WO2020182001A1 - 显示基板、其制作方法及显示装置 - Google Patents

显示基板、其制作方法及显示装置 Download PDF

Info

Publication number
WO2020182001A1
WO2020182001A1 PCT/CN2020/077303 CN2020077303W WO2020182001A1 WO 2020182001 A1 WO2020182001 A1 WO 2020182001A1 CN 2020077303 W CN2020077303 W CN 2020077303W WO 2020182001 A1 WO2020182001 A1 WO 2020182001A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
layer
retaining wall
display substrate
annular retaining
Prior art date
Application number
PCT/CN2020/077303
Other languages
English (en)
French (fr)
Inventor
赵德江
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020182001A1 publication Critical patent/WO2020182001A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display substrate, a manufacturing method thereof, and a display device.
  • Quantum Dot (QD for short) is usually a kind of nanoparticles composed of II-VI or III-V elements, which can emit fluorescence after being excited, and the emission spectrum can be controlled by changing the size of the quantum dot, and Its fluorescence intensity and stability are very good, and it is a very good photoluminescent material.
  • QD materials used in display panels have many advantages such as long life and wide color gamut, but there are also problems of low light conversion efficiency.
  • scattering particles are added to the quantum dots to achieve the purpose of increasing the optical path, but at the same time, it will cause certain difficulties in the process, mainly because the scattering particles will agglomerate , It will block the nozzle and the production effect is not good.
  • a plurality of color resists located on the base substrate
  • the color resist includes: quantum dot layers and scattering particle layers arranged alternately.
  • the color resist includes at least two quantum dot layers and at least one scattering particle layer;
  • the film layer farthest from the base substrate in the color resist is a quantum dot layer.
  • the quantum dot layer farthest from the base substrate in the color resist is the first quantum dot layer
  • the thickness of the first quantum dot layer is half the wavelength of the stimulated emission light of the first quantum dot layer.
  • each quantum dot layer other than the first quantum dot layer is a second quantum dot layer
  • the sum of the thickness of each second quantum dot layer and the adjacent layer of scattering particle layers is an odd multiple of the half wavelength of the excitation light.
  • the scattering particle layer includes: a substrate, and scattering particles dispersed in the substrate.
  • the display substrate is divided into a plurality of pixel units, and each of the color resistors corresponds to each of the pixel units;
  • the display substrate further includes: a first ring-shaped retaining wall used to define the area where the color resist is located, and a second ring-shaped retaining wall surrounding the first ring-shaped retaining wall;
  • the height of the first annular retaining wall is smaller than the height of the second annular retaining wall.
  • the height of the first annular retaining wall is 3/4 to 4/5 of the height of the second annular retaining wall.
  • the material of the quantum dot layer is sparse from the material of the first annular retaining wall.
  • a scattering structure is provided in the setting gap.
  • it further includes: a plurality of support columns;
  • the supporting column is located on the side of each of the second annular retaining walls away from the first annular retaining wall; the height of the first annular retaining wall and the second annular retaining wall are both smaller than the height of the supporting column .
  • it further includes: a plurality of support columns;
  • the supporting column is located above the second annular retaining wall.
  • the material of the scattering particle layer is sparse from the material of the second annular retaining wall, and the material of the scattering particle layer is close to the material of the support column.
  • an embodiment of the present disclosure also provides a manufacturing method of the above-mentioned display substrate, which includes:
  • a quantum dot layer consistent with the color resist pattern is formed on the base substrate by inkjet printing
  • a coating method is adopted to form a scattering particle layer on the quantum dot layer.
  • a layer of scattering particles is coated row by row or column by column on the base substrate on which the quantum dot layer is formed.
  • the forming a scattering particle layer on the quantum dot layer by coating includes:
  • the entire surface of the base substrate on which the quantum dot layer is formed is coated with a scattering particle layer.
  • an embodiment of the present disclosure also provides a display device, which includes the above-mentioned display substrate.
  • FIG. 1 is one of the schematic cross-sectional structure diagrams of a display substrate provided by an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of a cross-sectional structure of a color resist provided by an embodiment of the disclosure
  • FIG. 3 is a second schematic diagram of a cross-sectional structure of a display substrate provided by an embodiment of the disclosure.
  • FIG. 4 is one of the top structural schematic diagrams of the display substrate provided by the embodiments of the disclosure.
  • FIG. 5 is a third schematic diagram of a cross-sectional structure of a display substrate provided by an embodiment of the disclosure.
  • FIG. 6 is a second schematic diagram of a top view structure of a display substrate provided by an embodiment of the disclosure.
  • FIG. 7 is a fourth schematic diagram of a cross-sectional structure of a display substrate provided by an embodiment of the disclosure.
  • FIG. 8 is a flowchart of a manufacturing method of a display substrate provided by an embodiment of the disclosure.
  • FIG. 9 is one of the schematic diagrams of the coating method provided by the embodiments of the disclosure.
  • FIG. 11 is a schematic diagram of an inkjet printed quantum dot layer provided by an embodiment of the disclosure.
  • FIG. 12 is a schematic diagram of a dried quantum dot layer provided by an embodiment of the disclosure.
  • FIG. 13 is a schematic diagram of a coated scattering particle layer provided by an embodiment of the disclosure.
  • FIG. 14 is a schematic diagram of a dried scattering particle layer provided by an embodiment of the disclosure.
  • FIG. 15 is a schematic structural diagram of a display device provided by an embodiment of the disclosure.
  • the display substrate provided by an embodiment of the present disclosure includes:
  • the color resistor 12 includes: a quantum dot layer 121 and a scattering particle layer 122 alternately stacked.
  • each color resist is arranged alternately with a quantum dot layer and a scattering particle layer, so that the quantum dot material and the scattering particle material can be separated during the manufacturing process, and the quantum dot material will not cause nozzle blockage. Therefore, the quantum dot layer can be made by inkjet printing; for the scattering particle material with serious agglomeration phenomenon, the scattering particle layer can be made by strip coating or whole layer coating, which can avoid doping the scattering particles in The problem of nozzle clogging caused by quantum dot materials.
  • the above-mentioned display substrate provided by the embodiments of the present disclosure can be used as a color filter substrate in a display module.
  • the color resist is excited by an excitation light source, so that the quantum dot material in the color resist is stimulated to emit light of a specific color, and the excitation light of the quantum dot material
  • the half-peak width of the QD is relatively narrow, and the display substrate using quantum dot materials can be used in display modules with high color gamut requirements.
  • the color resist 12 includes at least two quantum dot layers 121 and at least one scattering particle layer 122;
  • the film layer farthest from the base substrate 11 in the color resist 12 is the quantum dot layer 121.
  • At least two quantum dot layers 121 are provided in the color resist 12, and the quantum dot layer 121 and the scattering particle layer 122 are alternately stacked.
  • the scattering particle layer 122 can scatter the excitation light, so that the excitation light can be emitted to the quantum dot layer 121 in all directions. , Improve the light conversion efficiency of the quantum dot layer 121.
  • the quantum dot layer in the color resist 12 that is farthest from the base substrate 11 is the first quantum dot layer
  • the thickness of the first quantum dot layer is half the wavelength of the stimulated emission of the first quantum dot layer.
  • the excitation light source is located on the side of the first quantum dot layer away from the base substrate.
  • the excitation light will first pass through the first quantum dot layer and then enter other quantum dot layers. Then the thickness of the first quantum dot layer is set to The half-wavelength of the stimulated emission of the quantum dot material can increase the transmission of the stimulated emission.
  • the thickness of the first quantum dot layer needs to be determined according to the properties of the quantum dot material.
  • the wavelength of stimulated emission of quantum dots of different materials is different. In specific applications, the thickness needs to be set according to the properties of the quantum dot material.
  • each quantum dot layer other than the foregoing first quantum dot layer is a second quantum dot layer
  • each second quantum dot layer and the adjacent layer of scattering particles is an odd multiple of the half-wavelength of the excitation light, so that the unconverted excitation light will resonate and strengthen inside the film, thereby To improve the excitation efficiency of quantum dot materials.
  • the scattering particle layer includes a substrate and scattering particles dispersed in the substrate.
  • the substrate can be made of colloidal material
  • the scattering particle material can be mixed with a transparent colloidal material, and dried to form a translucent optical film
  • the scattering particle layer can play the role of both transmission and reflection.
  • the scattering particle layer 122 and the quantum dot layer 121 cooperate with each other to form an effective transmission structure for the excitation light, which can effectively improve the utilization rate of the excitation light.
  • the above-mentioned display substrate is divided into a plurality of pixel units, and each color resistor 12 in the display substrate corresponds to each pixel unit;
  • the display substrate provided by the embodiment of the present disclosure may further include: a first ring-shaped retaining wall 13 for limiting the area where the color resistance 12 is located, and a surrounding first ring-shaped retaining wall 13 The second annular retaining wall 14;
  • the first annular barrier 13 is used to define the area where the color resist 12 is located, and the quantum dot material can be directly printed on the inside of the first annular barrier 13 to form a quantum dot layer.
  • the first annular retaining wall 13 and the second annular retaining wall 14 are not connected together, but there is a set gap between each other.
  • the scattering particle material is coated During the process, it can be cut off by the ring-shaped retaining wall to form a layer of scattering particles on the quantum dot layer, and the material of the scattering particles will also be filled in the setting gap to form a scattering structure in the setting gap.
  • the structure can prevent the stimulated emission of the quantum dot material from being exposed from both sides.
  • the height of the first annular retaining wall 13 is smaller than the height of the second annular retaining wall 14. Therefore, the scattering particle material is in the coating process The middle is easier to be cut by the second annular retaining wall 14, and it is easy to form a scattering structure in the set gap.
  • the height of the first annular retaining wall 13 may be set to 3/4 to 4/5 of the height of the second annular retaining wall 14. Setting the brightness of the first annular retaining wall 13 to be sufficiently high is beneficial to cut off the scattering particle material and can avoid the occurrence of landslides.
  • the above-mentioned display substrate provided by the embodiment of the present disclosure may further include: a plurality of supporting pillars 15; the supporting pillars may support the display substrate without colliding with other film layers;
  • the supporting column 15 can be arranged on the side of each second annular retaining wall 14 away from the first annular retaining wall 13, and the top view structure is shown in FIG. 6;
  • the heights of the annular retaining wall 13 and the second annular retaining wall 14 are both smaller than the height of the supporting column 15;
  • the supporting column 15 may also be arranged on the second annular retaining wall 14.
  • the supporting column 15 can also play a role of stretching and balancing the interface of the scattering particle material layer during the coating process of the scattering particle material. During the drying process of the scattering particle material, ensure the film formation Flatness.
  • the selection of materials for the first ring-shaped retaining wall 13, the second ring-shaped retaining wall 14, and the support column 15 needs to be selected according to the affinity of the materials in contact with them.
  • the material of the quantum dot layer is sparse from the material of the first annular retaining wall.
  • the quantum dot material is directly formed inside the first annular retaining wall 13 by means of inkjet printing. Therefore, using a material that is sparse with the quantum dot layer material to make the first annular retaining wall 13 is more conducive to the formation of a film of the quantum dot material inside it.
  • the material of the scattering particle layer is sparse with the material of the second annular retaining wall, and the material of the scattering particle layer is close to the material of the supporting column.
  • the scattering particle layer is formed by coating, so the higher support pillar 15 is made of a material that is compatible with the scattering particle material, so that the support pillar 15 and the scattering particle material can be intimate, and the scattering particle layer can be stretched.
  • the shaping effect makes the film formation more smooth, and the second ring-shaped retaining wall 14 is made of materials that are sparser than the material of the scattering particle layer, which facilitates the film formation of the scattering particle material in the second ring-shaped retaining wall 14.
  • the embodiments of the present disclosure also provide a manufacturing method of any of the above-mentioned display substrates. As shown in FIG. 8, the manufacturing method may include:
  • S201 using inkjet printing to form a quantum dot layer consistent with the color resist pattern on the base substrate;
  • a layer of scattering particles is formed on the quantum dot layer by coating.
  • the above-mentioned manufacturing method provided by the embodiments of the present disclosure can separate the quantum dot material from the scattering particle material in the manufacturing process, and the quantum dot material will not cause the nozzle to block, and can be manufactured by inkjet printing; for the scattering particles with serious agglomeration phenomenon
  • the material can be made by strip coating or whole layer coating. This can avoid the problem of nozzle clogging caused by doping scattering particles in the quantum dot material.
  • the above-mentioned display substrate provided by the embodiment of the present disclosure can be used as a color filter substrate, and the color resistance provided on the base substrate corresponds to each pixel unit; in the above-mentioned step S202, a coating method is used to coat the quantum dot layer
  • the scattering particle layer can be made in the following two ways:
  • the scattering particle layer may be coated row by row or column by column on the base substrate on which the quantum dot layer is formed according to the row or column direction of the pixel unit.
  • a scattering particle layer may be coated on the entire surface of the base substrate on which the quantum dot layer is formed.
  • the quantum dot material 121' is formed in each first annular retaining wall 13 by inkjet printing, and the display substrate is dried after the inkjet printing is completed, so that the first annular retaining wall A quantum dot layer 121 is formed inside, see FIG. 12.
  • FIG. 12 shows that the quantum dot material 121' is formed in each first annular retaining wall 13 by inkjet printing, and the display substrate is dried after the inkjet printing is completed, so that the first annular retaining wall A quantum dot layer 121 is formed inside, see FIG. 12.
  • the surface of the display substrate can be coated with a scattering particle material 122' by strip coating or entire surface coating.
  • the scattering particle material will be blocked by the first ring-shaped retaining wall 13 and the second ring-shaped retaining wall.
  • the wall 14 is cut, and a film is formed inside the second annular retaining wall 14; after drying the scattering particle material, as shown in FIG. 14, a layer of scattering particle layer 122 can be formed on the surface of the quantum dot layer 121.
  • alternately stacked quantum dot layers 121 and scattering particle layers can be formed inside the first annular retaining wall 13, so as to separate the quantum dot material from the scattering particle material, and by setting a reasonable film thickness, It can also improve the use efficiency of excitation light and obtain higher energy light emission.
  • the specific embodiment of the present disclosure also provides a display device.
  • the display device includes the above-mentioned display substrate provided by the specific embodiment of the present disclosure.
  • the display device may be a liquid crystal panel, a liquid crystal display, a liquid crystal television, or an organic light emitting diode. , OLED) panels, OLED displays, OLED TVs and other display devices. Since the principle of solving the problem of the display device is similar to that of the above-mentioned display substrate, the implementation of the display device can refer to the implementation of the above-mentioned display substrate, and the repetition will not be repeated.
  • the above-mentioned display device may further include: a light source layer 16 and a reflective layer 17; wherein the light source layer 16 is located on the side of the color resist 12 away from the base substrate 11. , The reflective layer 17 is located on the side of the light source layer 16 away from the color resist 12.
  • the light source layer 16 can emit excitation light, thereby exciting the color resist 12 to emit light corresponding to the color of the pixel unit, and the reflective layer 17 can reflect the light emitted from the light source layer 16 toward the side away from the color resist 12 to improve the light energy utilization rate.
  • the display substrate, the manufacturing method thereof, and the display device provided by the embodiments of the present disclosure include: a base substrate, and a plurality of color resists on the base substrate; the color resist includes: quantum dot layers and scattering particles arranged alternately Floor.
  • Each color resistor adopts the alternate arrangement of quantum dot layer and scattering particle layer, which can separate the quantum dot material and the scattering particle material in the manufacturing process, and the quantum dot material will not cause the nozzle to block, and can be made by inkjet printing; compare the phenomenon of agglomeration Severe scattering particle materials can be made by strip coating or whole layer coating. This can avoid the problem of nozzle clogging caused by doping scattering particles in the quantum dot material.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Led Device Packages (AREA)
  • Optical Filters (AREA)

Abstract

一种显示基板、其制作方法及显示装置,该显示基板,包括:衬底基板(11);多个色阻(12),位于衬底基板(11)之上;色阻(12)包括:交替叠层设置的量子点层(121)和散射粒子层(122)。各色阻(12)采用量子点层(121)和散射粒子层(122)交替设置的方式,可以在制程上将量子点材料与散射粒子材料进行分离,量子点材料不会造成喷头堵塞,因而可以采用喷墨打印方式制作量子点层(121);对于团聚现象比较严重的散射粒子材料,可以采用条形涂覆或整层涂覆的方式制作散射粒子层(122),由此可以避免将散射粒子掺杂在量子点材料中造成喷头堵塞的问题。

Description

显示基板、其制作方法及显示装置
相关申请的交叉引用
本申请要求在2019年03月12日提交中国专利局、申请号为201910183784.9、申请名称为“显示基板、其制作方法及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及显示基板、其制作方法及显示装置。
背景技术
量子点(Quantum Dot,简称QD)通常是一种由II-VI族或III-V族元素组成的纳米颗粒,受激后可以发射荧光,发光光谱可以通过改变量子点的尺寸大小来控制,且其荧光强度和稳定性都很好,是一种很好的光致发光材料。
QD材料用于显示面板具有寿命长,色域广等多个优点,但是也存在光转化效率不高的问题。为了提高量子点的光转化效率,通常情况下,会在量子点中增加散射粒子,以达到增加光程的目的,但是这样做的同时,会对工艺造成一定的难度,主要是散射粒子会团聚,会堵塞喷头,制作效果不佳。
发明内容
本公开实施例提供的显示基板,其中,包括:
衬底基板;
多个色阻,位于所述衬底基板之上;
所述色阻包括:交替叠层设置的量子点层和散射粒子层。
可选地,在本公开实施例中,所述色阻包括至少两层所述量子点层和至少一层所述散射粒子层;
所述色阻中距离所述衬底基板最远的膜层为量子点层。
可选地,在本公开实施例中,所述色阻中距离所述衬底基板最远的量子点层为第一量子点层;
所述第一量子点层的厚度为所述第一量子点层受激发射光的半波长。
可选地,在本公开实施例中,除所述第一量子点层以外的各量子点层为第二量子点层;
每个所述第二量子点层与相邻的一层散射粒子层的厚度之和为激发光的半波长的奇数倍。
可选地,在本公开实施例中,所述散射粒子层,包括:基材,以及分散于所述基材内的散射粒子。
可选地,在本公开实施例中,所述显示基板分为多个像素单元,各所述色阻分别对应各所述像素单元;
所述显示基板还包括:用于限定所述色阻所在区域的第一环形挡墙,以及围绕所述第一环形挡墙的第二环形挡墙;
所述第二环形挡墙与所述第一环形挡墙之间存在设定间隙。
可选地,在本公开实施例中,所述第一环形挡墙的高度小于所述第二环形挡墙的高度。
可选地,在本公开实施例中,所述第一环形挡墙的高度为所述第二环形挡墙的高度的3/4~4/5。
可选地,在本公开实施例中,所述量子点层的材料与所述第一环形挡墙的材料相疏。
可选地,在本公开实施例中,所述设定间隙中设有散射结构。
可选地,在本公开实施例中,还包括:多个支撑柱;
所述支撑柱位于各所述第二环形挡墙背离所述第一环形挡墙的一侧;所述第一环形挡墙及所述第二环形挡墙的高度均小于所述支撑柱的高度。
可选地,在本公开实施例中,还包括:多个支撑柱;
所述支撑柱位于所述第二环形挡墙之上。
可选地,在本公开实施例中,所述散射粒子层的材料与所述第二环形挡 墙的材料相疏,所述散射粒子层的材料与所述支撑柱的材料相亲。
相应地,本公开实施例还提供了一种上述显示基板的制作方法,其中,包括:
提供一衬底基板;
在所述衬底基板上形成交替层叠设置的量子点层和散射粒子层;
其中,采用喷墨打印的方式在所述衬底基板上形成与色阻图形一致的量子点层;
采用涂覆的方式,在所述量子点层上形成散射粒子层。
可选地,在本公开实施例中,各所述色阻分别对应各像素单元;所述采用涂覆的方式,在所述量子点层上形成散射粒子层,包括:
在形成有所述量子点层的所述衬底基板上按照像素单元行或列的方向逐行或逐列涂覆散射粒子层。
可选地,在本公开实施例中,所述采用涂覆的方式,在所述量子点层上形成散射粒子层,包括:
在形成有所述量子点层的所述衬底基板上整面涂覆散射粒子层。
相应地,本公开实施例还提供了一种显示装置,其中,包括上述显示基板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的显示基板的截面结构示意图之一;
图2为本公开实施例提供的色阻的截面结构示意图;
图3为本公开实施例提供的显示基板的截面结构示意图之二;
图4为本公开实施例提供的显示基板的俯视结构示意图之一;
图5为本公开实施例提供的显示基板的截面结构示意图之三;
图6为本公开实施例提供的显示基板的俯视结构示意图之二;
图7为本公开实施例提供的显示基板的截面结构示意图之四;
图8为本公开实施例提供的显示基板的制作方法流程图;
图9为本公开实施例提供的涂覆方法示意图之一;
图10为本公开实施例提供的涂覆方法示意图之二;
图11为本公开实施例提供的喷墨打印的量子点层的示意图;
图12为本公开实施例提供的干燥处理后的量子点层的示意图;
图13为本公开实施例提供的涂覆的散射粒子层的示意图;
图14为本公开实施例提供的干燥处理后的散射粒子层的示意图;
图15为本公开实施例提供的显示装置的结构示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
下面结合附图详细介绍本公开具体实施例提供的显示基板、其制作方法及显示装置。
如图1所示,本公开实施例提供的显示基板,包括:
衬底基板11;
多个色阻12,位于衬底基板之上;
色阻12的具体结构如图2所示,同时参照图2,色阻12包括:交替叠层设置的量子点层121和散射粒子层122。
本公开实施例提供的上述显示基板中,各色阻采用量子点层和散射粒子层交替设置的方式,可以在制程上将量子点材料与散射粒子材料进行分离, 量子点材料不会造成喷头堵塞,因而可以采用喷墨打印方式制作量子点层;对于团聚现象比较严重的散射粒子材料,可以采用条形涂覆或整层涂覆的方式制作散射粒子层,由此可以避免将散射粒子掺杂在量子点材料中造成喷头堵塞的问题。
本公开实施例提供的上述显示基板可作为显示模组中的彩膜基板,由激发光源激发色阻,以使色阻中的量子点材料受激发射特定颜色的光,量子点材料的激发光的半峰宽度较窄,采用量子点材料的显示基板可以用于高色域要求的显示模组中。
在具体实施时,本公开实施例提供的上述显示基板中,如图2所示,色阻12包括至少两层量子点层121和至少一层散射粒子层122;
色阻12中距离衬底基板11最远的膜层为量子点层121。
色阻12中设置至少两层量子点层121,且量子点层121与散射粒子层122交替层叠设置,散射粒子层122可以散射激发光,从而使激发光能够在各个方向射向量子点层121,提高量子点层121的光转换效率。
在具体实施时,本公开实施例提供的上述显示基板中,参照图2,色阻12中距离衬底基板11最远的量子点层为第一量子点层;
第一量子点层的厚度为第一量子点层受激发射光的半波长。
在实际应用中,激发光源位于第一量子点层背离衬底基板的一侧,激发光会首先经过第一量子点层再向其它量子点层入射,那么将第一量子点层的厚度设置为量子点材料受激发射光的半波长,可以对受激发射的光起到增透的作用。第一量子点层的厚度需要根据量子点材料的性质决定,不同材料的量子点受激发射的波长有所差异,在具体应用中,需要按照量子点材料的性质来设置厚度。
进一步地,在本公开实施例中,除上述第一量子点层以外的各量子点层为第二量子点层;
每个第二量子点层与相邻的一层散射粒子层的厚度之和为激发光的半波长的奇数倍,这样可将使没有被转化的激发光会在膜层内部共振加强,由此 来提高量子点材料的激发效率。
在实际应用中,本公开实施例提供的上述显示基板中,散射粒子层,包括:基材,以及分散于基材内的散射粒子。具体地,基材可以由胶质材料制作,可将散射粒子材料混合在透明的胶质材料中,干燥后形成半透明的光学膜,散射粒子层可以同时起到透射和反射的作用。散射粒子层122与量子点层121相互配合,为激发光形成一个有效的传输结构,可以有效提高了激发光的利用率。
在具体实施时,本公开实施例中,上述显示基板分为多个像素单元,显示基板中的各色阻12分别对应各像素单元;
为限定出色阻所在区域,如图3所示,本公开实施例提供的显示基板还可以包括:用于限定色阻12所在区域的第一环形挡墙13,以及围绕第一环形挡墙13的第二环形挡墙14;
第二环形挡墙14与第一环形挡墙13存在设定间隙,第一环形挡墙13与第二环形挡墙14的俯视结构如图4所示。
本公开实施例中,第一环形挡墙13用于限定色阻12所在的区域,量子点材料可以直接打印到第一环形挡墙13的内部,以形成量子点层。本公开实施例中的第一环形挡墙13与第二环形挡墙14不是连接在一起的,而是相互之间存在设定间隙,通过设置双层环形挡墙,散射粒子材料在涂覆的过程中可以被环形挡墙割断,从而在量子点层之上形成散射粒子层,并且,在设定间隙中也会填入散射粒子的材料,从而形成位于设定间隙中的散射结构,该散射结构可以防止量子点材料的受激发射光从两侧露出。
在具体实施时,本公开实施例提供的上述显示基板中,如图3所示,第一环形挡墙13的高度小于第二环形挡墙14的高度,因而,散射粒子材料在涂覆的过程中更容易被第二环形挡墙14割断,也容易在设定间隙中形成散射结构。
进一步地,第一环形挡墙13的高度可设置为第二环形挡墙14的高度的3/4~4/5。将第一环形挡墙13的亮度设置得足够高,有利于割断散射粒子材料, 并且可以避免滑坡的产生。
除此之外,如图5和图7所示,本公开实施例提供的上述显示基板还可以包括:多个支撑柱15;该支撑柱可以支撑显示基板不与其它膜层碰撞;
在实际应用中,如图5所示,支撑柱15可以设置于各第二环形挡墙14背离第一环形挡墙13的一侧,俯视结构如图6所示;此时,可设置第一环形挡墙13及第二环形挡墙14的高度均小于支撑柱15的高度;
或者,如图7所示,支撑柱15也可设置于第二环形挡墙14之上。
支撑柱15除起到支撑的作用之外,还可以在散射粒子材料涂覆的过程中起到对散射粒子材料层界面的拉伸平衡作用,在散射粒子材料干燥的过程中,确保成膜的平整性。
进一步地,在第一环形挡墙13、第二环形挡墙14以及支撑柱15的选材上需要根据与其接触材料的亲疏性进行选择。
在本公开实施例中,量子点层的材料与第一环形挡墙的材料相疏,在膜层形成的过程中,量子点材料采用喷墨打印的方式直接形成在第一环形挡墙13内部,因此采用与量子点层材料相疏的材料来制作第一环形挡墙13更有利于量子点材料在其内部成膜。
在具体实施时,上述散射粒子层的材料与第二环形挡墙的材料相疏,散射粒子层的材料与支撑柱的材料相亲。散射粒子层是采用涂覆的方式来形成,那么将高度较高的支撑柱15采用与散射粒子材料相亲的材料进行制作,可以使支撑柱15与散射粒子材料相亲,对散射粒子层起拉伸定型的作用,使其成膜更加平整,而第二环形挡墙14采用与散射粒子层的材料相疏材料进行制作,有利于散射粒子材料在第二环形挡墙14内成膜。
另一方面,本公开实施例还提供一种上述任一显示基板的制作方法,如图8所示,该制作方法可包括:
S10、提供一衬底基板;
S20、在衬底基板上形成交替层叠设置的量子点层和散射粒子层;
其中,S201、采用喷墨打印的方式在衬底基板上形成与色阻图形一致的 量子点层;
S202、采用涂覆的方式,在量子点层上形成散射粒子层。
本公开实施例提供的上述制作方法,在制程上可以将量子点材料与散射粒子材料进行分离,量子点材料不会造成喷头堵塞,可以采用喷墨打印方式制作;对于团聚现象比较严重的散射粒子材料,可以采用条形涂覆或整层涂覆的方式制作。由此可以避免将散射粒子掺杂在量子点材料中造成喷头堵塞的问题。
具体地,本公开实施例提供的上述显示基板可作为彩膜基板,衬底基板上设置的色阻分别对应各像素单元;在上述的步骤S202中,采用涂覆的方式,在量子点层上形成散射粒子层,可以采用以下两种方式进行制作:
在一种可实施的方式中,如图9所示,可以在形成有量子点层的衬底基板上按照像素单元行或列的方向逐行或逐列涂覆散射粒子层。
在另一种可实施的方式中,如图10所示,可以在形成有量子点层的衬底基板上整面涂覆散射粒子层。
具体来说,在打印或涂覆上述量子点材料或散射粒子材料之前,需要在衬底基板上先形成用于限定色阻所在区域的第一环形挡墙和第二环形挡墙,第二环形挡墙套设于第一环形挡墙的外侧,且第一环形挡墙与第二环形挡墙之间设置一定的间隙。如图11所示,将量子点材料121’通过喷墨打印的方式形成于各第一环形挡墙13之中,在喷墨打印结束后对显示基板做干燥处理,从而在第一环形挡墙内形成量子点层121,参见图12。接着,如图13所示,可以采用条形涂覆或整面涂覆的方式在显示基板的表面涂覆散射粒子材料122’,散射粒子材料会被第一环形挡墙13和第二环形挡墙14割断,在第二环形挡墙14的内部成膜;在对散射粒子材料进行干燥处理后,如图14所示,可在量子点层121的表面形成一层散射粒子层122。重复上述步骤,可以在第一环形挡墙13内部形成交替堆叠的量子点层121和散射粒子层,从而将量子点材料与散射粒子材料的制成相分离,而通过设置合理的膜层厚度,还可以提高激发光的使用效率,获取更高能量的光线出射。
本公开具体实施例还提供了一种显示装置,该显示装置包括本公开具体实施例提供的上述显示基板,该显示装置可以为液晶面板、液晶显示器、液晶电视、有机发光二极管(Organic Light Emitting Diode,OLED)面板、OLED显示器、OLED电视等显示装置。由于该显示装置解决问题的原理与上述显示基板相似,因此该显示装置的实施可以参见上述显示基板的实施,重复之处不再赘述。
具体地,如图15所示,本公开实施例提供的上述显示装置中,还可以包括:光源层16,以及反射层17;其中,光源层16位于色阻12背离衬底基板11的一侧,反射层17位于光源层16背离色阻12的一侧。光源层16可以出射激发光,从而激发色阻12出射与像素单元颜色对应的光线,反射层17可以反射光源层16朝向背离色阻12一侧出射的光线,提高光能利用率。
本公开实施例提供的显示基板、其制作方法及显示装置,包括:衬底基板,以及位于衬底基板之上的多个色阻;色阻包括:交替叠层设置的量子点层和散射粒子层。各色阻采用量子点层和散射粒子层交替设置的方式,可以在制程上量子点材料与散射粒子材料进行分离,量子点材料不会造成喷头堵塞,可以采用喷墨打印方式制作;对于团聚现象比较严重的散射粒子材料,可以采用条形涂覆或整层涂覆的方式制作。由此可以避免将散射粒子掺杂在量子点材料中造成喷头堵塞的问题。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (17)

  1. 一种显示基板,其中,包括:
    衬底基板;
    多个色阻,位于所述衬底基板之上;
    所述色阻包括:交替叠层设置的量子点层和散射粒子层。
  2. 如权利要求1所述的显示基板,其中,所述色阻包括至少两层所述量子点层和至少一层所述散射粒子层;
    所述色阻中距离所述衬底基板最远的膜层为量子点层。
  3. 如权利要求2所述的显示基板,其中,所述色阻中距离所述衬底基板最远的量子点层为第一量子点层;
    所述第一量子点层的厚度为所述第一量子点层受激发射光的半波长。
  4. 如权利要求3所述的显示基板,其中,除所述第一量子点层以外的各量子点层为第二量子点层;
    每个所述第二量子点层与相邻的一层散射粒子层的厚度之和为激发光的半波长的奇数倍。
  5. 如权利要求1~4任一项所述的显示基板,其中,所述散射粒子层,包括:基材,以及分散于所述基材内的散射粒子。
  6. 如权利要求1~4任一项所述的显示基板,其中,所述显示基板分为多个像素单元,各所述色阻分别对应各所述像素单元;
    所述显示基板还包括:用于限定所述色阻所在区域的第一环形挡墙,以及围绕所述第一环形挡墙的第二环形挡墙;
    所述第二环形挡墙与所述第一环形挡墙之间存在设定间隙。
  7. 如权利要求6所述的显示基板,其中,所述第一环形挡墙的高度小于所述第二环形挡墙的高度。
  8. 如权利要求7所述的显示基板,其中,所述第一环形挡墙的高度为所述第二环形挡墙的高度的3/4~4/5。
  9. 如权利要求6所述的显示基板,其中,所述量子点层的材料与所述第一环形挡墙的材料相疏。
  10. 如权利要求6所述的显示基板,其中,所述设定间隙中设有散射结构。
  11. 如权利要求6所述的显示基板,其中,还包括:多个支撑柱;
    所述支撑柱位于各所述第二环形挡墙背离所述第一环形挡墙的一侧;所述第一环形挡墙及所述第二环形挡墙的高度均小于所述支撑柱的高度。
  12. 如权利要求6所述的显示基板,其中,还包括:多个支撑柱;
    所述支撑柱位于所述第二环形挡墙之上。
  13. 如权利要求11或12所述的显示基板,其中,所述散射粒子层的材料与所述第二环形挡墙的材料相疏,所述散射粒子层的材料与所述支撑柱的材料相亲。
  14. 一种如权利要求1~13任一项所述的显示基板的制作方法,其中,包括:
    提供一衬底基板;
    在所述衬底基板上形成交替层叠设置的量子点层和散射粒子层;
    其中,采用喷墨打印的方式在所述衬底基板上形成与色阻图形一致的量子点层;
    采用涂覆的方式,在所述量子点层上形成散射粒子层。
  15. 如权利要求14所述的制作方法,其中,各所述色阻分别对应各像素单元;所述采用涂覆的方式,在所述量子点层上形成散射粒子层,包括:
    在形成有所述量子点层的所述衬底基板上按照像素单元行或列的方向逐行或逐列涂覆散射粒子层。
  16. 如权利要求14所述的制作方法,其中,所述采用涂覆的方式,在所述量子点层上形成散射粒子层,包括:
    在形成有所述量子点层的所述衬底基板上整面涂覆散射粒子层。
  17. 一种显示装置,其中,包括如权利要求1~13任一项所述的显示基板。
PCT/CN2020/077303 2019-03-12 2020-02-28 显示基板、其制作方法及显示装置 WO2020182001A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910183784.9A CN109887978B (zh) 2019-03-12 2019-03-12 显示基板、其制作方法及显示装置
CN201910183784.9 2019-03-12

Publications (1)

Publication Number Publication Date
WO2020182001A1 true WO2020182001A1 (zh) 2020-09-17

Family

ID=66931899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077303 WO2020182001A1 (zh) 2019-03-12 2020-02-28 显示基板、其制作方法及显示装置

Country Status (2)

Country Link
CN (1) CN109887978B (zh)
WO (1) WO2020182001A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109887978B (zh) * 2019-03-12 2021-01-12 京东方科技集团股份有限公司 显示基板、其制作方法及显示装置
CN110246990A (zh) * 2019-06-27 2019-09-17 广东普加福光电科技有限公司 一种改善喷墨打印量子点层对蓝光吸收的方法
CN110764175B (zh) * 2019-11-27 2022-03-29 京东方科技集团股份有限公司 一种彩色滤光片及制备方法、显示面板及显示装置
CN113745292B (zh) * 2021-08-27 2023-06-02 深圳市华星光电半导体显示技术有限公司 量子点彩膜基板、其制造方法、以及量子点显示装置
CN114755861B (zh) * 2022-06-15 2023-01-06 广东欧迪明光电科技股份有限公司 一种高效率量子点光学基片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105602546A (zh) * 2015-12-30 2016-05-25 量子光电科技(天津)有限公司 用于3d打印的量子点发光复合物及其制备方法
CN106206871A (zh) * 2016-08-03 2016-12-07 纳晶科技股份有限公司 发光器件的制备方法与发光器件
CN107405873A (zh) * 2015-03-26 2017-11-28 富士胶片株式会社 功能性膜及功能性膜的制造方法
CN207217581U (zh) * 2017-11-24 2018-04-10 广东昭信光电科技有限公司 一种多层封装的led器件
CN109887978A (zh) * 2019-03-12 2019-06-14 京东方科技集团股份有限公司 显示基板、其制作方法及显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10551670B2 (en) * 2015-01-05 2020-02-04 Samsung Display Co., Ltd. Liquid crystal display with improved color reproducibility
CN206892501U (zh) * 2016-09-26 2018-01-16 惠州市粤泰翔科技有限公司 一种多层量子点光扩散薄膜
KR102321892B1 (ko) * 2017-04-11 2021-11-05 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR102454192B1 (ko) * 2017-07-19 2022-10-13 삼성디스플레이 주식회사 색변환 패널 및 이를 포함하는 표시 장치
CN109427847B (zh) * 2017-08-29 2020-12-11 京东方科技集团股份有限公司 发光层的制造方法、电致发光器件及显示装置
CN108682753B (zh) * 2018-05-16 2020-04-07 深圳市华星光电技术有限公司 Oled显示面板及其制作方法
CN108987609B (zh) * 2018-07-27 2020-05-01 京东方科技集团股份有限公司 白光oled器件和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107405873A (zh) * 2015-03-26 2017-11-28 富士胶片株式会社 功能性膜及功能性膜的制造方法
CN105602546A (zh) * 2015-12-30 2016-05-25 量子光电科技(天津)有限公司 用于3d打印的量子点发光复合物及其制备方法
CN106206871A (zh) * 2016-08-03 2016-12-07 纳晶科技股份有限公司 发光器件的制备方法与发光器件
CN207217581U (zh) * 2017-11-24 2018-04-10 广东昭信光电科技有限公司 一种多层封装的led器件
CN109887978A (zh) * 2019-03-12 2019-06-14 京东方科技集团股份有限公司 显示基板、其制作方法及显示装置

Also Published As

Publication number Publication date
CN109887978A (zh) 2019-06-14
CN109887978B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2020182001A1 (zh) 显示基板、其制作方法及显示装置
US9804489B2 (en) Method for manufacturing quantum dot color filter
US9897855B2 (en) Display panel and display apparatus
WO2020258878A1 (zh) 显示面板、显示装置及显示面板的制备方法
US10068949B2 (en) Display panel
JP5726739B2 (ja) 高効率有機発光素子およびその製造方法
CN108873465B (zh) 量子点显示基板及其制作方法、显示装置
US20170261849A1 (en) Method for manufacturing color filter substrate
US20210336096A1 (en) Display panel and manufacturing method thereof
CN112133811B (zh) 显示面板、显示装置及显示面板的制备方法
WO2020042650A1 (zh) 显示面板
CN107403828B (zh) 一种显示面板及其制作方法
CN109387975B (zh) 一种显示面板及其显示器件
US20170254934A1 (en) Method for patterning quantum dot layer and method for manufacturing quantum dot color filter
CN107706222A (zh) 一种阵列基板及其制备方法、显示面板
CN104241313B (zh) 有机发光二极管面板
CN104795430A (zh) 一种有机发光显示器件及其制作方法
CN109031767B (zh) 一种彩膜基板、显示装置及制作方法
JP2012221686A (ja) 表示装置
US10330265B2 (en) Front light source and display device comprising the front light source
TWI726849B (zh) 光學膜,具有該光學膜的發光裝置,及具有該發光裝置的顯示器
WO2019161595A1 (zh) 一种光学膜片、背光模组及显示装置
JP2016042450A (ja) 表示装置
US11567403B2 (en) Quantum dot color filter, fabrication method thereof, display panel and device
WO2023230784A1 (zh) 显示面板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770584

Country of ref document: EP

Kind code of ref document: A1