WO2020184253A1 - 到達率推定装置、到達率推定方法、及びプログラム - Google Patents

到達率推定装置、到達率推定方法、及びプログラム Download PDF

Info

Publication number
WO2020184253A1
WO2020184253A1 PCT/JP2020/008678 JP2020008678W WO2020184253A1 WO 2020184253 A1 WO2020184253 A1 WO 2020184253A1 JP 2020008678 W JP2020008678 W JP 2020008678W WO 2020184253 A1 WO2020184253 A1 WO 2020184253A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrival rate
received power
rate estimation
average received
unit
Prior art date
Application number
PCT/JP2020/008678
Other languages
English (en)
French (fr)
Inventor
一光 坂元
鈴木 賢司
陽平 片山
洋輔 藤野
浩之 福本
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/437,196 priority Critical patent/US11991545B2/en
Publication of WO2020184253A1 publication Critical patent/WO2020184253A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0805Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching
    • H04B7/0814Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching based on current reception conditions, e.g. switching to different antenna when signal level is below threshold
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0894Packet rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to an arrival rate estimation device, an arrival rate estimation method, and a program.
  • IoT devices Internet of Things
  • terminals things with various sensors and communication functions
  • IoT devices Remote control of IoT is becoming more and more popular every year.
  • LPWA Low Power Wide Area network
  • LPWA includes, for example, LoRaWAN and Sigfox that use an unlicensed band (frequency band that does not require a radio station license), and LTE-M (Long Term Evolution for Machines) that uses a license band (frequency band that does not require a radio station license).
  • NB Narrow Band
  • IoT devices are often fixedly installed and used mainly in specific locations.
  • radio wave propagation is highly location-dependent.
  • the IoT device is installed in a dead zone where the received power of radio waves from the base station is low, communication may be disabled for a long period of time. Therefore, it is important to design the station so that sufficient received power can be secured at the planned installation location of the IoT device.
  • a radio wave propagation simulator is used to estimate the communicable area when a base station is placed in the station placement design.
  • 3D (three-dimensional) map data data such as terrain height, building height, land use classification, etc.
  • radio waves such as Okumura-Hata model.
  • the average received power is calculated based on the propagation model (see, for example, Non-Patent Document 1). Generally, the average received power is calculated in consideration of the attenuation with respect to the distance from the base station (long section variation) and the locational received power variation due to a shield such as a building (short section variation).
  • the average received power is calculated for each minute mesh (for example, a mesh at intervals of 5 m) in the area around the base station. Then, the stationing designer selects the stationing place by using the spatial distribution of the average received power calculated by the radio wave propagation simulator.
  • radio wave propagation analysis method by the ray tracing method as a method of calculating the average received power in consideration of long section fluctuation, short section fluctuation, and instantaneous fluctuation.
  • a radio wave propagation analysis method by the ray tracing method a plurality of signals arriving from a transmitting point to a receiving point via a plurality of paths are calculated and synthesized as a complex number based on the phase relationship of the plurality of signals.
  • the instantaneous value of the received power is calculated.
  • the accuracy of the building information and the position of the transmission / reception point is about 1/10 or less of the wavelength.
  • a radio wave propagation simulator using the ray tracing method generally calculates the average received power obtained by averaging the instantaneous fluctuations by synthesizing the signals of each path in the power dimension without synthesizing with complex numbers.
  • wireless communication is premised on a mobile terminal, and it is not necessary to estimate a strict instantaneous value of received power at a specific position. Therefore, average received power is used in station design.
  • the IoT device is mainly fixed and installed in a specific place. Therefore, in order to design an efficient station (for example, the cost is minimized) while ensuring the reachability of radio waves to the planned installation location, it is not enough to estimate the average received power, and it is instantaneous. It is necessary to estimate the arrival rate of radio waves when the influence of fluctuations is taken into consideration.
  • the radio wave arrival rate referred to here is the probability that the received power of the desired wave will be equal to or higher than the reception sensitivity of the receiving station.
  • LPWA in uplink communication from a terminal to a base station, a signal transmitted from the terminal is received and demodulated by a plurality of base stations. The successfully received signal is transmitted to the upper network server. Then, among the signals that have been successfully received, the signal with the highest received power is selected by the network server (site diversity).
  • site diversity When the base station has a plurality of antennas, the signal transmitted from the terminal is received by the plurality of antennas and demodulated. The successfully received signal is sent to the upper network server. Then, among the signals that have been successfully received, the signal with the highest received power is selected by the network server (antenna diversity).
  • the network server antenna diversity
  • the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a technique for estimating the arrival rate of radio waves with higher accuracy.
  • One aspect of the present invention is an average reception power calculation unit that calculates an average reception power for each mesh constituting an area for each of a plurality of base stations and a plurality of antennas included in the base station, and the average reception power.
  • the communication arrival rate is calculated by substituting it into the cumulative distribution function of the received power instantaneous value obtained from the probability density function of the amplitude that fluctuates instantaneously due to Rayleigh fading, and the site diversity and antenna diversity effects are obtained based on the calculated communication arrival rate.
  • It is an arrival rate estimation device including an arrival rate estimation unit for calculating the considered communication arrival rate.
  • one aspect of the present invention is the above-mentioned arrival rate estimation device, and the arrival rate estimation unit calculates the influence of the instantaneous fluctuation of the received power by an analysis formula.
  • one aspect of the present invention is the above-mentioned arrival rate estimation device, in which the average reception power calculation unit calculates the average reception power of uplink communication and the average reception power of downlink communication, and the arrival rate estimation unit. Calculates the combined probability of the arrival rate of uplink communication and the arrival rate of downlink communication.
  • one aspect of the present invention is the above-mentioned arrival rate estimation device, further including a repeat determination unit, and the average reception power calculation unit sorts the base stations in descending order of the calculated average reception power value. Then, the arrival rate estimation unit repeatedly calculates the arrival rate while gradually increasing the number of base stations to be considered in descending order of power, and the repetition determination unit repeatedly calculates the arrival rate when the calculated arrival rate exceeds the target value. Alternatively, when the change from the arrival rate calculated in the previous iterative process is within the convergence target value, the iterative process is terminated.
  • one aspect of the present invention is the above-mentioned arrival rate estimation device, further comprising a strict calculation execution determination table creation unit and a strict calculation execution determination unit, and the average received power calculation unit has been calculated.
  • the base stations are sorted in descending order of the average received power value, and the strict calculation execution determination table creation unit performs strict calculation for determining whether or not strict arrival rate calculation should be performed from the average received power and the number of base stations.
  • An execution determination table is created, and the strict calculation execution determination unit determines whether or not the strict calculation needs to be performed with reference to the strict calculation execution determination table.
  • one aspect of the present invention is the above-mentioned arrival rate estimation device, further including a grouping unit, and the average reception power calculation unit sorts the base stations in descending order of the calculated average reception power value.
  • the grouping unit groups the meshes when the difference between the average received powers of the adjacent meshes and the upper base stations is small, and the arrival rate estimation unit determines the influence of instantaneous fluctuation and diversity for one mesh in the group.
  • the arrival rate is calculated in consideration of the effect, and the calculated arrival rate is regarded as the arrival rate for other meshes in the group.
  • one aspect of the present invention includes an average reception power calculation step of calculating an average reception power for each mesh constituting an area for each of a plurality of base stations and a plurality of antennas included in the base station, and the average reception power. Is calculated by substituting the cumulative distribution function of the instantaneous value of the received power obtained from the probability density function of the amplitude that fluctuates instantaneously by Rayleigh fading, and the site diversity and the antenna diversity are calculated based on the calculated communication arrival rate. It is an arrival rate estimation method having an arrival rate estimation step for calculating a communication arrival rate in consideration of the effect.
  • one aspect of the present invention is a program for operating a computer as the above-mentioned arrival rate estimation device.
  • the arrival rate of radio waves can be estimated with higher accuracy.
  • FIG. 1 is a block diagram showing a functional configuration of the arrival rate estimation device 1a according to the first embodiment of the present invention.
  • the arrival rate estimation device 1a includes an average received power calculation unit 11, a radio equipment database 12, and an arrival rate estimation unit 13a.
  • the average received power calculation unit 11 corresponds to a general radio wave propagation simulator.
  • the average received power calculation unit 11 imports map data (for example, data such as terrain height, building height, land use classification, etc.) from an external device or the like.
  • the average received power calculation unit 11 divides the map data of the area set by the designer into minute meshes (for example, meshes at intervals of 5 m). Then, the average received power calculation unit 11 calculates the average received power of the downlink radio waves transmitted from the base station in each mesh (that is, a virtual terminal assumed to be installed at a position corresponding to each mesh). calculate. Similarly, the average received power calculation unit 11 calculates the average received power of the radio waves for uplink communication from each mesh to the base station.
  • the radio equipment database 12 holds parameters related to radio equipment such as the number of antennas and reception sensitivity of each base station.
  • the arrival rate estimation unit 13a considers the influence of the instantaneous fluctuation and the diversity effect on the average reception power of the uplink communication and the downlink communication between each base station and each mesh calculated by the average reception power calculation unit 11. Then, the arrival rate of the radio wave is calculated.
  • FIG. 2 is a diagram for explaining the arrival rate estimation process by the arrival rate estimation device 1a according to the first embodiment of the present invention.
  • the estimation process of the arrival rate of radio waves at the position of mesh # 1 shown in FIG. 2 will be described as an example. Further, it is assumed that the number of base stations existing in the area shown in FIG. 2 is station I. Note that, in FIG. 2, only four base stations are shown, and the description of other base stations is omitted. Further, it is assumed that the number of antennas provided in each base station shown in FIG. 2 is two.
  • FIG. 3 is a diagram showing the average received power calculated by the average received power calculation unit 11 of the arrival rate estimation device 1a according to the first embodiment of the present invention.
  • Average received power calculating unit 11, shown in FIG. 3 (A), the R up (i, j) is the average received power of uplink communication between a base station #i and the mesh # 1, calculated for each base station To do.
  • the average received power calculating unit 11, shown in FIG. 3 (B), the R down (i, j) is the average received power of the downlink communication between the base station #i and the mesh # 1, each base station Calculate to.
  • the arrival rate estimation unit 13a acquires information indicating the number of antennas of the base station #i and the reception sensitivity from the radio equipment database 12.
  • the arrival rate estimator unit 13a when considering the influence of instantaneous fluctuations due to Rayleigh fading with respect to R up (i, j) is the average received power of the uplink communication, received power instantaneous value of the base station #i
  • the probability that the reception sensitivity is Tup (i) or higher is calculated as the uplink communication arrival rate Pup (i, j) of the antenna #j of the base station #i.
  • the instantaneous value of the received power is calculated by randomly changing the phase of the radio waves arriving at the antenna #j of the base station #i by a plurality of paths and synthesizing them. Then, by repeating this, a cumulative distribution function (CDF; Cumulative Distribution Function) of the instantaneous value of the received power is created.
  • CDF Cumulative Distribution Function
  • this iterative calculation is generally performed an enormous number of times (for example, tens of thousands or more). Therefore, there is a problem that a huge amount of calculation time is required. Therefore, in the present embodiment, by expressing the instantaneous fluctuation of Rayleigh fading by the following analysis formula, the CDF of the received power instantaneous value is obtained without performing Monte Carlo simulation.
  • the probability density function (PDF; Probability Density Function) of the amplitude a that fluctuates instantaneously due to Rayleigh fading is calculated by the following equation (1) using the average received power Rup (i, j). ) (See Non-Patent Document 2).
  • the CDF When the CDF is calculated from the above PDF, the CDF can be expressed by the following formula (3).
  • the uplink communication arrival rate P- up (i, j) of the antenna # j of the base station #i is calculated by inputting the reception sensitivity Tup (i) of the base station #i into y of the equation (3). be able to.
  • the uplink communication arrival rate P- up (i, j) of the antenna # j of the base station #i can be expressed by the following equation (4).
  • the uplink communication arrival rate P- up (i, j) of the antenna #j of the base station #i can be calculated in a short time without performing Monte Carlo simulation. Can be done.
  • the uplink communication arrival rate P'up (i) of the base station #i is expressed by the following equation. It can be expressed by the equation (5).
  • the uplink communication arrival rate P''up is expressed by the following equation (6). be able to.
  • uplink communication and the downlink communication are performed once each. That is, a case where the arrival rate is estimated in the case where the base station and the antenna are selected so as to ensure high communication quality in a series of uplink communication and downlink communication will be described.
  • uplink communication and downlink communication are performed once each, for example, when the sensor data acquired by the IoT device is uploaded and the base station returns an Ac (Acknowledge) signal to the IoT device, etc. Is.
  • the arrival rate estimation unit 13a acquires the number of antennas of the base station #i and the reception sensitivity of the terminal from the radio equipment database 12.
  • the arrival rate estimation unit 13a has a received power instantaneous value equal to or higher than the terminal reception sensitivity T down when considering the influence of instantaneous fluctuation due to Rayleigh fading on R down (i, j) which is the average received power of downlink communication.
  • the probability of becoming Pdown (i, j) is calculated as the downlink communication arrival rate Pdown (i, j) of the antenna #j of the base station #i.
  • the downlink communication arrival rate Pdown (i, j) of the antenna # j of the base station #i is not performed without performing Monte Carlo simulation. Can be calculated in a short time.
  • the CDF of the downlink communication power that fluctuates instantaneously due to Rayleigh fading can be expressed by the following equation (7) using the average received power R down (i, j).
  • the downlink communication arrival rate Pdown (i, j) of the antenna #j of the base station #i can be calculated by inputting the reception sensitivity Tdown of the terminal into y of the equation (7).
  • the downlink communication arrival rate Pdown (i, j) of the antenna #j of the base station #i can be expressed by the following equation (8).
  • the downlink communication arrival rate P'down (i) of the base station #i can be expressed by the following equation (9).
  • the coupling probability Pjoint (i) between the arrival rate of uplink communication and the arrival rate of downlink communication of base station #i can be expressed by the following equation (10).
  • the coupling probability P'joint between the arrival rate of uplink communication and the arrival rate of downlink communication can be expressed by the following equation (11).
  • FIG. 4 is a flowchart showing the operation of the arrival rate estimation device 1a according to the first embodiment of the present invention.
  • the estimation of the arrival rate of uplink communication will be described.
  • the average received power calculation unit 11 divides the map data of the area designated by the designer into minute meshes. Here, the number of meshes is M.
  • the average received power calculation unit 11 calculates the average received power of uplink communication from each divided mesh to each base station (step S001).
  • the arrival rate estimation unit 13a acquires information indicating the number of antennas and reception sensitivity of each base station from the radio equipment database 12 (step S002).
  • the arrival rate estimation unit 13a uses the average received power of the mesh #m to create a CDF of the received power instantaneous value for the mesh #m when the influence of the instantaneous fluctuation due to Rayleigh fading is taken into consideration (step S004). ..
  • the arrival rate estimation unit 13a calculates the probability that the reception sensitivity of the base station will be higher than the reception sensitivity of the base station based on the created CDF.
  • the arrival rate estimation unit 13a calculates the arrival rate of the uplink communication of the mesh #m in consideration of the effects of the antenna diversity and the site diversity (step S005).
  • step S006 A determination is made as to whether or not the variable m is equal to the number of meshes M (step S006). If the variable m is not equal to the number of meshes M (step S006-No), 1 is added to the variable m (step S007), and the process proceeds to step S004. On the other hand, when the variable m is equal to the number of meshes M (step S006-Yes), the operation of the arrival rate estimation device 1a shown in the flowchart of FIG. 4 ends.
  • the arrival rate estimation device 1a has an average received power for each mesh constituting the area for each of the plurality of base stations and the plurality of antennas included in the base stations.
  • the communication arrival rate is calculated by substituting the average received power calculation unit 11 for calculating the above and the average received power into the cumulative distribution function of the instantaneous received power value obtained from the probability density function of the amplitude that fluctuates instantaneously by Rayleigh fading.
  • the arrival rate estimation unit 13a for calculating the communication arrival rate in consideration of the site diversity and the antenna diversity effect based on the calculated communication arrival rate.
  • the arrival rate estimation device 1a can estimate the arrival rate of radio waves with higher accuracy.
  • FIG. 5 is a block diagram showing a functional configuration of the arrival rate estimation device 1b according to the second embodiment of the present invention.
  • the arrival rate estimation device 1b includes an average received power calculation unit 11, a radio equipment database 12, an arrival rate estimation unit 13b, and a repetition determination unit 14.
  • the point that the repeat determination unit 14 is provided is different from the functional configuration of the arrival rate estimation device 1a according to the first embodiment.
  • the arrival rate estimation unit 13b sorts the base stations in descending order of the average received power value based on the average received power Rup (i, j) calculated by the average received power calculation unit 11. Then, the arrival rate estimation unit 13b repeatedly calculates the arrival rate while gradually increasing the base stations to be calculated in the arrival rate estimation in descending order of the average received power. Then, when the repetition determination unit 14 determines that the repetition processing is completed, the arrival rate estimation unit 13b ends the repetition processing. Then, the arrival rate estimation unit 13b outputs the arrival rate calculated at that time as the arrival rate at the position of the mesh to be calculated.
  • FIG. 6 is a diagram for explaining the arrival rate estimation process by the arrival rate estimation device 1b according to the second embodiment of the present invention.
  • the target value P target arrival rate (e.g., 0.9, etc. value) in Zone Design and repetition target convergence value [Delta] P target of the change in arrival rate in the processing (e.g., 0.02 or the like values ) Is determined.
  • the determined P target value and the ⁇ P target value are set in the repeat determination unit 14.
  • the arrival rate estimation unit 13b acquires information indicating the number of antennas of the base station #i and the reception sensitivity from the radio equipment database 12. Next, the arrival rate estimation unit 13b sorts the base stations in descending order of the value of Rup (i, j).
  • the base stations have the highest average received power in order from the top of the list shown in FIG.
  • the average received power is calculated for each of the two antennas provided in the base station, but the base stations may be sorted with the higher average received power as the representative value of the base station, or two antennas.
  • the base stations may be sorted by the average value of the average received powers of the antennas of.
  • the base stations for which the arrival rate is calculated in the k-th iterative process are the base stations of the upper k stations (the upper number of base stations) from the one with the highest average received power value.
  • the number of stations to be increased for each iterative process is not limited to one, but may be increased by two, or may be increased exponentially, for example, one station, two stations, four stations, and so on. You may.
  • the arrival rate estimation unit 13b calculates the arrival rate P ′′ up (k) in the kth iterative process by the same method as in the first embodiment described above.
  • the arrival rate estimation unit 13b repeats the calculation of the arrival rate while increasing the number of base stations to be calculated one by one until the repetition determination unit 14 determines that the repeated processing is completed.
  • the arrival rate estimation unit 13b ends the repetition processing, and the arrival rate P ′′ up (k) calculated at that time is calculated by the mesh to be calculated. Output as the arrival rate at the position.
  • the repetition determination unit 14 determines whether or not the arrival rate P ′′ up (k) calculated in the kth repetition process satisfies the following equation (12).
  • the repeat determination unit 14 determines the end of the repeat process.
  • the arrival rate estimation unit 13b outputs the arrival rate P''up (k) calculated at that time as the arrival rate at the position of the mesh to be calculated. To do.
  • FIG. 8 is a flowchart showing the operation of the arrival rate estimation device 1b according to the second embodiment of the present invention.
  • the designer determines the target value P target of the arrival rate in the station design and the convergence target value ⁇ P target of the change in the arrival rate in the iterative processing. Then, the determined P target value and the ⁇ P target value are set in the repeat determination unit 14 (step S101).
  • the average received power calculation unit 11 divides the map data of the area designated by the designer into minute meshes. Here, the number of meshes is M.
  • the average received power calculation unit 11 calculates the average received power at each base station for each of the divided meshes (step S102).
  • the arrival rate estimation unit 13b acquires information indicating the number of antennas and reception sensitivity of each base station from the radio equipment database 12 (step S103).
  • the arrival rate estimation unit 13b sorts the base stations of the mesh #m in descending order of the average received power value (step S105).
  • step S106 is assigned to the variable k that identifies the number of times the iterative process is executed.
  • the arrival rate estimation unit 13b uses the average received power of the mesh #m to create a CDF of the received power instantaneous value for the mesh #m when the influence of the instantaneous fluctuation due to Rayleigh fading is taken into consideration.
  • the arrival rate estimation unit 13b calculates from the CDF the probability that the reception sensitivity of the base station will be higher than that of the CDF.
  • the arrival rate estimation unit 13b calculates the arrival rate in consideration of the effect of the antenna diversity and the site diversity by the base stations of the upper k stations from the highest average received power (step S107).
  • the arrival rate estimation unit 13b determines whether or not at least one of the above equations (11) and (12) is satisfied (step S108). When neither the formula (11) nor the formula (12) is satisfied (step S108-No), 1 is added to the variable k (step S109), and the process proceeds to step S107. On the other hand, when at least one of the equations (11) and (12) is satisfied (step S108-Yes), the calculation of the arrival rate in the mesh is completed, and the process proceeds to step S110.
  • step S110 A determination is made as to whether or not the variable m is equal to the number of meshes M (step S110). If the variable m is not equal to the number of meshes M (step S110-No), 1 is added to the variable m (step S111), and the process proceeds to step S105. On the other hand, when the variable m is equal to the number of meshes M (step S110-Yes), the operation of the arrival rate estimation device 1b shown in the flowchart of FIG. 8 ends.
  • the arrival rate estimation device 1b calculates the arrival rate only for the base stations having a high contribution to the arrival rate (that is, having a high average received power). , The calculation time required for the arrival rate estimation can be further shortened.
  • a third embodiment of the present invention will be described.
  • a strict arrival rate calculation is performed in consideration of the instantaneous fluctuation due to Rayleigh fading and the diversity effect for all meshes.
  • the third embodiment as a preliminary process, it is determined whether or not the arrival rate is strictly calculated for each mesh, and the instantaneous fluctuation and the diversity effect are considered only for the mesh that requires the exact calculation. The case where the exact arrival rate calculation is performed will be described. Further, only the differences from the first embodiment will be described below. Here, the estimation of the arrival rate of uplink communication will be described.
  • FIG. 9 is a block diagram showing a functional configuration of the arrival rate estimation device 1c according to the third embodiment of the present invention.
  • the arrival rate estimation device 1c includes an average received power calculation unit 11, a radio equipment database 12, an arrival rate estimation unit 13c, a strict calculation execution judgment table creation unit 15, and a strict calculation execution judgment table.
  • a storage unit 16 and a strict calculation execution determination unit 17 are provided.
  • the point including the strict calculation execution determination table creation unit 15, the strict calculation execution determination table storage unit 16, and the strict calculation execution determination unit 17 is the point of the arrival rate estimation device 1a in the first embodiment. This is a difference from the functional configuration.
  • the strict calculation execution determination table creation unit 15 calculates the arrival rate when there are y base stations whose average received power has a margin of x [dB] from the reception sensitivity. Then, the strict calculation execution determination table creation unit 15 creates a strict calculation execution determination table, which is a table used for determining whether or not the above strict calculation is necessary (whether or not the strict calculation is necessary).
  • Strict calculation execution determination table creation unit 15 if the calculated arrival rate is equal to or greater than the target value P target arrival rate in Zone Design (representing the exact computation of the above is not required) "unnecessary" information indicating, and, if the calculated arrival rate is less than the target value P target arrival rate in Zone design is information indicating (indicating that it needs to exact computation of the above) "necessary", Strict calculation Set in the execution judgment table.
  • the strict calculation execution determination table creation unit 15 stores the created strict calculation execution determination table in the strict calculation execution determination table storage unit 16.
  • the strict calculation execution determination unit 17 sorts the average received power Rup (i, j) calculated by the average received power calculation unit 11 in descending order of value. Then, the strict calculation execution determination unit 17 describes the above based on the value set in the strict calculation execution determination table and the average reception power of the base station whose average reception power Rup (i, j) is higher. Information indicating the determination result (“unnecessary” or “necessary”) of whether or not the exact calculation of is necessary is output to the arrival rate estimation unit 13c.
  • the arrival rate estimation unit 13c When the output from the strict calculation execution determination unit 17 is information indicating "unnecessary", the arrival rate estimation unit 13c outputs the target value P target as the estimation result of the arrival rate. Further, when the output from the strict calculation execution determination unit 17 is information indicating "necessary", the arrival rate estimation unit 13c uses the same method as that of the first embodiment or the second embodiment described above. Therefore, a strict arrival rate calculation is performed in consideration of instantaneous fluctuations and diversity effects.
  • FIG. 10 is a diagram showing an example of a strict calculation execution determination table used by the arrival rate estimation device 1c according to the third embodiment of the present invention.
  • Target value P target of the determined arrival rate is set to exact computation execution determination table creation unit 15.
  • the strict calculation execution determination table creation unit 15 calculates the arrival rate when there is a base station having a margin of x [dB] from the reception sensitivity of the average received power as a pre-processing.
  • FIG. 10 shows an example in which the value of x is at intervals of 5 dB and the number of base stations y is 1 to 4.
  • the above-mentioned first is based on the assumption that there are three base stations having an average reception power of the base station reception sensitivity +15 [dB].
  • the arrival rate in consideration of the instantaneous fluctuation and the diversity effect is calculated.
  • the calculated arrival rate is equal to or higher than the target value P target .
  • the strict calculation execution determination table creation unit 15 sets information indicating “unnecessary” for the strict calculation execution determination table.
  • the strict calculation execution determination table creation unit 15 sets information indicating "necessary" for the strict calculation execution determination table. According to the above procedure, the strict calculation execution determination table creation unit 15 creates the strict calculation execution determination table. Note that FIG. 10 is an example of a strict calculation execution determination table created when there are four base stations.
  • the strict calculation execution determination unit 17 sorts the average received power Rup (i, j) calculated by the average received power calculation unit 11 in descending order of value. Then, the strict calculation execution determination unit 17 calculates how many [dB] margins there are with respect to the reception sensitivity of the base station for each average received power.
  • the arrival rate estimation unit 13c outputs the target value Target as the arrival rate estimation result to an external device or the like.
  • the arrival rate estimation unit 13c When the arrival rate estimation unit 13c outputs information indicating "necessity" from the strict calculation execution determination unit, the arrival rate estimation unit 13c obtains an instantaneous fluctuation and a diversity effect by the same method as in the first embodiment or the second embodiment described above. Calculate the exact arrival rate in consideration.
  • the exact calculation execution determination unit 17 is, for example, one of a plurality of applicable patterns. If there is any information indicating "necessity", the information indicating "necessity" may be output to the arrival rate estimation unit 13c. On the contrary, in the case of the design guideline that the short calculation time should be prioritized, the strict calculation execution determination unit 17 may have information indicating "unnecessary" even for one of a plurality of applicable patterns, for example.
  • FIG. 11 is a flowchart showing the operation of the arrival rate estimation device 1c according to the third embodiment of the present invention.
  • the target value P target arrival rate in Zone Design is determined. Then, the target value P target of the determined arrival rate is set to exact computation execution determination table creation unit 15 (step S201).
  • the strict calculation execution judgment table creation unit 15 creates a strict calculation execution judgment table according to the procedure described above (step S202).
  • the average received power calculation unit 11 divides the map data of the area designated by the designer into minute meshes. Here, the number of meshes is M.
  • the average received power calculation unit 11 calculates the average received power at each base station for each of the divided meshes (step S203).
  • the strict calculation execution determination unit 17 and the arrival rate estimation unit 13c acquire information indicating the number of antennas and reception sensitivity of each base station from the radio equipment database 12 (step S204).
  • the strict calculation execution determination unit 17 sorts the base stations of the mesh #m in descending order of the average received power value. Then, the strict calculation execution determination unit 17 calculates how many [dB] margins have a margin with respect to the reception sensitivity of the base station for each average received power (step S206). Then, the strict calculation execution determination unit 17 refers to the strict calculation execution determination table, and based on the calculated margin, information indicating the determination result of whether or not the above-mentioned strict calculation is necessary (that is, “necessary”). (Information indicating “unnecessary” or information indicating “unnecessary”) is obtained (step S207). The strict calculation execution determination unit 17 outputs information indicating the determination result to the arrival rate estimation unit 13c.
  • arrival rate estimator 13c If exact calculation of whether it is necessary the determination is information indicating "not required” (step S208-Yes), arrival rate estimator 13c outputs a target value P target as the estimation result of the arrival rate (Ste S209). On the other hand, when the determination result of whether or not the exact calculation is necessary is the information indicating "necessary" (step S208-No), the arrival rate estimation unit 13c is the first embodiment or the second embodiment described above. The exact arrival rate is calculated in consideration of the instantaneous fluctuation and the diversity effect by the same method as that of the embodiment (step S210).
  • step S211 A determination is made as to whether or not the variable m is equal to the number of meshes M (step S211). If the variable m is not equal to the number of meshes M (step S211-No), 1 is added to the variable m (step S212), and the process proceeds to step S206. On the other hand, when the variable m is equal to the number of meshes M (step S211-Yes), the operation of the arrival rate estimation device 1c shown in the flowchart of FIG. 11 ends.
  • the arrival rate estimation device 1c according to the third embodiment determines, as a preliminary process, whether or not it is necessary to strictly calculate the arrival rate for each mesh. Then, the arrival rate estimation device 1c performs a strict calculation of the arrival rate in consideration of the instantaneous fluctuation and the diversity effect only for the mesh for which it is determined that the arrival rate needs to be calculated exactly. Therefore, the arrival rate estimation device 1c according to the third embodiment can further shorten the calculation time required for the arrival rate estimation.
  • FIG. 12 is a block diagram showing a functional configuration of the arrival rate estimation device 1d according to the fourth embodiment of the present invention.
  • the arrival rate estimation device 1d includes an average received power calculation unit 11, a radio equipment database 12, an arrival rate estimation unit 13d, and a grouping unit 18. As described above, the point that the grouping unit 18 is provided is different from the functional configuration of the arrival rate estimation device 1a in the first embodiment.
  • the grouping unit 18 sorts the base stations in descending order of the average received power value calculated by the average received power calculation unit 11.
  • the grouping unit 18 compares the average received power of the upper predetermined number of stations with the average received power of the same base station in the adjacent mesh, and if the difference is small, groups these adjacent meshes.
  • the arrival rate estimation unit 13d considers the instantaneous fluctuation and the diversity effect for one representative mesh among the plurality of grouped meshes by using the same method as that of the first embodiment or the second embodiment described above. Perform a strict arrival rate calculation. Then, the arrival rate estimation unit 13d applies the calculation result for the representative mesh to the other grouped meshes (that is, the arrival rate for the other grouped meshes is calculated for one representative mesh. It is considered to be the same as the arrival rate).
  • the representative mesh is preferably a mesh located in the center of the target range as much as possible. For example, when grouping 9 meshes of 3 horizontal ⁇ 3 vertical, it is preferable to use the mesh located at the center as the representative mesh.
  • FIG. 13 is a flowchart showing the operation of the arrival rate estimation device 1d according to the fourth embodiment of the present invention.
  • the average received power calculation unit 11 divides the map data of the area designated by the designer into minute meshes. Here, the number of meshes is M.
  • the average received power calculation unit 11 calculates the average received power at each base station for each of the divided meshes (step S301).
  • the arrival rate estimation unit 13d acquires information indicating the number of antennas and reception sensitivity of each base station from the radio equipment database 12 (step S302).
  • step S304 It is determined whether or not the arrival rate of mesh #m has been estimated (that is, whether or not mesh #m has been grouped) (step S304). If the arrival rate of the mesh #m has already been estimated (step S304-Yes), the process proceeds to step S307.
  • the grouping unit 18 when the arrival rate of the mesh #m has not been estimated (step S304-No), the grouping unit 18 generates a group of the mesh #m. Then, the grouping unit 18 sets the base stations in descending order of the average received power value calculated by the average received power calculation unit 11 for the meshes #m and the adjacent meshes adjacent to the group that have not been grouped yet. Sort and get the average received power value of the top predetermined number of stations.
  • the grouping unit 18 includes the adjacent mesh in the group when the difference between the average received power of the same base station in the adjacent mesh and the average received power of the same base station in each mesh in the group is small. Grouping is performed by repeating the process (step S305). When the difference between the average received power of the same base station in the adjacent mesh and the average received power of the same base station in each mesh in the group is small, for example, the average reception of each target base station Regarding the power, the difference between the average received power in the adjacent mesh and the maximum and minimum values of the average received power in each mesh in the group is within a predetermined value.
  • the arrival rate estimation unit 13d considers the instantaneous fluctuation and the diversity effect for one representative mesh among the plurality of grouped meshes by using the same method as that of the first embodiment or the second embodiment described above. Strict arrival rate calculation is performed (step S306).
  • step S307 A determination is made as to whether or not the variable m is equal to the number of meshes M (step S307). If the variable m is not equal to the number of meshes M (step S307-No), 1 is added to the variable m (step S308), and the process proceeds to step S304. On the other hand, when the variable m is equal to the number of meshes M (step S307-Yes), the operation of the arrival rate estimation device 1d shown in the flowchart of FIG. 12 ends.
  • the arrival rate estimation device 1d according to the fourth embodiment groups a plurality of meshes of the upper several stations having similar average received powers. Then, the arrival rate estimation device 1d calculates the exact arrival rate in consideration of the instantaneous variation and the diversity effect only for one representative mesh among the plurality of grouped meshes. Then, the arrival rate estimation device 1d applies the calculation result calculated for the representative mesh to the other meshes grouped. As a result, the arrival rate estimation device 1d according to the fourth embodiment can further shorten the calculation time required for the arrival rate estimation.
  • a part or all of the arrival rate estimation devices 1a to 1d in the above-described embodiment may be realized by a computer.
  • the program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the term "computer system” as used herein includes hardware such as an OS and peripheral devices.
  • the "computer-readable recording medium” refers to a flexible disk, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, or a storage device such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized by using hardware such as PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array).
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

到達率推定装置は、複数の基地局及び前記基地局が備える複数のアンテナの各々に関して、エリアを構成するメッシュごとに平均受信電力を算出する平均受信電力算出部と、前記平均受信電力を、レイリーフェージングにより瞬時変動する振幅の確率密度関数から得られる受信電力瞬時値の累積分布関数に代入することで通信到達率を算出し、算出された通信到達率に基づいてサイトダイバーシチ及びアンテナダイバーシチ効果が考慮された通信到達率を算出する到達率推定部とを備える。

Description

到達率推定装置、到達率推定方法、及びプログラム
 本発明は、到達率推定装置、到達率推定方法、及びプログラムに関する。
 IoT(Internet of Things;モノのインターネット)技術の発展により、各種センサ及び通信機能を備えたモノ(以下、「IoT機器」又は「端末」という。)がネットワークに接続され、遠隔データ収集及びIoT機器の遠隔制御等を行うことが年々盛んになっている。また、近年、IoT機器向けの無線通信方式として、LPWA(Low Power Wide Area network)が注目されている。LPWAには、例えば、アンライセンスバンド(無線局免許を必要としない周波数帯)を用いるLoRaWAN及びSigfox、ライセンスバンド(無線局免許を必要とする周波数帯)を用いるLTE-M(Long Term Evolution for Machines)及びNB(Narrow Band)-IoT等の無線通信方式がある。
 IoT機器は、主に特定の場所に固定して設置され、利用されることが多い。一方、電波伝搬は、場所依存性が高い。これにより、基地局からの電波の受信電力が低い不感地帯にIoT機器が設置された場合、長期的に通信不可の状態となりうる。そのため、IoT機器の設置予定場所において十分な受信電力を確保できるように置局設計を行うことが重要となる。
 一般に、置局設計において基地局を配置したときの通信可能エリアを推定するために、電波伝搬シミュレータが用いられる。屋外評価用の電波伝搬シミュレータでは、3D(three-dimensional;3次元の)地図データ(地形高さ、建物高さ、及び土地利用分類等のデータ)が用いられ、例えば奥村-秦モデル等の電波伝搬モデルに基づいて平均受信電力が算出される(例えば、非特許文献1参照)。一般に、平均受信電力は、基地局からの距離に対する減衰(長区間変動)と、建物等の遮蔽物による場所的な受信電力変動(短区間変動)と、を考慮して算出される。また、平均受信電力は、基地局周辺エリアの微小なメッシュ(例えば、5m間隔のメッシュ)ごとに算出される。そして、置局設計者は、電波伝搬シミュレータによって算出された平均受信電力の空間的分布を用いて、置局場所を選定する。
 ところで、実際の受信点においては、建物等による反射、回折、及び透過を経て、複数の経路を介して到来する電波が合成されて受信される。そのため、周辺の車両や人間等の移動、及び樹木の揺れ等によって、到来する各電波の位相関係が変化する。これにより、実際の受信点においては、電波の受信電力は瞬時変動する。この瞬時変動は、レイリーフェージングと呼ばれる。
 長区間変動、短区間変動、及び瞬時変動を考慮して平均受信電力を算出する方法として、レイトレース法による電波伝搬解析法がある。レイトレース法による電波伝搬解析法では、送信点から複数の経路(パス)を介して受信点へそれぞれ到来した複数の信号が算出され、当該複数の信号の位相関係に基づいて複素数として合成されることで、受信電力瞬時値が算出される。しかしながら、レイトレース法によって算出される、上記パスが異なる複数の信号の位相について信頼性が担保される場合とは、建物情報及び送受信点の位置の精度が、およそ波長の1/10以下である場合に限られる。そのため、レイトレース法を用いる電波伝搬シミュレータは、一般に、複素数での合成を行わず、電力次元で各パスの信号を合成することで、瞬時変動を平均した平均受信電力を算出する。なお、一般に、無線通信では移動端末が前提であり、特定の位置における厳密な受信電力瞬時値の推定が不要であるため、置局設計では平均受信電力が用いられる。
"Atoll 3.3.0 Technical Reference Guide for Radio Networks", Forsk, AT330_TRR_E1, p.57-p.121, March 2015 岩井誠人著、「移動通信における電波伝搬 -無線通信シミュレーションのための基礎知識-」、株式会社コロナ社、p.16-p.19、2012年11月22日
 上述したように、IoT機器は、主に特定の場所に固定して設置される。そのため、設置予定場所への電波の到達性を確保しつつ、効率的な(例えば、コストが最小になる)置局設計を行うためには、平均受信電力の推定だけでは不十分であり、瞬時変動の影響を考慮した場合の電波の到達率を推定する必要がある。ここでいう電波の到達率とは、希望波の受信電力が受信局の受信感度以上となる確率である。
 また、LPWAでは、一般に、端末から基地局への上り通信において、端末から送信された信号は複数の基地局において受信され、復調される。受信に成功した信号は、上位のネットワークサーバへ送信される。そして、受信に成功した信号のうち、最も受信電力が高い信号がネットワークサーバによって選択される(サイトダイバーシチ)。また、基地局が複数のアンテナを備える場合、端末から送信された信号は複数のアンテナによって受信され、復調される。受信に成功した信号は、上位のネットワークサーバへ送られる。そして、受信に成功した信号のうち、最も受信電力が高い信号がネットワークサーバによって選択される(アンテナダイバーシチ)。基地局から端末への下り通信においては、直前の上り通信において選択された基地局及びアンテナから下り通信を行うことによって、高い通信品質が確保される。したがって、これらのダイバーシチ効果を考慮して到達率を推定する必要がある。
 本発明は、このような事情を考慮してなされたものであり、電波の到達率をより高い精度で推定する技術を提供することを目的とする。
 本発明の一態様は、複数の基地局及び前記基地局が備える複数のアンテナの各々に関して、エリアを構成するメッシュごとに平均受信電力を算出する平均受信電力算出部と、前記平均受信電力を、レイリーフェージングにより瞬時変動する振幅の確率密度関数から得られる受信電力瞬時値の累積分布関数に代入することで通信到達率を算出し、算出された通信到達率に基づいてサイトダイバーシチ及びアンテナダイバーシチ効果が考慮された通信到達率を算出する到達率推定部と、を備える到達率推定装置である。
 また、本発明の一態様は、上記の到達率推定装置であって、前記到達率推定部は、受信電力の瞬時変動の影響を解析式によって算出する。
 また、本発明の一態様は、上記の到達率推定装置であって、前記平均受信電力算出部は、上り通信の平均受信電力と下り通信の平均受信電力とを算出し、前記到達率推定部は、上り通信の到達率と下り通信の到達率の結合確率を算出する。
 また、本発明の一態様は、上記の到達率推定装置であって、繰り返し判定部をさらに備え、前記平均受信電力算出部は、算出された平均受信電力の値が高い順に前記基地局をソートし、前記到達率推定部は、考慮する基地局数を電力の高い順に徐々に増やしながら到達率を繰り返し算出し、前記繰り返し判定部は、算出された到達率が目標値以上になった場合、又は1つ前の繰り返し処理で算出された到達率からの変化が収束目標値以内になった場合に前記繰り返し処理を終了させる。
 また、本発明の一態様は、上記の到達率推定装置であって、厳密計算実施判定テーブル作成部と、厳密計算実施判定部と、をさらに備え、前記平均受信電力算出部は、算出された平均受信電力の値が高い順に前記基地局をソートし、前記厳密計算実施判定テーブル作成部は、平均受信電力と基地局数とから厳密な到達率計算の実施要否を判定するための厳密計算実施判定テーブルを作成し、前記厳密計算実施判定部は、前記厳密計算実施判定テーブルを参照して厳密計算の実施要否を判定する。
 また、本発明の一態様は、上記の到達率推定装置であって、グルーピング部をさらに備え、前記平均受信電力算出部は、算出された平均受信電力の値が高い順に前記基地局をソートし、前記グルーピング部は、隣接メッシュと上位数基地局の平均受信電力の差分が小さい場合に前記メッシュのグルーピングを行い、前記到達率推定部は、グループ内の1つのメッシュについて瞬時変動の影響とダイバーシチ効果を考慮して到達率を算出し、算出された前記到達率を前記グループ内の他のメッシュについての到達率と見なす。
 また、本発明の一態様は、複数の基地局及び前記基地局が備える複数のアンテナの各々に関して、エリアを構成するメッシュごとに平均受信電力を算出する平均受信電力算出ステップと、前記平均受信電力を、レイリーフェージングにより瞬時変動する振幅の確率密度関数から得られる受信電力瞬時値の累積分布関数に代入することで通信到達率を算出し、算出された通信到達率に基づいてサイトダイバーシチ及びアンテナダイバーシチ効果が考慮された通信到達率を算出する到達率推定ステップと、を有する到達率推定方法である。
 また、本発明の一態様は、上記の到達率推定装置としてコンピュータを機能させるためのプログラムである。
 本発明によれば、電波の到達率をより高い精度で推定するができる。
本発明の第1の実施形態に係る到達率推定装置1aの機能構成を示すブロック図である。 本発明の第1の実施形態に係る到達率推定装置1aによる到達率推定処理を説明するための図である。 本発明の第1の実施形態に係る到達率推定装置1aの平均受信電力算出部11によって算出される平均受信電力を示す図である。 本発明の第1の実施形態に係る到達率推定装置1aの動作を示すフローチャートである。 本発明の第2の実施形態に係る到達率推定装置1bの機能構成を示すブロック図である。 本発明の第2の実施形態に係る到達率推定装置1bによる到達率推定処理を説明するための図である。 本発明の第2の実施形態に係る到達率推定装置1bの平均受信電力算出部11によって算出される平均受信電力を示す図である。 本発明の第2の実施形態に係る到達率推定装置1bの動作を示すフローチャートである。 本発明の第3の実施形態に係る到達率推定装置1cの機能構成を示すブロック図である。 本発明の第3の実施形態に係る到達率推定装置1cが用いる厳密計算実施判定テーブルの一例を示す図である。 本発明の第3の実施形態に係る到達率推定装置1cの動作を示すフローチャートである。 本発明の第4の実施形態に係る到達率推定装置1dの機能構成を示すブロック図である。 本発明の第4の実施形態に係る到達率推定装置1dの動作を示すフローチャートである。
 以下、図面を参照して、本発明の実施形態について詳しく説明する。
<第1の実施形態>
 以下、本発明の第1の実施形態について説明する。
[到達率推定装置の機能構成]
 以下、本実施形態に係る到達率推定装置1aの機能構成について説明する。
 図1は、本発明の第1の実施形態に係る到達率推定装置1aの機能構成を示すブロック図である。図1に示すように、到達率推定装置1aは、平均受信電力算出部11と、無線設備データベース12と、到達率推定部13aと、を具備する。
 平均受信電力算出部11は、一般的な電波伝搬シミュレータに相当するものである。平均受信電力算出部11は、地図データ(例えば、地形の高さ、建物の高さ、土地の利用分類等のデータ)を外部の機器等からインポートする。平均受信電力算出部11は、設計者によって設定されたエリアの地図データを、微小なメッシュ(例えば、5m間隔のメッシュ)に分割する。そして、平均受信電力算出部11は、基地局から送出される下り通信の電波の、各メッシュ(すなわち、各メッシュに相当する位置に設置されているものと仮定した仮想端末)における平均受信電力を算出する。同様に、平均受信電力算出部11は、各メッシュから基地局への上り通信の電波の平均受信電力を算出する。
 無線設備データベース12は、各基地局の、アンテナ本数、及び受信感度等の無線設備に関わるパラメータを保持する。
 到達率推定部13aは、平均受信電力算出部11によって算出された、各基地局と各メッシュとの間の上り通信及び下り通信の平均受信電力に対して、瞬時変動及びダイバーシチ効果の影響を考慮して、電波の到達率を算出する。
[到達率推定]
 以下、電波の到達率の推定処理について説明する。
 図2は、本発明の第1の実施形態に係る到達率推定装置1aによる到達率推定処理を説明するための図である。
 ここでは、図2に示すメッシュ#1の位置における、電波の到達率の推定処理を一例として説明する。また、図2に示すエリアに存在する基地局の数は、I局であるものとする。なお、図2においては、基地局を4局のみ図示しており、その他の基地局の記載は省略している。また、図2に示す各基地局が備えるアンテナの数は、いずれも2基であるものとする。
 ここで、基地局#i(i=1~I)のアンテナ#j(j=1~2)における上り通信の平均受信電力をRup(i,j)と表す。また、基地局#iのアンテナ#jからの下り通信の平均受信電力をRdown(i,j)と表す。
 図3は、本発明の第1の実施形態に係る到達率推定装置1aの平均受信電力算出部11によって算出される平均受信電力を示す図である。平均受信電力算出部11は、図3(A)に示す、基地局#iとメッシュ#1との間の上り通信の平均受信電力であるRup(i,j)を、基地局ごとに算出する。また、平均受信電力算出部11は、図3(B)に示す、基地局#iとメッシュ#1との間の下り通信の平均受信電力であるRdown(i,j)を、基地局ごとに算出する。
 以下、到達率推定部13aによる到達率の推定処理について説明する。まず、上り通信について説明する。到達率推定部13aは、基地局#iのアンテナ数、及び受信感度を示す情報を、無線設備データベース12から取得する。そして、到達率推定部13aは、上り通信の平均受信電力であるRup(i,j)に対してレイリーフェージングによる瞬時変動の影響を考慮した場合における、受信電力瞬時値が基地局#iの受信感度Tup(i)以上となる確率を、基地局#iのアンテナ#jの上り通信到達率Pup(i,j)として算出する。
 ここで、受信電力瞬時値を算出する単純な方法として、モンテカルロシミュレーション法がある。モンテカルロシミュレーション法では、基地局#iのアンテナ#jに複数の経路で到来する電波の位相をランダムに変化させて合成することで、受信電力瞬時値を算出する。そして、これを繰り返し行うことによって、受信電力瞬時値の累積分布関数(CDF;Cumulative Distribution Function)を作成する。しかしながら、この繰り返し計算は、一般的に膨大な回数(例えば数万回以上)行われる。そのため、膨大な計算時間が必要になるという課題がある。そこで、本実施形態では、レイリーフェージングの瞬時変動を下記の解析式で表すことによって、モンテカルロシミュレーションを行うことなく、受信電力瞬時値のCDFを得る。
 受信信号の振幅をaとした場合、レイリーフェージングにより瞬時変動する振幅aの確率密度関数(PDF;Probability Density Function)は、平均受信電力Rup(i,j)を用いて、以下の式(1)で表すことができる(非特許文献2参照)。
Figure JPOXMLDOC01-appb-M000001
 これを電力r=aのPDFに変換することで、受信電力瞬時値のPDFは、以下の式(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 上記のPDFからCDFを算出すると、CDFは、以下の式(3)で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 基地局#iのアンテナ#jの上り通信到達率Pup(i,j)は、式(3)のyに、基地局#iの受信感度Tup(i)を入力することによって、算出することができる。基地局#iのアンテナ#jの上り通信到達率Pup(i,j)は、以下の式(4)で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 以上により、レイリーフェージングの瞬時変動を解析式で表すことによって、モンテカルロシミュレーションを行うことなく、基地局#iのアンテナ#jの上り通信到達率Pup(i,j)を短時間で算出することができる。
 次に、各アンテナで受信成功した信号のうち、最も受信電力が高い信号を選択する際のアンテナダイバーシチ効果を考慮すると、基地局#iの上り通信到達率P'up(i)は以下の式(5)式で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 さらに、複数の基地局で受信成功した信号のうち、最も受信電力が高い信号を選択する際のサイトダイバーシチ効果を考慮すると、上り通信到達率P''upは、以下の式(6)で表すことができる。
Figure JPOXMLDOC01-appb-M000006
 以下、上り通信と下り通信の一連の通信シーケンスを想定する場合の到達率の算出について説明する。ここでは、上り通信と下り通信とがそれぞれ1回ずつ行われる場合を想定する。すなわち、上り通信及び下り通信の一連の通信において高い通信品質が確保されるように基地局及びアンテナが選択される仕組みを有する場合において、到達率を推定する場合について説明する。上り通信と下り通信とがそれぞれ1回ずつ行われる場合とは、例えば、IoT機器が取得したセンサデータをアップロードして、基地局がIoT機器へAck(Acknowledge;肯定応答)信号を返送する場合等である。
 到達率推定部13aは、基地局#iのアンテナ数と端末の受信感度とを、無線設備データベース12から取得する。到達率推定部13aは、下り通信の平均受信電力であるRdown(i,j)に対してレイリーフェージングによる瞬時変動の影響を考慮した場合における、受信電力瞬時値が端末の受信感度Tdown以上となる確率を、基地局#iのアンテナ#jの下り通信到達率Pdown(i,j)として算出する。上り通信の到達率推定と同様に、レイリーフェージングの瞬時変動を解析式で表すことで、モンテカルロシミュレーションを行うことなく、基地局#iのアンテナ#jの下り通信到達率Pdown(i,j)を短時間で算出することができる。
 レイリーフェージングにより瞬時変動する下り通信の電力のCDFは、平均受信電力Rdown(i,j)を用いて、以下の式(7)で表すことができる。
Figure JPOXMLDOC01-appb-M000007
 基地局#iのアンテナ#jの下り通信到達率Pdown(i,j)は、式(7)のyに、端末の受信感度Tdownを入力することによって算出することができる。基地局#iのアンテナ#jの下り通信到達率Pdown(i,j)は、以下の式(8)で表すことができる。
Figure JPOXMLDOC01-appb-M000008
 アンテナダイバーシチ効果を考慮すると、基地局#iの下り通信到達率P'down(i)は、以下の式(9)で表すことができる。
Figure JPOXMLDOC01-appb-M000009
 基地局#iの、上り通信の到達率と下り通信の到達率との結合確率Pjoint(i)は、以下の式(10)で表すことができる。
Figure JPOXMLDOC01-appb-M000010
 さらに、サイトダイバーシチ効果を考慮すると、上り通信の到達率と下り通信の到達率との結合確率P'jointは、以下の式(11)で表すことができる。
Figure JPOXMLDOC01-appb-M000011
[到達率推定装置の動作]
 以下、到達率推定処理における到達率推定装置1aの動作について説明する。
 図4は、本発明の第1の実施形態に係る到達率推定装置1aの動作を示すフローチャートである。なお、ここでは上り通信の到達率推定について説明する。
 平均受信電力算出部11は、設計者によって指定されたエリアの地図データを微小なメッシュに分割する。ここで、メッシュ数をMとする。平均受信電力算出部11は、分割された各メッシュから各基地局への上り通信の平均受信電力を算出する(ステップS001)。
 到達率推定部13aは、無線設備データベース12から、各基地局のアンテナ数及び受信感度を示す情報を取得する(ステップS002)。
 メッシュを識別する変数mに1が代入される(ステップS003)。
 到達率推定部13aは、メッシュ#mの平均受信電力を用いて、レイリーフェージングによる瞬時変動の影響を考慮した際の、当該メッシュ#mについての受信電力瞬時値のCDFを作成する(ステップS004)。
 到達率推定部13aは、作成されたCDFに基づいて、基地局の受信感度以上となる確率を算出する。到達率推定部13aは、アンテナダイバーシチ及びサイトダイバーシチの効果を考慮して、メッシュ#mの上り通信の到達率を算出する(ステップS005)。
 変数mがメッシュ数Mと等しいか否かについての判定がなされる(ステップS006)。変数mがメッシュ数Mと等しくない場合(ステップS006-No)、変数mに1が加算され(ステップS007)、ステップS004に移行する。一方、変数mがメッシュ数Mと等しい場合(ステップS006-Yes)、図4のフローチャートが示す到達率推定装置1aの動作が終了する。
 以上説明したように、本発明の第1の実施形態に係る到達率推定装置1aは、複数の基地局及び前記基地局が備える複数のアンテナの各々に関して、エリアを構成するメッシュごとに平均受信電力を算出する平均受信電力算出部11と、前記平均受信電力を、レイリーフェージングにより瞬時変動する振幅の確率密度関数から得られる受信電力瞬時値の累積分布関数に代入することで通信到達率を算出し、算出された通信到達率に基づいてサイトダイバーシチ及びアンテナダイバーシチ効果が考慮された通信到達率を算出する到達率推定部13aとを備える。
 このような構成を備えることによって、本発明の第1の実施形態に係る到達率推定装置1aは、電波の到達率をより高い精度で推定することができる。
<第2の実施形態>
 以下、本発明の第2の実施形態について説明する。
 上述した第1の実施形態では、全ての基地局によるサイトダイバーシチ効果を考慮して到達率を算出する場合について説明した。これに対し、以下、第2の実施形態では、到達率への寄与度が高い基地局のみを計算対象として到達率を算出する場合について説明する。また、以下、第1の実施形態との相違点についてのみ説明する。なお、ここでは上り通信の到達率推定について説明する。
[到達率推定装置の構成]
 以下、本実施形態に係る到達率推定装置1bの機能構成について説明する。
 図5は、本発明の第2の実施形態に係る到達率推定装置1bの機能構成を示すブロック図である。図5に示すように、到達率推定装置1bは、平均受信電力算出部11と、無線設備データベース12と、到達率推定部13bと、繰り返し判定部14と、を具備する。このように、繰り返し判定部14を具備する点が、第1の実施形態に係る到達率推定装置1aの機能構成との相違点である。
 到達率推定部13bは、平均受信電力算出部11によって算出された、平均受信電力Rup(i,j)に基づいて、平均受信電力の値が高い順に基地局をソートする。そして、到達率推定部13bは、到達率推定において計算対象とする基地局を、平均受信電力が高い順に徐々に増やしながら、到達率を繰り返し算出する。そして、到達率推定部13bは、繰り返し判定部14によって繰り返し処理終了の判定がなされた場合、繰り返し処理を終了する。そして、到達率推定部13bは、その時点において算出された到達率を、計算対象のメッシュの位置における到達率として出力する。
 繰り返し判定部14は、算出された到達率が置局設計における目標値以上となった場合、又は、1つ前の繰り返し処理で算出された到達率からの変化量が所定値以内になった場合に、繰り返し処理終了の判定を行う。
[到達率推定]
 以下、電波の到達率の推定処理について説明する。
 図6は、本発明の第2の実施形態に係る到達率推定装置1bによる到達率推定処理を説明するための図である。
 ここでは、図6に示すメッシュ#1の位置における電波の到達率を推定を推定する場合を一例として説明する。また、図6に示すエリアに存在する基地局の数は、I局であるものとする。なお、図6においては、基地局を5局のみ図示しており、残りの基地局の記載は省略している。また、図6に示す各基地局が備えるアンテナの数は、いずれも2基であるものとする。
 まず、設計者によって、置局設計における到達率の目標値Ptarget(例えば、0.9等の値)と繰り返し処理における到達率の変化の収束目標値ΔPtarget(例えば、0.02等の値)とが決定される。そして、これら決定されたPtargetの値及びΔPtargetの値が、繰り返し判定部14に設定される。
 平均受信電力算出部11は、基地局#i(i=1~I)のアンテナ#j(j=1~2)における平均受信電力Rup(i,j)を算出する。
 到達率推定部13bは、基地局#iのアンテナ数及び受信感度を示す情報を、無線設備データベース12から取得する。次に、到達率推定部13bは、Rup(i,j)の値の高い順に基地局をソートする。ここでは、一例として、図7に示すリストの上から順に、平均受信電力が高い基地局であるものとする。なお、ここでは、基地局が備える2本のアンテナについてそれぞれ平均受信電力が算出されるが、平均受信電力の高い方を当該基地局の代表値として基地局をソートしてもよいし、2本のアンテナの平均受信電力を平均した値によって基地局をソートしてもよい。
 以下、到達率の計算の対象とする基地局を、繰り返し処理ごとに1局ずつ増やしていく場合について説明する。すなわち、k回目の繰り返し処理において到達率の計算の対象とする基地局は、平均受信電力の値が高いほうから上位k局の基地局(上位数基地局)である。なお、繰り返し処理ごとに増やす局数は1局に限られるものではなく、2局ずつ増やしたり、例えば、1局、2局、4局、・・・、のように、指数関数的に増やしたりしてもよい。
 上述した第1の実施形態と同様の方法により、到達率推定部13bは、k回目の繰り返し処理における到達率P''up(k)を算出する。到達率推定部13bは、繰り返し判定部14によって繰り返し処理終了の判定がなされるまで、計算対象の基地局を1局ずつ増やしながら到達率の算出を繰り返す。繰り返し判定部14によって繰り返し処理終了の判定がなされた場合、到達率推定部13bは、繰り返し処理を終了し、その時点において算出された到達率P''up(k)を、計算対象のメッシュの位置における到達率として出力する。
 繰り返し判定部14は、k回目の繰り返し処理で算出された到達率P''up(k)が、以下の式(12)を満たすか否かを判定する。
Figure JPOXMLDOC01-appb-M000012
 式(12)を満たす場合、もしくはk-1回目の(1つ前の)繰り返し処理において算出された到達率Pup''(k-1)からの変化量が以下の式(13)を満たす場合に、繰り返し判定部14は、繰り返し処理終了の判定を行う。
Figure JPOXMLDOC01-appb-M000013
 繰り返し判定部14によって繰り返し処理終了の判定がなされると、到達率推定部13bは、その回において算出された到達率P''up(k)を、計算対象のメッシュの位置における到達率として出力する。
[到達率推定装置の動作]
 以下、到達率推定処理における到達率推定装置1bの動作について説明する。
 図8は、本発明の第2の実施形態に係る到達率推定装置1bの動作を示すフローチャートである。
 まず、設計者によって、置局設計における到達率の目標値Ptargetと、繰り返し処理における到達率の変化の収束目標値ΔPtargetと、が決定される。そして、これら決定されたPtargetの値及びΔPtargetの値が、繰り返し判定部14に設定される(ステップS101)。
 平均受信電力算出部11は、設計者によって指定されたエリアの地図データを微小なメッシュに分割する。ここで、メッシュ数をMとする。平均受信電力算出部11は、分割された各メッシュについて、各基地局における平均受信電力を算出する(ステップS102)。
 到達率推定部13bは、無線設備データベース12から、各基地局のアンテナ数及び受信感度を示す情報を取得する(ステップS103)。
 メッシュを識別する変数mに1が代入される(ステップS104)。
 到達率推定部13bは、メッシュ#mについて、平均受信電力の値が高い順に基地局をソートする(ステップS105)。
 繰り返し処理の実行回数を識別する変数kに、1が代入される(ステップS106)。
 到達率推定部13bは、メッシュ#mの平均受信電力を用いて、レイリーフェージングによる瞬時変動の影響を考慮した際の、当該メッシュ#mについての受信電力瞬時値のCDFを作成する。
 到達率推定部13bは、CDFから、基地局の受信感度以上となる確率を算出する。到達率推定部13bは、アンテナダイバーシチ、及び、平均受信電力の高いほうから上位k局の基地局によるサイトダイバーシチの効果を考慮して、到達率を算出する(ステップS107)。
 到達率推定部13bは、上記の式(11)及び式(12)のうち少なくとも一つを満たすか否かを判定する(ステップS108)。式(11)及び式(12)のいずれも満たさない場合(ステップS108-No)、変数kに1が加算され(ステップS109)、ステップS107に移行する。一方、式(11)及び式(12)のうち少なくとも一方を満たす場合(ステップS108-Yes)、当該メッシュにおける到達率の算出を終了し、ステップS110に移行する。
 変数mがメッシュ数Mと等しいか否かについての判定がなされる(ステップS110)。変数mがメッシュ数Mと等しくない場合(ステップS110-No)、変数mに1が加算され(ステップS111)、ステップS105に移行する。一方、変数mがメッシュ数Mと等しい場合(ステップS110-Yes)、図8のフローチャートが示す到達率推定装置1bの動作が終了する。
 以上説明したように、第2の実施形態に係る到達率推定装置1bは、到達率への寄与度の高い(すなわち、平均受信電力の高い)基地局のみを計算対象として到達率を算出するため、到達率推定に要する計算時間をより短縮させることができる。
<第3の実施形態>
 以下、本発明の第3の実施形態について説明する。
 上述した第1の実施形態及び第2の実施形態では、全てのメッシュについて、レイリーフェージングによる瞬時変動及びダイバーシチ効果を考慮した厳密な到達率計算を行う場合について説明した。これに対し、以下、第3の実施形態では、事前処理として、各メッシュについて到達率を厳密に算出するか否かを判定し、厳密計算が必要なメッシュについてのみ、瞬時変動及びダイバーシチ効果を考慮した厳密な到達率計算を行う場合について説明する。また、以下、第1の実施形態との相違点についてのみ説明する。なお、ここでは上り通信の到達率推定について説明する。
[到達率推定装置の構成]
 以下、本実施形態に係る到達率推定装置1cの機能構成について説明する。
 図9は、本発明の第3の実施形態に係る到達率推定装置1cの機能構成を示すブロック図である。図9に示すように、到達率推定装置1cは、平均受信電力算出部11と、無線設備データベース12と、到達率推定部13cと、厳密計算実施判定テーブル作成部15と、厳密計算実施判定テーブル記憶部16と、厳密計算実施判定部17と、を具備する。このように、厳密計算実施判定テーブル作成部15と、厳密計算実施判定テーブル記憶部16と、厳密計算実施判定部17と、を具備する点が、第1の実施形態における到達率推定装置1aの機能構成との相違点である。
 厳密計算実施判定テーブル作成部15は、事前処理として、平均受信電力が受信感度からx[dB]のマージンがある基地局がy局ある場合の到達率を算出する。そして、厳密計算実施判定テーブル作成部15は、上記の厳密計算が必要であるか否か(厳密計算の実施要否)の判定に用いられるテーブルである、厳密計算実施判定テーブルを作成する。厳密計算実施判定テーブル作成部15は、算出された到達率が置局設計における到達率の目標値Ptarget以上である場合には(上記の厳密計算が不要であることを表す)「不要」を示す情報を、及び、算出された到達率が置局設計における到達率の目標値Ptarget未満である場合には(上記の厳密計算が必要であることを表す)「必要」を示す情報を、厳密計算実施判定テーブルに設定する。厳密計算実施判定テーブル作成部15は、作成した厳密計算実施判定テーブルを、厳密計算実施判定テーブル記憶部16に記憶させる。
 厳密計算実施判定部17は、平均受信電力算出部11によって算出された平均受信電力Rup(i,j)を、値が高い順にソートする。そして、厳密計算実施判定部17は、厳密計算実施判定テーブルに設定された値と、平均受信電力Rup(i,j)の値が上位の基地局の平均受信電力と、に基づいて、上記の厳密計算が必要であるか否かの判定結果(「不要」又は「必要」)を示す情報を到達率推定部13cに出力する。
 到達率推定部13cは、厳密計算実施判定部17からの出力が「不要」を示す情報である場合には、目標値Ptargetを到達率の推定結果として出力する。また、到達率推定部13cは、厳密計算実施判定部17からの出力が「必要」を示す情報である場合には、上述した第1の実施形態又は第2の実施形態と同様の方法を用いて、瞬時変動やダイバーシチ効果を考慮した厳密な到達率計算を行う。
[到達率推定]
 以下、電波の到達率の推定処理について説明する。
 図10は、本発明の第3の実施形態に係る到達率推定装置1cが用いる厳密計算実施判定テーブルの一例を示す図である。
 まず、設計者によって、置局設計における到達率の目標値Ptarget(例えば、0.9等の値)が決定される。決定された到達率の目標値Ptargetは、厳密計算実施判定テーブル作成部15に設定される。
 厳密計算実施判定テーブル作成部15は、事前処理として、平均受信電力が受信感度からx[dB]のマージンがある基地局がy局存在する場合の到達率を算出する。図10は、xの値が5dB間隔で、基地局数yが1~4局である場合の例を示す。
 例えば、x=15[dB]、及びy=3である場合には、基地局の受信感度+15[dB]の平均受信電力となる基地局が3局あるという想定のもとで、上述した第1の実施形態と同様の方法により、瞬時変動及びダイバーシチ効果が考慮された到達率が算出される。ここでは、算出された到達率は目標値Ptarget以上であるものとする。この場合、厳密計算実施判定テーブル作成部15は、厳密計算実施判定テーブルに対して「不要」を示す情報を設定する。
 また、例えば、x=5[dB]、及びy=2である場合には、基地局の受信感度+5[dB]の平均受信電力となる基地局が2局存在するという想定のもとで、上述した第1の実施形態と同様の方法により、瞬時変動及びダイバーシチ効果が考慮された到達率が算出される。ここでは、算出された到達率は目標値Ptarget未満であるものとする。この場合、厳密計算実施判定テーブル作成部15は、厳密計算実施判定テーブルに対して「必要」を示す情報を設定する。以上の手順により、厳密計算実施判定テーブル作成部15は、厳密計算実施判定テーブルを作成する。なお、図10は、基地局が4局である場合において作成された厳密計算実施判定テーブルの一例である。
 厳密計算実施判定部17は、平均受信電力算出部11によって算出された平均受信電力Rup(i,j)を、値の高い順にソートする。そして、厳密計算実施判定部17は、それぞれの平均受信電力について、基地局の受信感度に対して何[dB]のマージンがあるかについての計算を行う。
 例えば、平均受信電力Rup(i,j)の値が高い順に、マージンが18[dB]、16[dB]、4[dB]、及び3[dB]である場合、平均受信電力Rup(i,j)の値が15[dB]以上20[dB]未満の基地局は2局である。そのため、厳密計算実施判定部17は、厳密計算実施判定テーブルにおけるx=15[dB]かつ基地局2局である場合に相当するセルに設定された情報(「不要」)を読み取って、当該情報を到達率推定部13cへ出力する。到達率推定部13cは、厳密計算実施判定部から「不要」を示す情報が出力されると、目標値Ptargetを到達率の推定結果として外部の機器等へ出力する。
 また、例えば、平均受信電力Rup(i,j)の値が高い順にマージンが18[dB]、6[dB]、4[dB]、3[dB]である場合、平均受信電力Rup(i,j)の値が15[dB]以上20[dB]未満の基地局は1局である。そのため、厳密計算実施判定部17は、厳密計算実施判定テーブルにおけるx=15[dB]かつ基地局1局である場合に相当するセルに設定された情報(「必要」)を読み取って、当該情報を到達率推定部13cへ出力する。到達率推定部13cは、厳密計算実施判定部から「必要」を示す情報が出力されると、上述した第1の実施形態又は第2の実施形態と同様の方法により、瞬時変動及びダイバーシチ効果を考慮した厳密な到達率の計算を行う。
 なお、図10に示した厳密計算実施判定テーブルにおいて、x=0dBの欄に着目した場合、0[dB]以上の基地局は4局であるため「不要」と判定される。このように、厳密計算実施判定テーブルにおいて「必要」と「不要」とが混在する場合も発生し得る。しかしながら、この場合、「必要」として扱うのか「不要」として扱うのかについて、予め設計指針に応じて定義しておけばよい。
 例えば、多少の計算時間を犠牲にして、曖昧なメッシュについては全て厳密に計算すべきであるという設計指針である場合には、厳密計算実施判定部17は、例えば、当てはまる複数のパターンのうち1つでも「必要」を示す情報があれば、「必要」を示す情報を到達率推定部13cに出力するようにすればよい。逆に、計算時間の短さを優先すべきであるという設計指針である場合には、厳密計算実施判定部17は、例えば、当てはまる複数のパターンのうち1つでも「不要」を示す情報があれば、「不要」を示す情報を到達率推定部13c出力し、全てが「必要」を示す情報であるときにのみ、「必要」を示す情報を到達率推定部13cに出力するようにすればよい。
[到達率推定装置の動作]
 以下、到達率推定処理における到達率推定装置1cの動作について説明する。
 図11は、本発明の第3の実施形態に係る到達率推定装置1cの動作を示すフローチャートである。
 まず、設計者によって、置局設計における到達率の目標値Ptargetが決定される。そして、決定された到達率の目標値Ptargetが、厳密計算実施判定テーブル作成部15に設定される(ステップS201)。
 厳密計算実施判定テーブル作成部15は、上述した手順によって厳密計算実施判定テーブルを作成する(ステップS202)。
 平均受信電力算出部11は、設計者によって指定されたエリアの地図データを微小なメッシュに分割する。ここで、メッシュ数をMとする。平均受信電力算出部11は、分割された各メッシュについて、各基地局における平均受信電力を算出する(ステップS203)。
 厳密計算実施判定部17及び到達率推定部13cは、無線設備データベース12から、各基地局のアンテナ数及び受信感度を示す情報を取得する(ステップS204)。
 メッシュを識別する変数mに1が代入される(ステップS205)。
 厳密計算実施判定部17は、メッシュ#mについて、平均受信電力の値が高い順に基地局をソートする。そして、厳密計算実施判定部17は、それぞれの平均受信電力について、基地局の受信感度に対して何[dB]のマージンがあるかについての計算を行う(ステップS206)。そして、厳密計算実施判定部17は、厳密計算実施判定テーブルを参照し、算出されたマージンに基づいて、上述した厳密計算が必要であるか否かの判定結果を示す情報(すなわち、「必要」を示す情報又は「不要」を示す情報)を得る(ステップS207)。厳密計算実施判定部17は、当該判定結果を示す情報を、到達率推定部13cへ出力する。
 厳密計算が必要であるか否かの判定結果が「不要」を示す情報である場合(ステップS208-Yes)、到達率推定部13cは、目標値Ptargetを到達率の推定結果として出力する(ステップS209)。一方、厳密計算が必要であるか否かの判定結果が「必要」を示す情報である場合(ステップS208-No)、到達率推定部13cは、上述した第1の実施形態又は第2の実施形態と同様の方法により、瞬時変動及びダイバーシチ効果を考慮した厳密な到達率の計算を行う(ステップS210)。
 変数mがメッシュ数Mと等しいか否かについての判定がなされる(ステップS211)。変数mがメッシュ数Mと等しくない場合(ステップS211-No)、変数mに1が加算され(ステップS212)、ステップS206に移行する。一方、変数mがメッシュ数Mと等しい場合(ステップS211-Yes)、図11のフローチャートが示す到達率推定装置1cの動作が終了する。
 以上説明したように、第3の実施形態に係る到達率推定装置1cは、事前処理として、各メッシュについて、到達率を厳密に算出する必要があるか否かについての判定をそれぞれ行う。そして、到達率推定装置1cは、到達率を厳密に算出する必要があると判定されたメッシュについてのみ、瞬時変動及びダイバーシチ効果を考慮した厳密な到達率の計算を行う。そのため、第3の実施形態に係る到達率推定装置1cは、到達率推定に要する計算時間をより短縮させることができる。
<第4の実施形態>
 以下、本発明の第4の実施形態について説明する。
 上述した第1の実施形態及び第2の実施形態では、全メッシュについて、レイリーフェージングによる瞬時変動及びダイバーシチ効果を考慮した厳密な到達率計算を行う場合について説明した。これに対し、以下、第4の実施形態では、隣接メッシュ同士で上位数局の平均受信電力の値を比較し、差分が小さい場合、これら隣接メッシュをグルーピングし、1つの代表メッシュについてのみ、瞬時変動及びダイバーシチ効果を考慮した厳密な到達率計算を行う場合について説明する。また、以下、第1の実施形態との相違点についてのみ説明する。なお、ここでは上り通信の到達率推定について説明する。
[到達率推定装置の構成]
 以下、本実施形態に係る到達率推定装置1dの機能構成について説明する。
 図12は、本発明の第4の実施形態に係る到達率推定装置1dの機能構成を示すブロック図である。図12に示すように、到達率推定装置1dは、平均受信電力算出部11と、無線設備データベース12と、到達率推定部13dと、グルーピング部18と、を具備する。このように、グルーピング部18を具備する点が、第1の実施形態における到達率推定装置1aの機能構成との相違点である。
 グルーピング部18は、平均受信電力算出部11によって算出された平均受信電力の値が高い順に基地局をソートする。グルーピング部18は、上位所定数局の平均受信電力と、隣接メッシュにおける同一の基地局の平均受信電力とを比較し、差分が小さい場合、これら隣接メッシュをグルーピングする。
 到達率推定部13dは、グルーピングされた複数のメッシュのうち、1つの代表メッシュについて、上述した第1の実施形態又は第2の実施形態と同様の方法を用いて、瞬時変動やダイバーシチ効果を考慮した厳密な到達率計算を行う。そして、到達率推定部13dは、グルーピングされたその他のメッシュに対して、代表メッシュに対する計算結果を適用する(すなわち、グルーピングされたその他のメッシュについての到達率は、1つの代表メッシュについて算出された到達率と同一であるものと見なされる)。
 なお、代表メッシュは、対象範囲においてなるべく中心に位置するメッシュであることが好ましい。例えば横3×縦3の9メッシュをグルーピングする場合、中心に位置するメッシュを代表メッシュとすることが好ましい。
[到達率推定装置の動作]
 以下、到達率推定処理における到達率推定装置1dの動作について説明する。
 図13は、本発明の第4の実施形態に係る到達率推定装置1dの動作を示すフローチャートである。
 平均受信電力算出部11は、設計者によって指定されたエリアの地図データを微小なメッシュに分割する。ここで、メッシュ数をMとする。平均受信電力算出部11は、分割された各メッシュについて、各基地局における平均受信電力を算出する(ステップS301)。
 到達率推定部13dは、無線設備データベース12から、各基地局のアンテナ数及び受信感度を示す情報を取得する(ステップS302)。
 メッシュを識別する変数mに1が代入される(ステップS303)。
 メッシュ#mの到達率が推定済みであるか否か(すなわち、メッシュ#mをグルーピング済みであるか否か)についての判定がなされる(ステップS304)。メッシュ#mの到達率が推定済みである場合(ステップS304-Yes)、ステップS307に移行する。
 一方、メッシュ#mの到達率が推定済みでない場合(ステップS304-No)、グルーピング部18は、メッシュ#mのグループを生成する。そして、グルーピング部18は、メッシュ#m及び当該グループに隣接する隣接メッシュのうち、まだグルーピングされていないメッシュについて、平均受信電力算出部11によって算出された平均受信電力の値が高い順に基地局をソートし、上位所定数局の平均受信電力の値を取得する。
 そして、グルーピング部18は、隣接メッシュにおける同一の基地局の平均受信電力と、グループ内の各メッシュにおける同一の基地局の平均受信電力と、の差分が小さい場合に、当該隣接メッシュをグループに含める処理を繰り返すことによってグルーピングを行う(ステップS305)。なお、隣接メッシュにおける同一の基地局の平均受信電力と、グループ内の各メッシュにおける同一の基地局の平均受信電力と、の差分が小さい場合とは、例えば、対象とする各基地局の平均受信電力について、隣接メッシュにおける平均受信電力と、グループ内の各メッシュにおける平均受信電力のうち最大値及び最小値と、の差分がいずれも所定値以内である場合である。
 到達率推定部13dは、グルーピングされた複数のメッシュのうち、1つの代表メッシュについて、上述した第1の実施形態又は第2の実施形態と同様の方法を用いて、瞬時変動やダイバーシチ効果を考慮した厳密な到達率計算を行う(ステップS306)。
 変数mがメッシュ数Mと等しいか否かについての判定がなされる(ステップS307)。変数mがメッシュ数Mと等しくない場合(ステップS307-No)、変数mに1が加算され(ステップS308)、ステップS304に移行する。一方、変数mがメッシュ数Mと等しい場合(ステップS307-Yes)、図12のフローチャートが示す到達率推定装置1dの動作が終了する。
 以上説明したように、第4の実施形態に係る到達率推定装置1dは、上位数局の、平均受信電力が近似する複数のメッシュをグルーピングする。そして、到達率推定装置1dは、グルーピングされた複数のメッシュのうち、1つの代表メッシュについてのみ、瞬時変動及びダイバーシチ効果を考慮した厳密な到達率の計算を行う。そして、到達率推定装置1dは、グルーピングされたその他のメッシュに対しては、上記代表メッシュについて同算出された計算結果を適用する。これにより、第4の実施形態に係る到達率推定装置1dは、到達率推定に要する計算時間をより短縮させることができる。
 上述した実施形態における到達率推定装置1a~1dの一部又は全部を、コンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。更に「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、上述した機能の一部を実現するためのものであっても良く、更に上述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、PLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されるものであってもよい。
 以上、図面を参照して本発明の実施形態を説明してきたが、上記実施形態は本発明の例示に過ぎず、本発明が上記実施形態に限定されるものではないことは明らかである。したがって、本発明の技術思想及び要旨を逸脱しない範囲で構成要素の追加、省略、置換、及びその他の変更を行ってもよい。
1a~1d…到達率推定装置、11…平均受信電力算出部、12…無線設備データベース、13a~13d…到達率推定部、14…判定部、15…厳密計算実施判定テーブル作成部、16…厳密計算実施判定テーブル記憶部、17…厳密計算実施判定部、18…グルーピング部

Claims (8)

  1.  複数の基地局及び前記基地局が備える複数のアンテナの各々に関して、エリアを構成するメッシュごとに平均受信電力を算出する平均受信電力算出部と、
     前記平均受信電力を、レイリーフェージングにより瞬時変動する振幅の確率密度関数から得られる受信電力瞬時値の累積分布関数に代入することで通信到達率を算出し、算出された通信到達率に基づいてサイトダイバーシチ及びアンテナダイバーシチ効果が考慮された通信到達率を算出する到達率推定部と、
     を備える到達率推定装置。
  2.  前記到達率推定部は、
     受信電力の瞬時変動の影響を解析式によって算出する
     請求項1に記載の到達率推定装置。
  3.  前記平均受信電力算出部は、
     上り通信の平均受信電力と下り通信の平均受信電力とを算出し、
     前記到達率推定部は、
     上り通信の到達率と下り通信の到達率の結合確率を算出する
     請求項1又は請求項2に記載の到達率推定装置。
  4.  繰り返し判定部
     をさらに備え、
     前記平均受信電力算出部は、
     算出された平均受信電力の値が高い順に前記基地局をソートし、
     前記到達率推定部は、
     考慮する基地局数を電力の高い順に徐々に増やしながら到達率を繰り返し算出し、
     前記繰り返し判定部は、
     算出された到達率が目標値以上になった場合、又は1つ前の繰り返し処理で算出された到達率からの変化が収束目標値以内になった場合に前記繰り返し処理を終了させる
     請求項1又は請求項2に記載の到達率推定装置。
  5.  厳密計算実施判定テーブル作成部と、
     厳密計算実施判定部と、
     をさらに備え、
     前記平均受信電力算出部は、
     算出された平均受信電力の値が高い順に前記基地局をソートし、
     前記厳密計算実施判定テーブル作成部は、
     平均受信電力と基地局数とから厳密な到達率計算の実施要否を判定するための厳密計算実施判定テーブルを作成し、
     前記厳密計算実施判定部は、
     前記厳密計算実施判定テーブルを参照して厳密計算の実施要否を判定する
     請求項1又は請求項2に記載の到達率推定装置。
  6.  グルーピング部
     をさらに備え、
     前記平均受信電力算出部は、
     算出された平均受信電力の値が高い順に前記基地局をソートし、
     前記グルーピング部は、
     隣接メッシュと上位数基地局の平均受信電力の差分が小さい場合に前記メッシュのグルーピングを行い、
     前記到達率推定部は、
     グループ内の1つのメッシュについて瞬時変動の影響とダイバーシチ効果を考慮して到達率を算出し、算出された前記到達率を前記グループ内の他のメッシュについての到達率と見なす
     請求項1又は請求項2に記載の到達率推定装置。
  7.  複数の基地局及び前記基地局が備える複数のアンテナの各々に関して、エリアを構成するメッシュごとに平均受信電力を算出する平均受信電力算出ステップと、
     前記平均受信電力を、レイリーフェージングにより瞬時変動する振幅の確率密度関数から得られる受信電力瞬時値の累積分布関数に代入することで通信到達率を算出し、算出された通信到達率に基づいてサイトダイバーシチ及びアンテナダイバーシチ効果が考慮された通信到達率を算出する到達率推定ステップと、
     を有する到達率推定方法。
  8.  請求項1から請求項6のうちいずれか一項に記載の到達率推定装置としてコンピュータを機能させるためのプログラム。
PCT/JP2020/008678 2019-03-12 2020-03-02 到達率推定装置、到達率推定方法、及びプログラム WO2020184253A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/437,196 US11991545B2 (en) 2019-03-12 2020-03-02 Arrival rate estimation apparatus, arrival rate estimation method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019044959A JP7174249B2 (ja) 2019-03-12 2019-03-12 到達率推定装置、到達率推定方法、及びプログラム
JP2019-044959 2019-03-12

Publications (1)

Publication Number Publication Date
WO2020184253A1 true WO2020184253A1 (ja) 2020-09-17

Family

ID=72427931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008678 WO2020184253A1 (ja) 2019-03-12 2020-03-02 到達率推定装置、到達率推定方法、及びプログラム

Country Status (3)

Country Link
US (1) US11991545B2 (ja)
JP (1) JP7174249B2 (ja)
WO (1) WO2020184253A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094502A (ja) * 1999-09-24 2001-04-06 Nippon Telegr & Teleph Corp <Ntt> 電磁環境設計方法および設計プログラムを記録した記録媒体
JP2019012875A (ja) * 2017-06-29 2019-01-24 富士通株式会社 無線機器の設置位置決定装置、無線機器の設置位置決定方法及び無線機器の設置位置決定プログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL131700A0 (en) * 1999-03-08 2001-03-19 Mintz Yosef Method and system for mapping traffic congestion
US7522657B2 (en) * 2003-10-20 2009-04-21 William Marsh Rice University Throughput maximization in wireless communication systems
US7373168B1 (en) * 2005-01-12 2008-05-13 The Aerospace Corporation Power controlled fading communication channel system
JP2007259445A (ja) * 2006-03-20 2007-10-04 Fujitsu Ltd Ofdm通信システムにおける送信装置及び方法
JP5228951B2 (ja) * 2009-01-30 2013-07-03 沖電気工業株式会社 パケット中継システム及び無線ノード
EP2723133A1 (en) * 2012-10-18 2014-04-23 NTT DoCoMo, Inc. Method for controlling operation within a cell of a wireless cellular network, base station and wireless cellular network
WO2014110728A1 (en) * 2013-01-16 2014-07-24 Nec(China) Co., Ltd. Method and apparatus for dl/ul resource configuration in a tdd system
US10848355B2 (en) * 2014-06-03 2020-11-24 Valorbec Societe En Commandite Methods and systems for cognitive radio spectrum monitoring
EP3596960A4 (en) * 2017-03-17 2021-01-20 Michael Wang PRECISE POSITIONING SYSTEM AND METHOD OF USING THE SAME
TWI666947B (zh) * 2018-05-16 2019-07-21 Yuan Ze University 多用戶隨機存取訊號之分析方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094502A (ja) * 1999-09-24 2001-04-06 Nippon Telegr & Teleph Corp <Ntt> 電磁環境設計方法および設計プログラムを記録した記録媒体
JP2019012875A (ja) * 2017-06-29 2019-01-24 富士通株式会社 無線機器の設置位置決定装置、無線機器の設置位置決定方法及び無線機器の設置位置決定プログラム

Also Published As

Publication number Publication date
US20220174520A1 (en) 2022-06-02
US11991545B2 (en) 2024-05-21
JP7174249B2 (ja) 2022-11-17
JP2020150366A (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
Wang et al. MmWave vehicle-to-infrastructure communication: Analysis of urban microcellular networks
Erunkulu et al. Cellular communications coverage prediction techniques: A survey and comparison
Wang et al. Joint shadowing process in urban peer-to-peer radio channels
CN105430664B (zh) 一种基于分类拟合预测传播路损的方法和装置
JP2004524751A (ja) 放射経路損失の測定に基づく予測方法
JP6696859B2 (ja) 品質推定装置及び品質推定方法
CN112950243A (zh) 一种5g站址规划方法、装置、电子设备及存储介质
Fernandes et al. Comparison of artificial intelligence and semi-empirical methodologies for estimation of coverage in mobile networks
JP7161136B2 (ja) 置局設計装置、置局設計方法及びプログラム
CN114448531A (zh) 一种信道特性分析方法、系统、介质、设备及处理终端
Andrade et al. Radio channel spatial propagation model for mobile 3G in smart antenna systems
CN112243242B (zh) 大规模天线波束配置方法和装置
Charles et al. Refined statistical analysis of evolution approaches for wireless networks
Kaya et al. On the wireless channel characteristics of outdoor-to-indoor LTE small cells
WO2020184253A1 (ja) 到達率推定装置、到達率推定方法、及びプログラム
JP7096499B2 (ja) 無線端末収容判定装置、無線端末収容判定方法、及びプログラム
JP2004304302A (ja) 伝搬環境模擬装置およびプログラム
Joseph et al. Path Loss and Models: A Survey and Future Perspective for Wireless Communication Networks
Ratnayake et al. Deterministic diffraction loss modelling for novel broadband communication in rural environments
Phillips Geostatistical techniques for practical wireless network coverage mapping
Konak Predicting coverage in wireless local area networks with obstacles using kriging and neural networks
CN114124783B (zh) 基于改进鱼群算法的路径选择方法和计算机存储介质
Vieira et al. Introducing Redundancy in the Radio Planning of LPWA Networks for Internet of Things
Iodice et al. The role of propagation software tools for planning 5G wireless networks
Idiong et al. Performance Evaluation of Radio Frequency Visualisation Tool for Wireless Communications: A UNIUYO Campus Case Study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769414

Country of ref document: EP

Kind code of ref document: A1