WO2020184886A1 - 건설기계의 트랙 장력 모니터링 방법 및 시스템 - Google Patents

건설기계의 트랙 장력 모니터링 방법 및 시스템 Download PDF

Info

Publication number
WO2020184886A1
WO2020184886A1 PCT/KR2020/003033 KR2020003033W WO2020184886A1 WO 2020184886 A1 WO2020184886 A1 WO 2020184886A1 KR 2020003033 W KR2020003033 W KR 2020003033W WO 2020184886 A1 WO2020184886 A1 WO 2020184886A1
Authority
WO
WIPO (PCT)
Prior art keywords
track tension
track
data
monitoring
construction machine
Prior art date
Application number
PCT/KR2020/003033
Other languages
English (en)
French (fr)
Inventor
김광일
장지영
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to US17/438,757 priority Critical patent/US20220154430A1/en
Priority to CN202080017207.3A priority patent/CN113508282B/zh
Publication of WO2020184886A1 publication Critical patent/WO2020184886A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/30Track-tensioning means
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/02Travelling-gear, e.g. associated with slewing gears
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means

Definitions

  • the present invention relates to a method and system for monitoring track tension of a construction machine. More specifically, it relates to a method for monitoring the tension of a track in a construction machine equipped with a caterpillar and a track tension monitoring system for performing the same.
  • the track In a construction machine equipped with a caterpillar track, the track is elastically supported by a track spring and stretches and contracts within a certain range, thereby mitigating the impact during the running process.
  • the tension of the track spring can be adjusted by injecting or discharging grease. If the track is not maintained with an appropriate tension, parts related to the track and the lower vehicle may be damaged. However, it is not easy to judge how much the customer needs to adjust the tension of the track, and in the case of the existing track tension adjustment device, it is difficult to maintain the tension at a desired appropriate level, and due to the expensive and complex hydraulic circuit, There is a problem that productivity is lowered.
  • An object of the present invention is to provide a method for monitoring track tension of a construction machine that can easily and accurately diagnose track tension at a desired point in time.
  • the track tension monitoring method may further include performing a driving mode for monitoring the track tension.
  • the important factors may be factors remaining after data of driving characteristic factors having a low learning contribution for the machine learning algorithm are removed.
  • the data on the important factors may include at least one of a percentage load at current speed, an actual engine percent torque, and a hydraulic pump pressure. I can.
  • the data on the important factors further includes a fuel consumption rate
  • the data on the important factors is when an engine and a hydraulic pump disposed on an upper body of a construction machine are driven. Can be obtained.
  • determining the track tension state by performing the machine learning algorithm includes calculating a short-term value for determining the track tension by performing the machine learning algorithm based on the data, and It may include determining the track tension state by comparing the set limit value and the short-term value.
  • the track tension monitoring method may further include providing information on the track tension state to a server through a remote management device installed in the construction machine.
  • the track tension monitoring method may further include collecting information on the track tension state and predicting and providing life of the track-related parts.
  • the track tension monitoring method may further include adjusting the tension of the track based on the information on the track tension state.
  • data on important factors for monitoring track tension may be received, and a machine learning algorithm may be performed based on the data to determine a track tension state.
  • the data on the important factors may include data on changes in pressure supplied to the traveling motor, engine load, or fuel economy. Based on the data, a machine learning algorithm can be used to diagnose the tension condition of the lower body track and predict the time of failure.
  • FIG. 1 is a side view showing a caterpillar construction machine according to exemplary embodiments.
  • FIG. 2 is an enlarged view illustrating part A of FIG. 1.
  • FIG. 3 is a block diagram showing a traveling system of the construction machine of FIG. 1.
  • FIG. 4 is a block diagram showing a system for monitoring track tension of a construction machine according to exemplary embodiments.
  • FIG. 5 is a flowchart illustrating a method for monitoring track tension of a construction machine according to exemplary embodiments.
  • FIG. 6 is a flow chart showing data selection steps for important factors in the track tension monitoring method of FIG. 5.
  • FIG. 7 is a graph showing a result determined by the track tension monitoring method of FIG. 5.
  • first and second may be used to describe various components, but the components should not be limited by the terms. These terms are used only for the purpose of distinguishing one component from another component.
  • FIG. 1 is a side view showing a caterpillar construction machine according to exemplary embodiments.
  • FIG. 2 is an enlarged view illustrating part A of FIG. 1.
  • 3 is a block diagram showing a traveling system of the construction machine of FIG. 1.
  • the traveling system of the caterpillar construction machine 10 is discharged from the engine 100 of the internal combustion engine, the hydraulic pump 110 driven by the engine 100, and the hydraulic pump 110. It may include a traveling motor 130 driven by hydraulic oil.
  • the engine 100 may include a diesel engine as a driving source of a construction machine such as an excavator.
  • the engine 100 may be connected to the hydraulic pump 110 through a power transmission device. Accordingly, power from the engine 100 may be transmitted to the hydraulic pump 100.
  • one hydraulic pump 110 is shown, at least two hydraulic pumps may be connected to the engine 100 to be driven.
  • the hydraulic pump 110 may be connected to the control valve (MCV) 120 through a hydraulic line.
  • the control valve 120 may be a control device for controlling a hydraulic system in an excavator.
  • the control valve 120 may be connected to the travel motor 130, for example, a driving hydraulic motor for the right and a driving hydraulic motor for the left through a hydraulic line. Accordingly, the travel motor may be driven by hydraulic pressure of hydraulic oil discharged from the hydraulic pump 110.
  • the caterpillar construction machine 10 may include an upper turning body 20 and a lower traveling body 30.
  • the upper swing body 20 may include a cab, an engine, a boom, an arm, a bucket, various hydraulic cylinders, and a counter weight.
  • the upper swing body 20 is mounted on the lower traveling body 30, rotates on a plane parallel to the ground to set the working direction, and operates the boom, the arm, and the bucket by the hydraulic cylinder to perform work. Can be done. It is possible to maintain the balance of the tracked construction machine 10 in operation by using the counter weight.
  • the lower traveling body 30 supports the upper turning body 20 and can drive the caterpillar construction machine 10 using power generated from the engine.
  • the power generated from the engine 100 is transmitted to the hydraulic pump 110, and the hydraulic oil discharged from the hydraulic pump 110 is supplied to the travel motor 130 located behind the lower travel body 30 to be supplied to the travel motor 130.
  • a rotational force is generated, and the generated rotational force may be transmitted to the sprocket 34 of the traveling motor 130.
  • the sprocket 34 may advance or reverse the tracked construction machine 10 by rotating the track 36.
  • One end of the track 36 surrounds the sprocket 34 and the other end is coupled to surround the idler 35 in front of the vehicle, so that it can rotate infinitely in a clockwise or counterclockwise direction.
  • the upper roller 37 can prevent the track 36 from sagging down by its own weight.
  • the track frame 32 is coupled to the upper swing body 20 and may serve to support the lower traveling body 30.
  • the sprocket 34 and the idler 35 may be coupled to the track frame 32.
  • the track frame 32 is formed to surround both sides of the lower traveling body 30 to protect the idler 35 and the track tension adjusting device 40 from external foreign substances.
  • the external force applied to the track 36 during driving may be transmitted to the idler 35.
  • the track tension adjusting device 40 may be installed between the idler 35 and the track frame 32 to absorb the shock caused by the external force applied to the idler 35. Further, the level of tension acting on the track 36 may be adjusted by the amount of lubricant injected into the tension adjusting device 40 of the track. Therefore, the operator can adjust the tension applied to the track by injecting lubricant into the tension adjusting device 40 of the track or discharging the lubricant inside the tension adjusting device 40 of the track to the outside.
  • FIG. 4 is a block diagram showing a system for monitoring track tension of a construction machine according to exemplary embodiments.
  • the track tension monitoring system of a construction machine includes a data detection device for detecting data on important factors for monitoring the track tension, a monitoring device 300 for determining the track tension state, and the track tension state.
  • a display device 400 for displaying information on may be included.
  • the track tension monitoring device may further include a remote management device 500 installed in a construction machine to provide information on the track tension state to a server.
  • the data detection device may collect data on driving characteristic factors of the construction machine.
  • the data detection device may include an engine control unit (ECU) 200 for providing data on the important factors to the monitoring device 300.
  • the data detection device may include a plurality of sensors 210 installed in the construction machine.
  • the data on the driving characteristic factors are engine speed, percent load at current speed, fuel rate, and actual engine percent. torque), a discharge pressure of the hydraulic pump 110, a pilot pump pressure, a boom cylinder pressure, an arm cylinder pressure, and the like.
  • the data on the important factors may include at least one of a percentage load at the current speed, the actual engine torque rate, and a discharge pressure of the hydraulic pump.
  • the data on the main factor may further include the fuel consumption rate.
  • the percentage load means a percentage value obtained by dividing the current engine torque by the available torque of the engine corresponding to the current engine rotation speed
  • the actual engine torque rate is the current engine torque at which the engine will output the maximum. It means the ratio divided by the maximum torque of the engine.
  • the discharge pressure of the hydraulic pump 110 refers to a pressure of hydraulic oil supplied to the travel motor, and may be measured through a pressure sensor installed at the discharge port of the hydraulic pump 110 or a hydraulic oil line connected to the travel motor.
  • the pressure sensor may be installed in a hydraulic oil line located on the upper body.
  • the monitoring device 300 may be connected to the engine control unit (ECU) 200 to receive data on the percentage load at the current speed, the actual engine torque rate, and the fuel consumption rate.
  • the monitoring device 300 may be connected to the pressure sensor 210 for detecting the discharge pressure of the hydraulic pump 110 to receive data on the discharge pressure of the hydraulic pump.
  • the monitoring device 300 may include a data receiving unit 310, a determining unit 320, an output unit 330, and a storage unit 340.
  • the data receiving unit 310 may receive data on the driving characteristic factors or data on the important factors from the data detection device.
  • the determination unit 320 may determine a track tension state by performing a machine learning algorithm based on the data.
  • the machine learning algorithm may include at least one of a Mahalanobis Taguchi System (MTS), a neural network learning method, a support vector machine (SVM), and a k-nearest neighbor (k-NN) algorithm. I can.
  • MTS Mahalanobis Taguchi System
  • SVM support vector machine
  • k-NN k-nearest neighbor
  • the determination unit 320 may obtain a limit value for monitoring the track tension by performing the Mahalanobis-Taguchi system based on data on the driving characteristic factors. Further, the determination unit 320 calculates a short-term value for monitoring the track tension by performing the Mahalanobis-Taguchi system based on the data on the important factors, and compares the limit value with the short-term value.
  • the track tension state can be determined.
  • the data on the important factors remove the data on the driving characteristic factor having a low contribution to determining the limit Mahalanobis distance value (limit value) from the data on the driving characteristic factors, and This may be the remaining data. Accordingly, it may be determined that the data on the important factors have a high contribution in determining the limit Mahalanobis distance value (limit value).
  • the output unit 330 may output information on the track tension state.
  • the information on the track tension state may include a deflection amount of a track, a pressure value of a track spring, and the like.
  • the output unit 330 may output the information to a display device 400 such as a display panel, and the display device 400 may provide information on the track tension state to a user.
  • the output unit 330 may provide information on the track tension state to the server through the remote management device 500 installed in the construction machine.
  • the remote management device 500 may be a Tele-Management System (TMS) module.
  • TMS Tele-Management System
  • the track tension status of the construction machine may be recorded and managed as a customer management item.
  • the storage unit 340 may store data for determining the track tension.
  • the storage unit 340 may store data for operations such as learning for the prediction model and performing the machine learning algorithm.
  • the storage unit 340 may store information on the track tension state by time.
  • the determination unit 320 predicts the life of the track-related parts by using the stored track tension state information, and the output unit 330 may output the predicted life information to the display device 400. have.
  • 5 is a flowchart illustrating a method for monitoring track tension of a construction machine according to exemplary embodiments.
  • 6 is a flow chart showing data selection steps for important factors in the track tension monitoring method of FIG. 5.
  • 7 is a graph showing a result determined by the track tension monitoring method of FIG. 5.
  • a driving mode for monitoring track tension is performed (S100), and data on important factors for monitoring track tension may be received (S110).
  • a specific driving mode may be performed to monitor the track tension.
  • the specific driving mode refers to a driving state of a construction machine capable of more smoothly performing the track tension monitoring, and may include, for example, a single driving mode in which the construction machine is driven only to drive.
  • Noise can be removed by receiving data in real time while performing such a driving mode.
  • the vehicle may collect data in real time while driving at a constant speed.
  • the data on the important factors may include the percentage load at the current speed, the actual engine torque rate, the fuel consumption rate, and the discharge pressure of the hydraulic pump.
  • the track tension state may be determined by performing a machine learning algorithm based on data on the important factors (S120), and information on the track tension state may be displayed (S130).
  • the machine learning algorithm is at least one of Mahalanobis Taguchi System (MTS), neural network learning method, Support Vector Machine (SVM), and k-nearest neighbor (k-NN) algorithm. It can contain one.
  • MTS Mahalanobis Taguchi System
  • SVM Support Vector Machine
  • k-NN k-nearest neighbor
  • a short-term value for determining the track tension is calculated by performing the Mahalanobis-Taguchi system based on data on the important factors, and comparing the short-term value with a preset limit value.
  • the track tension state can be determined.
  • the short-term Mahalanobis distance value is greater than the limit Mahalanobis distance value (limit value T) of 1.41, which is determined as an abnormal MD. I can.
  • the tension of the track may be adjusted using the tension adjusting device 40 according to the displayed track tension state information.
  • the operator may adjust the tension acting on the track 36 by adjusting the pressure of the track spring by injecting or discharging the lubricant into the cylinder of the tension adjusting device 40.
  • data on driving characteristic factors may be collected (S200 ), and a threshold value may be obtained using machine learning (S210 ).
  • data on driving characteristic factors of a construction machine may be collected through the data detection device.
  • the data on the driving characteristic factors include engine speed, percentage load at current speed, fuel consumption rate, actual engine torque rate, discharge pressure of hydraulic pump, pilot pump pressure, boom cylinder pressure, arm cylinder pressure, etc. It may include.
  • a limit value for determining the track tension state may be obtained using a machine learning method based on the data on the driving characteristic factors.
  • the threshold value may be obtained through the Mahalanobis-Taguchi system based on the data on the driving characteristic factors.
  • the limit value may be a limit Mahalanobis distance value.
  • the pressure sensor 220 of the track spring can be used for learning the algorithm.
  • the pressure sensor 220 of the track spring may be installed to determine the consistency of the machine learning result or to grasp the relationship between the track tension and important factors in advance. May not be installed on. Accordingly, it may not be necessary to install electrical equipment and devices such as sensors for measuring track tension on the lower body of the actually operated construction machine.
  • the data on at least one driving characteristic factor having a low contribution to determining the limit Mahalanobis distance value among the data on the driving characteristic factors may be removed (S220).
  • the learning may be terminated (S224).
  • a limit value can be obtained again using the Mahalanobis-Taguchi system for the data of the deleted and remaining driving characteristic factors.
  • the data of the driving characteristic factors remaining without being deleted by the contribution determination as described above is determined to have a high contribution to determining the limit Mahalanobis distance value, and can be classified as the important characteristic factor. Yes (S240).
  • a machine learning algorithm may be used to diagnose the state of the undercarriage track tension and predict a failure time based on data on changes in pressure supplied to the travel motor, engine load, or fuel economy.
  • the operator does not directly measure the track tension, and it is possible to easily and accurately diagnose the track tension state at a desired time point.
  • the track tension state data it is possible to predict the wear life or failure of parts related to the lower body.
  • control valve 130 travel motor

Abstract

건설기계의 트랙 장력 모니터링 방법에 있어서, 트랙 장력 모니터링을 위한 중요 인자들에 대한 데이터를 수신한다. 상기 데이터를 기초로 하여 머신 러닝 알고리즘을 수행하여 트랙 장력 상태를 판단한다. 상기 트랙 장력 상태에 관한 정보를 표시한다.

Description

건설기계의 트랙 장력 모니터링 방법 및 시스템
본 발명은 건설기계의 트랙 장력 모니터링 방법 및 시스템에 관한 것이다. 보다 상세하게는, 무한궤도가 장착된 건설기계에 있어서 트랙의 장력을 모니터링하기 위한 방법 및 이를 수행하기 위한 트랙 장력 모니터링 시스템에 관한 것이다.
무한궤도가 장착된 건설기계에 있어서, 트랙은 트랙 스프링에 의해 탄성 지지되어 일정 범위 내에서 신축함으로써 주행 과정에서의 충격을 완화시킬 수 있다. 상기 트랙 스프링의 장력은 그리스를 주입하거나 배출시켜 조절할 수 있다. 상기 트랙이 적정 장력으로 유지되지 못 할 경우, 상기 트랙 및 하부 주행체 관련 부품들을 파손시킬 수 있다. 그러나, 고객이 상기 트랙의 장력을 어느 정도를 조정해야 하는 지 판단이 쉽지가 않고, 기존의 트랙 장력 조정 장치의 경우, 원하는 적정 수준으로 장력을 유지하기가 어렵고 고가의 복잡한 유압 회로로 인해 경제성 및 생산성이 저하되는 문제점이 있다.
본 발명의 일 과제는 원하는 시점에서 트랙 장력을 용이하고 정확하게 진단할 수 있는 건설기계의 트랙 장력 모니터링 방법을 제공하는 데 있다.
상기 본 발명의 일 과제를 달성하기 위한 예시적인 실시예들에 따른 건설기계의 트랙 장력 모니터링 방법에 있어서, 트랙 장력 모니터링을 위해 지정된 중요 인자들에 대한 데이터를 수신한다. 상기 데이터를 기초로 하여 머신 러닝 알고리즘을 수행하여 트랙 장력 상태를 판단한다. 상기 트랙 장력 상태에 관한 정보를 표시한다.
예시적인 실시예들에 있어서, 상기 트랙 장력 모니터링 방법은, 상기 트랙 장력 모니터링을 위한 운전 모드를 수행하는 것을 더 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 중요 인자들은 상기 머신 러닝 알고리즘을 위한 학습 기여도가 낮은 운전 특성 인자들의 데이터가 제거된 후 잔류하는 인자들일 수 있다.
예시적인 실시예들에 있어서, 상기 중요 인자들에 대한 데이터는 현재속도에서의 백분율하중(Percent load at current speed), 실제 엔진토크율(Actual engine percent torque) 및 유압 펌프 압력 중 적어도 하나를 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 중요 인자들에 대한 데이터는 연료 소비율(fuel rate)를 더 포함하며, 상기 중요 인자들에 대한 데이터는 건설기계의 상부체에 배치된 엔진 및 유압 펌프의 구동 시 획득될 수 있다.
예시적인 실시예들에 있어서, 상기 머신 러닝 알고리즘을 수행하여 상기 트랙 장력 상태를 판단하는 것은, 상기 데이터들을 기초하여 상기 머신 러닝 알고리즘을 수행하여 상기 트랙 장력 판단을 위한 단기값을 산출하고, 그리고 기 설정된 한계값과 상기 단기값을 비교하여 상기 트랙 장력 상태를 판단하는 것을 포함할 수 있다.
상기 트랙 장력 모니터링 방법은, 상기 트랙 장력 상태에 관한 정보를 상기 건설기계에 설치된 원격 관리 장치를 통해 서버에 제공하는 것을 더 포함할 수 있다.
상기 트랙 장력 모니터링 방법은, 상기 트랙 장력 상태에 관한 정보를 수집하여 상기 트랙 관련 부품들의 수명을 예측하여 제공하는 것을 더 포함할 수 있다.
상기 트랙 장력 모니터링 방법은, 상기 트랙 장력 상태에 관한 정보에 기초하여 상기 트랙의 장력을 조정하는 것을 더 포함할 수 있다.
예시적인 실시예들에 따르면, 트랙 장력 모니터링을 위한 중요 인자들에 대한 데이터를 수신하고, 상기 데이터를 기초로 하여 머신 러닝 알고리즘을 수행하여 트랙 장력 상태를 판단할 수 있다. 상기 중요 인자들에 대한 데이터는 주행 모터로 공급되는 압력, 엔진 부하 또는 연비 변화에 관한 데이터를 포함할 수 있다. 상기 데이터를 기반으로 머신 러닝 알고리즘을 이용하여 하부체 트랙 장력 상태를 진단하고 고장 시점을 예측할 수 있다.
따라서, 작업자가 직접 트랙 장력을 측정하지 않고, 트랙 또는 하부체에 별도의 센서를 설치하지 않더라도, 원하는 시점에서 트랙 장력 상태를 용이하고 정확하게 진단할 수 있다. 또한, 트랙 장력 상태 데이터를 누적 계산하여 하부체 관련 부품의 마모 수명 혹은 고장을 예측할 수 있다.
다만, 본 발명의 효과는 상기 언급한 효과에 한정되는 것이 아니며, 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위에서 다양하게 확장될 수 있을 것이다.
도 1은 예시적인 실시예들에 따른 무한궤도식 건설기계를 나타내는 측면도이다.
도 2는 도 1의 A 부분을 나타내는 확대도이다.
도 3은 도 1의 건설기계의 주행 시스템을 나타내는 블록도이다.
도 4는 예시적인 실시예들에 따른 건설기계의 트랙 장력 모니터링 시스템을 나타내는 블록도이다.
도 5는 예시적인 실시예들에 따른 건설기계의 트랙 장력 모니터링 방법을 나타내는 순서도이다.
도 6은 도 5의 트랙 장력 모니터링 방법에서 중요 인자들에 대한 데이터 선택 단계를 나타내는 순서도이다.
도 7은 도 5의 트랙 장력 모니터링 방법에 의해 판단된 결과를 나타내는 그래프이다.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하고자 한다.
본 발명의 각 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.
본 발명에서, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본문에 개시되어 있는 본 발명의 실시예들에 대해서, 특정한 구조적 내지 기능적 설명들은 단지 본 발명의 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 실시예들은 다양한 형태로 실시될 수 있으며 본문에 설명된 실시예들에 한정되는 것으로 해석되어서는 안 된다.
즉, 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
도 1은 예시적인 실시예들에 따른 무한궤도식 건설기계를 나타내는 측면도이다. 도 2는 도 1의 A 부분을 나타내는 확대도이다. 도 3은 도 1의 건설기계의 주행 시스템을 나타내는 블록도이다.
도 1 내지 도 3을 참조하면, 무한궤도식 건설기계(10)의 주행 시스템은 내연기관의 엔진(100), 엔진(100)에 의해 구동되는 유압 펌프(110) 및 유압 펌프(110)로부터 토출된 작동유에 의해 구동되는 주행 모터(130)를 포함할 수 있다.
예시적인 실시예들에 있어서, 엔진(100)은 굴삭기와 같은 건설기계의 구동원으로서 디젤 엔진을 포함할 수 있다. 엔진(100)은 동력전달장치를 통하여 유압 펌프(110)에 연결될 수 있다. 따라서, 엔진(100)으로부터의 동력은 유압 펌프(100)에 전달될 수 있다. 하나의 유압 펌프(110)가 도시되어 있지만, 적어도 2개의 유압 펌프들이 엔진(100)에 연결되어 구동될 수 있다. 유압 펌프(110)는 유압 라인을 통하여 컨트롤밸브(MCV)(120)에 연결될 수 있다. 컨트롤밸브(120)는 굴삭기에 있어서 유압 시스템의 제어를 수행하기 위한 제어장치일 수 있다. 컨트롤밸브(120)는 유압 라인을 통하여 주행 모터(130), 예를 들면, 우측용 주행유압모터 및 좌측용 주행유압모터에 연결될 수 있다. 따라서, 상기 주행 모터는 유압 펌프(110)로부터 토출된 작동유의 유압에 의해 구동될 수 있다.
도 1 및 도 2에 도시된 바와 같이, 무한궤도식 건설기계(10)는 상부 선회체(20) 및 하부 주행체(30)를 포함할 수 있다. 상부 선회체(20)는 운전실, 엔진, 붐, 암, 버켓, 각종 유압 실린더 및 카운터 웨이트 등을 포함할 수 있다. 상부 선회체(20)는 하부 주행체(30) 상에 탑재되며, 지면과 평행한 평면 상에서 회전하여 작업 방향을 설정하고, 상기 유압 실린더에 의해 상기 붐, 상기 암 및 상기 버켓을 작동시켜 작업을 수행할 수 있다. 상기 카운터 웨이트를 이용하여 작업 중인 무한궤도식 건설기계(10)의 균형을 유지할 수 있다. 하부 주행체(30)는 상부 선회체(20)를 지지하고, 상기 엔진에서 발생한 동력을 이용하여 무한궤도식 건설기계(10)를 주행시킬 수 있다.
엔진(100)에서 발생된 동력은 유압 펌프(110)에 전달되고 유압 펌프(110)로부터 토출된 작동유는 하부 주행체(30) 후방에 위치한 주행 모터(130)로 공급되어 주행 모터(130)에 회전력을 발생시키고, 이렇게 발생된 회전력은 주행 모터(130)의 스프로켓(34)으로 전달될 수 있다. 스프로켓(34)은 트랙(36)을 회전시킴으로써 무한궤도식 건설기계(10)를 전진시키거나 또는 후진시킬 수 있다. 트랙(36)의 일단은 스프로켓(34)을 감싸고 타단은 차량 전방의 아이들러(35)를 감싸도록 결합되어 시계방향 또는 반시계방향으로 무한히 회전할 수 있다. 이 때, 상부 롤러(37)는 트랙(36)이 스스로의 무게에 의해 아래로 처지는 것을 방지할 수 있다.
트랙 프레임(32)은 상부 선회체(20)와 결합되며, 하부 주행체(30)를 지지하는 역할을 수행할 수 있다. 스프로켓(34) 및 아이들러(35)는 트랙 프레임(32)에 결합될 수 있다. 또한, 트랙 프레임(32)은 하부 주행체(30)의 양 측면을 감싸도록 형성되어 외부의 이물질들로부터 아이들러(35) 및 트랙의 장력 조절 장치(40) 등을 보호할 수 있다.
주행 시 트랙(36)에 가해지는 외력은 아이들러(35)로 전달될 수 있다. 트랙의 장력 조절 장치(40)는 아이들러(35) 및 트랙 프레임(32) 사이에 설치되어 아이들러(35)에 가해지는 상기 외력에 의한 충격을 흡수할 수 있다. 또한, 트랙(36)에 작용하는 장력의 수준은 트랙의 장력 조절 장치(40) 내부에 주입되는 윤활제의 양에 의해 조절될 수 있다. 따라서, 작업자는 트랙의 장력 조절 장치(40) 내부로 윤활제를 주입하거나 또는 트랙의 장력 조절 장치(40) 내부의 윤활제를 외부로 배출시킴으로써 트랙에 가해지는 장력을 조절할 수 있다.
이하에서는, 상기 건설기계의 트랙 장력 모니터링 시스템에 대하여 설명하기로 한다.
도 4는 예시적인 실시예들에 따른 건설기계의 트랙 장력 모니터링 시스템을 나타내는 블록도이다.
도 4를 참조하면, 건설기계의 트랙 장력 모니터링 시스템은 트랙 장력 모니터링을 위한 중요 인자들에 대한 데이터를 검출하기 위한 데이터 검출 장치, 트랙 장력 상태를 판단하기 위한 모니터링 장치(300) 및 상기 트랙 장력 상태에 관한 정보를 표시하기 위한 표시 장치(400)를 포함할 수 있다. 또한, 상기 트랙 장력 모니터링 장치는 건설기계에 설치되어 상기 트랙 장력 상태에 관한 정보를 서버에 제공하기 위한 원격 관리 장치(500)를 더 포함할 수 있다.
상기 데이터 검출 장치는 상기 건설기계의 운전 특성 인자들에 대한 데이터를 수집할 수 있다. 상기 데이터 검출 장치는 모니터링 장치(300)에 상기 중요 인자들에 대한 데이터를 제공하기 위한 엔진 제어 장치(ECU)(200)를 포함할 수 있다. 또한, 상기 데이터 검출 장치는 상기 건설기계에 설치되는 복수 개의 센서들(210)을 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 운전 특성 인자들에 대한 데이터는 엔진 회전수, 현재속도에서의 백분율하중(Percent load at current speed), 연료 소비율(fuel rate), 실제 엔진토크율(Actual engine percent torque), 유압 펌프(110)의 토출 압력, 파일럿 펌프 압력, 붐 실린더 압력, 암 실린더 압력 등을 포함할 수 있다. 상기 중요 인자들에 대한 데이터는 상기 현재속도에서의 백분율하중, 상기 실제 엔진토크율 및 상기 유압 펌프의 토출 압력 중 적어도 하나를 포함할 수 있다. 상기 주용 인자에 대한 데이터는 상기 연료 소비율을 더 포함할 수 있다. 여기서 상기 백분율하중은 현재의 엔진 토크를 현재 엔진 회전수에 대응하는 엔진의 허용 토크(Available Torque)로 나눈 백분율 값을 의미하며, 상기 실제 엔진토크율은 현재의 엔진 토크를 엔진이 최대로 출력할 수 있는 엔진의 최대 토크(Maximum Torque)로 나눈 비율을 의미한다. 이러한 백분율하중 및 실제 엔진토크율은 상부체에 설치되는 엔진 제어장치 또는 차량 제어장치에서 산출될 수 있다. 유압 펌프(110)의 토출 압력은 상기 주행 모터로 공급되는 작동유의 압력을 의미하며, 유압 펌프(110)의 토출구 또는 상기 주행 모터와 연결되는 작동유 라인에 설치되는 압력 센서를 통해 측정될 수 있다. 상기 압력 센서는 상기 상부체에 위치한 작동유 라인에 설치될 수 있다.
예를 들면, 모니터링 장치(300)는 엔진 제어 장치(ECU)(200)에 연결되어 상기 현재속도에서의 백분율하중, 상기 실제 엔진토크율, 상기 연료 소비율 등에 대한 데이터를 수신할 수 있다. 모니터링 장치(300)는 유압 펌프(110)의 토출 압력을 검출하기 위한 압력 센서(210)에 연결되어 상기 유압 펌프의 토출 압력에 대한 데이터를 수신할 수 있다.
모니터링 장치(300)는 데이터 수신부(310), 판단부(320), 출력부(330) 및 저장부(340)를 포함할 수 있다.
데이터 수신부(310)는 상기 데이터 검출 장치로부터 상기 운전 특성 인자들에 대한 데이터 또는 상기 중요 인자들에 대한 데이터를 수신할 수 있다.
판단부(320)는 상기 데이터를 기초로 하여 머신 러닝 알고리즘을 수행하여 트랙 장력 상태를 판단할 수 있다. 상기 머신 러닝 알고리즘은 마할라노비스-다구찌 시스템(Mahalanobis Taguchi System, MTS), 신경망 학습법, 서포트 벡터 머신(Support Vector Machine, SVM) 및 k-최근접 이웃(k-NN) 알고리즘 중 적어도 하나를 포함할 수 있다.
예를 들면, 판단부(320)는 상기 운전 특성인자들에 데이터를 기초로 마할라노비스-다구찌 시스템을 수행하여 상기 트랙 장력 모니터링을 위한 한계값을 획득할 수 있다. 또한, 판단부(320)는 상기 중요 인자들에 대한 데이터를 기초로 하여 마할라노비스-다구찌 시스템을 수행하여 상기 트랙 장력 모니터링을 위한 단기값을 산출하고, 상기 한계값과 상기 단기값을 비교하여 상기 트랙 장력 상태를 판단할 수 있다. 이 경우에 있어서, 상기 중요 인자들에 대한 데이터는 상기 운전 특성인자들에 데이터에서 상기 한계 마할라노비스 거리값(한계값)을 결정하는 데 기여도가 낮은 상기 운전 특성인자에 대한 상기 데이터를 제거하고 남은 데이터일 수 있다. 따라서, 상기 중요 인자들에 데이터는 상기 한계 마할라노비스 거리값(한계값)을 결정하는 데 기여도가 높다고 판단될 수 있다.
출력부(330)는 상기 트랙 장력 상태에 관한 정보를 출력할 수 있다. 예를 들면, 상기 트랙 장력 상태에 관한 정보는 트랙의 처짐량, 트랙 스프링의 압력값 등을 포함할 수 있다. 출력부(330)는 표시 패널과 같은 표시 장치(400)에 상기 정보를 출력하고, 표시 장치(400)는 사용자에게 상기 트랙 장력 상태에 관한 정보를 제공할 수 있다.
예시적인 실시예들에 있어서, 상기 출력부(330)는 상기 트랙 장력 상태에 관한 정보를 상기 건설기계에 설치된 원격 관리 장치(500)를 통해 서버에 제공할 수 있다. 원격 관리 장치(500)는 TMS(Tele-Management System) 모듈일 수 있다. 상기 서버에는 상기 건설기계의 상기 트랙 장력 상태가 고객 관리 항목으로 기록 관리될 수 있다.
저장부(340)는 상기 트랙 장력 판단을 위한 데이터를 저장할 수 있다. 예를 들면, 저장부(340)는 상기 예측 모델을 위한 학습, 상기 머신 러닝 알고리즘 수행 등과 같은 연산을 위한 데이터를 저장할 수 있다.
또한, 저장부(340)는 상기 트랙 장력 상태에 관한 정보를 시간별로 저장할 수 있다. 판단부(320)는 상기 저장된 트랙 장력 상태에 관한 정보를 이용하여 상기 트랙 관련 부품들의 수명을 예측하고, 출력부(330)는 상기 예측된 수명에 관한 정보를 표시 장치(400)에 출력할 수 있다.
이하에서는, 도 4의 건설기계의 트랙 장력 모니터링 시스템을 이용하여 트랙 장력을 모니터링하는 방법에 대하여 설명하기로 한다.
도 5는 예시적인 실시예들에 따른 건설기계의 트랙 장력 모니터링 방법을 나타내는 순서도이다. 도 6은 도 5의 트랙 장력 모니터링 방법에서 중요 인자들에 대한 데이터 선택 단계를 나타내는 순서도이다. 도 7은 도 5의 트랙 장력 모니터링 방법에 의해 판단된 결과를 나타내는 그래프이다.
도 1 내지 도 7을 참조하면, 먼저, 트랙 장력 모니터링을 위한 운전 모드를 수행하고(S100), 트랙 장력 모니터링을 위한 중요 인자들에 대한 데이터를 수신할 수 있다(S110).
예시적인 실시예들에 있어서, 상기 트랙 장력 모니터링을 위해 특정 운전 모드를 수행할 수 있다. 상기 특정 운전 모드는 상기 트랙 장력 모니터링을 보다 원활하게 수행할 수 있는 건설기계의 구동 상태를 의미하며, 예를 들면, 상기 건설기계가 주행 구동만 되는 단독 주행 모드를 포함할 수 있다.
이러한 운전 모드의 수행 중에 실시간으로 데이터를 수신함으로써 노이즈들을 제거할 수 있다. 상기 운전 모드에 있어서, 차량은 등속으로 주행하면서, 실시간으로 데이터를 수집할 수 있다.
예를 들면, 상기 중요 인자들에 대한 데이터는 상기 현재속도에서의 백분율하중, 상기 실제 엔진토크율, 상기 연료 소비율 및 상기 유압 펌프의 토출 압력을 포함할 수 있다.
이어서, 상기 중요 인자들에 대한 데이터를 기초로 하여 머신 러닝 알고리즘을 수행하여 트랙 장력 상태를 판단하고(S120), 상기 트랙 장력 상태에 관한 정보를 표시할 수 있다(S130).
예를 들면, 상기 머신 러닝 알고리즘은 마할라노비스-다구찌 시스템(Mahalanobis Taguchi System, MTS), 신경망 학습법, 서포트 벡터 머신(Support Vector Machine, SVM) 및 k-최근접 이웃(k-NN) 알고리즘 중 적어도 하나를 포함할 수 있다.
예시적인 실시예들에 있어서, 상기 중요 인자들에 데이터들을 기초하여 상기 마할라노비스-다구찌 시스템을 수행하여 상기 트랙 장력 판단을 위한 단기값을 산출하고, 기 설정된 한계값과 상기 단기값을 비교하여 상기 트랙 장력 상태를 판단할 수 있다.
도 7에 도시된 바와 같이, 상기 마할라노비스-다구찌 시스템의 테스트 결과, 단기 마할라노비스 거리값이 한계 마할라노비스 거리값(한계값(T))인 1.41보다 큰 경우에 비정상 MD으로 판단할 수 있다.
이후, 상기 표시된 트랙 장력 상태에 관한 정보에 따라 장력 조절 장치(40)를 이용하여 트랙의 장력을 조정할 수 있다. 작업자는 장력 조절 장치(40)의 실린더 내부에 윤활제를 주입하거나 외부로 배출하여 트랙 스프링의 압력을 조정하여 트랙(36)에 작용하는 장력을 조절할 수 있다.
이하에서는, 도 6을 참조로 하여 상기 중요 인자들에 데이터를 선택하고 학습는 방법에 대하여 설명하기로 한다.
도 6을 참조하면, 운전 특성 인자들에 대한 데이터를 수집하고(S200), 머신 러닝을 이용하여 한계값을 획득할 수 있다(S210).
예시적인 실시예들에 있어서, 데이터 검출 장치를 통해 건설기계의 운전 특성 인자들에 대한 데이터를 수집할 수 있다. 예를 들면, 상기 운전 특성 인자들에 대한 데이터는 엔진 회전수, 현재속도에서의 백분율하중, 연료 소비율, 실제 엔진토크율, 유압 펌프의 토출 압력, 파일럿 펌프 압력, 붐 실린더 압력, 암 실린더 압력 등을 포함할 수 있다.
이어서, 상기 운전 특성 인자들에 대한 데이터들을 기초로 하여 머신 러닝 방법을 이용하여 상기 트랙 장력 상태 판단을 위한 한계값을 획득할 수 있다. 이 경우에 있어서, 예를 들면, 상기 한계값은 상기 운전 특성 인자들에 대한 상기 데이터를 기초로 상기 마할라노비스-다구찌 시스템을 통하여 구할 수 있다. 또한 상기 한계값은 한계 마할라노비스 거리값일 수 있다. 이 경우에 있어서, 트랙 스프링의 압력 센서(220)는 상기 알고리즘 학습에 이용될 수 있다. 상기 트랙 스프링의 압력 센서(220)는 머신 러닝 결과의 정합성을 판단하거나, 트랙 장력과 중요 인자들의 관련성을 사전에 파악하기 위해 설치될 수 있으며, 상기 머신 러닝 시에만 설치된 후 실제 건설기계의 운용 시에는 설치되지 않을 수 있다. 이에 따라, 실제 운용되는 건설기계의 하부체에는 트랙 장력을 측정하기 위한 센서 등의 전장품 및 기구들을 설치할 필요가 없게 될 수 있다.
이후, 상기 운전 특성 인자들에 대한 상기 데이터 중 상기 한계 마할라노비스 거리값을 결정하는 데 기여도가 낮은 적어도 하나의 상기 운전 특성 인자에 대한 상기 데이터를 제거할 수 있다(S220). 이어서, 상기 산출한 한계 마할라노비스 거리값을 더 이상 최적화 하지 않고 그대로 이용하는 경우에 학습을 종료할 수 있다(S224). 최적화를 더 진행하는 경우에, 삭제되고 남은 운전 특성 인자들의 상기 데이터에 대해 마할라노비스-다구찌 시스템을 이용하여 다시 한계값을 획득할 수 있다.
학습을 종료한 경우, 상술한 바와 같이 기여도 판단에 의해 삭제되지 않고 잔류되는 운전 특성 인자들의 데이터는 상기 한계 마할라노비스 거리값을 결정하는 데 기여도가 높다고 판단하고, 상기 중요 특성 인자로 분류할 수 있다(S240).
상술한 바와 같이, 주행 모터로 공급되는 압력, 엔진 부하 또는 연비 변화에 관한 데이터를 기반으로 머신 러닝 알고리즘을 이용하여 하부체 트랙 장력 상태를 진단하고 고장 시점을 예측할 수 있다.
따라서, 작업자가 직접 트랙 장력을 측정하지 않고, 원하는 시점에서 트랙 장력 상태를 용이하고 정확하게 진단할 수 있다. 또한, 트랙 장력 상태 데이터를 누적 계산하여 하부체 관련 부품의 마모 수명 혹은 고장을 예측할 수 있다.
이상에서는 본 발명의 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
<부호의 설명>
10: 무한궤도식 건설기계 20: 상부 선회체
30: 하부 주행체 32: 트랙 프레임
34: 스프로켓 35: 아이들러
36: 트랙 37: 상부 롤러
38: 하부 롤러 40: 트랙의 장력 조절 장치
100: 엔진 110: 유압 펌프
120: 컨트롤밸브 130: 주행 모터
200: 엔진 제어 장치 210: 유압 펌프 압력 센서
220: 트랙 스프링 압력 센서 300: 모니터링 장치
310: 데이터 수신부 320: 판단부
330: 출력부 340: 저장부
400: 표시 장치 500: 원격 관리 장치

Claims (9)

  1. 트랙 장력 모니터링을 위해 지정된 중요 인자들에 대한 데이터를 수신하고;
    상기 데이터를 기초로 하여 머신 러닝 알고리즘을 수행하여 트랙 장력 상태를 판단하고; 그리고
    상기 트랙 장력 상태에 관한 정보를 표시하는 것을 포함하는 건설기계의 트랙 장력 모니터링 방법.
  2. 제 1 항에 있어서,
    상기 트랙 장력 모니터링을 위한 운전 모드를 수행하는 것을 더 포함하는 건설기계의 트랙 장력 모니터링 방법.
  3. 제 1 항에 있어서, 상기 중요 인자들은 상기 머신 러닝 알고리즘을 위한 학습 기여도가 낮은 운전 특성 인자들의 데이터가 제거된 후 잔류하는 인자들인 건설기계의 트랙 장력 모니터링 방법.
  4. 제 1 항에 있어서, 상기 중요 인자들에 대한 데이터는 현재속도에서의 백분율하중(Percent load at current speed), 실제 엔진토크율(Actual engine percent torque) 및 유압 펌프 압력 중 적어도 하나를 포함하는 건설기계의 트랙 장력 모니터링 방법.
  5. 제 4 항에 있어서, 상기 중요 인자들에 대한 데이터는 연료 소비율(fuel rate)를 더 포함하며,
    상기 중요 인자들에 대한 데이터는 건설기계의 상부체에 배치된 엔진 및 유압 펌프의 구동 시 획득되는 것을 특징으로 하는 건설기계의 트랙 장력 모니터링 방법.
  6. 제 1 항에 있어서, 상기 머신 러닝 알고리즘을 수행하여 상기 트랙 장력 상태를 판단하는 것은
    상기 데이터들을 기초하여 상기 머신 러닝 알고리즘을 수행하여 상기 트랙 장력 판단을 위한 단기값을 산출하고; 그리고
    기 설정된 한계값과 상기 단기값을 비교하여 상기 트랙 장력 상태를 판단하는 것을 포함하는 건설기계의 트랙 장력 모니터링 방법.
  7. 제 1 항에 있어서,
    상기 트랙 장력 상태에 관한 정보를 상기 건설기계에 설치된 원격 관리 장치를 통해 서버에 제공하는 것을 더 포함하는 건설기계의 트랙 장력 모니터링 방법.
  8. 제 1 항에 있어서,
    상기 트랙 장력 상태에 관한 정보를 수집하여 상기 트랙 관련 부품들의 수명을 예측하여 제공하는 것을 더 포함하는 건설기계의 트랙 장력 모니터링 방법.
  9. 제 1 항에 있어서, 상기 트랙 장력 상태에 관한 정보에 기초하여 상기 트랙의 장력을 조정하는 것을 더 포함하는 건설기계의 트랙 장력 모니터링 방법.
PCT/KR2020/003033 2019-03-13 2020-03-04 건설기계의 트랙 장력 모니터링 방법 및 시스템 WO2020184886A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/438,757 US20220154430A1 (en) 2019-03-13 2020-03-04 Method and system for monitoring track tension in construction machinery
CN202080017207.3A CN113508282B (zh) 2019-03-13 2020-03-04 工程机械的履带张力监测方法及系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190028499A KR20200109459A (ko) 2019-03-13 2019-03-13 건설기계의 트랙 장력 모니터링 방법 및 시스템
KR10-2019-0028499 2019-03-13

Publications (1)

Publication Number Publication Date
WO2020184886A1 true WO2020184886A1 (ko) 2020-09-17

Family

ID=72427514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003033 WO2020184886A1 (ko) 2019-03-13 2020-03-04 건설기계의 트랙 장력 모니터링 방법 및 시스템

Country Status (4)

Country Link
US (1) US20220154430A1 (ko)
KR (1) KR20200109459A (ko)
CN (1) CN113508282B (ko)
WO (1) WO2020184886A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022202686A1 (ko) * 2021-03-24 2022-09-29

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305763B1 (en) * 1999-12-16 2001-10-23 Caterpillar Inc. Apparatus and method for operating a hydraulic excavator which has a position sensor for sensing position of an idler wheel
US20140324301A1 (en) * 2013-04-25 2014-10-30 Caterpillar Inc. Wear monitoring system for track type machine
US20160214664A1 (en) * 2013-11-05 2016-07-28 Npc Robotics Corporation Low-resistance slip drive of endless track
KR20180087758A (ko) * 2017-01-25 2018-08-02 동일고무벨트주식회사 트랙 장력 모니터링 방법 및 시스템
WO2018203091A1 (en) * 2017-05-05 2018-11-08 J.C. Bamford Excavators Ltd Working machine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280010B1 (en) * 1999-12-16 2001-08-28 Caterpillar Inc. Track tensioning assembly for adjusting tension on a drive track chain of a work machine having an actuator which includes a pair of concentrically arranged pistons
US6948783B2 (en) * 2001-12-27 2005-09-27 Caterpillar Inc Tension adjustment mechanism for a work machine
US8676457B2 (en) * 2012-01-20 2014-03-18 Caterpillar Inc. System and method for controlling engine torque load
US9457853B2 (en) * 2013-03-14 2016-10-04 Millenworks Track tensioner
US9691025B2 (en) * 2014-09-16 2017-06-27 Caterpillar Inc. Machine operation classifier
KR20170033888A (ko) * 2014-09-24 2017-03-27 히다치 겡키 가부시키 가이샤 작업 기계의 표시 장치
EP3245340A1 (en) * 2015-01-15 2017-11-22 Modustri LLC Configurable monitor and parts management system
WO2017172754A1 (en) * 2016-03-28 2017-10-05 Clark Equipment Company Excavator track tensioning
US10445872B2 (en) * 2016-10-07 2019-10-15 Cnh Industrial America Llc Machine control measurements device
EP3537403A4 (en) * 2016-11-01 2020-01-08 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. SECURITY MANAGEMENT SYSTEM FOR WORKING MACHINE, MANAGEMENT DEVICE, SECURITY MANAGEMENT METHOD
US10235882B1 (en) * 2018-03-19 2019-03-19 Derq Inc. Early warning and collision avoidance
US10774504B2 (en) * 2018-06-22 2020-09-15 Caterpillar Forest Products Inc. Input-output control mapping with corresponding splash screen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305763B1 (en) * 1999-12-16 2001-10-23 Caterpillar Inc. Apparatus and method for operating a hydraulic excavator which has a position sensor for sensing position of an idler wheel
US20140324301A1 (en) * 2013-04-25 2014-10-30 Caterpillar Inc. Wear monitoring system for track type machine
US20160214664A1 (en) * 2013-11-05 2016-07-28 Npc Robotics Corporation Low-resistance slip drive of endless track
KR20180087758A (ko) * 2017-01-25 2018-08-02 동일고무벨트주식회사 트랙 장력 모니터링 방법 및 시스템
WO2018203091A1 (en) * 2017-05-05 2018-11-08 J.C. Bamford Excavators Ltd Working machine

Also Published As

Publication number Publication date
CN113508282A (zh) 2021-10-15
CN113508282B (zh) 2023-06-20
US20220154430A1 (en) 2022-05-19
KR20200109459A (ko) 2020-09-23

Similar Documents

Publication Publication Date Title
WO2017204490A1 (ko) 철도 차량 모니터링 장치 및 이를 이용한 모니터링 방법
KR101065513B1 (ko) 건설 기계의 엔진 보호 장치 및 보호 방법
WO2013054954A1 (ko) 건설기계의 전자 유압시스템에서의 액츄에이터 변위 측정시스템
WO2020184886A1 (ko) 건설기계의 트랙 장력 모니터링 방법 및 시스템
WO2012081742A1 (ko) 하이브리드 건설기계용 선회 제어시스템
CN104395536A (zh) 挖土机
WO2015084089A1 (ko) 건설 기계의 작업 계통에 대한 이상 진단 시스템 및 이를 이용한 이상 진단 방법
WO2015099353A1 (ko) 붐 에너지 회생 제어 회로 및 제어 방법
WO2012053732A1 (ko) 운행차 하중 측정기기 및 측정 알고리즘
WO2018139836A2 (ko) 트랙 장력 모니터링 방법 및 시스템
WO2016159657A1 (ko) 무한궤도 차량의 트랙 어셈블리
WO2019074301A1 (ko) 건설기계의 붐 증속 유압 시스템
WO2017094985A1 (ko) 건설기계의 유압 제어 장치 및 유압 제어 방법
CN113795871A (zh) 用于确定建筑、材料处理和/或运输机械的实际状态和/或剩余寿命的装置
WO2013176328A1 (ko) 복합기능 굴삭기의 그리스 공급시스템
WO2022098181A1 (ko) 대기압 센서를 이용한 고도에 따른 배터리 진단 시스템 및 방법
WO2017131434A1 (ko) 사물인터넷 기반 독립 전원형 산업설비 예지보전 시스템 및 방법
WO2014104635A1 (ko) 건설 기계의 자동 변속 제어 장치 및 제어 방법
WO2014116024A1 (ko) 연비 표시 장치
CN107660247A (zh) 作业机械的管理装置
WO2023234630A1 (ko) 축압기의 상태를 판단하는 진단 장치 및 방법
WO2013100218A1 (ko) 건설기계의 엔진 제어방법
JP4315346B2 (ja) 建設機械のエンジン診断装置
JP7441718B2 (ja) 故障予測システム及び故障予測方法
WO2019172473A1 (en) Power mode recommendation system for construction machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769726

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/04/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20769726

Country of ref document: EP

Kind code of ref document: A1