -> 11
4 2380 -> 11
5 6188 -> 10
6 12376 -> 8
7 19448 -> 10
8 24310 -> 12
9 24310 -> 11
10 19448 -> 13
11 12376 -> 11
12 6188 -> 7
13 2380 -> 12
14 680 -> 5
15 136 -> 6
16 17
17 1
이후 각각의 interaction에 대하여 SMOTE 방법을 사용하여 oversampling을 진행하였다. 그 후에 로지스틱 회귀분석을 실시하였으며, 하기 표 8에서 볼 수 있는 바와 같이 정확도(accuracy) 및 AUC 값이 1인 값을 제외하고 가장 높게 나타난 10개 유전자를 사용한 경우를 선택하여 히트맵으로 유전자들의 발현수준을 비교하였다.
Training Accuracy Test Accuracy AUC
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1
6 1 0.83 1
7 1 0.83 1
8 1 0.5 0.67
9 1 0.5 0.78
10 1 0.83 0.78
11 1 0.66 0.67
12 1 0.5 0.11
13 1 0.33 0.56
14 1 0.33 0.11
15 1 0.33 0.11
16 1 0.5 0.33
17 0.75 0.5 0.89
보다 구체적으로, 도 4a에 13가지 feature에 해당하는 10개 유전자 조합 및 환자 유래 TIL 샘플에서 각 유전자 조합의 발현수준을 나타내었다. 분석 결과 반응성을 나타내는 환자유래 샘플에서 좌측으로부터 4, 12, 13, 5 및 10번 조합은 발현수준이 낮은 경향을 보였다. 나아가 양의 coefficient 값은 반응성으로 예측하는데 영향력이 크고 음의 coefficient 값은 비반응성으로 예측하는데 영향을 크게 미치므로, 각각 양과 음의 coefficient 값이 가장 큰 feature에 속하는 유전자 조합 즉, 7번(coefficient 값 양수인 경우, 빨강) 및 2번(coefficient 값이 음수인 경우, 녹색)으로 각각 히트맵을 그려 분석을 실시하였다.
보다 상세하게, coefficient 값이 음수인 2번 조합에 해당하는 10개 유전자를 이용해 히트맵 분석을 실시한 결과를 도 4b에 나타내었으며, 상기 조합의 coefficient 값은 -9.30E-05이었다. coefficient 값이 가장 큰 양수를 나타내는 7번의 10개 유전자와 비교하였을 때 공통적이지 않은 4개 유전자들을 녹색 원으로 표시하였다. 이중 MET과 ATP6V0A1 유전자는 NAC를 실행하면 발현수준이 낮은 경향을 나타내는 것으로 보였으며, PTPN13 유전자가 반응성을 보이는 그룹에서 주로 높은 발현수준을 나타내었다. 또한, coefficient 값이 양수인 7번 조합에 해당하는 10개 유전자를 이용해 히트맵 분석을 실시한 결과는 도 4c에 나타내었으며 해당 10개 유전자 조합의 coefficient 값은 8.92E-04이었다. 상기 2번의 10개 유전자에 포함되지 않는 다른 4개 유전자를 녹색 원으로 표시하였고, 히트맵 결과를 분석한 결과 상기 4개 유전자 중에서 TSPAN2와 MYO9A 유전자의 경우 NAC를 실행한 샘플에서 발현수준이 낮은 경향을 보였으며, CD300C 유전자는 NAC를 실행하면 발현수준이 높은 경향을 보였다. 종합적으로, 상기 결과들로부터 각 유전자들 간에 환자 유래 샘플의 반응성 여부에 따른 발현수준의 차이가 발견되지 않았다. 이에, 본 발명자들은 양과 음의 coefficient 값을 갖는 상기 각 2번 및 7 조합에서 공통되지 않는 총 8개 유전자들만을 가지고 히트맵을 그려 분석하였으나, 역시 반응성 유무에 따라 각 유전자들의 발현수준에는 차이가 나타나지 않은 것을 확인하였다. 이에 본 발명자들은 상기 8개 유전자 즉, MET, ATP6V0A1, S100P, PTPN13, CD23, TCN2, TSPAN2, MBOAT2의 interaction을 구하여 기계학습으로 분석을 진행하였다.
5-2. 8개 유전자로 구성된 조합에 대한 기계학습 분석
본 발명자들은 상기 실시예 5-1을 통해 도출된 8개 유전자를 이용해 종양 반응성을 예측할 수 있는 유효한 마커 조합을 발굴하기 위한 실험을 진행하였다. 상기 실시예 5-1에서와 동일한 방법으로 8개 유전자들 간에 interaction을 고려하여 먼저 PolynomialFeatures 라이브러리를 사용해서 각 유전자들 사이의 interaction을 구하였고, lasso를 사용해 feature 선별을 진행하였으며 그 결과는 하기 표 9에 나타내었다.
Feature interaction Feature의 수
2 28 -> 15
3 56 -> 20
4 70 -> 11
5 56 -> 10
6 28 -> 10
7 8
8 1
이어서 각 유전자 조합을 이용한 모델의 성능을 조사하기 위해 oversampling 진행 후, 로지스틱 회귀분석과 랜덤 포레스트(random forest) 분석을 실시하였다. 먼저 로지스틱 회귀분석 결과, 하기 표 10, 도 5a 및 도 5b에 나타낸바와 같이 interaction 수가 3 및 4인 경우 테스트 정확도 및 AUC 값이 1인 값을 제외하고 가장 높게 나타났다. 또한 랜덤 포레스트 분석 결과, 하기 표 11에 나타낸 바와 같이 interaction 수가 3인 경우에서 모델의 성능이 1인 값을 제외하고 가장 높게 나타난 것을 확인하였다.
Training Accuracy Test Accuracy AUC
No-interaction 1 0.66 0.78
2 1 1 1
3 1 0.83 0.89
4 1 0.83 0.89
5 1 0.5 0
6 1 0.16 0.33
7 1 0.33 0.67
8 0.5 0.5 0.5
Training Accuracy Test Accuracy AUC
No-interaction 1 0.83 1
2 1 0.83 1
3 1 0.83 0.78
4 0.91 1 1
5 1 0.5 0.78
6 0.83 1 1
7 0.91 0.5 0.67
8 0.83 0.33 0.28
5-3. 종양 반응성 예측용 마커 유전자 조합 최종 도출
상기 실시예 5-2의 분석 결과, 회귀분석 및 랜덤 포레스트 분석법을 통해 공통적으로 interaction 수가 3인 경우 즉, 3개 유전자의 조합으로 구성된 모델의 종양 반응성 예측 성능이 가장 높은 것으로 확인되었는바, 본 발명자들은 3종류의 유전자로 구성된 양의 coefficient 값을 나타내는 10가지 feature 각각에 대하여 ROC 커브(curve)를 그렸다. 도 6a 및 도 6b는 각 10가지 유전자 조합을 표로 나타내고 10가지 feature 모든 경우에 대한 ROC 커브를 각각 그린 것이고, 도 6c 및 도 6d는 양의 coefficient 값을 가진 경우 중 AUC 값이 0.7 이상인 것(2, 5, 6, 8, 9 및 10번 조합)만 사용해 각각 ROC 커브를 그린 것이다.
이에 더하여 본 발명자들은 상기 AUC 값이 0.7 이상인 6개 feature에 대하여 각각 confusion matrix를 그려 각 조합으로 구성된 모델의 성능을 비교하였다. 그 결과, 도 6e에서 볼 수 있는 바와 같이 8번과 10번 feature가 반응성(1로 표시)을 3개 전부 맞추었고, 비반응성(0으로 표시)에서도 다른 feature에 비해 정확도가 더욱 높은 것을 확인하였다.
따라서 상기 결과들로부터, 8번(ATP6V0A1*TSPAN2*MBOAT2) 및 10번(PTPN13*TCN2*TSPAN2) 조합을 림프구의 종양 반응성을 예측하는 유의한 마커 유전자 조합으로 최종 선별하였다.
상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명에 따른 유전자 마커를 이용하면 종래 침습적인 방법에서 벗어나 체내 조직, 혈액, 또는 체액 등으로부터 보다 간편하게 비침습적인 방법으로 림프구를 분리하고 이의 종양 반응성을 예측하여 종양에 특이적인 림프구를 선별할 수 있으며, 이에 기반하여 효과적인 면역치료제를 생산할 수 있는바, 상기 종양 특이적 반응성을 갖는 림프구 선별 마커는 면역치료 분야에서 폭넓게 활용될 수 있을 것으로 기대된다.

Claims (14)

  1. ITGA6(Genbank 접근(accession) 번호: NM_000210.4, NM_001079818.3, NM_001316306.2, NM_001365529.2 및 NM_001365530.2) 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 포함하는, 림프구의 종양 반응성 예측용 조성물.
  2. 제1항에 있어서,
    상기 조성물은 ATP6V0A1(Genbank 접근(accession) 번호: NM_001130020.3, NM_001130021.3, NM_001378522.1, NM_001378523.1 및 NM_001378530.1), ARRDC3(Genbank 접근(accession) 번호: NM_001329670.2, NM_001329671.2, NM_001329672.2 및 NM_020801.4), CD23(Genbank 접근(accession) 번호: NM_001207019.2, NM_001220500.2 및 NM_002002.4), CD200(Genbank 접근(accession) 번호: NM_001004196.3, NM_001318826.1, NM_001318828.1, NM_001318830.1 및 NM_001365851.2), CD300C(Genbank 접근(accession) 번호: NM_006678.5), CYSLTR1(Genbank 접근(accession) 번호: NM_001282186.1, NM_001282187.2, NM_001282188.2 및 NM_006639.4), ITGB1(Genbank 접근(accession) 번호: NM_002211.4, NM_033668.2 및 NM_133376.2), MBOAT2(Genbank 접근(accession) 번호: NM_001321265.2, NM_001321266.2, NM_001321267.2 및 NM_138799.4), Met(Genbank 접근(accession) 번호: NM_000245.4, NM_001127500.3, NM_001324401.2 및 NM_001324402.2), MYO9A(Genbank 접근(accession) 번호: NM_006901.4), PTPN13(Genbank 접근(accession) 번호: NM_006264.3, NM_080683.3, NM_080684.3 및 NM_080685.2), S100P(Genbank 접근(accession) 번호: NM_005980.3), SECTM1(Genbank 접근(accession) 번호: NM_003004.3), TCN2(Genbank 접근(accession) 번호: NM_000355.4 및 NM_001184726.1), TSPAN2(Genbank 접근(accession) 번호: NM_001308315.1, NM_001308316.1 및 NM_005725.6) 및 VSIG1(Genbank 접근(accession) 번호: NM_001170553.1 및 NM_182607.5)으로 구성된 군에서 선택되는 1종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 더 포함하는 것을 특징으로 하는, 조성물.
  3. 제1항에 있어서,
    상기 림프구는 종양 조직, 혈액, 또는 체액에서 분리된 것을 특징으로 하는, 조성물.
  4. 제1항 또는 제2항에 있어서,
    상기 mRNA 수준을 측정하는 제제는 유전자의 mRNA에 상보적으로 결합하는 센스 및 안티센스 프라이머, 또는 프로브인 것을 특징으로 하는, 조성물.
  5. 제1항 또는 제2항에 있어서,
    상기 단백질 수준을 측정하는 제제는 유전자가 코딩하는 단백질에 특이적으로 결합하는 항체인 것을 특징으로 하는, 조성물.
  6. ATP6V0A1(Genbank 접근(accession) 번호: NM_001130020.3, NM_001130021.3, NM_001378522.1, NM_001378523.1 및 NM_001378530.1), MBOAT2(Genbank 접근(accession) 번호: NM_001321265.2, NM_001321266.2, NM_001321267.2 및 NM_138799.4), PTPN13(Genbank 접근(accession) 번호: NM_006264.3, NM_080683.3, NM_080684.3 및 NM_080685.2), TCN2(Genbank 접근(accession) 번호: NM_000355.4 및 NM_001184726.1) 및 TSPAN2(Genbank 접근(accession) 번호: NM_001308315.1, NM_001308316.1 및 NM_005725.6)로 이루어진 군에서 선택되는 3종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 포함하는, 림프구의 종양 반응성 예측용 조성물.
  7. 제6항에 있어서,
    상기 조성물은 ATP6V0A1, MBOAT2 및 TSPAN2 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 포함하는 것을 특징으로 하는, 조성물.
  8. 제6항에 있어서,
    상기 조성물은 PTPN13, TCN2 및 TSPAN2 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 포함하는 것을 특징으로 하는, 조성물.
  9. 제6항에 있어서,
    상기 조성물은 ARRDC3(Genbank 접근(accession) 번호: NM_001329670.2, NM_001329671.2, NM_001329672.2 및 NM_020801.4), CD23(Genbank 접근(accession) 번호: NM_001207019.2, NM_001220500.2 및 NM_002002.4), CD200(Genbank 접근(accession) 번호: NM_001004196.3, NM_001318826.1, NM_001318828.1, NM_001318830.1 및 NM_001365851.2), CD300C(Genbank 접근(accession) 번호: NM_006678.5), CYSLTR1(Genbank 접근(accession) 번호: NM_001282186.1, NM_001282187.2, NM_001282188.2 및 NM_006639.4), ITGA6(Genbank 접근(accession) 번호: NM_000210.4, NM_001079818.3, NM_001316306.2, NM_001365529.2 및 NM_001365530.2), ITGB1(Genbank 접근(accession) 번호: NM_002211.4, NM_033668.2 및 NM_133376.2), Met(Genbank 접근(accession) 번호: NM_000245.4, NM_001127500.3, NM_001324401.2 및 NM_001324402.2), MYO9A(Genbank 접근(accession) 번호: NM_006901.4), S100P(Genbank 접근(accession) 번호: NM_005980.3), SECTM1(Genbank 접근(accession) 번호: NM_003004.3) 및 VSIG1(Genbank 접근(accession) 번호: NM_001170553.1 및 NM_182607.5)으로 구성된 군에서 선택되는 1종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 제제를 더 포함하는 것을 특징으로 하는, 조성물.
  10. 제6항에 있어서,
    상기 림프구는 종양 조직, 혈액, 또는 체액에서 분리된 것을 특징으로 하는, 조성물.
  11. 제6항 내지 제9항 중 어느 한 항에 있어서,
    상기 mRNA 수준을 측정하는 제제는 유전자의 mRNA에 상보적으로 결합하는 센스 및 안티센스 프라이머, 또는 프로브인 것을 특징으로 하는, 조성물.
  12. 제6항 내지 제9항 중 어느 한 항에 있어서,
    상기 단백질 수준을 측정하는 제제는 유전자가 코딩하는 단백질에 특이적으로 결합하는 항체인 것을 특징으로 하는, 조성물.
  13. ITGA6(Genbank 접근(accession) 번호: NM_000210.4, NM_001079818.3, NM_001316306.2, NM_001365529.2 및 NM_001365530.2) 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 단계를 포함하는, 림프구의 종양 반응성 예측방법.
  14. ATP6V0A1(Genbank 접근(accession) 번호: NM_001130020.3, NM_001130021.3, NM_001378522.1, NM_001378523.1 및 NM_001378530.1), MBOAT2(Genbank 접근(accession) 번호: NM_001321265.2, NM_001321266.2, NM_001321267.2 및 NM_138799.4), PTPN13(Genbank 접근(accession) 번호: NM_006264.3, NM_080683.3, NM_080684.3 및 NM_080685.2), TCN2(Genbank 접근(accession) 번호: NM_000355.4 및 NM_001184726.1) 및 TSPAN2(Genbank 접근(accession) 번호: NM_001308315.1, NM_001308316.1 및 NM_005725.6)로 이루어진 군에서 선택되는 3종 이상의 유전자의 mRNA 또는 상기 유전자가 암호화하는 단백질 수준을 측정하는 단계를 포함하는, 림프구의 종양 반응성 예측방법.
PCT/KR2020/003157 2019-03-08 2020-03-06 림프구의 종양 반응성 예측용 마커 및 이의 용도 WO2020184911A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021553000A JP2022523842A (ja) 2019-03-08 2020-03-06 リンパ球の腫瘍反応性予測用マーカーおよびその用途
CN202080034349.0A CN113853443A (zh) 2019-03-08 2020-03-06 用于预测淋巴细胞的肿瘤反应性的标志物及其用途
US17/436,948 US20220251652A1 (en) 2019-03-08 2020-03-06 Marker for predicting tumor reactivity of lymphocytes, and use thereof
EP20768993.6A EP3936624A4 (en) 2019-03-08 2020-03-06 MARKER FOR PREDICTING TUMOR REACTIVITY OF LYMPHOCYTES AND THEIR USE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0026918 2019-03-08
KR20190026918 2019-03-08
KR10-2020-0028098 2020-03-06
KR1020200028098A KR102197723B1 (ko) 2019-03-08 2020-03-06 림프구의 종양 반응성 예측용 마커 및 이의 용도

Publications (1)

Publication Number Publication Date
WO2020184911A1 true WO2020184911A1 (ko) 2020-09-17

Family

ID=72427483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003157 WO2020184911A1 (ko) 2019-03-08 2020-03-06 림프구의 종양 반응성 예측용 마커 및 이의 용도

Country Status (3)

Country Link
US (1) US20220251652A1 (ko)
JP (1) JP2022523842A (ko)
WO (1) WO2020184911A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100310534A1 (en) * 2007-09-24 2010-12-09 Kfir Oved T cell subpopulations capable of treating cancer
US20170363629A1 (en) * 2014-11-05 2017-12-21 Board Of Regents, The University Of Texas System Biomarkers and targets for cancer immunotherapy
WO2018032088A2 (en) * 2016-08-17 2018-02-22 University Health Network Regulation of tumor-associated t cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100310534A1 (en) * 2007-09-24 2010-12-09 Kfir Oved T cell subpopulations capable of treating cancer
US20170363629A1 (en) * 2014-11-05 2017-12-21 Board Of Regents, The University Of Texas System Biomarkers and targets for cancer immunotherapy
WO2018032088A2 (en) * 2016-08-17 2018-02-22 University Health Network Regulation of tumor-associated t cells

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BYUN KYUNG DO, HWANG HYO JUN, PARK KI JAE, KIM MIN CHAN, CHO SE HEON, JU MI HA, LEE JIN HWA, JEONG JIN SOOK: "T- Cell Immunoglobulin Mucin 3 Expression on Tumor Infiltrating Lymphocytes as a Positive Prognosticator in Triple-Negative Breast Cancer", J. BREAST CANCER, vol. 21, no. 4, December 2018 (2018-12-01), pages 406 - 414, XP055740574 *
SCIENCE, vol. 348, no. 6230, 3 April 2015 (2015-04-03), pages 62 - 8
VIKAS PRAVEEN, BORCHERDING NICHOLAS, ZHANG WEIZHOU: "The Clinical Promise of Immunotherapy in Triple-Negative Breast Cancer", CANCER MANAGEMENT AND RESEARCH, vol. 10, 2018, pages 6823 - 6833, XP055740578 *

Also Published As

Publication number Publication date
JP2022523842A (ja) 2022-04-26
US20220251652A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
Thommen et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade
TWI615470B (zh) 癌抗原特異性t細胞之受體基因及由該基因所編碼之肽以及該等之用途
Wang et al. The association and potentially destructive role of Th9/IL‐9 is synergistic with Th17 cells by elevating MMP9 production in local lesions of oral lichen planus
WO2018097646A1 (ko) 질환의 진단용 조성물
Snyderman et al. T‐cell markers in tumor‐infiltrating lymphocytes of head and neck cancer
KR102197723B1 (ko) 림프구의 종양 반응성 예측용 마커 및 이의 용도
Rane et al. Increased (6 exon) interleukin-7 production after M. tuberculosis infection and soluble interleukin-7 receptor expression in lung tissue
Teng et al. Upexpression of BHLHE40 in gastric epithelial cells increases CXCL12 production through interaction with p‐STAT3 in Helicobacter pylori‐associated gastritis
Zhang et al. FAP‐α+ immunofibroblasts in oral lichen planus promote CD4+ T‐cell infiltration via CCL5 secretion
WO2021201526A1 (ko) 면역항암요법에 대한 바이오마커 및 이의 용도
CN101292031A (zh) 多巴胺能神经元增殖祖细胞的标记物Nato3
WO2020184911A1 (ko) 림프구의 종양 반응성 예측용 마커 및 이의 용도
US8771971B2 (en) Methods and kits for measurement of lymphocyte function
Larousserie et al. Variable expression of Epstein–Barr virus‐induced gene 3 during normal B‐cell differentiation and among B‐cell lymphomas
Kudoh et al. Defective granzyme B gene expression and lytic response in T lymphocytes infiltrating human renal cell carcinoma
Thier et al. Innate immune receptor signaling induces transient melanoma dedifferentiation while preserving immunogenicity
KR20120060442A (ko) 위암 진단용 마커로서 tff2의 용도
Huang et al. ELISpot and ELISA analyses of human IL-21-secreting cells: Impact of blocking IL-21 interaction with cellular receptors
WO2021025412A1 (ko) 보체 성분 c8 감마를 이용한 알츠하이머병의 진단방법
KR20150031405A (ko) Vsig4를 이용한 난소암 치료제 스크리닝 방법
WO2021066526A1 (ko) 중간엽줄기세포의 전신홍반루푸스 치료효과 예측용 바이오 마커 조성물
WO2017204446A2 (ko) 수용체 시너지 활성을 이용한 nk 세포의 활성도 검사 방법 및 이를 이용한 nk 세포의 활성도가 관련된 질환의 진단 방법
Ko et al. Diagnostic methods to assess the numbers, phenotype, and function of primary and engineered NK cells: Methods to predict prognosis and treatment outcome
WO2023210908A1 (ko) T 세포에 의한 교모세포종 치료 효과의 유효성 예측 방법
WO2020209469A1 (ko) 말초신경병증 아형별 진단용 바이오마커

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20768993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020768993

Country of ref document: EP