WO2020182094A1 - 沙利度胺及其衍生物的用途 - Google Patents

沙利度胺及其衍生物的用途 Download PDF

Info

Publication number
WO2020182094A1
WO2020182094A1 PCT/CN2020/078394 CN2020078394W WO2020182094A1 WO 2020182094 A1 WO2020182094 A1 WO 2020182094A1 CN 2020078394 W CN2020078394 W CN 2020078394W WO 2020182094 A1 WO2020182094 A1 WO 2020182094A1
Authority
WO
WIPO (PCT)
Prior art keywords
arteriovenous
thalidomide
malformations
malformation
arteriovenous malformations
Prior art date
Application number
PCT/CN2020/078394
Other languages
English (en)
French (fr)
Inventor
张鸿祺
于嘉兴
洪韬
汪一波
Original Assignee
首都医科大学宣武医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 首都医科大学宣武医院 filed Critical 首都医科大学宣武医院
Publication of WO2020182094A1 publication Critical patent/WO2020182094A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • BAVM cerebral arteriovenous malformations
  • SAVM spinal arteriovenous malformations
  • central nervous system arteriovenous malformations The remaining AVM lesions can be collectively referred to as "non-central arteriovenous malformations”.
  • HHT hereditary hemorrhagic telangiectasia
  • CM-AVM capillary malformation-arteriovenous malformation
  • Thalidomide also known as thalidomide, is a glutamic acid derivative. This drug was first marketed in the Federal Republic of Germany in 1957 as a sedative, hypnotics and morning sickness inhibitor, and was then discontinued in 1961 due to its strong teratogenic effects. However, subsequent studies found that one of the important teratogenic mechanisms of thalidomide is that the drug has a strong anti-angiogenic effect and inhibits the development of blood vessels in the fetal limbs. In addition, thalidomide is also an immunomodulator, which can reduce TNF- ⁇ and IL-6 and other inflammatory factors, and enhance T cell activity.
  • this application provides the use of thalidomide or thalidomide derivatives in the preparation of drugs for the treatment of arteriovenous malformations.
  • the thalidomide derivative is selected from the group consisting of lenalidomide, pomalidomide, and aprost.
  • the arteriovenous malformation is a non-central nervous system arteriovenous malformation.
  • the thalidomide derivative is selected from the group consisting of lenalidomide, pomalidomide, and aprost.
  • the arteriovenous malformation is an arteriovenous malformation of the central nervous system. In some embodiments, the arteriovenous malformation is cerebral arteriovenous malformation or spinal arteriovenous malformation.
  • the arteriovenous malformation is a non-central nervous system arteriovenous malformation.
  • the arteriovenous malformation is sporadic arteriovenous malformation or non-hereditary hemorrhagic telangiectasia (HHT) related arteriovenous malformation.
  • HHT non-hereditary hemorrhagic telangiectasia
  • the arteriovenous malformation is sporadic arteriovenous malformation or non-hereditary hemorrhagic telangiectasia (HHT) related arteriovenous malformation.
  • HHT non-hereditary hemorrhagic telangiectasia
  • Figure 1 shows the head MRI images of a patient with cerebral arteriovenous malformation before oral thalidomide (left) and one month after taking the drug.
  • Figure 5 shows the DSA image of a 13-year-old male with AVM on the spinal cord. Picture A is before taking the medicine, and Picture B is after taking the medicine for 7 months. It can be seen that the range of deformities has been significantly reduced.
  • Figure 8 shows a DSA image of a 12-year-old male with spinal cord AVM. Picture A is before taking the medicine, and Picture B is after taking the medicine for 5 months. It can be seen that the blood supply artery is significantly reduced.
  • Figure 12 shows the effect of thalidomide on AVM endothelial cells, including the detection of the tube formation, proliferation and migration ability of primary endothelial cells isolated from the patient's lesion.
  • A After pretreating the patient’s primary endothelial cells with the corresponding concentration of thalidomide for 24 hours, the migration of the patient’s primary endothelial cells within 6 hours was detected by the scratch test and quantitatively analyzed by ImageJ software (B) .
  • B After the patient’s primary endothelial cells were pretreated with different concentrations of thalidomide for 24 hours, the tube formation experiment was used to detect the tube formation of the patient’s primary endothelial cells within 6 hours and quantitative analysis was performed by ImageJ software (D ).
  • E After pretreatment of the patient's primary endothelial cells with the corresponding concentration of thalidomide for 24 hours, the cell proliferation ability was detected by CCK-8.
  • * means P ⁇ 0.05; ** means P ⁇ 0.001
  • Figure 13 shows the effect of thalidomide on the co-culture system of primary vascular endothelial cells and smooth muscle cells.
  • A The primary endothelial cells and primary smooth muscle cells of patients with arteriovenous malformations were pre-cultured in the corresponding concentration of thalidomide for 24 hours, and then transferred to the co-culture system. After the lower layer of cells are overgrown, a scratch experiment is performed to reflect the ability of the upper layer of endothelial cells to recruit the lower layer of smooth muscle cells through the migration of the lower layer of smooth muscle cells.
  • B Use ImageJ software to quantitatively analyze the results of (A). (* means P ⁇ 0.05; ** means P ⁇ 0.001)
  • Figure 15 shows the effect of lenalidomide on AVM endothelial cells.
  • A After pretreating the patient’s primary endothelial cells with the corresponding concentration of lenalidomide for 24 hours, the migration of the patient’s primary endothelial cells within 6 hours was detected by the scratch test and quantitatively analyzed by ImageJ software (B) .
  • Figure 18 shows that pomalidomide up-regulates the expression of PDGFB in AVM vascular endothelial cells. After treating primary endothelial cells of patients with arteriovenous malformation with the indicated concentration of pomalidomide for 24 hours, the expression of PDGFB in the cells was detected by fluorescence quantitative PCR.
  • this application provides the use of thalidomide or thalidomide derivatives in the preparation of drugs for the treatment of arteriovenous malformations.
  • Thalidomide derivatives also known as thalidomide analogs or thalidomide compounds, are compounds developed based on the core structure of thalidomide. A variety of thalidomide derivatives have been developed, including but not limited to:
  • CM-AVM-related arteriovenous malformations are mostly manifested as arteriovenous fistulas with extremely high blood flow; part of HHT-related AVM manifests as small mass-type malformations. , The other part can be arteriovenous fistula type lesions similar to CM-AVM lesions.
  • the latest research shows that the pathogenesis of sporadic arteriovenous malformations and familial arteriovenous malformations is different at the gene level, and the mutation genes and genetic mechanisms involved in the occurrence of the two types of disease are different.
  • HHT hypoxia-sensitive hemangioma
  • telangiectasia a malformation of a hemangioma
  • arteriovenous malformations The vast majority of HHT patients (>90%) will present as simple vasodilator lesions, and some patients may present as involvement Visceral (20%-50%), central nervous system (1%-10%) and other soft tissue arteriovenous malformations.
  • telangiectatic lesions usually appear on the mucous membranes (nasal cavity, oral cavity and gastrointestinal tract) and the skin surface of the fingers and lips, of which the nasal mucosal telangiectasia lesions are the most It is common and is considered to be a characteristic lesion of HHT, and its incidence rate is 68%-100% reported in the previous literature.
  • the most common symptom caused by nasal mucosal telangiectasia lesions is epistaxis.
  • arteriovenous malformations include central nervous system arteriovenous malformations, non-central nervous system arteriovenous malformations (also called “arteriovenous malformations in other parts"), and body segmental arteriovenous malformations (with both central nervous system and Arteriovenous malformations in other parts).
  • Central nervous system arteriovenous malformations include cerebral arteriovenous malformations or spinal arteriovenous malformations.
  • Non-central nervous system arteriovenous malformations may involve skin, muscles, bones and various organs. At present, the pathogenic factors of different incidence of arteriovenous malformations have not been fully elucidated.
  • thalidomide or thalidomide derivatives have therapeutic effects on arteriovenous malformations, especially for sporadic arteriovenous malformations (for example, arteriovenous malformations of the human central nervous system and central nervous system Arteriovenous malformations and somatic arteriovenous malformations such as skin and muscle vascular malformations) have obvious therapeutic effects, but have no obvious effect on patients' normal blood vessels.
  • arteriovenous malformations for example, arteriovenous malformations of the human central nervous system and central nervous system Arteriovenous malformations and somatic arteriovenous malformations such as skin and muscle vascular malformations
  • the prior art has certain reports on the pharmacological effects of thalidomide or thalidomide derivatives, such as inhibition of angiogenesis, immune regulation, etc., but such pharmacological effects cannot completely and reasonably explain the treatment results observed by the inventors of the present application.
  • compositions can be prepared by mixing thalidomide or thalidomide derivatives with suitable pharmaceutically acceptable carriers, diluents or excipients, and can be formulated into solid, semi-solid, liquid or gaseous forms Preparations such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants, gels, microspheres and aerosols.
  • Standard routes of administration of such pharmaceutical compositions include, but are not limited to, oral administration, topical administration, transdermal administration, inhalation administration, parenteral administration, sublingual administration, rectal administration, vaginal administration, and nasal administration.
  • Internal administration includes subcutaneous injection, intravenous injection, intramuscular injection, intrasternal injection or infusion techniques.
  • the pharmaceutical composition is formulated so that when the composition is administered to a patient, the active ingredients contained therein are biologically effective.
  • the composition for administration to an individual or patient takes the form of one or more dosage units, where, for example, a tablet may be one dosage unit.
  • the pharmaceutical composition herein also includes a pharmaceutically acceptable carrier including any suitable diluent or excipient, which includes any agent that does not itself induce the production of antibodies harmful to the individual receiving the composition, and can be administered without Does not contain excessive toxicity.
  • Pharmaceutically acceptable carriers include but are not limited to liquids, such as water, saline, glycerol and ethanol. A detailed discussion of pharmaceutically acceptable carriers, diluents and other excipients is provided in REMINGTON’S PHARMACEUTICAL SCIENCES (Mack Pub. Co., N.J. current edition).
  • the pharmaceutical composition can be formulated into powders, granules, compressed tablets, pills, capsules, chewing agents, glutinous rice paper packs and the like.
  • such solid compositions contain one or more inert diluents or edible carriers.
  • the pharmaceutical composition when in the form of a capsule, such as a gelatin capsule, it may contain a liquid carrier such as polyethylene glycol or an oil in addition to the above-mentioned types of materials.
  • a liquid carrier such as polyethylene glycol or an oil in addition to the above-mentioned types of materials.
  • the pharmaceutical composition may be in liquid form, such as an elixir, syrup, solution, emulsion or suspension.
  • the liquid can be used for oral administration or for delivery by injection in two example forms.
  • the composition may also contain one or more sweeteners, preservatives, stains/colorants, and flavor enhancers.
  • one or more surfactants, preservatives, wetting agents, dispersing agents, suspending agents, buffers, stabilizers and isotonic agents may be included.
  • the pharmaceutical composition may comprise a variety of materials that modify the physical form of the solid or liquid dosage unit.
  • the composition may include materials that form a coating shell surrounding the active ingredient.
  • the material forming the coating shell is inert and can be selected from, for example, sugar, shellac and other enteric coating agents.
  • the active ingredients can be packaged in gelatin capsules.
  • the pharmaceutical composition can be prepared by a method well known in the pharmaceutical field.
  • a pharmaceutical composition intended to be administered by injection is prepared by combining thalidomide or a thalidomide derivative with sterile, distilled water to form a solution.
  • Surfactants can be added to promote the formation of uniform solutions or suspensions.
  • Surfactants are compounds that non-covalently interact with the compound to promote the dissolution or uniform suspension of the compound in an aqueous delivery system.
  • the arteriovenous malformation is a non-central nervous system arteriovenous malformation.
  • the present application provides a method for treating arteriovenous malformations, which comprises administering an effective amount of thalidomide or a thalidomide derivative to an individual suffering from arteriovenous malformations.
  • the initial dose can be 25mg (less than 30Kg), 50mg (30-60Kg), 75mg (over 60Kg); if there is no obvious adverse reaction, it can be increased by 25mg every 2 weeks;
  • the maximum dose can be 50mg (less than 30Kg), 150mg (30-60Kg), 200mg (over 60Kg); for minors, the initial dose can be 25mg (less than 30Kg), 50mg (30-60Kg), 75mg (over 60Kg) ; If there is no obvious adverse reaction, 25mg can be increased every 2 weeks; the highest dose can be 50mg (less than 30Kg), 100mg (30-60Kg), 150mg (over 60Kg).
  • the arteriovenous malformation is an arteriovenous malformation of the central nervous system. In some embodiments, the arteriovenous malformation is cerebral arteriovenous malformation or spinal arteriovenous malformation.
  • the arteriovenous malformations are sporadic arteriovenous malformations or non-HHT-related arteriovenous malformations.
  • Patients with sporadic central nervous system arteriovenous malformations and other arteriovenous malformations included in this example include:
  • Unable to evaluate indicating that the corresponding case cannot be evaluated for the corresponding item due to objective reasons. For example, the case may not have corresponding symptoms, so it cannot be evaluated.
  • a male patient (case number 3 in Table 1) was diagnosed with cervical MRI for 3 months due to neck pain and progressive extremity weakness, which revealed somatic spinal and spinal vascular malformations.
  • the mALS score was 2 points on admission. Due to the wide range of lesions involved, traditional treatment methods cannot be effectively treated. According to the treatment plan of this example, the patient took thalidomide (75mg-125mg) 1 hour before going to bed every night for 1 month. The symptoms mentioned above were all relieved, and the MRI showed that the spinal cord edema subsided significantly (see Figure 2). Physical examination indicated The mALS score is 1 point, and the color of neck skin vascular malformations is lighter than before (see Figure 3).
  • thalidomide was administered orally.
  • the initial dosage is: less than 30kg, 25mg; 30-60kg, 50mg; over 60kg, 75mg, taken half an hour before going to bed, once a day.
  • the highest dose is: less than 30kg, 50mg; 30-60kg, (child) 100mg, (adult) 150mg; over 60kg, (child) 150mg, (adult) 200mg.
  • the follow-up time was from the initial oral thalidomide to the last imaging follow-up.
  • DSA image change (reduction of the malformed vascular mass or reduction in the diameter of the blood supply artery is considered effective, otherwise it is considered invalid)
  • bleeding rate and neurological function change events including bleeding, epilepsy and progressive neurological dysfunction, neurological function of brain AVM patients are evaluated by mRS score, and neurological function of spinal AVM patients are evaluated by mALS score
  • Safety indicators the occurrence of drug-related adverse reactions during medication.
  • Example 3 Basic research of thalidomide in the treatment of arteriovenous malformations
  • RNA extraction kit After the treatment is completed, wash twice with PBS buffer, and then use RNA extraction kit to separate and extract RNA. After reverse transcription of RNA into cDNA, the product is diluted with water to reduce the interference of residual RNA on the experimental results. Then configure the SYBR GREEN system for fluorescent quantitative PCR identification.
  • the prepared tissue sections are deparaffinized.
  • the sections were deparaffinized in xylene for five minutes and replaced with fresh xylene three times. After soaking in absolute ethanol for five minutes, replace the absolute ethanol twice. Ninety percent ethanol is soaked for five minutes, and the 90 percent ethanol is replaced once. Soak in 70% ethanol for five minutes. Finally, soak in distilled water for five minutes and replace it once. After that, use the EDTA antigen retrieval solution to perform antigen retrieval, and heat it under high pressure for two minutes. Then use running water to quickly cool down, and cool to room temperature after about 20 minutes. Drop a small amount of hydrogen peroxide to inactivate and fix it once to improve the purity of the background.
  • the pre-cooled PBS buffer is added to wash twice, and the medium and drug residues are removed.
  • Use the BCA method to measure the concentration of the protein sample add an appropriate amount to 5x protein loading buffer, and heat at 100 degrees Celsius for five minutes. Add the pre-stained labeled protein and the sample to the discontinuous protein electrophoresis gel. Eighty volts run for two hours.
  • thalidomide or DMSO to incubate patients' primary endothelial cells for 24 hours. After the cells are fully overgrown, use a pipette tip to draw a line in the middle of the petri dish, and record the scratches at five random locations under an inverted microscope. The cells were cultured for six hours, removed, and then randomly photographed scratches at five random locations under the microscope. Use ImageJ to quantitatively analyze the results of cell migration.
  • thalidomide The effect of thalidomide on the tube-forming ability of patients' primary endothelial cells was determined. After treating the cells with thalidomide or an equal volume of DMSO for 24 hours, the cells were seeded on a 96-well plate pre-covered with Matrigel. Six hours later, the tube condition was photographed under an inverted microscope, and five different positions of each hole were photographed for the final accumulation calculation. Use ImageJ software to calculate and measure the tube length in the picture.
  • the CCK8 method was used for cell proliferation analysis. After the patient’s primary endothelial cells are digested and counted, they are pre-plated into a 96-well plate according to the appropriate number of plated cells. Incubate at 37°C for four hours to allow the cells to adhere to the wall. Replace 100 ⁇ l of medium containing 100 ⁇ g/ml thalidomide or equal volume of DMSO, and incubate for twelve hours. Then add 10 ⁇ l CCK8 reagent and mix gently. After continuing the culture for 4 hours, the absorbance at 450 nm wavelength was measured.
  • the inventors studied the endothelial cell activity in the lesions of patients with sporadic arteriovenous malformations. Isolate and culture primary endothelial cells from the lesions of patients with sporadic arteriovenous malformations, and use normal blood vessels in the cerebral cortex of epilepsy patients with normal structures as controls. Identification by fluorescence quantitative PCR method revealed that the expression of PDGFB in primary endothelial cells taken from patients with sporadic arteriovenous malformations was significantly down-regulated (Figure 9A).
  • PDGFB is a key gene for recruiting smooth muscle cells and maintaining vascular homeostasis
  • the inventors performed pathological staining observations on the lesion site and the control tissue.
  • CD31 was used to label vascular endothelial cells
  • PDGFRB was used to label vascular smooth muscle cells. It can be seen that, compared with the control tissue, the relative number of vascular smooth muscle cells in the lesion site is less, and it is almost impossible to completely wrap the entire blood vessel (Panel B in Figure 9).
  • the inventors used HUVEC to construct a cell model.
  • This KRAS/BRAF mutation is common in patients with sporadic arteriovenous malformations.
  • the inventors respectively transferred KRAS and BRAF into HUVEC to construct an overexpression model ( Figure 10, A and B) .
  • the constructed cell model was tested, and it was found that as the function of KRAS/BRAF increased, the expression of PDGFB was significantly down-regulated.
  • Thalidomide up-regulates the expression of PDGFB in primary endothelial cells of patients
  • the drug thalidomide is used to process the patient's primary endothelial cells.
  • the results showed that after 24 hours of treatment at 50 ⁇ g/ml and 100 ⁇ g/ml concentrations, thalidomide could significantly up-regulate the expression of PDGFB in primary endothelial cells of patients ( Figure 11, panel A).
  • the double verification of protein level and mRNA level strongly suggests that thalidomide has a significant effect on patients' primary endothelial cells ( Figure 11, panels B and C).
  • Thalidomide affects vascular stability through many ways
  • thalidomide can directly act on the patient's primary endothelial cells. By promoting its expression of PDGFB, it inhibits endothelial cell migration and promotes the recruitment of smooth muscle cells.
  • thalidomide is a very complex molecule, which produces hundreds of active by-products after being metabolized in the body. The main functions of these by-products include anti-inflammatory and anti-angiogenesis.
  • thalidomide's anti-angiogenic effect is mainly mediated by its metabolite CPS49, which inhibits the cytoskeleton of endothelial cells to prevent cell migration and tube formation.
  • the direct treatment of patients' primary endothelial cells with thalidomide can also inhibit the migration of endothelial cells to a certain extent, but it has not been observed that the formation of endothelial cells is hindered.
  • This phenomenon suggests that part of the functions of thalidomide in the body may not need metabolic activation, but can directly act on vascular endothelial cells. Therefore, in order to reveal the mechanism of the direct effect of thalidomide on cells, the inventors performed transcriptome sequencing analysis on primary endothelial cells treated with thalidomide at a concentration of 100 ⁇ g/ml, and used the same conditions added Primary endothelial cells treated with DMSO served as controls.
  • Oral thalidomide can promote PDGF paracrine of vascular endothelial cells, thereby increasing the coverage of pericytes/parietal cells, constricting diseased blood vessels, and inhibiting endothelial cell proliferation. Therefore, it can increase the strength of diseased blood vessels and reduce blood flow in the disease, and ultimately reduce the sporadic AVM The risk of bleeding may shrink or even occlude the AVM lesion to a certain extent.
  • Example 4 The basic research of lenalidomide and pomalidomide in the treatment of arteriovenous malformations
  • Lenalidomide and pomalidomide are two common derivatives of thalidomide.
  • the inventors performed the PDGFB expression regulation test and scratches in Example 3 on lenalidomide and pomalidomide
  • the test concentration of lenalidomide is 26 ⁇ g/mL and the test concentration of pomalidomide is 27 ⁇ g/mL.
  • the rest of the materials and methods are the same as the thalidomide test. The results are shown in Figure 15-18.
  • Nalidomide and pomalidomide are also expected to have clinical potential for the treatment of arteriovenous malformations.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

提供了沙利度胺或沙利度胺衍生物在制备用于治疗动静脉畸形的药物中的用途。同时还提供了包含沙利度胺或沙利度胺衍生物的药物组合物,其用于治疗动静脉畸形。

Description

沙利度胺及其衍生物的用途 发明领域
本申请大体涉及医药学领域。具体而言,本申请涉及沙利度胺及其衍生物的新的医药学用途,更具体为治疗动静脉畸形的用途。
发明背景
动静脉畸形(AVM)是一类血管发育异常疾病,由供血动脉,引流静脉以及两者之间动静脉短路组成。由于毛细血管网缺失,压力极高的动脉血直接进入静脉系统,导致出血、局部静脉高压,盗血以及占位效应等一系列病理生理变化并产生相应的临床症状,具有较高的致死致残率。AVM可累及人体绝大多数组织及器官,如脑、脊髓、皮肤、肌肉、骨骼以及各个脏器,其中脑动静脉畸形(BAVM)和脊髓动静脉畸形(SAVM)统称中枢神经系统动静脉畸形,其余部位的AVM病变可统称为“非中枢动静脉畸形”。
脑动静脉畸形年发病率约1/100000,好发于20-40岁人群,其主要危害是脑出血,年出血风险约为2%-5%,是儿童及青少年脑出血的首要病因,其他临床表现包括癫痫及局部神经功能障碍,是神经外科面临的主要临床问题之一。脊髓动静脉畸形相对罕见,年发病率约1-2.5/1000000,平均发病年龄约26岁,可由于出血或脊髓静脉高压等病理生理学机制造成突发或进行性发展的脊髓功能损伤,其自然病史恶劣,据统计SAVM患者整体上的脊髓功能障碍加重风险高达30%/年,年出血风险接近10%。因此中枢神经系统AVM是一类对患者及社会的危害极大,急需临床干预的疾病。
临床上常见的动静脉畸形为散发性病变,不具有遗传倾向。此外,一些罕见的遗传病,如遗传性出血性毛细血管扩张症(HHT),毛细血管畸形-动静脉畸形(CM-AVM)等,也可能在全身表现出动静脉畸形。
目前AVM的治疗方式包括手术切除、介入栓塞以及放射治疗。但由于病变结构复杂,具有较高的治疗难度,特别是脑与脊髓动静脉畸形与中枢神经系统解剖关系紧密,治疗相关风险极高,大多数病变无法治愈,只能部分闭塞甚至无法治疗。根据文献统计,中枢神经系统AVM的总体治愈率小于40%。同时大量研究提示AVM是一类动态发展的病变,病变结构变化或增殖现象并不罕见,而增殖或结构改变将增加远期临床事件的风险。此外,ARUBA等多中心RCT研究提示未破裂BAVM的自然病史优于外科干预后的临床风险。因此,AVM的传统治疗方式并不理想,需要临床医师对新的治疗方式进行探索。
沙利度胺(Thalidomide),又名反应停,是一种谷氨酸衍生物。此药最早于1957年作为镇静安眠药及孕吐抑制剂于联邦德国上市,之后由于其强致畸作用于1961年停售。但是之后的研究发现沙利度胺的重要致畸机制之一是该药物具有较强的抗血管生成作用,抑制胎儿肢体血管发育。此外,沙利度胺还是一种免疫调节剂,可降低TNF-α及IL-6等多种炎性因子,并增强T细胞活性。这些发现使沙利度胺再次应用于临床,目前可用于炎性肠病、系统性红斑狼疮、强直性脊柱炎、II型麻风病等免疫相关疾病以及多发骨髓瘤、前列腺癌、乳腺癌、肝癌、卵巢癌、黑色素瘤等恶性肿瘤的治疗。来那度胺和泊马度胺是沙利度胺的衍生物,化学结构与沙利度胺相似,临床上用于抗肿瘤、免疫调节等用途。
发明概述
第一方面,本申请提供了沙利度胺或沙利度胺衍生物在制备用于治疗动静脉畸形的药物中的用途。
在一些实施方案中,沙利度胺衍生物选自来那度胺、泊马度胺和阿普斯特。
在一些实施方案中,动静脉畸形为中枢神经系统动静脉畸形。在一些实施方案中,动静脉畸形为脑动静脉畸形或脊髓动静脉畸形。
在一些实施方案中,动静脉畸形为非中枢神经系统动静脉畸形。
在一些实施方案中,动静脉畸形为体节性动静脉畸形。
在一些实施方案中,动静脉畸形为散发性动静脉畸形或非遗传性出血性毛细血管扩张症(HHT)相关动静脉畸形。
第二方面,本申请提供了用于治疗动静脉畸形的药物组合物,其包含沙利度胺或沙利度胺衍生物和药物可接受的载体、赋形剂或稀释剂。
在一些实施方案中,沙利度胺衍生物选自来那度胺、泊马度胺和阿普斯特。
在一些实施方案中,动静脉畸形为中枢神经系统动静脉畸形。在一些实施方案中,动静脉畸形为脑动静脉畸形或脊髓动静脉畸形。
在一些实施方案中,动静脉畸形为非中枢神经系统动静脉畸形。
在一些实施方案中,动静脉畸形为体节性动静脉畸形。
在一些实施方案中,动静脉畸形为皮肤动静脉畸形。
在一些实施方案中,动静脉畸形为散发性动静脉畸形或非遗传性出血性毛细血管扩张症(HHT)相关动静脉畸形。
第三方面,本申请提供了治疗动静脉畸形的方法,包括向患有动静脉畸形的个体施用有效量的沙利度胺或沙利度胺衍生物。
在一些实施方案中,沙利度胺衍生物选自来那度胺、泊马度胺和阿普斯特。
在一些实施方案中,动静脉畸形为中枢神经系统动静脉畸形。在一些实施方案中,动静脉畸形为脑动静脉畸形或脊髓动静脉畸形。
在一些实施方案中,动静脉畸形为非中枢神经系统动静脉畸形。
在一些实施方案中,动静脉畸形为体节性动静脉畸形。
在一些实施方案中,动静脉畸形为散发性动静脉畸形或非遗传性出血性毛细血管扩张症(HHT)相关动静脉畸形。
附图简要说明
图1显示了一名脑动静脉畸形患者在口服沙利度胺之前(左图)以及服药1个月(后)的头颅核磁共振检查图像。
图2显示了一名体节性脊柱脊髓动静脉畸形患者在口服沙利度胺之前(左图)以及服药1个月(后)的颈椎核磁共振检查图像。
图3显示了图2的体节性脊柱脊髓动静脉畸形患者在口服沙利度胺之前(左图)以及服药1个月(后)的颈部皮肤血管畸形的外观照片。
图4显示了一名10岁女性脑AVM患者的DSA图像,A图为服药前,B图为服药3个月,C图为服药8个月,可见畸形团范围逐渐缩小。
图5显示了一名13岁男性脊髓AVM患者的DSA图像,A图为服药前,B图为服药7个月,可见畸形团范围显著缩小。
图6显示了一名14岁男性体节性脊柱脊髓AVM患者的DSA图像,A图为服药前,B图为服药8个月,可见畸形团消失。
图7显示了一名13岁女性体节性脊柱脊髓AVM患者的DSA图像,A图为服药前,B图为服药7个月,可见畸形团消失。
图8显示了一名12岁男性脊髓AVM患者的DSA图像,A图为服药前,B图为 服药5个月,可见供血动脉显著缩小。
图9显示了AVM病变内皮细胞PDGFB表达下调抑制平滑肌细招募。(A)针对散发性动静脉畸形患者病灶部位分离获得的原代内皮细胞以及结构正常的癫痫患者脑组织分离获得的原代内皮细胞进行荧光定量PCR实验检测PDGFB的表达情况。N=4。(B)免疫荧光病理染色对散发性动静脉畸形患者病灶部位以及结构正常的癫痫患者的大脑皮层作为对照组血管结构进行观察。(*表示P<0.05;**表示P<0.001)
图10显示了发生KRAS/BRAF突变的内皮细胞PDGFB表达下调。(A)向HUVEC中瞬时转染构建过表达KRAS细胞模型,24小时后通过荧光定量PCR检测细胞内KRAS mRNA以及PDGFB mRNA含量(N=4)。(B)向HUVEC中瞬时转染构建过表达BRAF细胞模型,24小时后通过荧光定量PCR检测细胞内BRAF mRNA以及PDGFB mRNA含量(N=4)。(*表示P<0.05;**表示P<0.001)
图11显示了沙利度胺上调AVM血管内皮细胞的PDGFB表达。(A)使用不同浓度沙利度胺处理动静脉畸形患者原代内皮细胞24小时后,通过荧光定量PCR检测细胞PDGFB的表达量。(B)使用不同浓度沙利度胺处理动静脉畸形患者原代内皮细胞24小时后,通过免疫印迹实验检测细胞内PDGFB的蛋白质含量并进行通过ImageJ软件进行定量分析(C)。(*表示P<0.05;**表示P<0.001)
图12显示了沙利度胺对AVM内皮细胞的影响,包括对分离于患者病灶部位的原代内皮细胞的成管、增殖以及迁移能力的检测。(A)将患者原代内皮细胞使用相应浓度的沙利度胺预处理24小时后,通过划痕实验检测患者原代内皮细胞在6小时内的迁移情况并通过ImageJ软件进行定量分析(B)。(C)将患者原代内皮细胞使用不同浓度的沙利度胺预处理24小时后,通过成管实验检测患者原代内皮细胞在6小时内的成管情况并通过ImageJ软件进行定量分析(D)。(E)将患者原代内皮细胞使用相应浓度的沙利度胺预处理24小时后,通过CCK-8检测细胞的增殖能力。(*表示P<0.05;**表示P<0.001)
图13显示了沙利度胺对原代血管内皮细胞与平滑肌细胞共培养体系的效果。(A)将动静脉畸形患者原代内皮细胞与原代平滑肌细胞预先在相应浓度的沙利度胺中培养24小时,之后转移至共培养体系中。待下层细胞长满之后,进行划痕实验通过下层平滑肌细胞的迁移情况反映上层内皮细胞对下层平滑肌细胞的招募能力。(B)使用ImageJ软件对(A)结果进行定量分析。(*表示P<0.05;**表示P<0.001)
图14显示了沙利度胺作用于AVM血管内皮细胞的转录组测序分析。(A)使用相应浓度的沙利度胺对患者原代内皮细胞进行培养,24小时后对细胞进行转录组测序。(B)基于转录组测序结果,对差异表达的基因使用患者原代内皮细胞进行荧光定量PCR验证。(C)基于转录组测序结果,对差异表达的基因使用患者原代内皮细胞进行免疫印迹实验验证。
图15显示了来那度胺对AVM内皮细胞的影响。(A)将患者原代内皮细胞使用相应浓度的来那度胺预处理24小时后,通过划痕实验检测患者原代内皮细胞在6小时内的迁移情况并通过ImageJ软件进行定量分析(B)。
图16显示了泊马度胺对AVM内皮细胞的影响。(A)将患者原代内皮细胞使用相应浓度的泊马度胺预处理24小时后,通过划痕实验检测患者原代内皮细胞在6小时内的迁移情况并通过ImageJ软件进行定量分析(B)。
图17显示了来那度胺上调AVM血管内皮细胞的PDGFB表达,使用所示浓度的来那度胺处理动静脉畸形患者原代内皮细胞24小时后,通过荧光定量PCR检测细胞PDGFB的表达量。
图18显示了泊马度胺上调AVM血管内皮细胞的PDGFB表达,使用所示浓度的泊马度胺处理动静脉畸形患者原代内皮细胞24小时后,通过荧光定量PCR检测细胞 PDGFB的表达量。
发明的详细描述
本申请的发明人在神经外科领域进行了多年的研究和实践,而动静脉畸形是较为常见的神经外科疾病类型。由于动静脉畸形的病变结构较为复杂,手术治疗具有较高难度,特别是脑与脊髓动静脉畸形与中枢神经系统解剖关系紧密,手术治疗风险很高。因此,本申请的发明人在通过药物治疗动静脉畸形上进行了大量的探索和研究,建立了本申请的各项发明。
第一方面,本申请提供了沙利度胺或沙利度胺衍生物在制备用于治疗动静脉畸形的药物中的用途。
沙利度胺(Thalidomide)的结构式如下
Figure PCTCN2020078394-appb-000001
沙利度胺衍生物,也称为沙利度胺类似物或沙利度胺类化合物,是基于沙利度胺的核心结构开发出的化合物。目前已开发出多种沙利度胺衍生物,包括但不限于:
来那度胺(Lenalidomide)
Figure PCTCN2020078394-appb-000002
泊马度胺(Pomalidomide)
Figure PCTCN2020078394-appb-000003
以及
阿普斯特(Apremilast)
Figure PCTCN2020078394-appb-000004
相比于作为沙利度胺的结构类似物的来那度胺和泊马度胺,阿普斯特是在沙利度胺的结构类似物基础上嫁接已知作用结构并优化而来。根据目前的报道,沙利度胺衍生物被认为以相似的方式发挥生物学作用,但是内在机制还未被完全阐明。
就临床表型而言,动静脉畸形包括散发性动静脉畸形以及家族性动静脉畸形(如遗传性出血性毛细血管扩张症(HHT)或毛细血管畸形-动静脉畸形(CM-AVM)相关的动静脉畸形)。临床研究提示两类病变的临床特点具有明显的差异,现已发现HHT相关中枢神经系统AVM的出血风险显著低于散发性病变。同时,家族性AVM的DSA表现也与散发性AVM不同,CM-AVM相关的动静脉畸形大多表现为血流量极高的动静脉瘘;HHT相关AVM一部分表现为体积较小的团块型畸形团,另一部分可以是与CM-AVM病变相似的动静脉瘘型病变。此外,最新的研究显示散发性动静脉畸形与家族性动静脉畸形的发病机制在基因水平的体现存在差异,参与两类病变发生的突变基因和遗传机制不同。现发现超过90%的散发AVM具有KRAS及其下游基因的体突变,而家族性AVM已明确是由Engolin、ACVRL1、MADH4以及RASA1等基因种系突变导致,且参与家族性动静脉畸形与散发性动静脉畸形的基因的直接下游通路并不重叠。
近年来有研究发现沙利度胺对于HHT具有良好的治疗作用,特别是缓解HHT患者的鼻出血和消化道出血症状。尽管动静脉畸形是HHT的一种病理表现,但是该治疗效果并非作用于动静脉畸形病变。具体而言,遗传性出血性毛细血管扩张症(HHT)是一种影响血管生成的常染色体显性遗传病,患者的TGF-β/BMP通路活性下调最终导致血管生成异常,因此在临床上表现为累及多个器官或组织的血管病变。从病理角度分析,HHT的血管病变可分为毛细血管扩张和动静脉畸形两种不同的病变,绝大多数HHT患者(>90%)会表现为单纯的血管扩张病灶,部分患者可表现为累及内脏(20%-50%)、中枢神经系统(1%-10%)以及其他软组织动的动静脉畸形病灶。HHT患者的动静脉畸形常见于肺、肝和脑组织,而毛细血管扩张性病变通常出现在粘膜(鼻腔、口腔和胃肠道)及手指嘴唇的皮肤表面,其中鼻粘膜的毛细血管扩张病变最为常见,被认为是HHT的特征性病变,既往文献报道其发生率为68%-100%。鼻粘膜毛细血管扩张病灶引起的最常见症状是鼻出血,因此,在临床上90%以上的HHT患者表现为反复发作的鼻出血(Shovlin CL,Guttmacher AE,Buscarini E et al(2000)Diagnostic criteria for hereditary hemorrhagic telangiectasia(Rendu–Osler–Weber Syndrome).Am J Med Genet 67:66–67;Kritharis A,Al-samkari H,Kuter DJ et al(2018)Hereditary hemorrhagic telangiectasia:diagnosis and management from the hematologist’s perspective.Haematologica.;Thomas Kühnel.,Kornelia Wirsching.,et al.Hereditary Hemorrhagic Telangiectasia..Otolaryngol Clin North Am 2018;51(1):237-254;Haitjema T,Balder W,Disch FJ,Westermann CJ.Epistaxis in hereditary haemorrhagic telangiectasia.Rhinology 1996;34:176–8;Dupuis-Girod S,Bailly S,Plauchu H.Hereditary hemorrhagic telangiectasia:from molecular biology to patient care[J].Journal of Thrombosis&Haemostasis Jth,2010,8(7):1447-1456;Fatima S Govani.,Claire L Shovlin.Hereditary haemorrhagic telangiectasia:a clinical and scientific review..Eur J Hum Genet 2009;17(7):860-71;Dheyauldeen S,Abdelnoor M,Bachmann-Harildstad G(2011)The natural history of epistaxis in patients with hereditary hemorrhagic telangiectasia in the Norwegian population:a crosssectional study.Am J Rhinol Allergy.25(4):214–218;Papaspyrou G,Hecker D,Linxweiler M,Schick B,Al Kadah B.Combined therapy for epistaxis by hereditary hemorrhagic teleangiectasia:A 3-year follow up study on 45 patients.J Craniomaxillofac Surg.2017,45(8):1179-1182)。目前临床研究和文献报道口服低剂量沙利度胺能有效减少和缓解HHT患者的鼻出血和消化道出血症状是作用于HHT患者的血管扩张病灶,对于动静脉畸形病变并未进行研究。特别是,对于非HHT相关的动静脉畸形本领域尚未有任何报道。由于HHT在发病机制和临床表现方面具有独特性,因此,从沙利度胺对于HHT具有良好的治疗作用的报道中,基于医学常识无法预测到沙利度胺及其衍生物对动静脉畸形,尤其是对散发性动静脉畸形(例如,人中枢神经系统动静脉畸形以及包含中枢神经系统动静脉畸形和皮肤、肌肉血管畸形 的体节性动静脉畸形)具有明显的治疗作用。
就发病部位而言,动静脉畸形包括中枢神经系统动静脉畸形、非中枢神经系统动静脉畸形(也称为“其他部位动静脉畸形”)以及体节性动静脉畸形(同时具有中枢神经系统及其他部位动静脉畸形病变)。中枢神经系统动静脉畸形包括脑动静脉畸形或脊髓动静脉畸形。非中枢神经系统动静脉畸形可能涉及皮肤、肌肉、骨骼以及各个脏器。目前对于动静脉畸形不同发病部位的致病因素尚未完全阐明。
本申请发明人意想不到地发现,沙利度胺或沙利度胺衍生物对动静脉畸形具有治疗作用,尤其是对散发性动静脉畸形(例如,人中枢神经系统动静脉畸形以及包含中枢神经系统动静脉畸形和皮肤、肌肉血管畸形的体节性动静脉畸形)具有明显的治疗作用,而对患者的正常血管未见明显作用。现有技术对于沙利度胺或沙利度胺衍生物的药理作用有一定报道,例如抑制血管生成、免疫调节等,但是这样的药理作用不能完全合理解释本申请发明人观察到的治疗结果。
第二方面,本申请提供了包含沙利度胺或沙利度胺衍生物的药物组合物,其用于治疗动静脉畸形。
在一些实施方案中,药物组合物包含药物可接受的载体、赋形剂或稀释剂。
以纯的形式或以合适的药物组合物给予沙利度胺或沙利度胺衍生物,能通过用于满足相似用途的药剂的任何可接受的给药方式进行。能通过使沙利度胺或沙利度胺衍生物与合适的药物可接受的载体、稀释剂或赋形剂混合来制备药物组合物,且可配制成为固体、半固体、液体或气体形式的制剂,例如片剂、胶囊剂、粉剂、颗粒剂、软膏剂、溶液剂、栓剂、注射剂、吸入剂、凝胶剂、微球剂和气雾剂。给予这样的药物组合物的标准途径包括而不限于口服给药、局部给药、透皮给药、吸入给药、肠胃外给药、舌下给药、直肠给药、阴道给药、和鼻内给药。本文使用的术语肠胃外包括皮下注射、静脉注射、肌内注射、胸骨内注射或输注技术。配制药物组合物以当给予患者所述组合物时,使其中包含的活性成分为生物有效的。给予个体或患者的组合物采用一个或多个剂量单位的形式,其中例如,片剂可为一个剂量单位。对本领域技术人员而言,制备这样的剂型的实际方法为已知的,例如,参见The Science and Practice of Pharmacy(药物科学与实践),第20版(Philadelphia College of Pharmacy and Science,2000)。在任何情况下,根据本文的教导,要给予的组合物包含治疗有效量的沙利度胺或沙利度胺衍生物以用于治疗动静脉畸形。
本文的药物组合物还包含包括任何合适的稀释剂或赋形剂的药物可接受的载体,其包含本身不诱导对接受所述组合物的个体有害的抗体产生的任何药剂,且可给予其而不含过度的毒性。药物可接受的载体包括但不限于液体,例如水、盐水、丙三醇和乙醇等。在REMINGTON’S PHARMACEUTICAL SCIENCES(雷氏药学大全)(Mack Pub.Co.,N.J.现行版)中提供了药物可接受的载体、稀释剂和其它赋形剂的详细讨论。
药物组合物可为固体或液体形式。在一个方面,载体为微粒,以使组合物为例如片剂或粉剂形式。当组合物为例如口服糖浆、可注射液体或在例如吸入给药中有用的气雾剂时,载体可为液体。
当意图用于口服给药时,药物组合物优选为固体或液体形式,其中半固体、半液体、悬浮液和凝胶形式包含在本文考虑的固体或液体形式内。
作为用于口服给药的固体组合物,药物组合物可配制成粉剂、颗粒剂、压缩片剂、丸剂、胶囊剂、咀嚼剂、糯米纸包剂等形式。通常,这样的固体组合物包含一种或多种惰性稀释剂或可食用的载体。此外,可存在下列的一种或多种:诸如羧甲基纤维素、乙基纤维素、微晶纤维素、黄蓍胶或明胶的粘合剂;诸如淀粉、乳糖或糊精的赋形剂,诸如藻酸、藻酸钠、淀粉乙醇酸钠、玉米淀粉等的崩解剂;诸如硬脂酸镁或氢化植物油的润滑剂;诸如胶体二氧化硅的助流剂;诸如蔗糖或糖精的甜味剂;诸如薄荷、水 杨酸甲酯或桔子香精的调味剂;以及着色剂。
当药物组合物为胶囊形式时,例如明胶胶囊,除上述类型的材料之外,其可包含诸如聚乙二醇或油状物的液体载体。
所述药物组合物可为液体形式,例如酏剂、糖浆剂、溶液剂、乳剂或悬浮剂。所述液体可以两种实例形式用于口服给药或用于通过注射递送。当意图用于口服给药时,组合物还可以包含一种或多种甜味剂、防腐剂、染色剂/着色剂以及增味剂。在意图用于通过注射给予的组合物中,可包含一种或多种表面活性剂、防腐剂、湿润剂、分散剂、悬浮剂、缓冲剂、稳定剂和等渗剂。
不论液体药物组合物是否为溶液剂、悬浮剂等形式,它们可包含一种或多种下列助剂:诸如用于注射的水、盐水溶液,优选为生理盐水、林格氏液、等渗氯化钠的无菌稀释剂、诸如可充当溶剂或悬浮介质的合成甘油单脂或甘油二酯、聚乙二醇、丙三醇、丙二醇或其它溶剂的非挥发性油;诸如苯甲醇或对羟基苯甲酸甲酯的抗菌剂;诸如抗坏血酸或亚硫酸氢钠的抗氧化剂;诸如乙二胺四乙酸的螯合剂;诸如乙酸盐、柠檬酸或磷酸盐的缓冲剂以及诸如氯化钠或右旋糖的用于调节张力的作用剂。肠胃外制剂能被封入由玻璃或塑料制成的安瓿、一次性注射器或多个剂量瓶中。生理盐水为优选的助剂。优选地,可注射的药物组合物为无菌的。
意图用于肠胃外或口服给药的液体药物组合物应包含沙利度胺或沙利度胺衍生物的量使得获得合适的剂量。通常,在组合物中,该量至少为0.01%的沙利度胺或沙利度胺衍生物。当意图用于口服给药时,该量可在组合物重量的0.1%至约70%之间变化。优选的口服药物组合物包含约4%至约50%的沙利度胺或沙利度胺衍生物。
药物组合物可包含多种材料,其修饰固体或液体剂量单位的物理形式。例如,组合物可包含形成包围活性成分的包衣壳的材料。通常,形成包衣壳的材料为惰性的且可选自,例如糖、虫胶和其它肠溶包衣剂。另外,活性成分可包装在明胶胶囊中。
可通过制药领域公知的方法制备药物组合物。例如,通过使沙利度胺或沙利度胺衍生物与无菌、蒸馏水结合以形成溶液来制备意图通过注射给予的药物组合物。可添加表面活性剂来促进均匀溶液或悬浮液的形成。表面活性剂为与化合物非共价相互作用以促进化合物在水性递送体系中溶解或均匀悬浮的化合物。
在一些实施方案中,沙利度胺衍生物选自来那度胺、泊马度胺和阿普斯特。
在一些实施方案中,动静脉畸形为中枢神经系统动静脉畸形。在一些实施方案中,动静脉畸形为脑动静脉畸形或脊髓动静脉畸形。
在一些实施方案中,动静脉畸形为非中枢神经系统动静脉畸形。
在一些实施方案中,动静脉畸形为体节性动静脉畸形。
在一些实施方案中,动静脉畸形为散发性动静脉畸形或非HHT相关的动静脉畸形。
第三方面,本申请提供了治疗动静脉畸形的方法,包括向患有动静脉畸形的个体施用有效量的沙利度胺或沙利度胺衍生物。
本文中的术语“个体”是指患有动静脉畸形的个体,通常为哺乳动物。哺乳动物的实例包括但不限于哺乳动物纲的任何成员,例如,人,非人灵长类动物(例如黑猩猩和其它猿类和猴);家畜,例如牛、马、绵羊、山羊、猪;家养动物,例如兔、狗和猫;实验室动物,包括啮齿类动物,例如大鼠、小鼠和豚鼠等。在本文的一个实施方案中,哺乳动物为人。
本领域技术人员能够理解,应当以治疗有效量给予沙利度胺或沙利度胺衍生物。治疗有效量依赖多种因素而变化,包括所使用的具体化合物的活性;化合物代谢稳定性和作用时间;患者的年龄、体重、身体健康、性别和饮食;给药的方法和时间;排泄速度;药物组合;特定病症或疾病状态的严重性;以及经受治疗的问题。以人类个 体每日剂量为例,对于成年人,初始剂量可以为25mg(不足30Kg)、50mg(30-60Kg)、75mg(超过60Kg);若无明显不良反应,每隔2周可以增加25mg;最高剂量可以为50mg(不足30Kg)、150mg(30-60Kg)、200mg(超过60Kg);对于未成年人,初始剂量可以为25mg(不足30Kg)、50mg(30-60Kg)、75mg(超过60Kg);若无明显不良反应,每隔2周可以增加25mg;最高剂量可以为50mg(不足30Kg)、100mg(30-60Kg)、150mg(超过60Kg)。
本文提供的有效剂量范围不意图受限制且代表优选的剂量范围。然而,如相关领域的技术人员理解和可确定的,根据个别个体调整最优选的剂量(参见例如,Berkow al.,eds.,The Merck Manual(默克手册),第16版,Merck and Co.,Rahway,N.J.,1992;Goodmanetna.,eds.,Goodman and Cilman’s The Pharmacological Basis of Therapeutics(Goodman and Cilman的治疗学的药理学基础),第10版,Pergamon Press,Inc.,Elmsford,N.Y.,(2001);Avery’s Drug Treatment:Principles and Practice of Clinical Pharmacology and Therapeutics(Avery的药物治疗:临床药物和治疗的原则和实践),第3版,ADIS Press,LTD.,Williams and Wilkins,Baltimore,MD.(1987),Ebadi,Pharmacology(药物学),Little,Brown and Co.,Boston,(1985);Osolci al.,eds.,Remington’s Pharmaceutical Sciences(雷氏药学大全),第18版,Mack Publishing Co.,Easton,PA(1990);Katzung,Basic and Clinical Pharmacology(基础及临床药理学),Mack Publishing Co.,Easton,PA(1992))。
必要时,在一天过程中,通过多次剂量或一次剂量给予每次治疗所需的总剂量。通常,治疗由小于化合物的最佳剂量的较小剂量开始。此后,通过小增量增加剂量直至在该情况下达到最佳效果。能单独或与涉及病理学或涉及其它病理学症状的其它诊断法和/或药物结合来给予诊断的药物化合物或组合物。
在一些实施方案中,沙利度胺衍生物选自来那度胺、泊马度胺和阿普斯特。
在一些实施方案中,动静脉畸形为中枢神经系统动静脉畸形。在一些实施方案中,动静脉畸形为脑动静脉畸形或脊髓动静脉畸形。
在一些实施方案中,动静脉畸形为非中枢神经系统动静脉畸形。
在一些实施方案中,动静脉畸形为体节性动静脉畸形。
在一些实施方案中,动静脉畸形为散发性动静脉畸形或非HHT相关的动静脉畸形。
实施例
提供以下实施例是仅仅是对本申请的一些实施方案进行举例说明,没有任何限制的目的或性质。
实施例1沙利度胺治疗动静脉畸形的初步临床试验
本实施例使用沙利度胺开展初步临床试验,其中对8名散发性中枢神经系统动静脉畸形及其他动静脉畸形进行沙利度胺治疗。通过MRI或DSA等影像学手段(深部组织动静脉畸形)、直视观察(皮肤动静脉畸形)、病理检查、神经科专科查体(mALS评分评估脊髓动静脉畸形患者神经功能障碍或mRS评分评估脑动静脉畸形患者神经功能障碍)以及相关生物学标记物检测等多种手段观察沙利度胺对患者血管畸形的疗效。
本实施例纳入的散发性中枢神经系统动静脉畸形以及其他动静脉畸形患者包括:
脑动静脉畸形患者;
脊髓动静脉畸形患者;以及
体节性动静脉畸形患者
研究方案:分选出符合入选标准的动静脉畸形患者,签署知情同意书后采集患者 基线信息,给予沙利度胺口服治疗,在患者接受治疗后每月通过上述相应检查手段评估疗效。
研究结果:8例患者在服用沙利度胺(25mg-100mg)1月后,经上述多种检查手段评估7例患者(87.5%)出现好转。不良反应包括便秘(3例)以及肢体麻木(1例),具体结果如表1所示。
表1
Figure PCTCN2020078394-appb-000005
--:无法评估,表示相应病例因客观原因无法评估对应的项目,例如,病例可能无相应症状,故无法评估。
以下对于两名患者的情况进行举例说明。
患者女性(表1病例序号1),因脑出血行头颅核磁共振检查诊断脑动静脉畸形。既往接受脑动静脉畸形栓塞术2次,因病变体积较大且结构弥散无法有效栓塞病灶。根据本实施例治疗方案,患者每晚睡前1小时口服沙利度胺(50mg-75mg)1个月,复查MRI提示病灶尺寸较服药前明显缩小(参见图1)。服药期间患者自诉双下肢一过性震颤,自行缓解。
患者男性(表1病例序号3),因颈部疼痛伴四肢无力进行性加重3月行颈椎核磁共振提示体节性脊柱脊髓血管畸形,入院mALS评分2分。因患者病变累及范围广泛,传统治疗方式无法有效治疗。根据本实施例治疗方案,患者每晚睡前1小时口服沙利度胺(75mg-125mg)1月,自述上述症状均明显缓解,磁共振可见脊髓水肿明显消退(参见图2),查体提示mALS评分1分,颈部皮肤血管畸形颜色较前变淡(参见图3)。
在实施例2的扩大临床试验中,3号和7号患者在服药9个月后复查的影像学(DSA)评估中病灶尺寸缩小。
实施例2沙利度胺治疗动静脉畸形的扩大临床试验
在实施例1的初步试验获得成功后,本申请的发明人将临床试验规模进行了扩大,本实施例的试验共纳入45例患者(包括实施例1的8名患者)。2例患者因无法耐受不良反应停药,其中包括过敏反应1例,神经炎1例。共有43例患者服药时间超过3个月并完成DSA检查及临床随访纳入最终分析。43例患者平均服药时间7.3个月(3.3个月-11.7个月)。
入排标准
纳入标准:1、DSA明确诊断中枢神经系统动静脉畸形
2、患者同意参加实验并在入组前签署知情同意书
排除标准:1、孕妇或哺乳期女性
2、备孕患者
3、近期发生出血或其他引起神经功能障碍加重事件风险较高急需外科干预的患者
4、高血栓风险患者(糖尿病,严重感染,恶性肿瘤,血栓病史,深静脉置管,凝血功能异常等)
5、拒绝签署知情同意书
6、沙利度胺过敏患者
中止标准:1、出血
2、因脊髓静脉高压或其他机制造成脊髓mALS评分增加超过2分
3、对不良反应不耐受的患者
4、患者依从性差,未能按要求按时按量服用药物者,或患儿和/或监护人明确提出退出研究者。
实验过程
患者入组详细测量并记录基线资料后予沙利度胺口服。
初始计量为:不足30kg,25mg;30-60kg,50mg;超过60kg,75mg,睡前半小时服用,每日1次。
如未出现无法耐受的不良反应,每2周增加25mg,最高剂量为:不足30kg,50mg;30-60kg,(儿童)100mg、(成人)150mg;超过60kg,(儿童)150mg、(成人)200mg。
如出现无法耐受的不良反应则酌情减量直至停药。
口服药物至少3个月后入院进行脊髓血管造影检查,评估药物有效性。
随访时间为患者初次口服沙利度胺至末次影像学随访。
疗效指标和安全性指标;
A.疗效指标:
1)主要终点事件:DSA影像改变(畸形血管团范围缩小或供血动脉直径缩小视为有效,否则视为无效)
2)次要终点事件:出血率以及神经功能变化事件(包括出血、癫痫以及逐渐加重的神经功能障碍,脑AVM患者神经功能使用mRS评分评价、脊髓AVM患者神经功能使用mALS评分评价)
B.安全性指标:用药期间药物相关不良反应发生情况。
实验结果
(1)影像学随访:
至末次随访时,对比服药前后的DSA图像,43例患者中共26例(60%)判定为有效(病变供血动脉直径缩小或畸形团累及范围缩小,图4-图8显示了5名患者的示 例性影像学结果),17例(40%)无效。
(2)临床症状:
至末次随访时,43例患者均未出现出血事件。随访期内,40例(93%)患者神经功能稳定或提高。
45例服用沙利度胺的患者中43例(96%)出现各类不良反应,大多数不良反应耐受良好,2例(4%)因无法耐受停药。常见的不良反应包括便秘,神经炎,头痛头晕,月经异常等。
实施例3沙利度胺治疗动静脉畸形的基础研究
材料与方法
1、人体外科组织样本
人体外科组织样本取自首都医科大学宣武医院。所有受试者均提供知情同意,本研究获得首都医科大学玄武医院研究伦理委员会批准。动静脉畸形临床诊断在医院病理科经组织学检查确诊。对照组脑血管组织取自结构正常的癫痫患者大脑皮层。
2、原代内皮细胞与原代平滑肌细胞培养
从四例散发性动静脉畸形患者的脑组织中分离原代内皮细胞与原代平滑肌细胞,并传至第七代后备用。用含1%青链霉素的PBS缓冲液洗涤组织片段三次。在解剖显微镜下分离周围的结缔组织与脑组织,并去除血细胞。用无菌外科剪将血管剪碎,加入胰酶震荡消化20分钟。之后,使用滤网去除残渣后移入含肝素的培养基中,待细胞贴壁后换液。第一次传代时通过流式细胞分选,将内皮细胞与平滑肌细胞分开进行培养。
3、RNA提取与荧光定量PCR鉴定
在处理完成后,PBS缓冲液洗涤两遍,之后使用RNA提取试剂盒进行RNA的分离提取。将RNA反转录为cDNA之后,将产物加水稀释,已减少残留RNA对实验结果的干扰。之后配置SYBR GREEN体系进行荧光定量PCR鉴定。
4、免疫荧光染色
免疫染色时,将备好的组织切片脱蜡处理。切片在二甲苯中脱蜡五分钟,更换三次新鲜的二甲苯。之后用无水乙醇浸泡五分钟,更换无水乙醇两次。百分之九十乙醇浸润五分钟,更换百分之九十乙醇一次。百分之七十乙醇浸泡五分钟。最后,使用蒸馏水浸泡五分钟,更换一次。之后,使用EDTA抗原修复液进行抗原修复,高压沸腾加热两分钟。之后使用流动水快速降温,约二十分钟后冷却至室温。滴加少量的过氧化氢进行一次灭活与固定,以提高背景的纯净度。加入正常羊血清,四度冰箱封闭过夜。从此步开始,必须注意样品的保湿,避免干燥导致背景过强。封闭完成后,加入稀释好的一抗,四度孵育过夜。回收一抗后,加入PBS缓冲液进行五分钟洗涤,更换三次缓冲液。之后加入稀释好的荧光二抗。室温孵育一小时后,PBS缓冲液洗涤五分钟,共三次。滴加封片剂进行封片,之后在荧光显微镜下观察。
5、过表达细胞模型构建
取生长状态良好的HUVEC,在细胞密度长至百分之七十左右时开始进行转染实验。使用Lipofectamine 3000转染试剂,将转染试剂与KRAS、BRAF质粒分别溶解于培养基中,而后混匀混合。静置十五分钟,期间将细胞培养基更换为新鲜的内皮培养基。将配好的转染试剂逐滴的加入培养皿中。继续培养六小时,更换一次培养基。提取RNA,进行过表达模型的鉴定与检测。
6、蛋白样品的制备与免疫印迹实验
在药物处理完成后,加入预冷的PBS缓冲液洗涤两次,取出培养基及药物的残留。在培养皿中加入含有蛋白酶抑制剂的RIPA裂解液。将细胞挂下,之后移入1.5 毫升离心管中,冰上裂解十五分钟,每过五分钟震荡一次。将离心管放入离心机中最高转离心15分钟。轻柔吸出上清备用。将蛋白样品用BCA法测量其浓度,取适量加入5x的蛋白上样缓冲液,一百摄氏度加热五分钟。将预染标记蛋白与样品加入不连续蛋白电泳凝胶。八十伏特运行二小时。取出凝胶,放入到湿转体系中,三百毫安运行九十分钟。之后取出湿转体系中的PVDF膜。依次进行封闭、一抗孵育、洗脱、二抗孵育、洗脱,最后放入化学发光成像仪进行曝光。
7、划痕迁移实验
使用沙利度胺或DMSO孵育患者原代内皮细胞二十四小时。待细胞完全长满后,用枪头在培养皿中间划一条线,并在倒置显微镜下拍摄记录五个随机位点的划痕。将细胞继续培养六小时,取出,在显微镜下再随机拍摄五个随机位点的划痕。使用ImageJ对细胞的迁移结果进行定量分析。
8、细胞成管实验
对沙利度胺影响患者原代内皮细胞的成管能力进行了测定。在使用沙利度胺或等体积的DMSO处理细胞24小时后,将细胞接种至预铺有基质胶的九十六孔板上。六个小时后,在倒置显微镜下拍摄成管情况,每个孔拍摄五个不同位置最终进行累加计算。使用ImageJ软件计算和测量图片中的管长。
9、细胞增殖实验
使用CCK8法进行细胞增殖分析。将患者原代内皮细胞消化并计数之后,根据合适的铺板细胞数,将其预铺至九十六孔板中。三十七度培养四个小时,使细胞贴壁。更换含有100μg/ml沙利度胺或等体积DMSO的培养基100μl,培养十二小时。之后加入10μl CCK8试剂,轻轻混匀。继续培养4小时后,测定450nm波长的吸光度。
10、共培养体系
将transwell插件放入24孔板中。分别将生长状态良好的原代内皮细胞和原代平滑肌细胞消化、计数。在上室中加入含有原代内皮细胞的细胞悬液,在下室中加入含有原代平滑肌细胞的细胞悬液。培养六小时,等待细胞贴壁后,将培养基更换为含有沙利度胺或等体积DMSO的培养基。继续培养二十四小时,取出上室,在下室中作划痕,并拍摄划痕图片。放回继续培养,约六小时后,取出记录,每孔随机拍摄五次。使用ImageJ软件进行划痕距离的测量。
11、转录组测序与分析
使用Trizol法提取RNA。转录组测序及初步分析由上海伯豪生物技术有限公司进行。
12、统计分析
本研究实验数据分析使用SPSS进行,两两比较采用独立样本t检验进行,比较多个样本之间的差异则使用单因素方差分析,p<0.05时认为差异存在统计学意义。
实验结果
(1)AVM患者内皮细胞PDGFB表达下调导致平滑肌细胞招募显著下调
为了动静脉畸形的分子生物学病理机制,发明人研究了散发性动静脉畸形患者病灶部位的内皮细胞活性。分离培养散发性动静脉畸形患者病灶部位的原代内皮细胞,并使用结构正常的癫痫患者大脑皮层正常血管作为对照。通过荧光定量PCR法进行鉴定,发现取自散发性动静脉畸形患者的原代内皮细胞PDGFB的表达发生了显著的下调(图9中A图)。由于PDGFB是招募平滑肌细胞以及维持血管稳态的关键基因,发明人对病灶部位与对照组织进行了病理染色观察。使用CD31标记血管内皮细胞,使用PDGFRB标记血管平滑肌细胞。可以看到,与对照组织相比,病灶部位的血管平滑肌细胞相对数量更少,几乎无法完全包裹整个血管(图9中B图)。这些结果表 明,动静脉畸形患者的血管对平滑肌细胞的招募发生了显著的下调。
(2)KRAS/BRAF的过度激活导致PDGFB表达下调
为了找到散发性动静脉畸形患者的原代内皮细胞PDGFB表达下调的原因,发明人使用HUVEC进行细胞模型构建。在散发性动静脉畸形患者中普遍存在这KRAS/BRAF突变,为了模拟这些突变的功能增强表型,发明人分别将KRAS、BRAF转入HUVEC中构建过表达模型(图10中A和B图)。对构建的细胞模型进行检测,发现随着KRAS/BRAF的功能增强,PDGFB的表达发生显著的下调。
(3)沙利度胺上调患者原代内皮细胞的PDGFB表达
使用药物沙利度胺对患者的原代内皮细胞进行处理。结果显示,在50μg/ml及100μg/ml浓度处理24小时后,沙利度胺能够显著的上调患者原代内皮细胞的PDGFB表达(图11中A图)。蛋白水平与mRNA水平的双重验证强烈的提示沙利度胺对患者原代内皮细胞的显著作用(图11中B和C图)。
(4)沙利度胺抑制患者原代内皮细胞的迁移并促进其对平滑肌的招募
为了直接测定沙利度胺对内皮细胞活性的影响,发明人对分离于患者病灶部位的原代内皮细胞的成管、增殖以及迁移能力进行了检测。使用能够显著影响细胞PDGFB表达的100μg/ml作为处理浓度对细胞进行预处理24小时,之后再进行进一步的功能验证。划痕实验的结果显示,药物处理后的患者原代内皮细胞的迁移活性被显著抑制(图12中A图)。对结果进行定量分析,发现药物处理后的患者原代内皮细胞的迁移活性仅能达到原先的一半左右(图12中B图)。然而之后的成管实验与细胞增殖实验却并未发现药物处理对患者原代细胞的影响(图12中C-E图)。
随后,发明人检测了沙利度胺处理对患者原代内皮细胞招募平滑肌细胞的能力。通过Transwell小室构建患者原代内皮细胞与原代平滑肌细胞的共培养体系。上室培养患者原代内皮细胞,下室则进行原代平滑肌细胞的培养,在药物预处理24小时后进行划痕实验鉴定下室原代平滑肌细胞的迁移能力。结果显示,在药物的处理下,下室中的原代平滑肌细胞的迁移能力得到了显著的提升(图13中A图)。定量分析结果显示,迁移能力的提升达到了接近两倍的水平(图13中B图)。
(5)沙利度胺通过多种途径影响血管稳定性
发明人之前的结果证明沙利度胺能够直接作用于患者原代内皮细胞。通过促进其表达PDGFB来抑制内皮细胞迁移并促进对平滑肌细胞的招募。然而,沙利度胺是一种非常复杂的分子,在体内经过代谢会产生上百种具有活性的副产物。这些副产品的主要功能包括抗炎与抗血管生成。之前有研究认为沙利度胺的抗血管生成作用主要由其代谢产物CPS49介导,通过抑制内皮细胞的细胞骨架来阻止细胞的迁移与成管发生。然而有趣的是,在本研究中直接用沙利度胺处理患者的原代内皮细胞也能够对内皮细胞的迁移进行一定的抑制,不过却并没有观察到内皮细胞的成管受到阻碍。这一现象提示沙利度胺在体内的部分功能可能无须代谢激活,而能够直接作用于血管内皮细胞。因此,为了揭示沙利度胺对细胞直接影响的作用机制,发明人对使用浓度为100μg/ml的沙利度胺处理的原代内皮细胞进行了转录组测序分析,并使用添加了相同条件的DMSO处理的原代内皮细胞作为对照。每组设置三个生物学重复,进行生物信息学分析。结果显示,大量调控炎症与血管发生的基因的表达发生改变(图14中A图)。这一结果与沙利度胺的抗炎与抑制血管新生的功能吻合。对其中11个与血管稳态关系最为紧密的基因在细胞模型上进行了荧光定量PCR的验证。结果显示,除了之前的结果中被反复验证的PDGFB外,MYC、REL、FN、TNC等调节血管稳态的基因发生了显著的下调(图14中B图)。更进一步的在蛋白质水平上的验证也通过免疫印迹的方法进行(图14中C图)。结果也验证了PDGFB、FN这两个直接有利于血管稳态的基因受到沙利度胺影响表达显著增加。而作为VEGF转录因子 MYC的表达的下调有利于内皮细胞过高的活性回复到常态水平的。
以上基础研究发现内皮细胞发生KRAS突变后其PDGF的旁分泌收到显著抑制,而PDGF旁分泌是血管生成过程中内皮细胞募集周/壁细胞的主要生理机制。发明人据此提出假设:血管内皮细胞发生KRAS/BRAF体细胞突变后导致了PDGF旁分泌下降并进一步引起周/壁细胞覆盖率降低及功能受限是散发AVM病变进展直至破裂出血的重要病理生理机制。口服沙利度胺可以促进血管内皮细胞的PDGF旁分泌进而提高周/壁细胞覆盖率、收缩病变血管、抑制内皮细胞增生,因此可以提高病变血管的强度同时下调病变内血流量,最终降低散发AVM出血风险并有可能在一定程度上缩小甚至闭塞AVM病灶。
实施例4来那度胺和泊马度胺治疗动静脉畸形的基础研究
来那度胺和泊马度胺是沙利度胺的两种常见衍生物。为了确定来那度胺和泊马度胺是否与沙利度胺一样具有治疗动静脉畸形的潜力,发明人对来那度胺和泊马度胺进行了实施例3中的PDGFB表达调控测试和划痕迁移测试,其中来那度胺的测试浓度为26μg/mL,泊马度胺测试浓度为27μg/mL,其余材料和方法与沙利度胺测试相同,结果如图15-18所示。在图15和16中,来那度胺和泊马度胺处理后的患者原代内皮细胞的迁移活性被显著抑制;对结果进行定量分析,发现来那度胺处理后的患者原代内皮细胞的迁移活性仅能达到原先56%,泊马度胺处理后仅能达到原先47%,与实施例3中沙利度胺的结果相似。在图17和18中,来那度胺和泊马度胺处理能够显著的上调患者原代内皮细胞的PDGFB表达,来那度胺上调1.72倍,泊马度胺上调2.14倍,与与实施例3中沙利度胺的结果相似。
鉴于来那度胺和泊马度胺在本申请的体外研究中与沙利度胺表现出非常相似的结果,且来那度胺、泊马度胺、沙利度胺的化学结构非常相近,来那度胺和泊马度胺预期在临床上也具有治疗动静脉畸形的潜力。
本说明书中引用的所有出版物和专利文献引入本文作为参考,如同每个出版物或专利被分别明确指明引入本文作为参考。在不偏离本申请公开的真实思想和范围的情况下,可对本申请公开的各实施方案进行多种改变和用等同物替换。除非上下文中另有说明,否则本公开的实施方案的任何特征、步骤或实施方案都可以与任何其他特征、步骤或实施方案组合使用。

Claims (21)

  1. 沙利度胺或沙利度胺衍生物在制备用于治疗动静脉畸形的药物中的用途。
  2. 如权利要求1所述的用途,其中所述沙利度胺衍生物选自来那度胺、泊马度胺和阿普斯特。
  3. 如权利要求1或2所述的用途,其中所述动静脉畸形为中枢神经系统动静脉畸形,例如脑动静脉畸形或脊髓动静脉畸形。
  4. 如权利要求1或2所述的用途,其中所述动静脉畸形为非中枢神经系统动静脉畸形。
  5. 如权利要求1或2所述的用途,其中所述动静脉畸形为体节性动静脉畸形。
  6. 如权利要求4或5所述的用途,其中所述动静脉畸形为皮肤动静脉畸形。
  7. 如权利要求1-6中任一项所述的用途,其中所述动静脉畸形为散发性动静脉畸形或非遗传性出血性毛细血管扩张症(HHT)相关动静脉畸形。
  8. 用于治疗动静脉畸形的药物组合物,其包含沙利度胺或沙利度胺衍生物和药物可接受的载体、赋形剂或稀释剂。
  9. 如权利要求8所述的用于治疗动静脉畸形的药物组合物,其中所述沙利度胺衍生物选自来那度胺、泊马度胺和阿普斯特。
  10. 如权利要求8或9所述的用于治疗动静脉畸形的药物组合物,其中所述动静脉畸形为中枢神经系统动静脉畸形,例如脑动静脉畸形或脊髓动静脉畸形。
  11. 如权利要求8或9所述的用于治疗动静脉畸形的药物组合物,其中所述动静脉畸形为非中枢神经系统动静脉畸形。
  12. 如权利要求8或9所述的用于治疗动静脉畸形的药物组合物,其中所述动静脉畸形为体节性动静脉畸形。
  13. 如权利要求11或12所述的用于治疗动静脉畸形的药物组合物,其中所述动静脉畸形为皮肤动静脉畸形。
  14. 如权利要求8-13中任一项所述的用于治疗动静脉畸形的药物组合物,其中所述动静脉畸形为散发性动静脉畸形或非遗传性出血性毛细血管扩张症(HHT)相关动静脉畸形。
  15. 治疗动静脉畸形的方法,包括向患有动静脉畸形的个体施用有效量的沙利度胺或沙利度胺衍生物。
  16. 如权利要求15所述的方法,其中所述沙利度胺衍生物选自来那度胺、泊马度胺和阿普斯特。
  17. 如权利要求15或16所述的方法,其中所述动静脉畸形为中枢神经系统动静脉畸形,例如脑动静脉畸形或脊髓动静脉畸形。
  18. 如权利要求15或16所述的方法,其中所述动静脉畸形为非中枢神经系统动静脉畸形。
  19. 如权利要求15或16所述的方法,其中所述动静脉畸形为体节性动静脉畸形。
  20. 如权利要求18或19所述的方法,其中所述动静脉畸形为皮肤动静脉畸形。
  21. 如权利要求15-20中任一项所述的方法,其中所述动静脉畸形为散发性动静脉畸形或非遗传性出血性毛细血管扩张症(HHT)相关动静脉畸形。
PCT/CN2020/078394 2019-03-08 2020-03-09 沙利度胺及其衍生物的用途 WO2020182094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910175717.2 2019-03-08
CN201910175717.2A CN111658647A (zh) 2019-03-08 2019-03-08 沙利度胺及其衍生物的用途

Publications (1)

Publication Number Publication Date
WO2020182094A1 true WO2020182094A1 (zh) 2020-09-17

Family

ID=72382244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078394 WO2020182094A1 (zh) 2019-03-08 2020-03-09 沙利度胺及其衍生物的用途

Country Status (2)

Country Link
CN (1) CN111658647A (zh)
WO (1) WO2020182094A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104080467A (zh) * 2011-05-09 2014-10-01 急速制药公司 整联蛋白受体拮抗剂及其使用方法
US9370524B2 (en) * 2002-07-25 2016-06-21 Sunny Pharmatech Inc. Method for reducing radiation-induced normal tissue damage
US20180015075A1 (en) * 2016-07-14 2018-01-18 Children's Hospital Medical Center Methods and compositions for treatment of venous malformation
CN109310686A (zh) * 2016-04-04 2019-02-05 凯莫森特里克斯股份有限公司 可溶性C5aR拮抗剂
CN110234646A (zh) * 2016-11-01 2019-09-13 阿尔维纳斯股份有限公司 靶向PROTAC的Tau蛋白及相关使用方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1755599A4 (en) * 2004-04-23 2007-06-06 Celgene Corp METHOD OF USING THALIDOMIDE AND COMPOSITIONS THEREOF FOR TREATING AND MANAGING PULMONARY HYPERTENSION
US7427662B2 (en) * 2005-02-01 2008-09-23 Baord Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Inhibition of angiogenesis and destruction of angiogenic vessels by apolipoprotein A-I and high density lipoprotein
US11104955B2 (en) * 2016-12-30 2021-08-31 Children's Medical Center Corporation MAP2K1 (MEK1) as a therapeutic target for arteriovenous malformations and associated disorders

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9370524B2 (en) * 2002-07-25 2016-06-21 Sunny Pharmatech Inc. Method for reducing radiation-induced normal tissue damage
CN104080467A (zh) * 2011-05-09 2014-10-01 急速制药公司 整联蛋白受体拮抗剂及其使用方法
CN109310686A (zh) * 2016-04-04 2019-02-05 凯莫森特里克斯股份有限公司 可溶性C5aR拮抗剂
US20180015075A1 (en) * 2016-07-14 2018-01-18 Children's Hospital Medical Center Methods and compositions for treatment of venous malformation
CN110234646A (zh) * 2016-11-01 2019-09-13 阿尔维纳斯股份有限公司 靶向PROTAC的Tau蛋白及相关使用方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
LI, KEJING ET AL.: "The Intervention Effect of Thalidomide on Patients with Intestinal Vascular Malformation Hemorrhage", LABORATORY MEDICINE AND CLINIC, vol. 12, no. 12, 30 June 2015 (2015-06-30), pages 1745 - 1747, XP055733368, ISSN: 1672-945 *
LI, YINAN ET AL.: "Role of Slit2/Robo1 in the Pathogenesis of Gastrointestinal Vascular Malformation and the Effect of Thalidomide on Their Expression)", CHINESE JOURNAL OF MODERN APPLIED PHARMACY, vol. 30, no. 4, 30 April 2013 (2013-04-30), pages 357 - 360, XP055733362, ISSN: 1007-769 *
LI, YINAN ET AL.: "The Formation Mechanism and Treatment of Gastrointestinal Vascular Malformation", INTERNATIONAL JOURNAL OF DIGESTIVE DISEASES, vol. 33, no. 3, 25 June 2013 (2013-06-25), ISSN: 1673-534 *
WANG, YA ET AL.: "Re-Bleeding Events in Patients with Small Intestinal Vascular Malformation: Risk Factors and Effect of Treatment with Thalidomide)", WORLD CHINESE JOURNAL OF DIGESTOLOGY, vol. 25, no. 6, 28 February 2017 (2017-02-28), ISSN: 2219-285 *
WANG, ZHAOYAN ET AL.: "Thalidomide: an Anti-Angiogenic Anti-Cancer Drug", WORLD CLINICAL DRUGS, vol. 24, no. 12, 31 December 2003 (2003-12-31), ISSN: 1001-824 *
ZHI, ZHENGGE: "Efficacy of Thalidomide for Refractory Gastrointestinal Bleeding From Vascular Malformation", GASTROENTEROLOGY, vol. 141, no. 5, 30 November 2011 (2011-11-30), XP028325662 *

Also Published As

Publication number Publication date
CN111658647A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
Zierden et al. Next generation strategies for preventing preterm birth
Wang et al. Ethyl pyruvate attenuates spinal cord ischemic injury with a wide therapeutic window through inhibiting high-mobility group box 1 release in rabbits
Ferreira et al. Effects of the levonorgestrel-releasing intrauterine system on cardiovascular risk markers in patients with endometriosis: a comparative study with the GnRH analogue
JP2018508510A (ja) バシラス属細菌由来の細胞外ベシクルを含む妊娠関連疾患の治療用の組成物
CN110520112A (zh) 作为Hippo效应子的显性活性Yap诱导染色质可及性和心肌细胞更新
Cao et al. NLRP3 inhibitor tranilast attenuates gestational diabetes mellitus in a genetic mouse model
US20180200259A1 (en) GALANTAMINE CLEARANCE OF AMYLOID ß
KR102174191B1 (ko) 조직 재생 및 저하된 조직 기능의 회복을 자극하기 위한 제제로서의 디카르복시산의 비스아미드 유도체
ES2928145T3 (es) Composiciones y métodos para tratar la endometriosis
WO2020182094A1 (zh) 沙利度胺及其衍生物的用途
Elzein et al. Treatment of cerebral mucormycosis with drug therapy alone: A case report
WO2019129179A1 (zh) 化合物在制备治疗脑小血管病的药物中的应用
WO2006111103A1 (fr) Fonctions et utilisation du gene gpr39 dans le systeme nerveux central des mammiferes
KR101582734B1 (ko) 플라보피리돌을 유효성분으로 함유하는 자궁근종 예방 또는 치료용 조성물
Xie et al. l‐borneol promotes neurovascular unit protection in the subacute phase of transient middle cerebral artery occlusion rats: p38‐MAPK pathway activation, anti‐inflammatory, and anti‐apoptotic effect
CN114306350B (zh) 胆固醇硫酸盐在制备预防脓毒症的药物中的用途
Bonyan et al. The immediate outcome of thrombolytic therapy in ST-elevation myocardial infarction
Fan et al. Protective Mechanism of Ethyl Gallate against Intestinal Ischemia‐Reperfusion Injury in Mice by in Vivo and in Vitro Studies Based on Transcriptomics
WO2024012531A1 (zh) 一种吡啶酮衍生物的应用
Hu Overview of Premenstrual Dysphoric Disorder
Kapp et al. Somatic RIT1 indels identified in arteriovenous malformations hyperactivate RAS-MAPK signaling and are amenable to MEK inhibition
Li et al. Ghrelin regulates the endoplasmic reticulum stress signalling pathway in gestational diabetes mellitus
Loiselle Born too small, too soon: how can we save them?: a novel interleukin-1 antagonist, Rytvela, successfully reverses the inflammatory cascade leading to intrauterine growth restriction and preterm birth
Liu et al. Remote ischemic preconditioning reduces mitochondrial apoptosis mediated by calpain 1 activation in myocardial ischemia-reperfusion injury through calcium channel subunit Cacna2d3
Reichel Referateband: Rare Diseases of the Oral Cavity, Neck, and Pharynx

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770922

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.02.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20770922

Country of ref document: EP

Kind code of ref document: A1