WO2020183588A1 - Method for manufacturing electronic device - Google Patents

Method for manufacturing electronic device Download PDF

Info

Publication number
WO2020183588A1
WO2020183588A1 PCT/JP2019/009803 JP2019009803W WO2020183588A1 WO 2020183588 A1 WO2020183588 A1 WO 2020183588A1 JP 2019009803 W JP2019009803 W JP 2019009803W WO 2020183588 A1 WO2020183588 A1 WO 2020183588A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
manufacturing
electronic device
peeling
film forming
Prior art date
Application number
PCT/JP2019/009803
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 岸本
幸也 西岡
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2019/009803 priority Critical patent/WO2020183588A1/en
Publication of WO2020183588A1 publication Critical patent/WO2020183588A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a method for manufacturing an electronic device.
  • a laminate including a resin layer, a TFT layer, a light emitting element layer, etc. is formed on a glass substrate, and laser light is emitted from the back surface of the glass substrate to the lower surface of the resin layer. Irradiate and peel off the glass substrate.
  • the conventional method of peeling the glass substrate from the resin layer by the process of delamination with a laser beam has a problem that a defect (for example, adhesion of carbonized carbonized resin layer) occurs due to the heat of the laser beam.
  • the third film forming step of forming the barrier layer, the fourth film forming step of forming the electronic circuit layer on the upper layer of the barrier layer, and the peeling layer and the resin layer are irradiated with laser light to obtain the above. It includes a peeling step of peeling the resin layer from the mother substrate and the peeling layer.
  • FIG. 3 As a method for manufacturing an electronic device according to an embodiment of the present invention, an electronic device whose plan view is shown in FIG. 3 will be taken as an example, and will be described with reference to FIGS. 1 to 3.
  • “same layer” means that they are formed in the same process (film forming step)
  • “lower layer” means that they are formed in a process prior to the layer to be compared.
  • “upper layer” means that it is formed in a process after the layer to be compared.
  • FIG. 1 is a flowchart showing a manufacturing method of the electronic device of the first embodiment.
  • FIG. 2 is a cross-sectional view showing a configuration example of a display unit of an electronic device.
  • FIG. 3 is a plan view showing a method of manufacturing an electronic device.
  • an organic EL (Electro Luminescence) display device 2 as an electronic device will be described.
  • a plurality of display areas 41 (that is, an organic EL display device 2) are formed on one translucent substrate (mother substrate) 13. ..
  • a release layer AL is formed on the substrate 13 (step S1, first film forming step).
  • the resin layer 12 is formed so as to cover at least a part of the release layer AL (step S2, second film forming step).
  • the barrier layer 3 is formed so as to cover the entire surface of the resin layer 12 (step S3, third film forming step).
  • the electronic circuit layer 4 above the barrier layer 3 is formed (step S4, fourth film forming step).
  • a top emission type light emitting element layer (including a light emitting layer) 5 is formed (step S5).
  • the sealing layer 6 that covers the light emitting element layer is formed (step S6).
  • the laminate 7 is cut out and the top film 14 is attached (step S7).
  • step S8 peeling step
  • step S9 the lower surface film 10 of FIG. 2 is attached to the lower surface of the resin layer 12 (step S9).
  • the laminate including the bottom film 10, the resin layer 12, the barrier layer 3, the TFT layer 4, the light emitting element layer 5, and the sealing layer 6 is divided to obtain a plurality of individual pieces (step S10, dividing step).
  • the functional film 39 is attached to the obtained pieces (step S11).
  • an electronic circuit board for example, an IC chip
  • step S12 is mounted on the non-display area of the individual piece to form an electronic device.
  • step S8 peeling step
  • the substrate 13 and the peeling layer AL peeled from the resin layer 12 can be reused in steps S1 to S7.
  • a glass substrate is used.
  • Diamond-like carbon (sometimes referred to as "DLC") is used for the release layer AL.
  • a CVD method or a sputtering method can be applied as a method for forming the release layer AL.
  • Examples of the material of the resin layer 12 include polyimide and polyamide. Examples of the material of the top film 14 in step S7 include polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the barrier layer 3 is a layer that prevents foreign substances such as moisture and oxygen from reaching the TFT layer 4 and the light emitting device layer 5 via the resin layer 12, and is, for example, a silicon oxide film or nitride formed by a CVD method. It can be composed of a silicon film, a silicon nitride film, or a laminated film thereof.
  • the TFT layer 4 includes a semiconductor film 15, an inorganic insulating film 16 (gate insulating film) above the semiconductor film 15, a gate electrode GE above the inorganic insulating film 16, and an inorganic insulation layer above the gate electrode GE.
  • the thin film transistor (TFT) Tr is configured to include the flattening film 21, the semiconductor film 15, the inorganic insulating film 16, and the gate electrode GE.
  • the semiconductor film 15 is composed of, for example, low temperature polysilicon (LTPS) or an oxide semiconductor.
  • LTPS low temperature polysilicon
  • FIG. 2 the transistor Tr having the semiconductor film 15 as a channel is shown in a top gate structure, but a bottom gate structure may be used (for example, when the TFT channel is an oxide semiconductor).
  • the gate electrode GE, the capacitance electrode CE, and the source wiring SH are made of, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), and copper (Cu). It is composed of a single-layer film or a laminated film of a metal containing at least one.
  • the inorganic insulating films 16, 18, and 20 can be formed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a laminated film thereof formed by a CVD method.
  • SiOx silicon oxide
  • SiNx silicon nitride
  • the flattening film (interlayer insulating film) 21 can be made of a coatable organic material such as polyimide or acrylic.
  • the light emitting element layer 5 (for example, the organic light emitting diode layer) has an anode 22 which is a layer above the flattening film 21, an anode edge cover 23 which covers the edge of the anode 22, and an EL (electroluminescence) which is a layer above the anode edge cover 23. )
  • a light emitting element (for example, OLED: organic light emitting diode) including a layer 24 and a cathode 25 above the EL layer 24 and including an island-shaped anode 22, an EL layer 24, and a cathode 25 for each subpixel.
  • the anode edge cover 23 (also referred to as a bank) can be made of a coatable organic material such as polyimide or acrylic.
  • the EL layer 24 is composed of, for example, laminating a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in this order from the lower layer side.
  • the light emitting layer is formed in an island shape for each subpixel by a vapor deposition method or an inkjet method, but one or more layers of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer are solid. It may be a common layer of the above, or it may be non-formed.
  • the anode (anode) 22 is composed of, for example, a laminate of ITO (Indium Tin Oxide) on the side in contact with the EL layer 24 and an alloy containing Ag in the lower layer thereof, and has light reflectivity.
  • the cathode 25 can be made of a translucent conductive material such as an MgAg alloy (ultra-thin film).
  • the driving current between the anode 22 and the cathode 25 causes holes and electrons to recombine in the EL layer 24, and the excitons generated thereby fall to the ground state, so that light is emitted. It is released. Since the anode 22 is light-reflecting and the cathode 25 is translucent, the display light DL emitted from the EL layer 24 faces upward and becomes top emission.
  • the light emitting element layer 5 is not limited to the case of forming an OLED element, and may be formed of an inorganic micro light emitting diode (micro LED) or a quantum dot light emitting diode.
  • the sealing layer 6 is translucent, and has an inorganic sealing film 26 covering the cathode 25, an organic sealing film 27 above the inorganic sealing film 26, and an inorganic sealing film 28 covering the organic sealing film 27. And include.
  • the sealing layer 6 covering the light emitting element layer 5 prevents foreign matter such as water and oxygen from penetrating into the light emitting element layer 5.
  • Each of the inorganic sealing films 26 and 28 can be composed of, for example, a silicon oxide film, a silicon nitride film, a silicon nitride film, or a laminated film thereof formed by a CVD method.
  • the organic sealing film 27 is a translucent organic film and can be made of a coatable organic material such as acrylic.
  • the bottom film 10 is for realizing a display device having excellent flexibility by sticking it to the bottom surface of the resin layer 12 after peeling off the support substrate, and examples of the material thereof include PET.
  • the functional film 39 has, for example, an optical compensation function, a touch sensor function, a protection function, and the like.
  • step S1 first film formation step of FIG. 1
  • a release layer AL is formed on the substrate 13.
  • the display region 41 which will be described later, is formed so as to be laminated on the release layer AL.
  • step S2 (second film formation step) of FIG. 1
  • the resin layer 12 is formed so as to cover at least a part of the release layer AL.
  • the resin layer 12 is a portion that comes into contact with the substrate 13 and exists around a portion that contacts the release layer AL and a portion that contacts the release layer AL. And.
  • step S3 third film forming step of FIG. 1
  • the barrier layer 3 is formed so as to cover the upper surface and the end surface of the resin layer 12. As a result, it is possible to prevent water from penetrating into the resin layer 12, and it is possible to solve the problem that the release layer AL and the resin layer 12 are (unintentionally) separated by the step S8. ..
  • an electronic circuit layer is formed on the upper layer of the barrier layer 3.
  • the electronic circuit layer may be a TFT layer or a touch panel layer.
  • the electronic circuit layer is a touch panel layer, it is not necessary to form the light emitting element layer 5 and the sealing layer 6 on the upper layer.
  • step S8 peeling step of FIG. 1
  • the substrate 13 and the peeling layer AL are peeled from the resin layer 12 by irradiating light LV from the lower surface of the substrate 13.
  • Diamond-like carbon is used for the release layer AL.
  • DLC is an amorphous hard film mainly composed of hydrocarbons or allotropes of carbon. DLC can exhibit various properties by adjusting the ratio of the contained crystalline electron orbitals (sp3 bond, sp2 bond) and the hydrogen (H) content.
  • DLC has a significantly lower thermal conductivity than amorphous silicon, W, Cr, Mo, etc., which have been conventionally used as a release layer for laser lift-off. Specifically, it is as follows (unit: W / mK, 0 ° C.). DLC (0.2 to 30), amorphous silicon (100 to 150), W (177.0), Cr (96.5), Mo (139.0), Al (236), Co (105), Ni ( 94), Ti (22).
  • the conventional release layer (amorphous silicon layer or metal layer such as W, Cr, Mo) has high thermal conductivity, it is formed on the upper part of the resin layer 12 by the heat of the optical LV irradiated from the lower surface of the substrate 13. There is a possibility that the characteristics of the TFT layer 4 or the light emitting element layer 5 may deteriorate. However, since the DLC has a low thermal conductivity, it is possible to suppress the thermal effect of the light LV emitted from the lower surface of the substrate 13 on the TFT layer 4 or the light emitting element layer 5.
  • DLC has a higher hardness than amorphous silicon or W, Cr, Mo, etc., and is less likely to be scratched. Therefore, when DLC is used for the release layer AL, the release layer AL and the substrate 13 are not easily scratched. Therefore, such a release layer AL and the substrate 13 can be reused.
  • the release layer AL using DLC can be formed by, for example, a CVD method or a sputtering method.
  • the release layer AL is formed by the CVD method
  • the raw material gas is a hydrocarbon
  • the release layer AL contains hydrogen.
  • the resin layer 12 coefficient of thermal expansion: 10 to 20 ⁇ 10-6
  • the release layer AL coefficient of thermal expansion: 2 ⁇ 10 ⁇
  • the difference in the coefficient of thermal expansion in 6 ) and / or the peeling due to the separation of hydrogen from the peeling layer AL can be considered.
  • DLC has various types.
  • hydrogen-free "ta-C” Tetrahedral Amorphous Carbon: tetrahedral amorphous carbon
  • a-C: H hydrogen containing hydrogen
  • hydrogenated Amorphous Carbon: hydrogenated amorphous carbon hydrogenated amorphous carbon
  • ta-C does not contain hydrogen and has a relatively large proportion of carbon in the sp3 hybrid orbital (diamond structure) (so-called hydrogen-free DLC). Therefore, ta-C can be suitably used for the release layer AL.
  • a-C: H contains hydrogen and has a relatively large proportion of carbon in the sp2 hybrid orbital (graphite structure).
  • a-C: H is suitably used for delamination due to hydrogen desorption.
  • ta-C: H hydrogenated Tetrahedral Amorphous Carbon
  • All of the above-mentioned DLCs are suitable for reuse, but among them, the hydrogen-free "ta-C” has a particularly high hardness, so that it can be reused for a long period of time.
  • the release layer AL When the release layer AL is irradiated with light LV, the binding force between the resin layer 12 and the release layer AL is reduced by the above-mentioned mechanism, and the substrate 13 and the release layer AL can be easily separated from the resin layer 12.
  • the resin layer 12 when the resin layer 12 is irradiated with light LV, the resin layer 12 is burned by the heat of the light LV, the bonding force between the substrate 13 and the resin layer 12 is reduced, and the substrate 13 is easily peeled from the resin layer 12.
  • the resin layer 12 is not directly irradiated with light LV, and heat is not applied to the resin layer 12. Therefore, at the location where the resin layer 12 and the release layer AL come into contact with each other, it is possible to suppress the generation of carbides in the resin layer 12 due to light LV and the generation of traces of the resin layer 12 due to light LV. Then, by reducing the generation of traces or the generation of carbides due to the irradiation of the light LV, the visibility is improved in the display region at the position where the peeling layer AL is superimposed. Therefore, in the resin layer 12, the release layer AL is formed in a place where good visibility is required, such as the display area 41.
  • the release layer AL is provided in the present embodiment, unlike the conventional example, it is possible to prevent the occurrence of defects in the above-mentioned delamination process and improve the yield in the manufacture of electronic devices. Can be done.
  • the release layer AL is formed of diamond-like carbon. As a result, the thermal influence on the TFT layer 4 or the light emitting element layer 5 can be suppressed, and the release layer AL and the substrate 13 using the DLC can be reused.
  • the optical LV is preferably laser light.
  • the device for irradiating the laser beam may be, for example, an excimer laser irradiation device using XeCl gas or the like, a solid-state laser irradiation device using YAG (Yttrium Aluminum Garnet) or the like.
  • YAG Yttrium Aluminum Garnet
  • the residue of the resin layer 12 can be suppressed by inserting the release layer AL between the substrate 13 and the resin layer 12, the effect of using the release layer AL when using a solid-state laser light such as a YAG laser light is effective. Becomes larger.
  • step S9 of FIG. 1 the lower surface film 10 is attached to the resin layer 12.
  • the difference in the thickness of the resin layer 12 in the stacking direction between the portion where the release layer AL and the substrate 13 are peeled off and the portion where only the substrate 13 is peeled off.
  • the difference in the thickness of the resin layer 12 in the laminating direction is smaller than the thickness of the lower surface film 10 in the laminating direction, the difference in the thickness in the laminating direction is eliminated by attaching the lower surface film 10.
  • step S10 dividing step of FIG. 1
  • the laminated body 7 including the barrier layer 3, the resin layer 12, and the substrate 13 is cut in the thickness direction of the laminated body 7 so as to pass through the end portion of the resin layer 12.
  • the end faces of the barrier layer 3 and the resin layer 12 become flush with each other.
  • FIG. 4 is a plan view showing a modified example of the method for manufacturing the electronic device of the first embodiment.
  • a metal film 17 may be provided between the substrate 13 and the release layer AL.
  • the metal film 17 is formed of, for example, Ti, Mo, Ni, or the like, and has a film thickness of about 100 nm.
  • the following effects can be expected by providing the metal film 17 between the substrate 13 and the release layer AL.
  • the release layer AL is formed by the CVD method, the adhesion between the substrate 13 and the release layer AL can be improved. Therefore, the release layer AL does not separate from the substrate 13 even when it is repeatedly reused, and it can be used for a long period of time. For this reason, when a DLC composed of a-C: H or ta-C: H containing hydrogen formed by the CVD method is used for the release layer AL, it is preferable to provide the metal film 17.
  • the release layer AL when the release layer AL is formed by the sputtering method, the release layer AL having good adhesion to the substrate 13 can be formed without providing the metal film 17, so that the substrate 13 with the release layer 13 can be formed. Suitable for reuse. In this case as well, the provision of the metal layer 17 can be expected to further improve the adhesion.
  • the substrate 13 may be cut into strips, and the substrate 13 may be cut into a desired size (step S25). Then, after cutting, the substrate 13 is peeled off (step S26).
  • the resin layer 12 is forcibly pulled when the substrate 13 is peeled from the resin layer 12, and defects such as tearing of the resin layer 12 may occur. ..
  • the resin layer 12 can come into contact with air and contain water. As a result, the adhesion between the resin layer 12 and the substrate 13 is lowered. As a result, even when an unreasonable tensile stress is generated in the resin layer 12 in a region where the substrate 13 cannot be irradiated with the laser beam, it is possible to prevent the resin layer 12 from being broken or other defects.
  • FIG. 8 shows a case where the release layer AL is not formed in the display region 41.
  • the release layer AL may be formed in the display area 41.
  • a terminal portion (not shown) is formed which is connected to the wiring provided in the electronic circuit layer and inputs a signal from the outside. Further, in the terminal portion, the wiring and the wiring for transmitting the electric signal are connected to a plurality of terminals provided in the terminal portion.
  • the release layer AL may be provided in the terminal region 43.
  • the release layer AL in the terminal region 43, it is possible to suppress a decrease in readability of the alignment marker 44 due to the generation of carbides and laser traces of the resin layer 12 on the alignment marker 44.
  • the alignment with the mounting terminal can be easily performed, so that mounting defects can be suppressed or the mounting process can be simplified. As a result, the cost of mounting the mounting terminal can be reduced.
  • the touch panel TP includes a touch panel unit TP1 and a terminal area 43.
  • the touch panel unit TP1 is a portion placed on the display surface of the organic EL display device 2 and actually has a touch panel function (in other words, a portion that accepts a user's operation). Further, in the touch panel TP, since the terminal region 43 in which the wiring connecting to each electrode is formed is outside the display region, it is not necessary to provide the release layer AL in the terminal region 43.
  • FIG. 11 is a plan view showing a method of manufacturing the display device of the third embodiment
  • FIG. 12 is a cross-sectional view showing the method of manufacturing the display device of the third embodiment.
  • the substrate was peeled off after being divided (step S25) (step 26).
  • step S8 after the substrate is peeled off (step S8), it may be divided (step S10).
  • the release layer AL is formed on the large-sized substrate 13, and the island-shaped first portion 12a (is formed on the release layer AL.
  • a resin layer 12 including a first display region 41a) and an island-shaped second portion 12b (corresponding to a second display region 41b) is formed.
  • a common barrier layer 3 is formed so as to cover the first part 12a and the second part 12b, and then a TFT layer including a region 4a overlapping the first part 12a and a region 4b overlapping the second part 12b is formed. ..
  • a light emitting element layer including a region 5a overlapping the first part 12a and a region 5b overlapping the second part 12b is formed, and a sealing layer 6 covering the light emitting element layer is formed.
  • a top film is formed on the first laminated body 7A including the first portion 12a and the barrier layer 3 on the divided substrate 13a and the second laminated body 7B including the second portion 12b and the barrier layer 3 on the divided substrate 13b.
  • the first laminated body 7A is cut in the thickness direction so as to pass through the end portion of the first portion 12a, and the second laminated body 7B is cut into the second laminated body 7B.
  • a cutting step of cutting in the thickness direction so as to pass through the end portion of the second portion 12b is performed.
  • the release layer AL located below each of the first laminated body 7A and the second laminated body 7B is irradiated with light LV, and the first portion 12a is divided. It is peeled off from the substrate 13a, and the second part 12b is peeled off from the divided substrate 13b.
  • the laminated body 7A attached to the divided substrate 13a (glass substrate) and the laminated body 7B attached to the divided substrate 13b (glass substrate) can be separately transported and stored.
  • the laminated bodies 7A and 7B are much easier to transport and store than the laminated body in a state of being peeled off from the glass substrate (flexible state).
  • the barrier layer 3 covers the upper surfaces and end faces of the first portion 12a and the second portion 12b of the resin layer, foreign matter such as moisture is contained in the resin layers 12a and 12b. It is possible to prevent permeation, and there is a problem that the peeling layer AL and the first part 12a or the second part 12b of the resin layer are (unintentionally) separated by the step S8 (peeling step). It can be resolved. For example, it is possible to prevent an accident in which the first portion 12a of the resin layer is peeled off from the peeling layer AL and the laminated body 7A is dropped and damaged during the transportation work of the laminated body 7A.
  • the resin layer 12 is separated and formed into two parts, the first part 12a and the second part 12b, but the present invention is not limited to this, and the resin layer 12 may be divided into three or more parts. Further, in steps S4 to S6, a device corresponding to a plurality of panels is formed on the first part 12a, and a device corresponding to the plurality of panels is formed on the second part 12b, and in step S10, the laminated body 7A is formed. And a plurality of electronic devices (flexible panels) may be obtained from each of the laminated body 7B. Further, the first display area 41a and the second display area 41b may be further divided into a plurality of display areas.
  • the top emission type organic EL display device (OLED) 2 is described as an example of the electronic device, but the present invention is not limited to this.
  • OLED organic EL display device
  • the resin layer 12 is made of transparent polyimide
  • the anode 22 is made of a translucent conductor
  • the cathode 25 is made of a light-reflecting conductor.
  • the lower surface of the resin layer 12 is less likely to deteriorate in the peeling step, it can be said that it is also suitable for a display device having a bottom emission type OLED in which the display light passes through the lower surface of the resin layer 12.
  • each of the above embodiments can be applied to the flexible liquid crystal display device shown in FIG. 13 (b).
  • a flexible backlight unit 50 is arranged on the back surface of the resin layer 12, the resin layer 12 is made of transparent polyimide, a pixel electrode PE is formed on the TFT layer 4, and the pixel electrode PE is flexible.
  • a liquid crystal layer 35 that functions as a shutter is arranged between the plastic facing substrate 37 (color filter substrate).
  • the lower surface of the resin layer 12 is less likely to deteriorate in the peeling step, it can be said that it is also suitable for a liquid crystal display device in which the display light DL (backlight light) passes through the lower surface of the resin layer 12.
  • the electro-optical element included in the electronic device according to the present embodiment is not particularly limited.
  • the display device according to the present embodiment include an organic EL display provided with an OLED (Organic Light Emitting Diode) as an electro-optical element, an inorganic EL display provided with an inorganic light emitting diode as an electro-optical element, and electro-optical.
  • the element include a QLED display provided with a QLED (Quantum dot Light Emitting Diode).
  • the present invention is not limited to the above-described embodiments, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments are also included in the technical scope of the present invention. Further, new technical features can be formed by combining the technical means disclosed in each embodiment.
  • a method of manufacturing an electronic device including.
  • a dividing step of dividing the laminate including the resin layer and the barrier layer in the thickness direction of the laminate so as to pass through the end portion of the resin layer is included.
  • Mode 4 The method for manufacturing an electronic device according to, for example, mode 3, wherein in the dividing step, the release layer and the mother substrate are divided in addition to the laminate.
  • a resin layer containing an island-shaped first portion and an island-shaped second portion is formed.
  • a common barrier layer covering the first part and the second part is formed.
  • the electronic circuit layer including the region overlapping the first portion and the region overlapping the second portion is formed.
  • the barrier layer and the peeling layer come into contact with each other on the outer side of the first part and the second part in a plan view.
  • the first laminated body including the first part and the barrier layer is cut in the thickness direction of the first laminated body so as to pass through the end portion of the first part.
  • the second laminated body including the second part and the barrier layer is cut in the thickness direction of the second laminated body so that the end portion of the second part passes through, for example, the mode 7. How to manufacture electronic devices.

Abstract

A method for manufacturing an electronic device, wherein: an island-shaped release layer (AL) is formed upon a substrate (13); a resin layer (12) is laminated thereupon so as to cover the entire surface of the release layer (AL); a barrier layer (3) is formed so as to cover the resin layer (12); an electronic circuit is formed upon the barrier layer (3); and the resin layer (12) is peeled off the substrate (13) and the release layer (AL).

Description

電子デバイスの製造方法Manufacturing method of electronic device
 本発明は、電子デバイスの製造方法に関する。 The present invention relates to a method for manufacturing an electronic device.
 可撓性を有する電子デバイスを製造する場合、例えば、ガラス基板上に、樹脂層、TFT層、発光素子層等を含む積層体を形成し、ガラス基板の裏面から樹脂層の下面にレーザ光を照射してガラス基板を剥離する。 When manufacturing a flexible electronic device, for example, a laminate including a resin layer, a TFT layer, a light emitting element layer, etc. is formed on a glass substrate, and laser light is emitted from the back surface of the glass substrate to the lower surface of the resin layer. Irradiate and peel off the glass substrate.
特開2004-349543号公報(2004年12月9日公開)Japanese Unexamined Patent Publication No. 2004-349543 (published on December 9, 2004)
 レーザ光によるデラミネーションの工程によって樹脂層からガラス基板を剥離する前記従来の手法では、レーザ光の熱により不具合(例えば樹脂層が炭化した炭化物の付着等)が発生するという問題がある。 The conventional method of peeling the glass substrate from the resin layer by the process of delamination with a laser beam has a problem that a defect (for example, adhesion of carbonized carbonized resin layer) occurs due to the heat of the laser beam.
 母基板上に島状の剥離層を形成する第1成膜工程と、前記剥離層の少なくとも一部を覆うように、樹脂層を積層させる第2成膜工程と、前記樹脂層を覆うように、バリア層を形成する第3成膜工程と、前記バリア層の上層に電子回路層を形成する第4成膜工程と、前記剥離層および前記樹脂層に対して、レーザ光を照射し、前記母基板および前記剥離層から前記樹脂層を剥離する剥離工程と、を含む。 A first film forming step of forming an island-shaped peeling layer on a mother substrate, a second film forming step of laminating resin layers so as to cover at least a part of the peeling layer, and covering the resin layer. The third film forming step of forming the barrier layer, the fourth film forming step of forming the electronic circuit layer on the upper layer of the barrier layer, and the peeling layer and the resin layer are irradiated with laser light to obtain the above. It includes a peeling step of peeling the resin layer from the mother substrate and the peeling layer.
 上述のデラミネーションの工程での不具合の発生を防ぐことが可能な電子デバイスの製造方法を提供する。 Provided is a method for manufacturing an electronic device capable of preventing the occurrence of defects in the above-mentioned delamination process.
OLEDパネルの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of an OLED panel. OLEDパネルの構成を示す断面図である。It is sectional drawing which shows the structure of an OLED panel. 実施形態1の電子デバイスの製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electronic device of Embodiment 1. FIG. 実施形態1の電子デバイスの製造方法の一変形例を示す平面図である。It is a top view which shows one modification of the manufacturing method of the electronic device of Embodiment 1. FIG. 実施形態1の変形例の電子デバイスの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the electronic device of the modification of Embodiment 1. 実施形態1の変形例の電子デバイスの製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electronic device of the modification of Embodiment 1. 実施形態1の変形例の電子デバイスの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the electronic device of the modification of Embodiment 1. 実施形態2の電子デバイスの製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electronic device of Embodiment 2. 実施形態2の変形例の電子デバイスの製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electronic device of the modification of Embodiment 2. 実施形態2の変形例の電子デバイスの表示部の別構成を示す断面図である。It is sectional drawing which shows another structure of the display part of the electronic device of the modification of Embodiment 2. 実施形態3の電子デバイスの製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electronic device of Embodiment 3. 実施形態3の電子デバイスの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the electronic device of Embodiment 3. 電子デバイスの表示部の別構成を示す断面図である。It is sectional drawing which shows another structure of the display part of an electronic device.
 〔実施形態1〕
 本発明の一実施の形態に係る電子デバイスの製造方法として、図3に平面図を示す電子デバイスを例にとり、図1~3を参照し説明する。以下においては、「同層」とは同一のプロセス(成膜工程)にて形成されていることを意味し、「下層」とは、比較対象の層よりも先のプロセスで形成されていることを意味し、「上層」とは比較対象の層よりも後のプロセスで形成されていることを意味する。
[Embodiment 1]
As a method for manufacturing an electronic device according to an embodiment of the present invention, an electronic device whose plan view is shown in FIG. 3 will be taken as an example, and will be described with reference to FIGS. 1 to 3. In the following, "same layer" means that they are formed in the same process (film forming step), and "lower layer" means that they are formed in a process prior to the layer to be compared. And "upper layer" means that it is formed in a process after the layer to be compared.
 図1は、実施形態1の電子デバイスの製造方法を示すフローチャートである。図2は電子デバイスの表示部の構成例を示す断面図である。図3は、電子デバイスの製造方法を示す平面図である。なお、以下の説明では、電子デバイスとしての有機EL(Electro Luminescence:エレクトロルミネッセンス)表示装置2を製造する場合について説明する。 FIG. 1 is a flowchart showing a manufacturing method of the electronic device of the first embodiment. FIG. 2 is a cross-sectional view showing a configuration example of a display unit of an electronic device. FIG. 3 is a plan view showing a method of manufacturing an electronic device. In the following description, a case of manufacturing an organic EL (Electro Luminescence) display device 2 as an electronic device will be described.
 実施形態1に係る電子デバイスは、図3に示すように、1枚の透光性を備えた基板(母基板)13に複数の表示領域41(つまり、有機EL表示装置2)が形成される。 In the electronic device according to the first embodiment, as shown in FIG. 3, a plurality of display areas 41 (that is, an organic EL display device 2) are formed on one translucent substrate (mother substrate) 13. ..
 実施形態1に係る電子デバイスの製造方法は、図1に示すように、まず、基板13に剥離層ALを形成する(ステップS1、第1成膜工程)。次いで、剥離層ALの少なくとも一部を覆うように樹脂層12を形成する(ステップS2、第2成膜工程)。次いで、樹脂層12の全面を覆うように、バリア層3を形成する(ステップS3、第3成膜工程)。次いで、バリア層3よりも上層の電子回路層4を形成する(ステップS4、第4成膜工程)。次いで、トップエミッション型の発光素子層(発光層を含む)5を形成する(ステップS5)。次いで、発光素子層を覆う封止層6を形成する(ステップS6)。次いで、積層体7の切り出しおよび上面フィルム14の貼り付けを行う(ステップS7)。 In the method for manufacturing an electronic device according to the first embodiment, as shown in FIG. 1, first, a release layer AL is formed on the substrate 13 (step S1, first film forming step). Next, the resin layer 12 is formed so as to cover at least a part of the release layer AL (step S2, second film forming step). Next, the barrier layer 3 is formed so as to cover the entire surface of the resin layer 12 (step S3, third film forming step). Next, the electronic circuit layer 4 above the barrier layer 3 is formed (step S4, fourth film forming step). Next, a top emission type light emitting element layer (including a light emitting layer) 5 is formed (step S5). Next, the sealing layer 6 that covers the light emitting element layer is formed (step S6). Next, the laminate 7 is cut out and the top film 14 is attached (step S7).
 次いで、基板13越しに剥離層ALまたは樹脂層12に光LVを照射し、樹脂層12から基板13および剥離層ALを剥離する(ステップS8、剥離工程)。 Next, the release layer AL or the resin layer 12 is irradiated with light LV through the substrate 13 to separate the substrate 13 and the release layer AL from the resin layer 12 (step S8, peeling step).
 次いで、樹脂層12の下面に、図2の下面フィルム10を貼り付ける(ステップS9)。次いで、下面フィルム10、樹脂層12、バリア層3、TFT層4、発光素子層5、封止層6を含む積層体を分断し、複数の個片を得る(ステップS10、分断工程)。次いで、得られた個片に機能フィルム39を貼り付ける(ステップS11)。次いで、個片の非表示領域に電子回路基板(例えば、ICチップ)をマウントして電子デバイスとする(ステップS12)。なお、前記各ステップは、後述の電子デバイス製造装置が行う。また、後述するが、ステップS8(剥離工程)の後に、樹脂層12から剥離された基板13および剥離層ALをステップS1~S7に再利用することもできる。 Next, the lower surface film 10 of FIG. 2 is attached to the lower surface of the resin layer 12 (step S9). Next, the laminate including the bottom film 10, the resin layer 12, the barrier layer 3, the TFT layer 4, the light emitting element layer 5, and the sealing layer 6 is divided to obtain a plurality of individual pieces (step S10, dividing step). Next, the functional film 39 is attached to the obtained pieces (step S11). Next, an electronic circuit board (for example, an IC chip) is mounted on the non-display area of the individual piece to form an electronic device (step S12). Each of the above steps is performed by an electronic device manufacturing apparatus described later. Further, as will be described later, after step S8 (peeling step), the substrate 13 and the peeling layer AL peeled from the resin layer 12 can be reused in steps S1 to S7.
 基板13には、例えばガラス基板が用いられる。剥離層ALにはダイヤモンドライクカーボン(「DLC」と称する場合もある)が使用される。剥離層ALの成膜方法としては、CVD法またはスパッタリング法を適用することができる。 For the substrate 13, for example, a glass substrate is used. Diamond-like carbon (sometimes referred to as "DLC") is used for the release layer AL. As a method for forming the release layer AL, a CVD method or a sputtering method can be applied.
 樹脂層12の材料としては、例えば、ポリイミド、ポリアミド等が挙げられる。ステップS7の上面フィルム14の材料としては、例えばポリエチレンテレフタレート(PET)が挙げられる。 Examples of the material of the resin layer 12 include polyimide and polyamide. Examples of the material of the top film 14 in step S7 include polyethylene terephthalate (PET).
 バリア層3は、水分、酸素等の異物が樹脂層12を介してTFT層4や発光素子層5に到達することを防ぐ層であり、例えば、CVD法により形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。 The barrier layer 3 is a layer that prevents foreign substances such as moisture and oxygen from reaching the TFT layer 4 and the light emitting device layer 5 via the resin layer 12, and is, for example, a silicon oxide film or nitride formed by a CVD method. It can be composed of a silicon film, a silicon nitride film, or a laminated film thereof.
 TFT層4は、半導体膜15と、半導体膜15よりも上層の無機絶縁膜16(ゲート絶縁膜)と、無機絶縁膜16よりも上層のゲート電極GEと、ゲート電極GEよりも上層の無機絶縁膜18と、無機絶縁膜18よりも上層の容量電極CEと、容量電極CEよりも上層の無機絶縁膜20と、無機絶縁膜20よりも上層のソース配線SHと、ソース配線SHよりも上層の平坦化膜21とを含み、半導体膜15、無機絶縁膜16、およびゲート電極GEを含むように薄層トランジスタ(TFT)Trが構成される。 The TFT layer 4 includes a semiconductor film 15, an inorganic insulating film 16 (gate insulating film) above the semiconductor film 15, a gate electrode GE above the inorganic insulating film 16, and an inorganic insulation layer above the gate electrode GE. The film 18, the capacitive electrode CE above the inorganic insulating film 18, the inorganic insulating film 20 above the capacitive electrode CE, the source wiring SH above the inorganic insulating film 20, and the upper layer above the source wiring SH. The thin film transistor (TFT) Tr is configured to include the flattening film 21, the semiconductor film 15, the inorganic insulating film 16, and the gate electrode GE.
 半導体膜15は、例えば低温ポリシリコン(LTPS)あるいは酸化物半導体で構成される。なお、図2では、半導体膜15をチャネルとするトランジスタTrがトップゲート構造で示されているが、ボトムゲート構造でもよい(例えば、TFTのチャネルが酸化物半導体の場合)。 The semiconductor film 15 is composed of, for example, low temperature polysilicon (LTPS) or an oxide semiconductor. In FIG. 2, the transistor Tr having the semiconductor film 15 as a channel is shown in a top gate structure, but a bottom gate structure may be used (for example, when the TFT channel is an oxide semiconductor).
 ゲート電極GE、容量電極CE、ソース配線SHは、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)の少なくとも1つを含む金属の単層膜あるいは積層膜によって構成される。 The gate electrode GE, the capacitance electrode CE, and the source wiring SH are made of, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), and copper (Cu). It is composed of a single-layer film or a laminated film of a metal containing at least one.
 無機絶縁膜16・18・20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。 The inorganic insulating films 16, 18, and 20 can be formed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a laminated film thereof formed by a CVD method.
 平坦化膜(層間絶縁膜)21は、例えば、ポリイミド、アクリル等の塗布可能な有機材料によって構成することができる。 The flattening film (interlayer insulating film) 21 can be made of a coatable organic material such as polyimide or acrylic.
 発光素子層5(例えば、有機発光ダイオード層)は、平坦化膜21よりも上層のアノード22と、アノード22のエッジを覆うアノードエッジカバー23と、アノードエッジカバー23よりも上層のEL(エレクトロルミネッセンス)層24と、EL層24よりも上層のカソード25とを含み、サブピクセルごとに、島状のアノード22、EL層24、およびカソード25を含む発光素子(例えば、OLED:有機発光ダイオード)と、これを駆動するサブ画素回路とが設けられる。アノードエッジカバー23(バンクとも称する)は、例えば、ポリイミド、アクリル等の塗布可能な有機材料によって構成することができる。 The light emitting element layer 5 (for example, the organic light emitting diode layer) has an anode 22 which is a layer above the flattening film 21, an anode edge cover 23 which covers the edge of the anode 22, and an EL (electroluminescence) which is a layer above the anode edge cover 23. ) A light emitting element (for example, OLED: organic light emitting diode) including a layer 24 and a cathode 25 above the EL layer 24 and including an island-shaped anode 22, an EL layer 24, and a cathode 25 for each subpixel. , A sub-pixel circuit for driving this is provided. The anode edge cover 23 (also referred to as a bank) can be made of a coatable organic material such as polyimide or acrylic.
 EL層24は、例えば、下層側から順に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層を積層することで構成される。発光層は、蒸着法あるいはインクジェット法によって、サブピクセルごとに島状に形成されるが、正孔注入層、正孔輸送層、電子輸送層、電子注入層の1以上の層については、ベタ状の共通層とすることもあるし、非形成とすることもある。 The EL layer 24 is composed of, for example, laminating a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in this order from the lower layer side. The light emitting layer is formed in an island shape for each subpixel by a vapor deposition method or an inkjet method, but one or more layers of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer are solid. It may be a common layer of the above, or it may be non-formed.
 アノード(陽極)22は、例えば、EL層24に接する側のITO(Indium Tin Oxide)と、その下層のAgを含む合金との積層によって構成され、光反射性を有する。カソード25は、MgAg合金(極薄膜)等の透光性の導電材で構成することができる。 The anode (anode) 22 is composed of, for example, a laminate of ITO (Indium Tin Oxide) on the side in contact with the EL layer 24 and an alloy containing Ag in the lower layer thereof, and has light reflectivity. The cathode 25 can be made of a translucent conductive material such as an MgAg alloy (ultra-thin film).
 発光素子層5がOLED層である場合、アノード22およびカソード25間の駆動電流によって正孔と電子がEL層24内で再結合し、これによって生じたエキシトンが基底状態に落ちることによって、光が放出される。アノード22が光反射性であり、カソード25が透光性であるため、EL層24から放出された表示光DLは上方に向かい、トップエミッションとなる。 When the light emitting element layer 5 is an OLED layer, the driving current between the anode 22 and the cathode 25 causes holes and electrons to recombine in the EL layer 24, and the excitons generated thereby fall to the ground state, so that light is emitted. It is released. Since the anode 22 is light-reflecting and the cathode 25 is translucent, the display light DL emitted from the EL layer 24 faces upward and becomes top emission.
 発光素子層5は、OLED素子を構成する場合に限られず、無機のマイクロ発光ダイオード(マイクロLED)、あるいは量子ドット発光ダイオードを構成してもよい。 The light emitting element layer 5 is not limited to the case of forming an OLED element, and may be formed of an inorganic micro light emitting diode (micro LED) or a quantum dot light emitting diode.
 封止層6は透光性であり、カソード25を覆う無機封止膜26と、無機封止膜26よりも上層の有機封止膜27と、有機封止膜27を覆う無機封止膜28とを含む。発光素子層5を覆う封止層6は、水、酸素等の異物の発光素子層5への浸透を防いでいる。 The sealing layer 6 is translucent, and has an inorganic sealing film 26 covering the cathode 25, an organic sealing film 27 above the inorganic sealing film 26, and an inorganic sealing film 28 covering the organic sealing film 27. And include. The sealing layer 6 covering the light emitting element layer 5 prevents foreign matter such as water and oxygen from penetrating into the light emitting element layer 5.
 無機封止膜26・28はそれぞれ、例えば、CVD法により形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。有機封止膜27は、透光性有機膜であり、アクリル等の塗布可能な有機材料によって構成することができる。 Each of the inorganic sealing films 26 and 28 can be composed of, for example, a silicon oxide film, a silicon nitride film, a silicon nitride film, or a laminated film thereof formed by a CVD method. The organic sealing film 27 is a translucent organic film and can be made of a coatable organic material such as acrylic.
 下面フィルム10は、支持基板を剥離した後に樹脂層12の下面に貼り付けることで、柔軟性に優れた表示デバイスを実現するためのものであり、その材料としては、PET等が挙げられる。機能フィルム39は、例えば、光学補償機能、タッチセンサ機能、保護機能等を有する。 The bottom film 10 is for realizing a display device having excellent flexibility by sticking it to the bottom surface of the resin layer 12 after peeling off the support substrate, and examples of the material thereof include PET. The functional film 39 has, for example, an optical compensation function, a touch sensor function, a protection function, and the like.
 図1のステップS1(第1成膜工程)では、基板13上に剥離層ALを形成する。なお、後述する表示領域41は、剥離層ALに積層するように形成する。 In step S1 (first film formation step) of FIG. 1, a release layer AL is formed on the substrate 13. The display region 41, which will be described later, is formed so as to be laminated on the release layer AL.
 図1のステップS2(第2成膜工程)では、剥離層ALの少なくとも一部を覆うように、樹脂層12を形成する。剥離層ALの少なくとも一部を樹脂層12にて覆うことにより、樹脂層12は、剥離層ALに接触する部位と、剥離層ALに接触する部位の周囲に存在する、基板13に接触する部位と、を備える。 In step S2 (second film formation step) of FIG. 1, the resin layer 12 is formed so as to cover at least a part of the release layer AL. By covering at least a part of the release layer AL with the resin layer 12, the resin layer 12 is a portion that comes into contact with the substrate 13 and exists around a portion that contacts the release layer AL and a portion that contacts the release layer AL. And.
 図1のステップS3(第3成膜工程)では、樹脂層12の上面および端面を覆うようにバリア層3を形成する。これにより、樹脂層12に水分が浸透することを防ぐことができ、ステップS8までの間に剥離層ALと樹脂層12とが(意図せず)分離してしまうという問題を解消することができる。 In step S3 (third film forming step) of FIG. 1, the barrier layer 3 is formed so as to cover the upper surface and the end surface of the resin layer 12. As a result, it is possible to prevent water from penetrating into the resin layer 12, and it is possible to solve the problem that the release layer AL and the resin layer 12 are (unintentionally) separated by the step S8. ..
 図1のステップS4(第4成膜工程)では、バリア層3の上層に電子回路層を形成する。電子回路層は、TFT層であってよく、タッチパネル層であってよい。なお、電子回路層がタッチパネル層である場合には、その上層に発光素子層5および封止層6を形成する必要はない。 In step S4 (fourth film formation step) of FIG. 1, an electronic circuit layer is formed on the upper layer of the barrier layer 3. The electronic circuit layer may be a TFT layer or a touch panel layer. When the electronic circuit layer is a touch panel layer, it is not necessary to form the light emitting element layer 5 and the sealing layer 6 on the upper layer.
 図1のステップS8(剥離工程)では、基板13の下面から光LVを照射することにより樹脂層12から基板13および剥離層ALを剥離する。 In step S8 (peeling step) of FIG. 1, the substrate 13 and the peeling layer AL are peeled from the resin layer 12 by irradiating light LV from the lower surface of the substrate 13.
 剥離層ALにはダイヤモンドライクカーボン(DLC)が使用される。DLCは、主として炭化水素あるいは炭素の同素体からなる非晶質(アモルファス)の硬質膜である。DLCは、含まれる結晶質の電子軌道(sp3結合、sp2結合)の比率、および水素(H)含有量を調整することによって種々の性質を発現することができる。 Diamond-like carbon (DLC) is used for the release layer AL. DLC is an amorphous hard film mainly composed of hydrocarbons or allotropes of carbon. DLC can exhibit various properties by adjusting the ratio of the contained crystalline electron orbitals (sp3 bond, sp2 bond) and the hydrogen (H) content.
 DLCは、レーザリフトオフの剥離層として従来から用いられている、アモルファスシリコン、W、Cr、Mo等に比べて熱伝導率が顕著に低い。具体的には次のとおりである(単位:W/mK、0℃)。DLC(0.2~30)、アモルファスシリコン(100~150)、W(177.0)、Cr(96.5)、Mo(139.0)、Al(236)、Co(105)、Ni(94)、Ti(22)。 DLC has a significantly lower thermal conductivity than amorphous silicon, W, Cr, Mo, etc., which have been conventionally used as a release layer for laser lift-off. Specifically, it is as follows (unit: W / mK, 0 ° C.). DLC (0.2 to 30), amorphous silicon (100 to 150), W (177.0), Cr (96.5), Mo (139.0), Al (236), Co (105), Ni ( 94), Ti (22).
 従来の剥離層(アモルファスシリコン層またはW、Cr、Mo等の金属層)は熱伝導率が高いことから、基板13の下面から照射された光LVの熱により、樹脂層12の上部に形成されたTFT層4または発光素子層5の特性が悪化する可能性がある。しかしながら、DLCは、熱伝導率が低いことから、基板13の下面から照射された光LVがTFT層4または発光素子層5に与える熱的影響を抑制することができる。 Since the conventional release layer (amorphous silicon layer or metal layer such as W, Cr, Mo) has high thermal conductivity, it is formed on the upper part of the resin layer 12 by the heat of the optical LV irradiated from the lower surface of the substrate 13. There is a possibility that the characteristics of the TFT layer 4 or the light emitting element layer 5 may deteriorate. However, since the DLC has a low thermal conductivity, it is possible to suppress the thermal effect of the light LV emitted from the lower surface of the substrate 13 on the TFT layer 4 or the light emitting element layer 5.
 さらに、DLCは、アモルファスシリコンまたはW、Cr、Mo等に比べて硬度が高く、傷がつきにくい。それゆえ、DLCが剥離層ALに使用されている場合には、剥離層ALおよび基板13に傷がつきにくい。したがって、そのような剥離層ALおよび基板13を再利用に供することが可能となる。 Furthermore, DLC has a higher hardness than amorphous silicon or W, Cr, Mo, etc., and is less likely to be scratched. Therefore, when DLC is used for the release layer AL, the release layer AL and the substrate 13 are not easily scratched. Therefore, such a release layer AL and the substrate 13 can be reused.
 そして、基板13がDLCによりコーティングされた場合には、基板13の摩擦係数が低下し、樹脂層12の残渣を抑制することができる。この点も、DLCを使用した剥離層ALおよび基板13が再利用に適した理由となる。 Then, when the substrate 13 is coated with DLC, the friction coefficient of the substrate 13 is lowered, and the residue of the resin layer 12 can be suppressed. This point is also the reason why the release layer AL using DLC and the substrate 13 are suitable for reuse.
 DLCを用いた剥離層ALは、例えばCVD法またはスパッタ法により形成することができる。 The release layer AL using DLC can be formed by, for example, a CVD method or a sputtering method.
 剥離層ALがCVD法により形成される場合、原料ガスは炭化水素であり、剥離層ALは水素を含む。この場合、樹脂層12から基板13および剥離層ALが剥離されるメカニズムとしては、樹脂層12(熱膨張率:10~20×10-6)と剥離層AL(熱膨張率:2×10-6)の熱膨張率の差、および/または、剥離層ALからの水素離脱による剥離が考えられる。 When the release layer AL is formed by the CVD method, the raw material gas is a hydrocarbon, and the release layer AL contains hydrogen. In this case, as a mechanism for peeling the substrate 13 and the release layer AL from the resin layer 12, the resin layer 12 (coefficient of thermal expansion: 10 to 20 × 10-6 ) and the release layer AL (coefficient of thermal expansion: 2 × 10 −) The difference in the coefficient of thermal expansion in 6 ) and / or the peeling due to the separation of hydrogen from the peeling layer AL can be considered.
 剥離層ALがスパッタ法により形成される場合、水素フリーのDLCを形成することができる。この場合、樹脂層12から基板13および剥離層ALが剥離されるメカニズムとしては、樹脂層12と剥離層ALの熱膨張率の差が考えられる。 When the release layer AL is formed by the sputtering method, hydrogen-free DLC can be formed. In this case, as a mechanism for peeling the substrate 13 and the peeling layer AL from the resin layer 12, a difference in thermal expansion coefficient between the resin layer 12 and the peeling layer AL can be considered.
 DLCは様々な種類を有する。例えば、DLCとして、水素フリーの「ta-C」(Tetrahedral Amorphous Carbon:テトラヘドラルアモルファスカーボン)または水素を含む「a-C:H」(hydrogenated Amorphous Carbon:水素化アモルファスカーボン)を用いることができる。ta-Cは、水素を含まず、sp3混成軌道(ダイヤモンド構造)の炭素の割合が比較的多い(いわゆる水素フリーDLC)。従って、ta-Cは、剥離層ALに好適に用いることができる。一方、a-C:Hは、水素を含み、sp2混成軌道(グラファイト構造)の炭素の割合が比較的多い。従って、a-C:Hは、水素離脱による剥離に好適に用いられる。その他、「ta-C:H」(hydrogenated Tetrahedral Amorphous Carbon)は、熱膨張率の差と水素脱離の両方の作用を用いた剥離に好適である。なお、上述したDLCはいずれも再利用に適するが、その中でも水素フリーの「ta-C」は、特に硬度が大きいため、長期間にわたる再利用が可能である。 DLC has various types. For example, as the DLC, hydrogen-free "ta-C" (Tetrahedral Amorphous Carbon: tetrahedral amorphous carbon) or "a-C: H" containing hydrogen (hydrogenated Amorphous Carbon: hydrogenated amorphous carbon) can be used. .. ta-C does not contain hydrogen and has a relatively large proportion of carbon in the sp3 hybrid orbital (diamond structure) (so-called hydrogen-free DLC). Therefore, ta-C can be suitably used for the release layer AL. On the other hand, a-C: H contains hydrogen and has a relatively large proportion of carbon in the sp2 hybrid orbital (graphite structure). Therefore, a-C: H is suitably used for delamination due to hydrogen desorption. In addition, "ta-C: H" (hydrogenated Tetrahedral Amorphous Carbon) is suitable for peeling using the effects of both the difference in thermal expansion coefficient and hydrogen desorption. All of the above-mentioned DLCs are suitable for reuse, but among them, the hydrogen-free "ta-C" has a particularly high hardness, so that it can be reused for a long period of time.
 剥離層ALに光LVを照射すると、上述のメカニズムにより、樹脂層12と剥離層ALとの結合力が低下し、樹脂層12から基板13および剥離層ALを剥離しやすくなる。一方、樹脂層12に光LVを照射すると、光LVの熱により樹脂層12が焼かれ、基板13と樹脂層12との結合力が低下し、基板13を樹脂層12から剥離しやすくなる。 When the release layer AL is irradiated with light LV, the binding force between the resin layer 12 and the release layer AL is reduced by the above-mentioned mechanism, and the substrate 13 and the release layer AL can be easily separated from the resin layer 12. On the other hand, when the resin layer 12 is irradiated with light LV, the resin layer 12 is burned by the heat of the light LV, the bonding force between the substrate 13 and the resin layer 12 is reduced, and the substrate 13 is easily peeled from the resin layer 12.
 樹脂層12と剥離層ALとが接触する箇所では、樹脂層12に光LVが直接照射されず、樹脂層12に熱が加えらない。そのため、樹脂層12と剥離層ALとが接触する箇所では、光LVによる樹脂層12の炭化物の発生、および光LVによる樹脂層12の痕跡の発生を抑制できる。そして、光LVを照射することによる痕跡の発生または炭化物の発生を低減することにより、剥離層ALと重畳していた位置における表示領域においては、視認性が改善される。そのため、樹脂層12において、表示領域41のように良好な視認性が要求される箇所には、剥離層ALを形成する。 At the location where the resin layer 12 and the release layer AL come into contact, the resin layer 12 is not directly irradiated with light LV, and heat is not applied to the resin layer 12. Therefore, at the location where the resin layer 12 and the release layer AL come into contact with each other, it is possible to suppress the generation of carbides in the resin layer 12 due to light LV and the generation of traces of the resin layer 12 due to light LV. Then, by reducing the generation of traces or the generation of carbides due to the irradiation of the light LV, the visibility is improved in the display region at the position where the peeling layer AL is superimposed. Therefore, in the resin layer 12, the release layer AL is formed in a place where good visibility is required, such as the display area 41.
 以上のように、本実施形態では、剥離層ALを設けているため、前記従来例と異なり、上述のデラミネーションの工程での不具合の発生を防いで、電子デバイスの製造における歩留まりを向上することができる。 As described above, since the release layer AL is provided in the present embodiment, unlike the conventional example, it is possible to prevent the occurrence of defects in the above-mentioned delamination process and improve the yield in the manufacture of electronic devices. Can be done.
 さらに、本実施形態では、剥離層ALはダイヤモンドライクカーボンにより形成されている。これにより、TFT層4または発光素子層5に対する熱的影響を抑制することができ、かつ、DLCを使用した剥離層ALおよび基板13を再利用に供することができる。 Further, in the present embodiment, the release layer AL is formed of diamond-like carbon. As a result, the thermal influence on the TFT layer 4 or the light emitting element layer 5 can be suppressed, and the release layer AL and the substrate 13 using the DLC can be reused.
 なお、光LVは、レーザ光が望ましい。レーザ光を照射する装置としては、例えば、XeClガスなどを用いたエキシマレーザ照射装置、YAG(Yttrium Aluminum Garnet)などを用いた固体レーザ照射装置であってよい。一般的には波長が長いほど、例えば308nmのエキシマレーザ光よりも355nm(または343nm)のYAGレーザ光の方が樹脂層12の残渣が発生しやすくなる。この点、基板13と樹脂層12の間に剥離層ALを挿入することにより樹脂層12の残渣を抑制できるため、YAGレーザ光などの固体レーザ光を用いる場合には、剥離層ALを用いる効果がより大きくなる。 It should be noted that the optical LV is preferably laser light. The device for irradiating the laser beam may be, for example, an excimer laser irradiation device using XeCl gas or the like, a solid-state laser irradiation device using YAG (Yttrium Aluminum Garnet) or the like. Generally, the longer the wavelength, the more easily the residue of the resin layer 12 is generated in the YAG laser light of 355 nm (or 343 nm) than in the excimer laser light of 308 nm, for example. In this regard, since the residue of the resin layer 12 can be suppressed by inserting the release layer AL between the substrate 13 and the resin layer 12, the effect of using the release layer AL when using a solid-state laser light such as a YAG laser light is effective. Becomes larger.
 また、図1のステップS9では、樹脂層12に下面フィルム10を貼付する。樹脂層12における下面フィルム10を貼付する面は、剥離層ALおよび基板13を剥離した箇所と、基板13のみを剥離した箇所と、で樹脂層12の積層方向の厚みに差が生じる。しかし、樹脂層12の積層方向の厚みの差は、下面フィルム10の積層方向の厚さに比べて小さいため、下面フィルム10を貼付することにより積層方向の厚みの差がなくなる。 Further, in step S9 of FIG. 1, the lower surface film 10 is attached to the resin layer 12. On the surface of the resin layer 12 to which the lower surface film 10 is attached, there is a difference in the thickness of the resin layer 12 in the stacking direction between the portion where the release layer AL and the substrate 13 are peeled off and the portion where only the substrate 13 is peeled off. However, since the difference in the thickness of the resin layer 12 in the laminating direction is smaller than the thickness of the lower surface film 10 in the laminating direction, the difference in the thickness in the laminating direction is eliminated by attaching the lower surface film 10.
 図1のステップS10(分断工程)では、バリア層3、樹脂層12、および基板13を含む積層体7を、樹脂層12の端部を通るよう積層体7の厚み方向に切断する。これにより、バリア層3、および樹脂層12の端面が面一となる。 In step S10 (dividing step) of FIG. 1, the laminated body 7 including the barrier layer 3, the resin layer 12, and the substrate 13 is cut in the thickness direction of the laminated body 7 so as to pass through the end portion of the resin layer 12. As a result, the end faces of the barrier layer 3 and the resin layer 12 become flush with each other.
 (変形例)
 実施形態1の変形例を図4に示す。図4は、実施形態1の電子デバイスの製造方法の一変形例を示す平面図である。図示するように、基板13と剥離層ALとの間に金属膜17を設けてよい。金属膜17は、例えば、Ti、Mo、又はNi等により成膜されており、膜厚は約100nmである。
(Modification)
A modified example of the first embodiment is shown in FIG. FIG. 4 is a plan view showing a modified example of the method for manufacturing the electronic device of the first embodiment. As shown in the figure, a metal film 17 may be provided between the substrate 13 and the release layer AL. The metal film 17 is formed of, for example, Ti, Mo, Ni, or the like, and has a film thickness of about 100 nm.
 基板13と剥離層ALとの間に金属膜17を設けることにより、以下の効果を期待できる。具体的には、剥離層ALがCVD法により形成される場合には、基板13と剥離層ALの密着性を改善することができる。そのため、繰り返し再利用した際にも基板13から剥離層ALが剥離せず、長期間使用し続けることができる。このことから、CVD法により形成される水素を含むa-C:Hまたはta-C:HからなるDLCを剥離層ALに使用する場合には、金属膜17を設ける方が好ましい。 The following effects can be expected by providing the metal film 17 between the substrate 13 and the release layer AL. Specifically, when the release layer AL is formed by the CVD method, the adhesion between the substrate 13 and the release layer AL can be improved. Therefore, the release layer AL does not separate from the substrate 13 even when it is repeatedly reused, and it can be used for a long period of time. For this reason, when a DLC composed of a-C: H or ta-C: H containing hydrogen formed by the CVD method is used for the release layer AL, it is preferable to provide the metal film 17.
 一方、剥離層ALがスパッタ法により形成される場合には、金属膜17を設けずとも基板13に対して良好な密着性を有する剥離層ALが形成できるため、剥離層13付きの基板13の再利用に好適である。なお、この場合も金属層17を設けた方が、さらなる密着力向上が期待できる。 On the other hand, when the release layer AL is formed by the sputtering method, the release layer AL having good adhesion to the substrate 13 can be formed without providing the metal film 17, so that the substrate 13 with the release layer 13 can be formed. Suitable for reuse. In this case as well, the provision of the metal layer 17 can be expected to further improve the adhesion.
 (変形例)
 実施形態1の変形例として、図5~7に示すように、基板13を短冊状に切断してよく、基板13を所望の大きさに切断してよい(ステップS25)。そして、切断後、基板13を剥離する(ステップS26)。
(Modification)
As a modification of the first embodiment, as shown in FIGS. 5 to 7, the substrate 13 may be cut into strips, and the substrate 13 may be cut into a desired size (step S25). Then, after cutting, the substrate 13 is peeled off (step S26).
 なお、基板13の裏面にキズまたは異物などが存在した場合には、基板13にレーザ光を照射できない領域が生じる。そして、基板13にレーザ光を照射できない領域においては、樹脂層12から基板13を剥離するときに樹脂層12を無理に引っ張ることになり、樹脂層12が破れるなどの不良が発生する場合がある。 If there are scratches or foreign matter on the back surface of the substrate 13, there will be a region where the laser beam cannot be irradiated to the substrate 13. Then, in the region where the substrate 13 cannot be irradiated with the laser beam, the resin layer 12 is forcibly pulled when the substrate 13 is peeled from the resin layer 12, and defects such as tearing of the resin layer 12 may occur. ..
 そこで、基板13を短冊状に分断することにより、樹脂層12が空気に触れ、水分を含むことができる。それにより、樹脂層12と基板13との密着性が低くなる。その結果、基板13にレーザ光を照射できない領域において、樹脂層12に無理な引っ張り応力が生じた場合であっても、樹脂層12が破れるなどの不良の発生を防ぐことができる。 Therefore, by dividing the substrate 13 into strips, the resin layer 12 can come into contact with air and contain water. As a result, the adhesion between the resin layer 12 and the substrate 13 is lowered. As a result, even when an unreasonable tensile stress is generated in the resin layer 12 in a region where the substrate 13 cannot be irradiated with the laser beam, it is possible to prevent the resin layer 12 from being broken or other defects.
 〔実施形態2〕
 実施形態2として、図8に示すように、表示領域41、額縁領域42、および端子領域43を備えたフレキシブルパネル40において、分断マーカ等のアライメントマーカ44の位置に剥離層ALを設置してもよい。図8では、表示領域41に剥離層ALを形成しない場合を図示した。しかし、フレキシブルパネル40に良好な視認性が求められる場合等には、表示領域41に剥離層ALを形成してもよい。アライメントマーカ44の位置に剥離層ALを設置することにより、アライメントマーカ44に樹脂層12の炭化物およびレーザ跡の発生等による位置合わせ不良を抑制できる。
[Embodiment 2]
As the second embodiment, as shown in FIG. 8, in the flexible panel 40 provided with the display area 41, the frame area 42, and the terminal area 43, even if the release layer AL is installed at the position of the alignment marker 44 such as the division marker. Good. FIG. 8 shows a case where the release layer AL is not formed in the display region 41. However, when the flexible panel 40 is required to have good visibility, the release layer AL may be formed in the display area 41. By installing the release layer AL at the position of the alignment marker 44, it is possible to suppress misalignment due to the generation of carbides and laser traces of the resin layer 12 on the alignment marker 44.
 また、端子領域43には、電子回路層に設けられた配線に接続され、外部からの信号を入力する端子部(不図示)が形成されている。さらに端子部は、端子部に設けられた複数の端子に、前記配線と前記電信号を伝送する配線とが接続されている。 Further, in the terminal region 43, a terminal portion (not shown) is formed which is connected to the wiring provided in the electronic circuit layer and inputs a signal from the outside. Further, in the terminal portion, the wiring and the wiring for transmitting the electric signal are connected to a plurality of terminals provided in the terminal portion.
 (変形例)
 実施形態2の変形例として、図9および10に示す様に、端子領域43に剥離層ALを設置してもよい。図9では、端子領域43に剥離層ALを備えることにより、アライメントマーカ44に樹脂層12の炭化物およびレーザ跡の発生等によるアライメントマーカ44の読み取り性の低下を抑制できる。それにより、実装端子との位置合わせが容易にできるため、実装不良を抑制し、あるいは、実装工程を簡素化できる。その結果、実装端子の実装におけるコストを削減することができる。
(Modification)
As a modification of the second embodiment, as shown in FIGS. 9 and 10, the release layer AL may be provided in the terminal region 43. In FIG. 9, by providing the release layer AL in the terminal region 43, it is possible to suppress a decrease in readability of the alignment marker 44 due to the generation of carbides and laser traces of the resin layer 12 on the alignment marker 44. As a result, the alignment with the mounting terminal can be easily performed, so that mounting defects can be suppressed or the mounting process can be simplified. As a result, the cost of mounting the mounting terminal can be reduced.
 また、図10に示すように、タッチパネルTPは、タッチパネル部TP1と端子領域43とを備える。タッチパネル部TP1は、有機EL表示装置2の表示面上に載置される部分であって、実際にタッチパネル機能を有する部分(換言すれば、ユーザの操作を受け付ける部分)である。また、タッチパネルTPにおいて、各電極と接続する配線が形成された端子領域43は、表示領域外にあるため、端子領域43においては、剥離層ALを設けなくてもよい。 Further, as shown in FIG. 10, the touch panel TP includes a touch panel unit TP1 and a terminal area 43. The touch panel unit TP1 is a portion placed on the display surface of the organic EL display device 2 and actually has a touch panel function (in other words, a portion that accepts a user's operation). Further, in the touch panel TP, since the terminal region 43 in which the wiring connecting to each electrode is formed is outside the display region, it is not necessary to provide the release layer AL in the terminal region 43.
 〔実施形態3〕
 図11は実施形態3の表示デバイスの製造方法を示す平面図であり、図12は実施形態3の表示デバイスの製造方法を示す断面図である。なお、図12では、図5の製造フローに示すように、分断した後(ステップS25)、基板を剥離した(ステップ26)。しかし、図1に示すように、基板を剥離した後(ステップS8)、分断してもよい(ステップS10)。
[Embodiment 3]
FIG. 11 is a plan view showing a method of manufacturing the display device of the third embodiment, and FIG. 12 is a cross-sectional view showing the method of manufacturing the display device of the third embodiment. In FIG. 12, as shown in the manufacturing flow of FIG. 5, the substrate was peeled off after being divided (step S25) (step 26). However, as shown in FIG. 1, after the substrate is peeled off (step S8), it may be divided (step S10).
 実施形態3では、図11の(a)および図12の(a)に示すように、大判の基板13上に剥離層ALを形成し、剥離層AL上に、島状の第1部12a(第1の表示領域41aに対応)および島状の第2部12b(第2の表示領域41bに対応)を含む樹脂層12を形成する。次いで、第1部12aおよび第2部12bを覆うように共通のバリア層3を形成し、次いで、第1部12aと重なる領域4aおよび第2部12bと重なる領域4bを含むTFT層を形成する。次いで、第1部12aと重なる領域5aおよび第2部12bと重なる領域5bを含む発光素子層を形成し、発光素子層を覆う封止層6を形成する。 In the third embodiment, as shown in (a) of FIG. 11 and (a) of FIG. 12, the release layer AL is formed on the large-sized substrate 13, and the island-shaped first portion 12a (is formed on the release layer AL. A resin layer 12 including a first display region 41a) and an island-shaped second portion 12b (corresponding to a second display region 41b) is formed. Next, a common barrier layer 3 is formed so as to cover the first part 12a and the second part 12b, and then a TFT layer including a region 4a overlapping the first part 12a and a region 4b overlapping the second part 12b is formed. .. Next, a light emitting element layer including a region 5a overlapping the first part 12a and a region 5b overlapping the second part 12b is formed, and a sealing layer 6 covering the light emitting element layer is formed.
 次いで、図11の(b)および図12の(b)、(c)に示すように、平面視における第1部12aよりも外側にあってバリア層3および剥離部ALが接触する部分を通るように、封止層6、バリア層3、剥離層ALおよび基板13を切断し、平面視における第2部12bよりも外側にあってバリア層3および剥離層ALが接触する部分を通るように、封止層6、バリア層3、剥離層ALおよび基板13を切断するプレカット工程を行う。その後、分割基板13a上の、第1部12aおよびバリア層3を含む第1積層体7Aと、分割基板13b上の、第2部12bおよびバリア層3を含む第2積層体7Bそれぞれに上面フィルム14を張り付ける。 Next, as shown in (b) of FIG. 11 and (b) and (c) of FIG. 12, it passes through a portion outside the first portion 12a in a plan view and in contact with the barrier layer 3 and the peeling portion AL. As described above, the sealing layer 6, the barrier layer 3, the release layer AL and the substrate 13 are cut so as to pass through a portion outside the second portion 12b in a plan view where the barrier layer 3 and the release layer AL are in contact with each other. , A precut step of cutting the sealing layer 6, the barrier layer 3, the release layer AL, and the substrate 13 is performed. After that, a top film is formed on the first laminated body 7A including the first portion 12a and the barrier layer 3 on the divided substrate 13a and the second laminated body 7B including the second portion 12b and the barrier layer 3 on the divided substrate 13b. Paste 14 on it.
 次いで、図11の(c)および図12の(d)のように、第1積層体7Aを、第1部12aの端部を通るよう厚み方向に切断し、第2積層体7Bを、第2部12bの端部を通るよう厚み方向に切断する切り出し工程を行う。次いで、図12の(e)、(f)のように、第1積層体7Aおよび第2積層体7Bそれぞれの下側に位置する剥離層ALに光LVを照射し、第1部12aを分割基板13aから剥離し、第2部12bを分割基板13bから剥離する。 Next, as shown in (c) of FIG. 11 and (d) of FIG. 12, the first laminated body 7A is cut in the thickness direction so as to pass through the end portion of the first portion 12a, and the second laminated body 7B is cut into the second laminated body 7B. A cutting step of cutting in the thickness direction so as to pass through the end portion of the second portion 12b is performed. Next, as shown in FIGS. 12 (e) and 12 (f), the release layer AL located below each of the first laminated body 7A and the second laminated body 7B is irradiated with light LV, and the first portion 12a is divided. It is peeled off from the substrate 13a, and the second part 12b is peeled off from the divided substrate 13b.
 実施形態3では、分割基板13a(ガラス基板)に付着した状態の積層体7Aと、分割基板13b(ガラス基板)に付着した状態の積層体7Bとを別々に運搬、保管することができる。積層体7A・7Bは、ガラス基板から剥がされた状態(可撓状態)の積層体と比較して運搬、保管が格段に容易である。 In the third embodiment, the laminated body 7A attached to the divided substrate 13a (glass substrate) and the laminated body 7B attached to the divided substrate 13b (glass substrate) can be separately transported and stored. The laminated bodies 7A and 7B are much easier to transport and store than the laminated body in a state of being peeled off from the glass substrate (flexible state).
 図12の(c)に示すように、バリア層3が、樹脂層の第1部12aおよび第2部12bそれぞれの上面および端面を覆っているため、樹脂層12a・12bに水分等の異物が浸透することを防ぐことができ、ステップS8(剥離工程)までの間に剥離層ALと、樹脂層の第1部12aあるいは第2部12bとが(意図せず)分離してしまうという問題を解消することができる。例えば、積層体7Aの運搬作業中に、樹脂層の第1部12aが剥離層ALから剥がれ、積層体7Aが落下して破損するといったアクシデントを防ぐことができる。 As shown in FIG. 12 (c), since the barrier layer 3 covers the upper surfaces and end faces of the first portion 12a and the second portion 12b of the resin layer, foreign matter such as moisture is contained in the resin layers 12a and 12b. It is possible to prevent permeation, and there is a problem that the peeling layer AL and the first part 12a or the second part 12b of the resin layer are (unintentionally) separated by the step S8 (peeling step). It can be resolved. For example, it is possible to prevent an accident in which the first portion 12a of the resin layer is peeled off from the peeling layer AL and the laminated body 7A is dropped and damaged during the transportation work of the laminated body 7A.
 実施形態3では、樹脂層12を第1部12aおよび第2部12bの2つに分離形成しているが、これに限定されず、3つ以上に分割してもよい。また、ステップS4~S6において、第1部12a上に複数パネルに対応するデバイスを形成するとともに、第2部12b上に複数パネルに対応するデバイスを形成しておき、ステップS10において、積層体7Aおよび積層体7Bそれぞれから複数の電子デバイス(可撓性パネル)を得る構成でもよい。また、第1の表示領域41aおよび第2の表示領域41bは、さらに複数の表示領域に分割して形成されていてもよい。 In the third embodiment, the resin layer 12 is separated and formed into two parts, the first part 12a and the second part 12b, but the present invention is not limited to this, and the resin layer 12 may be divided into three or more parts. Further, in steps S4 to S6, a device corresponding to a plurality of panels is formed on the first part 12a, and a device corresponding to the plurality of panels is formed on the second part 12b, and in step S10, the laminated body 7A is formed. And a plurality of electronic devices (flexible panels) may be obtained from each of the laminated body 7B. Further, the first display area 41a and the second display area 41b may be further divided into a plurality of display areas.
 実施形態1~3では、電子デバイスの一例としてトップエミッション型の有機EL表示装置(OLED)2について説明しているが、これに限定されない。前記各実施形態は、図13の(a)に示す、ボトムエミッション型のOLEDにも適用可能である。この場合、例えば、樹脂層12を透明ポリイミドで構成し、アノード22を透光性の導電体で構成し、カソード25を光反射性の導電体で構成する。前記各実施形態によれば、剥離工程において樹脂層12の下面が劣化しにくいため、表示光が樹脂層12の下面を通過するボトムエミッション型のOLEDを有する表示デバイスにも好適といえる。 In the first to third embodiments, the top emission type organic EL display device (OLED) 2 is described as an example of the electronic device, but the present invention is not limited to this. Each of the above embodiments can also be applied to the bottom emission type OLED shown in FIG. 13 (a). In this case, for example, the resin layer 12 is made of transparent polyimide, the anode 22 is made of a translucent conductor, and the cathode 25 is made of a light-reflecting conductor. According to each of the above embodiments, since the lower surface of the resin layer 12 is less likely to deteriorate in the peeling step, it can be said that it is also suitable for a display device having a bottom emission type OLED in which the display light passes through the lower surface of the resin layer 12.
 また、前記各実施形態は、図13の(b)に示す、可撓性の液晶表示デバイスにも適用可能である。この場合、例えば、樹脂層12の背面に可撓性のバックライトユニット50を配し、樹脂層12を透明ポリイミドで構成し、TFT層4に画素電極PEを形成し、画素電極PEと可撓性の対向基板37(カラーフィルタ基板)との間に、シャッターとして機能する液晶層35を配する。前記各実施形態によれば、剥離工程において樹脂層12の下面が劣化しにくいため、表示光DL(バックライト光)が樹脂層12の下面を通過する液晶表示デバイスにも好適といえる。 Further, each of the above embodiments can be applied to the flexible liquid crystal display device shown in FIG. 13 (b). In this case, for example, a flexible backlight unit 50 is arranged on the back surface of the resin layer 12, the resin layer 12 is made of transparent polyimide, a pixel electrode PE is formed on the TFT layer 4, and the pixel electrode PE is flexible. A liquid crystal layer 35 that functions as a shutter is arranged between the plastic facing substrate 37 (color filter substrate). According to each of the above embodiments, since the lower surface of the resin layer 12 is less likely to deteriorate in the peeling step, it can be said that it is also suitable for a liquid crystal display device in which the display light DL (backlight light) passes through the lower surface of the resin layer 12.
 〔まとめ〕
 本実施形態にかかる電子デバイスが備える電気光学素子(電流によって輝度や透過率が制御される電気光学素子)は特に限定されるものではない。本実施形態にかかる表示装置としては、例えば、電気光学素子としてOLED(Organic Light Emitting Diode:有機発光ダイオード)を備えた有機ELディスプレイ、電気光学素子として無機発光ダイオードを備えた無機ELディスプレイ、電気光学素子としてQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えたQLEDディスプレイ等が挙げられる。
[Summary]
The electro-optical element (electro-optical element whose brightness and transmittance are controlled by an electric current) included in the electronic device according to the present embodiment is not particularly limited. Examples of the display device according to the present embodiment include an organic EL display provided with an OLED (Organic Light Emitting Diode) as an electro-optical element, an inorganic EL display provided with an inorganic light emitting diode as an electro-optical element, and electro-optical. Examples of the element include a QLED display provided with a QLED (Quantum dot Light Emitting Diode).
 本発明は上述した実施形態に限定されるものではなく、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments are also included in the technical scope of the present invention. Further, new technical features can be formed by combining the technical means disclosed in each embodiment.
 〔態様1〕
 母基板上に島状の剥離層を形成する第1成膜工程と、
 前記剥離層の少なくとも一部を覆うように、樹脂層を積層させる第2成膜工程と、
 前記樹脂層を覆うように、バリア層を形成する第3成膜工程と、
 前記バリア層の上層に電子回路層を形成する第4成膜工程と、
 前記剥離層および前記樹脂層に対して、レーザ光を照射し、前記母基板および前記剥離層から前記樹脂層を剥離する剥離工程と、
 を含む電子デバイスの製造方法。
[Aspect 1]
The first film formation step of forming an island-shaped release layer on the mother substrate, and
A second film forming step of laminating a resin layer so as to cover at least a part of the peeling layer,
A third film forming step of forming a barrier layer so as to cover the resin layer, and
A fourth film forming step of forming an electronic circuit layer on the upper layer of the barrier layer, and
A peeling step of irradiating the peeling layer and the resin layer with a laser beam to peel the resin layer from the mother substrate and the peeling layer.
A method of manufacturing an electronic device including.
 〔態様2〕
 前記第2成膜工程では、前記剥離層の全面を覆うように、樹脂層を積層させる、例えば様態1に記載の電子デバイスの製造方法。
[Aspect 2]
The method for manufacturing an electronic device according to, for example, mode 1, in which the resin layer is laminated so as to cover the entire surface of the release layer in the second film forming step.
 〔態様3〕
 前記第4成膜工程と前記剥離工程との間に、前記樹脂層および前記バリア層を含む積層体を、前記樹脂層の端部を通るよう前記積層体の厚み方向に分断する分断工程を含む、例えば様態1または2に記載の電子デバイスの製造方法。
[Aspect 3]
Between the fourth film forming step and the peeling step, a dividing step of dividing the laminate including the resin layer and the barrier layer in the thickness direction of the laminate so as to pass through the end portion of the resin layer is included. , For example, the method for manufacturing an electronic device according to mode 1 or 2.
 〔態様4〕
 前記分断工程では、前記積層体に加えて前記剥離層および前記母基板も分断する、例えば様態3に記載の電子デバイスの製造方法。
[Mode 4]
The method for manufacturing an electronic device according to, for example, mode 3, wherein in the dividing step, the release layer and the mother substrate are divided in addition to the laminate.
 〔態様5〕
 前記第1成膜工程では、前記分断工程でのアライメントマーカの設置位置に重畳するように前記剥離層を形成する、例えば様態3または4に記載の電子デバイスの製造方法。
[Aspect 5]
The method for manufacturing an electronic device according to, for example, mode 3 or 4, wherein in the first film forming step, the peeling layer is formed so as to be superimposed on the installation position of the alignment marker in the dividing step.
 〔態様6〕
 前記第1成膜工程では、
 前記電子回路層に設けられた配線に接続され、外部から信号を入力する端子領域に重畳するように前記剥離層を形成する、例えば様態3~5のいずれかに記載の電子デバイスの製造方法。
[Aspect 6]
In the first film forming step,
The method for manufacturing an electronic device according to any one of modes 3 to 5, for example, wherein the release layer is formed so as to be connected to a wiring provided in the electronic circuit layer and superimposed on a terminal region for inputting a signal from the outside.
 〔態様7〕
 前記第2成膜工程では、島状の第1部および島状の第2部を含む樹脂層を形成し、
 前記第3成膜工程では、前記第1部および前記第2部を覆う共通のバリア層を形成し、
 前記第4成膜工程では、前記第1部と重なる領域および前記第2部と重なる領域を含む前記電子回路層を形成し、
 前記第4成膜工程と前記剥離工程との間に、平面視において前記第1部および前記第2部よりも外側にあって前記バリア層および前記剥離層が接触する部分を通るように、前記バリア層、前記剥離層、および前記母基板を切断するプレカット工程を含む、例えば様態1に記載の電子デバイスの製造方法。
[Aspect 7]
In the second film forming step, a resin layer containing an island-shaped first portion and an island-shaped second portion is formed.
In the third film forming step, a common barrier layer covering the first part and the second part is formed.
In the fourth film forming step, the electronic circuit layer including the region overlapping the first portion and the region overlapping the second portion is formed.
Between the fourth film forming step and the peeling step, the barrier layer and the peeling layer come into contact with each other on the outer side of the first part and the second part in a plan view. The method for manufacturing an electronic device according to, for example, mode 1, which comprises a precut step of cutting the barrier layer, the peeling layer, and the mother substrate.
 〔態様8〕
 前記プレカット工程と前記剥離工程との間に、前記第1部および前記バリア層を含む第1積層体を、前記第1部の端部を通るように前記第1積層体の厚み方向に切断し、前記第2部および前記バリア層を含む第2積層体を、前記第2部の端部が通るように前記第2積層体の厚み方向に切断する切だし工程を含む、例えば様態7に記載の電子デバイスの製造方法。
[Aspect 8]
Between the precut step and the peeling step, the first laminated body including the first part and the barrier layer is cut in the thickness direction of the first laminated body so as to pass through the end portion of the first part. The second laminated body including the second part and the barrier layer is cut in the thickness direction of the second laminated body so that the end portion of the second part passes through, for example, the mode 7. How to manufacture electronic devices.
 〔態様9〕
 前記剥離層は、ダイヤモンドライクカーボンにより形成される、例えば様態1~8のいずれかに記載の電子デバイスの製造方法。
[Aspect 9]
The method for manufacturing an electronic device according to any one of, for example, Modes 1 to 8, wherein the release layer is formed of diamond-like carbon.
 〔態様10〕
 前記ダイヤモンドライクカーボンの種類は、ta-C、a-C:H、またはta-C:Hのいずれかである、例えば様態9に記載の電子デバイスの製造方法。
[Aspect 10]
The method for manufacturing an electronic device according to, for example, mode 9, wherein the type of diamond-like carbon is either ta-C, a-C: H, or ta-C: H.
 〔態様11〕
 前記剥離工程の後に、前記母基板および前記剥離層を前記第1成膜工程乃至前記第4成膜工程に再利用する、例えば様態9または10に記載の電子デバイスの製造方法。
[Aspect 11]
The method for manufacturing an electronic device according to, for example, mode 9 or 10, wherein after the peeling step, the mother substrate and the peeling layer are reused in the first film forming step to the fourth film forming step.
 〔態様12〕
 前記剥離層は、CVD法またはスパッタ法により形成される、例えば様態9から11のいずれかに記載の電子デバイスの製造方法。
[Aspect 12]
The method for manufacturing an electronic device according to any one of, for example, Modes 9 to 11, wherein the release layer is formed by a CVD method or a sputtering method.
 〔態様13〕
 前記母基板と前記剥離層の間に金属膜が形成される、例えば様態9~12のいずれかに記載の電子デバイスの製造方法。
[Aspect 13]
The method for manufacturing an electronic device according to any one of modes 9 to 12, for example, wherein a metal film is formed between the mother substrate and the release layer.
 〔態様14〕
 前記金属膜は、Ti、Mo、及びNiの少なくともいずれかにより形成される、例えば様態13に記載の電子デバイスの製造方法。
[Aspect 14]
The method for manufacturing an electronic device according to, for example, mode 13, wherein the metal film is formed of at least one of Ti, Mo, and Ni.
 〔態様15〕
 前記レーザ光は、エキシマレーザ照射装置または固体レーザ照射装置から発生するレーザ光である、例えば様態1~14のいずれかに記載の電子デバイスの製造方法。
[Aspect 15]
The method for manufacturing an electronic device according to any one of modes 1 to 14, for example, wherein the laser beam is a laser beam generated from an excimer laser irradiation device or a solid-state laser irradiation device.
 〔態様16〕
 前記電子回路層は、TFT層である、例えば様態1~15のいずれかに記載の電子デバイスの製造方法。
[Aspect 16]
The method for manufacturing an electronic device according to any one of modes 1 to 15, for example, wherein the electronic circuit layer is a TFT layer.
 〔態様17〕
 前記電子回路層は、前記TFT層よりも上層に発光素子層が形成される、例えば様態16に記載の電子デバイスの製造方法。
[Aspect 17]
The method for manufacturing an electronic device according to, for example, mode 16, wherein the electronic circuit layer has a light emitting element layer formed above the TFT layer.
 〔態様18〕
 前記電子回路層は、前記TFT層よりも上層に液晶層が形成される、例えば様態16に記載の電子デバイスの製造方法。
[Aspect 18]
The method for manufacturing an electronic device according to, for example, mode 16, wherein a liquid crystal layer is formed on the electronic circuit layer above the TFT layer.
 〔態様19〕
 前記電子回路層は、前記TFT層よりも上層にマイクロLED層が形成される、例えば様態16に記載の電子デバイスの製造方法。
[Aspect 19]
The method for manufacturing an electronic device according to, for example, mode 16, wherein a micro LED layer is formed on the electronic circuit layer above the TFT layer.
 〔態様20〕
 前記電子回路層は、タッチパネル層である、例えば様態1~15のいずれかに記載の電子デバイスの製造方法。
[Aspect 20]
The method for manufacturing an electronic device according to any one of modes 1 to 15, wherein the electronic circuit layer is a touch panel layer.
2 有機EL表示装置
3 バリア層
4 電子回路層
5 発光素子層
6 封止層
7 積層体
7A 第1積層体
7B 第2積層体
10 下面フィルム
12、12a・12b 樹脂層
13 基板
13a、13b 分割基板
14 上面フィルム
15 半導体膜
16、16・18・20、18、20 無機絶縁膜
17 金属膜
21 平坦化膜
22 アノード
23 アノードエッジカバー
25 カソード
26、26・28、28 無機封止膜
27 有機封止膜
35 液晶層
37 対向基板
39 機能フィルム
41 表示領域
42 額縁領域
43 端子領域
44 アライメントマーカ
50 バックライトユニット
AL 剥離層
LV 光
TP タッチパネル
TP1 タッチパネル部
2 Organic EL display device 3 Barrier layer 4 Electronic circuit layer 5 Light emitting element layer 6 Sealing layer 7 Laminated body 7A 1st laminated body 7B 2nd laminated body 10 Bottom film 12, 12a / 12b Resin layer 13 Substrate 13a, 13b Divided substrate 14 Top film 15 Semiconductor film 16, 16, 18, 20, 18, 20 Inorganic insulating film 17 Metal film 21 Flattening film 22 Anode 23 Anode edge cover 25 Cathode 26, 26, 28, 28 Inorganic sealing film 27 Organic sealing Film 35 Liquid crystal layer 37 Opposing substrate 39 Functional film 41 Display area 42 Frame area 43 Terminal area 44 Alignment marker 50 Backlight unit AL Peeling layer LV Optical TP Touch panel TP1 Touch panel part

Claims (20)

  1.  母基板上に島状の剥離層を形成する第1成膜工程と、
     前記剥離層の少なくとも一部を覆うように、樹脂層を積層させる第2成膜工程と、
     前記樹脂層を覆うように、バリア層を形成する第3成膜工程と、
     前記バリア層の上層に電子回路層を形成する第4成膜工程と、
     前記剥離層および前記樹脂層に対して、レーザ光を照射し、前記母基板および前記剥離層から前記樹脂層を剥離する剥離工程と、
     を含む電子デバイスの製造方法。
    The first film formation step of forming an island-shaped release layer on the mother substrate, and
    A second film forming step of laminating a resin layer so as to cover at least a part of the peeling layer,
    A third film forming step of forming a barrier layer so as to cover the resin layer, and
    A fourth film forming step of forming an electronic circuit layer on the upper layer of the barrier layer, and
    A peeling step of irradiating the peeling layer and the resin layer with a laser beam to peel the resin layer from the mother substrate and the peeling layer.
    A method of manufacturing an electronic device including.
  2.  前記第2成膜工程では、前記剥離層の全面を覆うように、樹脂層を積層させる請求項1に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 1, wherein in the second film forming step, a resin layer is laminated so as to cover the entire surface of the peeling layer.
  3.  前記第4成膜工程と前記剥離工程との間に、前記樹脂層および前記バリア層を含む積層体を、前記樹脂層の端部を通るよう前記積層体の厚み方向に分断する分断工程を含む請求項1または2に記載の電子デバイスの製造方法。 Between the fourth film forming step and the peeling step, a dividing step of dividing the laminate including the resin layer and the barrier layer in the thickness direction of the laminate so as to pass through the end portion of the resin layer is included. The method for manufacturing an electronic device according to claim 1 or 2.
  4.  前記分断工程では、前記積層体に加えて前記剥離層および前記母基板も分断する請求項3に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 3, wherein in the dividing step, the release layer and the mother substrate are divided in addition to the laminate.
  5.  前記第1成膜工程では、前記分断工程でのアライメントマーカの設置位置に重畳するように前記剥離層を形成する請求項3または4に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 3 or 4, wherein in the first film forming step, the peeling layer is formed so as to be superimposed on the installation position of the alignment marker in the dividing step.
  6.  前記第1成膜工程では、
     前記電子回路層に設けられた配線に接続され、外部から信号を入力する端子領域に重畳するように前記剥離層を形成する請求項3~5のいずれか1項に記載の電子デバイスの製造方法。
    In the first film forming step,
    The method for manufacturing an electronic device according to any one of claims 3 to 5, which is connected to a wiring provided in the electronic circuit layer and forms the peeling layer so as to be superimposed on a terminal region for inputting a signal from the outside. ..
  7.  前記第2成膜工程では、島状の第1部および島状の第2部を含む樹脂層を形成し、
     前記第3成膜工程では、前記第1部および前記第2部を覆う共通のバリア層を形成し、
     前記第4成膜工程では、前記第1部と重なる領域および前記第2部と重なる領域を含む前記電子回路層を形成し、
     前記第4成膜工程と前記剥離工程との間に、平面視において前記第1部および前記第2部よりも外側にあって前記バリア層および前記剥離層が接触する部分を通るように、前記バリア層、前記剥離層、および前記母基板を切断するプレカット工程を含む請求項1に記載の電子デバイスの製造方法。
    In the second film forming step, a resin layer containing an island-shaped first portion and an island-shaped second portion is formed.
    In the third film forming step, a common barrier layer covering the first part and the second part is formed.
    In the fourth film forming step, the electronic circuit layer including the region overlapping the first portion and the region overlapping the second portion is formed.
    Between the fourth film forming step and the peeling step, the barrier layer and the peeling layer come into contact with each other on the outer side of the first part and the second part in a plan view. The method for manufacturing an electronic device according to claim 1, further comprising a precut step of cutting the barrier layer, the peeling layer, and the mother substrate.
  8.  前記プレカット工程と前記剥離工程との間に、前記第1部および前記バリア層を含む第1積層体を、前記第1部の端部を通るように前記第1積層体の厚み方向に切断し、前記第2部および前記バリア層を含む第2積層体を、前記第2部の端部が通るように前記第2積層体の厚み方向に切断する切だし工程を含む請求項7に記載の電子デバイスの製造方法。 Between the precut step and the peeling step, the first laminated body including the first part and the barrier layer is cut in the thickness direction of the first laminated body so as to pass through the end portion of the first part. The seventh aspect of the present invention includes a cutting step of cutting the second laminated body including the second part and the barrier layer in the thickness direction of the second laminated body so that the end portion of the second part passes through. Manufacturing method of electronic devices.
  9.  前記剥離層は、ダイヤモンドライクカーボンにより形成される、請求項1~8のいずれか1項に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to any one of claims 1 to 8, wherein the release layer is formed of diamond-like carbon.
  10.  前記ダイヤモンドライクカーボンの種類は、ta-C、a-C:H、またはta-C:Hのいずれかである、請求項9に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 9, wherein the type of diamond-like carbon is either ta-C, a-C: H, or ta-C: H.
  11.  前記剥離工程の後に、前記母基板および前記剥離層を前記第1成膜工程乃至前記第4成膜工程に再利用する、請求項9または10に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 9 or 10, wherein after the peeling step, the mother substrate and the peeling layer are reused in the first film forming step to the fourth film forming step.
  12.  前記剥離層は、CVD法またはスパッタ法により形成される、請求項9から11のいずれか1項に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to any one of claims 9 to 11, wherein the release layer is formed by a CVD method or a sputtering method.
  13.  前記母基板と前記剥離層の間に金属膜が形成される請求項9~12のいずれか1項に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to any one of claims 9 to 12, wherein a metal film is formed between the mother substrate and the release layer.
  14.  前記金属膜は、Ti、Mo、及びNiの少なくともいずれかにより形成される、請求項13に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 13, wherein the metal film is formed of at least one of Ti, Mo, and Ni.
  15.  前記レーザ光は、エキシマレーザ照射装置または固体レーザ照射装置から発生するレーザ光である、請求項1~14のいずれか1項に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to any one of claims 1 to 14, wherein the laser beam is a laser beam generated from an excimer laser irradiation device or a solid-state laser irradiation device.
  16.  前記電子回路層は、TFT層である請求項1~15のいずれか1項に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to any one of claims 1 to 15, wherein the electronic circuit layer is a TFT layer.
  17.  前記電子回路層は、前記TFT層よりも上層に発光素子層が形成される請求項16に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 16, wherein the electronic circuit layer has a light emitting element layer formed above the TFT layer.
  18.  前記電子回路層は、前記TFT層よりも上層に液晶層が形成される請求項16に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 16, wherein a liquid crystal layer is formed on the electronic circuit layer above the TFT layer.
  19.  前記電子回路層は、前記TFT層よりも上層にマイクロLED層が形成される請求項16に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 16, wherein a micro LED layer is formed on the electronic circuit layer above the TFT layer.
  20.  前記電子回路層は、タッチパネル層である請求項1~15のいずれか1項に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to any one of claims 1 to 15, wherein the electronic circuit layer is a touch panel layer.
PCT/JP2019/009803 2019-03-11 2019-03-11 Method for manufacturing electronic device WO2020183588A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/009803 WO2020183588A1 (en) 2019-03-11 2019-03-11 Method for manufacturing electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/009803 WO2020183588A1 (en) 2019-03-11 2019-03-11 Method for manufacturing electronic device

Publications (1)

Publication Number Publication Date
WO2020183588A1 true WO2020183588A1 (en) 2020-09-17

Family

ID=72426999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009803 WO2020183588A1 (en) 2019-03-11 2019-03-11 Method for manufacturing electronic device

Country Status (1)

Country Link
WO (1) WO2020183588A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09146116A (en) * 1995-11-21 1997-06-06 Toshiba Corp Liquid crystal display device and its production
JP2004056034A (en) * 2002-07-24 2004-02-19 Sony Corp Semiconductor light emitting element, and manufacturing method thereof
JP2012028760A (en) * 2010-06-24 2012-02-09 Semiconductor Energy Lab Co Ltd Semiconductor substrate and manufacturing method of semiconductor device
JP2012129457A (en) * 2010-12-17 2012-07-05 Disco Abrasive Syst Ltd Processing method of optical device wafer
JP2013148216A (en) * 2011-12-19 2013-08-01 Minebea Co Ltd Slide member and fluid dynamic pressure bearing device
JP2013155393A (en) * 2012-01-27 2013-08-15 Toyota Central R&D Labs Inc Coated member and method for producing same
JP2014009131A (en) * 2012-06-29 2014-01-20 Chuo Univ Method for producing curved crystal and curved crystal
JP2015195363A (en) * 2014-03-17 2015-11-05 パナソニック株式会社 Thin film transistor element substrate and manufacturing method of the same, and organic el display device using thin film transistor element substrate
JP2017108053A (en) * 2015-12-11 2017-06-15 株式会社Screenホールディングス Method of manufacturing electronic device and laminate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09146116A (en) * 1995-11-21 1997-06-06 Toshiba Corp Liquid crystal display device and its production
JP2004056034A (en) * 2002-07-24 2004-02-19 Sony Corp Semiconductor light emitting element, and manufacturing method thereof
JP2012028760A (en) * 2010-06-24 2012-02-09 Semiconductor Energy Lab Co Ltd Semiconductor substrate and manufacturing method of semiconductor device
JP2012129457A (en) * 2010-12-17 2012-07-05 Disco Abrasive Syst Ltd Processing method of optical device wafer
JP2013148216A (en) * 2011-12-19 2013-08-01 Minebea Co Ltd Slide member and fluid dynamic pressure bearing device
JP2013155393A (en) * 2012-01-27 2013-08-15 Toyota Central R&D Labs Inc Coated member and method for producing same
JP2014009131A (en) * 2012-06-29 2014-01-20 Chuo Univ Method for producing curved crystal and curved crystal
JP2015195363A (en) * 2014-03-17 2015-11-05 パナソニック株式会社 Thin film transistor element substrate and manufacturing method of the same, and organic el display device using thin film transistor element substrate
JP2017108053A (en) * 2015-12-11 2017-06-15 株式会社Screenホールディングス Method of manufacturing electronic device and laminate

Similar Documents

Publication Publication Date Title
US10700311B2 (en) Display device and manufacturing method for the same
US8067785B2 (en) Organic light emitting apparatus and method of producing the same
KR101149433B1 (en) Flexible display and method for manufacturing the same
KR102451732B1 (en) Display device and method for manufacturing thereof
WO2018179261A1 (en) Sticking method and sticking device
US20170338441A1 (en) Display device and manufacturing method thereof
KR20200072890A (en) Flexible type organic light emitting diode device
WO2019146115A1 (en) Display device and method for manufacturing display device
WO2019021467A1 (en) Display device, display device manufacturing method, and display device manufacturing apparatus
KR100503589B1 (en) Electro luminescence display device
WO2018179332A1 (en) Display device, display device manufacturing method, and display device manufacturing apparatus
WO2018179132A1 (en) Display device production method, display device, display device production apparatus, and deposition apparatus
WO2019186845A1 (en) Display device and method for manufacturing display device
JP2009064590A (en) Method for manufacturing organic el display panel
KR100496578B1 (en) Method of manufacturing electro luminescence display device
JP2019020509A (en) Display and method for manufacturing display
US20200152910A1 (en) Display device
WO2018179216A1 (en) Method for manufacturing el device
US11551975B2 (en) Method for manufacturing electronic device
WO2020183588A1 (en) Method for manufacturing electronic device
KR102491590B1 (en) Display device and method for manufacturing thereof
WO2019069352A1 (en) Method for manufacturing display device, and apparatus for manufacturing display device
WO2020194737A1 (en) Method for producing electronic device, and electronic device
WO2018179266A1 (en) Method for manufacturing el device and apparatus for manufacturing el device
KR20180074165A (en) Organic light emitting display device and manufacturing method for thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP