WO2020184204A1 - 基板処理装置および基板処理方法 - Google Patents
基板処理装置および基板処理方法 Download PDFInfo
- Publication number
- WO2020184204A1 WO2020184204A1 PCT/JP2020/008109 JP2020008109W WO2020184204A1 WO 2020184204 A1 WO2020184204 A1 WO 2020184204A1 JP 2020008109 W JP2020008109 W JP 2020008109W WO 2020184204 A1 WO2020184204 A1 WO 2020184204A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate processing
- temperature
- heater
- substrate
- wafer
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 241
- 239000000758 substrate Substances 0.000 title claims abstract description 181
- 238000003672 processing method Methods 0.000 title claims description 5
- 238000001514 detection method Methods 0.000 claims abstract description 16
- 238000012937 correction Methods 0.000 claims description 24
- 230000005856 abnormality Effects 0.000 claims description 4
- 230000003028 elevating effect Effects 0.000 description 31
- 239000007789 gas Substances 0.000 description 24
- 238000000034 method Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
Definitions
- the present disclosure relates to a substrate processing apparatus and a substrate processing method.
- Patent Document 1 discloses a semiconductor manufacturing apparatus in which a thermocouple is built in a lifter pin that lifts a material placed on a sample table upward.
- the present disclosure provides a technique for maintaining good in-plane uniformity of substrate processing on a substrate.
- the substrate processing apparatus includes a mounting table, pins, and a control unit.
- the mounting table is provided with a first heater whose temperature can be adjusted for each divided region in which the mounting surface on which the substrate targeted for substrate processing is placed is divided.
- the tip of the pin can be recessed from a through hole formed in the mounting surface, and the tip is provided with a second heater and a detection unit for detecting temperature.
- the control unit controls the processing conditions of the substrate processing including the temperatures of the first heater and the second heater according to the temperature detected by the detection unit.
- the in-plane uniformity of the substrate processing on the substrate can be kept good.
- FIG. 1 is a cross-sectional view showing an example of a schematic configuration of the substrate processing apparatus according to the first embodiment.
- FIG. 2 is a diagram showing an example of arrangement of heaters on the mounting surface of the mounting table according to the first embodiment.
- FIG. 3 is a diagram illustrating an example of a pin structure according to the first embodiment.
- FIG. 4 is a diagram showing a detailed configuration of the vicinity of the mounting table of the substrate processing apparatus according to the first embodiment.
- FIG. 5 is a diagram showing a state in which the pins are arranged in the processing space in the substrate processing apparatus according to the first embodiment.
- FIG. 6 is a cross-sectional view showing an example of a schematic configuration of the substrate processing apparatus according to the second embodiment.
- FIG. 1 is a cross-sectional view showing an example of a schematic configuration of the substrate processing apparatus according to the first embodiment.
- FIG. 2 is a diagram showing an example of arrangement of heaters on the mounting surface of the mounting table according to the first embodiment.
- FIG. 3 is
- FIG. 7 is a diagram showing a state in which the pins are arranged in the processing space in the substrate processing apparatus according to the second embodiment.
- FIG. 8A is a plan view showing a mounting table according to another embodiment.
- FIG. 8B is a plan view showing a mounting table according to another embodiment.
- the substrate processing apparatus is expected to maintain good in-plane uniformity of substrate processing with respect to the substrate.
- the substrate processing apparatus [Configuration of board processing equipment] Next, the configuration of the substrate processing apparatus according to the embodiment will be described.
- the substrate is a semiconductor wafer (hereinafter, also referred to as a wafer) and the substrate processing apparatus is a film forming apparatus for forming a film on the wafer by plasma will be described as an example.
- FIG. 1 is a cross-sectional view showing an example of a schematic configuration of the substrate processing apparatus according to the first embodiment.
- the substrate processing device 100 includes a processing container 1, a mounting table 2, an upper electrode 3, an exhaust unit 4, and a gas supply mechanism 5.
- the processing container 1 is made of a metal such as aluminum and has a substantially cylindrical shape.
- a carry-in outlet 11 for carrying in or out the wafer W is formed on the side wall of the processing container 1.
- the carry-in outlet 11 is opened and closed by the gate valve 12.
- An annular exhaust duct 13 having a rectangular cross section is provided on the main body of the processing container 1.
- a slit 13a is formed in the exhaust duct 13 along the inner peripheral surface.
- An exhaust port 13b is formed on the outer wall of the exhaust duct 13.
- An upper electrode 3 is provided on the upper surface of the exhaust duct 13 so as to close the upper opening of the processing container 1.
- the space between the exhaust duct 13 and the upper electrode 3 is hermetically sealed with a seal 15.
- the mounting table 2 is formed in a disk shape having a size corresponding to the wafer W, and the upper surface thereof is a mounting surface 2a on which the wafer W is mounted.
- the mounting table 2 horizontally supports the wafer W in the processing container 1.
- the mounting table 2 is made of a ceramic material such as aluminum nitride (AlN) or a metal material such as aluminum or a nickel alloy.
- the mounting table 2 is provided with a cover member 22 formed of ceramics such as alumina so as to cover the outer peripheral region of the upper surface and the side surface.
- the mounting table 2 is supported by the support member 23.
- the support member 23 is formed in a cylindrical shape, and the upper end portion is fixed to the central portion of the lower surface of the mounting table 2.
- the inside of the support member 23 is hollow along the central axis, and various wirings such as wirings 50, 52, and 55, which will be described later, are arranged in the hollow.
- the support member 23 penetrates the hole formed in the bottom wall of the processing container 1 and extends below the processing container 1, and the lower end is connected to the elevating mechanism 24.
- the mounting table 2 is moved up and down by the lifting mechanism 24 via the support member 23.
- the elevating mechanism 24 raises and lowers the elevating mechanism 24 between the processing position shown by the solid line in FIG. 1 and the conveying position below which the wafer W can be conveyed, and the wafer W can be carried in and out. To.
- a support plate 25 is attached below the processing container 1 of the support member 23, and the atmosphere inside the processing container 1 is partitioned from the outside air between the bottom surface of the processing container 1 and the support plate 25, and the mounting table 2
- a bellows 26 that expands and contracts as the vehicle moves up and down is provided.
- the mounting table 2 has a heater 27 for heating the wafer W, an electrostatic adsorption electrode 28, and a high frequency electrode 29 embedded therein.
- the electrostatic adsorption electrode 28 and the high frequency electrode 29 are provided on the entire surface of the mounting surface 2a of the mounting table 2.
- the heater 27 is provided for each divided region where the mounting surface 2a of the mounting table 2 is divided, and the temperature can be adjusted for each divided region.
- FIG. 2 is a diagram showing an example of arrangement of heaters on the mounting surface of the mounting table according to the first embodiment.
- FIG. 2 shows a plan view of the mounting surface 2a of the mounting table 2 as viewed from above.
- the mounting surface 2a of the mounting table 2 is a substantially circular region in a plan view.
- the mounting surface 2a is divided into a plurality of divided regions 21, and a heater 27 is provided in each of the divided regions 21.
- the mounting surface 2a is divided into a central circular division region 21a and two annular division regions 21b and 21c. Heaters 27 are individually provided in the divided regions 21a to 21c.
- Each heater 27 provided in the divided regions 21a to 21c is individually connected to the heater power supply 51 via the wiring 50.
- the wiring 50 connected to each heater 27 is simplified by one wire.
- the heater power supply 51 supplies individually adjusted electric power to each heater 27 under the control of the control unit 90.
- Each heater 27 is supplied with power from the heater power supply 51 to generate heat. As a result, the heat generated by each heater 27 is individually controlled, and the temperature of each divided region 21 of the mounting surface 2a is individually adjusted.
- the electrostatic suction electrode 28 is connected to the suction power supply 54 via the wiring 52 and the ON / OFF switch 53, and a predetermined DC voltage is applied from the suction power supply 54.
- the electrostatic adsorption electrode 28 adsorbs the wafer W by the Coulomb force generated by applying a DC voltage.
- the first high frequency power supply 57 is connected to the high frequency electrode 29 via the wiring 55 and the matching device 56.
- the matching device 56 is provided with a variable capacitor and an impedance control circuit, and can control at least one of capacitance and impedance.
- the matching device 56 matches the load impedance with the internal impedance of the first high frequency power supply 57.
- the first high-frequency power source 57 applies electric power having a predetermined frequency to the mounting table 2 via the high-frequency electrode 29 for attracting plasma ions.
- the first high-frequency power source 57 applies high-frequency power of 13.56 MHz to the mounting table 2 via the high-frequency electrode 29 for ion attraction. In this way, the mounting table 2 also functions as a lower electrode.
- a through hole 60 is formed in the mounting table 2. As shown in FIG. 2, three through holes 60 are provided in the peripheral portion of the mounting surface 2a at equal intervals in the circumferential direction. A pin 61 is provided in each of the through holes 60. The pin 61 is provided with a heater and a detection unit for detecting temperature at the tip portion thereof.
- FIG. 3 is a diagram illustrating an example of the pin structure according to the first embodiment.
- the pin 61 is formed by wrapping the periphery of the rod-shaped core material 61a with a ceramic sheet 61b and sintering the pin 61.
- the core material 61a is made of a dielectric material, and a thermocouple 62 is provided inside as a detection unit for detecting the temperature. Examples of the material of the dielectric include ceramics such as alumina and glass such as quartz.
- the ceramic sheet 61b is provided with a heater 63.
- a wiring 64 through which a current corresponding to the temperature flows is connected to the thermocouple 62.
- a wiring 65 to which electric power for generating heat of the heater 63 is supplied is connected to the heater 63.
- FIG. 4 is a diagram showing a detailed configuration in the vicinity of the mounting table of the substrate processing apparatus according to the first embodiment.
- the lower end of the pin 61 is fixed to the pin arm 70.
- the pin arm 70 is formed by combining a plurality of parts made of a dielectric material, and has a cylindrical cylindrical portion 70a surrounding the support member 23 and an upper portion of the cylindrical portion 70a along the lower surface of the mounting table 2.
- An arm portion 70b extending to a position below the pin 61 is provided.
- the support member 23 is provided with a guide portion 80 at the bottom.
- the guide portion 80 has a slide member 81 and a holding member 82.
- the slide member 81 is provided with a cylindrical portion 81a that covers the periphery of the support member 23, and a thick flange portion 81b is formed on the upper portion of the cylindrical portion 81a.
- the holding member 82 is provided with a cylindrical portion 82a that covers the periphery of the cylindrical portion 81a of the slide member 81, and a flange portion 82b is formed below the cylindrical portion 82a.
- the slide member 81 can be slidably moved in the vertical direction by covering the cylindrical portion 81a with the cylindrical portion 82a of the holding member 82.
- the lower part of the cylindrical portion 70a of the pin arm 70 reaches the guide portion 80 and is fixed to the slide member 81.
- the pin arm 70 and the pin 61 move up and down as the slide member 81 slides in the vertical direction.
- the support member 23 has an opening 23a formed in a part of the peripheral surface of the lower portion.
- the flange portion 81b is formed with a through hole 81c penetrating to the peripheral surface at a position corresponding to the opening 23a.
- the pin arm 70 is provided with a rod portion 70c that bends from the cylindrical portion 70a and passes through the through hole 81c to reach the inside of the hollow of the support member 23 at the lower portion of the cylindrical portion 70a.
- An elevating mechanism 85 is provided in the lower part of the support member 23 in the hollow.
- the elevating mechanism 85 has a rod 85a that expands and contracts, and the rod 85a is connected to the rod portion 70c.
- the elevating mechanism 85 elevates the rod portion 70c in the vertical direction. As the rod portion 70c is raised and lowered by the elevating mechanism 85, the slide member 81 slides in the vertical direction, and the pin arm 70 and the pin 61 are moved up and down.
- the hollow inside of the support member 23 is used as a space for outside air, and the support member 23 is airtightly sealed so that the outside air inside the hollow of the support member 23 does not leak into the processing container 1.
- the through hole 81c is airtightly sealed by providing a seal 83 between the through hole 81c and the rod portion 70c.
- a seal 84 is provided between the holding member 82 and the support plate 25 to seal the airtightly.
- the support member 23 is provided with a protrusion 23b protruding above the opening 23a on the outer peripheral surface on the entire circumference.
- the bellows 86a and 86b that expand and contract are provided between the protrusion 23b and the upper surface of the flange 81b, and between the lower surface of the flange 81b and the holding member 82, respectively, to seal the airtightly.
- the support member 23 is sealed so that the outside air in the hollow does not leak into the processing container 1 even when the slide member 81 slides in the vertical direction.
- the wiring 64 connected to the thermocouple 62 of each pin 61 and the wiring 65 connected to the heater 63 are arranged inside the pin arm 70 and introduced from the end of the rod portion 70c into the hollow of the support member 23.
- the wiring 65 passes through the hollow of the support member 23 and is connected to the heater power supply 51.
- the wiring 64 passes through the hollow of the support member 23 and is connected to the control unit 90 described later.
- the wiring path to the atmosphere side can be shortened.
- the wirings 64 and 65 can be arranged without being exposed on the vacuum side, so that the protection of the wirings and the like can be omitted.
- the wiring 65 connected to the heater 63 can be connected to the heater power supply 51 by the same wiring route as the wiring 50 connected to the heater 27, the management of the wiring 65 and the control of the supplied power can be facilitated.
- the upper electrode 3 is arranged on the mounting table 2 so as to face the mounting table 2.
- a high frequency of a predetermined frequency is applied to the upper electrode 3.
- a second high frequency power supply 46 is connected to the upper electrode 3 via a matching device 45.
- the matcher 45 is provided with a variable capacitor and an impedance control circuit, and can control at least one of capacitance and impedance.
- the matching device 45 matches the load impedance with the internal impedance of the second high frequency power supply 46.
- the second high frequency power supply 46 applies electric power having a predetermined frequency to the upper electrode 3 for plasma generation.
- the second high frequency power supply 46 applies high frequency power of 13.56 MHz to the upper electrode 3.
- a gas supply mechanism 5 is connected to the upper electrode 3.
- the gas supply mechanism 5 is connected to gas supply sources of various gases used for film formation via gas supply lines (not shown). Each gas supply line is appropriately branched according to the film forming process, and is provided with an on-off valve and a flow rate controller.
- the gas supply mechanism 5 can control the flow rate of various gases by controlling the on-off valve and the flow rate controller provided in each gas supply line.
- the gas supply mechanism 5 supplies various gases used for film formation to the upper electrode 3.
- a gas flow path is formed inside the upper electrode 3, and various gases supplied from the gas supply mechanism 5 are supplied into the processing container 1.
- the exhaust unit 4 exhausts the inside of the processing container 1.
- the exhaust unit 4 has an exhaust pipe 41 connected to the exhaust port 13b, and an exhaust mechanism 42 having a vacuum pump, a pressure control valve, and the like connected to the exhaust pipe 41.
- the gas in the processing container 1 reaches the exhaust duct 13 through the slit 13a, and is exhausted from the exhaust duct 13 through the exhaust pipe 41 by the exhaust mechanism 42.
- the substrate processing device 100 has a control unit 90, a user interface 91, and a storage unit 92.
- the control unit 90 includes a CPU (Central Processing Unit) and controls each unit of the substrate processing device 100.
- the control unit 90 supplies various gases from the gas supply mechanism 5, raises and lowers the elevating mechanism 24, exhausts the inside of the processing container 1 by the exhaust mechanism 42, the first high frequency power supply 57 and the second high frequency power supply 46. Control the power supplied from. Further, the control unit 90 controls the elevating operation of the elevating mechanism 85 and the power supplied from the heater power supply 51 to each heater 27 and the heater 63. Further, the control unit 90 detects the temperature of the thermocouple 62 from the amount of current flowing through the wiring 64.
- a CPU Central Processing Unit
- the user interface 91 is composed of a keyboard for the process manager to input commands for managing the board processing device 100, a display for visualizing and displaying the operating status of the board processing device 100, and the like.
- the storage unit 92 stores various programs such as a control program for controlling the board processing device 100 and a program for executing board processing. Further, the storage unit 92 stores processing conditions for substrate processing such as recipes. Further, the storage unit 92 stores the first correction data 92a and the second correction data 92b for correcting the processing conditions of the substrate processing.
- the recipes showing these programs and processing conditions may be stored in a hard disk or a semiconductor memory. Further, the recipe may be set in a predetermined position and read in a state of being housed in a storage medium readable by a portable computer such as a CD-ROM or a DVD.
- the control unit 90 operates based on the program stored in the storage unit 92 and the processing conditions of the substrate processing, and controls the operation of the entire device.
- the substrate processing device 100 decompresses the inside of the processing container 1 to a vacuum atmosphere by the exhaust mechanism 42.
- the substrate processing device 100 lowers the mounting table 2 to a transport position where the wafer W can be transported as shown by the alternate long and short dash line in FIG. 1 by the elevating mechanism 24, and opens the gate valve 12.
- the wafer W is carried into the processing container 1 through the carry-in outlet 11 by a wafer transfer mechanism such as a robot arm.
- the substrate processing device 100 raises the pin 61 by the elevating mechanism 85 to receive the wafer W from the wafer transfer mechanism. After delivering the wafer W, the wafer transfer mechanism exits from the carry-in port 11.
- the substrate processing device 100 closes the gate valve 12 and lowers the pin 61 by the elevating mechanism 85 to mount the wafer W on the mounting table 2.
- the substrate processing device 100 raises the mounting table 2 to the processing position shown by the solid line in FIG. 1 by the elevating mechanism 24.
- the substrate processing device 100 supplies electric power from the heater power supply 51 to each heater 27, controls each heater 27 to a predetermined temperature, and heats the wafer W mounted on the mounting table 2. Then, after adjusting the pressure in the processing container 1, the substrate processing apparatus 100 supplies various gases used for film formation from the upper electrode 3 into the processing container 1 and supplies various gases to the upper electrode 3 and the mounting table 2 at a predetermined frequency. A high frequency is applied to generate plasma and the film formation process is performed.
- the portion of the through hole 60 of the mounting surface 2a becomes a region without the heater 27, which is lower in temperature than the surroundings. It will be a cool spot.
- the processing condition for the wafer W may change depending on the temperature, and the uniformity may decrease at the cool spot portion.
- the substrate processing apparatus 100 is provided with a heater 63 and a thermocouple 62 at the tip of the pin 61.
- the control unit 90 controls the temperature of the heater 63 by controlling the electric power supplied from the heater power supply 51 to the heater 63 based on the temperature detected by the thermocouple 62. For example, the control unit 90 controls the temperature of the heater 63 so that the temperature becomes the same as the ambient temperature.
- the substrate processing apparatus 100 can prevent the portion of the through hole 60 of the mounting surface 2a from becoming a cool spot, so that the in-plane uniformity of the substrate processing with respect to the wafer W can be kept good.
- FIG. 5 is a diagram showing a state in which the pins are arranged in the processing space in the substrate processing apparatus according to the first embodiment.
- the density of plasma generated in the processing space 38 may be biased.
- plasma may be generated unevenly near the center of the processing space 38.
- a substrate process such as a film forming process
- the density of plasma generated in the processing space 38 is uneven, the in-plane uniformity of the substrate process with respect to the wafer W is lowered.
- the film forming rate in the region where the plasma density is low is lower than that in the region where the plasma density is high.
- the control unit 90 determines the heater 27 so that the in-plane uniformity of the substrate processing on the wafer W is improved according to the temperature detected by the thermocouple 62 with the tip portion of the pin 61 arranged in the processing space 38. And the processing conditions of the substrate processing including the temperature of the heater 63 are controlled. For example, the control unit 90 controls the power supplied from the first high-frequency power source 57 and the second high-frequency power source 46 and the flow rate of each gas supplied from the gas supply mechanism 5 so as to make the plasma density uniform. Further, when the progress of the substrate processing on the wafer W changes depending on the temperature of the wafer W, the control unit 90 controls the temperatures of the heater 27 and the heater 63 so as to improve the in-plane uniformity. For example, in the film forming process, when the film forming rate increases as the temperature of the wafer W increases, the temperatures of the heater 27 and the heater 63 are controlled so that the temperature of the wafer W in the region where the plasma density is low increases.
- correction data for correcting the processing conditions of the substrate processing so that the in-plane uniformity of the substrate processing is within a predetermined allowable range is obtained. It is stored as the first correction data 92a.
- the first correction data 92a is generated, for example, by performing a preliminary experiment or simulation using the substrate processing apparatus 100.
- the substrate processing apparatus 100 measures the temperature of the plasma in the processing space 38 by performing the same processing as the substrate processing performed on the wafer W before performing the substrate processing on the wafer W. For example, in the state where the wafer W is not mounted on the mounting surface 2a, the control unit 90 raises the pin 61 by the elevating mechanism 85 to project the pin 61 from the mounting surface 2a and place the tip portion on the mounting table. It is arranged in the processing space 38 between 2 and the upper electrode 3. Then, the control unit 90 performs the same processing as the substrate processing performed on the wafer W, and detects the temperature of the plasma by the thermocouple 62 provided at the tip of each pin 61.
- the control unit 90 reads the correction data corresponding to the temperature detected by the thermocouple 62 of each pin 61 from the first correction data 92a, and corrects the processing conditions of the substrate processing with the read correction data.
- the substrate processing apparatus 100 can suppress the unevenness of the density of the plasma generated in the processing space 38, and can maintain good in-plane uniformity of the substrate processing with respect to the wafer W.
- the pins 61 are slightly raised by the elevating mechanism 85, and the tips of the pins 61 are on the back surface of the wafer W.
- the temperature of the wafer W can be detected by the thermocouple 62.
- the substrate processing apparatus 100 performs a substrate processing such as a film forming process to generate plasma in a state where the tips of the pins 61 are in contact with the back surface of the wafer W in this way, the wafer W during the substrate processing is generated. Temperature can be detected.
- the temperature of the wafer W may become excessively high due to the heat input from the plasma generated in the processing space 38.
- plasma may be excessively generated in the processing space 38, and the temperature of the wafer W may become excessively high.
- substrate processing such as film formation processing, if the temperature of the wafer W becomes excessively high, the in-plane uniformity of the substrate processing with respect to the wafer W may decrease.
- the control unit 90 improves the in-plane uniformity of the substrate processing on the wafer W according to the temperature detected by the thermocouple 62 in a state where the tip of each pin 61 is in contact with the back surface of the wafer W.
- the processing conditions of the substrate processing including the temperatures of the heater 27 and the heater 63 are controlled.
- the control unit 90 controls the power supplied from the first high frequency power supply 57 and the second high frequency power supply 46 and the flow rate of each gas supplied from the gas supply mechanism 5 so that the heat input from the plasma is reduced.
- the control unit 90 controls the temperatures of the heater 27 and the heater 63 so that the temperature of the wafer W is lowered.
- the control unit 90 controls the electric power supplied from the heater power supply 51 so as to lower the temperatures of the heater 27 and the heater 63.
- the correction condition of the processing condition of the substrate processing for correcting the temperature of the wafer W within a predetermined allowable range is obtained, and the second correction data 92b is used.
- the second correction data 92b is generated by, for example, performing a preliminary experiment or simulation using the substrate processing apparatus 100.
- the substrate processing apparatus 100 performs substrate processing on the wafer W and measures the temperature of the wafer W during the substrate processing.
- the control unit 90 slightly raises the pins 61 by the elevating mechanism 85 to bring the tips of the pins 61 into contact with the back surface of the wafer W. Then, the control unit 90 performs substrate processing on the wafer W, and measures the temperature of the wafer W during substrate processing by the thermocouple 62 provided at the tip of each pin 61.
- the control unit 90 reads the correction data corresponding to the temperature detected by the thermocouple 62 of each pin 61 from the second correction data 92b, and corrects the processing conditions of the substrate processing with the read correction data.
- the substrate processing apparatus 100 can suppress the temperature of the wafer W from becoming excessively high, and can maintain good in-plane uniformity of the substrate processing with respect to the wafer W.
- the substrate processing apparatus 100 may stop the substrate processing when the temperature of the wafer W during the detected substrate processing is abnormally high. For example, when the temperature of the wafer W during the substrate processing detected by the thermocouple 62 exceeds a predetermined upper limit value, the control unit 90 may stop the substrate processing and perform control to notify the occurrence of an abnormality. .. For example, the control unit 90 outputs an error indicating that an abnormality has occurred in the user interface 91. As a result, the substrate processing apparatus 100 can stop the substrate processing when an abnormal substrate processing is performed on the wafer W. Further, the substrate processing apparatus 100 can notify the process manager that the abnormal substrate processing has been performed.
- the substrate processing apparatus 100 includes a mounting table 2, a pin 61, and a control unit 90.
- the mounting table 2 is provided with a heater 27 whose temperature can be adjusted for each divided region 21 in which the mounting surface 2a on which the wafer W is mounted is divided.
- the tip of the pin 61 can be recessed from the through hole 60 formed in the mounting surface 2a, and the tip is provided with a heater 63 and a thermocouple 62 for detecting the temperature.
- the control unit 90 controls the processing conditions of the substrate processing including the temperatures of the heater 27 and the heater 63 according to the temperature detected by the thermocouple 62. As a result, the substrate processing apparatus 100 can maintain good in-plane uniformity of the substrate processing with respect to the wafer W.
- thermocouple 62 is used.
- the processing conditions are corrected according to the detected temperature.
- the substrate processing apparatus 100 can detect the temperature of the plasma during the substrate processing with the thermocouple 62, and by correcting the processing conditions according to the temperature of the plasma, the in-plane uniformity of the substrate processing with respect to the wafer W is improved. Can be kept in.
- control unit 90 corrects the processing conditions according to the temperature detected by the thermocouple 62 when the wafer W is placed on the mounting table 2 and the pin 61 is brought into contact with the wafer W to perform the substrate processing. ..
- the substrate processing apparatus 100 can detect the temperature of the wafer W during substrate processing with the thermocouple 62, and by correcting the processing conditions according to the temperature of the wafer W, the in-plane uniformity of the substrate processing with respect to the wafer W Can be kept good.
- the substrate processing apparatus 100 stores a storage unit 92 that stores correction data (first correction data 92a and second correction data 92b) for correcting processing conditions for each temperature combination detected by the thermocouple 62 of each pin 61. Have more.
- the control unit 90 reads the correction data corresponding to the temperature combination detected by the thermocouple 62 of each pin 61 from the storage unit 92, and corrects the processing conditions of the substrate processing with the read correction data.
- the substrate processing apparatus 100 can suppress the uneven density of the plasma generated in the processing space 38 and the excessively high temperature of the wafer W, and maintain good in-plane uniformity of the substrate processing with respect to the wafer W. be able to.
- control unit 90 controls the temperature of the heater 63 so as to reach a predetermined temperature based on the temperature detected by the thermocouple 62.
- the substrate processing apparatus 100 can prevent the portion of the through hole 60 of the mounting surface 2a from becoming a cool spot, so that the in-plane uniformity of the substrate processing with respect to the wafer W can be kept good.
- the control unit 90 stops the substrate processing and controls to notify the occurrence of an abnormality.
- the substrate processing apparatus 100 can stop the substrate processing when an abnormal substrate processing is performed on the wafer W. Further, the substrate processing apparatus 100 can notify the process manager that the abnormal substrate processing has been performed.
- the mounting table 2 is supported by a support member 23 so as to be able to move up and down, and wirings 50 and 65 for supplying electric power to the heater 27 and the heater 63 are arranged in the support member 23.
- the substrate processing device 100 since the substrate processing device 100 can arrange the wirings 50 and 65 in the same wiring path, it becomes easy to manage the wiring and control the power supply.
- FIG. 6 is a cross-sectional view showing an example of a schematic configuration of the substrate processing apparatus according to the second embodiment. Since the substrate processing apparatus 100 according to the second embodiment has the same configuration as the substrate processing apparatus 100 according to the first embodiment, the same parts are designated by the same reference numerals and the description thereof will be omitted. I will mainly explain.
- the guide portion 80 is provided above the support member 23.
- An elevating plate 110 is provided near the bottom surface of the processing container 1.
- the elevating plate 110 can be elevated by an elevating mechanism 111 provided below the processing container 1.
- the elevating plate 110 comes into contact with the pin arm 70.
- the pin arm 70 is pushed up by the elevating plate 110, and the pin 61 protrudes from the through hole 60 of the mounting surface 2a.
- FIG. 7 is a diagram showing a state in which the pins are arranged in the processing space in the substrate processing apparatus according to the second embodiment.
- the pin arm 70 is lowered, and as shown in FIG. 6, the pin 61 is housed in the through hole 60 of the mounting surface 2a.
- the tip portion of the pin 61 can be recessed from the through hole 60 of the mounting surface 2a.
- the pin 61 has the structure shown in FIG. 3 as in the first embodiment, and is provided with a heater 63 and a thermocouple 62 at the tip portion thereof. Similar to the first embodiment, the control unit 90 controls the electric power supplied from the heater power supply 51 to the heater 63 based on the temperature detected by the thermocouple 62 to control the temperature of the heater 63.
- the substrate processing apparatus 100 according to the second embodiment can prevent the portion of the through hole 60 of the mounting surface 2a from becoming a cool spot, as in the first embodiment, so that the substrate processing on the wafer W can be performed. Good in-plane uniformity can be maintained.
- the pin 61 in a state where the wafer W is not mounted on the mounting surface 2a, the pin 61 is raised by the elevating mechanism 111 to project the pin 61 from the mounting surface 2a.
- the tip portion can be arranged in the processing space 38 between the mounting table 2 and the upper electrode 3. Therefore, when the substrate processing apparatus 100 according to the second embodiment generates plasma in a state where the tip portion of the pin 61 is arranged in the processing space 38, the temperature of the plasma can be detected by the thermocouple 62 provided on the pin 61.
- the pins 61 are slightly raised by the elevating mechanism 111, and the tips of the pins 61 are on the back surface of the wafer W.
- the temperature of the wafer W can be detected by the thermocouple 62.
- the control unit 90 includes the temperature of the heater 27 and the heater 63 so as to improve the in-plane uniformity of the substrate processing with respect to the wafer W according to the temperature detected by the thermocouple 62. Control the processing conditions of processing.
- the substrate processing apparatus 100 according to the second embodiment can maintain good in-plane uniformity of the substrate processing with respect to the wafer W as in the first embodiment.
- the substrate processing apparatus 100 according to the second embodiment can maintain good in-plane uniformity of the substrate processing with respect to the wafer W, similarly to the substrate processing apparatus 100 according to the first embodiment.
- the substrate to be processed by the substrate is a semiconductor wafer
- the present invention is not limited to this.
- the substrate to be processed by the substrate may be another substrate such as a glass substrate.
- FIG. 8A is a plan view showing a mounting table according to another embodiment.
- the mounting surface 2a of the mounting table 2 is divided into a central circular division region 21a and three annular division regions 21b to 21d. Further, the division region 21a on the center side of the wafer W is largely divided in width.
- FIG. 8B is a plan view showing a mounting table according to another embodiment.
- the mounting surface 2a is divided into a central circular division region 21 and a plurality of concentric annular division regions surrounding the circular division region 21.
- the annular division region is divided into a plurality of division regions 21 in the circumferential direction.
- a heater 27 is individually provided in each division region 21.
- the substrate processing apparatus 100 may generate plasma and perform other plasma processing such as etching or a heat treatment without using plasma.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
Abstract
載置台は、基板処理の対象とされた基板が載置される載置面を分割した分割領域ごとに温度を調整可能な第1のヒータが設けられている。ピンは、載置面に形成された貫通穴から先端部分が突没可能とされ、先端部分に第2のヒータおよび温度を検出する検出部が設けられている。制御部は、検出部により検出される温度に応じて第1のヒータおよび第2のヒータの温度を含む基板処理の処理条件を制御する。
Description
本開示は、基板処理装置および基板処理方法に関するものである。
特許文献1には、試料台に載置された材料を上方に持ち上げるリフターピンに熱電対を内蔵させた半導体製造装置を開示する。
本開示は、基板に対する基板処理の面内均一性を良好に保つ技術を提供する。
本開示の一態様による基板処理装置は、載置台と、ピンと、制御部とを有する。載置台は、基板処理の対象とされた基板が載置される載置面を分割した分割領域ごとに温度を調整可能な第1のヒータが設けられている。ピンは、載置面に形成された貫通穴から先端部分が突没可能とされ、先端部分に第2のヒータおよび温度を検出する検出部が設けられている。制御部は、検出部により検出される温度に応じて第1のヒータおよび第2のヒータの温度を含む基板処理の処理条件を制御する。
本開示によれば、基板に対する基板処理の面内均一性を良好に保つことができる。
以下に、開示される基板処理装置および基板処理方法の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態により、開示される基板処理装置および基板処理方法が限定されるものではない。また、各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
ところで、基板処理装置では、基板に対する基板処理の面内均一性を良好に保つことが期待されている。
(第1実施形態)
[基板処理装置の構成]
次に、実施形態に係る基板処理装置の構成について説明する。以下では、基板を、半導体ウエハ(以下、ウエハとも称する。)とし、基板処理装置を、ウエハに対してプラズマにより成膜を行う成膜装置とした場合を例に説明する。
[基板処理装置の構成]
次に、実施形態に係る基板処理装置の構成について説明する。以下では、基板を、半導体ウエハ(以下、ウエハとも称する。)とし、基板処理装置を、ウエハに対してプラズマにより成膜を行う成膜装置とした場合を例に説明する。
図1は、第1実施形態に係る基板処理装置の概略構成の一例を示す断面図である。基板処理装置100は、処理容器1と、載置台2と、上部電極3と、排気部4と、ガス供給機構5とを有する。
処理容器1は、アルミニウム等の金属により構成され、略円筒状の形状とされている。処理容器1の側壁には、ウエハWを搬入または搬出するための搬入出口11が形成されている。搬入出口11は、ゲートバルブ12により開閉される。処理容器1の本体の上には、断面が矩形状をなす円環状の排気ダクト13が設けられている。排気ダクト13には、内周面に沿ってスリット13aが形成されている。排気ダクト13の外壁には、排気口13bが形成されている。排気ダクト13の上面には、処理容器1の上部開口を塞ぐように上部電極3が設けられている。排気ダクト13と上部電極3の間はシール15で気密に封止されている。
載置台2は、ウエハWに対応した大きさの円板状に形成されており、上面がウエハWを載置する載置面2aとされている。載置台2は、処理容器1内でウエハWを水平に支持する。載置台2は、窒化アルミニウム(AlN)等のセラミックス材料や、アルミニウムやニッケル合金等の金属材料で形成されている。載置台2には、上面の外周領域および側面を覆うようにアルミナ等のセラミックスにより形成されたカバー部材22が設けられている。
載置台2は、支持部材23に支持されている。支持部材23は、円筒状に形成され、載置台2の下面の中央部分に上側の端部が固定されている。支持部材23は、中心軸に沿って内部が中空とされており、当該中空内に、後述する配線50、52、55などの各種の配線が配設される。支持部材23は、処理容器1の底壁に形成された孔部を貫通して処理容器1の下方に延び、下端が昇降機構24に接続されている。載置台2は、昇降機構24により、支持部材23を介して昇降する。昇降機構24は、図1の実線で示す処理位置と、その下方の二点鎖線で示すウエハWの搬送が可能な搬送位置の間で昇降機構24を昇降させ、ウエハWの搬入および搬出を可能にする。
支持部材23の処理容器1の下方には、支持プレート25が取り付けられており、処理容器1の底面と支持プレート25の間には、処理容器1内の雰囲気を外気と区画し、載置台2の昇降動作にともなって伸縮するベローズ26が設けられている。
載置台2は、ウエハWを加熱するためのヒータ27と静電吸着電極28と高周波電極29とが内部に埋め込まれている。静電吸着電極28および高周波電極29は、載置台2の載置面2aの全面に設けられている。ヒータ27は、載置台2の載置面2aを分割した分割領域ごとに設けられ、分割領域ごとに温度を調整可能とされている。
図2は、第1実施形態に係る載置台の載置面のヒータの配置の一例を示す図である。図2には、載置台2の載置面2aを上方から見た平面図が示されている。載置台2の載置面2aは、平面視において略円形の領域とされている。載置面2aは、複数の分割領域21に分割され、それぞれの分割領域21にヒータ27が設けられている。例えば、載置面2aは、図2に示すように、中央の円状の分割領域21a及び2つの環状の分割領域21b、21cに分割されている。分割領域21a~21cには、ヒータ27がそれぞれ個別に設けられている。
図1に戻る。分割領域21a~21cに設けられた各ヒータ27は、それぞれ配線50を介して、ヒータ電源51に個別に接続されている。なお、図1等では、各ヒータ27に接続された配線50を1本で簡略化して示している。ヒータ電源51は、制御部90から制御の元、各ヒータ27に個別に調整された電力を供給する。各ヒータ27は、ヒータ電源51から給電されて発熱する。これにより、各ヒータ27が発する熱が個別に制御され、載置面2aの各分割領域21の温度が個別に調整される。
静電吸着電極28には、配線52およびON/OFFスイッチ53を介して吸着電源54に接続され、吸着電源54から所定の直流電圧が印加される。静電吸着電極28は、直流電圧が印加されることによって生じるクーロン力によってウエハWを吸着する。
高周波電極29には、配線55および整合器56を介して第1高周波電源57が接続されている。整合器56は、可変コンデンサ、インピーダンス制御回路が設けられ、容量、インピーダンスの少なくとも一方の制御が可能とされている。整合器56は、第1高周波電源57の内部インピーダンスに負荷インピーダンスを整合させる。第1高周波電源57は、プラズマのイオン引き込み用に所定周波数の電力を高周波電極29を介して載置台2に印加する。例えば、第1高周波電源57は、イオン引き込み用に、13.56MHzの高周波電力を高周波電極29を介して載置台2に印加する。このように、載置台2は、下部電極としても機能する。
載置台2には、貫通穴60が形成されている。貫通穴60は、図2に示すように、載置面2aの周辺部分に、周方向に均等な間隔で3つ設けられている。貫通穴60には、それぞれピン61が設けられている。ピン61は、先端部分にヒータおよび温度を検出する検出部が設けられている。
図3は、第1実施形態に係るピンの構造の一例を説明する図である。ピン61は、棒状の心材61aの周囲をセラミックシート61bで包み、焼結することで、形成されている。心材61aは、誘電体で形成され、内部に、温度を検出する検出部として、熱電対62が設けられている。誘電体の材料としては、例えば、アルミナ等のセラミックスや石英等のガラスなどが挙げられる。セラミックシート61bには、ヒータ63が設けられている。熱電対62には、温度に応じた電流が流れる配線64が接続されている。ヒータ63には、ヒータ63を発熱させる電力が給電される配線65が接続されている。
図4は、第1実施形態に係る基板処理装置の載置台付近の詳細な構成を示す図である。ピン61は、下端がピンアーム70に固定されている。ピンアーム70は、誘電体で形成された複数のパーツを組み合わせて構成されており、支持部材23の周囲を囲む筒状の円筒部70aと、円筒部70aの上部に載置台2の下面に沿ってピン61の下部の位置まで延びたアーム部70bと、が設けられている。
支持部材23は、下部にガイド部80が設けられている。ガイド部80は、スライド部材81、保持部材82を有する。スライド部材81は、支持部材23の周囲を覆う円筒部81aが設けられ、円筒部81aの上部に肉厚なフランジ部81bが形成されている。保持部材82は、スライド部材81の円筒部81aの周囲を覆う円筒部82aが設けられ、円筒部82aの下部にフランジ部82bが形成されている。スライド部材81は、円筒部81aが保持部材82の円筒部82aで覆われることにより、上下方向にスライド移動が可能とされている。
ピンアーム70は、円筒部70aの下部がガイド部80まで到達しており、スライド部材81に固定されている。スライド部材81の上下方向のスライド移動に伴い、ピンアーム70およびピン61は昇降する。
支持部材23は、下部の周面の一部に、開口23aが形成されている。フランジ部81bは、開口23aに対応する位置に、周面まで貫通する貫通穴81cが形成されている。ピンアーム70は、円筒部70aの下部に、円筒部70aから屈曲し、貫通穴81cを通過して支持部材23の中空内まで到達するロッド部70cが設けられている。支持部材23の中空内の下部には、昇降機構85が設けられている。昇降機構85は、伸縮するロッド85aを有し、ロッド85aがロッド部70cに接続されている。昇降機構85は、ロッド部70cを上下方向に昇降する。この昇降機構85によるロッド部70cの昇降に伴い、スライド部材81が上下方向にスライド移動し、ピンアーム70およびピン61が昇降する。
本実施形態では、支持部材23の中空内を外気の空間としており、支持部材23の中空内の外気が処理容器1内に漏れないように支持部材23を気密に封止している。例えば、貫通穴81cには、ロッド部70cとの間には、シール83を設けて気密に封止している。また、保持部材82と支持プレート25との間には、シール84を設けて、気密に封止している。また、支持部材23は、外周面の開口23aの上部に突出した突部23bを全周に設けている。そして、突部23bとフランジ部81bの上面の間、および、フランジ部81bの下面と保持部材82の間に、それぞれ伸縮するベローズ86a、86bを設けて気密に封止している。これにより、支持部材23は、スライド部材81が上下方向にスライド移動した場合でも、中空内の外気が処理容器1内に漏れないように封止される。
各ピン61の熱電対62に接続された配線64およびヒータ63に接続された配線65は、ピンアーム70内部に配設され、ロッド部70cの端部から支持部材23の中空内に導入される。配線65は、支持部材23の中空内を通過して、ヒータ電源51に接続される。配線64は支持部材23の中空内を通過して、後述する制御部90に接続される。本実施形態では、配線64、65を支持部材23の中空内に導入することで、大気側までの配線経路を短くできる。また、配線64、65をピンアーム70内部に配設することで、配線64、65を真空側で暴露せずに配設できるため、配線の保護などを省略できる。また、ヒータ63に接続された配線65を、ヒータ27に接続された配線50と同じ配線経路でヒータ電源51に接続できるため、配線65の管理及び供給電力の制御が容易となる。
図1に戻る。上部電極3は、載置台2の上部に、載置台2と対向するように配置されている。成膜処理を行う際、上部電極3には、所定周波数の高周波が印加される。例えば、上部電極3には、整合器45を介して、第2高周波電源46が接続されている。整合器45は、可変コンデンサ、インピーダンス制御回路が設けられ、容量、インピーダンスの少なくとも一方の制御が可能とされている。整合器45は、第2高周波電源46の内部インピーダンスに負荷インピーダンスを整合させる。第2高周波電源46は、プラズマの生成用に所定周波数の電力を上部電極3に印加する。例えば、第2高周波電源46は、13.56MHzの高周波電力を上部電極3に印加する。
上部電極3には、ガス供給機構5が接続されている。ガス供給機構5は、成膜に用いる各種のガスのガス供給源に、それぞれ不図示のガス供給ラインを介して接続されている。各ガス供給ラインは、成膜のプロセスに対応して適宜分岐し、開閉バルブ、流量制御器が設けられている。ガス供給機構5は、各ガス供給ラインに設けられた開閉バルブや流量制御器を制御することにより、各種のガスの流量の制御が可能とされている。ガス供給機構5は、成膜に用いる各種のガスを上部電極3に供給する。上部電極3は、内部にガス流路が形成され、ガス供給機構5から供給された各種のガスを処理容器1内に供給する。
排気部4は、処理容器1の内部を排気する。排気部4は、排気口13bに接続された排気配管41と、排気配管41に接続された真空ポンプや圧力制御バルブ等を有する排気機構42とを有する。処理に際しては、処理容器1内のガスがスリット13aを介して排気ダクト13に至り、排気ダクト13から排気配管41を通って排気機構42により排気される。
また、基板処理装置100は、制御部90と、ユーザインターフェース91と、記憶部92とを有する。
制御部90は、CPU(Central Processing Unit)を備え基板処理装置100の各部を制御する。例えば、制御部90は、ガス供給機構5からの各種のガスの供給動作、昇降機構24の昇降動作、排気機構42による処理容器1内の排気動作、第1高周波電源57および第2高周波電源46からの供給電力を制御する。また、制御部90は、昇降機構85の昇降動作、ヒータ電源51から各ヒータ27およびヒータ63への供給電力を制御する。また、制御部90は、配線64を流れる電流量から熱電対62の温度を検出する。
ユーザインターフェース91は、工程管理者が基板処理装置100を管理するためにコマンドの入力操作を行うキーボードや、基板処理装置100の稼動状況を可視化して表示するディスプレイ等から構成されている。
記憶部92は、基板処理装置100を制御する制御プログラムや基板処理を実行するプログラムなど各種プログラムを記憶する。さらに、記憶部92は、レシピなどの基板処理の処理条件を記憶する。また、記憶部92には、基板処理の処理条件の補正するための第1補正データ92aおよび第2補正データ92bを記憶する。なお、これらのプログラムや処理条件を示すレシピは、ハードディスクや半導体メモリに記憶されてもよい。また、レシピは、CD-ROM、DVD等の可搬性のコンピュータにより読み取り可能な記憶媒体に収容された状態で所定位置にセットされ、読み出されるようにしてもよい。
制御部90は、記憶部92に格納されたプログラムや、基板処理の処理条件に基づいて動作し、装置全体の動作を制御する。
次に、制御部90の制御により基板処理装置100が実行する成膜処理の流れを簡単に説明する。
基板処理装置100は、排気機構42により、処理容器1内を真空雰囲気に減圧する。ウエハWを搬入および搬出する場合、基板処理装置100は、昇降機構24によって、載置台2を図1の二点鎖線で示すウエハWの搬送が可能な搬送位置に下降させ、ゲートバルブ12を開放する。ロボットアームなどのウエハ搬送機構により、ウエハWが、搬入出口11を介して処理容器1内に搬入される。基板処理装置100は、昇降機構85により、ピン61を上昇させてウエハ搬送機構からウエハWを受け取る。ウエハ搬送機構は、ウエハWを受け渡した後、搬入出口11から退出する。基板処理装置100は、ウエハ搬送機構の退出後、ゲートバルブ12を閉じ、昇降機構85により、ピン61を下降させてウエハWを載置台2に載置する。基板処理装置100は、昇降機構24によって、載置台2を図1の実線で示す処理位置に上昇させる。
基板処理装置100は、ヒータ電源51から電力を各ヒータ27に供給して各ヒータ27を所定の温度に制御し、載置台2に載置されたウエハWを加熱する。そして、基板処理装置100は、処理容器1内の圧力調整を行った後、上部電極3から処理容器1内に成膜に用いる各種のガスを供給しつつ上部電極3および載置台2に所定周波数の高周波を印加してプラズマを生成して成膜処理を実施する。
ところで、基板処理装置100は、載置台2にピン61を収容する貫通穴60を設けた場合、載置面2aの貫通穴60の部分がヒータ27の無い領域となり、周囲と比較して低温のクールスポットとなる。成膜処理などの基板処理は、ウエハWに対する処理状況が温度によって変化する場合があり、クールスポットの部分で均一性が低下する場合がある。
そこで、本実施形態に係る基板処理装置100は、ピン61の先端部分にヒータ63および熱電対62を設けている。制御部90は、熱電対62により検出される温度に基づき、ヒータ電源51からヒータ63へ供給する電力を制御して、ヒータ63の温度を制御する。例えば、制御部90は、周囲と同様の所定の温度となるようにヒータ63の温度を制御する。
これにより、基板処理装置100は、載置面2aの貫通穴60の部分がクールスポットとなることを防止できるため、ウエハWに対する基板処理の面内均一性を良好に保つことができる。
また、本実施形態に係る基板処理装置100は、載置面2aにウエハWを載置していない状態で、昇降機構85により、ピン61を上昇させて載置面2aからピン61を突出させて先端部分を載置台2と上部電極3の間の処理空間38に配置できる。図5は、第1実施形態に係る基板処理装置においてピンを処理空間に配置した状態を示す図である。基板処理装置100は、ピン61の先端部分を処理空間38に配置した状態で、プラズマを生成すると、熱電対62によりプラズマの温度を検出できる。
基板処理装置100では、処理空間38に生成されるプラズマの密度に偏りが発生する場合がある。例えば、プラズマが処理空間38の中央付近に偏って生成される場合がある。成膜処理などの基板処理では、処理空間38に生成されるプラズマの密度に偏りがある場合、ウエハWに対する基板処理の面内均一性が低下する。例えば、成膜処理では、プラズマの密度が高い領域に比べて、プラズマの密度が低い領域の成膜レートが低くなる。
そこで、制御部90は、ピン61の先端部分を処理空間38に配置した状態で熱電対62により検出された温度に応じて、ウエハWに対する基板処理の面内均一性が向上するようにヒータ27およびヒータ63の温度を含む基板処理の処理条件を制御する。例えば、制御部90は、プラズマの密度を均一化するように第1高周波電源57および第2高周波電源46からの供給電力や、ガス供給機構5から供給する各ガスの流量を制御する。また、ウエハWの温度によってウエハWに対する基板処理の進行度合いが変化する場合、制御部90は、面内均一性が向上するようにヒータ27およびヒータ63の温度を制御する。例えば、成膜処理において、ウエハWの温度が高くなると成膜レートが高くなる場合、プラズマの密度が低い領域のウエハWの温度が高くなるようにヒータ27およびヒータ63の温度を制御する。
例えば、各ピン61の熱電対62により検出される温度の組み合わせごとに、基板処理の面内均一性を所定の許容範囲内となるように基板処理の処理条件を補正する補正データを求めて、第1補正データ92aとして記憶させる。第1補正データ92aは、例えば、基板処理装置100を用いた事前の実験、あるいはシミュレーションを行って生成する。
基板処理装置100は、ウエハWに対して基板処理を実施する前に、ウエハWに実施する基板処理と同様の処理を実施して処理空間38のプラズマの温度を測定する。例えば、制御部90は、載置面2aにウエハWを載置していない状態で、昇降機構85により、ピン61を上昇させて載置面2aからピン61を突出させて先端部分を載置台2と上部電極3の間の処理空間38に配置する。そして、制御部90は、ウエハWに実施する基板処理と同様の処理を実施して、各ピン61の先端部分に設けられた熱電対62によりプラズマの温度を検出する。制御部90は、各ピン61の熱電対62により検出された温度に対応する補正データを第1補正データ92aから読み出し、読み出した補正データで基板処理の処理条件を補正する。これにより、基板処理装置100は、処理空間38に生成されるプラズマの密度の偏りを抑制でき、ウエハWに対する基板処理の面内均一性を良好に保つことができる。
また、本実施形態に係る基板処理装置100は、載置面2aにウエハWを載置した状態で、昇降機構85により、ピン61を若干上昇させて、ウエハWの裏面に各ピン61の先端を接触させることで、熱電対62によりウエハWの温度を検出できる。そして、基板処理装置100は、このようにウエハWの裏面に各ピン61の先端を接触させた状態で、成膜処理などの基板処理を実施してプラズマを生成すると、基板処理中のウエハWの温度を検出できる。
基板処理装置100では、処理空間38に生成されるプラズマからの入熱によりウエハWの温度が過剰に高くなる場合がある。例えば、プラズマが処理空間38に過剰に生成されてウエハWの温度が過剰に高くなる場合がある。成膜処理などの基板処理では、ウエハWの温度が過剰に高くなった場合、ウエハWに対する基板処理の面内均一性が低下する場合がある。
そこで、制御部90は、ウエハWの裏面に各ピン61の先端を接触させた状態で熱電対62により検出された温度に応じて、ウエハWに対する基板処理の面内均一性が向上するようにヒータ27およびヒータ63の温度を含む基板処理の処理条件を制御する。例えば、制御部90は、プラズマからの入熱が減るように第1高周波電源57および第2高周波電源46からの供給電力、ガス供給機構5から供給する各ガスの流量を制御する。また、制御部90は、ウエハWの温度が低下するように、ヒータ27およびヒータ63の温度を制御する。例えば、制御部90は、ヒータ27およびヒータ63の温度を低下させるようヒータ電源51から供給する電力を制御する。
例えば、各ピン61の熱電対62により検出される温度の組み合わせごとに、ウエハWの温度を所定の許容範囲内に補正する基板処理の処理条件の補正条件を求めて、第2補正データ92bとして記憶させる。第2補正データ92bは、例えば、基板処理装置100を用いた事前の実験、あるいはシミュレーションを行って生成する。
基板処理装置100は、ウエハWに対して基板処理を実施し、基板処理中のウエハWの温度を測定する。例えば、制御部90は、昇降機構85により、ピン61を若干上昇させて、ウエハWの裏面に各ピン61の先端を接触させる。そして、制御部90は、ウエハWに対して基板処理を実施して、各ピン61の先端部分に設けられた熱電対62により基板処理中のウエハWの温度を測定する。制御部90は、各ピン61の熱電対62により検出された温度に対応する補正データを第2補正データ92bから読み出し、読み出した補正データで基板処理の処理条件を補正する。これにより、基板処理装置100は、ウエハWの温度が過剰に高くなることを抑制でき、ウエハWに対する基板処理の面内均一性を良好に保つことができる。
なお、基板処理中のウエハWの温度が異常に高い場合、ウエハWに対して基板処理を正常に実施できていない場合がある。そこで、基板処理装置100は、検出される基板処理中のウエハWの温度が異常に高い場合、基板処理を中止してもよい。例えば、制御部90は、熱電対62により検出される基板処理中のウエハWの温度が所定の上限値を超えた場合、基板処理を中止し、異常の発生を通知する制御を行ってもよい。例えば、制御部90は、ユーザインターフェース91に異常が発生した旨のエラーを出力する。これにより、基板処理装置100は、ウエハWに対して異常な基板処理が実施された場合、基板処理を中止できる。また、基板処理装置100は、異常な基板処理が実施されたことを工程管理者に通知できる。
以上のように、本実施形態に係る基板処理装置100は、載置台2と、ピン61と、制御部90とを有する。載置台2は、ウエハWが載置される載置面2aを分割した分割領域21ごとに温度を調整可能なヒータ27が設けられている。ピン61は、載置面2aに形成された貫通穴60から先端部分が突没可能とされ、先端部分にヒータ63および温度を検出する熱電対62が設けられている。制御部90は、熱電対62により検出される温度に応じてヒータ27およびヒータ63の温度を含む基板処理の処理条件を制御する。これにより、基板処理装置100は、ウエハWに対する基板処理の面内均一性を良好に保つことができる。
また、制御部90は、載置台2にウエハWを載置せずに貫通穴60からピン61を突出させて、ウエハWに実施する基板処理と同様の処理を実施した際に熱電対62により検出された温度に応じて処理条件を補正する。これにより、基板処理装置100は、基板処理中のプラズマの温度を熱電対62で検出でき、プラズマの温度に応じて処理条件を補正することで、ウエハWに対する基板処理の面内均一性を良好に保つことができる。
また、制御部90は、載置台2にウエハWを載置してピン61をウエハWに接触させて基板処理を実施した際に熱電対62により検出された温度に応じて処理条件を補正する。これにより、基板処理装置100は、基板処理中のウエハWの温度を熱電対62で検出でき、ウエハWの温度に応じて処理条件を補正することで、ウエハWに対する基板処理の面内均一性を良好に保つことができる。
また、ピン61は、載置面2aに、周方向に複数設けられた貫通穴60にそれぞれ突没可能に格納される。基板処理装置100は、各ピン61の熱電対62により検出される温度の組み合わせごとに、処理条件を補正する補正データ(第1補正データ92aおよび第2補正データ92b)を記憶する記憶部92をさらに有する。制御部90は、各ピン61の熱電対62により検出された温度の組み合わせに対応する補正データを記憶部92から読み出し、読み出した補正データで基板処理の処理条件を補正する。これにより、基板処理装置100は、処理空間38に生成されるプラズマの密度の偏りやウエハWの温度が過剰に高くなることを抑制でき、ウエハWに対する基板処理の面内均一性を良好に保つことができる。
また、制御部90は、熱電対62により検出される温度に基づき、所定の温度となるようにヒータ63の温度を制御する。これにより、基板処理装置100は、載置面2aの貫通穴60の部分がクールスポットとなることを防止できるため、ウエハWに対する基板処理の面内均一性を良好に保つことができる。
また、制御部90は、基板処理中に熱電対62により検出される温度が所定の上限値を超えた場合、基板処理を中止し、異常の発生を通知する制御を行う。これにより、基板処理装置100は、ウエハWに対して異常な基板処理が実施された場合、基板処理を中止できる。また、基板処理装置100は、異常な基板処理が実施されたことを工程管理者に通知できる。
また、載置台2は、支持部材23により昇降可能に支持され、ヒータ27およびヒータ63に電力を供給する配線50、65が支持部材23内に配設されている。これにより、基板処理装置100は、基板処理装置100は、配線50、65を同じ配線経路で配置できるため、配線の管理及び供給電力の制御が容易となる。
(第2実施形態)
次に、第2実施形態について説明する。図6は、第2実施形態に係る基板処理装置の概略構成の一例を示す断面図である。第2実施形態に係る基板処理装置100は、第1実施形態に係る基板処理装置100と一部同様の構成であるため、同一部分に同一の符号を付して説明を省略し、異なる部分について主に説明する。
次に、第2実施形態について説明する。図6は、第2実施形態に係る基板処理装置の概略構成の一例を示す断面図である。第2実施形態に係る基板処理装置100は、第1実施形態に係る基板処理装置100と一部同様の構成であるため、同一部分に同一の符号を付して説明を省略し、異なる部分について主に説明する。
第2実施形態に係る基板処理装置100では、支持部材23の上部にガイド部80が設けられている。
処理容器1の底面の近傍には、昇降板110が設けられている。昇降板110は、処理容器1の下方に設けられた昇降機構111により昇降可能とされている。基板処理装置100では、昇降機構111により昇降板110が上昇すると、昇降板110がピンアーム70に当接する。そして、基板処理装置100では、昇降機構111により昇降板110がさらに上昇すると、昇降板110によりピンアーム70が押し上げられ、載置面2aの貫通穴60からピン61を突出する。図7は、第2実施形態に係る基板処理装置においてピンを処理空間に配置した状態を示す図である。
また、昇降機構111により昇降板110が下降すると、ピンアーム70が下がり、図6に示すように、載置面2aの貫通穴60にピン61が収納される。
このように、第2実施形態に係る基板処理装置100は、載置面2aの貫通穴60からピン61の先端部分を突没可能とされている。ピン61は、第1実施形態と同様に、図3に示した構造とされ、先端部分に、ヒータ63および熱電対62を設けられている。制御部90は、第1実施形態と同様に、熱電対62により検出される温度に基づき、ヒータ電源51からヒータ63へ供給する電力を制御して、ヒータ63の温度を制御する。これにより、第2実施形態に係る基板処理装置100は、第1実施形態と同様に、載置面2aの貫通穴60の部分がクールスポットとなることを防止できるため、ウエハWに対する基板処理の面内均一性を良好に保つことができる。
第2実施形態に係る基板処理装置100は、載置面2aにウエハWを載置していない状態で、昇降機構111により、ピン61を上昇させて載置面2aからピン61を突出させて先端部分を載置台2と上部電極3の間の処理空間38に配置できる。よって、第2実施形態に係る基板処理装置100は、ピン61の先端部分を処理空間38に配置した状態で、プラズマを生成すると、ピン61に設けた熱電対62によりプラズマの温度を検出できる。また、本実施形態に係る基板処理装置100は、載置面2aにウエハWを載置した状態で、昇降機構111により、ピン61を若干上昇させて、ウエハWの裏面に各ピン61の先端を接触させることで、熱電対62によりウエハWの温度を検出できる。制御部90は、第1実施形態と同様に、熱電対62により検出された温度に応じて、ウエハWに対する基板処理の面内均一性が向上するようにヒータ27およびヒータ63の温度を含む基板処理の処理条件を制御する。これにより、第2実施形態に係る基板処理装置100は、第1実施形態と同様に、ウエハWに対する基板処理の面内均一性を良好に保つことができる。
このように、第2実施形態に係る基板処理装置100は、第1実施形態に係る基板処理装置100と同様に、ウエハWに対する基板処理の面内均一性を良好に保つことができる。
以上、実施形態について説明してきたが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は、多様な形態で具現され得る。また、上記の実施形態は、請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
例えば、実施形態では、基板処理の対象となる基板を半導体ウエハとした場合を例に説明したが、これに限定されるものではない。基板処理の対象となる基板は、ガラス基板など、他の基板であってもよい。
また、上記の実施形態では、図2に示すように、載置台2の載置面2aを径方向に略均等な間隔で3つの分割領域21に分割した場合を例に説明したが、これに限定されるものではない。例えば、載置台2の載置面2aは、ウエハWの中心側で間隔を大きく、外周側で間隔を小さい分割領域21に分割してもよい。図8Aは、他の実施形態に係る載置台を示す平面図である。図8Aでは、載置台2の載置面2aは、中央の円状の分割領域21a及び3つの環状の分割領域21b~21dに分割されている。また、ウエハWの中心側となる分割領域21aは幅が大きく分割されている。ウエハWの外周側となる分割領域21b~21dは幅が小さく分割されている。分割領域21a~21dには、ヒータ27がそれぞれ個別に設けられる。また、載置台2の載置面2aは、周方向に分割されてもよい。図8Bは、他の実施形態に係る載置台を示す平面図である。図8Bでは、載置面2aは、中央の円形の分割領域21と、当該円形の分割領域21を囲む同心状の複数の環状の分割領域に分割されている。また、環状の分割領域は、周方向に複数の分割領域21に分割されている。各分割領域21には、ヒータ27がそれぞれ個別に設けられる。
また、実施形態では、基板処理装置100が、基板処理として、プラズマを生成して成膜を行う場合を例に説明したが、これに限定されるものではない。基板処理装置100が、基板処理として、プラズマを生成してエッチングなど他のプラズマ処理やプラズマを用いない熱処理を行ってもよい。
1 処理容器
2 載置台
2a 載置面
21 分割領域
27 ヒータ
38 処理空間
50 配線
60 貫通穴
61 ピン
63 ヒータ
62 熱電対
65 配線
90 制御部
91 ユーザインターフェース
92 記憶部
92a 第1補正データ
92b 第2補正データ
100 基板処理装置
W ウエハ
2 載置台
2a 載置面
21 分割領域
27 ヒータ
38 処理空間
50 配線
60 貫通穴
61 ピン
63 ヒータ
62 熱電対
65 配線
90 制御部
91 ユーザインターフェース
92 記憶部
92a 第1補正データ
92b 第2補正データ
100 基板処理装置
W ウエハ
Claims (8)
- 基板処理の対象とされた基板が載置される載置面を分割した分割領域ごとに温度を調整可能な第1のヒータが設けられた載置台と、
前記載置面に形成された貫通穴から先端部分が突没可能とされ、前記先端部分に第2のヒータおよび温度を検出する検出部が設けられたピンと、
前記検出部により検出される温度に応じて前記第1のヒータおよび前記第2のヒータの温度を含む基板処理の処理条件を制御する制御部と、
を有することを特徴とする基板処理装置。 - 前記制御部は、前記載置台に基板を載置せずに前記貫通穴から前記ピンを突出させて、前記基板に実施する基板処理と同様の処理を実施した際に前記検出部により検出された温度に応じて前記処理条件を補正する
ことを特徴とする請求項1に記載の基板処理装置。 - 前記制御部は、前記載置台に基板を載置して前記ピンを前記基板に接触させて基板処理を実施した際に前記検出部により検出された温度に応じて前記処理条件を補正する
ことを特徴とする請求項1または2に記載の基板処理装置。 - 前記ピンは、前記載置面に、周方向に複数設けられた貫通穴にそれぞれ突没可能に格納され、
各ピンの前記検出部により検出される温度の組み合わせごとに、前記処理条件を補正する補正データを記憶する記憶部をさらに有し、
前記制御部は、各ピンの前記検出部により検出された温度の組み合わせに対応する補正データを記憶部から読み出し、読み出した補正データで基板処理の処理条件を補正する
ことを特徴とする請求項1~3の何れか1つに記載の基板処理装置。 - 前記制御部は、前記検出部により検出される温度に基づき、所定の温度となるように第2のヒータの温度を制御する
ことを特徴とする請求項1~4の何れか1つに記載の基板処理装置。 - 前記制御部は、基板処理中に前記検出部により検出される温度が所定の上限値を超えた場合、基板処理を中止し、異常の発生を通知する制御を行う
ことを特徴とする請求項1~5の何れか1つに記載の基板処理装置。 - 前記載置台は、支持部材により昇降可能に支持され、前記第1のヒータおよび前記第2のヒータに電力を供給する配線が前記支持部材内に配設された
ことを特徴とする請求項1~5の何れか1つに記載の基板処理装置。 - 基板処理の対象とされた基板が載置される載置台の載置面に形成された貫通穴に先端部分が突没可能とされたピンの前記先端部分に設けられた温度を検出する検出部により温度を検出し、
前記検出部により検出される温度に応じて、前記載置面を分割した分割領域ごとに設けられた第1のヒータおよび前記先端部分に設けられた第2のヒータの温度を含む基板処理の処理条件を制御する
ことを特徴とする基板処理方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-043720 | 2019-03-11 | ||
JP2019043720A JP2020150009A (ja) | 2019-03-11 | 2019-03-11 | 基板処理装置および基板処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020184204A1 true WO2020184204A1 (ja) | 2020-09-17 |
Family
ID=72428014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/008109 WO2020184204A1 (ja) | 2019-03-11 | 2020-02-27 | 基板処理装置および基板処理方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020150009A (ja) |
WO (1) | WO2020184204A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023032647A (ja) | 2021-08-27 | 2023-03-09 | 株式会社Kokusai Electric | 基板処理装置、半導体装置の製造方法および記録媒体 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63141317A (ja) * | 1986-12-03 | 1988-06-13 | Mitsubishi Electric Corp | エッチング処理装置およびエッチング処理方法 |
JPH0273619A (ja) * | 1988-09-08 | 1990-03-13 | Teru Kyushu Kk | 加熱装置及び加熱方法 |
JP2008041969A (ja) * | 2006-08-08 | 2008-02-21 | Matsushita Electric Ind Co Ltd | 基板の脱離方法 |
JP2009218301A (ja) * | 2008-03-08 | 2009-09-24 | Tokyo Electron Ltd | 温度測定装置、載置台構造及び熱処理装置 |
JP2015519730A (ja) * | 2012-04-16 | 2015-07-09 | 京東方科技集團股▲ふん▼有限公司 | 基板支持ピン及び基板支持ピンを用いた基板支持装置 |
-
2019
- 2019-03-11 JP JP2019043720A patent/JP2020150009A/ja active Pending
-
2020
- 2020-02-27 WO PCT/JP2020/008109 patent/WO2020184204A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63141317A (ja) * | 1986-12-03 | 1988-06-13 | Mitsubishi Electric Corp | エッチング処理装置およびエッチング処理方法 |
JPH0273619A (ja) * | 1988-09-08 | 1990-03-13 | Teru Kyushu Kk | 加熱装置及び加熱方法 |
JP2008041969A (ja) * | 2006-08-08 | 2008-02-21 | Matsushita Electric Ind Co Ltd | 基板の脱離方法 |
JP2009218301A (ja) * | 2008-03-08 | 2009-09-24 | Tokyo Electron Ltd | 温度測定装置、載置台構造及び熱処理装置 |
JP2015519730A (ja) * | 2012-04-16 | 2015-07-09 | 京東方科技集團股▲ふん▼有限公司 | 基板支持ピン及び基板支持ピンを用いた基板支持装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2020150009A (ja) | 2020-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102432446B1 (ko) | 배치대 및 플라즈마 처리 장치 | |
JP6650841B2 (ja) | 基板昇降機構、基板載置台および基板処理装置 | |
JP5208800B2 (ja) | 基板処理システム及び基板搬送方法 | |
JP7018801B2 (ja) | プラズマ処理装置、及び被処理体の搬送方法 | |
TW202207306A (zh) | 電漿處理裝置 | |
CN114570621B (zh) | 减压干燥装置 | |
WO2020184204A1 (ja) | 基板処理装置および基板処理方法 | |
US10971385B2 (en) | Substrate processing apparatus and transfer position correcting method | |
KR102518712B1 (ko) | 플라즈마 처리 장치 | |
JP4865352B2 (ja) | プラズマ処理装置及びプラズマ処理方法 | |
JP2011211067A (ja) | 基板処理装置及びそれに用いられる基板離脱装置 | |
TWI785168B (zh) | 基板處理方法 | |
US10847379B2 (en) | Etching method and etching apparatus | |
KR102523364B1 (ko) | 기판 처리 장치 | |
US11587820B2 (en) | Mounting table, substrate processing apparatus, and control method | |
US11414754B2 (en) | Film forming apparatus | |
KR20220007527A (ko) | 적재대 장치 및 기판 처리 장치 | |
JP7214021B2 (ja) | プラズマ処理装置、及び被処理体の搬送方法 | |
US11640918B2 (en) | Stage device, power supply mechanism, and processing apparatus | |
WO2022201546A1 (ja) | 処理装置、プログラム及び半導体装置の製造方法 | |
US20240079208A1 (en) | Plasma processing apparatus | |
JPWO2019053869A1 (ja) | 基板処理装置、半導体装置の製造方法およびプログラム | |
JP7352667B2 (ja) | 基板処理装置、半導体装置の製造方法およびプログラム | |
US20220108913A1 (en) | Substrate processing method and substrate processing apparatus | |
JP2021147634A (ja) | 成膜装置及び基板処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20769107 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20769107 Country of ref document: EP Kind code of ref document: A1 |