WO2020184569A1 - Circuit board and method for producing circuit board - Google Patents

Circuit board and method for producing circuit board Download PDF

Info

Publication number
WO2020184569A1
WO2020184569A1 PCT/JP2020/010342 JP2020010342W WO2020184569A1 WO 2020184569 A1 WO2020184569 A1 WO 2020184569A1 JP 2020010342 W JP2020010342 W JP 2020010342W WO 2020184569 A1 WO2020184569 A1 WO 2020184569A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyaniline
circuit board
board according
group
layer
Prior art date
Application number
PCT/JP2020/010342
Other languages
French (fr)
Japanese (ja)
Inventor
文起 深津
聡 蜂屋
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN202080020093.8A priority Critical patent/CN113557321A/en
Priority to US17/438,251 priority patent/US20220192033A1/en
Priority to JP2021505087A priority patent/JPWO2020184569A1/ja
Publication of WO2020184569A1 publication Critical patent/WO2020184569A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/208Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • C23C18/204Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0242Structural details of individual signal conductors, e.g. related to the skin effect
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • H05K3/387Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive for electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0158Polyalkene or polyolefin, e.g. polyethylene [PE], polypropylene [PP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0329Intrinsically conductive polymer [ICP]; Semiconductive polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0716Metallic plating catalysts, e.g. for direct electroplating of through holes; Sensitising or activating metallic plating catalysts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/072Electroless plating, e.g. finish plating or initial plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Definitions

  • the present invention relates to a circuit board and a method for manufacturing a circuit board.
  • the metal surface is usually roughened by etching or the like to give unevenness (for example, surface roughness Rz JIS 1 ⁇ m or more).
  • a method of ensuring adhesion is adopted by the anchor effect.
  • Resin substrates with low dielectric loss tangent are suitable for circuit boards for high-frequency electrical signals, but resin substrates with low dielectric loss tangent have low adhesion to adhesives, so it is necessary to strengthen the anchor effect by roughening the metal surface. The sex becomes greater.
  • the higher the frequency of the electric signal the more the current is concentrated on the conductor surface (skin effect), so that the transmission distance of the high-frequency electric signal becomes longer in the roughened metal, and the transmission loss and delay increase. growing. Therefore, it is desired that the metal surface of the circuit board for high-frequency electric signals is smooth, but it is difficult to improve the smoothness in view of the adhesion.
  • An object of the present invention is to provide a circuit board suitable for transmission of a high-frequency electric signal, and a method for manufacturing the circuit board.
  • an extremely smooth metal layer can be formed by electroless plating technology using polyaniline even if the resin substrate has a low dielectric loss tangent, and the obtained laminate (circuit board) adheres to each other.
  • the present invention was completed by finding excellent properties.
  • circuit boards and the like are provided.
  • 1. With a resin base material having a dielectric loss tangent of 0.015 or less, A polyaniline layer containing substituted or unsubstituted polyaniline, The metal layer and the metal layer are laminated in this order and included.
  • the surface roughness Rz JIS of the surface on the polyaniline layer side of the metal layer is 0.5 ⁇ m or less.
  • Circuit board. 2. The circuit board according to 1 above, wherein the surface roughness Rz JIS of the surface of the metal layer on the polyaniline layer side is 0.25 ⁇ m or less. 3.
  • 3. The circuit board according to 1 or 2 above, wherein the polyaniline layer has a thickness of 5 ⁇ m or less. 4.
  • the resin substrate contains at least one selected from the group consisting of syndiotactic polystyrene, polyimide, liquid crystal polymer, polytetrafluoroethylene, and polyolefin.
  • the resin base material contains syndiotactic polystyrene.
  • the metal layer contains one or more metals selected from the group consisting of Cu, Ni, Au, Pd, Ag, Sn, Co and Pt. 7.
  • the metal layer contains Cu. 8.
  • the dopant is an organic acid ion generated from a sulfosuccinic acid derivative represented by the following formula (III).
  • M is a hydrogen atom, an organic radical or an inorganic radical.
  • M' is a valence of M.
  • R 13 and R 14 are independently hydrocarbon groups or-(, respectively.
  • R 15 is r -R 16 radicals are each independently a hydrocarbon group or a silylene group, R 16 is a hydrogen atom, a hydrocarbon group, or R 17 3 Si- groups, r is 1 These are the above integers.
  • R 17 is an independent radical.
  • a step of forming the polyaniline layer on the surface of the resin base material subjected to the treatment, and The step of supporting the electroless plating catalyst on the polyaniline layer and A step of forming a metal layer by performing electroless plating on the polyaniline layer on which the electroless plating catalyst is supported is included. How to manufacture a circuit board. 13. The method for manufacturing a circuit board according to the above 12, wherein the surface of the resin base material is subjected to an active energy ray irradiation treatment. 14.
  • the active energy ray is ultraviolet rays.
  • the light source of the ultraviolet rays is a high-pressure mercury lamp or a metal halide lamp.
  • the polyaniline layer is formed by a coating method using a composition containing a substituted or unsubstituted polyaniline. 17.
  • the composition comprises a substituted or unsubstituted polyaniline as a dopant-doped polyaniline composite.
  • the method for producing a circuit board according to 17 above, wherein the concentration of the polyaniline complex in the composition is 15% by mass or less.
  • the electroless plating catalyst is Pd.
  • circuit board suitable for transmission of a high-frequency electric signal and a method for manufacturing the circuit board.
  • x to y represents a numerical range of "x or more and y or less”.
  • component (X) refers only to the compound corresponding to the component (X) in the reagent even when a commercially available reagent is used, and other components (solvent) in the reagent. Etc.) are not included.
  • the preferred provisions can be arbitrarily adopted. That is, one preferred provision can be adopted in combination with one or more other preferred provisions. It can be said that the combination of preferable ones is more preferable.
  • FIG. 1 is a schematic view showing a layer structure of a circuit board according to an embodiment of the present invention.
  • the resin base material 1 having a dielectric loss tangent of 0.015 or less, the polyaniline layer 2 containing substituted or unsubstituted polyaniline, and the metal layer 3 are laminated in this order.
  • the surface roughness Rz JIS of the surface of the metal layer 3 on the polyaniline layer 2 side is 0.5 ⁇ m or less.
  • the resin substrate has a dielectric loss tangent of 0.015 or less.
  • the resin used for the resin base material is not particularly limited, and includes, for example, a group consisting of syndiotactic polystyrene, liquid crystal polymer, polytetrafluoroethylene, polyolefin (for example, polyethylene or polypropylene including modified polyolefin), polyphenylene sulfide, polyamide and the like. It can include one or more selected species.
  • the resin substrate preferably has a low dielectric loss tangent, preferably 0.015 or less, preferably 0.01 or less, and more preferably 0.005 or less. If the dielectric loss tangent of the resin base material is high, the attenuation tends to be large in the high frequency circuit.
  • the dielectric loss tangent is a value measured by the cavity resonator method (JIS R1641: 2007) at a measurement frequency of 10 GHz and a temperature of 25 ° C. using a measuring device (a network analyzer "E8631A” manufactured by Keysight Technology Co., Ltd.).
  • the polyaniline layer comprises substituted or unsubstituted polyaniline.
  • the substituted or unsubstituted polyaniline may be used alone (in a state where the "polyaniline complex" described later is not formed), but as a polyaniline complex in which the substituted or unsubstituted polyaniline is doped with a dopant, polyaniline It is preferably contained in the layer.
  • the weight average molecular weight of polyaniline (hereinafter referred to as molecular weight) is preferably 20,000 or more.
  • the molecular weight is preferably 20,000 to 500,000, more preferably 20,000 to 300,000, and even more preferably 20,000 to 200,000.
  • the weight average molecular weight is not the molecular weight of the polyaniline complex, but the molecular weight of polyaniline.
  • the molecular weight distribution is preferably 1.5 or more and 10.0 or less. From the viewpoint of conductivity, a small molecular weight distribution is preferable, but from the viewpoint of solubility in a solvent, a wide molecular weight distribution may be preferable.
  • the molecular weight and the molecular weight distribution are measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • Substituents of the substituted polyaniline include linear or branched hydrocarbon groups such as methyl group, ethyl group, hexyl group and octyl group; alkoxy groups such as methoxy group and ethoxy group; aryloxy groups such as phenoxy group; tri Examples thereof include halogenated hydrocarbons such as a fluoromethyl group (-CF 3 groups).
  • unsubstituted polyaniline is preferable from the viewpoint of versatility and economy.
  • Substituted or unsubstituted polyaniline is preferably a polyaniline obtained by polymerization in the presence of an acid containing no chlorine atom.
  • An acid containing no chlorine atom is, for example, an acid composed of atoms belonging to groups 1 to 16 and 18. Specific examples include phosphoric acid.
  • Examples of the polyaniline obtained by polymerizing in the presence of an acid containing no chlorine atom include polyaniline obtained by polymerizing in the presence of phosphoric acid.
  • the polyaniline obtained in the presence of a chlorine atom-free acid can lower the chlorine content of the polyaniline complex.
  • Examples of the dopant of the polyaniline complex include Bronsted acid or Bronsted acid ion generated from a salt of Bronsted acid, preferably an organic acid ion generated from an organic acid or a salt of an organic acid, and more preferably the following formula. It is an organic acid ion generated from the compound (proton donor) represented by (I).
  • the dopant may be expressed as a specific acid or the dopant may be expressed as a specific salt, both of which the specific acid ion generated from the specific acid or the specific salt is described above. It is assumed that the ⁇ -conjugated polymer is doped.
  • M of the formula (I) is a hydrogen atom, an organic radical or an inorganic radical.
  • the organic free group include a pyridinium group, an imidazolium group, an anilinium group and the like.
  • the inorganic free radical include lithium, sodium, potassium, cesium, ammonium, calcium, magnesium, iron and the like.
  • X is the Formula (I), anionic groups, such as -SO 3 - group, -PO 3 2-group, -PO 2 (OH) - group, -OPO 3 2-group, -OPO 2 (OH) - Groups, -COO - groups and the like can be mentioned, preferably -SO 3 - groups.
  • a of the formula (I) is a substituted or unsubstituted hydrocarbon group (for example, 1 to 20 carbon atoms).
  • Hydrocarbon groups are chain or cyclic saturated aliphatic hydrocarbon groups, chain or cyclic unsaturated aliphatic hydrocarbon groups, or aromatic hydrocarbon groups.
  • chain saturated aliphatic hydrocarbon group include a linear or branched alkyl group (for example, 1 to 20 carbon atoms).
  • Examples of the cyclic saturated aliphatic hydrocarbon group include cycloalkyl groups (for example, 3 to 20 carbon atoms) such as cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclooctyl group.
  • the cyclic saturated aliphatic hydrocarbon group may be a condensation of a plurality of cyclic saturated aliphatic hydrocarbon groups.
  • a norbornyl group, an adamantyl group, a condensed adamantyl group and the like can be mentioned.
  • chain unsaturated aliphatic hydrocarbon (having 2 to 20 carbon atoms, for example) include a linear or branched alkenyl group.
  • Examples of the cyclic unsaturated aliphatic hydrocarbon group (for example, 3 to 20 carbon atoms) include a cyclic alkenyl group.
  • the aromatic hydrocarbon group for example, 6 to 20 carbon atoms) include a phenyl group, a naphthyl group, an anthracenyl group and the like.
  • the substituents are an alkyl group (for example, 1 to 20 carbon atoms), a cycloalkyl group (for example, 3 to 20 carbon atoms), a vinyl group, an allyl group, and an aryl group (carbon).
  • the number is, for example, 6 to 20), an alkoxy group (for example, 1 to 20 carbon atoms), a halogen atom, a hydroxy group, an amino group, an imino group, a nitro group, a silyl group, or an ester bond-containing group.
  • R 2 is an alkylene group
  • R 3 is a hydrocarbon group
  • x is an integer of 1 or more. If x is 2 or more, plural R 2 may be the same or different, or different in each of a plurality of R 3 are the same.
  • the hydrocarbon group of R 1 (for example, 1 to 20 carbon atoms) includes a methyl group, an ethyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group and a pentadecyl group. , Eikosanyl group and the like.
  • the hydrocarbon group may be linear or branched.
  • Substituents of the hydrocarbon group are an alkyl group (for example, 1 to 20 carbon atoms), a cycloalkyl group (for example, 3 to 20 carbon atoms), a vinyl group, an allyl group, and an aryl group (for example, 6 to 20 carbon atoms).
  • An alkoxy group for example, 1 to 20 carbon atoms
  • a halogen group for example, a hydroxy group, an amino group, an imino group, a nitro group or an ester bond-containing group.
  • the hydrocarbon group of R 3 is the same as that of R 1 .
  • Alkylene group R 2 (the number of carbon atoms, for example 1 to 20) include a methylene group, an ethylene group and a propylene group.
  • N in the formula (I) is an integer of 1 or more. When n is 2 or more, the plurality of Rs may be the same or different.
  • M in the formula (I) is a valence of M / a valence of X.
  • a compound containing two or more dialkylbenzenesulphonic acid, dialkylnaphthalene sulfonic acid, or an ester bond is preferable.
  • a sulfoftal acid ester or a compound represented by the following formula (II) is more preferable.
  • M and X are the same as in formula (I).
  • X is, -SO 3 - group.
  • R 4, R 5 and R 6 are each independently a hydrogen atom, a hydrocarbon group, or R 9 3 Si- groups.
  • Three R 9 are each independently a hydrocarbon group.
  • R 4 , R 5 and R 6 are hydrocarbon groups
  • the hydrocarbon group includes a linear or branched alkyl group having 1 to 24 carbon atoms and an aryl group containing an aromatic ring (for example, 6 to 24 carbon atoms). 20), an alkylaryl group (for example, 7 to 20 carbon atoms) and the like can be mentioned.
  • the hydrocarbon group of R 9 is the same as that of R 4 , R 5 and R 6 .
  • R 7 and R 8 of the formula (II) are each independently a hydrocarbon group or-(R 10 O) q- R 11 groups.
  • R 10 is a hydrocarbon group or a silylene group
  • R 11 is a hydrogen atom, a Si- hydrocarbon radical or R 12 3
  • q is an integer of 1 or more.
  • Three R 12 are each independently a hydrocarbon group.
  • R 7 and R 8 are hydrocarbon groups
  • the hydrocarbon group has 1 to 24 carbon atoms, preferably a linear or branched alkyl group having 4 or more carbon atoms, and an aryl group containing an aromatic ring (carbon number).
  • Examples include 6 to 20), alkylaryl groups (for example, 7 to 20 carbon atoms), and specific examples thereof include linear or branched butyl groups, pentyl groups, hexyl groups, and octyl groups. Groups, decyl groups and the like can be mentioned.
  • R 7 and R 8 when R 10 is a hydrocarbon group, the hydrocarbon group includes, for example, a linear or branched alkylene group having 1 to 24 carbon atoms, or an arylene group containing an aromatic ring (for example, the number of carbon atoms is, for example). 6 to 20), an alkylarylene group (for example, 7 to 20 carbon atoms), or an arylalkylene group (for example, 7 to 20 carbon atoms).
  • R 11 and R 12 when R 11 and R 12 are hydrocarbon groups, the hydrocarbon groups are the same as in the case of R 4 , R 5 and R 6 , and q is 1 to 10. It is preferable to have.
  • the compound represented by the above formula (II) is more preferably a sulfosuccinic acid derivative represented by the following formula (III).
  • M is similar to formula (I).
  • m' is the valence of M.
  • R 13 and R 14 are each independently a hydrocarbon group or-(R 15 O) r- R 16 groups.
  • R 15 is a hydrocarbon group or a silylene group
  • R 16 is a hydrogen atom, a hydrocarbon group, or R 17 3 Si- groups
  • r is an integer of 1 or more.
  • Each of the three R 17s is an independent hydrocarbon group.
  • the plurality of R 15s may be the same or different.
  • R 13 and R 14 are hydrocarbon groups
  • the hydrocarbon groups are the same as those of R 7 and R 8 .
  • the hydrocarbon group when R 15 is a hydrocarbon group is the same as that of R 10 described above.
  • R 16 and R 17 are hydrocarbon groups, the hydrocarbon groups are the same as those of R 4 , R 5 and R 6 described above.
  • r is preferably 1 to 10.
  • R 13 and R 14 are ⁇ (R 15 O) r ⁇ R 16 groups are the same as those of ⁇ (R 10 O) q ⁇ R 11 in R 7 and R 8 .
  • the hydrocarbon groups of R 13 and R 14 are the same as those of R 7 and R 8 , and butyl group, hexyl group, 2-ethylhexyl group and decyl group are preferable.
  • di-2-ethylhexyl sulfosuccinic acid and sodium di-2-ethylhexyl sulfosuccinate are preferable.
  • the dopant of the polyaniline complex is doped with substituted or unsubstituted polyaniline can be confirmed by ultraviolet / visible / near-infrared spectroscopy or X-ray photoelectron spectroscopy, and the dopant carries carriers in polyaniline. As long as it has sufficient acidity to generate it, it can be used without any particular restrictions on its chemical structure.
  • the doping ratio of the dopant to polyaniline is preferably 0.35 or more and 0.65 or less, more preferably 0.42 or more and 0.60 or less, still more preferably 0.43 or more and 0.57 or less, and particularly. It is preferably 0.44 or more and 0.55 or less.
  • the doping rate is defined as (the number of moles of dopant doped in polyaniline) / (the number of moles of monomer unit of polyaniline).
  • a polyaniline complex containing an unsubstituted polyaniline and a dopant having a doping ratio of 0.5 means that one dopant is doped with respect to two monomer unit molecules of polyaniline.
  • the doping rate can be calculated if the number of moles of the dopant and the polyaniline monomer unit in the polyaniline complex can be measured.
  • the dopant is an organic sulfonic acid
  • the number of moles of sulfur atoms derived from the dopant and the number of moles of nitrogen atoms derived from the monomer unit of polyaniline are quantified by an organic elemental analysis method, and the ratio of these values is taken.
  • the doping rate can be calculated.
  • the method for calculating the dope rate is not limited to the means.
  • the polyaniline complex may or may not further contain phosphorus.
  • the phosphorus content is, for example, 10 mass ppm or more and 5000 mass ppm or less.
  • the phosphorus content can be measured by ICP emission spectroscopy.
  • the polyaniline complex preferably does not contain a Group 12 element (for example, zinc) as an impurity.
  • the polyaniline complex can be produced by a well-known production method. For example, it can be produced by chemically oxidizing and polymerizing substituted or unsubstituted aniline in a solution containing a proton donor, phosphoric acid, and an emulsifier different from the proton donor and having two liquid phases. It can also be produced by adding an oxidative polymerization agent to a solution containing a substituted or unsubstituted aniline, a proton donor, a phosphoric acid, and an emulsifier different from the proton donor and having two liquid phases.
  • the “solution having two liquid phases” means a state in which two incompatible liquid phases are present in the solution. For example, it means a state in which a "high-polarity solvent phase” and a “low-polarity solvent phase” are present in the solution. Further, the “solution having two liquid phases” also includes a state in which one liquid phase is a continuous phase and the other liquid phase is a dispersed phase. For example, the "high-polarity solvent phase” is a continuous phase and the “low-polarity solvent phase” is a dispersed phase, and the “low-polarity solvent phase” is a continuous phase and the "highly polar solvent phase” is a dispersed phase. The state that is is included. Water is preferable as the highly polar solvent used in the method for producing the polyaniline complex, and aromatic hydrocarbons such as toluene and xylene are preferable as the low polar solvent.
  • the proton donor is preferably a compound represented by the above formula (I).
  • the above emulsifier can be either an ionic emulsifier whose hydrophilic portion is ionic and a nonionic emulsifier whose hydrophilic moiety is nonionic, and one or more emulsifiers are mixed. You may use it.
  • Oxidizing agents used in chemical oxidative polymerization include peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, and hydrogen peroxide; ammonium dichromate, ammonium perchlorate, iron (III) sulfate, iron trichloride. (III), manganese dioxide, iodic acid, potassium permanganate, iron paratoluenesulfonate and the like can be used, and persulfate such as ammonium persulfate is preferable. These may be used alone or in combination of two or more.
  • the polyaniline layer can contain a binder in addition to one or more selected from substituted or unsubstituted polyaniline and polyaniline complexes.
  • a binder for example, one or more selected from the group consisting of acrylic type, urethane type, epoxy type, polyamide type, vinyl type, polyvinyl acetal type, polyester type, polyester polyol type, polyether polyol type and polycarbonate type shall be contained. Can be done.
  • a polymer having an acidic group such as a carboxy group or a sulfoxy group in the structure (for example, urethane having a carboxyl group or polyester having a carboxyl group) is preferable.
  • the polyaniline layer can also contain a binder having a monomer, oligomer or polymer having a reactive functional group such as acrylate or methacrylate at the end cured by ultraviolet rays, electron beams or the like.
  • the polyaniline layer can contain polyaniline, a polyaniline complex, and other components other than the binder as long as the effects of the present invention are not impaired.
  • other components include additives such as inorganic materials, curing agents, plasticizers, and organic conductive materials.
  • Inorganic materials are added for the purpose of improving, for example, strength, surface hardness, dimensional stability and other mechanical properties, or electrical properties such as conductivity.
  • Specific examples of the inorganic material include silica (silicon dioxide), titania (titanium dioxide), alumina (aluminum oxide), Sn-containing In 2 O 3 (ITO), Zn-containing In 2 O 3 , and In 2 O 3 .
  • Examples thereof include co-substituted compounds (oxides in which tetravalent elements and divalent elements are substituted with trivalent In), Sb-containing SnO 2 (ATO), ZnO, Al-containing ZnO (AZO), Ga-containing ZnO (GZO), and the like. ..
  • the curing agent is added for the purpose of improving, for example, strength, surface hardness, dimensional stability and other mechanical properties.
  • Specific examples of the curing agent include a thermosetting agent such as a phenol resin, and a photocuring agent using an acrylate-based monomer and a photopolymerizable initiator.
  • the plasticizer is added for the purpose of improving mechanical properties such as tensile strength and bending strength, for example.
  • Specific examples of the plasticizer include phthalates and phosphoric acid esters.
  • organic conductive material examples include carbon black and carbon materials such as carbon nanotubes.
  • the film thickness of the polyaniline layer is not particularly limited.
  • the film thickness of the polyaniline layer may be, for example, 0.1 ⁇ m or more, 0.5 ⁇ m or more, or 1 ⁇ m or more.
  • the film thickness of the polyaniline layer may be, for example, 3 ⁇ m or less, 2 ⁇ m or less, 1 ⁇ m or less, or 0.5 ⁇ m or less.
  • the resin composition according to one aspect of the present invention is One or more selected from essentially substituted or unsubstituted polyanilines and polyaniline complexes, One or more selected from essentially substituted or unsubstituted polyaniline and polyaniline complexes and binders, or one or more selected from essentially substituted or unsubstituted polyaniline and polyaniline complexes, binders and other components described above. It may consist of one or more components arbitrarily selected from. In this case, unavoidable impurities may be contained.
  • the content of the substituted or unsubstituted polyaniline in the polyaniline layer may be 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, or 25% by mass or more.
  • the content of the substituted or unsubstituted polyaniline in the polyaniline layer is 5% by mass or more, the precipitation property of the electroless plating is improved.
  • the upper limit is not particularly limited, and may be, for example, 100% by mass or less, 90% by mass or less, 80% by mass, 70% by mass or less, 65% by mass or less, and the like.
  • the content of the substituted or unsubstituted polyaniline in the polyaniline layer is less than 100% by mass, for example, when it is as small as 90% by mass or less, 80% by mass, 70% by mass or less, and further 65% by mass or less.
  • Binder and the like can improve the adhesion and coating strength of the polyaniline layer.
  • the content of the substituted or unsubstituted polyaniline referred to here is the total content of the substituted or unsubstituted polyaniline forming the polyaniline complex and the substituted or unsubstituted polyaniline not forming the polyaniline complex. Is.
  • the metal layer is a layer containing metal.
  • the metal is not particularly limited and may include, for example, one or more metals selected from the group consisting of Cu, Ni, Au, Pd, Ag, Sn, Co and Pt.
  • the metal layer comprises Cu.
  • the metal layer may be either a single layer body or a laminated body having two or more layers having different metal compositions.
  • the surface roughness Rz JIS of the surface of the metal layer on the polyaniline layer side is 0.5 ⁇ m or less, 0.45 ⁇ m or less, 0.40 ⁇ m or less, 0.35 ⁇ m or less, 0.3 ⁇ m or less, 0.25 ⁇ m or less.
  • the surface roughness Rz JIS is small, it is possible to further prevent the transmission loss of the high frequency electric signal.
  • the lower limit of the surface roughness Rz JIS is not particularly limited, and may be, for example, 0.005 ⁇ m or more, 0.007 ⁇ m or more, or 0.01 ⁇ m or more.
  • Surface roughness Rz JIS is a ten-point average roughness measured in accordance with JIS B 0601 (2001).
  • the surface roughness Rz JIS measured for the surface of the polyaniline layer (the surface on which the metal layer is formed later) before being subjected to electroless plating is obtained.
  • the surface roughness of the surface of the metal layer on the polyaniline layer side is Rz JIS .
  • the film thickness of the metal layer is not particularly limited.
  • the film thickness of the metal layer is, for example, 0.1 ⁇ m or more, 0.3 ⁇ m or more, 0.5 ⁇ m or more, 0.8 ⁇ m or more, 1 ⁇ m or more, 5 ⁇ m or more, 10 ⁇ m or more, 18 ⁇ m or more, or 30 ⁇ m or more. There may be.
  • the film thickness of the metal layer may be, for example, 500 ⁇ m or less, or 300 ⁇ m or less, 200 ⁇ m or less, 150 ⁇ m or less, 100 ⁇ m or less, or 50 ⁇ m or less.
  • the metal layer of the circuit board is used for transmitting electrical signals. According to the circuit board according to one embodiment, transmission loss can be prevented regardless of the frequency of the electric signal.
  • the metal layer is used for transmitting a high frequency electric signal having a frequency of 1 GHz or more.
  • the high frequency electric signal has, for example, a frequency of 3 GHz or more, 4 GHz or more, 5 GHz or more, 7 GHz or more, 10 GHz or more, 15 GHz or more, 20 GHz or more, 25 GHz or more, 30 GHz or more, 50 GHz or more, 80 GHz or more, 100 GHz or more, or 110 GHz or more.
  • the upper limit of such a frequency is not particularly limited, and may be, for example, 200 GHz or less. According to the circuit board according to the embodiment, transmission loss can be prevented even when such a high frequency electric signal is transmitted.
  • the form of the circuit board is not particularly limited, and is, for example, a printed wiring board (PWB; printed wiring board), a printed circuit board (PCB; printed circuit board), or a flexible printed circuit board (FPC; flexible printed circuit boards). May be good.
  • PWB printed wiring board
  • PCB printed circuit board
  • FPC flexible printed circuit board
  • the method for manufacturing a circuit board according to an embodiment of the present invention can be used for manufacturing the circuit board described above.
  • the method of manufacturing a circuit board is (A) A step of applying one or more treatments selected from the group consisting of active energy ray irradiation treatment, corona treatment, and frame treatment to the surface of the resin base material. (B) A step of forming a polyaniline layer on the surface of the resin base material subjected to the above treatment, and (C) A step of supporting an electroless plating catalyst on a polyaniline layer and (D) The step of forming a metal layer by performing electroless plating on the polyaniline layer on which the electroless plating catalyst is supported is included.
  • the surface of the base material is subjected to one or more treatments selected from the group consisting of an active energy ray irradiation treatment, a corona treatment, and a frame treatment.
  • the "active energy ray” has an activity of modifying the surface of the base material, and it is possible to use a material capable of improving the adhesion between the base material and the polyaniline layer by such modification. it can.
  • the method for evaluating the improvement in adhesion the method for evaluating "adhesion before plating" described in Examples is used.
  • active energy rays include ultraviolet rays, electron beams, X-rays and the like, and among these, ultraviolet rays are preferable.
  • the ultraviolet rays are not particularly limited, and for example, ultraviolet rays using a high-pressure mercury lamp or a metal halide lamp as a light source can be used.
  • a polyaniline layer is formed on the surface of a substrate that has been subjected to one or more treatments selected from the group consisting of active energy ray irradiation treatment, corona treatment, and frame treatment.
  • the method for forming the polyaniline layer is not particularly limited, and for example, a coating method or the like can be used.
  • the coating method is not particularly limited as long as it forms a polyaniline layer by applying a coating liquid, and various coating methods, printing methods, etc. can be applied, for example, bar coating, spin coating, knife coating, and blade.
  • the surface of the polyaniline layer can be further smoothed.
  • the coating liquid used in the coating method can contain a substituted or unsubstituted polyaniline and a solvent.
  • the polyaniline layer is formed by drying and removing the solvent.
  • the solvent is not particularly limited, for example, methanol, ethanol, isopropyl alcohol, 2-methoxyethanol, 2-ethoxyethanol, diacetone alcohol, 3-methoxy-1-butanol, 3-methoxy-3-methyl-1-butanol, Ethyl carbitol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, isophorone, solvent naphtha, tetrahydrofuran, diethyl ether, n-butyl acetate, n-butanol, propylene glycol monomethyl ether acetate, ⁇ -butyrolactone, tetraline, 2-butoxy-2 -Ethanol, dipropylene glycol monopropyl ether, 1,3-dimethylimidazolidinone, N-methylpyrrolidone and the like can be mentioned.
  • One of these may be used alone, or two or more thereof may be used in combination. Further, instead of the above solvent, it is also possible to use it as a solvent-free system in which a monomer, oligomer or polymer curable by ultraviolet rays or electron beams is added to adjust the viscosity and liquid properties. The cured product of these monomers, oligomers or polymers can be included as a binder in the polyaniline layer.
  • the coating liquid can contain the components described as the components that can be contained in the polyaniline layer.
  • the coating comprises a substituted or unsubstituted polyaniline as the dopant-doped polyaniline complex described above.
  • concentration of the polyaniline complex in the composition can be, for example, 50% by mass or less, 40% by mass or less, 30% by mass or less, 20% by mass or less, or 15% by mass or less.
  • concentration of the polyaniline complex in the composition is as low as described above, the thixotropic property of the composition is lowered, the smoothness of the polyaniline layer to be coated is improved, and the polyaniline layer side in the metal layer is improved.
  • the surface roughness Rz JIS of the surface can be preferably 0.5 ⁇ m or less.
  • the concentration of the polyaniline complex in the composition may be further 13% by mass or less, 10% by mass or less, 8% by mass or less, or 5% by mass or less.
  • the lower limit of the concentration of the polyaniline complex in the composition is not particularly limited, and can be, for example, 1% by mass or more.
  • the degreasing step can be performed before forming the metal layer.
  • the surface of the electroless plating base film is degreased and washed with a solvent such as a surfactant or alcohol to improve wettability.
  • a surfactant anionic, cationic or nonionic surfactants can be appropriately used.
  • a cationic surfactant when used, it can be diluted to 1 to 3% by mass with, for example, ion-exchanged water. The dilution ratio can be appropriately adjusted depending on the type of surfactant, solvent, etc. used for degreasing cleaning.
  • Step (C) In the step (C), the electroless plating catalyst is supported on the polyaniline layer.
  • the step (C) can be carried out after forming the polyaniline layer, preferably after the degreasing step.
  • the electroless plating catalyst examples include Pd metal (catalyst metal) and the like.
  • the polyaniline layer can be brought into contact with a solution containing the electroless plating catalyst.
  • Pd is used as the electroless plating catalyst
  • a Pd compound solution is brought into contact with the polyaniline, preferably the polyaniline complex
  • the Pd ion is adsorbed and the Pd ion is reduced to the Pd metal by its reducing action.
  • the reduced Pd that is, the Pd in the metallic state, exhibits a catalytic action in electroless plating.
  • the amount of Pd adhered per unit area may be, for example, 1.7 ⁇ g / cm 2 or more or 2.5 ⁇ g / cm 2 or more.
  • Examples of the Pd compound include palladium chloride and the like.
  • As the solvent used in the Pd compound solution for example, hydrochloric acid or the like can be used.
  • Specific examples of the Pd compound solution include 0.02% palladium chloride-0.01% hydrochloric acid aqueous solution (pH 3) and the like.
  • the contact temperature between the polyaniline layer and the Pd compound solution is not particularly limited and can be set appropriately, for example, 20 to 50 ° C. or 30 to 40 ° C., and the contact time is not particularly limited and can be set appropriately, for example. , 0.1-20 minutes, or 1-10 minutes.
  • step (D) a metal layer is formed by performing electroless plating on the polyaniline layer on which the electroless plating catalyst is supported. By bringing the polyaniline layer on which the electroless plating catalyst is supported into contact with the electroless plating solution, a metal layer is formed as an electroless plating film on the polyaniline layer.
  • the metal type (plating metal) contained in the electroless plating solution is not particularly limited, and includes, for example, one or more metals selected from the group consisting of Cu, Ni, Au, Pd, Ag, Sn, Co and Pt. Can be done.
  • the electroless plating solution contains Cu.
  • the electroless plating solution may contain elements such as phosphorus, boron, and iron.
  • the contact temperature between the polyaniline layer and the electroless plating solution can be appropriately set in consideration of the type of plating bath, the desired thickness of the metal layer, etc. For example, in the case of a low temperature bath, it is about 20 to 50 ° C. At high temperatures, it is 50 to 90 ° C.
  • the contact time between the polyaniline layer and the electroless plating solution can also be appropriately set in consideration of the type of plating bath, the desired thickness of the metal layer, and the like, and is, for example, 1 to 120 minutes.
  • the metal layer may be composed of only the electroless plating film formed as described above, or the metal layer may be provided with the same or different metal film by electroplating after the electroless plating film is provided. May be good.
  • Toluene was added to the obtained toluene phase in an amount of 1500 mL, washed once with 500 mL of 1M phosphoric acid and three times with 500 mL of ion-exchanged water, the toluene phase was separated by allowing it to stand, and concentrated for concentration adjustment. 900 g of a toluene solution was obtained.
  • the polyaniline complex concentration of this polyaniline complex toluene solution was 5.7% by mass.
  • the obtained polyaniline complex toluene solution was dried under reduced pressure in a hot water bath at 60 ° C. and dried to dryness to obtain 51.3 g of a polyaniline complex (powder).
  • the weight average molecular weight of the polyaniline molecule in this polyaniline complex was 72,000 g / mol, and the molecular weight distribution was 2.0.
  • Example 1 [Preparation of coating liquid 1] 27 g of propylene glycol monobutyl ether, 53 g of anon and 9 g of toluene were mixed to prepare a mixed solvent. To the mixed solvent, 1.2 g of polyester resin ("Byron GK810” manufactured by Toyo Boseki Co., Ltd.), 6 g of polyester urethane resin ("Byron UR1350” manufactured by Toyo Boseki Co., Ltd.), 1 g of curing agent ("JA-980” manufactured by Jujo Chemical Co., Ltd.) was dissolved, 2.7 g of the polyaniline complex obtained in Production Example 1 was dissolved, and a resin modifier (“VD-3” manufactured by Shikoku Kasei Kogyo Co., Ltd.) was dispersed to obtain a coating liquid 1. .. The concentration of the polyaniline complex in the total solid content in the coating liquid 1 was 39%.
  • the coating liquid 1 was applied to the surface of the SPS resin film irradiated with ultraviolet rays using a bar coater (No. 16). The coating film was dried at 150 ° C. for 30 minutes and cured to obtain a polyaniline layer (electroless plating base film). Here, the coating amount of the coating liquid 1 was adjusted so that the film thickness of the polyaniline layer measured by the stylus type film thickness meter was 1 ⁇ m.
  • the SPS resin molded sheet on which the polyaniline layer was formed was cut into 50 mm ⁇ 100 mm to obtain a test piece.
  • the cross-cut area is clearly affected by more than 5%, but not more than 15%.
  • 3 The coating film is partially or wholly peeled off along the edges of the cut, and / or various parts of the eye are partially or wholly peeled off. The cross-cut portion is clearly affected by more than 15% but not more than 35%.
  • 4 The coating film is partially or wholly peeled off along the edge of the cut, and / or some eyes are partially or wholly peeled off. The cross-cut portion is clearly not affected by more than 35%. 5: Any degree of peeling that cannot be classified even in classification 4.
  • the test piece was immersed in a 2.5 mass% aqueous solution of a surfactant (“Ascreen” manufactured by Okuno Pharmaceutical Co., Ltd.) at 55 ° C. for 5 minutes. Then, the surface of the test piece was washed with running water and then immersed in a 10 mass% sodium hydrogen sulfite aqueous solution at 60 ° C. for 5 minutes. Further, the surface of the test piece was washed with running water and degreased.
  • a surfactant (“Ascreen” manufactured by Okuno Pharmaceutical Co., Ltd.
  • Catalyst support step The entire test piece after the degreasing treatment was immersed in a 20-fold diluted solution of a catalytic treatment agent activator (hydrochloric acid acidic Pd compound aqueous solution, manufactured by Okuno Pharmaceutical Co., Ltd.) at 30 ° C. for 5 minutes, and the metal Pd (metal Pd (metal Pd) was placed in the polyaniline layer. A treatment for supporting an electroless plating catalyst) was performed.
  • a catalytic treatment agent activator hydroochloric acid acidic Pd compound aqueous solution, manufactured by Okuno Pharmaceutical Co., Ltd.
  • the test piece after the catalyst-supporting treatment is plated with an electrolytic-free copper plating solution (“Sulcup ELC-SP” manufactured by Uemura Kogyo Co., Ltd.) at 60 ° C. for 60 minutes to perform an electrolytic-free copper plating layer (including copper). After forming the metal layer), it was washed with running water and dried with warm air (80 ° C.) to obtain a circuit board.
  • an electrolytic-free copper plating solution (“Sulcup ELC-SP” manufactured by Uemura Kogyo Co., Ltd.) at 60 ° C. for 60 minutes to perform an electrolytic-free copper plating layer (including copper). After forming the metal layer), it was washed with running water and dried with warm air (80 ° C.) to obtain a circuit board.
  • Example 2 In Example 1, the same method as in Example 1 was used except that a polyimide film (“Kapton EN” manufactured by Toray DuPont Co., Ltd., dielectric loss tangent 0.0126 (10 GHz)) was used as the base material instead of the SPS resin film. The circuit board was manufactured and evaluated. The results are shown in Table 1.
  • a polyimide film (“Kapton EN” manufactured by Toray DuPont Co., Ltd., dielectric loss tangent 0.0126 (10 GHz)
  • Example 3 In Example 1, a circuit board was manufactured and evaluated by the same method as in Example 1 except that a liquid crystal polymer film (dielectric loss tangent 0.015 or less (10 GHz)) was used instead of the SPS resin film as the base material. The results are shown in Table 1.
  • a liquid crystal polymer film dielectric loss tangent 0.015 or less (10 GHz)
  • Comparative Example 1 35 g of 3-methyl-3methoxybutanol, 5 g of butyl carbitol, and 10 g of petroleum naphtha were mixed to prepare a mixed solvent. To the mixed solvent, 30 g of urethane resin (“MAU1008” manufactured by Dainichiseika Kogyo Co., Ltd.), 6 g of urethane resin (“ASPU-360” manufactured by DIC Corporation), and epoxy resin (“HP-4710” manufactured by DIC Corporation) 0.
  • MAU1008 manufactured by Dainichiseika Kogyo Co., Ltd.
  • ASPU-360 urethane resin
  • epoxy resin HP-4710 manufactured by DIC Corporation
  • Example 1 formation of polyaniline layer (printing / coating step)
  • the polyaniline layer having a thickness of 6 ⁇ m was formed by screen printing using the coating liquid 2 instead of the coating liquid 1, but the same as in Example 1. Circuit boards were manufactured and evaluated in the same way. The results are shown in Table 1.
  • Comparative Example 2 An attempt was made to manufacture a circuit board by the same method as in Example 1 except that the (active energy ray irradiation step) of Example 1 was not performed, but the adhesion before plating was "x" and (metal). In the layer forming step), the polyaniline layer was peeled off, and the circuit board could not be formed.
  • Example 4 (Preparation of copper-clad laminate film) Coating liquid 1 is applied (bar coated) to one surface of an SPS resin film (thickness 50 ⁇ m, dielectric loss tangent 0.0004) that has been subjected to ultraviolet irradiation treatment on both sides using a bar coater (No. 8). , 150 ° C. for 10 minutes. Next, the coating liquid 1 was applied (bar coated) on the other surface of the SPS resin film using a bar coater (No. 8), and dried at 150 ° C. for 15 minutes. The thickness of the polyaniline layer (electroless plating base film) formed on both sides in this manner after drying was about 0.8 ⁇ m, respectively.
  • the film thickness is a value measured by the same stylus type film thickness meter as in Example 1. Both sides of the obtained test piece were subjected to a degreasing step, a catalyst supporting step and a metal layer forming step (electroless plating step) in the same manner as in Example 1, and a 1 ⁇ m thick electroless copper plating layer (metal containing copper) was subjected to. Layer) was formed. Next, using a copper sulfate bath, the film thickness (copper thickness) of the metal layer (copper layer) was increased to 12 ⁇ m by electroplating under the condition of a current density of 2 A / dm 2 , to obtain a double-sided copper-clad film.
  • a microstrip line and a ground (GND) terminal were formed on the obtained double-sided copper-clad film by the procedure described below.
  • a GND terminal for conducting the copper layers on the front and back surfaces of the double-sided copper-clad film was formed on the obtained double-sided copper-clad film by drilling and through-hole plating.
  • the GND terminal is a microstrip line (width 140 ⁇ m, length 100 mm; the microstrip line is not formed at the stage of forming the GND terminal, but the formation position of the GND terminal will be described with reference to the formation position of the microstrip line.
  • a total of four were formed so as to be arranged on both sides of the microstrip line in the width direction on one end side and the other end side in the longitudinal direction.
  • the final copper thickness of each surface of the double-sided copper-clad film became 18 ⁇ m.
  • the copper layer on one side (surface) of the double-sided copper-clad film was etched to form the microstrip line described above.
  • the copper layer on the other side (back side) of the double-sided copper-clad film was not etched, and the entire surface of the copper layer was grounded (GND). In this way, a substrate for measuring transmission loss was obtained.
  • the surface roughness Rz JIS of the SPS resin film (base film) side (corresponding to the polyaniline layer side) of the copper layer (metal layer) was 0.4 ⁇ m.
  • the surface roughness Rz JIS is a value measured as the surface roughness Rz JIS of the surface of the polyaniline layer (the surface opposite to the base material in the polyaniline layer) by the same method as in Example 1.
  • the transmission loss of the obtained microstrip line of the substrate for measuring transmission loss was measured from the S parameter of 10 MHz to 110 GHz using a network analyzer “N5247” (Keysight Technology Co., Ltd.). The results are shown in Table 2.
  • a double-sided copper-clad film was obtained by melt-pressing with a vacuum press device under heating at ° C.
  • a GND terminal was formed by drilling and through-hole plating, and a copper foil on one surface was etched to form a microstrip line to obtain a substrate for measuring transmission loss.
  • Table 2 shows the results of measuring the transmission loss of the obtained transmission loss measurement substrate in the same manner as in Example 4.
  • the circuit board of the present invention can be used as a circuit board for in-vehicle radars, next-generation mobile phones, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Chemically Coating (AREA)
  • Laminated Bodies (AREA)

Abstract

A circuit board which sequentially comprises a resin base material 1 that has a dielectric loss tangent of 0.015 or less, a polyaniline layer 2 that contains a substituted or unsubstituted polyaniline, and a metal layer 3 in this order, said components being stacked with each other, and which is configured such that the polyaniline layer 2-side surface of the metal layer 3 has a surface roughness RzJIS of 0.5 μm or less.

Description

回路基板及び回路基板の製造方法Circuit board and manufacturing method of circuit board
 本発明は、回路基板及び回路基板の製造方法に関する。 The present invention relates to a circuit board and a method for manufacturing a circuit board.
 昨今、例えば車載レーダーや次世代携帯電話等を含む多岐にわたる分野において高周波電気信号の利用が活発になっており、高周波電気信号の伝送に適した回路基板が求められている。
 従来の回路基板としては、例えば特許文献1に開示されるように、基材と金属層(銅箔等)とを接着剤により貼り合わせたもの等が用いられている。
In recent years, the use of high-frequency electric signals has become active in a wide range of fields including, for example, in-vehicle radars and next-generation mobile phones, and circuit boards suitable for transmitting high-frequency electric signals are required.
As a conventional circuit board, for example, as disclosed in Patent Document 1, a substrate and a metal layer (copper foil or the like) bonded together with an adhesive or the like are used.
特開平5-226831号公報Japanese Unexamined Patent Publication No. 5-226831
 従来のように基材と金属層とを接着剤により貼り合わせて回路基板を形成する場合、通常、エッチング処理等により金属表面を粗して凹凸を付与し(例えば表面粗さRzJIS1μm以上)、アンカー効果によって密着性を確保する手法が採られる。高周波電気信号用の回路基板には誘電正接の低い樹脂基板が適しているが、低誘電正接の樹脂基板は接着剤との密着性が低いため、金属表面の粗面化によりアンカー効果を強める必要性はより大きくなる。 When a base material and a metal layer are bonded together with an adhesive as in the conventional case, the metal surface is usually roughened by etching or the like to give unevenness (for example, surface roughness Rz JIS 1 μm or more). , A method of ensuring adhesion is adopted by the anchor effect. Resin substrates with low dielectric loss tangent are suitable for circuit boards for high-frequency electrical signals, but resin substrates with low dielectric loss tangent have low adhesion to adhesives, so it is necessary to strengthen the anchor effect by roughening the metal surface. The sex becomes greater.
 一方、電気信号は周波数が高ければ高いほど電流が導体表面に集中するようになるため(表皮効果)、粗面化された金属においては高周波電気信号の伝送距離が長くなり、伝送損失や遅延が大きくなる。よって、高周波電気信号用の回路基板では金属表面が平滑であることが望まれるが、密着性との兼ね合いから、平滑性を高めることは困難であった。 On the other hand, the higher the frequency of the electric signal, the more the current is concentrated on the conductor surface (skin effect), so that the transmission distance of the high-frequency electric signal becomes longer in the roughened metal, and the transmission loss and delay increase. growing. Therefore, it is desired that the metal surface of the circuit board for high-frequency electric signals is smooth, but it is difficult to improve the smoothness in view of the adhesion.
 本発明の目的は、高周波電気信号の伝送に適した回路基板、及び当該回路基板の製造方法を提供することである。 An object of the present invention is to provide a circuit board suitable for transmission of a high-frequency electric signal, and a method for manufacturing the circuit board.
 本発明者らが鋭意検討した結果、誘電正接の低い樹脂基板であっても、ポリアニリンを用いた無電解めっき技術により極めて平滑な金属層を形成でき、得られた積層体(回路基板)は密着性に優れることを見出し、本発明を完成した。 As a result of diligent studies by the present inventors, an extremely smooth metal layer can be formed by electroless plating technology using polyaniline even if the resin substrate has a low dielectric loss tangent, and the obtained laminate (circuit board) adheres to each other. The present invention was completed by finding excellent properties.
 本発明によれば、以下の回路基板等が提供される。
1.誘電正接が0.015以下である樹脂基材と、
 置換又は無置換のポリアニリンを含むポリアニリン層と、
 金属層と、をこの順に積層して含み、
 前記金属層における前記ポリアニリン層側の面の表面粗さRzJISが0.5μm以下である、
 回路基板。
2.前記金属層における前記ポリアニリン層側の面の表面粗さRzJISが0.25μm以下である、前記1に記載の回路基板。
3.前記ポリアニリン層の厚さが5μm以下である、前記1又は2に記載の回路基板。
4.前記樹脂基材が、シンジオタクチックポリスチレン、ポリイミド、液晶ポリマー、ポリテトラフルオロエチレン、及びポリオレフィンからなる群から選択される1種以上を含む、前記1~3のいずれかに記載の回路基板。
5.前記樹脂基材がシンジオタクチックポリスチレンを含む、前記1~4のいずれかに記載の回路基板。
6.前記金属層が、Cu、Ni、Au、Pd、Ag、Sn、Co及びPtからなる群から選択される1以上の金属を含む、前記1~5のいずれかに記載の回路基板。
7.前記金属層がCuを含む、前記1~6のいずれかに記載の回路基板。
8.前記ポリアニリン層が、置換又は無置換のポリアニリンを、ドーパントによってドープされたポリアニリン複合体として含む、前記1~7のいずれかに記載の回路基板。
9.前記ドーパントが下記式(III)で表されるスルホコハク酸誘導体から生じる有機酸イオンである、前記8に記載の回路基板。
Figure JPOXMLDOC01-appb-C000002
(式(III)中、Mは、水素原子、有機遊離基又は無機遊離基である。m’は、Mの価数である。R13及びR14は、それぞれ独立に炭化水素基又は-(R15O)-R16基である。R15は、それぞれ独立に炭化水素基又はシリレン基であり、R16は水素原子、炭化水素基又はR17 Si-基であり、rは1以上の整数である。R17は、それぞれ独立に炭化水素基である。)
10.前記ドーパントがジ-2-エチルヘキシルスルホコハク酸ナトリウムである、前記8又は9に記載の回路基板。
11.周波数1GHz以上の高周波電気信号を伝送する用途に用いられる、前記1~10のいずれかに記載の回路基板。
12.前記1~11のいずれかに記載の回路基板の製造方法であって、
 前記樹脂基材の表面に、活性エネルギー線照射処理、コロナ処理、及びフレーム処理からなる群から選ばれる1以上の処理を施す工程と、
 前記処理が施された前記樹脂基材の面に、前記ポリアニリン層を形成する工程と、
 前記ポリアニリン層上に無電解めっき触媒を担持する工程と、
 前記無電解めっき触媒が担持された前記ポリアニリン層上に、無電解めっきを施すことによって金属層を形成する工程と、を含む、
 回路基板の製造方法。
13.前記樹脂基材の表面に、活性エネルギー線照射処理を施す、前記12に記載の回路基板の製造方法。
14.前記活性エネルギー線が紫外線である、前記13に記載の回路基板の製造方法。
15.前記紫外線の光源が高圧水銀ランプ又はメタルハライドランプである、前記14に記載の回路基板の製造方法。
16.前記ポリアニリン層を、置換又は無置換のポリアニリンを含む組成物を用いた塗布法によって形成する、前記12~15のいずれかに記載の回路基板の製造方法。
17.前記組成物が、置換又は無置換のポリアニリンを、ドーパントによってドープされたポリアニリン複合体として含む、前記16に記載の回路基板の製造方法。
18.前記組成物中の前記ポリアニリン複合体の濃度が15質量%以下である、前記17に記載の回路基板の製造方法。
19.前記無電解めっき触媒がPdである、前記12~18のいずれかに記載の回路基板の製造方法。
According to the present invention, the following circuit boards and the like are provided.
1. 1. With a resin base material having a dielectric loss tangent of 0.015 or less,
A polyaniline layer containing substituted or unsubstituted polyaniline,
The metal layer and the metal layer are laminated in this order and included.
The surface roughness Rz JIS of the surface on the polyaniline layer side of the metal layer is 0.5 μm or less.
Circuit board.
2. 2. The circuit board according to 1 above, wherein the surface roughness Rz JIS of the surface of the metal layer on the polyaniline layer side is 0.25 μm or less.
3. 3. The circuit board according to 1 or 2 above, wherein the polyaniline layer has a thickness of 5 μm or less.
4. The circuit board according to any one of 1 to 3 above, wherein the resin substrate contains at least one selected from the group consisting of syndiotactic polystyrene, polyimide, liquid crystal polymer, polytetrafluoroethylene, and polyolefin.
5. The circuit board according to any one of 1 to 4, wherein the resin base material contains syndiotactic polystyrene.
6. The circuit board according to any one of 1 to 5, wherein the metal layer contains one or more metals selected from the group consisting of Cu, Ni, Au, Pd, Ag, Sn, Co and Pt.
7. The circuit board according to any one of 1 to 6, wherein the metal layer contains Cu.
8. The circuit board according to any one of 1 to 7, wherein the polyaniline layer contains substituted or unsubstituted polyaniline as a dopant-doped polyaniline composite.
9. The circuit board according to 8 above, wherein the dopant is an organic acid ion generated from a sulfosuccinic acid derivative represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000002
(In formula (III), M is a hydrogen atom, an organic radical or an inorganic radical. M'is a valence of M. R 13 and R 14 are independently hydrocarbon groups or-(, respectively. R 15 O) .R 15 is r -R 16 radicals are each independently a hydrocarbon group or a silylene group, R 16 is a hydrogen atom, a hydrocarbon group, or R 17 3 Si- groups, r is 1 These are the above integers. R 17 is an independent radical.)
10. 8. The circuit board according to 8 or 9, wherein the dopant is sodium di-2-ethylhexyl sulfosuccinate.
11. The circuit board according to any one of 1 to 10 above, which is used for transmitting a high frequency electric signal having a frequency of 1 GHz or more.
12. The method for manufacturing a circuit board according to any one of 1 to 11 above.
A step of applying one or more treatments selected from the group consisting of an active energy ray irradiation treatment, a corona treatment, and a frame treatment to the surface of the resin base material.
A step of forming the polyaniline layer on the surface of the resin base material subjected to the treatment, and
The step of supporting the electroless plating catalyst on the polyaniline layer and
A step of forming a metal layer by performing electroless plating on the polyaniline layer on which the electroless plating catalyst is supported is included.
How to manufacture a circuit board.
13. The method for manufacturing a circuit board according to the above 12, wherein the surface of the resin base material is subjected to an active energy ray irradiation treatment.
14. The method for manufacturing a circuit board according to the above 13, wherein the active energy ray is ultraviolet rays.
15. The method for manufacturing a circuit board according to the above 14, wherein the light source of the ultraviolet rays is a high-pressure mercury lamp or a metal halide lamp.
16. The method for producing a circuit board according to any one of 12 to 15, wherein the polyaniline layer is formed by a coating method using a composition containing a substituted or unsubstituted polyaniline.
17. 16. The method for producing a circuit board according to 16, wherein the composition comprises a substituted or unsubstituted polyaniline as a dopant-doped polyaniline composite.
18. The method for producing a circuit board according to 17 above, wherein the concentration of the polyaniline complex in the composition is 15% by mass or less.
19. The method for manufacturing a circuit board according to any one of 12 to 18, wherein the electroless plating catalyst is Pd.
 本発明によれば、高周波電気信号の伝送に適した回路基板、及び当該回路基板の製造方法が提供できる。 According to the present invention, it is possible to provide a circuit board suitable for transmission of a high-frequency electric signal and a method for manufacturing the circuit board.
本発明の一実施形態に係る回路基板の層構成を示す概略図である。It is the schematic which shows the layer structure of the circuit board which concerns on one Embodiment of this invention.
 以下、本発明の一実施形態に係る回路基板等について説明する。
 尚、本明細書において、「x~y」は「x以上、y以下」の数値範囲を表すものとする。
 また、「(X)成分」という場合、例えば市販の試薬を用いる場合であっても、当該試薬中の(X)成分に該当する化合物のみを指すものとし、当該試薬中の他の成分(溶剤等)は含まない。
 さらに、好ましいとされている規定は任意に採用することができる。即ち、好ましいとされている一の規定を、好ましいとされている他の一又は複数の規定と組み合わせて採用することができる。好ましいもの同士の組み合わせはより好ましいと言える。
Hereinafter, the circuit board and the like according to the embodiment of the present invention will be described.
In this specification, "x to y" represents a numerical range of "x or more and y or less".
Further, the term "component (X)" refers only to the compound corresponding to the component (X) in the reagent even when a commercially available reagent is used, and other components (solvent) in the reagent. Etc.) are not included.
Further, the preferred provisions can be arbitrarily adopted. That is, one preferred provision can be adopted in combination with one or more other preferred provisions. It can be said that the combination of preferable ones is more preferable.
[回路基板]
 図1は、本発明の一実施形態に係る回路基板の層構成を示す概略図である。
 本発明の一実施形態に係る回路基板は、誘電正接が0.015以下である樹脂基材1と、置換又は無置換のポリアニリンを含むポリアニリン層2と、金属層3とをこの順に積層して含み、金属層3におけるポリアニリン層2側の表面の表面粗さRzJISが0.5μm以下である。
 以下、本発明の一実施形態に係る回路基板を構成する各層について説明する。
[Circuit board]
FIG. 1 is a schematic view showing a layer structure of a circuit board according to an embodiment of the present invention.
In the circuit board according to the embodiment of the present invention, the resin base material 1 having a dielectric loss tangent of 0.015 or less, the polyaniline layer 2 containing substituted or unsubstituted polyaniline, and the metal layer 3 are laminated in this order. The surface roughness Rz JIS of the surface of the metal layer 3 on the polyaniline layer 2 side is 0.5 μm or less.
Hereinafter, each layer constituting the circuit board according to the embodiment of the present invention will be described.
[樹脂基材]
 一実施形態において、樹脂基材は、誘電正接が0.015以下である。
 樹脂基材に用いる樹脂は格別限定されず、例えば、シンジオタクチックポリスチレン、液晶ポリマー、ポリテトラフルオロエチレン、ポリオレフィン(例えばポリエチレン又はポリプロピレンであり変性ポリオレフィンを含む)、ポリフェニレンスルフィド、ポリアミド等からなる群から選択される1種以上を含むことができる。
 一実施形態において、樹脂基材の誘電正接は低い方が望ましく、0.015以下であり、好ましくは0.01以下、より好ましくは0.005以下である。樹脂基材の誘電正接が高いと、高周波回路において減衰が大きくなる傾向がある。
[Resin base material]
In one embodiment, the resin substrate has a dielectric loss tangent of 0.015 or less.
The resin used for the resin base material is not particularly limited, and includes, for example, a group consisting of syndiotactic polystyrene, liquid crystal polymer, polytetrafluoroethylene, polyolefin (for example, polyethylene or polypropylene including modified polyolefin), polyphenylene sulfide, polyamide and the like. It can include one or more selected species.
In one embodiment, the resin substrate preferably has a low dielectric loss tangent, preferably 0.015 or less, preferably 0.01 or less, and more preferably 0.005 or less. If the dielectric loss tangent of the resin base material is high, the attenuation tends to be large in the high frequency circuit.
 誘電正接は、測定装置(キーサイト・テクノロジー社製ネットワークアナライザー「E8361A」)を用いて、測定周波数10GHz、温度25℃において、空洞共振器法(JIS R1641:2007)により測定される値である。 The dielectric loss tangent is a value measured by the cavity resonator method (JIS R1641: 2007) at a measurement frequency of 10 GHz and a temperature of 25 ° C. using a measuring device (a network analyzer "E8631A" manufactured by Keysight Technology Co., Ltd.).
[ポリアニリン層]
(ポリアニリン)
 一実施形態において、ポリアニリン層は、置換又は無置換のポリアニリンを含む。
 置換又は無置換のポリアニリンは、単独(後述する「ポリアニリン複合体」を形成していない状態)で用いてもよいが、置換又は無置換のポリアニリンがドーパントによってドープされているポリアニリン複合体として、ポリアニリン層に含まれることが好ましい。
[Polyaniline layer]
(Polyaniline)
In one embodiment, the polyaniline layer comprises substituted or unsubstituted polyaniline.
The substituted or unsubstituted polyaniline may be used alone (in a state where the "polyaniline complex" described later is not formed), but as a polyaniline complex in which the substituted or unsubstituted polyaniline is doped with a dopant, polyaniline It is preferably contained in the layer.
 ポリアニリンの重量平均分子量(以下、分子量という)は、好ましくは20,000以上である。分子量は、好ましくは20,000~500,000であり、より好ましくは20,000~300,000であり、さらに好ましくは20,000~200,000である。重量平均分子量はポリアニリン複合体の分子量ではなく、ポリアニリンの分子量である。 The weight average molecular weight of polyaniline (hereinafter referred to as molecular weight) is preferably 20,000 or more. The molecular weight is preferably 20,000 to 500,000, more preferably 20,000 to 300,000, and even more preferably 20,000 to 200,000. The weight average molecular weight is not the molecular weight of the polyaniline complex, but the molecular weight of polyaniline.
 分子量分布は、好ましくは1.5以上10.0以下である。導電率の観点からは分子量分布は小さい方が好ましいが、溶剤への溶解性の観点では、分子量分布が広い方が好ましい場合もある。
 分子量と分子量分布は、ゲルパーミェションクロマトグラフィ(GPC)によりポリスチレン換算で測定する。
The molecular weight distribution is preferably 1.5 or more and 10.0 or less. From the viewpoint of conductivity, a small molecular weight distribution is preferable, but from the viewpoint of solubility in a solvent, a wide molecular weight distribution may be preferable.
The molecular weight and the molecular weight distribution are measured by gel permeation chromatography (GPC) in terms of polystyrene.
 置換ポリアニリンの置換基としては、例えばメチル基、エチル基、ヘキシル基、オクチル基等の直鎖又は分岐の炭化水素基;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基等のアリールオキシ基;トリフルオロメチル基(-CF基)等のハロゲン化炭化水素等が挙げられる。
 ポリアニリンは、汎用性及び経済性の観点から無置換のポリアニリンが好ましい。
Substituents of the substituted polyaniline include linear or branched hydrocarbon groups such as methyl group, ethyl group, hexyl group and octyl group; alkoxy groups such as methoxy group and ethoxy group; aryloxy groups such as phenoxy group; tri Examples thereof include halogenated hydrocarbons such as a fluoromethyl group (-CF 3 groups).
As the polyaniline, unsubstituted polyaniline is preferable from the viewpoint of versatility and economy.
 置換又は無置換のポリアニリンは、好ましくは塩素原子を含まない酸の存在下で重合して得られるポリアニリンである。塩素原子を含まない酸とは、例えば1族~16族及び18族に属する原子からなる酸である。具体的には、リン酸が挙げられる。塩素原子を含まない酸の存在下で重合して得られるポリアニリンとして、リン酸の存在下で重合して得られるポリアニリンが挙げられる。
 塩素原子を含まない酸の存在下で得られたポリアニリンは、ポリアニリン複合体の塩素含有量をより低くすることができる。
Substituted or unsubstituted polyaniline is preferably a polyaniline obtained by polymerization in the presence of an acid containing no chlorine atom. An acid containing no chlorine atom is, for example, an acid composed of atoms belonging to groups 1 to 16 and 18. Specific examples include phosphoric acid. Examples of the polyaniline obtained by polymerizing in the presence of an acid containing no chlorine atom include polyaniline obtained by polymerizing in the presence of phosphoric acid.
The polyaniline obtained in the presence of a chlorine atom-free acid can lower the chlorine content of the polyaniline complex.
 ポリアニリン複合体のドーパントとしては、例えばブレンステッド酸又はブレンステッド酸の塩から生じるブレンステッド酸イオンが挙げられ、好ましくは有機酸又は有機酸の塩から生じる有機酸イオンであり、さらに好ましくは下記式(I)で示される化合物(プロトン供与体)から生じる有機酸イオンである。
 本発明において、ドーパントが特定の酸であると表現する場合、及びドーパントが特定の塩であると表現する場合があるが、いずれも特定の酸又は特定の塩から生じる特定の酸イオンが、上述したπ共役ポリマーにドープするものとする。
Examples of the dopant of the polyaniline complex include Bronsted acid or Bronsted acid ion generated from a salt of Bronsted acid, preferably an organic acid ion generated from an organic acid or a salt of an organic acid, and more preferably the following formula. It is an organic acid ion generated from the compound (proton donor) represented by (I).
In the present invention, the dopant may be expressed as a specific acid or the dopant may be expressed as a specific salt, both of which the specific acid ion generated from the specific acid or the specific salt is described above. It is assumed that the π-conjugated polymer is doped.
M(XARn)m   (I)
 式(I)のMは、水素原子、有機遊離基又は無機遊離基である。
 有機遊離基としては、例えば、ピリジニウム基、イミダゾリウム基、アニリニウム基等が挙げられる。無機遊離基としては、例えば、リチウム、ナトリウム、カリウム、セシウム、アンモニウム、カルシウム、マグネシウム、鉄等が挙げられる。
 式(I)のXは、アニオン基であり、例えば-SO 基、-PO 2-基、-PO(OH)基、-OPO 2-基、-OPO(OH)基、-COO基等が挙げられ、好ましくは-SO 基である。
M (XARn) m (I)
M of the formula (I) is a hydrogen atom, an organic radical or an inorganic radical.
Examples of the organic free group include a pyridinium group, an imidazolium group, an anilinium group and the like. Examples of the inorganic free radical include lithium, sodium, potassium, cesium, ammonium, calcium, magnesium, iron and the like.
X is the Formula (I), anionic groups, such as -SO 3 - group, -PO 3 2-group, -PO 2 (OH) - group, -OPO 3 2-group, -OPO 2 (OH) - Groups, -COO - groups and the like can be mentioned, preferably -SO 3 - groups.
 式(I)のAは、置換又は無置換の炭化水素基(炭素数は例えば1~20)である。
 炭化水素基は、鎖状もしくは環状の飽和脂肪族炭化水素基、鎖状もしくは環状の不飽和脂肪族炭化水素基、又は芳香族炭化水素基である。
 鎖状の飽和脂肪族炭化水素基としては、直鎖もしくは分岐状のアルキル基(炭素数は例えば1~20)が挙げられる。環状の飽和脂肪族炭化水素基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基(炭素数は例えば3~20)が挙げられる。環状の飽和脂肪族炭化水素基は、複数の環状の飽和脂肪族炭化水素基が縮合していてもよい。例えば、ノルボルニル基、アダマンチル基、縮合したアダマンチル基等が挙げられる。鎖状の不飽和脂肪族炭化水素(炭素数は例えば2~20)としては、直鎖又は分岐状のアルケニル基が挙げられる。環状の不飽和脂肪族炭化水素基(炭素数は例えば3~20)としては、環状アルケニル基が挙げられる。芳香族炭化水素基(炭素数は例えば6~20)としては、フェニル基、ナフチル基、アントラセニル基等が挙げられる。
A of the formula (I) is a substituted or unsubstituted hydrocarbon group (for example, 1 to 20 carbon atoms).
Hydrocarbon groups are chain or cyclic saturated aliphatic hydrocarbon groups, chain or cyclic unsaturated aliphatic hydrocarbon groups, or aromatic hydrocarbon groups.
Examples of the chain saturated aliphatic hydrocarbon group include a linear or branched alkyl group (for example, 1 to 20 carbon atoms). Examples of the cyclic saturated aliphatic hydrocarbon group include cycloalkyl groups (for example, 3 to 20 carbon atoms) such as cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclooctyl group. The cyclic saturated aliphatic hydrocarbon group may be a condensation of a plurality of cyclic saturated aliphatic hydrocarbon groups. For example, a norbornyl group, an adamantyl group, a condensed adamantyl group and the like can be mentioned. Examples of the chain unsaturated aliphatic hydrocarbon (having 2 to 20 carbon atoms, for example) include a linear or branched alkenyl group. Examples of the cyclic unsaturated aliphatic hydrocarbon group (for example, 3 to 20 carbon atoms) include a cyclic alkenyl group. Examples of the aromatic hydrocarbon group (for example, 6 to 20 carbon atoms) include a phenyl group, a naphthyl group, an anthracenyl group and the like.
 Aが置換の炭化水素基である場合の置換基は、アルキル基(炭素数は例えば1~20)、シクロアルキル基(炭素数は例えば3~20)、ビニル基、アリル基、アリール基(炭素数は例えば6~20)、アルコキシ基(炭素数は例えば1~20)、ハロゲン原子、ヒドロキシ基、アミノ基、イミノ基、ニトロ基、シリル基又はエステル結合含有基である。 When A is a substituted hydrocarbon group, the substituents are an alkyl group (for example, 1 to 20 carbon atoms), a cycloalkyl group (for example, 3 to 20 carbon atoms), a vinyl group, an allyl group, and an aryl group (carbon). The number is, for example, 6 to 20), an alkoxy group (for example, 1 to 20 carbon atoms), a halogen atom, a hydroxy group, an amino group, an imino group, a nitro group, a silyl group, or an ester bond-containing group.
 式(I)のRは、Aと結合しており、-H、-R、-OR、-COR、-COOR、-(C=O)-(COR)、又は-(C=O)-(COOR)で表わされる置換基あり、Rは、置換基を含んでもよい炭化水素基、シリル基、アルキルシリル基、-(RO)x-R基、又は-(OSiR )x-OR基である。Rはアルキレン基、Rは炭化水素基であり、xは1以上の整数である。xが2以上の場合、複数のRはそれぞれ同一でも異なってもよく、複数のRはそれぞれ同一でも異なってもよい。 R in formula (I) is bound to A and is -H, -R 1 , -OR 1 , -COR 1 , -COOR 1 ,-(C = O)-(COR 1 ), or-(C). = O)-There is a substituent represented by (COOR 1 ), and R 1 is a hydrocarbon group, a silyl group, an alkylsilyl group,-(R 2 O) x-R 3 groups, or-which may contain a substituent. a (OSiR 3 2) x-OR 3 group. R 2 is an alkylene group, R 3 is a hydrocarbon group, and x is an integer of 1 or more. If x is 2 or more, plural R 2 may be the same or different, or different in each of a plurality of R 3 are the same.
 Rの炭化水素基(炭素数は例えば1~20)としては、メチル基、エチル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、ペンタデシル基、エイコサニル基等が挙げられる。炭化水素基は直鎖状であってもよく、また、分岐状であってもよい。
 炭化水素基の置換基は、アルキル基(炭素数は例えば1~20)、シクロアルキル基(炭素数は例えば3~20)、ビニル基、アリル基、アリール基(炭素数は例えば6~20)、アルコキシ基(炭素数は例えば1~20)、ハロゲン基、ヒドロキシ基、アミノ基、イミノ基、ニトロ基又はエステル結合含有基である。Rの炭化水素基もRと同様である。
The hydrocarbon group of R 1 (for example, 1 to 20 carbon atoms) includes a methyl group, an ethyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group and a pentadecyl group. , Eikosanyl group and the like. The hydrocarbon group may be linear or branched.
Substituents of the hydrocarbon group are an alkyl group (for example, 1 to 20 carbon atoms), a cycloalkyl group (for example, 3 to 20 carbon atoms), a vinyl group, an allyl group, and an aryl group (for example, 6 to 20 carbon atoms). , An alkoxy group (for example, 1 to 20 carbon atoms), a halogen group, a hydroxy group, an amino group, an imino group, a nitro group or an ester bond-containing group. The hydrocarbon group of R 3 is the same as that of R 1 .
 Rのアルキレン基(炭素数は例えば1~20)としては、例えばメチレン基、エチレン基、プロピレン基等が挙げられる。
 式(I)のnは1以上の整数である。nが2以上の場合、複数のRはそれぞれ同一でも異なってもよい。
 式(I)のmは、Mの価数/Xの価数である。
Alkylene group R 2 (the number of carbon atoms, for example 1 to 20) include a methylene group, an ethylene group and a propylene group.
N in the formula (I) is an integer of 1 or more. When n is 2 or more, the plurality of Rs may be the same or different.
M in the formula (I) is a valence of M / a valence of X.
 式(I)で示される化合物としては、ジアルキルベンゼンスルフォン酸、ジアルキルナフタレンスルフォン酸、又はエステル結合を2以上含有する化合物が好ましい。
 エステル結合を2以上含有する化合物は、スルホフタール酸エステル、又は下記式(II)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(II)中、M及びXは、式(I)と同様である。Xは、-SO 基が好ましい。
 R、R及びRは、それぞれ独立に水素原子、炭化水素基又はR Si-基である。3つのRはそれぞれ独立に炭化水素基である。
 R、R及びRが炭化水素基である場合の炭化水素基としては、炭素数1~24の直鎖もしくは分岐状のアルキル基、芳香環を含むアリール基(炭素数は例えば6~20)、アルキルアリール基(炭素数は例えば7~20)等が挙げられる。
 Rの炭化水素基としては、R、R及びRの場合と同様である。
As the compound represented by the formula (I), a compound containing two or more dialkylbenzenesulphonic acid, dialkylnaphthalene sulfonic acid, or an ester bond is preferable.
As the compound containing two or more ester bonds, a sulfoftal acid ester or a compound represented by the following formula (II) is more preferable.
Figure JPOXMLDOC01-appb-C000003
In formula (II), M and X are the same as in formula (I). X is, -SO 3 - group.
R 4, R 5 and R 6 are each independently a hydrogen atom, a hydrocarbon group, or R 9 3 Si- groups. Three R 9 are each independently a hydrocarbon group.
When R 4 , R 5 and R 6 are hydrocarbon groups, the hydrocarbon group includes a linear or branched alkyl group having 1 to 24 carbon atoms and an aryl group containing an aromatic ring (for example, 6 to 24 carbon atoms). 20), an alkylaryl group (for example, 7 to 20 carbon atoms) and the like can be mentioned.
The hydrocarbon group of R 9 is the same as that of R 4 , R 5 and R 6 .
 式(II)のR及びRは、それぞれ独立に、炭化水素基又は-(R10O)-R11基である。R10は炭化水素基又はシリレン基であり、R11は水素原子、炭化水素基又はR12 Si-であり、qは1以上の整数である。3つのR12は、それぞれ独立に炭化水素基である。 R 7 and R 8 of the formula (II) are each independently a hydrocarbon group or-(R 10 O) q- R 11 groups. R 10 is a hydrocarbon group or a silylene group, R 11 is a hydrogen atom, a Si- hydrocarbon radical or R 12 3, q is an integer of 1 or more. Three R 12 are each independently a hydrocarbon group.
 R及びRが炭化水素基である場合の炭化水素基としては、炭素数1~24、好ましくは炭素数4以上の直鎖もしくは分岐状のアルキル基、芳香環を含むアリール基(炭素数は例えば6~20)、アルキルアリール基(炭素数は例えば7~20)等が挙げられ、具体例としては、例えば、いずれも直鎖又は分岐状の、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基等が挙げられる。 When R 7 and R 8 are hydrocarbon groups, the hydrocarbon group has 1 to 24 carbon atoms, preferably a linear or branched alkyl group having 4 or more carbon atoms, and an aryl group containing an aromatic ring (carbon number). Examples include 6 to 20), alkylaryl groups (for example, 7 to 20 carbon atoms), and specific examples thereof include linear or branched butyl groups, pentyl groups, hexyl groups, and octyl groups. Groups, decyl groups and the like can be mentioned.
 R及びRにおける、R10が炭化水素基である場合の炭化水素基としては、例えば炭素数1~24の直鎖もしくは分岐状のアルキレン基、芳香環を含むアリーレン基(炭素数は例えば6~20)、アルキルアリーレン基(炭素数は例えば7~20)、又はアリールアルキレン基(炭素数は例えば7~20)である。また、R及びRにおける、R11及びR12が炭化水素基である場合の炭化水素基としては、R、R及びRの場合と同様であり、qは、1~10であることが好ましい。 In R 7 and R 8 , when R 10 is a hydrocarbon group, the hydrocarbon group includes, for example, a linear or branched alkylene group having 1 to 24 carbon atoms, or an arylene group containing an aromatic ring (for example, the number of carbon atoms is, for example). 6 to 20), an alkylarylene group (for example, 7 to 20 carbon atoms), or an arylalkylene group (for example, 7 to 20 carbon atoms). Further, in R 7 and R 8 , when R 11 and R 12 are hydrocarbon groups, the hydrocarbon groups are the same as in the case of R 4 , R 5 and R 6 , and q is 1 to 10. It is preferable to have.
 R及びRが-(R10O)-R11基である場合の式(II)で表わされる化合物の具体例としては、下記式で表わされる2つの化合物である。
Figure JPOXMLDOC01-appb-C000004
(式中、Xは式(I)と同様である。)
Specific examples of the compound represented by the formula (II) when R 7 and R 8 are − (R 10 O) q − R 11 groups are two compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000004
(In the formula, X is the same as the formula (I).)
 上記式(II)で表わされる化合物は、下記式(III)で示されるスルホコハク酸誘導体であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(III)中、Mは、式(I)と同様である。m’は、Mの価数である。
 R13及びR14は、それぞれ独立に、炭化水素基又は-(R15O)-R16基である。R15は炭化水素基又はシリレン基であり、R16は水素原子、炭化水素基又はR17 Si-基であり、rは1以上の整数である。3つのR17はそれぞれ独立に炭化水素基である。rが2以上の場合、複数のR15はそれぞれ同一でも異なってもよい。
The compound represented by the above formula (II) is more preferably a sulfosuccinic acid derivative represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000005
In formula (III), M is similar to formula (I). m'is the valence of M.
R 13 and R 14 are each independently a hydrocarbon group or-(R 15 O) r- R 16 groups. R 15 is a hydrocarbon group or a silylene group, R 16 is a hydrogen atom, a hydrocarbon group, or R 17 3 Si- groups, r is an integer of 1 or more. Each of the three R 17s is an independent hydrocarbon group. When r is 2 or more, the plurality of R 15s may be the same or different.
 R13及びR14が炭化水素基である場合の炭化水素基としては、R及びRと同様である。
 R13及びR14において、R15が炭化水素基である場合の炭化水素基としては、上記R10と同様である。また、R13及びR14において、R16及びR17が炭化水素基である場合の炭化水素基としては、上記R、R及びRと同様である。
 rは、1~10であることが好ましい。
When R 13 and R 14 are hydrocarbon groups, the hydrocarbon groups are the same as those of R 7 and R 8 .
In R 13 and R 14 , the hydrocarbon group when R 15 is a hydrocarbon group is the same as that of R 10 described above. Further, in R 13 and R 14 , when R 16 and R 17 are hydrocarbon groups, the hydrocarbon groups are the same as those of R 4 , R 5 and R 6 described above.
r is preferably 1 to 10.
 R13及びR14が-(R15O)-R16基である場合の具体例としては、R及びRにおける-(R10O)-R11と同様である。
 R13及びR14の炭化水素基としては、R及びRと同様であり、ブチル基、ヘキシル基、2-エチルヘキシル基、デシル基が好ましい。
Specific examples of the case where R 13 and R 14 are − (R 15 O) r − R 16 groups are the same as those of − (R 10 O) q − R 11 in R 7 and R 8 .
The hydrocarbon groups of R 13 and R 14 are the same as those of R 7 and R 8 , and butyl group, hexyl group, 2-ethylhexyl group and decyl group are preferable.
 式(I)で示される化合物としては、ジ-2-エチルヘキシルスルホコハク酸、ジ-2-エチルヘキシルスルホコハク酸ナトリウム(エーロゾルOT)が好ましい。 As the compound represented by the formula (I), di-2-ethylhexyl sulfosuccinic acid and sodium di-2-ethylhexyl sulfosuccinate (aerosol OT) are preferable.
 ポリアニリン複合体のドーパントが置換又は無置換のポリアニリンにドープしていることは、紫外・可視・近赤外分光法やX線光電子分光法によって確認することができ、当該ドーパントは、ポリアニリンにキャリアを発生させるに十分な酸性を有していれば、特に化学構造上の制限なく使用できる。 The fact that the dopant of the polyaniline complex is doped with substituted or unsubstituted polyaniline can be confirmed by ultraviolet / visible / near-infrared spectroscopy or X-ray photoelectron spectroscopy, and the dopant carries carriers in polyaniline. As long as it has sufficient acidity to generate it, it can be used without any particular restrictions on its chemical structure.
 ポリアニリンに対するドーパントのドープ率は、好ましくは0.35以上0.65以下であり、より好ましくは0.42以上0.60以下であり、さらに好ましくは0.43以上0.57以下であり、特に好ましくは0.44以上0.55以下である。
 ドープ率は(ポリアニリンにドープしているドーパントのモル数)/(ポリアニリンのモノマーユニットのモル数)で定義される。例えば無置換ポリアニリンとドーパントを含むポリアニリン複合体のドープ率が0.5であることは、ポリアニリンのモノマーユニット分子2個に対し、ドーパントが1個ドープしていることを意味する。
The doping ratio of the dopant to polyaniline is preferably 0.35 or more and 0.65 or less, more preferably 0.42 or more and 0.60 or less, still more preferably 0.43 or more and 0.57 or less, and particularly. It is preferably 0.44 or more and 0.55 or less.
The doping rate is defined as (the number of moles of dopant doped in polyaniline) / (the number of moles of monomer unit of polyaniline). For example, a polyaniline complex containing an unsubstituted polyaniline and a dopant having a doping ratio of 0.5 means that one dopant is doped with respect to two monomer unit molecules of polyaniline.
 ドープ率は、ポリアニリン複合体中のドーパントとポリアニリンのモノマーユニットのモル数が測定できれば算出可能である。例えば、ドーパントが有機スルホン酸の場合、ドーパント由来の硫黄原子のモル数と、ポリアニリンのモノマーユニット由来の窒素原子のモル数を、有機元素分析法により定量し、これらの値の比を取ることでドープ率を算出できる。但し、ドープ率の算出方法は、当該手段に限定されない。 The doping rate can be calculated if the number of moles of the dopant and the polyaniline monomer unit in the polyaniline complex can be measured. For example, when the dopant is an organic sulfonic acid, the number of moles of sulfur atoms derived from the dopant and the number of moles of nitrogen atoms derived from the monomer unit of polyaniline are quantified by an organic elemental analysis method, and the ratio of these values is taken. The doping rate can be calculated. However, the method for calculating the dope rate is not limited to the means.
 ポリアニリン複合体は、さらにリンを含んでも含まなくてもよい。
 ポリアニリン複合体がリンを含む場合、リンの含有量は例えば10質量ppm以上5000質量ppm以下である。
 上記リンの含有量は、ICP発光分光分析法で測定することができる。
 また、ポリアニリン複合体は、不純物として第12族元素(例えば亜鉛)を含まないことが好ましい。
The polyaniline complex may or may not further contain phosphorus.
When the polyaniline complex contains phosphorus, the phosphorus content is, for example, 10 mass ppm or more and 5000 mass ppm or less.
The phosphorus content can be measured by ICP emission spectroscopy.
Further, the polyaniline complex preferably does not contain a Group 12 element (for example, zinc) as an impurity.
 ポリアニリン複合体は、周知の製造方法で製造することができる。例えば、プロトン供与体、リン酸、及びプロトン供与体とは異なる乳化剤を含み、2つの液相を有する溶液中で、置換又は無置換のアニリンを化学酸化重合することにより製造できる。また、置換又は無置換のアニリン、プロトン供与体、リン酸、及びプロトン供与体とは異なる乳化剤を含み、2つの液相を有する溶液中に、酸化重合剤を加えることにより製造できる。 The polyaniline complex can be produced by a well-known production method. For example, it can be produced by chemically oxidizing and polymerizing substituted or unsubstituted aniline in a solution containing a proton donor, phosphoric acid, and an emulsifier different from the proton donor and having two liquid phases. It can also be produced by adding an oxidative polymerization agent to a solution containing a substituted or unsubstituted aniline, a proton donor, a phosphoric acid, and an emulsifier different from the proton donor and having two liquid phases.
 ここで「2つの液相を有する溶液」とは、溶液中に相溶しない2つの液相が存在する状態を意味する。例えば、溶液中に「高極性溶媒の相」と「低極性溶媒の相」が存在する状態、を意味する。
 また、「2つの液相を有する溶液」は、片方の液相が連続相であり、他方の液相が分散相である状態も含む。例えば「高極性溶媒の相」が連続相であり「低極性溶媒の相」が分散相である状態、及び「低極性溶媒の相」が連続相であり「高極性溶媒の相」が分散相である状態が含まれる。
 上記ポリアニリン複合体の製造方法に用いる高極性溶媒としては、水が好ましく、低極性溶媒としては、例えばトルエン、キシレン等の芳香族炭化水素が好ましい。
Here, the "solution having two liquid phases" means a state in which two incompatible liquid phases are present in the solution. For example, it means a state in which a "high-polarity solvent phase" and a "low-polarity solvent phase" are present in the solution.
Further, the "solution having two liquid phases" also includes a state in which one liquid phase is a continuous phase and the other liquid phase is a dispersed phase. For example, the "high-polarity solvent phase" is a continuous phase and the "low-polarity solvent phase" is a dispersed phase, and the "low-polarity solvent phase" is a continuous phase and the "highly polar solvent phase" is a dispersed phase. The state that is is included.
Water is preferable as the highly polar solvent used in the method for producing the polyaniline complex, and aromatic hydrocarbons such as toluene and xylene are preferable as the low polar solvent.
 上記プロトン供与体は、好ましくは上記式(I)で表される化合物である。 The proton donor is preferably a compound represented by the above formula (I).
 上記乳化剤は、親水性部分がイオン性であるイオン性乳化剤、及び親水性部分が非イオン性である非イオン性乳化剤のどちらでも使用でき、また、1種又は2種以上の乳化剤を混合して使用してもよい。 The above emulsifier can be either an ionic emulsifier whose hydrophilic portion is ionic and a nonionic emulsifier whose hydrophilic moiety is nonionic, and one or more emulsifiers are mixed. You may use it.
 化学酸化重合に用いる酸化剤としては、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過酸化水素等の過酸化物;二クロム酸アンモニウム、過塩素酸アンモニウム、硫酸カリウム鉄(III)、三塩化鉄(III)、二酸化マンガン、ヨウ素酸、過マンガン酸カリウム又はパラトルエンスルホン酸鉄等が使用でき、好ましくは過硫酸アンモニウム等の過硫酸塩である。
 これらは単独で使用してもよいし2種以上を併用してもよい。
Oxidizing agents used in chemical oxidative polymerization include peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, and hydrogen peroxide; ammonium dichromate, ammonium perchlorate, iron (III) sulfate, iron trichloride. (III), manganese dioxide, iodic acid, potassium permanganate, iron paratoluenesulfonate and the like can be used, and persulfate such as ammonium persulfate is preferable.
These may be used alone or in combination of two or more.
(バインダー)
 ポリアニリン層は、置換又は無置換のポリアニリン及びポリアニリン複合体から選ばれる1種以上に加えて、バインダーを含むことができる。
 バインダーとして、例えば、アクリル系、ウレタン系、エポキシ系、ポリアミド系、ビニル系、ポリビニルアセタール系、ポリエステル系、ポリエステルポリオール系、ポリエーテルポリオール系及びポリカーボネート系からなる群から選ばれる1種以上を含むことができる。また、構造中にカルボキシ基やスルホキシ基等の酸性基を有するポリマー(例えばカルボキシル基を有するウレタンやカルボキシル基を有するポリエステル)が好ましい。
 また、ポリアニリン層は、末端にアクリレート又はメタクリレート等の反応性官能基を有するモノマー、オリゴマー又はポリマーを紫外線や電子線等で硬化させたバインダーを含むことも可能である。
(binder)
The polyaniline layer can contain a binder in addition to one or more selected from substituted or unsubstituted polyaniline and polyaniline complexes.
As the binder, for example, one or more selected from the group consisting of acrylic type, urethane type, epoxy type, polyamide type, vinyl type, polyvinyl acetal type, polyester type, polyester polyol type, polyether polyol type and polycarbonate type shall be contained. Can be done. Further, a polymer having an acidic group such as a carboxy group or a sulfoxy group in the structure (for example, urethane having a carboxyl group or polyester having a carboxyl group) is preferable.
Further, the polyaniline layer can also contain a binder having a monomer, oligomer or polymer having a reactive functional group such as acrylate or methacrylate at the end cured by ultraviolet rays, electron beams or the like.
(他の成分)
 ポリアニリン層は、ポリアニリン及びポリアニリン複合体、並びにバインダー以外の他の成分を、本発明の効果を損なわない範囲で含むことができる。他の成分として、例えば、無機材料、硬化剤、可塑剤、有機導電材料等の添加剤等が挙げられる。
(Other ingredients)
The polyaniline layer can contain polyaniline, a polyaniline complex, and other components other than the binder as long as the effects of the present invention are not impaired. Examples of other components include additives such as inorganic materials, curing agents, plasticizers, and organic conductive materials.
 無機材料は、例えば、強度、表面硬度、寸法安定性その他の機械的物性の向上、又は導電性等の電気特性を向上する目的で添加される。無機材料の具体例としては、例えば、シリカ(二酸化ケイ素)、チタニア(二酸化チタン)、アルミナ(酸化アルミニウム)、Sn含有In(ITO)、Zn含有In、Inの共置換化合物(4価元素及び2価元素が3価のInに置換した酸化物)、Sb含有SnO(ATO)、ZnO、Al含有ZnO(AZO)、Ga含有ZnO(GZO)等が挙げられる。 Inorganic materials are added for the purpose of improving, for example, strength, surface hardness, dimensional stability and other mechanical properties, or electrical properties such as conductivity. Specific examples of the inorganic material include silica (silicon dioxide), titania (titanium dioxide), alumina (aluminum oxide), Sn-containing In 2 O 3 (ITO), Zn-containing In 2 O 3 , and In 2 O 3 . Examples thereof include co-substituted compounds (oxides in which tetravalent elements and divalent elements are substituted with trivalent In), Sb-containing SnO 2 (ATO), ZnO, Al-containing ZnO (AZO), Ga-containing ZnO (GZO), and the like. ..
 硬化剤は、例えば、強度、表面硬度、寸法安定性その他の機械的物性の向上等の目的で添加される。硬化剤の具体例としては、例えば、フェノール樹脂等の熱硬化剤、アクリレート系モノマーと光重合性開始剤による光硬化剤が挙げられる。 The curing agent is added for the purpose of improving, for example, strength, surface hardness, dimensional stability and other mechanical properties. Specific examples of the curing agent include a thermosetting agent such as a phenol resin, and a photocuring agent using an acrylate-based monomer and a photopolymerizable initiator.
 可塑剤は、例えば、引張強度や曲げ強度等の機械的特性の向上等の目的で添加される。可塑剤の具体例としては、例えば、フタル酸エステル類やリン酸エステル類が挙げられる。 The plasticizer is added for the purpose of improving mechanical properties such as tensile strength and bending strength, for example. Specific examples of the plasticizer include phthalates and phosphoric acid esters.
 有機導電材料としては、カーボンブラック、カーボンナノチューブのような炭素材料等が挙げられる。 Examples of the organic conductive material include carbon black and carbon materials such as carbon nanotubes.
 ポリアニリン層の膜厚は格別限定されない。一実施形態において、ポリアニリン層の膜厚は、例えば、0.1μm以上、0.5μm以上、又は1μm以上であってもよい。また、ポリアニリン層の膜厚は、例えば、3μm以下、2μm以下、1μm以下、又は0.5μm以下であってもよい。
 ポリアニリン層を薄く形成することによって、回路基板の厚さを薄くすることができる。これにより、回路基板をよりコンパクトにできるため機械装置中に搭載容易になる。また、ポリアニリン層を薄く形成することによって、ポリアニリン層の表面を平滑化でき、これにより金属層におけるポリアニリン層側の面の表面粗さRzJISを好適に0.5μm以下にすることができる。
The film thickness of the polyaniline layer is not particularly limited. In one embodiment, the film thickness of the polyaniline layer may be, for example, 0.1 μm or more, 0.5 μm or more, or 1 μm or more. The film thickness of the polyaniline layer may be, for example, 3 μm or less, 2 μm or less, 1 μm or less, or 0.5 μm or less.
By forming the polyaniline layer thinly, the thickness of the circuit board can be reduced. As a result, the circuit board can be made more compact and can be easily mounted in the mechanical device. Further, by forming the polyaniline layer thinly, the surface of the polyaniline layer can be smoothed, whereby the surface roughness Rz JIS of the surface of the metal layer on the polyaniline layer side can be preferably 0.5 μm or less.
 一実施形態において、ポリアニリン層の、例えば、70質量%以上、80質量%以上、90質量%以上、98質量%以上、99質量%以上、99.5質量%以上、99.9質量%以上又は100質量%が、
 置換又は無置換のポリアニリン及びポリアニリン複合体から選ばれる1種以上、
 置換又は無置換のポリアニリン及びポリアニリン複合体から選ばれる1種以上及びバインダー、又は
 置換又は無置換のポリアニリン及びポリアニリン複合体から選ばれる1種以上、バインダー及び上述した他の成分から任意に選択される1種以上の成分であってもよい。
 本発明の一態様に係る樹脂組成物は、
 本質的に置換又は無置換のポリアニリン及びポリアニリン複合体から選ばれる1種以上、
 本質的に置換又は無置換のポリアニリン及びポリアニリン複合体から選ばれる1種以上及びバインダー、又は
 本質的に置換又は無置換のポリアニリン及びポリアニリン複合体から選ばれる1種以上、バインダー及び上述した他の成分から任意に選択される1種以上の成分からなってもよい。
 この場合、不可避不純物を含んでもよい。
In one embodiment, for example, 70% by mass or more, 80% by mass or more, 90% by mass or more, 98% by mass or more, 99% by mass or more, 99.5% by mass or more, 99.9% by mass or more, or the polyaniline layer. 100% by mass
One or more selected from substituted or unsubstituted polyaniline and polyaniline complex,
One or more selected from substituted or unsubstituted polyaniline and polyaniline complex and binder, or one or more selected from substituted or unsubstituted polyaniline and polyaniline complex, binder and arbitrarily selected from the other components described above. It may be one or more kinds of components.
The resin composition according to one aspect of the present invention is
One or more selected from essentially substituted or unsubstituted polyanilines and polyaniline complexes,
One or more selected from essentially substituted or unsubstituted polyaniline and polyaniline complexes and binders, or one or more selected from essentially substituted or unsubstituted polyaniline and polyaniline complexes, binders and other components described above. It may consist of one or more components arbitrarily selected from.
In this case, unavoidable impurities may be contained.
 一実施形態において、ポリアニリン層における置換又は無置換のポリアニリンの含有量は、5質量%以上、10質量%以上、15質量%以上、20質量%以上、又は25質量%以上であってもよい。ポリアニリン層における置換又は無置換のポリアニリンの含有量が5質量%以上であることにより、無電解めっきの析出性が良好になる。上限は格別限定されず、例えば、100質量%以下、90質量%以下、80質量%、70質量%以下、又は65質量%以下等であり得る。ポリアニリン層における置換又は無置換のポリアニリンの含有量が100質量%に満たない場合、例えば、90質量%以下、80質量%、70質量%以下、さらには65質量%以下等のように少ない場合は、バインダー等によってポリアニリン層の密着性や塗膜強度を向上できる。ここでいう置換又は無置換のポリアニリンの含有量は、ポリアニリン複合体を形成している置換又は無置換のポリアニリンと、ポリアニリン複合体を形成していない置換又は無置換のポリアニリンとの合計の含有量である。 In one embodiment, the content of the substituted or unsubstituted polyaniline in the polyaniline layer may be 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, or 25% by mass or more. When the content of the substituted or unsubstituted polyaniline in the polyaniline layer is 5% by mass or more, the precipitation property of the electroless plating is improved. The upper limit is not particularly limited, and may be, for example, 100% by mass or less, 90% by mass or less, 80% by mass, 70% by mass or less, 65% by mass or less, and the like. When the content of the substituted or unsubstituted polyaniline in the polyaniline layer is less than 100% by mass, for example, when it is as small as 90% by mass or less, 80% by mass, 70% by mass or less, and further 65% by mass or less. , Binder and the like can improve the adhesion and coating strength of the polyaniline layer. The content of the substituted or unsubstituted polyaniline referred to here is the total content of the substituted or unsubstituted polyaniline forming the polyaniline complex and the substituted or unsubstituted polyaniline not forming the polyaniline complex. Is.
[金属層]
 金属層は金属を含む層である。
 金属は格別限定されず、例えば、Cu、Ni、Au、Pd、Ag、Sn、Co及びPtからなる群から選択される1以上の金属を含むことができる。一実施形態において金属層はCuを含む。
 金属層は、単層体、及び金属組成の異なる2層以上の積層体のいずれであってもよい。
 一実施形態において、金属層におけるポリアニリン層側の表面の表面粗さRzJISは、0.5μm以下、0.45μm以下、0.40μm以下、0.35μm以下、0.3μm以下、0.25μm以下、0.2μm以下、0.15μm以下、0.1μm以下、0.08μm以下、0.05μm以下、又は0.02μm以下であってもよい。かかる表面粗さRzJISが小さいことによって、高周波電気信号の伝送損失をさらに防止することができる。かかる表面粗さRzJISの下限は格別限定されず、例えば、0.005μm以上、0.007μm以上、又は0.01μm以上であってもよい。
 表面粗さRzJISは、JIS B 0601(2001)に準拠して測定される十点平均粗さである。
[Metal layer]
The metal layer is a layer containing metal.
The metal is not particularly limited and may include, for example, one or more metals selected from the group consisting of Cu, Ni, Au, Pd, Ag, Sn, Co and Pt. In one embodiment, the metal layer comprises Cu.
The metal layer may be either a single layer body or a laminated body having two or more layers having different metal compositions.
In one embodiment, the surface roughness Rz JIS of the surface of the metal layer on the polyaniline layer side is 0.5 μm or less, 0.45 μm or less, 0.40 μm or less, 0.35 μm or less, 0.3 μm or less, 0.25 μm or less. , 0.2 μm or less, 0.15 μm or less, 0.1 μm or less, 0.08 μm or less, 0.05 μm or less, or 0.02 μm or less. Since the surface roughness Rz JIS is small, it is possible to further prevent the transmission loss of the high frequency electric signal. The lower limit of the surface roughness Rz JIS is not particularly limited, and may be, for example, 0.005 μm or more, 0.007 μm or more, or 0.01 μm or more.
Surface roughness Rz JIS is a ten-point average roughness measured in accordance with JIS B 0601 (2001).
 また、金属層をポリアニリン層上に無電解めっきによって形成する場合は、無電解めっきに供される前のポリアニリン層の表面(後に金属層が形成される面)について測定した表面粗さRzJISを、金属層におけるポリアニリン層側の表面の表面粗さRzJISとする。 When the metal layer is formed on the polyaniline layer by electroless plating, the surface roughness Rz JIS measured for the surface of the polyaniline layer (the surface on which the metal layer is formed later) before being subjected to electroless plating is obtained. , The surface roughness of the surface of the metal layer on the polyaniline layer side is Rz JIS .
 金属層の膜厚は格別限定されない。一実施形態において、金属層の膜厚は、例えば、0.1μm以上、0.3μm以上、0.5μm以上、0.8μm以上、1μm以上、5μm以上、10μm以上、18μm以上、又は30μm以上であってもよい。また、金属層の膜厚は、例えば、500μm以下、又は300μm以下、200μm以下、150μm以下、100μm以下、又は50μm以下であってもよい。 The film thickness of the metal layer is not particularly limited. In one embodiment, the film thickness of the metal layer is, for example, 0.1 μm or more, 0.3 μm or more, 0.5 μm or more, 0.8 μm or more, 1 μm or more, 5 μm or more, 10 μm or more, 18 μm or more, or 30 μm or more. There may be. Further, the film thickness of the metal layer may be, for example, 500 μm or less, or 300 μm or less, 200 μm or less, 150 μm or less, 100 μm or less, or 50 μm or less.
[用途]
 一実施形態において、回路基板の金属層は、電気信号を伝送する用途に用いられる。一実施形態に係る回路基板によれば、電気信号の周波数によらず、伝送損失を防止できる。
[Use]
In one embodiment, the metal layer of the circuit board is used for transmitting electrical signals. According to the circuit board according to one embodiment, transmission loss can be prevented regardless of the frequency of the electric signal.
 また、一実施形態において、金属層は、周波数1GHz以上の高周波電気信号を伝送する用途に用いられる。高周波電気信号は、例えば、周波数が、3GHz以上、4GHz以上、5GHz以上、7GHz以上、10GHz以上、15GHz以上、20GHz以上、25GHz以上、30GHz以上、50GHz以上、80GHz以上、100GHz以上、又は110GHz以上であってもよい。かかる周波数の上限は格別限定されず、例えば、200GHz以下であってもよい。一実施形態に係る回路基板によれば、このような高周波電気信号を伝送する際においても、伝送損失を防止できる。 Further, in one embodiment, the metal layer is used for transmitting a high frequency electric signal having a frequency of 1 GHz or more. The high frequency electric signal has, for example, a frequency of 3 GHz or more, 4 GHz or more, 5 GHz or more, 7 GHz or more, 10 GHz or more, 15 GHz or more, 20 GHz or more, 25 GHz or more, 30 GHz or more, 50 GHz or more, 80 GHz or more, 100 GHz or more, or 110 GHz or more. There may be. The upper limit of such a frequency is not particularly limited, and may be, for example, 200 GHz or less. According to the circuit board according to the embodiment, transmission loss can be prevented even when such a high frequency electric signal is transmitted.
 回路基板の形態は格別限定されず、例えば、プリント配線板(PWB;printed wiring board)、プリント回路板(PCB;printed circuit board)、又はフレキシブルプリント回路板(FPC;flexible printed circuits)等であってもよい。 The form of the circuit board is not particularly limited, and is, for example, a printed wiring board (PWB; printed wiring board), a printed circuit board (PCB; printed circuit board), or a flexible printed circuit board (FPC; flexible printed circuit boards). May be good.
[回路基板の製造方法]
 本発明の一実施形態に係る回路基板の製造方法は、以上に説明した回路基板を製造するために用いることができる。
[Manufacturing method of circuit board]
The method for manufacturing a circuit board according to an embodiment of the present invention can be used for manufacturing the circuit board described above.
 一実施形態において、回路基板の製造方法は、
(A)樹脂基材の表面に、活性エネルギー線照射処理、コロナ処理、及びフレーム処理からなる群から選ばれる1以上の処理を施す工程と、
(B)前記処理が施された樹脂基材の表面にポリアニリン層を形成する工程と、
(C)ポリアニリン層上に無電解めっき触媒を担持する工程と、
(D)無電解めっき触媒が担持されたポリアニリン層上に、無電解めっきを施すことによって金属層を形成する工程と、を含む。
In one embodiment, the method of manufacturing a circuit board is
(A) A step of applying one or more treatments selected from the group consisting of active energy ray irradiation treatment, corona treatment, and frame treatment to the surface of the resin base material.
(B) A step of forming a polyaniline layer on the surface of the resin base material subjected to the above treatment, and
(C) A step of supporting an electroless plating catalyst on a polyaniline layer and
(D) The step of forming a metal layer by performing electroless plating on the polyaniline layer on which the electroless plating catalyst is supported is included.
[工程(A)]
 工程(A)では、基材の表面に、活性エネルギー線照射処理、コロナ処理、及びフレーム処理からなる群から選ばれる1以上の処理を施す。
 本明細書において、「活性エネルギー線」は、基材の表面を改質する活性を有するものであり、そのような改質によって基材とポリアニリン層との密着性を向上できるものを用いることができる。密着性の向上を評価する方法には、実施例に記載の「めっき前の密着性」の評価方法を用いる。そのような活性エネルギー線として、例えば、紫外線、電子線、X線等が挙げられ、これらの中でも紫外線が好ましい。紫外線は格別限定されず、例えば、高圧水銀ランプ又はメタルハライドランプを光源とする紫外線を用いることができる。
[Step (A)]
In the step (A), the surface of the base material is subjected to one or more treatments selected from the group consisting of an active energy ray irradiation treatment, a corona treatment, and a frame treatment.
In the present specification, the "active energy ray" has an activity of modifying the surface of the base material, and it is possible to use a material capable of improving the adhesion between the base material and the polyaniline layer by such modification. it can. As a method for evaluating the improvement in adhesion, the method for evaluating "adhesion before plating" described in Examples is used. Examples of such active energy rays include ultraviolet rays, electron beams, X-rays and the like, and among these, ultraviolet rays are preferable. The ultraviolet rays are not particularly limited, and for example, ultraviolet rays using a high-pressure mercury lamp or a metal halide lamp as a light source can be used.
[工程(B)]
 工程(B)では、活性エネルギー線照射処理、コロナ処理、及びフレーム処理からなる群から選ばれる1以上の処理が施された基材の表面にポリアニリン層を形成する。ポリアニリン層の形成方法は格別限定されず、例えば塗布法等を用いることができる。塗布法は格別限定されず、塗液を付与することによってポリアニリン層を形成するものであればよく、種々のコート法や印刷法等を適用でき、例えば、バーコート、スピンコート、ナイフコート、ブレードコート、スクイズコート、リバースロールコート、グラビアロールコート、カーテンコート、スプレーコート、ダイコート、ディッピング、コンマコート、ディスペンサー、パッド印刷、グラビア印刷、フレキソ印刷、インクジェット印刷からなる群から選択することができる。一実施形態において、塗布法として、バーコート法を用いると、ポリアニリン層の表面をより平滑化できる。
[Step (B)]
In step (B), a polyaniline layer is formed on the surface of a substrate that has been subjected to one or more treatments selected from the group consisting of active energy ray irradiation treatment, corona treatment, and frame treatment. The method for forming the polyaniline layer is not particularly limited, and for example, a coating method or the like can be used. The coating method is not particularly limited as long as it forms a polyaniline layer by applying a coating liquid, and various coating methods, printing methods, etc. can be applied, for example, bar coating, spin coating, knife coating, and blade. You can select from the group consisting of coat, squeeze coat, reverse roll coat, gravure roll coat, curtain coat, spray coat, die coat, dipping, comma coat, dispenser, pad printing, gravure printing, flexographic printing, and inkjet printing. In one embodiment, when the bar coating method is used as the coating method, the surface of the polyaniline layer can be further smoothed.
 一実施形態において、塗布法に用いる塗液は、置換又は無置換のポリアニリンと、溶媒とを含むことができる。この場合、溶媒を乾燥して除去することによって、ポリアニリン層が形成される。 In one embodiment, the coating liquid used in the coating method can contain a substituted or unsubstituted polyaniline and a solvent. In this case, the polyaniline layer is formed by drying and removing the solvent.
 溶媒は格別限定されず、例えば、メタノール、エタノール、イソプロピルアルコール、2-メトキシエタノール、2-エトキシエタノール、ジアセトンアルコール、3-メトキシ-1-ブタノール、3-メトキシ-3-メチル-1-ブタノール、エチルカルビトール、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロン、ソルベントナフサ、テトラヒドロフラン、ジエチルエーテル、酢酸n-ブチル、n-ブタノール、プロピレングリコールモノメチルエーテルアセテート、γ-ブチロラクトン、テトラリン、2-ブトキシ-2-エトキシエタノール、ジプロピレングリコールモノプロピルエーテル、1,3-ジメチルイミダゾリジノン、N-メチルピロリドン等が挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
 また、上記溶媒に代えて、紫外線や電子線等で硬化可能なモノマー、オリゴマー又はポリマーを添加して粘度等液性を調整した無溶媒系として用いることも可能である。これらのモノマー、オリゴマー又はポリマーの硬化物は、ポリアニリン層中にバインダーとして含まれ得る。
The solvent is not particularly limited, for example, methanol, ethanol, isopropyl alcohol, 2-methoxyethanol, 2-ethoxyethanol, diacetone alcohol, 3-methoxy-1-butanol, 3-methoxy-3-methyl-1-butanol, Ethyl carbitol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, isophorone, solvent naphtha, tetrahydrofuran, diethyl ether, n-butyl acetate, n-butanol, propylene glycol monomethyl ether acetate, γ-butyrolactone, tetraline, 2-butoxy-2 -Ethanol, dipropylene glycol monopropyl ether, 1,3-dimethylimidazolidinone, N-methylpyrrolidone and the like can be mentioned. One of these may be used alone, or two or more thereof may be used in combination.
Further, instead of the above solvent, it is also possible to use it as a solvent-free system in which a monomer, oligomer or polymer curable by ultraviolet rays or electron beams is added to adjust the viscosity and liquid properties. The cured product of these monomers, oligomers or polymers can be included as a binder in the polyaniline layer.
 また、塗液は、ポリアニリン層に含むことができる成分として説明した成分を含むことができる。 In addition, the coating liquid can contain the components described as the components that can be contained in the polyaniline layer.
 一態様において、塗液(組成物)は、置換又は無置換のポリアニリンを、上述した、ドーパントによってドープされたポリアニリン複合体として含む。組成物中のポリアニリン複合体の濃度は、例えば、50質量%以下、40質量%以下、30質量%以下、20質量%以下、又は15質量%以下であり得る。組成物中のポリアニリン複合体の濃度が、上記のような低濃度であることによって、組成物のチクソトロピー性が低下し、塗工されるポリアニリン層の平滑性が向上し、金属層におけるポリアニリン層側の面の表面粗さRzJISを好適に0.5μm以下にすることができる。組成物中のポリアニリン複合体の濃度は、さらに、13質量%以下、10質量%以下、8質量%以下、又は5質量%以下であってもよい。組成物中のポリアニリン複合体の濃度の下限は格別限定されず、例えば、1質量%以上とすることができる。 In one aspect, the coating (composition) comprises a substituted or unsubstituted polyaniline as the dopant-doped polyaniline complex described above. The concentration of the polyaniline complex in the composition can be, for example, 50% by mass or less, 40% by mass or less, 30% by mass or less, 20% by mass or less, or 15% by mass or less. When the concentration of the polyaniline complex in the composition is as low as described above, the thixotropic property of the composition is lowered, the smoothness of the polyaniline layer to be coated is improved, and the polyaniline layer side in the metal layer is improved. The surface roughness Rz JIS of the surface can be preferably 0.5 μm or less. The concentration of the polyaniline complex in the composition may be further 13% by mass or less, 10% by mass or less, 8% by mass or less, or 5% by mass or less. The lower limit of the concentration of the polyaniline complex in the composition is not particularly limited, and can be, for example, 1% by mass or more.
 ポリアニリン層を形成した後、金属層を形成する前に脱脂工程を行うことができる。脱脂工程は、界面活性剤や、アルコール等の溶剤で無電解めっき下地膜表面を脱脂洗浄して濡れ性を改善する。界面活性剤は、アニオン性、カチオン性又は非イオン性のものを適宜使用できる。カチオン性界面活性剤を用いる場合は、例えばイオン交換水等で1~3質量%に希釈して用いることができる。なお、希釈率は脱脂洗浄に用いる界面活性剤や溶剤等の種類によって適宜調整することができる。 After forming the polyaniline layer, the degreasing step can be performed before forming the metal layer. In the degreasing step, the surface of the electroless plating base film is degreased and washed with a solvent such as a surfactant or alcohol to improve wettability. As the surfactant, anionic, cationic or nonionic surfactants can be appropriately used. When a cationic surfactant is used, it can be diluted to 1 to 3% by mass with, for example, ion-exchanged water. The dilution ratio can be appropriately adjusted depending on the type of surfactant, solvent, etc. used for degreasing cleaning.
[工程(C)]
 工程(C)では、ポリアニリン層上に無電解めっき触媒を担持する。工程(C)は、ポリアニリン層を形成後、好ましくは脱脂工程後に行うことができる。
[Step (C)]
In the step (C), the electroless plating catalyst is supported on the polyaniline layer. The step (C) can be carried out after forming the polyaniline layer, preferably after the degreasing step.
 無電解めっき触媒として、例えば、Pd金属(触媒金属)等が挙げられる。ポリアニリン層上に無電解めっき触媒を担持させるために、ポリアニリン層を、無電解めっき触媒を含む溶液と接触させることができる。
 無電解めっき触媒としてPdを用いる場合、Pd化合物溶液を接触させると、ポリアニリン、好ましくはポリアニリン複合体は、Pdイオンを吸着し、その還元作用により、PdイオンがPd金属に還元される。還元されたPd、即ち金属状態のPdは、無電解めっきにおける触媒作用を発現する。単位面積当たりのPd付着量(Pdイオン及びPd金属を含む)は、例えば、1.7μg/cm以上又は、2.5μg/cm以上であってもよい。
Examples of the electroless plating catalyst include Pd metal (catalyst metal) and the like. In order to support the electroless plating catalyst on the polyaniline layer, the polyaniline layer can be brought into contact with a solution containing the electroless plating catalyst.
When Pd is used as the electroless plating catalyst, when a Pd compound solution is brought into contact with the polyaniline, preferably the polyaniline complex, the Pd ion is adsorbed and the Pd ion is reduced to the Pd metal by its reducing action. The reduced Pd, that is, the Pd in the metallic state, exhibits a catalytic action in electroless plating. The amount of Pd adhered per unit area (including Pd ions and Pd metal) may be, for example, 1.7 μg / cm 2 or more or 2.5 μg / cm 2 or more.
 Pd化合物としては、例えば塩化パラジウム等が挙げられる。Pd化合物溶液に用いられる溶媒としては、例えば塩酸等を用いることができる。Pd化合物溶液の具体例として、例えば、0.02%塩化パラジウム-0.01%塩酸水溶液(pH3)等が挙げられる。 Examples of the Pd compound include palladium chloride and the like. As the solvent used in the Pd compound solution, for example, hydrochloric acid or the like can be used. Specific examples of the Pd compound solution include 0.02% palladium chloride-0.01% hydrochloric acid aqueous solution (pH 3) and the like.
 ポリアニリン層とPd化合物溶液との接触温度は格別限定されず適宜設定可能であり、例えば、20~50℃、又は30~40℃であり、接触時間も格別限定されず適宜設定可能であり、例えば、0.1~20分、又は1~10分であり得る。 The contact temperature between the polyaniline layer and the Pd compound solution is not particularly limited and can be set appropriately, for example, 20 to 50 ° C. or 30 to 40 ° C., and the contact time is not particularly limited and can be set appropriately, for example. , 0.1-20 minutes, or 1-10 minutes.
[工程(D)]
 工程(D)では、無電解めっき触媒が担持されたポリアニリン層上に、無電解めっきを施すことによって金属層を形成する。無電解めっき触媒が担持されたポリアニリン層を無電解めっき液に接触させることによって、ポリアニリン層上に、無電解めっき被膜として金属層が形成される。
[Step (D)]
In step (D), a metal layer is formed by performing electroless plating on the polyaniline layer on which the electroless plating catalyst is supported. By bringing the polyaniline layer on which the electroless plating catalyst is supported into contact with the electroless plating solution, a metal layer is formed as an electroless plating film on the polyaniline layer.
 無電解めっき液に含まれる金属種(めっき金属)は格別限定されず、例えば、Cu、Ni、Au、Pd、Ag、Sn、Co及びPtからなる群から選択される1以上の金属を含むことができる。一実施形態において、無電解めっき液はCuを含む。また、無電解めっき液は、これらの他にリン、ホウ素、鉄等の元素を含んでもよい。 The metal type (plating metal) contained in the electroless plating solution is not particularly limited, and includes, for example, one or more metals selected from the group consisting of Cu, Ni, Au, Pd, Ag, Sn, Co and Pt. Can be done. In one embodiment, the electroless plating solution contains Cu. In addition to these, the electroless plating solution may contain elements such as phosphorus, boron, and iron.
 ポリアニリン層と無電解めっき液との接触温度は、めっき浴の種類や、所望される金属層の厚さ等を考慮して適宜設定可能であり、例えば低温浴であれば20~50℃程度、高温では50~90℃である。
 また、ポリアニリン層と無電解めっき液との接触時間も、めっき浴の種類や、所望される金属層の厚さ等を考慮して適宜設定可能であり、例えば1~120分である。
The contact temperature between the polyaniline layer and the electroless plating solution can be appropriately set in consideration of the type of plating bath, the desired thickness of the metal layer, etc. For example, in the case of a low temperature bath, it is about 20 to 50 ° C. At high temperatures, it is 50 to 90 ° C.
The contact time between the polyaniline layer and the electroless plating solution can also be appropriately set in consideration of the type of plating bath, the desired thickness of the metal layer, and the like, and is, for example, 1 to 120 minutes.
 金属層は、上記のようにして形成される無電解めっき被膜のみによって構成されてもよく、又は無電解めっき被膜を設けた後で電解めっきによりさらに同種又は異なる金属膜を設けたものであってもよい。 The metal layer may be composed of only the electroless plating film formed as described above, or the metal layer may be provided with the same or different metal film by electroplating after the electroless plating film is provided. May be good.
製造例1
[ポリアニリン複合体の製造]
 「エーロゾルOT」(ジ-2-エチルヘキシルスルホコハク酸ナトリウム)(AOT)37.8g及びポリオキシエチレンソルビタン脂肪酸エステル構造を有する非イオン乳化剤である「ソルボンT-20」(東邦化学工業株式会社製)1.47gをトルエン600mLに溶解した溶液を、窒素気流下においた6Lのセパラブルフラスコに入れ、さらにこの溶液に、22.2gのアニリンを加えた。その後、1Mリン酸1800mLを溶液に添加し、トルエンと水の2つの液相を有する溶液の温度を5℃に冷却した。
Manufacturing example 1
[Manufacturing of polyaniline complex]
"Erosol OT" (sodium di-2-ethylhexyl sulfosuccinate) (AOT) 37.8 g and "Sorbon T-20" (manufactured by Toho Chemical Industry Co., Ltd.), which is a nonionic emulsifier having a polyoxyethylene sorbitan fatty acid ester structure 1 A solution of .47 g in 600 mL of toluene was placed in a 6 L separable flask under a nitrogen stream, and 22.2 g of aniline was further added to this solution. Then, 1800 mL of 1M phosphoric acid was added to the solution, and the temperature of the solution having two liquid phases of toluene and water was cooled to 5 ° C.
 溶液内温が5℃に到達した時点で、毎分390回転で撹拌を行った。65.7gの過硫酸アンモニウムを1Mリン酸600mLに溶解した溶液を、滴下ロートを用いて2時間かけて滴下した。滴下開始から18時間、溶液内温を5℃に保ったまま反応を実施した。その後、反応温度を40℃まで上昇させ、1時間反応を継続した。その後、静置し、トルエン相を分離した。得られたトルエン相にトルエンを1500mL添加し、1Mリン酸500mLで1回、イオン交換水500mLで3回洗浄し、トルエン相を静置分離し、濃度調整のための濃縮を行い、ポリアニリン複合体トルエン溶液900gを得た。このポリアニリン複合体トルエン溶液のポリアニリン複合体濃度は5.7質量%であった。 When the temperature inside the solution reached 5 ° C., stirring was performed at 390 rpm. A solution prepared by dissolving 65.7 g of ammonium persulfate in 600 mL of 1 M phosphoric acid was added dropwise over 2 hours using a dropping funnel. The reaction was carried out for 18 hours from the start of dropping while keeping the temperature inside the solution at 5 ° C. Then, the reaction temperature was raised to 40 ° C., and the reaction was continued for 1 hour. Then, it was allowed to stand and the toluene phase was separated. Toluene was added to the obtained toluene phase in an amount of 1500 mL, washed once with 500 mL of 1M phosphoric acid and three times with 500 mL of ion-exchanged water, the toluene phase was separated by allowing it to stand, and concentrated for concentration adjustment. 900 g of a toluene solution was obtained. The polyaniline complex concentration of this polyaniline complex toluene solution was 5.7% by mass.
 得られたポリアニリン複合体トルエン溶液を、60℃の湯浴で減圧乾燥し、乾固しポリアニリン複合体(粉末)を51.3g得た。
 このポリアニリン複合体中のポリアニリン分子の重量平均分子量は72,000g/molであり、分子量分布は2.0であった。
The obtained polyaniline complex toluene solution was dried under reduced pressure in a hot water bath at 60 ° C. and dried to dryness to obtain 51.3 g of a polyaniline complex (powder).
The weight average molecular weight of the polyaniline molecule in this polyaniline complex was 72,000 g / mol, and the molecular weight distribution was 2.0.
実施例1
[塗液1の調製]
 プロピレングリコールモノブチルエーテル27g、アノン53g及びトルエン9gを混合して混合溶媒とした。当該混合溶媒へポリエステル樹脂(東洋紡株式会社製「バイロンGK810」)1.2g、ポリエステルウレタン樹脂(東洋紡株式会社製「バイロンUR1350」)6g、硬化剤(十条ケミカル株式会社製「JA-980」)1gを溶解させた後、製造例1で得られたポリアニリン複合体2.7gを溶解させ、樹脂改質剤(四国化成工業株式会社製「VD-3」)を分散させて塗液1を得た。塗液1中の全固形分に占めるポリアニリン複合体の濃度は39%であった。
Example 1
[Preparation of coating liquid 1]
27 g of propylene glycol monobutyl ether, 53 g of anon and 9 g of toluene were mixed to prepare a mixed solvent. To the mixed solvent, 1.2 g of polyester resin ("Byron GK810" manufactured by Toyo Boseki Co., Ltd.), 6 g of polyester urethane resin ("Byron UR1350" manufactured by Toyo Boseki Co., Ltd.), 1 g of curing agent ("JA-980" manufactured by Jujo Chemical Co., Ltd.) Was dissolved, 2.7 g of the polyaniline complex obtained in Production Example 1 was dissolved, and a resin modifier (“VD-3” manufactured by Shikoku Kasei Kogyo Co., Ltd.) was dispersed to obtain a coating liquid 1. .. The concentration of the polyaniline complex in the total solid content in the coating liquid 1 was 39%.
[回路基板の製造及び評価]
(活性エネルギー線照射工程)
 基材であるSPS樹脂成型シート(出光興産株式会社製「ザレック」(登録商標)、誘電正接0.005(10GHz))の表面に、紫外線照射装置(ジーエス・ユアサコーポレーション社製「コンベヤーUV照射装置」、光源:メタルハライドランプ)を用いて、活性エネルギー線である紫外線を1000mJ/cmの条件で照射した。
[Manufacturing and evaluation of circuit boards]
(Active energy ray irradiation process)
On the surface of the SPS resin molded sheet (“Zarek” (registered trademark) manufactured by Idemitsu Kosan Co., Ltd., dielectric loss tangent 0.005 (10 GHz)), which is the base material, an ultraviolet irradiation device (conveyor UV irradiation device manufactured by GS Yoursa Corporation). , Light source: metal halide lamp), and irradiated with ultraviolet rays, which are active energy rays, under the condition of 1000 mJ / cm 2 .
(ポリアニリン層の形成(印刷・塗布工程))
 SPS樹脂フィルムにおける紫外線照射された面に、塗液1を、バーコーター(No.16)を用いて塗布した。塗膜を150℃で30分間乾燥して硬化させ、ポリアニリン層(無電解めっき下地膜)とした。ここで、塗液1の塗布量は、触針式膜厚計で測定されるポリアニリン層の膜厚が1μmになるように調整した。ポリアニリン層を形成したSPS樹脂成型シートを50mm×100mmに切断して試験片とした。
(Formation of polyaniline layer (printing / coating process))
The coating liquid 1 was applied to the surface of the SPS resin film irradiated with ultraviolet rays using a bar coater (No. 16). The coating film was dried at 150 ° C. for 30 minutes and cured to obtain a polyaniline layer (electroless plating base film). Here, the coating amount of the coating liquid 1 was adjusted so that the film thickness of the polyaniline layer measured by the stylus type film thickness meter was 1 μm. The SPS resin molded sheet on which the polyaniline layer was formed was cut into 50 mm × 100 mm to obtain a test piece.
(表面粗さRzJISの測定)
 得られた試験片におけるポリアニリン層の表面(ポリアニリン層における基材と反対側の面)の表面粗さRzJISを、JIS B 0601:2001に準拠して測定した。当該測定値を、ポリアニリン層上に形成される金属層の表面粗さRzJISとして表1に示す。
(Measurement of surface roughness Rz JIS )
The surface roughness Rz JIS of the surface of the polyaniline layer (the surface of the polyaniline layer opposite to the base material) in the obtained test piece was measured according to JIS B 0601: 2001. The measured values are shown in Table 1 as the surface roughness Rz JIS of the metal layer formed on the polyaniline layer.
(めっき前の密着性評価)
 得られた試験片(密着性評価用のもの)について、JIS K5600-5-6(1999)に準拠して密着性試験を行った。JIS K5600-5-6に規定される下記基準に沿って評価を行い、分類0及び1を「〇」(合格)とし、分類2~5を「×」(不合格)とした。結果を表1に示す。
0:カットの縁が完全に滑らかで、どの格子の目にもはがれがない。
1:カットの交差点における塗膜の小さなはがれ。クロスカット部分で影響を受けるのは、明確に5%を上回ることはない。
2:塗膜がカットの縁に沿って、及び/又は交差点においてはがれている。クロスカット部分で影響を受けるのは明確に5%を超えるが15%を上回ることはない。
3:塗膜がカットの縁に沿って、部分的又は全面的に大はがれを生じており、及び/又は目のいろいろな部分が、部分的又は全面的にはがれている。クロスカット部分で影響を受けるのは、明確に15%を超えるが35%を上回ることはない。
4:塗膜がカットの縁に沿って、部分的又は全面的に大はがれを生じており、及び/又は数か所の目が部分的又は全面的にはがれている。クロスカット部分で影響を受けるのは、明確に35%を上回ることはない。
5:分類4でも分類できないはがれ程度のいずれか。
(Adhesion evaluation before plating)
The obtained test piece (for evaluation of adhesion) was subjected to an adhesion test in accordance with JIS K5600-5-6 (1999). The evaluation was performed according to the following criteria specified in JIS K5600-5-6, and classifications 0 and 1 were designated as "○" (pass), and classifications 2 to 5 were designated as "x" (fail). The results are shown in Table 1.
0: The edges of the cut are perfectly smooth and there is no peeling on any grid.
1: Small peeling of the coating film at the intersection of the cuts. The cross-cut portion is clearly not affected by more than 5%.
2: The coating film is peeled off along the edge of the cut and / or at the intersection. The cross-cut area is clearly affected by more than 5%, but not more than 15%.
3: The coating film is partially or wholly peeled off along the edges of the cut, and / or various parts of the eye are partially or wholly peeled off. The cross-cut portion is clearly affected by more than 15% but not more than 35%.
4: The coating film is partially or wholly peeled off along the edge of the cut, and / or some eyes are partially or wholly peeled off. The cross-cut portion is clearly not affected by more than 35%.
5: Any degree of peeling that cannot be classified even in classification 4.
(脱脂工程)
 上記試験片を、界面活性剤(奥野製薬工業株式会社製「エースクリーン」)の2.5質量%水溶液中へ55℃で5分間浸漬した。その後、試験片の表面を流水で洗浄後、10質量%亜硫酸水素ナトリウム水溶液に60℃で5分間浸漬した。さらに試験片の表面を流水で洗浄し脱脂処理を行った。
(Degreasing process)
The test piece was immersed in a 2.5 mass% aqueous solution of a surfactant (“Ascreen” manufactured by Okuno Pharmaceutical Co., Ltd.) at 55 ° C. for 5 minutes. Then, the surface of the test piece was washed with running water and then immersed in a 10 mass% sodium hydrogen sulfite aqueous solution at 60 ° C. for 5 minutes. Further, the surface of the test piece was washed with running water and degreased.
(触媒担持工程)
 脱脂処理後の試験片全体を、触媒化処理剤アクチベーター(塩酸酸性Pd化合物水溶液、奥野製薬工業株式会社製)の20倍希釈液中に30℃で5分間浸漬し、ポリアニリン層に金属Pd(無電解めっき触媒)を担持させる処理を行った。
(Catalyst support step)
The entire test piece after the degreasing treatment was immersed in a 20-fold diluted solution of a catalytic treatment agent activator (hydrochloric acid acidic Pd compound aqueous solution, manufactured by Okuno Pharmaceutical Co., Ltd.) at 30 ° C. for 5 minutes, and the metal Pd (metal Pd (metal Pd) was placed in the polyaniline layer. A treatment for supporting an electroless plating catalyst) was performed.
(金属層形成工程)
 触媒担持処理後の試験片について、無電解銅めっき液(上村工業株式会社製「スルカップELC-SP」)を用いて、60℃で60分間めっき処理を行って無電解銅めっき層(銅を含む金属層)を形成した後、流水洗浄及び温風乾燥(80℃)を行い、回路基板を得た。
(Metal layer forming process)
The test piece after the catalyst-supporting treatment is plated with an electrolytic-free copper plating solution (“Sulcup ELC-SP” manufactured by Uemura Kogyo Co., Ltd.) at 60 ° C. for 60 minutes to perform an electrolytic-free copper plating layer (including copper). After forming the metal layer), it was washed with running water and dried with warm air (80 ° C.) to obtain a circuit board.
(めっき後の密着性評価)
 得られた回路基板について、(めっき前の密着性評価)と同じ方法で密着性試験を行い、基準で評価した。なお、本評価は(めっき前の密着性評価)が「○」であったものについてのみ行った。結果を表1に示す。
(Evaluation of adhesion after plating)
The obtained circuit board was subjected to an adhesion test by the same method as (adhesion evaluation before plating) and evaluated based on the criteria. In addition, this evaluation was performed only for those whose (adhesion evaluation before plating) was "○". The results are shown in Table 1.
実施例2
 実施例1において、基材としてSPS樹脂フィルムに代えてポリイミドフィルム(東レ・デュポン株式会社製「カプトンEN」、誘電正接0.0126(10GHz))を用いた以外は、実施例1と同じ方法で回路基板を製造し、評価した。結果を表1に示す。
Example 2
In Example 1, the same method as in Example 1 was used except that a polyimide film (“Kapton EN” manufactured by Toray DuPont Co., Ltd., dielectric loss tangent 0.0126 (10 GHz)) was used as the base material instead of the SPS resin film. The circuit board was manufactured and evaluated. The results are shown in Table 1.
実施例3
 実施例1において、基材としてSPS樹脂フィルムに代えて液晶ポリマーフィルム(誘電正接0.015以下(10GHz))を用いた以外は、実施例1と同じ方法で回路基板を製造し、評価した。結果を表1に示す。
Example 3
In Example 1, a circuit board was manufactured and evaluated by the same method as in Example 1 except that a liquid crystal polymer film (dielectric loss tangent 0.015 or less (10 GHz)) was used instead of the SPS resin film as the base material. The results are shown in Table 1.
比較例1
 3-メチル-3メトキシブタノール35g、ブチルカルビトール5g、及び石油ナフサ10gを混合して混合溶媒とした。当該混合溶媒へウレタン樹脂(大日精化工業株式会社製「MAU1008」)30g、ウレタン樹脂(DIC株式会社製「ASPU-360」)6g、エポキシ樹脂(DIC株式会社製「HP-4710」)0.3g、及びポリビニルアセタール樹脂(積水樹脂株式会社製「KS-10」)0.3gを溶解させ、製造例1で得られたポリアニリン複合体13.3gを溶解させ塗液2を得た。塗液2中の全固形分中に占めるポリアニリン複合体濃度は50質量%である。
 実施例1の(ポリアニリン層の形成(印刷・塗布工程))において、塗液1の代わりに塗液2を用い、スクリーン印刷にて厚さ6μmのポリアニリン層を形成した以外は、実施例1と同じ方法で回路基板を製造し、評価した。結果を表1に示す。
Comparative Example 1
35 g of 3-methyl-3methoxybutanol, 5 g of butyl carbitol, and 10 g of petroleum naphtha were mixed to prepare a mixed solvent. To the mixed solvent, 30 g of urethane resin (“MAU1008” manufactured by Dainichiseika Kogyo Co., Ltd.), 6 g of urethane resin (“ASPU-360” manufactured by DIC Corporation), and epoxy resin (“HP-4710” manufactured by DIC Corporation) 0. 3 g and 0.3 g of a polyvinyl acetal resin (“KS-10” manufactured by Sekisui Resin Co., Ltd.) were dissolved, and 13.3 g of the polyaniline complex obtained in Production Example 1 was dissolved to obtain a coating liquid 2. The concentration of the polyaniline complex in the total solid content in the coating liquid 2 is 50% by mass.
In Example 1 (formation of polyaniline layer (printing / coating step)), the polyaniline layer having a thickness of 6 μm was formed by screen printing using the coating liquid 2 instead of the coating liquid 1, but the same as in Example 1. Circuit boards were manufactured and evaluated in the same way. The results are shown in Table 1.
比較例2
 実施例1の(活性エネルギー線照射工程)を行わなかった以外は、実施例1と同じ方法で回路基板の製造を試みたが、めっき前の密着性が「×」であり、また、(金属層形成工程)においてポリアニリン層が剥離してしまい、回路基板を形成できなかった。
Comparative Example 2
An attempt was made to manufacture a circuit board by the same method as in Example 1 except that the (active energy ray irradiation step) of Example 1 was not performed, but the adhesion before plating was "x" and (metal). In the layer forming step), the polyaniline layer was peeled off, and the circuit board could not be formed.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
実施例4
(銅張積層フィルムの作製)
 両面に紫外線照射処理が施されたSPS樹脂フィルム(厚さ50μm、誘電正接0.0004)の一方の面に、塗液1を、バーコーター(No.8)を用いて塗布(バーコート)し、150℃で10分乾燥した。次いで、SPS樹脂フィルムの他方の面に、塗液1を、バーコーター(No.8)を用いて塗布(バーコート)し、150℃で15分間乾燥した。このようにして両面に形成されたポリアニリン層(無電解めっき下地膜)の乾燥後の膜厚はそれぞれ約0.8μmであった。膜厚は、実施例1と同様の触針式膜厚計で測定される値である。
 得られた試験片の両面に、実施例1と同じ方法で、脱脂工程、触媒担持工程及び金属層形成工程(無電解めっき工程)を施し、1μm厚の無電解銅めっき層(銅を含む金属層)を形成させた。次いで、硫酸銅浴を用い、電流密度2A/dmの条件で電解めっきにより金属層(銅層)の膜厚(銅厚)を12μmまで増加させ、両面銅張フィルムを得た。
Example 4
(Preparation of copper-clad laminate film)
Coating liquid 1 is applied (bar coated) to one surface of an SPS resin film (thickness 50 μm, dielectric loss tangent 0.0004) that has been subjected to ultraviolet irradiation treatment on both sides using a bar coater (No. 8). , 150 ° C. for 10 minutes. Next, the coating liquid 1 was applied (bar coated) on the other surface of the SPS resin film using a bar coater (No. 8), and dried at 150 ° C. for 15 minutes. The thickness of the polyaniline layer (electroless plating base film) formed on both sides in this manner after drying was about 0.8 μm, respectively. The film thickness is a value measured by the same stylus type film thickness meter as in Example 1.
Both sides of the obtained test piece were subjected to a degreasing step, a catalyst supporting step and a metal layer forming step (electroless plating step) in the same manner as in Example 1, and a 1 μm thick electroless copper plating layer (metal containing copper) was subjected to. Layer) was formed. Next, using a copper sulfate bath, the film thickness (copper thickness) of the metal layer (copper layer) was increased to 12 μm by electroplating under the condition of a current density of 2 A / dm 2 , to obtain a double-sided copper-clad film.
(マイクロストリップ線路の作製)
 得られた両面銅張フィルムに、以下に説明する手順で、マイクロストリップ線路とグランド(GND)端子とを形成した。
 まず、得られた両面銅張フィルムに、穴あけ加工とスルーホールめっきによって、該両面銅張フィルムの表裏の銅層を導通するGND端子を形成した。GND端子は、マイクロストリップ線路(幅140μm、長さ100mm;GND端子を形成する段階ではマイクロストリップ線路は未形成であるが、GND端子の形成位置について、マイクロストリップ線路の形成位置を基準に説明する。)の長手方向の一端側及び他端側のそれぞれにおいて、該マイクロストリップ線路の幅方向の両側に配置されるように、計4つ形成した。上記のスルーホールめっきに伴い、両面銅張フィルムの各面の最終的な銅厚は18μmになった。
 次に、両面銅張フィルムの一方の面(表面)の銅層をエッチングして、上述したマイクロストリップ線路を形成した。一方、両面銅張フィルムの他方の面(裏面)の銅層はエッチングせず、該銅層の全面をグランド(GND)とした。このようにして、伝送損失測定用基板を得た。
 銅層(金属層)におけるSPS樹脂フィルム(基材フィルム)側(ポリアニリン層側に相当)の表面粗さRzJISは0.4μmであった。表面粗さRzJISは、実施例1と同じ方法により、ポリアニリン層の表面(ポリアニリン層における基材と反対側の面)の表面粗さRzJISとして測定された値である。
(Making microstrip lines)
A microstrip line and a ground (GND) terminal were formed on the obtained double-sided copper-clad film by the procedure described below.
First, a GND terminal for conducting the copper layers on the front and back surfaces of the double-sided copper-clad film was formed on the obtained double-sided copper-clad film by drilling and through-hole plating. The GND terminal is a microstrip line (width 140 μm, length 100 mm; the microstrip line is not formed at the stage of forming the GND terminal, but the formation position of the GND terminal will be described with reference to the formation position of the microstrip line. ), A total of four were formed so as to be arranged on both sides of the microstrip line in the width direction on one end side and the other end side in the longitudinal direction. With the above through-hole plating, the final copper thickness of each surface of the double-sided copper-clad film became 18 μm.
Next, the copper layer on one side (surface) of the double-sided copper-clad film was etched to form the microstrip line described above. On the other hand, the copper layer on the other side (back side) of the double-sided copper-clad film was not etched, and the entire surface of the copper layer was grounded (GND). In this way, a substrate for measuring transmission loss was obtained.
The surface roughness Rz JIS of the SPS resin film (base film) side (corresponding to the polyaniline layer side) of the copper layer (metal layer) was 0.4 μm. The surface roughness Rz JIS is a value measured as the surface roughness Rz JIS of the surface of the polyaniline layer (the surface opposite to the base material in the polyaniline layer) by the same method as in Example 1.
(伝送損失測定)
 得られた伝送損失測定用基板のマイクロストリップ線路について、ネットワークアナライザー「N5247」(キーサイト・テクノロジー社)を用いて、10MHz-110GHzのSパラメータから伝送損失を測定した。結果を表2に示す。
(Transmission loss measurement)
The transmission loss of the obtained microstrip line of the substrate for measuring transmission loss was measured from the S parameter of 10 MHz to 110 GHz using a network analyzer “N5247” (Keysight Technology Co., Ltd.). The results are shown in Table 2.
比較例3
 両面に紫外線照射処理が施されたSPS樹脂フィルム(厚さ50μm、誘電正接0.0004)の両面に、市販の銅箔(JX金属株式会社、銅厚12μm、RzJIS=4.0μm)を220℃加熱下で真空プレス装置により溶融圧着して、両面銅張フィルムを得た。実施例4と同様に、穴あけ加工とスルーホールめっきによりGND端子を形成し、また、一方の面の銅箔をエッチングしてマイクロストリップ線路を形成して、伝送損失測定用基板を得た。得られた伝送損失測定用基板について、実施例4と同様に伝送損失を測定した結果を表2に示す。
Comparative Example 3
220 commercially available copper foils (JX Nippon Mining & Metals Co., Ltd., copper thickness 12 μm, Rz JIS = 4.0 μm) are applied to both sides of an SPS resin film (thickness 50 μm, dielectric loss tangent 0.0004) that has been subjected to ultraviolet irradiation treatment on both sides. A double-sided copper-clad film was obtained by melt-pressing with a vacuum press device under heating at ° C. Similar to Example 4, a GND terminal was formed by drilling and through-hole plating, and a copper foil on one surface was etched to form a microstrip line to obtain a substrate for measuring transmission loss. Table 2 shows the results of measuring the transmission loss of the obtained transmission loss measurement substrate in the same manner as in Example 4.
比較例4
 市販の高周波向け両面銅張フレキシブル基板(基材:液晶ポリマー50μm厚、銅厚12μm、RzJIS=1.0μm、10GHzにおける比誘電率2.9、誘電正接0.002)を用意し、実施例4と同様に、穴あけ加工とスルーホールめっきによりGND端子を形成し、また、一方の面の銅箔をエッチングしてマイクロストリップ線路を形成して、伝送損失測定用基板を得た。得られた伝送損失測定用基板について、実施例4と同様に伝送損失を測定した結果を表2に示す。
Comparative Example 4
A commercially available double-sided copper-clad flexible substrate for high frequencies (base material: liquid crystal polymer 50 μm thickness, copper thickness 12 μm, Rz JIS = 1.0 μm, relative permittivity 2.9 at 10 GHz, dielectric loss tangent 0.002) was prepared and used as an example. In the same manner as in No. 4, a GND terminal was formed by drilling and through-hole plating, and a copper foil on one surface was etched to form a microstrip line to obtain a substrate for measuring transmission loss. Table 2 shows the results of measuring the transmission loss of the obtained transmission loss measurement substrate in the same manner as in Example 4.
比較例5
 市販の高周波向け両面銅張フレキシブル基板(基材:ポリイミド50μm厚、銅厚12μm、RzJIS=1.0μm、10GHzにおける比誘電率3.2、誘電正接0.02)を用意し、実施例4と同様に、穴あけ加工とスルーホールめっきによりGND端子を形成し、また、一方の面の銅箔をエッチングしてマイクロストリップ線路を形成して、伝送損失測定用基板を得た。得られた伝送損失測定用基板について、実施例4と同様に伝送損失を測定した結果を表2に示す。
Comparative Example 5
A commercially available double-sided copper-clad flexible substrate for high frequencies (base material: polyimide 50 μm thickness, copper thickness 12 μm, Rz JIS = 1.0 μm, relative permittivity 3.2 at 10 GHz, dielectric loss tangent 0.02) was prepared, and Example 4 Similarly, a GND terminal was formed by drilling and through-hole plating, and a copper foil on one surface was etched to form a microstrip line to obtain a substrate for measuring transmission loss. Table 2 shows the results of measuring the transmission loss of the obtained transmission loss measurement substrate in the same manner as in Example 4.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(電力減衰)
 伝送損失と電力減衰の間には下記の関係がある。
-6dB:電力として約1/4に減衰
-10dB:電力として約1/10に減衰
-20dB:電力として約1/100に減衰
 実施例4で得られた回路基板を用いれば、ミリ波以上の高周波の伝送損失を顕著に低減できることが分かる。
(Power attenuation)
There is the following relationship between transmission loss and power attenuation.
-6dB: Attenuated to about 1/4 as electric power -10dB: Attenuated to about 1/10 as electric power -20dB: Attenuated to about 1/100 as electric power Using the circuit board obtained in Example 4, millimeter waves or more It can be seen that the high frequency transmission loss can be significantly reduced.
 本発明の回路基板は、車載レーダーや次世代携帯電話等の回路基板として利用できる。 The circuit board of the present invention can be used as a circuit board for in-vehicle radars, next-generation mobile phones, and the like.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。
Although some embodiments and / or embodiments of the present invention have been described above in detail, those skilled in the art will be able to demonstrate these embodiments and / or embodiments without substantial departure from the novel teachings and effects of the present invention. It is easy to make many changes to the examples. Therefore, many of these modifications are within the scope of the invention.
All the documents described in this specification and the contents of the application underlying the priority under the Paris Convention of the present application are incorporated.

Claims (19)

  1.  誘電正接が0.015以下である樹脂基材と、
     置換又は無置換のポリアニリンを含むポリアニリン層と、
     金属層と、をこの順に積層して含み、
     前記金属層における前記ポリアニリン層側の面の表面粗さRzJISが0.5μm以下である、
     回路基板。
    With a resin base material having a dielectric loss tangent of 0.015 or less,
    A polyaniline layer containing substituted or unsubstituted polyaniline,
    The metal layer and the metal layer are laminated in this order and included.
    The surface roughness Rz JIS of the surface on the polyaniline layer side of the metal layer is 0.5 μm or less.
    Circuit board.
  2.  前記金属層における前記ポリアニリン層側の面の表面粗さRzJISが0.25μm以下である、請求項1に記載の回路基板。 The circuit board according to claim 1, wherein the surface roughness Rz JIS of the surface of the metal layer on the polyaniline layer side is 0.25 μm or less.
  3.  前記ポリアニリン層の厚さが5μm以下である、請求項1又は2に記載の回路基板。 The circuit board according to claim 1 or 2, wherein the polyaniline layer has a thickness of 5 μm or less.
  4.  前記樹脂基材が、シンジオタクチックポリスチレン、ポリイミド、液晶ポリマー、ポリテトラフルオロエチレン、及びポリオレフィンからなる群から選択される1種以上を含む、請求項1~3のいずれかに記載の回路基板。 The circuit board according to any one of claims 1 to 3, wherein the resin base material contains at least one selected from the group consisting of syndiotactic polystyrene, polyimide, liquid crystal polymer, polytetrafluoroethylene, and polyolefin.
  5.  前記樹脂基材がシンジオタクチックポリスチレンを含む、請求項1~4のいずれかに記載の回路基板。 The circuit board according to any one of claims 1 to 4, wherein the resin base material contains syndiotactic polystyrene.
  6.  前記金属層が、Cu、Ni、Au、Pd、Ag、Sn、Co及びPtからなる群から選択される1以上の金属を含む、請求項1~5のいずれかに記載の回路基板。 The circuit board according to any one of claims 1 to 5, wherein the metal layer contains one or more metals selected from the group consisting of Cu, Ni, Au, Pd, Ag, Sn, Co and Pt.
  7.  前記金属層がCuを含む、請求項1~6のいずれかに記載の回路基板。 The circuit board according to any one of claims 1 to 6, wherein the metal layer contains Cu.
  8.  前記ポリアニリン層が、置換又は無置換のポリアニリンを、ドーパントによってドープされたポリアニリン複合体として含む、請求項1~7のいずれかに記載の回路基板。 The circuit board according to any one of claims 1 to 7, wherein the polyaniline layer contains a substituted or unsubstituted polyaniline as a polyaniline composite doped with a dopant.
  9.  前記ドーパントが下記式(III)で表されるスルホコハク酸誘導体から生じる有機酸イオンである、請求項8に記載の回路基板。
    Figure JPOXMLDOC01-appb-C000001
    (式(III)中、Mは、水素原子、有機遊離基又は無機遊離基である。m’は、Mの価数である。R13及びR14は、それぞれ独立に炭化水素基又は-(R15O)-R16基である。R15は、それぞれ独立に炭化水素基又はシリレン基であり、R16は水素原子、炭化水素基又はR17 Si-基であり、rは1以上の整数である。R17は、それぞれ独立に炭化水素基である。)
    The circuit board according to claim 8, wherein the dopant is an organic acid ion generated from a sulfosuccinic acid derivative represented by the following formula (III).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (III), M is a hydrogen atom, an organic radical or an inorganic radical. M'is a valence of M. R 13 and R 14 are independently hydrocarbon groups or-(, respectively. R 15 O) .R 15 is r -R 16 radicals are each independently a hydrocarbon group or a silylene group, R 16 is a hydrogen atom, a hydrocarbon group, or R 17 3 Si- groups, r is 1 These are the above integers. R 17 is an independent radical.)
  10.  前記ドーパントがジ-2-エチルヘキシルスルホコハク酸ナトリウムである、請求項8又は9に記載の回路基板。 The circuit board according to claim 8 or 9, wherein the dopant is sodium di-2-ethylhexyl sulfosuccinate.
  11.  周波数1GHz以上の高周波電気信号を伝送する用途に用いられる、請求項1~10のいずれかに記載の回路基板。 The circuit board according to any one of claims 1 to 10, which is used for transmitting a high-frequency electric signal having a frequency of 1 GHz or more.
  12.  請求項1~11のいずれかに記載の回路基板の製造方法であって、
     前記樹脂基材の表面に、活性エネルギー線照射処理、コロナ処理、及びフレーム処理からなる群から選ばれる1以上の処理を施す工程と、
     前記処理が施された前記樹脂基材の面に、前記ポリアニリン層を形成する工程と、
     前記ポリアニリン層上に無電解めっき触媒を担持する工程と、
     前記無電解めっき触媒が担持された前記ポリアニリン層上に、無電解めっきを施すことによって金属層を形成する工程と、を含む、
     回路基板の製造方法。
    The method for manufacturing a circuit board according to any one of claims 1 to 11.
    A step of applying one or more treatments selected from the group consisting of an active energy ray irradiation treatment, a corona treatment, and a frame treatment to the surface of the resin base material.
    A step of forming the polyaniline layer on the surface of the resin base material subjected to the treatment, and
    The step of supporting the electroless plating catalyst on the polyaniline layer and
    A step of forming a metal layer by performing electroless plating on the polyaniline layer on which the electroless plating catalyst is supported is included.
    How to manufacture a circuit board.
  13.  前記樹脂基材の表面に、活性エネルギー線照射処理を施す、請求項12に記載の回路基板の製造方法。 The method for manufacturing a circuit board according to claim 12, wherein the surface of the resin base material is subjected to an active energy ray irradiation treatment.
  14.  前記活性エネルギー線が紫外線である、請求項13に記載の回路基板の製造方法。 The method for manufacturing a circuit board according to claim 13, wherein the active energy ray is ultraviolet rays.
  15.  前記紫外線の光源が高圧水銀ランプ又はメタルハライドランプである、請求項14に記載の回路基板の製造方法。 The method for manufacturing a circuit board according to claim 14, wherein the ultraviolet light source is a high-pressure mercury lamp or a metal halide lamp.
  16.  前記ポリアニリン層を、置換又は無置換のポリアニリンを含む組成物を用いた塗布法によって形成する、請求項12~15のいずれかに記載の回路基板の製造方法。 The method for producing a circuit board according to any one of claims 12 to 15, wherein the polyaniline layer is formed by a coating method using a composition containing a substituted or unsubstituted polyaniline.
  17.  前記組成物が、置換又は無置換のポリアニリンを、ドーパントによってドープされたポリアニリン複合体として含む、請求項16に記載の回路基板の製造方法。 The method for producing a circuit board according to claim 16, wherein the composition contains a substituted or unsubstituted polyaniline as a polyaniline composite doped with a dopant.
  18.  前記組成物中の前記ポリアニリン複合体の濃度が15質量%以下である、請求項17に記載の回路基板の製造方法。 The method for manufacturing a circuit board according to claim 17, wherein the concentration of the polyaniline complex in the composition is 15% by mass or less.
  19.  前記無電解めっき触媒がPdである、請求項12~18のいずれかに記載の回路基板の製造方法。 The method for manufacturing a circuit board according to any one of claims 12 to 18, wherein the electroless plating catalyst is Pd.
PCT/JP2020/010342 2019-03-12 2020-03-10 Circuit board and method for producing circuit board WO2020184569A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080020093.8A CN113557321A (en) 2019-03-12 2020-03-10 Circuit board and method for manufacturing circuit board
US17/438,251 US20220192033A1 (en) 2019-03-12 2020-03-10 Circuit board and method for producing circuit board
JP2021505087A JPWO2020184569A1 (en) 2019-03-12 2020-03-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-045128 2019-03-12
JP2019045128 2019-03-12

Publications (1)

Publication Number Publication Date
WO2020184569A1 true WO2020184569A1 (en) 2020-09-17

Family

ID=72427945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010342 WO2020184569A1 (en) 2019-03-12 2020-03-10 Circuit board and method for producing circuit board

Country Status (4)

Country Link
US (1) US20220192033A1 (en)
JP (1) JPWO2020184569A1 (en)
CN (1) CN113557321A (en)
WO (1) WO2020184569A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374437A (en) * 1989-08-14 1991-03-29 Idemitsu Kosan Co Ltd Readily slippery film
JP2006286964A (en) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd Graft pattern material, conductive pattern material, and their manufacturing methods
JP2008081838A (en) * 2006-08-28 2008-04-10 Daicel Polymer Ltd Plated resin-molded body
JP2009185150A (en) * 2008-02-05 2009-08-20 Idemitsu Kosan Co Ltd Heat conductive resin composition and its resin molded article
JP2009293085A (en) * 2008-06-05 2009-12-17 Achilles Corp Plated product using polyolefin base resin or polyacetal base resin as base material
JP2013127106A (en) * 2011-12-19 2013-06-27 Idemitsu Kosan Co Ltd Method of producing plated laminate
WO2014192287A1 (en) * 2013-05-28 2014-12-04 出光興産株式会社 Composition for forming electroless plating underlayer film
WO2017077912A1 (en) * 2015-11-02 2017-05-11 東洋紡株式会社 Low-dielectric flame-resistant adhesive composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264537B (en) * 2008-12-26 2014-07-16 富士胶片株式会社 Surface metal film material, process for producing surface metal film material, process for producing metal pattern material, and metal pattern material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374437A (en) * 1989-08-14 1991-03-29 Idemitsu Kosan Co Ltd Readily slippery film
JP2006286964A (en) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd Graft pattern material, conductive pattern material, and their manufacturing methods
JP2008081838A (en) * 2006-08-28 2008-04-10 Daicel Polymer Ltd Plated resin-molded body
JP2009185150A (en) * 2008-02-05 2009-08-20 Idemitsu Kosan Co Ltd Heat conductive resin composition and its resin molded article
JP2009293085A (en) * 2008-06-05 2009-12-17 Achilles Corp Plated product using polyolefin base resin or polyacetal base resin as base material
JP2013127106A (en) * 2011-12-19 2013-06-27 Idemitsu Kosan Co Ltd Method of producing plated laminate
WO2014192287A1 (en) * 2013-05-28 2014-12-04 出光興産株式会社 Composition for forming electroless plating underlayer film
WO2017077912A1 (en) * 2015-11-02 2017-05-11 東洋紡株式会社 Low-dielectric flame-resistant adhesive composition

Also Published As

Publication number Publication date
US20220192033A1 (en) 2022-06-16
CN113557321A (en) 2021-10-26
JPWO2020184569A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP5463117B2 (en) Low loss wiring board, multilayer wiring board, copper foil and laminated board used therefor
KR101605449B1 (en) Copper foil with adhesive layer, copper-clad laminate and printed wiring board
CN204168593U (en) Electromagnetic shielded film, the printed circuit board (PCB) using it and rolled copper foil
JP5079396B2 (en) Conductive substance adsorbing resin film, method for producing conductive substance adsorbing resin film, resin film with metal layer using the same, and method for producing resin film with metal layer
KR100339001B1 (en) Metal body with deposition treatment layer and adhesion promoter layer
JP7166334B2 (en) copper clad laminate
KR102035404B1 (en) Composition for forming plating layer, film having plating layer precursor layer, film having patterned plating layer, conductive film, and touch panel
CN101103138A (en) Metal film and formation method of metal film
KR20140027920A (en) Composition for forming layer to be plated, and process for producing laminate having metal film
WO2006059750A1 (en) Curable resin composition
JP7065463B2 (en) Metal-clad laminate, metal leaf with resin, and wiring board
US11419210B2 (en) Resin composition, metal foil provided with resin layer, metal clad laminate, and printed wiring board
JP2010185128A (en) Photosensitive resin composition for plating, laminate, method of producing surface metal film material using the same, surface metal film material, method of producing metal pattern material, metal pattern material, and wiring board
CN104025722A (en) Copper foil for lamination
JP2019172803A (en) Resin composition, copper foil with resin, printed circuit board, and treatment method of copper foil with resin
JP2004140268A (en) Manufacturing method of multilayer printed circuit board for high frequency
WO2020184569A1 (en) Circuit board and method for producing circuit board
JP2007051226A (en) Resin composition with low dielectric constant
CN108136736A (en) The manufacturing method of laminated body and the metal foil of tape tree lipid layer
KR101411978B1 (en) The fabrication method of adhesive tape for thin electromagnetic shield with color layer in polymer film and adhesive tape thereby
US20220186377A1 (en) Electroless plating undercoat film
JP7325022B2 (en) Copper-clad laminates, resin-coated copper foils, and circuit boards using them
JP2007051225A (en) Resin composition with high dielectric constant
JP2012180561A (en) Laminated body having metal film and method for producing the same, and laminated body having patterned metal film and method for producing the same
JP6994660B2 (en) Metal-clad laminate and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505087

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769218

Country of ref document: EP

Kind code of ref document: A1