WO2020183674A1 - 高温環境用セメント組成物、および高温環境用コンクリート - Google Patents

高温環境用セメント組成物、および高温環境用コンクリート Download PDF

Info

Publication number
WO2020183674A1
WO2020183674A1 PCT/JP2019/010383 JP2019010383W WO2020183674A1 WO 2020183674 A1 WO2020183674 A1 WO 2020183674A1 JP 2019010383 W JP2019010383 W JP 2019010383W WO 2020183674 A1 WO2020183674 A1 WO 2020183674A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly ash
concrete
mass
temperature environment
high temperature
Prior art date
Application number
PCT/JP2019/010383
Other languages
English (en)
French (fr)
Inventor
直人 中居
引田 友幸
佳史 細川
香奈子 森
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to PCT/JP2019/010383 priority Critical patent/WO2020183674A1/ja
Priority to PCT/JP2019/025994 priority patent/WO2020183746A1/ja
Publication of WO2020183674A1 publication Critical patent/WO2020183674A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a cement composition for a high temperature environment and a concrete for a high temperature environment that can be used in a high temperature area.
  • the method for producing mortar / concrete described in Patent Document 1 is a method of blending a powder composed of fine particles containing silicon dioxide as a main component and zirconium oxide as a component into mortar / concrete.
  • the hydraulic composition according to Patent Document 2 calcium sulfoaluminate (3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4) 3 to 60 wt%, calcium sulfoaluminate composition containing anhydrous gypsum 1-40 wt% 100
  • a composition for concrete containing 0.1 to 3.0 parts by mass of lithium carbonate having a specific surface area of 1000 to 4000 cm 2 / g with respect to parts by mass.
  • the present invention is a concrete using a material widely used in the concrete field without using an expensive material, and has a smaller self-shrinkage strain and is less likely to crack as compared with conventional concrete. It is an object of the present invention to provide a high temperature environment concrete having the same degree of temperature rise and strength development, and a high temperature environment cement composition used for producing the high temperature environment concrete.
  • the present inventor has diligently studied a cement composition for a high temperature environment that can achieve the above object, and found that the cement composition for a high temperature environment containing fly ash satisfying a specific condition and the cement composition are produced.
  • the present invention has been completed by finding that the above-mentioned high-temperature environment concrete can achieve the above object. That is, the present invention is a high temperature environment cement composition and high temperature environment concrete having the following constitutions.
  • [1] Contains at least Portland cement and fly ash that satisfies all of the following fly ash conditions (F1) to (F6). Assuming that the total of the fly ash and Portland cement is 100% by mass, the content of the fly ash is 10 to 50% by mass.
  • a cement composition for high temperature environment used for concrete defined by the definition of concrete for high temperature environment below.
  • Fly ash conditions (F1) Fly ash has a specific surface area of 2500 to 6000 cm 2 / g. (F2) The mass reduction rate of fly ash after heating the fly ash at 975 ⁇ 25 ° C.
  • the unit of is mass%.
  • F5 The sphere-equivalent specific surface area of particles in which iron oxide and amorphous particles are mixed in fly ash is 2800 to 11000 cm 2 / cm 3
  • F6 The spherical specific surface area of amorphous particles containing Ca in fly ash is 2100 to 22500 cm 2 / cm 3
  • (Cn1) Cement Composition for High Temperature Environment (Cn2)
  • One or more water reducing agents (R1) selected from delayed type water reducing agent, delayed type AE water reducing agent, and delayed type high performance AE water reducing agent.
  • (Cn3) Water reducing agent (R2) excluding the water reducing agent (R1)
  • (Cn4) Fine Aggregate (Cn5) Coarse Aggregate (Cn6) Water [2]
  • the sphere-equivalent specific surface area of particles in which mullite and amorphous particles are mixed in fly ash is 1900 to 9500 cm 2 / cm 3 [3]
  • the sphere-equivalent specific surface area of Ca-free amorphous particles in fly ash is 2100 to 9000 cm 2 / cm 3 [4]
  • a cement composition for a high temperature environment containing blast furnace slag powder is
  • the cement for high temperature environment according to any one of [1] to [3] above, wherein the content of the blast furnace slag powder is 50% by mass or less, where the total of the blast furnace slag powder, fly ash, and Portland cement is 100% by mass.
  • Composition [5] Further, a cement composition for a high temperature environment containing one or more types of gypsum selected from anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum. Gypsum, Portland cement, fly ash, and the total 100 mass% of blast furnace slag powder, the content of gypsum is less than 2.5 mass% converted to SO 3, in any one of [1] to [4] The high temperature environment cement composition described.
  • (Cn1) Cement composition for high temperature environment according to any one of the above [1] to [5] (Cn2) One selected from a delayed type water reducing agent, a delayed type AE water reducing agent, and a delayed type high performance AE water reducing agent.
  • the high-temperature environment concrete of the present invention using the high-temperature environment cement composition of the present invention is lower in cost than conventional concrete, has less self-shrinkage strain, and is less likely to crack, while having temperature rise and strength development. Is about the same.
  • FIG. 1 It is a figure which shows the container for the simple insulation test in the state where concrete is placed. However, the unit of the numerical value in the figure is mm.
  • (A) shows a supporting steel material supporting an embedded strain gauge
  • (b) is a diagram showing how the supporting steel material is installed in a container for a simple heat insulation test. It is a graph which shows the relationship between the temperature crack index and the temperature crack occurrence probability.
  • the present invention is a cement composition for a high temperature environment and a concrete for a high temperature environment produced by using the cement composition for a high temperature environment.
  • the present invention will be described in detail separately for a cement composition for a high temperature environment and concrete for a high temperature environment.
  • the cement composition contains at least fly ash and Portland cement satisfying specific conditions, and the content of the fly ash is 10 to 50% by mass with the total of fly ash and Portland cement as 100% by mass. %. If the content of fly ash is less than 10% by mass, the self-shrinkage strain and temperature rise of the high temperature environment concrete are large, and if it exceeds 50% by mass, the strength development of the high temperature environment concrete is lowered.
  • the content of fly ash is preferably 12 to 40% by mass, more preferably 14 to 35% by mass.
  • the high temperature environment concrete includes at least the above (Cn1) to (Cn6) and is used when the average temperature (environmental temperature) around the concrete is 25 ° C. or higher.
  • Portland cement The Portland cement is made from ordinary Portland cement, early-strength Portland cement, moderate heat Portland cement, and low heat Portland cement specified in R 5210 "Portland cement” of Japanese Industrial Standards (hereinafter referred to as "JIS").
  • JIS Japanese Industrial Standards
  • the Portland cement is preferably ordinary Portland cement and / or early-strength Portland cement because it improves the strength development of concrete for high temperature environment.
  • fly ash The fly ash satisfies all of the following conditions (F1) to (F6).
  • F1 Brain specific surface area is 2500-6000 cm 2 / g
  • F2 The mass loss rate after heating the fly ash at 975 ⁇ 25 ° C. for 15 minutes is 5% by mass or less.
  • F3 The content of SiO 2 in the fly ash is 50% by mass or more.
  • the mass ratio of (Na 2 O + 0.658 ⁇ K 2 O) / (MgO + SO 3 + TiO 2 + P 2 O 5 + MnO) in fly ash is 0.2 to 1.0 (however, the above The unit of the chemical formula in the formula is mass%.)
  • the sphere-equivalent specific surface area of particles in which iron oxide and amorphous particles are mixed in fly ash is 2800 to 11000 cm 2 / cm 3
  • the spherical specific surface area of amorphous particles containing Ca in fly ash is 2100 to 22500 cm 2 / cm 3
  • the mass reduction rate of the fly ash exceeds 5% by mass after heating the fly ash at 975 ⁇ 25 ° C. for 15 minutes, the strength development of the concrete for high temperature environment decreases.
  • the mass reduction rate is preferably 1.0 to 4.5% by mass, more preferably 1.5 to 4.0% by mass, from the viewpoint of easy availability and strength development.
  • (F3) When the content of SiO 2 in the fly ash is less than 50% by mass, the strength development of concrete for a high temperature environment is lowered.
  • the content of SiO 2 is preferably 51 to 70% by mass, more preferably 52 to 65% by mass, from the viewpoint of easy availability and strength development.
  • the sphere-equivalent specific surface area of the particles in which iron oxide and amorphous are mixed is preferably 4000 to 10000 cm 2 / cm 3 , and more preferably 5000 to 10000 cm 2 / cm 3 in order to improve the strength development. ..
  • the sphere-equivalent specific surface area of particles in which mullite and amorphous particles are mixed in fly ash is preferably 1900 to 9500 cm 2 /. It is cm 3 , more preferably 3000 to 9000 cm 2 / cm 3 , and even more preferably 4500 to 9000 cm 2 / cm 3 .
  • the spherical specific surface area of the Ca-free amorphous particles in the fly ash is preferably 2100 to 9000 cm 2 / cm 3 , more preferably 3000 to 8500 cm 2 / cm 3 , and even more preferably 4500 to 8500 cm 2. / Cm 3 .
  • the fly ash usually contains 5 to 25% by mass of quartz, and the lattice volume of quartz in the fly ash used in the present invention is a value obtained by using the Rietveld analysis method, preferably 113. It is 5 to 114.5 ⁇ 3 .
  • the lattice volume of quartz is within the above range, self-shrinkage strain and temperature rise can be further suppressed when the environmental temperature of the high-temperature environment concrete becomes high (for example, when the temperature is 27 ° C. or higher).
  • the lattice volume of quartz is more preferably 113.6 to 114.4 ⁇ 3 , and even more preferably 113.7 to 114.3 ⁇ 3 .
  • the Rietveld analysis of quartz in fly ash is based on the X-ray diffraction pattern of fly ash, for example, analysis software manufactured by Bruker (Topas ver. 2.1) and 331161 (Quartz) as crystal structure data (ICDD number). Can be done using.
  • the spherical specific surface area of the quartz particles in fly ash is preferably 1100 to 12500 cm 2 / cm 3 , more preferably 2500 to 10000 cm 2 / cm 3 , and further, in order to suppress self-shrinkage strain and temperature rise of concrete. It is preferably 4000 to 10000 cm 2 / cm 3 .
  • the fly ash particles are (i) particles in which iron oxide and amorphous are mixed, (ii) particles in which mulite and amorphous are mixed, and (iii) Ca () through the following steps (1) to (4). It is classified into five types: amorphous particles that do not contain calcium), amorphous particles that contain (iv) Ca, and (v) quartz particles.
  • Sample Preparation Step This step is a step of mixing fly ash and resin to prepare a cured test piece. By dispersing the fly ash in the resin, the fly ash particles do not overlap, and each particle can be accurately extracted and its characteristic value can be measured at the time of particle analysis described later.
  • Examples of the resin having small shrinkage in the curing process and not causing cracks include epoxy resin, acrylic resin, polyester resin, and methacrylic resin.
  • the mixing ratio of the resin is preferably 0.8 to 4 in terms of volume ratio with respect to fly ash. Within this range, a plurality of particles are dispersed without contacting each other, and polishing described later can be performed to obtain cut surfaces of many particles.
  • the polishing device for the imaging surface of the test piece is not particularly limited, and a commonly used polishing device can be used.
  • the abrasive used in the polishing step is not particularly limited, and examples thereof include a silicon carbide abrasive, a boron carbide abrasive, a diamond paste, and an alumina powder.
  • the polishing is preferably buffing using alumina powder having a diameter of 0.3 to 3 ⁇ m or the like as an abrasive, and since there are few irregularities on the image surface, a cross section using an argon ion beam is more preferable. Polishing with a polisher.
  • a thin-film deposition film is formed on the surface of the test piece whose imaging surface has been polished to impart conductivity to the test piece.
  • the test piece is irradiated with an electron beam, but since fly ash and resin do not have conductivity, if a reflected electron image is obtained without forming a vapor deposition film on the test piece, the surface of the test piece will be exposed. It is charged and cannot obtain an accurate reflected electron image. Therefore, in order to obtain an accurate reflected electron image, a conductive vapor-film film is formed on the surface of the test piece.
  • the vapor-deposited film is not particularly limited as long as it can impart conductivity to the surface of the test piece, and examples thereof include carbon, platinum-palladium, and gold. Further, the method for forming the thin-film deposition film is not particularly limited, and a known method can be used.
  • the step is a step of first obtaining a reflected electron image (BSE) and a chemical composition of the test piece prepared in the sample preparation step using an electron microscope. Since the electron microscope only needs to be able to measure the reflected electron image and the chemical composition of a minute region, a scanning electron microscope (SEM), an electron probe microanalyzer (EPMA), or the like can be used. The backscattered electron image is displayed brighter as the average atomic number of the elements constituting the region is larger.
  • SEM scanning electron microscope
  • EPMA electron probe microanalyzer
  • Examples of the chemical composition acquisition device include a wavelength dispersive X-ray spectroscope (WDS) and an energy dispersive X-ray spectroscope (EDS), but energy dispersive X-rays are preferable because the chemical composition can be acquired in a short time. It is a spectroscope (EDS).
  • the analysis conditions for the reflected electron image are preferably set to an accelerating voltage of about 10 to 15 keV, an irradiation current of about 200 to 1000 pA, and an observation magnification of 500 to 2000 times because a reflected electron image with high resolution can be obtained.
  • a reflected electron image is obtained from a fly ash test piece, and the fly ash particles and the resin reflected electron image are visually compared in brightness and the brightness histogram is referred to to obtain the fly ash particles.
  • binarization processing is performed to extract fly ash particles.
  • a geometric measurement value is measured for each particle. Geometric metric values include the circularity coefficient, the equivalent circle diameter (the diameter of a circle having an area equal to the cross-sectional area of the particles), the aspect ratio, and the like.
  • the step is a step of chemically analyzing fly ash particles to grasp the chemical composition of fly ash.
  • the accelerating voltage is about 10 to 15 keV
  • the irradiation current is about 200 to 1000 pA
  • the analysis time is one analysis. Set to 5-10 seconds per point.
  • the analysis area diameter is preferably the entire individual particles.
  • the order of the chemical analysis and the measurement of the geometrically measured value does not matter.
  • the number of fly ash particles to be measured is preferably 1000 or more, more preferably 2000 or more, in order to reduce the error between the chemical analysis and the measurement of the geometrically measured value.
  • the number of X-ray counts per particle is preferably 5000 counts or more, more preferably 10000 counts or more, and further preferably 100,000 counts or more.
  • the divided particles at the edge of the image are joined together in the analysis and counted as one particle.
  • the cross-sectional area and chemical composition of particles are acquired as characters for each particle.
  • the sphere-equivalent specific surface area is calculated according to the following. First, for each fly ash particle classified into each of the above classes, assuming that all the particles are spheres, the equivalent circle diameter D is calculated from the cross-sectional area S of the particles by using the following equation (1). Next, from the calculated equivalent circle diameter, the surface area A and volume V of the particles when the particles are assumed to be spheres are calculated using the equations (2) and (3). Finally, to calculate the sum of the sum and the surface area of the volume of fly ash particles in each class to calculate the spherical equivalent specific surface area S A using (4).
  • the compaction density of fly ash calculated by the following method is preferably 1.0 to 1.5 cm 3 / g. more preferably 1.05 ⁇ 1.45cm 3 / g, more preferably from 1.1 ⁇ 1.4cm 3 / g.
  • Measurement method of compaction density Using a powder tester PT-D manufactured by Hosokawa Micron, while filling a 100 cm 3 cup of fly ash, the cup was tapped 180 times in 180 seconds, and then the mass of the fly ash compacted in the cup was measured. Measure the volume and calculate the compaction density.
  • the cement composition for a high temperature environment of the present invention may further contain blast furnace slag powder in order to improve the long-term strength development of the concrete for a high temperature environment.
  • the content of the blast furnace slag powder is preferably 50% by mass or less, more preferably 45% by mass or less, with the total of the blast furnace slag powder, fly ash, and Portland cement as 100% by mass.
  • the content of the blast furnace slag powder exceeds 50% by mass, the long-term strength development of the concrete for high temperature environment is lowered and the self-shrinkage strain is increased.
  • the Blaine specific surface area of the blast furnace slag powder, for inhibition of increase and the temperature increase of the strength development of a high-temperature environment for concrete is preferably 3000 ⁇ 6000cm 2 / g, more preferably 3300 ⁇ 5000cm 2 / g ..
  • the cement composition for a high temperature environment of the present invention may further contain one or more selected from anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum in order to improve the strength development of concrete for a high temperature environment.
  • the content of gypsum, plaster, fly ash, Portland cement, and the sum of the blast furnace slag powder as 100% by weight, more than 2.5 mass% converted to SO 3. If the content of the gypsum exceeds 2.5 mass% converted to SO 3, autogenous shrinkage strain is large high-temperature environment for concrete, also, the temperature rise is higher.
  • the gypsum is preferably anhydrous gypsum or dihydrate gypsum because the strength development of concrete for high temperature environment is further improved.
  • the brain specific surface area of gypsum is preferably 3000 to 15000 cm 2 / g, and more preferably 3500 to 13000 cm 2 / g in order to improve the strength development and suppress the temperature rise.
  • the cement composition of the present invention may further contain limestone powder, quartz powder, silica fume and the like as arbitrary constituent components.
  • the concrete is a concrete containing at least the cement composition for a high temperature environment, a water reducing agent (R1), a water reducing agent (R2), a fine aggregate, a coarse aggregate, and water.
  • R1 a water reducing agent
  • R2 a water reducing agent
  • a fine aggregate a coarse aggregate
  • water water
  • the unit amount of the cement composition for high temperature environment is preferably 200 to 550 kg per 1 m 3 of concrete. When the unit amount is within this range, strength development, fluidity, workability and the like are good.
  • the unit amount is more preferably 220 to 520 kg per 1 m 3 of concrete, and further preferably 250 to 480 kg per 1 m 3 of concrete.
  • the water reducing agent (R1) is one or more selected from a delayed type water reducing agent, a delayed type AE water reducing agent, and a delayed type high performance AE water reducing agent.
  • the delayed type water reducing agent, the delayed type AE water reducing agent, and the delayed type high performance AE water reducing agent are the water reducing agents specified in JIS A 6204 “Chemical admixture for concrete”.
  • the water-reducing component of the water-reducing agent (R1) is not particularly limited, and examples thereof include lignin sulfonic acid, naphthalene sulfonic acid formaldehyde condensate, melamine sulfonic acid formaldehyde condensate, and one or more selected from these salts.
  • the water reducing agent (R1) is a master pozoris No. 1 manufactured by BASF. Examples thereof include 89 (registered trademark) and Floric R (registered trademark) manufactured by Floric.
  • the water reducing agent (R1) may further contain one or more coagulation retarding agents selected from citric acid, tartaric acid, sucrose and the like, in addition to the water reducing component.
  • the amount of the water reducing agent (R1) added is preferably 0.1 to 1 part by mass (B ⁇ 0.1 to 1%) with respect to 100 parts by mass of the cement composition for high temperature environment.
  • the amount of the addition is more preferably 0.3 to 0.8 parts by mass (B ⁇ 0.3 to 0.8%) with respect to 100 parts by mass of the high temperature environment cement composition.
  • the water reducing agent (R2) is a water reducing agent excluding the water reducing agent (R1), and specifically, a standard type water reducing agent and a standard type AE water reducing agent specified in JIS A 6204 “Chemical admixture for concrete”.
  • the water reducing agent (R2) is preferably a high-performance water reducing agent.
  • the delayed water reducing agent, the delayed AE water reducing agent, and the delayed high performance AE water reducing agent, which are not included in the water reducing agent (R2), are the water reducing agents specified in JIS A 6204 “Chemical admixture for concrete”. is there.
  • the water reducing agent (R2) includes polycarboxylic acid, naphthalene sulfonic acid formaldehyde condensate, melamine sulfonic acid formaldehyde condensate, lignin sulfonic acid, and one or more selected from these salts in terms of water reducing components. ..
  • the amount of the water reducing agent (R2) added is preferably 0.1 to 4 parts by mass (B ⁇ 0.1 to 4%) with respect to 100 parts by mass of the cement composition for high temperature environment. When the addition amount is within the above range, the workability of concrete and the medium- to long-term strength development are good.
  • the amount of the addition is more preferably 0.3 to 3 parts by mass (B ⁇ 0.3 to 3%), still more preferably 0.5 to 2 parts by mass, based on 100 parts by mass of the high temperature environment cement composition. Part (B ⁇ 0.5 to 2%).
  • the fine aggregate includes one or more selected from river sand, mountain sand, land sand, sea sand, crushed sand, silica sand, slag fine aggregate, and lightweight fine aggregate.
  • recycled aggregate can be used as the fine aggregate.
  • the unit amount of the fine aggregate is preferably 600 to 900 kg per 1 m 3 of concrete. When the unit amount is within this range, the fluidity and workability of the concrete for high temperature environment are good.
  • the unit amount is more preferably 650 to 850 kg per 1 m 3 of concrete.
  • the coarse aggregate includes one or more selected from gravel, crushed stone, slag coarse aggregate, and lightweight coarse aggregate. Further, as the coarse aggregate, a regenerated aggregate can be used in addition to the natural aggregate as in the case of the fine aggregate.
  • the unit amount of the coarse aggregate is preferably 900 to 1130 kg per 1 m 3 of concrete. When the unit amount is within this range, the fluidity and workability of the concrete for high temperature environment are good. The unit amount is more preferably 950 to 1080 kg per 1 m 3 of concrete.
  • the water can be used as long as it does not adversely affect physical properties such as strength and fluidity of concrete for high temperature environment.
  • the unit amount of water is preferably 100 to 200 kg per 1 m 3 of concrete. When the unit amount is within this range, the fluidity and workability of the concrete for high temperature environment are high.
  • the unit amount is more preferably 130 to 180 kg per 1 m 3 of concrete.
  • the high temperature environment concrete of the present invention may contain an expansion material and / or a shrinkage reducing agent in order to suppress shrinkage cracks. Further, in order to improve the workability of the concrete for a high temperature environment and secure the flow time, a setting retarder can be further contained. In addition, an air amount adjusting agent can be contained in order to suppress excessive air entrainment in the concrete for a high temperature environment.
  • FA1 to 7 in Table 3 satisfy all the conditions (F1) to (F6), but FA8 to 13 do not satisfy any of the conditions (F1) to (F6). Further, FA1 does not satisfy the condition (F7), FA2 does not satisfy the condition (F8), and FA3 to 6 also satisfy all the conditions (F7) and (F8).
  • the spherical specific surface area of the quartz particles in FA7 is 16000 cm 2 / cm 3, which is outside the range of 1100 to 12500 cm 2 / cm 3 .
  • the simple adiabatic test container used for the simple adiabatic temperature rise test is Styrofoam with a thickness of 200 mm. It is a container in which an internal space of 400 mm in length, 400 mm in width, and 400 mm in height is formed by using a heat insulating material made of heat insulating material and a concrete panel having a thickness of 12 mm so that it can be easily removed after the test. Then, as shown in FIG. 2B, the supporting steel material to which the embedded strain gauge with the temperature measuring function shown in FIG. 2A was attached was installed upright in the center of the internal space.
  • the concrete of the kneaded example and the comparative example is divided into three layers, and each layer is placed with a vibrator, and then the container is covered with a concrete panel and a styrofoam heat insulating material to cover the environment.
  • a temperature of 27 ° C. the self-shrinkage strain of concrete having a material age of 28 days and the amount of increase in simple adiabatic temperature were measured.
  • the compressive strength of concrete was measured in accordance with JIS A 1108 “Concrete compressive strength test method” as shown in Table 7. The results of these tests are shown in Table 8.
  • the material ages were 28 days, 56 days, and 91 days, which were 37 to 40 MPa, 44 to 46 MPa, and 50 to 51 MPa, respectively. , Equivalent.
  • the temperature crack index is the tensile strength of concrete with respect to the stress generated in the member (self-shrinkage due to hydration reaction of cement and stress caused by temperature change due to heat of hydration; value at age t). It is a ratio (value at the material age t) (tensile strength of concrete at the material age t / temperature stress at the material age t), and is an index of the occurrence probability of temperature cracks in the concrete. As shown in FIG. 3, the larger the temperature crack index, the lower the probability of temperature crack occurrence, the higher the crack resistance, and the less likely it is that cracks will occur. The results of these calculations are shown in Table 9.
  • the crack index of Test Examples 12, 13, 19-21, 24 to 27 is 1.0 or less. Therefore, based on FIG. 3, Test Examples 12, 13, 19-21, 24 to The probability of occurrence of temperature cracks in 27 is as high as 50% or more, whereas the crack index of Test Examples 1 to 6, 22 and 23 of the high temperature environment concrete of the present invention is 1.1 or more. The probability of thermal cracks occurring in environmental concrete is as low as 35% or less, and cracks are unlikely to occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

下記(F1)~(F6)の条件を全て満たすフライアッシュと、ポルトランドセメントを少なくとも含み、該フライアッシュとポルトランドセメントの合計を100質量%として、該フライアッシュの含有率が10~50質量%であって、高温環境用コンクリートに用いる、高温環境用セメント組成物。 (F1)ブレーン比表面積が2500~6000cm/g (F2)975±25℃で15分間加熱した後の、フライアッシュの質量減少率が5質量%以下 (F3)SiOの含有率が50質量%以上 (F4) (NaO+0.658×KO)/(MgO+SO+TiO+PO+MnO)の質量比が0.2~1.0(ただし、前記式中の化学式の単位は質量%である。) (F5)酸化鉄と非晶質が混在した粒子の球換算比表面積が2800~11000cm/cm (F6)Caを含む非晶質粒子の球換算比表面積が2100~22500cm/cm

Description

高温環境用セメント組成物、および高温環境用コンクリート
 本発明は、気温が高い地域で使用できる高温環境用セメント組成物と高温環境用コンクリートに関する。
 熱帯および亜熱帯等の気温が高い地域では、以下の特性がコンクリートに要求されることが多い。
(i)コンクリート内部の温度上昇は70℃以下であること。
(ii)高温下においてもコンクリートの作業性が、一定時間確保できること。
 そして、これらの要求特性を満たすコンクリートとして、従来、高炉スラグ粉末を65~75質量%含むセメント、超遅延性減水剤、および高性能減水剤を含有するコンクリート(以下「従来コンクリート」という。)が用いられている。
 しかし、従来コンクリートは、強度発現性が良好で、水和熱が低いという利点があるものの、比較的高価な超遅延性減水剤を使う必要があり、また、自己収縮ひずみが大きいという欠点がある。そして、自己収縮ひずみが大きいと、コンクリートにひび割れが発生し易く、コンクリートの耐久性が低下するおそれがある。そこで、従来コンクリーに比べ、低コストで、自己収縮ひずみが小さく、ひび割れが発生し難い一方で、強度発現性および温度上昇は同程度であるコンクリートが求められている。
 今まで、コンクリートの自己収縮ひずみを低減する手段は、いくつか提案されている。例えば、
特許文献1に記載のモルタル・コンクリートの製造方法は、二酸化ケイ素を主成分とし酸化ジルコニウムを一成分として含む微粒子からなる粉体を、モルタル・コンクリートに調合する方法である。また、
特許文献2に記載の水硬性組成物は、カルシウムサルホアルミネート(3CaO・3Al2O3・CaSO4)を3~60重量%、無水石膏を1~40重量%含むカルシウムサルホアルミネート組成物100質量部に対して、比表面積が1000~4000cm/gの炭酸リチウムを0.1~3.0質量部含んでなるコンクリート用組成物である。
 しかし、前記いずれの手段も、酸化ジルコニウムやカルシウムサルホアルミネートのような高価な材料を用いるため実用性に欠ける。そこで、高価な材料を用いることなく、前記の従来コンクリートに比べ、自己収縮ひずみが小さい一方で、温度上昇および強度発現性が同程度であるコンクリートが望まれている。
特開2004-203733号公報 特開2002-097051号公報
 したがって、本発明は、高価な材料を用いることなく、コンクリート分野で広く用いられている材料を使用したコンクリートであって、従来コンクリートと比べ、自己収縮ひずみが小さく、ひび割れが発生し難い一方で、温度上昇および強度発現性が同程度である高温環境用コンクリートと、該高温環境用コンクリートの製造に用いる高温環境用セメント組成物を提供することを目的とする。
 そこで、本発明者は、前記目的を達成できる高温環境用セメント組成物等を鋭意検討したところ、特定の条件を満たすフライアッシュを含む高温環境用セメント組成物と、該セメント組成物を用いて製造した高温環境用コンクリートは、前記目的を達成できることを見い出し、本発明を完成させた。すなわち、本発明は以下の構成を有する高温環境用セメント組成物と高温環境用コンクリートである。
[1]下記(F1)~(F6)のフライアッシュの条件を全て満たすフライアッシュと、ポルトランドセメントを少なくとも含み、
 該フライアッシュとポルトランドセメントの合計を100質量%として、該フライアッシュの含有率が10~50質量%であって、
下記高温環境用コンクリートの定義により定義されたコンクリートに用いる、高温環境用セメント組成物。
[フライアッシュの条件]
 (F1)フライアッシュのブレーン比表面積が2500~6000cm/g
 (F2)フライアッシュを975±25℃で15分間加熱した後の、フライアッシュの質量減少率が5質量%以下
 (F3)フライアッシュ中のSiOの含有率が50質量%以上
 (F4)フライアッシュ中の(NaO+0.658×KO)/(MgO+SO+TiO+PO+MnO)の質量比が0.2~1.0(ただし、前記式中の化学式の単位は質量%である。)
 (F5)フライアッシュ中の、酸化鉄と非晶質が混在した粒子の球換算比表面積が2800~11000cm/cm
 (F6)フライアッシュ中の、Caを含む非晶質粒子の球換算比表面積が2100~22500cm/cm
[高温環境用コンクリートの定義]
 下記(Cn1)~(Cn6)を少なくとも含み、コンクリートの周囲の平均温度(環境温度)が25℃以上で用いるコンクリート。
 (Cn1)高温環境用セメント組成物
 (Cn2)遅延形減水剤、遅延形AE減水剤、および遅延形高性能AE減水剤から選ばれる1種以上の、減水剤(R1)
 (Cn3)前記減水剤(R1)を除く、減水剤(R2)
 (Cn4)細骨材
 (Cn5)粗骨材
 (Cn6)水
[2]前記フライアッシュが、さらに下記(F7)の条件を満たす、前記[1]に記載の高温環境用セメント組成物。
 (F7)フライアッシュ中の、ムライトと非晶質が混在した粒子の球換算比表面積が1900~9500cm/cm
[3]前記フライアッシュが、さらに下記(F8)の条件を満たす、前記[1]または[2]に記載の高温環境用セメント組成物。
 (F8)フライアッシュ中の、Caを含まない非晶質粒子の球換算比表面積が2100~9000cm/cm
[4]さらに、高炉スラグ粉末を含む高温環境用セメント組成物であって、
高炉スラグ粉末、フライアッシュ、およびポルトランドセメントの合計を100質量%として、高炉スラグ粉末の含有率が50質量%以下である、前記[1]~[3]のいずれかに記載の高温環境用セメント組成物。
[5]さらに、無水石膏、半水石膏、および2水石膏から選ばれる1種以上の石膏を含む高温環境用セメント組成物であって、
石膏、ポルトランドセメント、フライアッシュ、および高炉スラグ粉末の合計を100質量%として、石膏の含有率がSO換算で2.5質量%以下である、前記[1]~[4]のいずれかに記載の高温環境用セメント組成物。
[6]下記(Cn1)~(Cn6)を少なくとも含む、高温環境用コンクリート。
 (Cn1)前記[1]~[5]のいずれかに記載の高温環境用セメント組成物
 (Cn2)遅延形減水剤、遅延形AE減水剤、および遅延形高性能AE減水剤から選ばれる1種以上の、減水剤(R1)
 (Cn3)前記減水剤(R1)を除く、減水剤(R2)
 (Cn4)細骨材
 (Cn5)粗骨材
 (Cn6)水
 本発明の高温環境用セメント組成物を用いた本発明の高温環境用コンクリートは、従来コンクリートに比べ、低コストで、自己収縮ひずみが小さく、ひび割れが発生し難い一方で、温度上昇および強度発現性は同程度である。
コンクリートを打設した状態の簡易断熱試験用容器を示す図である。ただし、図中の数値の単位はmmである。 (a)は埋込型ひずみ計を支持した支持鋼材を示し、(b)は該支持鋼材を簡易断熱試験用容器に設置する様子を示す図である。 温度ひび割れ指数と、温度ひび割れ発生確率との間の関係を示すグラフである。
 本発明は、前記のとおり、高温環境用セメント組成物と、該高温環境用セメント組成物を用いて製造した高温環境用コンクリートである。以下、本発明について、高温環境用セメント組成物と、高温環境用コンクリートに分けて詳細に説明する。
1.高温環境用セメント組成物
 該セメント組成物は、特定の条件を満たすフライアッシュとポルトランドセメントを少なくとも含み、該フライアッシュの含有率は、フライアッシュとポルトランドセメントの合計を100質量%として10~50質量%である。フライアッシュの含有率が10質量%未満では、高温環境用コンクリートの自己収縮ひずみと温度上昇が大きく、50質量%を越えると、高温環境用コンクリートの強度発現性が低下する。なお、フライアッシュの含有率は、好ましくは12~40質量%、より好ましくは14~35質量%である。
 なお、前記高温環境用コンクリートとは、前記(Cn1)~(Cn6)を少なくとも含み、コンクリートの周囲の平均温度(環境温度)が25℃以上で用いるコンクリートをいう。
 初めに、ポルトランドセメントとフライアッシュについて説明する。
(i)ポルトランドセメント
 該ポルトランドセメントは、日本工業規格(以下「JIS」という。)のR 5210「ポルトランドセメント」に規定する普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、および低熱ポルトランドセメントから選ばれる1種以上が挙げられる。これらの中でも、前記ポルトランドセメントは、高温環境用コンクリートの強度発現性が向上するため、好ましくは、普通ポルトランドセメントおよび/または早強ポルトランドセメントである。
(ii)フライアッシュ
 該フライアッシュは、下記(F1)~(F6)の条件を全て満たす。
 (F1)ブレーン比表面積が2500~6000cm/g
 (F2)フライアッシュを975±25℃で15分間加熱した後の質量減少率が5質量%以下
 (F3)フライアッシュ中のSiOの含有率が50質量%以上、
 (F4)フライアッシュ中の(NaO+0.658×KO)/(MgO+SO+TiO+PO+MnO)の質量比が0.2~1.0(ただし、前記式中の化学式の単位は質量%である。)
 (F5)フライアッシュ中の、酸化鉄と非晶質が混在した粒子の球換算比表面積が2800~11000cm/cm
 (F6)フライアッシュ中の、Caを含む非晶質粒子の球換算比表面積が2100~22500cm/cm
次に、前記(F1)~(F6)のフライアッシュの条件を詳細に説明する
(F1):前記フライアッシュのブレーン比表面積が2500cm/g未満では、高温環境用コンクリートの強度発現性が低下し、6000cm/gを越えると、高温環境用コンクリートの自己収縮ひずみが大きく、また、温度上昇が高いほか、ブレーン比表面積が6000cm/gを越えるフライアッシュは入手が困難である。なお、該ブレーン比表面積は、好ましくは2700~5000cm/g、より好ましくは2900~4000cm/gである。
(F2):前記フライアッシュを975±25℃で15分間加熱した後の、フライアッシュの質量減少率が5質量%を越えると、高温環境用コンクリートの強度発現性が低下する。なお、該質量減少率は、入手の容易性や強度発現性から、好ましくは1.0~4.5質量%、より好ましくは1.5~4.0質量%である。
 (F3):前記フライアッシュのSiOの含有率が50質量%未満では、高温環境用コンクリートの強度発現性が低下する。なお、該SiOの含有率は、入手の容易性や強度発現性から、好ましくは51~70質量%、より好ましくは52~65質量%である。
(F4):前記フライアッシュ中の(NaO+0.658×KO)/(MgO+SO+TiO+PO+MnO)の質量比が0.2未満では、高温環境用コンクリートの環境温度が高くなった場合(例えば、27℃以上の場合)に強度発現性が低下し、1.0を越えると高温環境用コンクリートの環境温度が高くなった場合(例えば、27℃以上の場合)に自己収縮ひずみが大きく、また、温度上昇が高くなる。なお、該比は、好ましくは0.25~0.8、より好ましくは0.28~0.7、さらに好ましくは0.3~0.6である。
 (F5):前記ライアッシュ中の、酸化鉄と非晶質が混在した粒子の球換算比表面積が2800cm/cm未満では、減水剤(R1)と減水剤(R2)の配合量が多くなって、凝結遅延が生じたり、コスト高になるおそれがあり、11000cm/cmを越えると高温環境用コンクリートの環境温度が高くなった場合(例えば27℃以上の場合)、自己収縮ひずみが大きく、また、温度上昇が高くなる。なお、該酸化鉄と非晶質が混在した粒子の球換算比表面積は、強度発現性の向上のため、好ましくは4000~10000cm/cm、より好ましくは5000~10000cm/cmである。
 (F6):前記フライアッシュ中の、Caを含む非晶質粒子の球換算比表面積が2100cm/cm未満では、減水剤(R1)と減水剤(R2)の配合量が多くなって、凝結遅延が生じたり、コスト高になるおそれがあり、22500cm/cmを越えると高温環境用コンクリートの環境温度が高くなった場合(例えば27℃以上の場合)、自己収縮ひずみが大きく、また、温度上昇が高くなる。なお、該Caを含む非晶質粒子の球換算比表面積は強度発現性等から、好ましくは4000~20000cm/cm、より好ましくは7000~20000cm/cmである。
 そのほか、コンクリートの強度発現性の向上や、自己収縮ひずみと温度上昇を抑制するため、フライアッシュ中の、ムライトと非晶質が混在した粒子の球換算比表面積は、好ましくは1900~9500cm/cm、より好ましくは3000~9000cm/cm、さらに好ましくは4500~9000cm/cmである。また、フライアッシュ中の、Caを含まない非晶質粒子の球換算比表面積は、好ましくは2100~9000cm/cm、より好ましくは3000~8500cm/cm、さらに好ましくは4500~8500cm/cmである。
 また、フライアッシュは、通常、石英を5~25質量%含むものであり、本発明で用いるフライアッシュ中の石英の格子体積は、リートベルト解析法を用いて求めた値で、好ましくは113.5~114.5Åである。石英の格子体積が前記範囲内にあれば、高温環境用コンクリートの環境温度が高くなった場合(例えば、27℃以上の場合)に自己収縮ひずみと温度上昇をさらに抑制できる。なお、石英の格子体積は、より好ましくは113.6~114.4Å、さらに好ましくは113.7~114.3Åである。フライアッシュ中の石英のリートベルト解析は、フライアッシュのX線回折図に基づき、例えば、Bruker社製の解析ソフト(Topas ver. 2.1)、および結晶構造データ(ICDD number)として331161(Quartz)を用いて行うことができる。
 また、フライアッシュ中の石英粒子の球換算比表面積は、コンクリートの自己収縮ひずみと温度上昇を抑制するため、好ましくは1100~12500cm/cm、より好ましくは2500~10000cm/cm、さらに好ましくは4000~10000cm/cmである。
 フライアッシュ粒子は、下記(1)~(4)の工程を経て、(i)酸化鉄と非晶質が混在した粒子、(ii)ムライトと非晶質が混在した粒子、(iii) Ca(カルシウム)を含まない非晶質粒子、(iv)Caを含む非晶質粒子、(v)石英粒子、の5種類に分類する。
(1)試料の調製工程
 該工程は、フライアッシュと樹脂を混合し、硬化した試験片を調整する工程である。フライアッシュを樹脂に分散させることにより、フライアッシュ粒子が重なり合うことはなく、後述する粒子解析時に、粒子一つ一つを的確に抽出して、その特性値を計測できる。
 前記樹脂は、硬化過程において収縮が小さく、ひび割れが生じない樹脂として、エポキシ樹脂、アクリル系樹脂、ポリエステル系樹脂、およびメタクリル系樹脂等が挙げられる。該樹脂の混合割合は、好ましくは、フライアッシュに対する体積比で0.8~4である。この範囲内にあれば、複数の粒子が接触することなく分散し、また、後述する研磨を実施して、多くの粒子の切断面を取得できる。
 次に、硬化した試験片の撮像面を研磨する。像面に凹凸ができたり、粒子の切断面が十分に現れないと、粒子の粒径や形状を正確に測定できず、後述する粒子解析の精度が低下する。
 試験片の撮像面の研磨装置は、特に限定されず、通常用いられる研磨装置が使用できる。また、研磨工程で使用する研磨材は、特に限定されず、シリコンカーバイト研磨材、ボロンカーバイト研磨材、ダイヤモンドペースト、およびアルミナ粉末が挙げられる。また、前記研磨は、好ましくは、径0.3~3μmのアルミナ粉末等を研磨材として用いたバフ研磨であり、像面に凹凸が少ないことから、より好ましくはアルゴンイオンビームを用いたクロスセクションポリッシャ-による研磨である。
 最後に、撮像面を研磨した試験片の表面に蒸着膜を形成して、試験片に導電性を付与する。後述する粒子解析において、試験片に電子線を照射するが、フライアッシュと樹脂は導電性を有しないため、試験片に蒸着膜を形成せずに反射電子像を取得すると、試験片の表面が帯電して、正確な反射電子像を取得できない。そこで、正確な反射電子像を取得するため、試験片の表面に導電性を有する蒸着膜を形成する。
 前記蒸着膜は、試験片の表面に導電性を付与できれば特に限定されず、例えば、炭素、白金パラジウム、または金等が挙げられる。また、蒸着膜の形成方法は、特に限定されず、公知の方法を用いることができる。
(2)フライアッシュの粒子解析工程
 該工程は、まず、前記の試料の調製工程で調製した試験片を、電子顕微鏡を用いて反射電子像(BSE)と化学組成を取得する工程である。電子顕微鏡は、反射電子像や微小領域の化学組成を測定できればよいから、走査型電子顕微鏡(SEM)や電子線マイクロアナライザ(EPMA)等が使用できる。反射電子像は、その領域を構成する元素の平均原子番号が大きいほど明るく表示される。化学組成の取得装置は、波長分散型X線分光器(WDS)やエネルギー分散型X線分光器(EDS)が挙げられるが、短時間で化学組成を取得できるため、好ましくはエネルギー分散型X線分光器(EDS)である。
 反射電子像の解析条件は、解像度の高い反射電子像が取得できるため、好ましくは、加速電圧は10~15keV程度、照射電流は200~1000pA程度、観察倍率は500~2000倍に設定する。
 フライアッシュの粒子解析を行うにあたり、フライアッシュの試験片から反射電子像を得て、フライアッシュ粒子と樹脂の反射電子像の、目視による輝度の比較や輝度のヒストグラムを参考にして、フライアッシュ粒子と樹脂を分離できる輝度の閾値を決定する。そして、該閾値を用いて、2値化処理してフライアッシュ粒子を抽出する。この抽出されたフライアッシュ粒子に対して、粒子ごとに幾何学的計量値を測定する。幾何学的計量値は、円形度係数、円相当径(その粒子の断面積と等しい面積を有する円の直径)、およびアスペクト比などが挙げられる。
(3)フライアッシュ粒子の化学分析工程
 該工程は、フライアッシュ粒子を化学分析して、フライアッシュの化学組成を把握する工程である。エネルギー分散型X線分光器を用いて、フライアッシュの化学組成を高い精度で迅速に取得するためには、加速電圧は10~15keV程度、照射電流は200~1000pA程度、および分析時間は1分析点につき5~10秒に設定する。分析領域径は、好ましくは個々の粒子の全体とする。
 なお、前記化学分析と幾何学的計量値の測定の順序は問わない。また、測定対象のフライアッシュ粒子の数は、化学分析と幾何学的計量値の測定の誤差を小さくするため、好ましくは1000粒以上、より好ましくは2000粒以上である。また、1粒子あたりのX線カウント数は、好ましくは5000カウント以上、より好ましくは10000カウント以上、さらに好ましくは100000カウント以上である。粒子解析における画像処理の都合上、画像端部の分割された粒子は、解析上でつなぎ合わせて、1つの粒子としてカウントする。また、粒子解析では、粒子ごとのキャラクターとして、粒子の断面積と化学組成を取得する。
(4)フライアッシュ粒子のクラス分類工程
 該工程は、フライアッシュ粒子の前記化学組成と、表1に示すフライアッシュ粒子の化学組成の閾値を用いて、(i)酸化鉄と非晶質が混在した粒子、(ii)ムライトと非晶質が混在した粒子、(iii)Caを含まない非晶質粒子、(iv)Caを含む非晶質粒子、(v)石英粒子、のいずれかのクラスにフライアッシュ粒子を分類する工程である。なお、クラス分類に供するフライアッシュ粒子の抽出、化学分析、および幾何学的計量値の算出は、電子顕微鏡に付属する粒子解析ソフトを用いれば、自動的に測定でき簡便である。
Figure JPOXMLDOC01-appb-T000001
 球換算比表面積は、下記に従い算出する。
 まず、前記各クラスに分類したフライアッシュ粒子ごとに、粒子がすべて球と仮定して、粒子の断面積Sから下記(1)式を用いて、円相当径Dを算出する。
Figure JPOXMLDOC01-appb-I000002
 次に、前記算出した円相当径から、粒子が球と仮定したときの、粒子の表面積Aと体積Vを(2)式および(3)式を用いて算出する。
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
 最後に、各クラスのフライアッシュ粒子の体積の総和および表面積の総和を算出し、(4)式を用いて球換算比表面積Sを算出する。
Figure JPOXMLDOC01-appb-I000005
 高温環境用コンクリートの流動性の向上や自己収縮ひずみの抑制のために、さらに下記の方法で測定して算出したフライアッシュの締め固め密度は、好ましくは1.0~1.5cm/g、より好ましくは1.05~1.45cm/g、さらに好ましくは1.1~1.4cm/gである。
[締め固め密度の測定方法]
 ホソカワミクロン社製のパウダーテスターPT-Dを用いて、フライアッシュを100cmのカップ内に充填しながら、該カップを180秒間で180回タッピングした後、該カップ内で締め固まったフライアッシュの質量と体積を測定し、締め固め密度を算出する。
 本発明の高温環境用セメント組成物は、高温環境用コンクリートの長期の強度発現性が向上するために、さらに高炉スラグ粉末を含んでもよい。高炉スラグ粉末の含有率は、高炉スラグ粉末、フライアッシュ、およびポルトランドセメントの合計を100質量%として、好ましくは50質量%以下、より好ましくは45質量%以下である。高炉スラグ粉末の含有率が50質量%を越えると、高温環境用コンクリートの長期の強度発現性が低下するほか、自己収縮ひずみが大きくなる。
 なお、前記高炉スラグ粉末のブレーン比表面積は、高温環境用コンクリートの強度発現性の向上や温度上昇の抑制のため、好ましくは3000~6000cm/g、より好ましくは3300~5000cm/gである。
 本発明の高温環境用セメント組成物は、高温環境用コンクリートの強度発現性が向上するため、さらに無水石膏、半水石膏、および2水石膏から選ばれる1種以上を含んでもよい。石膏の含有率は、石膏、フライアッシュ、ポルトランドセメント、および高炉スラグ粉末の合計を100質量%として、SO換算で2.5質量%以下である。石膏の含有率がSO換算で2.5質量%を越えると、高温環境用コンクリートの自己収縮ひずみが大きく、また、温度上昇が高くなる。なお、前記石膏の含有率は、石膏、フライアッシュ、ポルトランドセメント、および高炉スラグ粉末の合計を100質量%として、SO換算で、好ましくは2.2質量%以下、より好ましくは2.0質量%以下、さらに好ましくは1.6質量%以下である。
 前記石膏は、高温環境用コンクリートの強度発現性がより向上するため、好ましくは無水石膏または2水石膏である。また、石膏のブレーン比表面積は、強度発現性の向上や温度上昇の抑制のため、好ましくは3000~15000cm/g、より好ましくは3500~13000cm/gである。
 なお、本発明のセメント組成物は、さらに任意の構成成分として、石灰石粉末、石英粉末、およびシリカフューム等を含むことができる。
2.高温環境用コンクリート
 次に、本発明の高温環境用コンクリートについて説明する。
 該コンクリートは、前記高温環境用セメント組成物、減水剤(R1)、減水剤(R2)、細骨材、粗骨材、および水を、少なくとも含むコンクリートである。以下に、高温環境用コンクリートの前記各構成材料について説明する。
(Cn1):高温環境用セメント組成物
 該高温環境用セメント組成物の単位量は、好ましくはコンクリート1mあたり200~550kgである。該単位量がこの範囲内にあれば、強度発現性、流動性、およびワーカビリティー等が良好である。なお、該単位量は、より好ましくはコンクリート1mあたり220~520kg、さらに好ましくはコンクリート1mあたり250~480kgである。
(Cn2):遅延性減水剤(R1)
 該減水剤(R1)は、遅延形減水剤、遅延形AE減水剤、および遅延形高性能AE減水剤から選ばれる1種以上である。前記遅延形減水剤、遅延形AE減水剤、および遅延形高性能AE減水剤は、JIS A 6204「コンクリート用化学混和剤」に規定する減水剤である。
 減水剤(R1)の減水成分は特に制限されず、例えば、リグニンスルホン酸、ナフタレンスルホン酸ホルムアルデヒド縮合物、メラミンスルホン酸ホルムアルデヒド縮合物、およびこれらの塩から選ばれる1種以上が挙げられる。減水剤(R1)は、具体的には、BASF社製のマスターポゾリスNo.89(登録商標)や、フローリック社製のフローリックR(登録商標)等が挙げられる。また、減水剤(R1)は、前記減水成分に加えて、さらにクエン酸、酒石酸、およびショ糖等から選ばれる1種以上の凝結遅延剤を含んでもよい。
 減水剤(R1)の添加量は、前記高温環境用セメント組成物100質量部に対し、好ましくは0.1~1質量部(B×0.1~1%)である。該添加量が前記範囲内にあれば、コンクリートの作業性や中長期の強度発現性が高い。なお、該添加量は、前記高温環境用セメント組成物100質量部に対し、より好ましくは0.3~0.8質量部(B×0.3~0.8%)である。
(Cn3):減水剤(R2)
 該減水剤(R2)は、前記減水剤(R1)を除く減水剤であり、具体的には、JIS A 6204「コンクリート用化学混和剤」に規定する標準形減水剤、標準形AE減水剤、高性能減水剤、および標準形高性能AE減水剤から選ばれる1種以上が挙げられる。これらの中でも、減水剤(R2)は、好ましくは高性能減水剤である。
 なお、減水剤(R2)に含まれない、前記遅延形減水剤、遅延形AE減水剤、および遅延形高性能AE減水剤は、JIS A 6204「コンクリート用化学混和剤」に規定する減水剤である。
 また、減水剤(R2)は、減水成分で表わせば、ポリカルボン酸、ナフタレンスルホン酸ホルムアルデヒド縮合物、メラミンスルホン酸ホルムアルデヒド縮合物、リグニンスルホン酸、およびこれらの塩から選ばれる1種以上が挙げられる。
 減水剤(R2)の添加量は、前記高温環境用セメント組成物100質量部に対し、好ましくは0.1~4質量部(B×0.1~4%)である。該添加量が前記範囲内であれば、コンクリートの作業性や中長期の強度発現性が良好である。なお、該添加量は、前記高温環境用セメント組成物100質量部に対し、より好ましくは0.3~3質量部(B×0.3~3%)、さらに好ましくは0.5~2質量部(B×0.5~2%)である。
(Cn4)細骨材
 該細骨材は、川砂、山砂、陸砂、海砂、砕砂、硅砂、スラグ細骨材、および軽量細骨材から選ばれる1種以上が挙げられる。また、細骨材は天然骨材のほか、再生骨材を用いることができる。
 前記細骨材の単位量は、コンクリート1mあたり、好ましくは600~900kgである。該単位量がこの範囲内にあれば、高温環境用コンクリートの流動性およびワーカビリティー等が良好である。なお、該単位量は、コンクリート1mあたり、より好ましくは650~850kgである。
(Cn5):粗骨材
 該粗骨材は、砂利、砕石、スラグ粗骨材、および軽量粗骨材から選ばれる1種以上が挙げられる。また、粗骨材は、前記細骨材と同様に、天然骨材のほか再生骨材を用いることができる。
 前記粗骨材の単位量は、コンクリート1mあたり、好ましくは900~1130kgである。該単位量がこの範囲内にあれば、高温環境用コンクリートの流動性およびワーカビリティー等が良好である。なお、該単位量は、コンクリート1mあたり、より好ましくは950~1080kgである。
(Cn6):水
 該水は、高温環境用コンクリートの強度や流動性等の物性に悪影響を与えない水であれば用いることができ、例えば、水道水、下水処理水、および生コンクリートの上澄水等が挙げられる。
 水の単位量は、コンクリート1mあたり、好ましくは100~200kgである。該単位量がこの範囲内にあれば、高温環境用コンクリートの流動性およびワーカビリティー等が高い。なお、該単位量は、コンクリート1mあたり、より好ましくは130~180kgである。
(Cn7):任意の構成成分
 本発明の高温環境用コンクリートは、前記必須の構成成分のほかに、収縮ひび割れを抑制するため、膨張材および/または収縮低減剤を含むことができる。また、高温環境用コンクリートの作業性の向上や流動時間を確保するために、さらに凝結遅延剤を含むことができる。また、高温環境用コンクリート中の過度の空気連行を抑制するため、空気量調整剤を含むことができる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。
1.使用材料
 試験に用いた各種材料を表2に示す。
Figure JPOXMLDOC01-appb-T000006
 また、試験に用いたフライアッシュ(FA)の特性を表3および表4に示す。ただし、表4中の数値は、球換算比表面積を表す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 ちなみに、表3中のFA1~7は、前記(F1)~(F6)の条件を全て満たすが、FA8~13は前記(F1)~(F6)のいずれかの条件を満たさない。また、FA1は前記(F7)の条件を満たさず、FA2は前記(F8)の条件を満たさず、FA3~6は前記(F7)および(F8)の条件も全て満たす。また、FA7中の石英粒子の球換算比表面積は16000cm/cmであり、前記1100~12500cm/cmの範囲を外れている。
2.高温環境用セメント組成物の製造
 フライアッシュ(FA)、セメント(C)、任意成分である高炉スラグ粉末(BS)および石膏粉末(GG)を、表5に示すセメント組成物の配合に従い混合して、セメント組成物を製造した。
Figure JPOXMLDOC01-appb-T000009
 ちなみに、表5において、
(i)実施例1~14は、前記(F1)~(F6)の条件を全て満たすフライアッシュ(FA1~7)とポルトランドセメントの合計を100質量%として、前記フライアッシュの含有率が10~50質量%の範囲にある、本発明の高温環境用セメント組成物である。
(ii)比較例1、2および9は、フライアッシュを含まないセメント組成物である。
(iii)比較例3~8は、前記(F1)~(F6)の条件のいずれかを満たさないFA8~13を含むセメント組成物である。
(iV)比較例10、11は、フライアッシュの含有率が前記10~50質量%の範囲を外れたセメント組成物である。
2.コンクリートの配合
 試験に用いたコンクリートの配合を表6に示す。
Figure JPOXMLDOC01-appb-T000010
3.試験方法
 表7に示す各種の試験を、表7に示すJIS等の試験方法に準拠して行った。
Figure JPOXMLDOC01-appb-T000011
4.自己収縮ひずみ、簡易断熱温度上昇量、および圧縮強度の試験
(1)試験方法
 簡易断熱温度上昇量の試験に用いた簡易断熱試験用容器は、図1に示すように、厚さが200mmの発泡スチロール製断熱材と、試験後に脱型が容易なように厚さ12mmのコンクリートパネルを用いて、縦400mm、横400mm、および高さ400mmの内部空間を形成した容器である。
 そして、図2(a)に示す測温機能付き埋込型ひずみ計を取り付けた支持鋼材を、図2(b)に示すように、該内部空間の中心に立てて設置した。次に、前記混練した実施例および比較例のコンクリートを3層に分け、1層毎にバイブレータをかけて打設した後、コンクリートパネルおよび発泡スチロール製断熱材を用いて容器に蓋をして、環境温度27℃で、材齢28日のコンクリートの自己収縮ひずみと簡易断熱温度上昇量を測定した。
 また、コンクリートの圧縮強度は、表7に記載のとおり、JIS A 1108「コンクリートの圧縮強度試験方法」に準拠して測定した。
 これらの試験結果を表8に示す。
Figure JPOXMLDOC01-appb-T000012
(2)試験結果の評価
 (i)自己収縮ひずみについて
 同じ配合のコンクリートの自己収縮ひずみを比較すると、表8から以下のことが云える。
(a)コンクリートNo.1
 比較例6~8のセメント組成物を用いた試験例11~13のコンクリートの自己収縮ひずみは-120×10-6~-121×10-6と大きいのに対し、実施例1~7(セメント組成物中のFAの含有率は、比較例6~8のセメント組成物と同じである。)、および実施例10~14(セメント組成物中のFAの含有率は、比較例6~8のセメント組成物より少ない。)の本発明の高温環境用セメント組成物を用いた試験例1~7、14~18の本発明の高温環境用コンクリートでは-90×10-6~-118×10-6と小さい。
(b)コンクリートNo.2
 比較例7、8のセメント組成物を用いた試験例24、25のコンクリートの自己収縮ひずみは-240×10-6~-246×10-6と大きいのに対し、実施例8、9の本発明の高温環境用セメント組成物を用いた試験例22、23の本発明の高温環境用コンクリートでは-203×10-6~-205×10-6と小さい。
(c)コンクリートNo.5
 比較例7、8のセメント組成物を用いた試験例33、34のコンクリートの自己収縮ひずみは-145×10-6~-148×10-6と大きいのに対し、実施例1~5(セメント組成物中のFAの含有率は、比較例7、8のセメント組成物と同じである。)の本発明の高温環境用セメント組成物を用いた試験例28~32の本発明の高温環境用コンクリートでは-112×10-6~-134×10-6と小さい。
 (ii)簡易断熱温度上昇量について
 同じ配合のコンクリートの簡易断熱温度上昇量を比較すると、表8から以下のことが云える。
(a)コンクリートNo.1
 比較例6~8のセメント組成物を用いた試験例11~13のコンクリートの簡易断熱温度上昇量は32~34℃と大きいのに対し、実施例1~7(セメント組成物中のFAの含有率は、比較例6~8のセメント組成物と同じである。)の本発明の高温環境用セメント組成物を用いた試験例1~7の本発明の高温環境用コンクリートでは28~31℃と小さい。
(b)コンクリートNo.2
 比較例7、8のセメント組成物を用いた試験例24、25のコンクリートの簡易断熱温度上昇量は、いずれも31℃と大きいのに対し、実施例8、9の本発明の高温環境用セメント組成物を用いた試験例22、23の本発明の高温環境用コンクリートでは、いずれも27~28℃と小さい。
(c)コンクリートNo.5
 比較例7、8のセメント組成物を用いた試験例33、34のコンクリートの簡易断熱温度上昇量は、いずれも32℃と大きいのに対し、実施例1~5(セメント組成物中のFAの含有率は、比較例7、8のセメント組成物と同じである。)の本発明の高温環境用セメント組成物を用いた試験例28~32の本発明の高温環境用コンクリートでは28~30℃と小さい。
 (iii)圧縮強度について
 同じ配合のコンクリートの圧縮強度を比較すると、表8から以下のことが云える。
(a)コンクリートNo.1
 比較例3~8のセメント組成物を用いた試験例8~13のコンクリートの圧縮強度は、材齢28日、56日、および91日で、それそれ、47~56MPa、53~61MPa、および65~68MPaと低いのに対し、実施例1~7(セメント組成物中のFAの含有率は、比較例3~8のセメント組成物と同じである。)の本発明の高温環境用セメント組成物を用いた試験例1~7の本発明の高温環境用コンクリートでは、材齢28日、56日、および91日で、それそれ、56~58MPa、60~63MPa、および68~70MPaと高い。
(b)コンクリートNo.2
 比較例7、8のセメント組成物を用いた試験例24、25のコンクリートの圧縮強度は、材齢28日、56日、および91日で、それそれ、63~64MPa、67MPa、および75MPaであるのに対し、実施例8、9の本発明の高温環境用セメント組成物を用いた試験例22、23の本発明の高温環境用コンクリートでは、材齢28日、56日、および91日で、それそれ、64MPa、69~70MPa、および74~75MPaであり、同等である。
(c)コンクリートNo.5
 比較例7、8のセメント組成物を用いた試験例33、34のコンクリートのンクリートの圧縮強度は、材齢28日、56日、および91日で、それそれ、38~39MPa、43~44MPa、および50~51MPaであるのに対し、実施例1~5(セメント組成物中のFAの含有率は、比較例7、8のセメント組成物と同じである。)の本発明の高温環境用セメント組成物を用いた試験例28~32の本発明の高温環境用コンクリートでは、材齢28日、56日、および91日で、それそれ、37~40MPa、44~46MPa、および50~51MPaであり、同等である。
(3)ひび割れ指数の算出
 表8に記載のいくつかの試験例における、コンクリートの圧縮強度の測定値、自己収縮ひずみの測定値、および簡易断熱温度上昇量の試験結果を用いて、逆解析により求めた断熱温度上昇量の推定値を使って、3次元FEM温度応力解析により温度ひび割れ指数の最小値を算出し、ひび割れ抵抗性を評価した。3次元FEM解析には、株式会社計算力学研究センター製の「ASTEA MACS」(商品名)を使用し、温度応力解析のモデルは、長さ10m、厚さ0.5m、および高さ4mの壁部材を想定した。圧縮強度、自己収縮ひずみ、および温度上昇量以外の解析条件は、「マスコンクリートのひび割れ制御指針2016」(日本コンクリート工学会 発行)を参考にした。
 ここで、温度ひび割れ指数とは、部材内に生じる応力(セメントの水和反応に伴う自己収縮と、水和熱に起因する温度変化によって生じる応力;材齢tにおける値)に対するコンクリートの引張強度(材齢tにおける値)の比(材齢tにおけるコンクリートの引張強度/材齢tにおける温度応力)であり、コンクリートの温度ひび割れの発生確率の指標となる。図3に示すように、温度ひび割れ指数が大きい程、温度ひび割れ発生確率が低くなり、ひび割れ抵抗性が大きくなって、ひび割れが発生し難い。
 これらの計算結果を表9に示す。
Figure JPOXMLDOC01-appb-T000013
 表9に示すように、試験例12、13、19~21、24~27のひび割れ指数は1.0以下であるから、図3に基づけば、試験例12、13、19~21、24~27の温度ひび割れ発生確率は50%以上と高いのに対し、本発明の高温環境用コンクリートである試験例1~6、22、23のひび割れ指数は1.1以上であるから、本発明の高温環境用コンクリートの温度ひび割れ発生確率は35%以下と低く、ひび割れが発生し難い。
 1 埋込型ひずみ計
 2 蓋
 3 コンクリートパネル
 4 支持鋼材
 5 コンクリート
 6 発泡スチロール

Claims (6)

  1.  下記(F1)~(F6)のフライアッシュの条件を全て満たすフライアッシュと、ポルトランドセメントを少なくとも含み、
     該フライアッシュとポルトランドセメントの合計を100質量%として、該フライアッシュの含有率が10~50質量%であって、
    下記高温環境用コンクリートの定義により定義されたコンクリートに用いる、高温環境用セメント組成物。
    [フライアッシュの条件]
     (F1)フライアッシュのブレーン比表面積が2500~6000cm/g
     (F2)フライアッシュを975±25℃で15分間加熱した後の、フライアッシュの質量減少率が5質量%以下
     (F3)フライアッシュ中のSiOの含有率が50質量%以上
     (F4)フライアッシュ中の(NaO+0.658×KO)/(MgO+SO+TiO+PO+MnO)の質量比が0.2~1.0(ただし、前記式中の化学式の単位は質量%である。)
     (F5)フライアッシュ中の、酸化鉄と非晶質が混在した粒子の球換算比表面積が2800~11000cm/cm
     (F6)フライアッシュ中の、Caを含む非晶質粒子の球換算比表面積が2100~22500cm/cm
    [高温環境用コンクリートの定義]
     下記(Cn1)~(Cn6)を少なくとも含み、コンクリートの周囲の平均温度(環境温度)が25℃以上で用いるコンクリート。
     (Cn1)高温環境用セメント組成物
     (Cn2)遅延形減水剤、遅延形AE減水剤、および遅延形高性能AE減水剤から選ばれる1種以上の、減水剤(R1)
     (Cn3)前記減水剤(R1)を除く、減水剤(R2)
     (Cn4)細骨材
     (Cn5)粗骨材
     (Cn6)水
  2.  前記フライアッシュが、さらに下記(F7)の条件を満たす、請求項1に記載の高温環境用セメント組成物。
     (F7)フライアッシュ中の、ムライトと非晶質が混在した粒子の球換算比表面積が1900~9500cm/cm
  3.  前記フライアッシュが、さらに下記(F8)の条件を満たす、請求項1または2に記載の高温環境用セメント組成物。
     (F8)フライアッシュ中の、Caを含まない非晶質粒子の球換算比表面積が2100~9000cm/cm
  4.  さらに、高炉スラグ粉末を含む高温環境用セメント組成物であって、
     高炉スラグ粉末、フライアッシュ、およびポルトランドセメントの合計を100質量%として、高炉スラグ粉末の含有率が50質量%以下である、請求項1~3のいずれか1項に記載の高温環境用セメント組成物。
  5.  さらに、無水石膏、半水石膏、および2水石膏から選ばれる1種以上の石膏を含む高温環境用セメント組成物であって、
    石膏、ポルトランドセメント、フライアッシュ、および高炉スラグ粉末の合計を100質量%として、石膏の含有率がSO換算で2.5質量%以下である、請求項1~4のいずれか1項に記載の高温環境用セメント組成物。
  6.  下記(Cn1)~(Cn6)を少なくとも含む、高温環境用コンクリート。
     (Cn1)請求項1~5のいずれか1項に記載の高温環境用セメント組成物
     (Cn2)遅延形減水剤、遅延形AE減水剤、および遅延形高性能AE減水剤から選ばれる1種以上の、減水剤(R1)
     (Cn3)減水剤(R1)を除く、減水剤(R2)
     (Cn4)細骨材
     (Cn5)粗骨材
     (Cn6)水
PCT/JP2019/010383 2019-03-13 2019-03-13 高温環境用セメント組成物、および高温環境用コンクリート WO2020183674A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/010383 WO2020183674A1 (ja) 2019-03-13 2019-03-13 高温環境用セメント組成物、および高温環境用コンクリート
PCT/JP2019/025994 WO2020183746A1 (ja) 2019-03-13 2019-06-30 高温環境用セメント組成物、および高温環境用コンクリート

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010383 WO2020183674A1 (ja) 2019-03-13 2019-03-13 高温環境用セメント組成物、および高温環境用コンクリート

Publications (1)

Publication Number Publication Date
WO2020183674A1 true WO2020183674A1 (ja) 2020-09-17

Family

ID=72426673

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/010383 WO2020183674A1 (ja) 2019-03-13 2019-03-13 高温環境用セメント組成物、および高温環境用コンクリート
PCT/JP2019/025994 WO2020183746A1 (ja) 2019-03-13 2019-06-30 高温環境用セメント組成物、および高温環境用コンクリート

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025994 WO2020183746A1 (ja) 2019-03-13 2019-06-30 高温環境用セメント組成物、および高温環境用コンクリート

Country Status (1)

Country Link
WO (2) WO2020183674A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152619A (ja) * 2019-03-22 2020-09-24 太平洋セメント株式会社 フライアッシュ混合セメント、及び、モルタル又はコンクリート製品の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242171A (ja) * 2011-05-17 2012-12-10 Taiheiyo Cement Corp 石炭灰の評価方法、およびセメント又はコンクリートの製造方法
WO2018047230A1 (ja) * 2016-09-06 2018-03-15 太平洋セメント株式会社 高温環境用セメント組成物、および高温環境用コンクリート

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242171A (ja) * 2011-05-17 2012-12-10 Taiheiyo Cement Corp 石炭灰の評価方法、およびセメント又はコンクリートの製造方法
WO2018047230A1 (ja) * 2016-09-06 2018-03-15 太平洋セメント株式会社 高温環境用セメント組成物、および高温環境用コンクリート

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152619A (ja) * 2019-03-22 2020-09-24 太平洋セメント株式会社 フライアッシュ混合セメント、及び、モルタル又はコンクリート製品の製造方法

Also Published As

Publication number Publication date
WO2020183746A1 (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
Liu et al. Utilization potential of aerated concrete block powder and clay brick powder from C&D waste
Xu et al. Influence of cenospheres on properties of magnesium oxychloride cement-based composites
Siad et al. Characterization of the degradation of self-compacting concretes in sodium sulfate environment: Influence of different mineral admixtures
Hemalatha et al. Characterizing supplementary cementing materials in blended mortars
WO2018047230A1 (ja) 高温環境用セメント組成物、および高温環境用コンクリート
JP6346519B2 (ja) 高強度コンクリートおよびコンクリート部材の製造方法
Muhit et al. Influence of crushed coarse aggregates on properties of concrete
JP2009120433A (ja) 耐硫酸塩性遠心力成形コンクリート組成物
WO2020170467A1 (ja) 高温環境用セメント組成物、および高温環境用コンクリート
Carles-Gibergues et al. A simple way to mitigate alkali-silica reaction
Zhou et al. Hydration properties and thermal analysis of cement-based materials containing limestone powder
Van Leeuwen The effects of limestone powder particle size on the mechanical properties and the life cycle assessment of concrete
WO2020183674A1 (ja) 高温環境用セメント組成物、および高温環境用コンクリート
Kanaan1a et al. Ceramic waste powder as an ingredient to sustainable concrete
Kockal Behavior of mortars produced with construction wastes exposed to different treatments
Adams et al. Evaluation of a procedure for determining the converted strength of calcium aluminate cement concrete
WO2020194671A1 (ja) 左官用セメント組成物、および左官用モルタル
Güneyisi et al. Properties of mortars with natural pozzolana and limestone-based blended cements
JP6037073B2 (ja) セメント組成物
Bondar et al. Suitability of alkali activated GGBS/Fly ash concrete for chloride environments
JP2020152619A (ja) フライアッシュ混合セメント、及び、モルタル又はコンクリート製品の製造方法
WO2020203490A1 (ja) セメント組成物及びセメント組成物の製造方法
JP7095642B2 (ja) セメント組成物
Wang et al. Effects of mineral admixtures and superplasticizers on micro hardness of aggregate-paste interface in cement concrete
JP6037074B2 (ja) セメント組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP