WO2020184865A1 - 반사 방지 필름, 편광판 및 디스플레이 장치 - Google Patents

반사 방지 필름, 편광판 및 디스플레이 장치 Download PDF

Info

Publication number
WO2020184865A1
WO2020184865A1 PCT/KR2020/002633 KR2020002633W WO2020184865A1 WO 2020184865 A1 WO2020184865 A1 WO 2020184865A1 KR 2020002633 W KR2020002633 W KR 2020002633W WO 2020184865 A1 WO2020184865 A1 WO 2020184865A1
Authority
WO
WIPO (PCT)
Prior art keywords
low refractive
content
refractive layer
compound
fluorine
Prior art date
Application number
PCT/KR2020/002633
Other languages
English (en)
French (fr)
Inventor
고경문
변진석
김창오
장영래
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200020902A external-priority patent/KR102337211B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2021526185A priority Critical patent/JP7150384B2/ja
Priority to EP20769060.3A priority patent/EP3809166B1/en
Priority to CN202080004042.6A priority patent/CN112437890B/zh
Priority to US17/268,117 priority patent/US20210325569A1/en
Publication of WO2020184865A1 publication Critical patent/WO2020184865A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings

Definitions

  • the present invention relates to an antireflection film, a polarizing plate, and a display device.
  • flat panel display devices such as PDPs and LCDs are equipped with anti-reflection films to minimize reflection of light incident from the outside.
  • a method for minimizing reflection of light a method of coating a base film by dispersing a filler such as inorganic fine particles in a resin and providing irregularities (anti-glare: AG coating);
  • a method of using interference of light by forming a plurality of layers having different refractive indices on the base film anti-reflection: AR coating
  • the absolute amount of reflected light is equivalent to that of a general hard coating, but a low reflection effect can be obtained by reducing the amount of light entering the eye by using scattering of light through irregularities.
  • the AG coating decreases the sharpness of the screen due to surface irregularities, many studies on AR coating have recently been conducted.
  • a multilayer structure in which a hard coating layer (high refractive index layer), a low reflection coating layer, and the like are laminated on a light-transmitting base film is commercially available.
  • a method of forming a plurality of layers has a disadvantage in that scratch resistance is poor due to weak interlayer adhesion (interface adhesion) as the process of forming each layer is separately performed.
  • An object of the present invention is to provide an anti-reflection film capable of simultaneously realizing high scratch resistance and antifouling properties and increasing the clarity of a screen of a display device.
  • the present invention is to provide a polarizing plate including the anti-reflection film.
  • the present invention is to provide a display device including the anti-reflection film and providing high clarity of the screen.
  • the hard coating layer And a low refractive index layer including a fluorinated compound, wherein the content of fluorine atoms present on the surface of the low refractive layer is greater than 8.0 atomic%, and the surface area difference percentage of one surface of the low refractive layer (SADP; surface area difference Percentage) is provided with an antireflection film of 20% or less.
  • SADP surface area difference Percentage
  • a polarizing plate including the anti-reflection film is provided.
  • a display device including the anti-reflection film may be provided.
  • the low refractive index layer may mean a layer having a low refractive index, and for example, may mean a layer exhibiting a refractive index of about 1.2 to 1.6 at a wavelength of 550 nm.
  • hollow inorganic particles refer to particles in the form of an empty space present on the surface and/or inside of the inorganic particles.
  • (meth)acrylate [(Meth)acrylate] is meant to include both acrylate and methacrylate.
  • (co)polymer is meant to include both a copolymer (co-polymer) and a homopolymer (homo-polymer).
  • the photopolymerizable compound refers to a polymer compound polymerized by irradiation with light, for example, by irradiation with visible or ultraviolet rays.
  • the fluorine-containing compound means a compound containing at least one or more fluorine elements among the compounds.
  • a hard coating layer; And a low refractive index layer including a fluorinated compound, wherein the content of fluorine atoms present on the surface of the low refractive layer is greater than 8.0 atomic%, and the surface area difference percentage of one surface of the low refractive layer (SADP; surface area difference percentage) may be provided with an anti-reflection film of 20% or less.
  • the present inventors proceeded with a study on the anti-reflection film, hard coating layer; And a low refractive index layer comprising a fluorine-containing compound, wherein the content of fluorine present on the surface of the low refractive layer is more than 8.0 atomic%, and the surface area difference percentage (SADP) of one surface of the low refractive layer is 20% or less.
  • SADP surface area difference percentage
  • the anti-reflection film can increase the clarity of the screen of the display device, but has excellent scratch resistance and high antifouling properties, so that it can be easily applied to a display device or a polarizing plate manufacturing process without significant limitations.
  • the anti-reflection film according to the embodiment has a surface area difference percentage (SADP) of 20% or less, 0.1 to 20%, 0.8 to 19%, 1 to 18 of one surface of the low refractive layer. %, 1.5 to 17%, or 2 to 16%.
  • SADP surface area difference percentage
  • the surface area difference percentage is an index representing the three-dimensional surface roughness of one surface of the low refractive layer, and may be defined by Equation 1 below.
  • the surface area difference percentage may be calculated by dividing the difference between the 3D surface area and the 2D surface area by the 2D area and multiplying by 100, which can be obtained using an atomic force microscope device.
  • the 2D area corresponds to the area of the measurement object, for example, the product of the horizontal length and the vertical length when the measurement object is a square, and the 3D area is 3D from a profile obtained through an atomic force microscope. It can be confirmed through the measured values obtained after forming the image.
  • the surface area difference percentage may affect the antifouling property of the antireflection film, and the surface area difference percentage may be controlled by, for example, the content of the hollow inorganic particles included in the low refractive index layer.
  • the surface area difference percentage may be 20% or less, 0.1 to 20%, 0.8 to 19%, 1 to 18%, 1.5 to 17%, or 2 to 16%.
  • SADP surface area difference percentage
  • the antifouling effect cannot be obtained.
  • the surface area difference percentage exceeds 20%, the antifouling property may not be exhibited even if the content of fluorine contained in the surface of the low refractive layer increases.
  • the centerline average roughness (Ra) of the antireflection film it is possible to measure the centerline average roughness (Ra) of the antireflection film through the atomic force microscope, and the centerline average roughness (Ra) is 10 nm or less, 8 to 0.1 nm, 7 to 0.3 nm, 5 to 0.5 nm , Or 4 to 0.6 nm. If the centerline average roughness (Ra) exceeds 10 nm, the antifouling effect may not be obtained.
  • the antireflection film according to the above embodiment may include a hard coating layer and a low refractive index layer having a fluorinated compound.
  • the fluorine element contained in the fluorine-containing compound not only can greatly reduce the amount of contaminants transferred to the antireflection film, but also prevent the phenomenon that the transferred contaminants remain on the surface, and easily remove the contaminants themselves. It has a removable property.
  • the content of fluorine atoms present on the surface of the low refractive layer is 8.0 atomic% It may be more than, 8.2 atomic% or more, 8.4 atomic% or more, 8.6 atomic% or more, 8.8 atomic% or more, 8.9 atomic% or more, 9.0 atomic% or more, 9.5 atomic% or more, or 10 atomic% or more. If the content of fluorine present on the surface of the low refractive layer is 8.0 atomic% or less, the antifouling effect cannot be obtained.
  • the content of fluorine when the content of fluorine is too high, as the content of other atoms such as silicon, carbon, etc. decreases, the effect on low average reflectance, excellent scratch resistance and clarity cannot be realized, and due to an imbalance of surface energy. As a result of poor coating properties may occur, the content of fluorine present on the surface of the low refractive layer may be 50 atomic% or less, 40 atomic% or less, 30 atomic% or less, or 20 atomic% or less.
  • the content of fluorine is the content of fluorine element relative to the total atomic weight of elements present within 10 nm thickness in the thickness direction of the low refractive layer from one side of the low refractive layer (eg, one side of the low refractive layer in contact with the air layer) Can be
  • the content of fluorine present on the surface of the low refractive layer may affect the antifouling property of the antireflection film, and the content of such fluorine may be controlled by the content of the fluorine-containing compound included in the low refractive layer.
  • the surface area difference percentage of one surface of the low refractive layer is 20% or less. If it is not satisfied, it may be difficult to implement the effect on excellent antifouling properties.
  • One or more reactive functional groups may be included or substituted in the fluorinated compound, and the reactive functional group means a functional group capable of participating in the polymerization reaction by irradiation of light (for example, irradiation of visible or ultraviolet rays) or heating.
  • the reactive functional group may include various functional groups known to be able to participate in the polymerization reaction by irradiation of light or heating, and specific examples thereof include (meth)acrylate group, epoxide group, vinyl group (Vinyl) or thiol group (Thiol) is mentioned.
  • the reactive functional groups included in the fluorinated compound undergo a crosslinking action, and thus the physical durability, scratch resistance, and thermal stability of the low refractive layer and the antireflection film Can increase.
  • the fluorinated compound may have a weight average molecular weight in terms of polystyrene measured by a weight average molecular weight (GPC method) of 1,000 to 200,000, 2,000 to 100,000, or 3,000 to 5,000. If the weight average molecular weight of the fluorinated compound is too small, the fluorine-containing compounds cannot be uniformly and effectively arranged on the surface of the low refractive layer and are located inside. Accordingly, the surfaces of the low refractive layer and the antireflection film have The antifouling property is lowered, and the crosslinking density inside the low refractive layer and the antireflection film is lowered, so that the overall strength and mechanical properties such as scratch resistance may be lowered.
  • GPC method weight average molecular weight
  • the weight average molecular weight of the fluorinated compound is too high, the haze of the low refractive layer and the antireflection film may increase or the light transmittance may decrease, and the strength of the low refractive layer and the antireflection film may also decrease.
  • the fluorinated compound is i) an aliphatic compound or an alicyclic compound in which at least one reactive functional group is substituted and at least one carbon is substituted with at least one fluorine; ii) a hetero aliphatic compound or a heteroaliphatic cyclic compound substituted with one or more reactive functional groups, at least one hydrogen substituted with fluorine, and one or more carbon substituted with silicon; iii) a polydialkylsiloxane polymer (eg, polydimethylsiloxane polymer) in which at least one reactive functional group is substituted and at least one silicone is substituted with at least one fluorine; iv) It may contain one or more selected from the group consisting of polyether compounds substituted with one or more reactive functional groups and at least one hydrogen substituted with fluorine.
  • a polydialkylsiloxane polymer eg, polydimethylsiloxane polymer
  • the fluorine-containing compound is a compound in which perfluoropolyether is polymerized, and acrylate and siloxane may be substituted with functional groups.
  • the content of the fluorinated compound with respect to the total weight of the low refractive layer may be 2 to 9% by weight, 2 to 8% by weight, or 3 to 7% by weight.
  • the fluorinated compound serves to improve antifouling properties by imparting slip properties to the surface of the low refractive layer. If the content of the fluorinated compound is too small, the antifouling effect cannot be obtained. If the content is too high, the content of the fluorine-containing compound is relatively high on the surface of the low refractive layer, so that the conversion rate at which the photopolymerizable compound is converted to the (co)polymer on the surface of the low refractive layer may be decreased.
  • the fluorine atom content contained in the fluorinated compound may be 1 to 60% by weight, 10 to 55% by weight, 20 to 50% by weight, or 35 to 45% by weight.
  • the content of fluorine in the fluorine-containing compound is too small, it may be difficult to sufficiently secure physical properties such as antifouling properties because fluorine components may not be sufficiently arranged on the surface of the low refractive layer.
  • the fluorine content is too high in the fluorine-containing compound, the surface properties of the low refractive layer may be deteriorated or the occurrence rate of defective products may increase during a subsequent process for obtaining a final product.
  • the fluorinated compound may further include silicon or a silicon compound. That is, the fluorinated compound may optionally contain silicon or a silicon compound therein, and specifically, the content of silicon in the fluorine-containing compound may be 0.1% to 20% by weight.
  • the content of silicon or silicon compound contained in each of the fluorinated compounds can also be confirmed through a commonly known analysis method, for example, an ICP [Inductively Coupled Plasma] analysis method.
  • the silicon contained in the fluorine-containing compound can increase compatibility with other components included in the low refractive index layer of the embodiment, and thereby prevent haze from occurring in the low refractive index layer to be finally prepared to increase transparency. It can play a role, and in addition, it is possible to improve the scratch resistance by improving the slip property of the surface of the low refractive index layer or the antireflection film to be finally produced.
  • the low refractive index layer or the antireflection film may not have sufficient light transmittance or antireflection performance, and the antifouling property of the surface may also decrease.
  • the low refractive layer of the anti-reflection film according to the embodiment may further include hollow inorganic particles.
  • the hollow inorganic particles refer to particles in which empty spaces exist on the surface and/or inside.
  • the hollow inorganic particles may have a diameter of 10 to 200 nm, 15 to 150 nm, 20 to 130 nm, 30 to 110 nm, or 40 to 100 nm. If the diameter of the hollow inorganic particle is less than 10 nm, the amount of air contained in the hollow inorganic particle itself is small, so it may be difficult to implement a low refractive index, and when it exceeds 200 nm, excessively large irregularities are formed on the surface of the low refractive layer and have excellent antifouling properties. And it is difficult to implement scratch resistance, and the thickness of the low refractive index layer may inevitably increase.
  • the hollow inorganic particles may be hollow silica particles.
  • the hollow silica particles may include a predetermined functional group substituted on the surface in order to be more easily dispersed in an organic solvent.
  • Examples of the organic functional groups that can be substituted on the surface of the hollow silica particles are not limited, for example, (meth)acrylate group, vinyl group, hydroxy group, amine group, allyl group, epoxy group, isocyanate group, amine group, Alternatively, fluorine or the like may be substituted on the hollow silica surface.
  • the content of the hollow inorganic particles relative to the total weight of the low refractive layer may be 29 to 60% by weight, 30 to 55% by weight, or 35 to 50% by weight.
  • the content of the hollow inorganic particles is less than 29% by weight, it may be difficult to obtain a low-reflection effect, and when it exceeds 60% by weight, too many irregularities are formed on the surface of the low refractive index layer and the surface area increases, so that it may be difficult to have excellent antifouling properties.
  • the content (V) of the hollow inorganic particles is 29 to 60% by weight based on the total weight of the low refractive layer
  • the content (F) of the fluorinated compound is based on the total weight of the low refractive layer
  • the content (F) of the fluorinated compound and the content (V) of the hollow inorganic particles may satisfy Equation 2 below.
  • the antireflection film including the low refractive layer can implement excellent antifouling properties and scratch resistance, and exhibits an average reflectance of 2% or less in the visible light wavelength range of 380 nm to 780 nm, Sharpness can be improved.
  • Equation 2 when Equation 2 is expressed as a two-dimensional graph, the x-axis is V and the y-axis is a linear inequality, with a slope of 0.26 and a Y-intercept of -6.11. Since the slope of Equation 2 is 0.26, it can be seen that the content of the hollow inorganic particles has a greater effect on the antifouling property and scratch resistance of the antireflection film compared to the content of the fluorine-containing compound.
  • the anti-reflection film satisfies the range of the content (V) of the hollow inorganic particles and the content (F) of the fluorine-containing compound described above, while simultaneously realizing high scratch resistance and antifouling properties by satisfying Equation 2,
  • the clarity of a screen of a display device including the same may be improved. If the antireflection film does not satisfy Equation 2, there is a problem in that antifouling properties and/or scratch resistance are deteriorated, or an average reflectance is high.
  • the hollow inorganic particles may be used singly, coated with a fluorinated compound having a reactive functional group on the surface.
  • the hollow inorganic particles coated with the fluorine-containing compound having the reactive functional group and the hollow inorganic particles whose surface is not coated may be mixed and used. If the surface of the hollow inorganic particles is coated with the fluorine-containing compound having the reactive functional group, the surface energy can be lowered. Accordingly, the antifouling property of the low refractive layer can be improved, and the durability or resistance of the low refractive layer Scratch properties can be further improved.
  • a method of coating a fluorine-containing compound having a reactive functional group on the surface of the hollow inorganic particle a commonly known particle coating method or a polymerization method may be used without great limitation.
  • the hollow inorganic particle and the reactive functional group The fluorine-containing compound having a reactive functional group may be bonded to the surface of the hollow inorganic particle through a hydrolysis and condensation reaction by subjecting the fluorine-containing compound to a sol-gel reaction in the presence of water and a catalyst.
  • the low refractive layer may further include solid inorganic particles.
  • the solid inorganic particles refer to particles having no empty space therein. Since the low refractive layer includes solid inorganic particles, even if a smaller amount of hollow inorganic particles is used, the reflectivity of the antireflection film can be lowered, and scratch resistance and antifouling properties can be improved.
  • the solid inorganic particles may have a diameter of 0.5 to 100 nm, 1 to 50 nm, 2 to 30 nm, or 5 to 20 nm.
  • each of the solid inorganic particles and the hollow inorganic particles has at least one reactive functional group selected from the group consisting of a (meth)acrylate group, an epoxide group, a vinyl group (Vinyl) and a thiol group (Thiol). It may contain.
  • the low refractive layer may have a higher degree of crosslinking, and thus, more improved scratch resistance and antifouling properties can be secured. have.
  • the content of the solid inorganic particles may be 1 to 50 parts by weight, 2 to 40 parts by weight, 3 to 35 parts by weight, or 5 to 30 parts by weight.
  • scratch resistance or abrasion resistance of the coating film may decrease due to a decrease in the content of the binder.
  • the low refractive layer of the antireflection film according to the embodiment may further include a (co)polymer of the photopolymerizable compound.
  • the photopolymerizable compound forming the (co)polymer of the photopolymerizable compound may include a monomer or oligomer including a (meth)acrylate or vinyl group.
  • the photopolymerizable compound may include a monomer or oligomer containing one or more, or two or more, or three or more (meth)acrylate or vinyl groups.
  • the monomer or oligomer including the (meth)acrylate include pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate.
  • )Acrylate tripentaerythritol hepta(meth)acrylate, triethylene diisocyanate, xylene diisocyanate, hexamethylene diisocyanate, trimethylolpropane tri(meth)acrylate, trimethylolpropane polyethoxy tri(meth)acrylic Rate, trimethylolpropane trimethacrylate, ethylene glycol dimethacrylate, butanediol dimethacrylate, hexaethyl methacrylate, butyl methacrylate, or a mixture of two or more thereof, or urethane-modified acrylate oligomer, epoxide Side acrylate oligomers, ether acrylate oligomers, dendritic acrylate oligomers, or mixtures of two or more thereof.
  • the molecular weight of the oligomer may be 1,000 to 10,000.
  • the monomer or oligomer containing the vinyl group may include divinylbenzene, styrene, or paramethylstyrene.
  • the content of the (co)polymer of the photopolymerizable compound relative to the total weight of the low refractive layer is not limited thereto, but in consideration of the mechanical properties of the finally produced low refractive layer or antireflection film, the ( The content of the co)polymer may be 10 to 80% by weight, 15 to 70% by weight, 20 to 60% by weight, or 30 to 50% by weight. If the content of the (co)polymer of the photopolymerizable compound is less than 10% by weight, empty spaces are formed between inorganic particles, and the periodicity of the arrangement between the particles disappears, which may induce a decrease in the packing density of the particles. (stress) Dispersion does not occur smoothly, and scratch resistance may decrease. When the content of the (co)polymer of the photopolymerizable compound exceeds 80% by weight, the ratio of conversion of the photopolymerizable compound to the (co)polymer may decrease.
  • the low refractive layer may include polysilsesquioxane in which one or more reactive functional groups are substituted.
  • Polysilsesquioxane in which one or more reactive functional groups are substituted has a reactive functional group on the surface, so that the mechanical properties of the low refractive layer, for example, scratch resistance, can be improved, and previously known fine particles such as silica, alumina, zeolite, etc. Unlike the case of using particles, it is possible to improve the alkali resistance of the low-refractive-index layer and improve appearance characteristics such as average reflectance and color.
  • the polysilsesquioxane may be expressed as (RSiO 1.5 ) n (where n is 4 to 30 or 8 to 20), and may have various structures such as random, ladder-shaped, cage, and partial cage.
  • n is 4 to 30 or 8 to 20
  • polysilsesquioxane having one or more reactive functional groups substituted with one or more reactive functional groups and having a cage structure Silsesquioxane (Polyhedral Oligomeric Silsesquioxane) can be used.
  • the polyhedral oligomer silsesquioxane having one or more functional groups substituted and having a cage structure may include 8 to 20 silicones in a molecule.
  • silicones of the polyhedral oligomer silsesquioxane having a cage structure may be substituted with a reactive functional group, and silicones in which the reactive functional group is not substituted may be substituted with the aforementioned non-reactive functional group.
  • a reactive functional group is substituted with at least one of the silicones of the polyhedral oligomer silsesquioxane having the cage structure, the mechanical properties of the low refractive layer and the binder resin can be improved, and the remaining silicones
  • a steric hinderance appears in the molecular structure, and the frequency or probability of exposure of the siloxane bond (-Si-O-) to the outside is greatly reduced, and the alkali resistance of the low refractive layer and the binder resin Can be improved.
  • the reactive functional groups substituted for the polysilsesquioxane are alcohols, amines, carboxylic acids, epoxides, imides, (meth)acrylates, nitriles, norbornene, olefins (ally, cycloalkenyl) Or vinyldimethylsilyl, etc.], polyethylene glycol, thiol, and may include one or more functional groups selected from the group consisting of vinyl groups, and may be, for example, epoxide or (meth)acrylate.
  • the reactive functional group include (meth)acrylate, an alkyl (meth)acrylate having 1 to 20 carbon atoms, a cycloalkyl epoxide having 3 to 20 carbon atoms, an alkyl cycloalkane having 1 to 10 carbon atoms.
  • Epoxide is mentioned.
  • the alkyl (meth)acrylate means that the other part of'alkyl' that is not bonded to (meth)acrylate is a bonding position
  • the cycloalkyl epoxide is another part of'cycloalkyl' that is not bonded to the epoxide. This refers to the bonding position
  • the alkyl cycloalkane epoxide means that the other part of the'alkyl' that is not bonded to the cycloalkane epoxide is the bonding site.
  • the polysilsesquioxane in which one or more reactive functional groups are substituted is a linear or branched alkyl group having 1 to 20 carbon atoms, a cyclohexyl group having 6 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms other than the above-described reactive functional group.
  • One or more unreactive functional groups selected from the group consisting of may further include one or more.
  • a siloxane bond (-Si-O-) is located inside the molecule in the polysilsesquioxane in which one or more reactive functional groups are substituted. While not being exposed to the outside, the alkali resistance and scratch resistance of the low refractive layer and the antireflection film can be further improved.
  • polyhedral oligomeric silsesquioxane (POSS) having one or more reactive functional groups substituted and having a cage structure examples include TMP DiolIsobutyl POSS, Cyclohexanediol Isobutyl POSS, 1,2-PropanediolIsobutyl POSS, Octa(3 POSS in which one or more alcohols are substituted, such as -hydroxy-3 methylbutyldimethylsiloxy) POSS; AminopropylIsobutyl POSS, AminopropylIsooctyl POSS, Aminoethylaminopropyl Isobutyl POSS, N-Phenylaminopropyl POSS, N-Methylaminopropyl Isobutyl POSS, OctaAmmonium POSS, AminophenylCyclohexyl POSS, AminophenylIsobutyl POSS and other
  • the content of polysilsesquioxane in which one or more reactive functional groups are substituted with respect to the total weight of the low refractive layer may be 1 to 20% by weight, 3 to 15% by weight, or 5 to 10% by weight.
  • the content of the portion derived from the polysilsesquioxane substituted with one or more reactive functional groups is too small, it may be difficult to sufficiently secure the scratch resistance of the low refractive layer.
  • the low refractive layer may further include a crosslinked polymer between the photopolymerizable compound, the fluorine-containing compound, and polysilsesquioxane in which one or more reactive functional groups are substituted.
  • Such a low refractive layer can be obtained by applying a photocurable coating composition comprising a photopolymerizable compound, a fluorine-containing compound, and polysilsesquioxane having one or more reactive functional groups substituted on a substrate and photocuring the applied result.
  • the low refractive layer may include a crosslinked polymer between a photopolymerizable compound, a fluorine-containing compound, and polysilsesquioxane in which one or more reactive functional groups are substituted.
  • the photocurable coating composition may further include a photoinitiator. Accordingly, the photopolymerization initiator may remain in the low refractive layer prepared from the photocurable coating composition described above.
  • any compound known to be used in a photocurable resin composition may be used without limitation, and specifically, a benzophenone compound, an acetophenone compound, a biimidazole compound, a triazine compound, an oxime compound, or A mixture of two or more of these may be used.
  • the photopolymerization initiator may be used in an amount of 1 to 100 parts by weight, 5 to 90 parts by weight, 10 to 80 parts by weight, 20 to 70 parts by weight, or 30 to 60 parts by weight. If the amount of the photopolymerization initiator is too small, a material that remains uncured in the photocuring step of the photocurable coating composition may be issued. If the amount of the photopolymerization initiator is too large, the unreacted initiator remains as an impurity or the crosslinking density is low, so that the mechanical properties of the produced film may decrease or the reflectance may be greatly increased.
  • the photocurable coating composition may further include an organic solvent.
  • organic solvent include ketones, alcohols, acetates and ethers, or mixtures of two or more thereof.
  • Such an organic solvent include ketones such as methyl ethylkenone, methyl isobutyl ketone, acetylacetone or isobutyl ketone; Alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, or t-butanol; Acetates such as ethyl acetate, i-propyl acetate, or polyethylene glycol monomethyl ether acetate; Ethers such as tetrahydrofuran or propylene glycol monomethyl ether; Or a mixture of two or more of these may be mentioned.
  • ketones such as methyl ethylkenone, methyl isobutyl ketone, acetylacetone or isobutyl ketone
  • Alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i
  • the organic solvent may be added at the time of mixing each component included in the photocurable coating composition or may be included in the photocurable coating composition while each component is added in a dispersed or mixed state in an organic solvent. If the content of the organic solvent in the photocurable coating composition is too small, the flowability of the photocurable coating composition decreases, and thus defects such as streaks may occur in the final film. In addition, when an excessive amount of the organic solvent is added, the solid content is lowered, coating and film formation are not sufficiently performed, so that physical properties or surface properties of the film may be deteriorated, and defects may occur during drying and curing. Accordingly, the photocurable coating composition may include an organic solvent such that the concentration of the total solids of the components included is 1% to 50% by weight, or 2 to 20% by weight.
  • the method and apparatus commonly used to apply the photocurable coating composition can be used without any other limitation, for example, bar coating method such as Meyer bar, gravure coating method, 2 roll reverse coating method, vacuum slot Die coating method, 2 roll coating method, etc. can be used.
  • ultraviolet rays or visible rays having a wavelength of 200 to 400 nm may be irradiated, and the exposure amount during irradiation may be 100 to 4,000 mJ/cm 2.
  • the exposure time is also not particularly limited, and can be appropriately changed according to the exposure apparatus used, the wavelength of the irradiated light, or the amount of exposure.
  • nitrogen purging may be performed to apply a nitrogen atmosphere.
  • the hard coating layer a conventionally known hard coating layer may be used without great limitation.
  • the hard coating layer As an example of the hard coating layer, a binder resin including a photocurable resin; And a hard coating layer including organic or inorganic fine particles dispersed in the binder resin.
  • the photocurable resin included in the hard coating layer is a polymer of a photocurable compound capable of causing a polymerization reaction when light such as ultraviolet rays is irradiated, and may be conventional in the art.
  • the photocurable resin is a reactive acrylate oligomer group consisting of urethane acrylate oligomer, epoxide acrylate oligomer, polyester acrylate, and polyether acrylate; And dipentaerythritol hexaacrylate, dipentaerythritol hydroxy pentaacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, trimethylene propyl triacrylate, propoxylated glycerol triacrylate, trimethylpropane ethoxy tri At least one selected from the group of polyfunctional acrylate monomers consisting of acrylate, 1,6-hexanediol diacrylate, propoxylated gly
  • the organic or inorganic fine particles are not specifically limited in particle diameter, for example, the organic fine particles may have a particle diameter of 1 to 10 ⁇ m, and the inorganic particles may have a particle diameter of 1 nm to 500 nm, or 1 nm to 300 nm.
  • the organic fine particles may have a particle diameter of 1 to 10 ⁇ m, and the inorganic particles may have a particle diameter of 1 nm to 500 nm, or 1 nm to 300 nm.
  • the organic or inorganic fine particles included in the hard coating layer is not limited, for example, the organic or inorganic fine particles are organic fine particles composed of acrylic resin, styrene resin, epoxide resin and nylon resin, or silicon oxide, It may be inorganic fine particles composed of titanium dioxide, indium oxide, tin oxide, zirconium oxide, and zinc oxide.
  • the binder resin of the hard coating layer may further include a high molecular weight (co)polymer having a weight average molecular weight of 10,000 or more, 13,000 or more, 15,000 to 100,000, or 20,000 to 80,000.
  • the high molecular weight (co)polymer may be at least one selected from the group consisting of a cellulose polymer, an acrylic polymer, a styrene polymer, an epoxide polymer, a nylon polymer, a urethane polymer, and a polyolefin polymer.
  • the hard coating layer an organic polymer resin of a photocurable resin; And a hard coating layer comprising an antistatic agent dispersed in the organic polymer resin.
  • the antistatic agent is a quaternary ammonium salt compound; Pyridinium salt; Cationic compounds having 1 to 3 amino groups; Anionic compounds such as a sulfonic acid base, a sulfuric acid ester base, a phosphoric acid ester base, and a phosphonic acid base; Amphoteric compounds such as amino acid or amino sulfuric acid ester compounds; Nonionic compounds such as imino alcohol compounds, glycerin compounds, and polyethylene glycol compounds; Organometallic compounds such as metal alkoxide compounds including tin or titanium; Metal chelate compounds such as acetylacetonate salts of the organometallic compounds; Reactants or polymers of two or more of these compounds; It may be a mixture of two or more of these compounds.
  • the quaternary ammonium salt compound may be a compound having one or more quaternary ammonium base groups in the molecule, and a low molecular or high molecular type may be used without limitation.
  • a conductive polymer and metal oxide fine particles may be used as the antistatic agent.
  • the conductive polymers include aromatic conjugated poly(paraphenylene), heterocyclic conjugated polypyrrole, polythiophene, aliphatic conjugated polyacetylene, heteroatom-containing conjugated polyaniline, mixed conjugated poly( Phenylene vinylene), a conjugated multi-chain conjugated compound having a plurality of conjugated chains in a molecule, and a conductive composite obtained by grafting or block copolymerizing a conjugated polymer chain onto a saturated polymer.
  • the metal oxide fine particles include zinc oxide, antimony oxide, tin oxide, cerium oxide, indium tin oxide, indium oxide, aluminum oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, and the like.
  • Organic polymer resin of the photopolymerizable resin; And the hard coating layer including the antistatic agent dispersed in the organic polymer resin may further include one or more compounds selected from the group consisting of alkoxysilane-based oligomers and metal alkoxide-based oligomers.
  • the alkoxy silane compound may be conventional in the art, but, for example, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methacryloxypropyl It may be one or more compounds selected from the group consisting of trimethoxysilane, glycidoxypropyl trimethoxysilane, and glycidoxypropyl triethoxysilane.
  • the metal alkoxide oligomer may be prepared through a sol-gel reaction of a composition comprising a metal alkoxide compound and water.
  • the sol-gel reaction may be performed in a manner similar to the method for preparing the alkoxysilane oligomer described above.
  • the sol-gel reaction may be performed by slowly dropping water after diluting the metal alkoxide-based compound in an organic solvent.
  • the molar ratio of the metal alkoxide compound to water may be adjusted within a range of 3 to 170.
  • the metal alkoxide-based compound may be one or more compounds selected from the group consisting of titanium tetra-isopropoxide, zirconium isopropoxide, and aluminum isopropoxide.
  • the antireflection film according to the exemplary embodiment may further include a light-transmitting substrate positioned on one surface of the hard coating layer so as to face the low refractive index layer.
  • the light-transmitting substrate may be a transparent film having a light transmittance of 90% or more and a haze of 1% or less.
  • the light-transmitting substrate is a cycloolefin polymer film, a poly(meth)acrylate-based film, a polycarbonate film, a triacetyl cellulose (TAC) film, a polynorbornene film, a polyester film, and It may include one or more selected from the group consisting of polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • the thickness of the light-transmitting substrate may be 10 to 300 ⁇ m in consideration of productivity, etc., but is not limited thereto.
  • the light-transmitting substrate may have a retardation (Rth) of 3,000 nm or more, 4,000 to 50,000 nm, or 5,000 to 40,000 nm in a thickness direction measured at a wavelength of 400 nm to 800 nm.
  • a retardation (Rth) of 3,000 nm or more 4,000 to 50,000 nm, or 5,000 to 40,000 nm in a thickness direction measured at a wavelength of 400 nm to 800 nm.
  • Specific examples of such a light-transmitting substrate include a uniaxially oriented polyethylene terephthalate film or a biaxially oriented polyethylene terephthalate film.
  • the retardation (Rth) in the thickness direction of the light-transmitting substrate is less than 3,000 nm, a rainbow phenomenon may occur due to interference of visible light.
  • the retardation in the thickness direction can be confirmed through a commonly known measuring method and measuring device.
  • a commonly known measuring method and measuring device for example, as an apparatus for measuring retardation in the thickness direction, the brand name "AxoScan" manufactured by AXOMETRICS, etc. is mentioned.
  • the retardation in the thickness direction of the light-transmitting base film was measured, and based on the obtained thickness direction retardation measurement value (measured value by automatic measurement (automatic calculation) of the measuring device), It can be calculated by converting it into a retardation value per 10 ⁇ m in thickness.
  • the size of the light-transmitting substrate of the measurement sample is not particularly limited, since it is sufficient to be larger than the light metering portion (diameter: about 1 cm) of the stage of the measuring device, but it can be set to a size of 76 mm in length, 52 mm in width, and 13 ⁇ m in thickness. .
  • the value of the ⁇ refractive index of the light-transmitting substrate (589 nm)'' used in the measurement of retardation in the thickness direction is unconventional including a resin film of the same type as the light-transmitting substrate forming the film to be measured for retardation.
  • an unstretched film is used as a measurement sample (in addition, when the film to be measured is an unstretched film, the film can be used as a measurement sample as it is), and a refractive index measurement as a measuring device Using a device (trade name "NAR-1T SOLID” manufactured by Atago Co., Ltd.), using a light source of 589 nm, under a temperature condition of 23°C, in the in-plane direction (direction perpendicular to the thickness direction) of the measurement sample. It can be obtained by measuring the refractive index for light of 589 nm.
  • the antireflection film of the embodiment may exhibit a relatively low reflectance and a total haze value, thereby implementing high light transmittance and excellent optical properties.
  • the total haze of the antireflection film may be 0.45% or less, 0.05 to 0.45%, or 0.10% to 0.25%.
  • the antireflection film has an average reflectance of 2.0% or less, 1.5% or less, 1.0% or less, or 0.1% to 0.10%, 0.40% to 0.80%, or 0.54% in the visible light wavelength range of 380 nm to 780 nm. Can be 0.69%.
  • a polarizing plate including the anti-reflection film may be provided.
  • the polarizing plate may include a polarizer and an antireflection film formed on at least one surface of the polarizer.
  • the material and manufacturing method of the polarizer are not particularly limited, and conventional materials and manufacturing methods known in the art may be used.
  • the polarizer may be a polyvinyl alcohol-based polarizer.
  • the polarizer and the antireflection film may be laminated by an adhesive such as a water-based adhesive or a non-aqueous adhesive.
  • a display device including the anti-reflection film described above may be provided.
  • the specific example of the display device is not limited, and may be, for example, a device such as a liquid crystal display device, a plasma display device, or an organic light emitting diode device.
  • the display device may include a pair of polarizing plates facing each other; A thin film transistor, a color filter, and a liquid crystal cell sequentially stacked between the pair of polarizing plates; And it may be a liquid crystal display device including a backlight unit.
  • the antireflection film may be provided on the outermost surface of the display panel on the viewer side or the backlight side.
  • an anti-reflection film may be positioned on one surface of a polarizing plate that is relatively far from a backlight unit among a pair of polarizing plates.
  • the display device may include a display panel, a polarizer provided on at least one surface of the panel, and an antireflection film provided on a surface opposite to the panel of the polarizer.
  • an antireflection film capable of simultaneously realizing high scratch resistance and antifouling properties and improving the clarity of a screen of a display device, a polarizing plate including the antireflection film, and a display device including the antireflection film. can do.
  • Figure 2 (a) and (b) are photographs taken with an atomic force microscope (AFM) of the surfaces of the anti-reflection films of Comparative Examples 2 and 3, respectively.
  • AFM atomic force microscope
  • Pentaerythritol triacrylate 16.421g, UA-306T (reaction product of toluene diisocyanate and pentaerythritol triacrylate as urethane acrylate, Kyoeisha) 3.079 g, 8BR-500 (photocurable urethane acrylate polymer, Mw 200,000, Taisei Fine Chemical) 6.158 g, IRG-184 (initiator, Ciba) 1.026g, Tego-270 (leveling agent, Tego) 0.051g, BYK350 (leveling agent, BYK) 0.051g, 2-butanol 25.92g, iso Propyl alcohol 45.92g, XX-103BQ (copolymer particles of polystyrene and polymethyl methacrylate, Sekisui Plastic product, particle diameter 2.0 ⁇ m, refractive index 1.515) 0.318 g, XX-113BQ (copolymer particles of polysty
  • -RS-923 dispersion fluorinated compound, DIC (40% in MIBK), weight average molecular weight 4450g/mol
  • Polyethylene terephthalate (thickness 2 ⁇ m, SRF PET, Toyobo) was coated with the coating solution for forming a hard coating layer of Preparation Example 1 and dried to form a hard coating layer, and a low refractive index layer as described in Table 1 was formed on the hard coating layer.
  • the coating solution was coated and dried to prepare an antireflection film.
  • the prepared coating solution for forming a hard coating layer on the polyethylene terephthalate with #12 mayer bar, drying at a temperature of 60° C. for 2 minutes, UV curing to form a hard coating layer (coating thickness of 5 ⁇ m) Formed.
  • the amount of UV light irradiated during curing is 48mJ/cm2.
  • the coating solution for forming the low refractive index layer was coated with a #4 mayer bar to a thickness of about 110 to 120 nm, and dried and cured at 90° C. for 1 minute.
  • an antireflection film was prepared by irradiating ultraviolet rays of 294mJ/cm2 to the dried coating solution under nitrogen purging.
  • each of the hollow inorganic particle content (V) and the fluorinated compound content (F) with respect to the total weight of the low refractive layer formed by the coating solutions for forming the low refractive layer (C1 to C6) are shown in Table 2 below.
  • the satisfaction of the following Equation 2 is checked, and if Equation 2 is satisfied, it is marked as ⁇ , and if it is not satisfied, it is marked as X.
  • the antireflection film obtained in Examples and Comparative Examples was cut into 2cm X 2cm (width X length) and placed on a sample holder, fixed using a clip, and then an X-ray Photoelectron Spectroscopy (K-alpha TM + XPS system) , Thermo Fisher Scientific) equipment was used to analyze the surface of the low refractive layer, and a survey and a narrow scan spectrum were obtained using electron spectroscopy for chemical analysis (ESCA), and qualitative and total analysis were performed. As a result, the fluorine atom content on the surface of the low refractive layer was obtained, which is shown in Table 3 below.
  • the surface of the low refractive layer means'within a thickness of 10 nm in the thickness direction of the low refractive layer from one side of the low refractive layer (for example, one side of the low refractive layer in contact with the air layer)', and the surface of the low refractive layer In the fluorine content, it means'the content of fluorine element relative to the total atomic weight of elements within 10 nm thickness in the thickness direction of the low refractive layer from one side of the low refractive layer (eg, one side of the low refractive layer in contact with the air layer).
  • SADP Surface area difference percentage
  • Ra centerline mean roughness
  • An atomic force microscope (Atomic Force Microscope, Park Systems, XE7) was used to measure the surface shape of the antireflection films obtained in Examples and Comparative Examples. Specifically, the specimen was cut into 0.8cm X 0.8cm (width X length) and attached to the sample stage using carbon tape, and the flat part was observed with an atomic force microscope.
  • PPP-NCHR 10 (Force constant: 42N/m, Resonance Frequency 330kHz) is used as a tip for measurement, and detailed measurement conditions are as follows.
  • x-scan size 1 ⁇ m
  • y-scan size 1 ⁇ m
  • the surface area difference percentage and center line average roughness (Ra) were derived from the analyzed data, and in particular, the surface area difference percentage was calculated by substituting the 2D/3D area in the following Equation 1, and the results are shown in Table 3 below. .
  • FIGS. 1 (a) and (b) are photographs of the surfaces of the anti-reflection films of Examples 2 and 3, respectively, taken with an atomic force microscope (AFM), and FIGS. 2 (a) and (b) are respectively Comparative Examples This is a photograph of the surfaces of the antireflection films of 2 and 3 taken with an atomic force microscope.
  • The arithmetic mean value of the interval between dewetting droplets is 200 ⁇ m or less and exceeds 50 ⁇ m
  • X The arithmetic mean value of the interval between the dewetting droplets is 50 ⁇ m or less, or the dewetting is not
  • the fluorine atom content on the surface of the low refractive layer is more than 8.0 atomic%, the surface area difference percentage is 20% or less, and the average roughness of the center line is 10 nm or less, whereby the average reflectance This was as low as 1.41% or less, and it was confirmed that the antifouling property was remarkably excellent compared to Comparative Examples 1 to 3.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 반사 방지 필름과 이를 포함한 편광판 및 디스플레이 장치에 관한 것이다.

Description

반사 방지 필름, 편광판 및 디스플레이 장치
관련 출원(들)과의 상호 인용
본 출원은 2019 년 3 월 12 일자 한국 특허 출원 제 10-2019-0028248 호 및 2020 년 2 월 20 일자 한국 특허 출원 제 10-2020-0020902 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 반사 방지 필름, 편광판 및 디스플레이 장치에 관한 것이다.
일반적으로 PDP, LCD 등의 평판 디스플레이 장치에는 외부로부터 입사되는 빛의 반사를 최소화하기 위한 반사 방지 필름이 장착된다. 빛의 반사를 최소화하기 위한 방법으로는 수지에 무기 미립자 등의 필러를 분산시켜 기재 필름 상에 코팅하고 요철을 부여하는 방법(anti-glare: AG 코팅); 기재 필름 상에 굴절율이 다른 다수의 층을 형성시켜 빛의 간섭을 이용하는 방법(anti-reflection: AR 코팅) 또는 이들을 혼용하는 방법 등이 있다.
그 중, 상기 AG 코팅의 경우 반사되는 빛의 절대량은 일반적인 하드 코팅과 동등한 수준이지만, 요철을 통한 빛의 산란을 이용해 눈에 들어오는 빛의 양을 줄임으로써 저반사 효과를 얻을 수 있다. 그러나, 상기 AG 코팅은 표면 요철로 인해 화면의 선명도가 떨어지기 때문에, 최근에는 AR 코팅에 대한 많은 연구가 이루어지고 있다.
상기 AR 코팅을 이용한 필름으로는 광투과성 기재 필름 상에 하드 코팅층(고굴절율층), 저반사 코팅층 등이 적층된 다층 구조인 것이 상용화되고 있다. 그러나, 이러한 다수의 층을 형성시키는 방법은 각 층을 형성하는 공정을 별도로 수행함에 따라 층간 밀착력(계면 접착력)이 약해 내스크래치성이 떨어지는 단점이 있다.
또한, 이전에는 반사 방지 필름에 포함되는 저굴절층의 내스크래치성을 향상시키기 위해서는 나노미터 사이즈의 다양한 입자(예를 들어, 실리카, 알루미나, 제올라이트 등의 입자)를 첨가하는 방법이 주로 시도되었다. 그러나, 상기와 같이 나노미터 사이즈의 입자를 사용하는 경우 저굴절층의 반사율을 낮추면서 내스크래치성을 동시에 높이기 어려운 한계가 있었으며, 나노미터의 사이즈의 입자로 인하여 저굴절층 표면이 갖는 방오성이 크게 저하되었다.
이에 따라, 외부로부터 입사되는 빛의 절대 반사량을 줄이면서 표면의 내스크래치성과 함께 방오성을 향상시키기 위한 많은 연구가 이루어지고 있으나, 이에 따른 물성 개선의 정도가 미흡한 실정이다.
본 발명은 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 반사 방지 필름을 제공하기 위한 것이다.
또한, 본 발명은 상기 반사 방지 필름을 포함하는 편광판을 제공하기 위한 것이다.
또한, 본 발명은 상기 반사 방지 필름을 포함하며 높은 화면의 선명도를 제공하는 디스플레이 장치를 제공하기 위한 것이다.
본 명세서에서는, 하드 코팅층; 및 함불소 화합물을 포함하는 저굴절층;을 포함하고, 상기 저굴절층의 표면에 존재하는 불소 원자의 함량은 8.0 원자% 초과이고, 상기 저굴절층 일면의 표면적 차이 백분율(SADP; surface area difference percentage)은 20% 이하인 반사 방지 필름이 제공된다.
또한, 본 명세서에서는, 상기 반사 방지 필름을 포함하는 편광판이 제공된다.
또한, 본 명세서에서는, 상기 반사 방지 필름을 포함하는 디스플레이 장치가 제공될 수 있다.
이하 발명의 구체적인 구현예에 따른 반사 방지 필름, 이를 포함하는 편광판 및 디스플레이 장치에 관하여 보다 상세하게 설명하기로 한다.
본 명세서에서, 저굴절층은 낮은 굴절률을 갖는 층을 의미할 수 있으며, 예를 들면, 550nm의 파장에서 약 1.2 내지 1.6의 굴절률을 나타내는 층을 의미할 수 있다.
또한, 중공형 무기 입자라 함은 무기 입자의 표면 및/또는 내부에 빈 공간이 존재하는 형태의 입자를 의미한다.
또한, (메트)아크릴레이트[(Meth)acrylate]는 아크릴레이트(acrylate) 및 메타크릴레이트(Methacrylate) 양쪽 모두를 포함하는 의미이다.
또한, (공)중합체는 공중합체(co-polymer) 및 단독 중합체(homo-polymer) 양쪽 모두를 포함하는 의미이다.
또한, 광중합성 화합물은 빛의 조사에 의해, 예를 들어 가시광선 또는 자외선의 조사에 의해 중합된 고분자 화합물을 통칭한다.
또한, 함불소 화합물은 화합물 중 적어도 1개 이상의 불소 원소가 포함된 화합물을 의미한다.
발명의 일 구현예에 따르면, 하드 코팅층; 및 함불소 화합물을 포함하는 저굴절층;을 포함하고, 상기 저굴절층의 표면에 존재하는 불소 원자의 함량은 8.0 원자% 초과이고, 상기 저굴절층 일면의 표면적 차이 백분율(SADP; surface area difference percentage)은 20% 이하인 반사 방지 필름이 제공될 수 있다.
이에, 본 발명자들은 반사 방지 필름에 관한 연구를 진행하여, 하드 코팅층; 및 함불소 화합물을 포함하는 저굴절층;을 포함하고, 상기 저굴절층의 표면에 존재하는 불소의 함량이 8.0 원자% 초과이고, 상기 저굴절층 일면의 표면적 차이 백분율(SADP)은 20% 이하인 반사 방지 필름은, 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 갖는다는 점을 실험을 통하여 확인하고 발명을 완성하였다.
또한, 상기 반사 방지 필름은 디스플레이 장치의 화면의 선명도를 높일 수 있으면서도 우수한 내스크래치성 및 높은 방오성을 가져서 디스플레이 장치 또는 편광판 제조 공정 등에 큰 제한 없이 용이하게 적용 가능하다.
구체적으로, 상기 일 구현예에 따른 반사 방지 필름은, 상기 저굴절층의 일면의 표면적 차이 백분율(SADP; surface area difference percentage)이 20% 이하, 0.1 내지 20%, 0.8 내지 19%, 1 내지 18%, 1.5 내지 17%, 또는 2 내지 16%일 수 있다.
상기 표면적 차이 백분율은 상기 저굴절층 일면의 3 차원 표면 거칠기를 나타내는 하나의 지표(index)로, 하기 식 1로 정의될 수 있습니다.
[식 1]
Figure PCTKR2020002633-appb-I000001
구체적으로, 표면적 차이 백분율은 3 차원 표면적과 2 차원 표면적 간의 차이를 2 차원 면적으로 나눈 후 100 을 곱하여 산출될 수 있고, 이는 원자힘 현미경 장치를 이용하여 얻을 수 있다. 보다 구체적으로, 2 차원 면적은 측정 대상의 면적, 예를 들어, 측정 대상이 사각형인 경우 가로 길이와 세로 길이의 곱에 해당하고, 3 차원 면적은 원자힘 현미경을 통해 얻은 프로파일(profile)로부터 3D 이미지를 형성한 후 얻은 측정값을 통해 확인할 수 있다.
또한, 상기 표면적 차이 백분율은 반사 방지 필름의 방오성에 영향을 줄 수 있으며, 상기 표면적 차이 백분율은, 예를 들어, 상기 저굴절층에 포함된 중공형 무기 입자의 함량에 제어될 수 있다.
구체적으로, 상기 표면적 차이 백분율(SADP)은 20% 이하, 0.1 내지 20%, 0.8 내지 19%, 1 내지 18%, 1.5 내지 17%, 또는 2 내지 16%일 수 있다. 상기 반사 방지 필름의 표면적 차이 백분율이 20% 초과하면 방오성의 효과를 얻을 수 없다. 또한, 후술할 내용에 해당하나, 표면적 차이 백분율 20%를 초과하는 경우 저굴절층의 표면에 함유된 불소의 함량이 증가하더라도 방오성을 나타내지 못할 수 있다.
한편, 상기 원자힘 현미경을 통해서 상기 반사 방지 필름의 중심선 평균 거칠기(Ra)를 측정할 수 있으며, 이러한 중심선 평균 거칠기(Ra)는 10nm 이하, 8 내지 0.1nm, 7 내지 0.3nm, 5 내지 0.5nm, 또는 4 내지 0.6nm 일 수 있다. 상기 중심선 평균 거칠기(Ra)가 10nm 초과하면 방오성의 효과를 가지지 못할 수 있다.
상기 일 구현예에 따른 반사 방지 필름은, 하드 코팅층 및 함불소 화합물을 갖는 저굴절층을 포함할 수 있다. 상기 함불소 화합물에 함유된 불소 원소는, 반사 방지 필름에 전사되는 오염 물질의 양을 크게 줄일 수 있을 뿐만 아니라 전사된 오염 물질이 표면에 잔류하는 현상을 방지할 수 있고, 상기 오염 물질 자체를 쉽게 제거할 수 있는 특성을 갖는다.
따라서, 상기 저굴절층의 표면에 오염 물질 자체를 쉽게 제거할 수 있는 불소 원자를 다량으로 함유하는 것이 바람직하고, 예를 들어, 상기 저굴절층의 표면에 존재하는 불소 원자의 함량은 8.0 원자% 초과, 8.2 원자% 이상, 8.4 원자% 이상, 8.6 원자% 이상, 8.8 원자% 이상, 8.9 원자% 이상, 9.0 원자% 이상, 9.5 원자% 이상, 또는 10 원자% 이상일 수 있다. 상기 저굴절층의 표면에 존재하는 불소의 함량이 8.0 원자% 이하이면 방오성의 효과를 얻을 수 없다. 다만, 상기 불소의 함량이 지나치게 많은 경우 규소, 탄소 등과 같은 다른 원자 함량이 적어짐에 따라, 낮은 평균 반사율, 우수한 내스크래치성 및 선명도에 관한 효과를 구현할 수 없고, 표면 에너지(surface energy)의 불균형으로 인한 코팅성 불량 현상이 나타날 수 있으므로, 상기 저굴절층의 표면에 존재하는 불소의 함량은 50 원자% 이하, 40 원자% 이하, 30 원자% 이하, 또는 20 원자% 이하일 수 있다. 한편, 상기 불소의 함량은, 상기 저굴절층의 일면(예를 들어, 공기층과 접하는 저굴절층의 일면)으로부터 저굴절층 두께 방향으로 10nm 두께 이내에 존재하는 원소들의 총 원자량에 대한 불소 원소의 함량일 수 있다.
상기 저굴절층의 표면에 존재하는 불소의 함량은, 반사 방지 필름의 방오성에 영향을 줄 수 있으며, 이러한 불소의 함량은 상기 저굴절층에 포함된 함불소 화합물의 함량 등에 의해 제어될 수 있다.
또한, 상기 저굴절층에 포함된 함불소 화합물의 함량 등을 제어하여, 저굴절층 의 표면에 존재하는 불소 함량이 8.0 원자% 초과하더라도, 상기 저굴절층 일면의 표면적 차이 백분율이 20% 이하인 조건을 만족하지 않는 경우 우수한 방오성에 관한 효과가 구현되기 어려울 수 있다.
상기 함불소 화합물에는 1 이상의 반응성 작용기가 포함 또는 치환될 수 있으며, 상기 반응성 작용기는 빛의 조사(예를 들어 가시광선 또는 자외선의 조사 등) 또는 가열 등에 의하여 중합 반응에 참여할 수 있는 작용기를 의미한다. 상기 반응성 작용기는 빛의 조사 또는 가열에 의하여 중합 반응에 참여할 수 있는 것으로 알려진 다양한 작용기를 포함할 수 있으며, 이의 구체적인 예로는 (메트)아크릴레이트기, 에폭사이드기, 비닐기(Vinyl) 또는 싸이올기(Thiol)를 들 수 있다.
또한, 상기 저굴절층 및 반사 방지 필름 형성 과정에서 상기 함불소 화합물에 포함된 반응성 작용기가 가교 작용을 하게 되고, 이에 따라 상기 저굴절층 및 반사 방지 필름이 갖는 물리적 내구성, 내스크래치성 및 열적 안정성을 높일 수 있다.
상기 함불소 화합물은 1,000 내지 200,000, 2,000 내지 100,000, 또는 3,000 내지 5,000의 중량평균분자량(GPC법)에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 가질 수 있다. 상기 함불소 화합물의 중량평균분자량이 너무 작으면, 상기 함불소 화합물들이 상기 저굴절층 표면에 균일하고 효과적으로 배열하지 못하고 내부에 위치하게 되는데, 이에 따라 상기 저굴절층 및 반사 방지 필름의 표면이 갖는 방오성이 저하되고 상기 저굴절층 및 반사 방지 필름의 내부의 가교 밀도가 낮아져서 전체적인 강도나 내스크래치성 등의 기계적 물성이 저하될 수 있다. 또한, 상기 함불소 화합물의 중량평균분자량이 너무 높으면, 상기 저굴절층 및 반사 방지 필름의 헤이즈가 높아지거나 광투과도가 낮아질 수 있으며, 상기 저굴절층 및 반사 방지 필름의 강도 또한 저하될 수 있다.
구체적으로, 상기 함불소 화합물은 i) 하나 이상의 반응성 작용기가 치환되고, 적어도 하나의 탄소에 1 이상의 불소가 치환된 지방족 화합물 또는 지방족 고리 화합물; ii) 하나 이상의 반응성 작용기로 치환되고, 적어도 하나의 수소가 불소로 치환되고, 하나 이상의 탄소가 규소로 치환된 헤테로(hetero) 지방족 화합물 또는 헤테로(hetero)지방족 고리 화합물; iii) 하나 이상의 반응성 작용기가 치환되고, 적어도 하나의 실리콘에 1 이상의 불소가 치환된 폴리디알킬실록산계 고분자(예를 들어, 폴리디메틸실록산계 고분자); iv) 하나 이상의 반응성 작용기로 치환되고 적어도 하나의 수소가 불소로 치환된 폴리에테르 화합물로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
예를 들어, 상기 함불소 화합물은 퍼플루오로폴리에테르(perfluoropolyether)가 중합된 화합물이며, 아크릴레이트 및 실록산이 작용기로 치환될 수 있다.
상기 저굴절층 총 중량에 대한 함불소 화합물의 함량은 2 내지 9중량%, 2 내지 8중량%, 또는 3 내지 7중량%일 수 있다. 상기 함불소 화합물은 저굴절층의 표면에 슬립(Slip)성을 부여하여 방오성을 향상시키는 역할을 하는데, 상기 함불소 화합물의 함량이 지나치게 적으면 방오성의 효과를 얻을 수 없고, 상기 함불소 화합물의 함량이 지나치게 많으면 저굴절층 표면에 상대적으로 함불소 화합물 함량이 많아져, 저굴절층의 표면에서 광중합성 화합물이 (공)중합체로 전환되는 전환율이 낮아지는 문제점이 발생할 수 있다.
상기 함불소 화합물에 포함된 불소 원자 함량은 1 내지 60 중량%, 10 내지 55중량%, 20 내지 50중량%, 또는 35 내지 45중량%일 수 있다. 상기 함불소 화합물에서 불소의 함량이 너무 적으면, 상기 저굴절층의 표면으로 불소 성분이 충분히 배열하지 못하여 방오성 등의 물성을 충분히 확보하기 어려울 수 있다. 또한, 함불소 화합물에서 불소의 함량이 너무 많으면, 상기 저굴절층의 표면 특성이 저하되거나 최종 결과물을 얻기 위한 후단 공정 중에 불량품 발생률이 높아질 수 있다.
상기 함불소 화합물은 규소 또는 규소 화합물을 더 포함할 수 있다. 즉, 상기 함불소 화합물은 선택적으로 내부에 규소 또는 규소 화합물을 함유할 수 있고, 구체적으로 상기 함불소 화합물 중 규소의 함량은 0.1 중량% 내지 20중량%일 수 있다.
상기 함불소 화합물 각각에 포함되는 규소 또는 규소 화합물의 함량 또한 통상적으로 알려진 분석 방법, 예를 들어 ICP [Inductively Coupled Plasma] 분석 방법을 통해서 확인할 수 있다.
상기 함불소 화합물에 포함되는 규소는 상기 구현예의 저굴절층에 포함되는 다른 성분과의 상용성을 높일 수 있으며 이에 따라 최종 제조되는 저굴절층에 헤이즈(haze)가 발생하는 것을 방지하여 투명도를 높이는 역할을 할 수 있으며, 아울러 최종 제조되는 저굴절층이나 반사 방지 필름의 표면의 슬립성을 향상시켜 내스크래치성을 높일 수 있다.
한편, 상기 함불소 화합물 중 규소의 함량이 너무 커지면, 상기 저굴절층이나 반사 방지 필름이 충분한 투광도나 반사 방지 성능을 갖지 못하며 표면의 방오성 또한 저하될 수 있다.
상기 일 구현예에 따른 반사 방지 필름의 상기 저굴절층은, 중공형 무기 입자를 더 포함할 수 있다. 한편, 상기 중공형 무기 입자는 그 표면 및/또는 내부에 빈 공간이 존재하는 형태의 입자를 의미한다.
상기 중공형 무기 입자는 10 내지 200㎚, 15 내지 150㎚, 20 내지 130nm, 30 내지 110nm 또는 40 내지 100nm의 직경을 가질 수 있다. 상기 중공형 무기 입자의 직경이 10nm 미만이면 중공형 무기 입자 자체가 함유한 공기의 양이 적어져 저굴절률을 구현하기 어려울 수 있고, 200nm 초과하면 저굴절층 표면에 지나치게 큰 요철이 형성되어 우수한 방오성 및 내스크래치성을 구현하기가 어려우며, 저굴절층의 두께가 필연적으로 두꺼워지는 문제점이 발생할 수 있다.
상기 중공형 무기 입자의 구체적인 예로는 중공 실리카 입자를 들 수 있다. 상기 중공 실리카 입자는 유기 용매에 보다 용이하게 분산되기 위해서 표면에 치환된 소정의 작용기를 포함할 수 있다. 상기 중공 실리카 입자 표면에 치환 가능한 유기 작용기의 예가 크게 한정되는 것은 아니며, 예를 들어 (메트)아크릴레이트기, 비닐기, 히드록시기, 아민기, 알릴기(allyl), 에폭시기, 이소시아네이트기, 아민기, 또는 불소 등이 상기 중공 실리카 표면에 치환될 수 있다.
상기 저굴절층 총 중량에 대한 상기 중공형 무기 입자의 함량은 29 내지 60 중량%, 30 내지 55 중량%, 또는 35 내지 50 중량%일 수 있다. 상기 중공형 무기 입자의 함량이 29 중량% 미만이면 저반사 효과를 얻기 어려울 수 있고, 60 중량% 초과하면 저굴절층 표면에 지나치게 많은 요철이 형성되어 표면적이 증가하여 우수한 방오성을 갖기 어려울 수 있다.
또한, 상술한 바와 같이, 상기 중공형 무기 입자의 함량(V)이 상기 저굴절층 총 중량에 대해 29 내지 60 중량%이고, 상기 함불소 화합물의 함량(F)이 상기 저굴절층 총 중량에 대해 2 내지 9 중량%인 동시에, 상기 함불소 화합물의 함량(F)과 중공형 무기 입자의 함량(V)이 하기 식 2 를 만족할 수 있다.
[식 2]
Figure PCTKR2020002633-appb-I000002
이로 인해, 상기 저굴절층을 포함하는 반사 방지 필름은, 우수한 방오성 및 내스크래치성을 구현할 수 있고, 380 ㎚ 내지 780 ㎚의 가시광선 파장대 영역에서 2% 이하의 평균 반사율을 나타내어 디스플레이 장치의 화면의 선명도를 높일 수 있다.
한편, 상기 식 2 를 2 차원 그래프로 나타내는 경우, x 축은 V 이고 y 축은 F 인 일차 부등식으로, 기울기는 0.26 이고 Y 절편은 -6.11 이다. 상기 식 2의 기울기가 0.26 임으로 인해, 중공형 무기 입자의 함량이 함불소 화합물의 함량에 비해 상기 반사 방지 필름의 방오성 및 내스크래치성에 미치는 영향이 더욱 크다는 점을 확인할 수 있다. 또한, 상기 반사 방지 필름이 상술한 중공형 무기 입자의 함량(V) 및 함불소 화합물의 함량(F) 범위를 만족하면서도, 상기 식 2 를 만족함으로 인해 높은 내스크래치성 및 방오성을 동시에 구현하면서도, 이를 포함하는 디스플레이 장치의 화면의 선명도를 향상시킬 수 있다. 만일, 상기 반사 방지 필름이 상기 식 2 를 만족하지 못하는 경우, 방오성 및/또는 내스크래치성이 저하되거나, 평균 반사율이 높게 나타나는 문제점이 있다.
상기 중공형 무기 입자는 표면에 반응성 작용기를 갖는 함불소 화합물이 코팅된 것을 단독으로 사용할 수 있다. 또는 상기 반응성 작용기를 갖는 함불소 화합물이 코팅된 중공형 무기 입자와, 표면이 코팅되지 않는 중공형 무기 입자를 혼합하여 사용할 수 있다. 상기 중공형 무기 입자의 표면을 상기 반응성 작용기를 갖는 함불소 화합물로 코팅하면 표면 에너지를 보다 낮출 수 있으며, 이에 따라 상기 저굴절층의 방오성을 향상시킬 수 있으며, 또한, 저굴절층의 내구성이나 내스크래치성을 보다 높일 수 있다.
상기 중공형 무기 입자의 표면에 반응성 작용기를 갖는 함불소 화합물을 코팅하는 방법으로 통상적으로 알려진 입자 코팅 방법이나 중합 방법 등을 큰 제한 없이 사용할 수 있으며, 예를 들어 상기 중공형 무기 입자 및 반응성 작용기를 갖는 함불소 화합물을 물과 촉매의 존재 하에서 졸-겔 반응 시켜서 가수 분해 및 축합 반응을 통하여 상기 중공형 무기 입자의 표면에 반응성 작용기를 갖는 함불소 화합물을 결합시킬 수 있다.
상기 저굴절층은 솔리드형 무기 입자를 더 포함할 수 있다. 상기 솔리드형 무기 입자는 그 내부에 빈 공간이 존재하지 않는 형태의 입자를 의미한다. 상기 저굴절층에 솔리드형 무기 입자를 포함함으로 인해 보다 적은 양의 중공형 무기 입자를 사용하더라도 반사 방지 필름의 반사율을 낮출 수 있으며, 내스크래치성 및 방오성을 향상시킬 수 있다. 상기 솔리드형 무기 입자는 0.5 내지 100㎚, 1 내지 50㎚, 2 내지 30nm 또는 5 내지 20nm 의 직경을 가질 수 있다.
한편, 상기 솔리드형 무기 입자 및 상기 중공형 무기 입자 각각은 표면에 (메트)아크릴레이트기, 에폭사이드기, 비닐기(Vinyl) 및 싸이올기(Thiol)로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 함유할 수 있다. 상기 솔리드형 무기 입자 및 상기 중공형 무기 입자 각각이 표면에 상술한 반응성 작용기를 함유함에 따라서, 상기 저굴절층은 보다 높은 가교도를 가질 수 있으며, 이에 따라 보다 향상된 내스크래치성 및 방오성을 확보할 수 있다.
상기 중공형 무기 입자 100중량부에 대한, 상기 솔리드형 무기 입자의 함량은 1 내지 50중량부, 2 내지 40중량부, 3 내지 35중량부 또는 5 내지 30중량부일 수 있다. 상기 중공형 무기 입자가 과량으로 첨가될 경우 바인더의 함량 저하로 인하여 코팅막의 내스크래치성이나 내마모성이 저하될 수 있다.
상기 일 구현예에 따른 반사 방지 필름의 상기 저굴절층은, 상기 광중합성 화합물의 (공)중합체를 더 포함할 수 있다.
상기 광중합성 화합물의 (공)중합체를 형성하는 광중합성 화합물은 (메트)아크릴레이트 또는 비닐기를 포함하는 단량체 또는 올리고머를 포함할 수 있다. 구체적으로, 상기 광중합성 화합물은 (메트)아크릴레이트 또는 비닐기를 1 이상, 또는 2 이상, 또는 3 이상 포함하는 단량체 또는 올리고머를 포함할 수 있다.
상기 (메트)아크릴레이트를 포함한 단량체 또는 올리고머의 구체적인 예로는, 펜타에리스리톨 트리(메트)아크릴레이트, 펜타에리스리톨 테트라(메트)아크릴레이트, 디펜타에리스리톨 펜타(메트)아크릴레이트, 디펜타에리스리톨 헥사(메트)아크릴레이트, 트리펜타에리스리톨 헵타(메트)아크릴레이트, 트릴렌 디이소시아네이트, 자일렌 디이소시아네이트, 헥사메틸렌 디이소시아네이트, 트리메틸올프로판 트리(메트)아크릴레이트, 트리메틸올프로판 폴리에톡시 트리(메트)아크릴레이트, 트리메틸롤프로판트리메타크릴레이트, 에틸렌글리콜 디메타크릴레이트, 부탄디올 디메타크릴레이트, 헥사에틸 메타크릴레이트, 부틸 메타크릴레이트 또는 이들의 2종 이상의 혼합물이나, 또는 우레탄 변성 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 올리고머, 에테르아크릴레이트 올리고머, 덴드리틱 아크릴레이트 올리고머, 또는 이들의 2종 이상의 혼합물을 들 수 있다. 이때 상기 올리고머의 분자량은 1,000 내지 10,000일 수 있다.
상기 비닐기를 포함하는 단량체 또는 올리고머의 구체적인 예로는, 디비닐벤젠, 스티렌 또는 파라메틸스티렌을 들 수 있다.
상기 저굴절층 총 중량에 대한, 상기 광중합성 화합물의 (공)중합체의 함량은 이로써 한정되는 것은 아니나, 최종 제조되는 저굴절층이나 반사 방지 필름의 기계적 물성 등을 고려하여 상기 광중합성 화합물의 (공)중합체의 함량은 10 내지 80중량%, 15 내지 70중량%, 20 내지 60중량%, 또는 30 내지 50중량%일 수 있다. 상기 광중합성 화합물의 (공)중합체의 함량이 10중량% 미만이면 무기 입자간 빈 공간이 형성되어 입자간 배열의 주기성이 없어져 입자의 충전 밀도(packing density) 하락을 유도할 수 있으며, 이로 인해 스트레스(stress) 분산이 원활하게 일어나지 않아 내스크래치성이 하락될 수 있다. 상기 광중합성 화합물의 (공)중합체의 함량이 80중량% 초과하면 광중합성 화합물이 (공)중합체로 전환되는 비율이 낮아질 수 있다.
상기 저굴절층은 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산을 포함할 수 있다. 상기 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산은 표면에 반응성 작용기가 존재하여 상기 저굴절층의 기계적 물성, 예를 들어 내스크래치성을 높일 수 있고 이전에 알려진 실리카, 알루미나, 제올라이트 등의 미세 입자를 사용하는 경우와 달리 상기 저굴절층의 내알카리성을 향상시킬 수 있으면서, 평균 반사율이나 색상 등의 외관 특성을 향상시킬 수 있다.
상기 폴리실세스퀴옥산은(RSiO1.5)n로 표기될 수 있으며(이때, n은 4 내지 30 또는 8 내지 20), 랜덤, 사다리형, cage 및 부분적인 cage 등의 다양한 구조를 가질 수 있다. 예를 들어, 상기 저굴절층 및 반사 방지 필름의 물성 및 품질을 높이기 위하여, 상기 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산으로 반응성 작용기가 1 이상 치환되고 케이지(cage)구조를 갖는 다면체 올리고머 실세스퀴옥산(Polyhedral Oligomeric Silsesquioxane)을 사용할 수 있다.
또한, 예를 들어, 상기 작용기가 1 이상 치환되고 케이지(cage)구조를 갖는 다면체 올리고머 실세스퀴옥산은 분자 중 실리콘 8 내지 20개를 포함할 수 있다.
또한, 상기 케이지(cage)구조를 갖는 다면체 올리고머 실세스퀴옥산의 실리콘들 중 적어도 1개 이상에는 반응성 작용기가 치환될 수 있으며, 반응성 작용기가 치환되지 않은 실리콘들에는 상술한 비반응성 작용기가 치환될 수 있다.
상기 케이지(cage)구조를 갖는 다면체 올리고머 실세스퀴옥산의 실리콘들 중 적어도 1개에 반응성 작용기가 치환됨에 따라서 상기 저굴절층 및 상기 바인더 수지의 기계적 물성을 향상시킬 수 있으며, 아울러 나머지 실리콘들에 비반응성 작용기가 치환됨에 따라서 분자 구조적으로 입체적인 장애(Steric hinderance)가 나타나서 실록산 결합(-Si-O-)이 외부로 노출되는 빈도나 확률을 크게 낮추어서 상기 저굴절층 및 상기 바인더 수지의 내알카리성을 향상시킬 수 있다.
상기 폴리실세스퀴옥산에 치환되는 반응성 작용기는 알코올, 아민, 카르복실산, 에폭사이드, 이미드, (메트)아크릴레이트, 니트릴, 노보넨, 올레핀[알릴(ally), 사이클로알케닐(cycloalkenyl) 또는 비닐디메틸실릴 등], 폴리에틸렌글리콜, 싸이올 및 비닐기로 이루어진 군에서 선택된 1종 이상의 작용기를 포함할 수 있으며, 예를 들어, 에폭사이드 또는 (메트)아크릴레이트일 수 있다.
상기 반응성 작용기의 보다 구체적인 예로는 (메트)아크릴레이트, 탄소수 1 내지 20의 알킬 (메트)아크릴레이트, 탄소수 3 내지 20의 사이클로알킬(cycloalkyl) 에폭사이드, 탄소수 1 내지 10의 알킬 사이클로알케인(cycloalkane) 에폭사이드를 들 수 있다. 상기 알킬 (메트)아크릴레이트는 (메트)아크릴레이트와 결합하지 않은 '알킬'의 다른 한 부분이 결합 위치라는 의미이며, 상기 사이클로알킬 에폭사이드는 에폭사이드와 결합하지 않은 '사이클로알킬'의 다른 부분이 결합 위치라는 의미이며, 알킬 사이클로알케인(cycloalkane) 에폭사이드는 사이클로알케인(cycloalkane) 에폭사이드와 결합하지 않은 '알킬'의 다른 부분이 결합 위치라는 의미이다.
한편, 상기 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산은 상술한 반응성 작용기 이외로 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 6 내지 20의 사이클로헥실기 및 탄소수 6 내지 20의 아릴기로 이루어진 군에서 선택된 1종 이상의 미반응성 작용기가 1 이상 더 포함할 수 있다. 이와 같이 상기 폴리실세스퀴옥산에 반응성 작용기와 미반응성 작용기가 표면에 치환됨에 따라서, 상기 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산에서 실록산 결합(-Si-O-)이 분자 내부에 위치하면서 외부로 노출되지 않게 되어 상기 저굴절층 및 반사 방지 필름의 내알카리성 및 내스크래치성을 보다 높일 수 있다.
이러한 반응성 작용기가 1 이상 치환되고 케이지(cage)구조를 갖는 다면체 올리고머 실세스퀴옥산(Polyhedral Oligomeric Silsesquioxane, POSS)의 예로는, TMP DiolIsobutyl POSS, Cyclohexanediol Isobutyl POSS, 1,2-PropanediolIsobutyl POSS, Octa(3-hydroxy-3 methylbutyldimethylsiloxy) POSS 등 알코올이 1 이상 치환된 POSS; AminopropylIsobutyl POSS, AminopropylIsooctyl POSS, Aminoethylaminopropyl Isobutyl POSS, N-Phenylaminopropyl POSS, N-Methylaminopropyl Isobutyl POSS, OctaAmmonium POSS, AminophenylCyclohexyl POSS, AminophenylIsobutyl POSS 등 아민이 1 이상 치환된 POSS; Maleamic Acid-Cyclohexyl POSS, Maleamic Acid-Isobutyl POSS, Octa Maleamic Acid POSS 등 카르복실산이 1 이상 치환된 POSS; EpoxyCyclohexylIsobutyl POSS, Epoxycyclohexyl POSS, Glycidyl POSS, GlycidylEthyl POSS, GlycidylIsobutyl POSS, GlycidylIsooctyl POSS 등 에폭사이드가 1 이상 치환된 POSS; POSS Maleimide Cyclohexyl, POSS Maleimide Isobutyl 등 이미드가 1 이상 치환된 POSS; AcryloIsobutyl POSS, (Meth)acrylIsobutyl POSS, (Meth)acrylate Cyclohexyl POSS, (Meth)acrylate Isobutyl POSS, (Meth)acrylate Ethyl POSS, (Meth)acrylEthyl POSS, (Meth)acrylate Isooctyl POSS, (Meth)acrylIsooctyl POSS, (Meth)acrylPhenyl POSS, (Meth)acryl POSS, Acrylo POSS 등 (메트)아크릴레이트가 1 이상 치환된 POSS; CyanopropylIsobutyl POSS 등의 니트릴기가 1 이상 치환된 POSS; NorbornenylethylEthyl POSS, NorbornenylethylIsobutyl POSS, Norbornenylethyl DiSilanoIsobutyl POSS, Trisnorbornenyl Isobutyl POSS 등 노보넨기가 1 이상 치환된 POSS; AllylIsobutyl POSS, MonoVinylIsobutyl POSS, OctaCyclohexenyldimethylsilyl POSS, OctaVinyldimethylsilyl POSS, OctaVinyl POSS 등 비닐기 1 이상 치환된 POSS; AllylIsobutyl POSS, MonoVinylIsobutyl POSS, OctaCyclohexenyldimethylsilyl POSS, OctaVinyldimethylsilyl POSS, OctaVinyl POSS 등의 올레핀이 1 이상 치환된 POSS; 탄소수 5 내지 30의 PEG가 치환된 POSS; 또는 MercaptopropylIsobutyl POSS 또는 MercaptopropylIsooctyl POSS 등의 싸이올기가 1 이상 치환된 POSS; 등을 들 수 있다.
상기 저굴절층 총 중량에 대한 상기 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산(polysilsesquioxane)의 함량은 1 내지 20중량%, 3 내지 15중량%, 또는 5 내지 10중량%일 수 있다. 상기 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산으로부터 유래한 부분의 함량이 너무 작은 경우, 상기 저굴절층의 내스크래치성을 충분히 확보하기 어려울 수 있다. 또한, 상기 바인더 수지 중 광중합성 화합물로부터 유래한 부분 대비 상기 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산으로부터 유래한 부분의 함량이 너무 큰 경우에도, 상기 저굴절층이나 반사 방지 필름의 투명도가 저하될 수 있으며, 내스크래치성이 오히려 저하될 수 있다.
한편, 상기 저굴절층은 상기 광중합성 화합물, 상기 함불소 화합물 및 상기 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산(polysilsesquioxane) 간의 가교 중합체를 더 포함할 수 있다.
이러한 저굴절층은, 광중합성 화합물, 함불소 화합물, 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산을 포함하는 광경화성 코팅 조성물을 기재 상에 도포하고 도포된 결과물을 광경화함으로써 얻어질 수 있다. 이로 인해, 상기 저굴절층은 광중합성 화합물, 함불소 화합물 및 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산(polysilsesquioxane) 간의 가교 중합체를 포함할 수 있다.
또한, 상기 광경화성 코팅 조성물은 광중합 개시제를 더 포함할 수 있다. 이에 따라, 상술한 광경화성 코팅 조성물로부터 제조되는 저굴절층에는 상기 광중합 개시제가 잔류할 수 있다.
상기 광중합 개시제로는 광경화성 수지 조성물에 사용될 수 있는 것으로 알려진 화합물이면 크게 제한 없이 사용 가능하며, 구체적으로 벤조 페논계 화합물, 아세토페논계 화합물, 비이미다졸계 화합물, 트리아진계 화합물, 옥심계 화합물 또는 이들의 2종 이상의 혼합물을 사용할 수 있다.
상기 광중합성 화합물 100중량부에 대하여, 상기 광중합 개시제는 1 내지 100중량부, 5 내지 90중량부, 10 내지 80중량부, 20 내지 70중량부 또는 30 내지 60중량부의 함량으로 사용될 수 있다. 상기 광중합 개시제의 양이 너무 작으면, 상기 광경화성 코팅 조성물의 광경화 단계에서 미경화되어 잔류하는 물질이 발행할 수 있다. 상기 광중합 개시제의 양이 너무 많으면, 미반응 개시제가 불순물로 잔류하거나 가교 밀도가 낮아져서 제조되는 필름의 기계적 물성이 저하되거나 반사율이 크게 높아질 수 있다.
또한, 상기 광경화성 코팅 조성물은 유기 용매를 더 포함할 수 있다. 상기 유기 용매의 비제한적인 예를 들면 케톤류, 알코올류, 아세테이트류 및 에테르류, 또는 이들의 2종 이상의 혼합물을 들 수 있다.
이러한 유기 용매의 구체적인 예로는, 메틸에틸케논, 메틸이소부틸케톤, 아세틸아세톤 또는 이소부틸케톤 등의 케톤류; 메탄올, 에탄올, n-프로판올, i-프로판올, n-부탄올, i-부탄올, 또는 t-부탄올 등의 알코올류; 에틸아세테이트, i-프로필아세테이트, 또는 폴리에틸렌글리콜 모노메틸에테르 아세테이트 등의 아세테이트류; 테트라하이드로퓨란 또는 프로필렌글라이콜 모노메틸에테르 등의 에테르류; 또는 이들의 2종 이상의 혼합물을 들 수 있다.
상기 유기 용매는 상기 광경화성 코팅 조성물에 포함되는 각 성분들을 혼합하는 시기에 첨가되거나 각 성분들이 유기 용매에 분산 또는 혼합된 상태로 첨가되면서 상기 광경화성 코팅 조성물에 포함될 수 있다. 상기 광경화성 코팅 조성물 중 유기 용매의 함량이 너무 작으면, 상기 광경화성 코팅 조성물의 흐름성이 저하되어 최종 제조되는 필름에 줄무늬가 생기는 등 불량이 발생할 수 있다. 또한, 상기 유기 용매의 과량 첨가 시 고형분 함량이 낮아져, 코팅 및 성막이 충분히 되지 않아서 필름의 물성이나 표면 특성이 저하될 수 있고, 건조 및 경화 과정에서 불량이 발생할 수 있다. 이에 따라, 상기 광경화성 코팅 조성물은 포함되는 성분들의 전체 고형분의 농도가 1중량% 내지 50중량%, 또는 2 내지 20중량%가 되도록 유기 용매를 포함할 수 있다.
한편, 상기 광경화성 코팅 조성물을 도포하는데 통상적으로 사용되는 방법 및 장치를 별 다른 제한 없이 사용할 수 있으며, 예를 들어, Meyer bar 등의 바 코팅법, 그라비아 코팅법, 2 roll reverse 코팅법, vacuum slot die 코팅법, 2 roll 코팅법 등을 사용할 수 있다.
상기 광경화성 코팅 조성물을 광경화 시키는 단계에서는 200 내지 400nm 파장의 자외선 또는 가시광선을 조사할 수 있고, 조 사시 노광량은 100 내지 4,000 mJ/㎠ 일 수 있다. 노광 시간도 특별히 한정되는 것이 아니고, 사용되는 노광 장치, 조사 광선의 파장 또는 노광량에 따라 적절히 변화시킬 수 있다.
또한, 상기 광경화성 코팅 조성물을 광경화 시키는 단계에서는 질소 대기 조건을 적용하기 위하여 질소 퍼징 등을 할 수 있다.
한편, 상기 하드 코팅층은 통상적으로 알려진 하드 코팅층을 큰 제한 없이 사용할 수 있다.
상기 하드 코팅층의 일 예로서, 광경화성 수지를 포함하는 바인더 수지; 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자를 포함하는 하드 코팅층을 들 수 있다.
상기 하드 코팅층에 포함되는 광경화성 수지는 자외선 등의 광이 조사되면 중합 반응을 일으킬 수 있는 광경화성 화합물의 중합체로서, 당업계에서 통상적인 것일 수 있다. 구체적으로, 상기 광경화성 수지는 우레탄 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 올리고머, 폴리에스터 아크릴레이트, 및 폴리에테르 아크릴레이트로 이루어진 반응성 아크릴레이트 올리고머 군; 및 디펜타에리스리톨 헥사아크릴레이트, 디펜타에리스리톨 하이드록시 펜타아크릴레이트, 펜타에리스리톨 테트라아크릴레이트, 펜타에리스리톨 트리아크릴레이트, 트리메틸렌 프로필 트리아크릴레이트, 프로폭시레이티드 글리세롤 트리아크릴레이트, 트리메틸프로판 에톡시 트리아크릴레이트, 1,6-헥산디올디아크릴레이트, 프로폭시레이티드 글리세로 트리아크릴레이트, 트리프로필렌 글리콜 디아크릴레이트, 및 에틸렌글리콜 디아크릴레이트로 이루어진 다관능성 아크릴레이트 단량체 군에서 선택되는 1 종 이상을 포함할 수 있다.
상기 유기 또는 무기 미립자는 입경의 구체적으로 한정되는 것은 아니나, 예를 들어 유기 미립자는 1 내지 10㎛의 입경을 가질 수 있으며, 상기 무기 입자는 1 ㎚ 내지 500 ㎚, 또는 1㎚ 내지 300㎚의 입경을 가질 수 있다.
또한, 상기 하드 코팅층에 포함되는 유기 또는 무기 미립자의 구체적인 예가 한정되는 것은 아니나, 예를 들어 상기 유기 또는 무기 미립자는 아크릴계 수지, 스티렌계 수지, 에폭사이드 수지 및 나일론 수지로 이루어진 유기 미립자이거나 산화규소, 이산화티탄, 산화인듐, 산화주석, 산화지르코늄 및 산화아연으로 이루어진 무기 미립자일 수 있다.
상기 하드 코팅층의 바인더 수지는 중량평균분자량 10,000 이상, 13,000 이상, 15,000 내지 100,000 또는 20,000 내지 80,000의 고분자량 (공)중합체를 더 포함할 수 있다. 상기 고분자량 (공)중합체는 셀룰로스계 폴리머, 아크릴계 폴리머, 스티렌계 폴리머, 에폭사이드계 폴리머, 나일론계 폴리머, 우레탄계 폴리머, 및 폴리올레핀계 폴리머로 이루어진 군에서 선택되는 1 종 이상일 수 있다.
한편, 상기 하드 코팅층의 또 다른 일 예로서, 광경화성 수지의 유기 고분자 수지; 및 상기 유기 고분자 수지에 분산된 대전 방지제를 포함하는 하드 코팅층을 들 수 있다.
상기 대전 방지제는 4급 암모늄염 화합물; 피리디늄염; 1 내지 3개의 아미노기를 갖는 양이온성 화합물; 설폰산 염기, 황산 에스테르 염기, 인산 에스테르 염기, 포스폰산 염기 등의 음이온성 화합물; 아미노산계 또는 아미노 황산 에스테르계 화합물 등의 양성 화합물; 이미노 알코올계 화합물, 글리세린계 화합물, 폴리에틸렌 글리콜계 화합물 등의 비이온성 화합물; 주석 또는 티타늄 등을 포함한 금속 알콕사이드 화합물 등의 유기 금속 화합물; 상기 유기 금속 화합물의 아세틸아세토네이트 염 등의 금속 킬레이트 화합물; 이러한 화합물들의 2종 이상의 반응물 또는 고분자화물; 이러한 화합물들의 2종 이상의 혼합물일 수 있다. 여기서, 상기 4급 암모늄염 화합물은 분자 내에 1개 이상의 4급 암모늄염기를 가지는 화합물일 수 있으며, 저분자형 또는 고분자형을 제한 없이 사용할 수 있다.
또한, 상기 대전 방지제로는 도전성 고분자와 금속 산화물 미립자도 사용할 수 있다. 상기 도전성 고분자로는 방향족 공액계 폴리(파라페닐렌), 헤테로고리식 공액계의 폴리피롤, 폴리티오펜, 지방족 공액계의 폴리아세틸렌, 헤테로 원자를 함유한 공액예의 폴리아닐린, 혼합 형태 공액계의 폴리(페닐렌 비닐렌), 분자중에 복수의 공액 사슬을 갖는 공액계인 복쇄형 공액계 화합물, 공액 고분자 사슬을 포화 고분자에 그래프트 또는 블록 공중합시킨 도전성 복합체 등이 있다. 또한, 상기 금속 산화물 미립자로는 산화 아연, 산화 안티몬, 산화 주석, 산화 세륨, 인듐 주석 산화물, 산화 인듐, 산화 알루미늄, 안티몬 도핑된 산화 주석, 알루미늄 도핑된 산화 아연 등을 들 수 있다.
상기 광중합성 수지의 유기 고분자 수지; 및 상기 유기 고분자 수지에 분산된 대전 방지제를 포함하는 하드 코팅층은 알콕시 실란계 올리고머 및 금속 알콕사이드계 올리고머로 이루어진 군에서 선택되는 1종 이상의 화합물을 더 포함할 수 있다.
상기 알콕시 실란계 화합물은 당업계에서 통상적인 것일 수 있으나, 예를 들어 테트라메톡시실란, 테트라에톡시실란, 테트라이소프로폭시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 메타크릴록시프로필트리메톡시실란, 글리시독시프로필 트리메톡시실란 및 글리시독시프로필 트리에톡시실란으로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.
또한, 상기 금속 알콕사이드계 올리고머는 금속 알콕사이드계 화합물 및 물을 포함하는 조성물의 졸-겔 반응을 통해 제조할 수 있다. 상기 졸-겔 반응은 전술한 알콕시 실란계 올리고머의 제조 방법에 준하는 방법으로 수행할 수 있다. 다만, 상기 금속 알콕사이드계 화합물은 물과 급격하게 반응할 수 있으므로, 상기 금속 알콕사이드계 화합물을 유기용매에 희석한 후 물을 천천히 드로핑하는 방법으로 상기 졸-겔 반응을 수행할 수 있다. 이때, 반응 효율 등을 감안하여, 물에 대한 금속 알콕사이드 화합물의 몰비(금속이온 기준)는 3 내지 170인 범위 내에서 조절하는 것일 수 있다.
여기서, 상기 금속 알콕사이드계 화합물은 티타늄 테트라-이소프로폭사이드, 지르코늄 이소프로폭사이드 및 알루미늄 이소프로폭사이드로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.
한편, 상기 일 구현예에 따른 반사 방지 필름은, 저굴절층에 대향하도록 상기 하드 코팅층의 일면에 위치한 광투과성 기재를 더 포함할 수 있다.
상기 광투과성 기재는 광 투과도가 90% 이상이고, 헤이즈 1% 이하인 투명 필름일 수 있다. 또한, 상기 광투과성 기재는 환상 올레핀계 고분자 (cycloolefin polymer) 필름, 폴리(메트)아크릴레이트계 필름, 폴리카보네이트 필름, 트리아세틸 셀룰로오스(TAC) 필름, 폴리노보넨 (polynorbornene) 필름, 폴리에스테르 필름 및 폴리에틸렌 테레프탈레이트(PET) 필름으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 또한, 상기 광투과성 기재의 두께는 생산성 등을 고려하여 10 내지 300㎛일 수 있으나, 이에 한정하는 것은 아니다.
구체적으로, 상기 광투과성 기재는 파장 400㎚ 내지 800㎚에서 측정되는 두께 방향의 리타데이션(Rth)이 3,000 ㎚ 이상, 4,000 내지 50,000nm, 또는 5,000 내지 40,000nm일 수 있다. 이러한 광투과성 기재의 구체적인 예로는 일축 연신 폴리에틸렌 테레프탈레이트 필름 또는 이축 연신 폴리에틸렌 테레프탈레이트 필름을 들 수 있다. 상기 광투과성 기재의 두께 방향의 리타데이션(Rth)이 3,000 ㎚ 미만이면 가시광선의 간섭에 의한 레인보우 현상이 발생할 수 있다.
두께 방향의 리타데이션은 통상적으로 알려진 측정 방법 및 측정 장치를 통하여 확인할 수 있다. 예를 들어, 두께 방향의 리타데이션의 측정 장치로는 AXOMETRICS사제의 상품명 「엑소스캔(AxoScan) 등을 들 수 있다.
예를 들어, 두께 방향의 리타데이션의 측정 조건으로는, 상기 광투과성 기재에 대하여, 굴절률(589nm)값을 상기 측정 장치에 입력한 후, 온도: 25℃, 습도: 40%의 조건 하, 파장 590nm의 광을 사용하여, 광투과성 기재 필름의 두께 방향의 리타데이션을 측정하고, 구해진 두께 방향의 리타데이션 측정값(측정 장치의 자동 측정(자동 계산)에 의한 측정값)에 기초하여, 필름의 두께 10㎛당 리타데이션 값으로 환산함으로써 구할 수 있다. 또한, 측정 시료의 광투과성 기재의 사이즈는, 측정기의 스테이지의 측광부(직경: 약 1cm)보다도 크면 되기 때문에, 특별히 제한되지 않지만, 세로: 76mm, 가로 52mm, 두께 13㎛의 크기로 할 수 있다.
또한, 두께 방향의 리타데이션의 측정에 이용하는 「상기 광투과성 기재의 굴절률(589nm)」의 값은, 리타데이션의 측정 대상이 되는 필름을 형성하는 광투과성 기재와 동일한 종류의 수지 필름을 포함하는 미연신 필름을 형성한 후, 이러한 미연신 필름을 측정 시료로서 사용하고(또한, 측정 대상이 되는 필름이 미연신 필름인 경우에는, 그 필름을 그대로 측정 시료로서 사용할 수 있음), 측정 장치로서 굴절률 측정 장치(가부시끼가이샤 아타고제의 상품명 「NAR-1T SOLID」)를 사용하며, 589nm 의 광원을 사용하고, 23℃의 온도 조건에서, 측정 시료의 면 내 방향(두께 방향과는 수직인 방향)의 589nm 의 광에 대한 굴절률을 측정하여 구할 수 있다.
상기 일 구현예의 반사 방지 필름은 상대적으로 낮은 반사율 및 전체 헤이즈 값을 나타내어 높은 투광도 및 우수한 광학 특성을 구현할 수 있다. 구체적으로, 상기 반사 방지 필름의 전체 헤이즈가 0.45% 이하, 0.05 내지 0.45% 또는 0.10% 내지 0.25%일 수 있다. 또한, 상기 반사 방지 필름은 380㎚ 내지 780㎚의 가시광선 파장대 영역에서 평균 반사율이 2.0% 이하, 1.5% 이하, 1.0% 이하, 또는 0.1% 내지 0.10%, 0.40% 내지 0.80%, 또는 0.54% 내지 0.69%일 수 있다.
발명의 다른 구현예에 따르면, 상기 반사 방지 필름을 포함하는 편광판이 제공될 수 있다. 상기 편광판은 편광자와 상기 편광자의 적어도 일면에 형성된 반사 방지 필름을 포함할 수 있다.
상기 편광자의 재료 및 제조방법은 특별히 한정하지 않으며, 당 기술분야에 알려져 있는 통상적인 재료 및 제조방법을 사용할 수 있다. 예를 들어, 상기 편광자는 폴리비닐알코올계 편광자일 수 있다.
상기 편광자와 상기 반사 방지 필름은 수계 접착제 또는 비수계 접착제 등의 접착제에 의하여 합지될 수 있다.
발명의 또 다른 구현예에 따르면, 상술한 반사 방지 필름을 포함하는 디스플레이 장치가 제공될 수 있다. 상기 디스플레이 장치의 구체적인 예가 한정되는 것은 아니며, 예를 들어 액정표시장치 (Liquid Crystal Display]), 플라즈마 디스플레이 장치, 유기발광 다이오드 장치(Organic Light Emitting Diodes) 등의 장치일 수 있다.
하나의 일 예로, 상기 디스플레이 장치는 서로 대향하는 1 쌍의 편광판; 상기 1 쌍의 편광판 사이에 순차적으로 적층된 박막트랜지스터, 컬러필터 및 액정셀; 및 백라이트 유닛을 포함하는 액정디스플레이 장치일 수 있다.
상기 디스플레이 장치에서 상기 반사 방지 필름은 디스플레이 패널의 관측자측 또는 백라이트측의 최외각 표면에 구비될 수 있다.
상기 반사 방지 필름을 포함하는 디스플레이 장치는, 1 쌍의 편광판 중에서 상대적으로 백라이트 유닛과 거리가 먼 편광판의 일면에 반사 방지 필름이 위치할 수 있다.
또한, 상기 디스플레이 장치는 디스플레이 패널, 상기 패널의 적어도 일면에 구비된 편광자 및 상기 편광자의 패널과 접하는 반대측 면에 구비된 반사방지 필름을 포함할 수 있다.
본 발명에 따르면, 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고 디스플레이 장치의 화면의 선명도를 높일 수 있는 반사 방지 필름, 상기 반사 방지 필름을 포함한 편광판, 및 상기 반사 방지 필름을 포함하는 디스플레이 장치를 제공할 수 있다.
도 1 (a) 및 (b)는 각각 실시예 2 및 3의 반사 방지 필름의 표면을 원자힘 현미경(AFM)으로 촬영한 사진이다.
도 2는 (a) 및 (b)는 각각 비교예 2 및 3의 반사 방지 필름의 표면을 원자힘 현미경(AFM)으로 촬영한 사진이다.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
제조예 1: 하드 코팅층 형성용 코팅액의 제조
펜타에리트리톨 트리아크릴레이트 16.421g, UA-306T (우레탄 아크릴레이트로 톨루엔 디이소시아네이트와 펜타 에리스리톨트리아크릴레이트의 반응물, Kyoeisha 제품) 3.079 g, 8BR-500 (광경화형 우레탄 아크릴레이트 폴리머, Mw 200,000, Taisei Fine Chemical 제품) 6.158 g, IRG-184 (개시제, Ciba 사) 1.026g, Tego-270(레벨링제, Tego 사) 0.051g, BYK350(레벨링제, BYK 사) 0.051g, 2-부탄올 25.92g, 이소프로필 알코올 45.92g, XX-103BQ(폴리스타이렌과 폴리메틸메타크릴레이트의 공중합 입자, Sekisui Plastic 제품, 입경 2.0 ㎛, 굴절률 1.515) 0.318g, XX-113BQ(폴리스타이렌과 폴리메틸메타크릴레이트의 공중합 입자, Sekisui Plastic 제품, 입경 2.0 ㎛, 굴절률 1.555) 0.708g, 및 MA-ST(크기 10~15nm 의 나노 실리카 입자가 메틸알코올에 분산된 분산액, Nissan Chemical 제품, 30% in MeOH) 0.342g을 혼합하여 하드 코팅층 형성용 코팅액을 제조하였다.
제조예 2: 저굴절층 형성용 코팅액의 제조
하기 표 1에 기재된 성분을 혼합하여 저굴절층 형성용 코팅액(C1 내지 C6)을 제조하였다.
Figure PCTKR2020002633-appb-T000001
- TMPTA: 트리메틸올프로페인 트리아크릴레이트
- 중공형 실리카 입자 분산액: 직경 약 42 ㎚ 내지 66 ㎚, JSC catalyst and chemicals사 제품 (20% in MIBK)
- 솔리드형 실리카 입자 분산액: 직경 약 12 ㎚ 내지 19 ㎚ (40.6% in MIBK)
- KBM-5103: 실란 커플링제, Shin-Etsu Silicone사
- RS-923 분산액: 함불소 화합물, DIC 사 (40% in MIBK), 중량평균분자량 4450g/mol
- Irgacure 127: 광중합 개시제, Ciba사
<실시예 및 비교예: 반사 방지 필름의 제조>
폴리에틸렌 테레프탈레이트(두께 2㎛, SRF PET, Toyobo 사)에 상기 제조예 1의하드 코팅층 형성용 코팅액을 코팅하고 건조하여 하드코팅층을 형성하고, 상기 하드코팅층 상에 상기 표 1에 기재된 저굴절층 형성용 코팅액을 코팅하고 건조하여 반사 방지 필름을 제조하였다.
구체적으로, 상기 폴리에틸렌 테레프탈레이트 상에 상기 제조된 하드 코팅층 형성용 코팅액을 #12번 mayer bar로 코팅한 후 60℃의 온도에서 2분 건조하고, UV경화하여 하드 코팅층(코팅 두께는 5㎛)을 형성했다. UV램프는 H bulb를 이용하였으며, 질소분위기 하에서 경화반응을 진행하였다. 경화 시 조사된 UV광량은 48mJ/㎠이다.
상기 하드 코팅층 상에, 하기 표 2와 같이 상기 저굴절층 형성용 코팅액을 #4 mayer bar로 두께가 약 110 내지 120㎚가 되도록 코팅하고, 90℃의 온도에서 1분 동안 건조 및 경화하였다. 상기 경화 시에는 질소 퍼징 하에서 상기 건조된 코팅액에 294mJ/㎠의 자외선을 조사하여 반사 방지 필름을 제조하였다.
또한, 상기 저굴절층 형성용 코팅액(C1 내지 C6) 각각으로 형성된, 저굴절층 총 중량에 대한 각각의 중공형 무기 입자 함량(V) 및 함불소 화합물 함량(F)을 하기 표 2에 나타내었다. 또한, 하기 식 2의 만족여부를 확인하고 식 2를 만족하는 경우 ○로 표시하고, 만족하지 않는 경우 X로 표시하였다.
[식 2]
Figure PCTKR2020002633-appb-I000003
Figure PCTKR2020002633-appb-T000002
측정 및 평가
1. 저굴절층 표면의 불소 원자 함량 측정
실시예 및 비교예에서 얻어진 반사 방지 필름을 2cm X 2cm(가로 X 세로)로 잘라서 샘플 홀더 위에 두고, 클립을 이용해 고정한 다음, 엑스선 광전자 분광법 장치(X-ray Photoelectron Spectroscopy, K-alphaTM + XPS system, Thermo Fisher Scientific) 장비를 이용하여 저굴절층의 표면을 분석하고, 전자분광 화학분석법(ESCA; Electron Spectroscopy for Chemical Analysis)를 이용하여 survey 및 narrow scan spectrum 을 얻어 정성 및 전량 분석을 진행하였다. 그 결과 저굴절층 표면에서의 불소 원자 함량을 얻었으며, 이를 하기 표 3에 나타내었다.
한편, 상기 저굴절층의 표면은 '저굴절층의 일면(예를 들어, 공기층과 접하는 저굴절층의 일면)으로부터 저굴절층 두께 방향으로 10nm 두께 이내' 를 의미하며, 상기 저굴절층의 표면에서 불소 함량은 '저굴절층의 일면(예를 들어, 공기층과 접하는 저굴절층의 일면)으로부터 저굴절층 두께 방향으로 10nm 두께 이내에 존재하는 원소들의 총 원자량에 대한 불소 원소의 함량' 을 의미한다.
2. 표면적 차이 백분율(SADP) 및 중심선 평균 거칠기(Ra) 측정
실시예 및 비교예에서 얻어진 반사방지 필름의 표면 형상을 측정하기 위하여 원자힘 현미경(Atomic Force Microscope, Park Systems, XE7)을 사용하였다. 구체적으로, 시편을 0.8cm X 0.8cm(가로 X 세로)로 잘라서 샘플 스테이지에 카본테이프를 사용하여 붙이고, 원자힘 현미경으로 평탄한 부분을 관찰하였다. 측정을 위한 탐침(Tip)으로 PPP-NCHR 10 (Force constant: 42N/m, Resonance Frequency 330kHz)를 사용하고, 자세한 측정 조건은 다음과 같다.
x-scan size: 1μm, y-scan size: 1μm
Scan rate: 0.7 내지 1Hz Z Servo Gain: 1
Set Point: 10 내지 15nm
위 조건에서 측정한 데이터를 XEI 프로그램을 이용하여 패턴화하고 다음 조건에서 실행하였다.
Scope: Line, Orientation: X and Y axis
Regression order: 1
이후 분석된 데이터로부터 표면적 차이 백분율 및 중심선 평균 거칠기(Ra)를 도출하였으며, 특히, 표면적 차이 백분율은 하기 식 1에 2차원/3차원 면적을 대입하여 계산하고, 그 결과를 하기 표 3에 나타내었다.
[식 1]
Figure PCTKR2020002633-appb-I000004
한편, 도 1 (a) 및 (b)는 각각 실시예 2 및 3의 반사 방지 필름의 표면을 원자힘 현미경(AFM)으로 촬영한 사진이고, 도 2 (a) 및 (b)는 각각 비교예 2 및 3 의 반사 방지 필름의 표면을 원자힘 현미경으로 촬영한 사진이다.
3. 평균 반사율 평가
실시예 및 비교예에서 얻어진 반사 방지 필름이 가시광선 영역(380 내지 780 ㎚)에서 나타내는 평균 반사율을 Solidspec 3700(SHIMADZU) 장비를 이용하여 측정하고, 그 결과를 하기 표 3에 나타내었다.
4. 방오성 평가
실시예 및 비교예에서 얻어진 반사 방지 필름의 표면에 모나미社 검은색 네임펜(중간글씨용)을 이용해 50g 의 하중으로 직선을 그리고, 광학현미경 (Olympus, BX51)를 이용하여 형성된 디웨팅 액적 (dewetting droplet) 간의 간격을 10 회 이상 측정한 후 그의 산술 평균 값을 통해 방오성을 하기 기준으로 판단하고, 그 결과를 하기 표 3에 나타내었다.
<판단 기준>
○: 디웨팅 액적(dewetting droplet)들간 간격의 산술 평균 값이 200 ㎛ 초과
△: 디웨팅 액적들간 간격의 산술 평균 값이 200 ㎛ 이하 50 ㎛ 초과
X: 디웨팅 액적들간 간격의 산술 평균 값이 50 ㎛ 이하이거나, 디웨팅되지 않음
Figure PCTKR2020002633-appb-T000003
상기 표 3에 따르면, 실시예 1 내지 3은 저굴절층의 표면에서 불소 원자 함량이 8.0 원자% 초과이고, 표면적 차이 백분율이 20% 이하이며, 중심선 평균 거칠기가 10nm 이하인 것으로, 이로 인해, 평균 반사율이 1.41% 이하로 낮으며, 비교예 1 내지 3에 비해 방오성이 현저히 우수함을 확인했다.

Claims (15)

  1. 하드 코팅층; 및 함불소 화합물을 포함하는 저굴절층;을 포함하고,
    상기 저굴절층의 표면에 존재하는 불소 원자의 함량은 8.0 원자% 초과이고,
    상기 저굴절층 일면의 표면적 차이 백분율(SADP; surface area difference percentage)은 20% 이하인, 반사 방지 필름.
  2. 제 1 항에 있어서,
    상기 반사 방지 필름의 중심선 평균 거칠기(Ra)는 10nm 이하인, 반사 방지 필름.
  3. 제 1 항에 있어서,
    상기 표면적 차이 백분율은 하기 식 1로 정의되는, 반사 방지 필름:
    [식 1]
    Figure PCTKR2020002633-appb-I000005
  4. 제 1 항에 있어서,
    상기 불소 원자의 함량은, 상기 저굴절층의 일면으로부터 저굴절층 두께 방향으로 10nm 두께 이내에 존재하는 원자들의 총 함량에 대한 불소 원자의 함량인, 반사 방지 필름.
  5. 제 1 항에 있어서,
    상기 함불소 화합물은 반응성 작용기를 갖는, 반사 방지 필름.
  6. 제 1 항에 있어서,
    상기 반사 방지 필름은 380 ㎚ 내지 780 ㎚의 가시광선 파장대 영역에서 2% 이하의 평균 반사율을 나타내는, 반사 방지 필름.
  7. 제 1 항에 있어서,
    상기 저굴절층은 중공형 무기 입자를 더 포함하는, 반사 방지 필름.
  8. 제 7 항에 있어서,
    상기 저굴절층 총 중량에 대한 상기 함불소 화합물의 함량은 2 내지 9 중량%이고,
    상기 저굴절층 총 중량에 대한 상기 중공형 무기 입자의 함량은 29 내지 60 중량%인, 반사 방지 필름.
  9. 제 8 항에 있어서,
    상기 함불소 화합물의 함량(F) 및 중공형 무기 입자의 함량(V)이 하기 식 2 를 만족하는, 반사 방지 필름:
    [식 2]
    Figure PCTKR2020002633-appb-I000006
  10. 제 1 항에 있어서,
    상기 함불소 화합물에 포함된 불소 원자 함량은 1 내지 60 중량%인, 반사 방지 필름.
  11. 제 1 항에 있어서,
    상기 저굴절층은 광중합성 화합물의 (공)중합체를 더 포함하는, 반사 방지 필름.
  12. 제 1 항에 있어서,
    상기 저굴절층은 광중합성 화합물, 함불소 화합물 및 반응성 작용기가 1 이상 치환된 폴리실세스퀴옥산(polysilsesquioxane) 간의 가교 중합체를 더 포함하는, 반사 방지 필름.
  13. 제 1 항에 있어서,
    상기 하드 코팅층은 광경화성 수지를 포함하는 바인더 수지 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자;를 포함하는, 반사 방지 필름.
  14. 제1항에 따른 반사 방지 필름 및 편광자를 포함하는 편광판.
  15. 제1항에 따른 반사 방지 필름을 포함하는 디스플레이 장치.
PCT/KR2020/002633 2019-03-12 2020-02-24 반사 방지 필름, 편광판 및 디스플레이 장치 WO2020184865A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021526185A JP7150384B2 (ja) 2019-03-12 2020-02-24 反射防止フィルム、偏光板およびディスプレイ装置
EP20769060.3A EP3809166B1 (en) 2019-03-12 2020-02-24 Anti-reflective film, polarizing plate, and display device
CN202080004042.6A CN112437890B (zh) 2019-03-12 2020-02-24 抗反射膜、偏光板和显示装置
US17/268,117 US20210325569A1 (en) 2019-03-12 2020-02-24 Anti-reflective film, polarizing plate, and display apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190028248 2019-03-12
KR10-2019-0028248 2019-03-12
KR1020200020902A KR102337211B1 (ko) 2019-03-12 2020-02-20 반사 방지 필름, 편광판 및 디스플레이 장치
KR10-2020-0020902 2020-02-20

Publications (1)

Publication Number Publication Date
WO2020184865A1 true WO2020184865A1 (ko) 2020-09-17

Family

ID=72426111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002633 WO2020184865A1 (ko) 2019-03-12 2020-02-24 반사 방지 필름, 편광판 및 디스플레이 장치

Country Status (1)

Country Link
WO (1) WO2020184865A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080104357A (ko) * 2006-03-28 2008-12-02 다이니폰 인사츠 가부시키가이샤 저굴절률층을 구비하여 이루어지는 광학 적층체
JP5490487B2 (ja) * 2009-10-19 2014-05-14 株式会社巴川製紙所 光学積層体
KR20170074883A (ko) * 2014-10-24 2017-06-30 오지 홀딩스 가부시키가이샤 광학 소자, 광학 복합 소자 및 보호 필름이 부착된 광학 복합 소자
KR20170105438A (ko) * 2016-03-09 2017-09-19 주식회사 엘지화학 반사 방지 필름
KR101781197B1 (ko) * 2014-08-11 2017-09-22 주식회사 엘지화학 반사 방지 필름

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080104357A (ko) * 2006-03-28 2008-12-02 다이니폰 인사츠 가부시키가이샤 저굴절률층을 구비하여 이루어지는 광학 적층체
JP5490487B2 (ja) * 2009-10-19 2014-05-14 株式会社巴川製紙所 光学積層体
KR101781197B1 (ko) * 2014-08-11 2017-09-22 주식회사 엘지화학 반사 방지 필름
KR20170074883A (ko) * 2014-10-24 2017-06-30 오지 홀딩스 가부시키가이샤 광학 소자, 광학 복합 소자 및 보호 필름이 부착된 광학 복합 소자
KR20170105438A (ko) * 2016-03-09 2017-09-19 주식회사 엘지화학 반사 방지 필름

Similar Documents

Publication Publication Date Title
KR102016710B1 (ko) 반사 방지 필름
JP7486878B2 (ja) 反射防止フィルム、偏光板およびディスプレイ装置
KR102371580B1 (ko) 반사 방지 필름, 편광판 및 디스플레이 장치
KR20170106904A (ko) 반사 방지 필름 및 디스플레이 장치
KR102337211B1 (ko) 반사 방지 필름, 편광판 및 디스플레이 장치
WO2020184865A1 (ko) 반사 방지 필름, 편광판 및 디스플레이 장치
WO2020080858A1 (ko) 반사 방지 필름, 편광판 및 디스플레이 장치
KR102363875B1 (ko) 반사 방지 필름, 편광판 및 디스플레이 장치
WO2020242210A1 (ko) 반사 방지 필름, 편광판 및 디스플레이 장치
KR102281759B1 (ko) 반사 방지 필름, 편광판 및 디스플레이 장치
WO2020242117A1 (ko) 반사 방지 필름, 편광판 및 디스플레이 장치
KR102235481B1 (ko) 반사 방지 필름, 편광판 및 디스플레이 장치
KR102581428B1 (ko) 반사 방지 필름, 편광판 및 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526185

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020769060

Country of ref document: EP

Effective date: 20210115

NENP Non-entry into the national phase

Ref country code: DE