WO2020181676A1 - 一种全工况辅助脱硝系统及运行方法 - Google Patents

一种全工况辅助脱硝系统及运行方法 Download PDF

Info

Publication number
WO2020181676A1
WO2020181676A1 PCT/CN2019/092428 CN2019092428W WO2020181676A1 WO 2020181676 A1 WO2020181676 A1 WO 2020181676A1 CN 2019092428 W CN2019092428 W CN 2019092428W WO 2020181676 A1 WO2020181676 A1 WO 2020181676A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage medium
heat storage
feedwater
heat
regulating valve
Prior art date
Application number
PCT/CN2019/092428
Other languages
English (en)
French (fr)
Inventor
严卉
种道彤
刘明
王进仕
陈伟雄
严俊杰
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Priority to US17/042,933 priority Critical patent/US10960353B2/en
Publication of WO2020181676A1 publication Critical patent/WO2020181676A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/343Heat recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8696Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D5/00Controlling water feed or water level; Automatic water feeding or water-level regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/02Steam superheating characterised by heating method with heat supply by hot flue gases from the furnace of the steam boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to the technical field of coal-fired power generation denitration technology, in particular to a full-working condition auxiliary denitration system and an operation method.
  • NO x nitrogen oxides
  • NO nitrogen oxides
  • NO 2 nitrogen dioxide
  • NO x Nitrogen oxides
  • NO x have varying degrees of toxicity and are very harmful to the environment.
  • China power system has a large proportion of coal-fired power generation and thermal motor assembly capacity. The country has increased the binding and hard target of denitrification for energy saving and emission reduction targets. In order to avoid excessive NO x pollution caused by coal combustion in the boiler, coal should be denitrified.
  • SCR Selective Catalytic Reduction
  • the temperature of the flue gas entering the SCR denitrification device should be appropriately increased so that the temperature remains within the optimal operating temperature range of the denitrification system and does not change much.
  • the purpose of the present invention is to provide a full-condition auxiliary denitrification system and operation method.
  • the system adds a heat storage device, and uses the heat storage medium to store high temperature heat under high load.
  • the heat storage medium is used to reheat the flue gas, the temperature of the flue gas entering the SCR denitration device does not change much, and it is always kept within the working range.
  • a full-condition auxiliary denitrification system including water-cooled wall 1, screen superheater 2, final stage superheater 3, final stage reheater 4, heat storage medium heater 5, low temperature reheater 6, connected in sequence Economizer 7, SCR denitrification device 8, air preheater 9, also including heat storage medium tank 10, heat storage medium and feed water heat exchanger 11, heat storage medium outlet regulating valve 12, feed water regulating valve 13, heat storage The medium pump 14 and the bypass feed water regulating valve 15; the inlet of the heat storage medium heater 5 is connected to the cold and heat storage medium outlet of the heat storage medium tank 10 through the heat storage medium pump 14; the outlet of the heat storage medium heater 5 The heat storage medium inlet of the heat storage medium tank 10 is connected through a pipeline; the heat storage medium is connected to the heat storage medium inlet of the water supply heat exchanger 11 and the heat storage medium outlet of the heat storage medium tank 10 through the heat storage medium The outlet regulating valve 12 is connected, and the heat storage medium is connected with the heat storage medium outlet of the feedwater heat exchanger 11 and the cold heat storage medium
  • the heat storage medium heater 5 is arranged at the corner of the flue between the final stage reheater 4 and the low temperature reheater 6.
  • the temperature of the flue gas at the flue where the heat storage medium heater 5 is located is greater than 550°C.
  • the heat storage medium used in the heat storage medium tank 10 is a single-phase flow medium such as molten salt and heat transfer oil.
  • the heat storage medium pump 14 is started, and the heat storage medium pump 14 is used to cool the heat exchange between the heat storage medium heater 5 and the high-temperature flue gas.
  • the flow rate of the heat storage medium is adjusted.
  • the heated heat storage medium is re-stored into the heat storage medium tank 10 through the heat storage medium inlet of the heat storage medium tank 10, and enters by closing or reducing the heat storage medium outlet regulating valve 12
  • the heat storage medium and the heat storage medium flow of the feedwater heat exchanger 11 are adjusted, and the feedwater flow into the heat storage medium and feedwater heat exchanger (11) is adjusted through the feedwater regulating valve 13, assisted by the bypass feedwater regulating valve 15
  • the feed water regulating valve 13 regulates the total feed water flow into the economizer 7.
  • the regulation objective is to store the excess heat in the high-temperature flue gas to the heat storage medium during the high-load operation of the boiler to ensure that the flue gas temperature entering the SCR denitrification device 8 is at
  • the denitrification system is within the optimal operating temperature range to ensure the denitrification efficiency while matching the total feed water volume with the boiler load; when the boiler is operating at low load and the flue gas temperature entering the SCR denitrification device 8 cannot reach the flue gas temperature within the catalyst activity range, pass
  • the heat storage medium pump 14 adjusts the flow of the heat storage medium that enters the heat storage medium heater 5 for heat exchange with the flue gas, and at the same time, opens or increases the heat storage medium outlet regulating valve 12 to exchange heat between the heat storage medium and the feed water.
  • the heat storage medium flow rate of the heat storage device 11 is adjusted, and the feed water flow entering the heat storage medium and the feed water heat exchanger 11 is adjusted through the feed water regulating valve 13, and the bypass feed water regulating valve 15 assists the feed water regulating valve 13 to enter the coal saving
  • the total feed water flow rate of the device 7 is adjusted, and the adjustment goal is: to match the total feed water volume with the boiler load, increase the flue gas temperature, increase the feed water temperature, and reduce the heat absorption of the feed water in the economizer 7, so that it reaches the SCR denitration
  • the flue gas temperature of the device reaches the optimal operating temperature range of the denitration system to ensure the denitration efficiency.
  • the present invention has the following advantages:
  • the present invention can adjust the temperature of the flue gas entering the denitration device to ensure that the temperature of the flue gas entering the denitration device is always maintained within the optimal operating temperature range of the denitration system to ensure denitration Efficiency:
  • the invention has simple structure, low investment, low pollutant emission and good environmental protection benefits.
  • the present invention stores the excess heat in the high-temperature flue gas when the load is high, so as to make up for the insufficient heat at the low load and improve the energy utilization rate.
  • the present invention can adjust the heat storage medium outlet regulating valve 12 to control the temperature and flow of the heat storage medium entering the heat storage medium and the feedwater heat exchanger, and regulate the feedwater regulating valve 13 and the bypass feedwater regulating valve 15 to control entering the economizer
  • the total feed water temperature and flow rate of 7 increases the feed water temperature by exchanging heat with the heat storage medium outside the coal-fired unit, which is beneficial to improve the flexibility of the coal-fired power station.
  • Figure 1 is a schematic diagram of the auxiliary denitrification system in all working conditions of the present invention.
  • a full-condition auxiliary denitration system of the present invention includes a water-cooled wall 1, a screen superheater 2, a final stage superheater 3, a final stage reheater 4, and a heat storage medium heater connected in sequence. 5.
  • the inlet of the heat storage medium heater 5 is connected to the cold and heat storage medium outlet of the heat storage medium tank 10 through the heat storage medium pump 14;
  • the outlet of the heat storage medium heater 5 is connected to the heat storage medium inlet of the heat storage medium tank 10 through a pipeline;
  • the heat storage medium is connected to the heat storage medium inlet of the feedwater heat exchanger 11 and the heat storage medium of the heat storage medium tank 10
  • the heat medium outlet is connected through the heat storage medium outlet regulating valve 12, the heat storage medium and the heat storage medium outlet of the feedwater heat exchanger 11 are connected with the cold heat storage medium inlet of the heat storage medium tank 10 through a pipeline;
  • the heat storage medium is connected with The feedwater inlet of the feedwater heat exchange
  • the heat storage medium heater 5 is arranged at the corner of the flue between the last-stage reheater 4 and the low-temperature reheater 6, where the flue gas temperature is high to ensure the denitration system under all working conditions Optimal operating temperature required.
  • the temperature of the flue gas at the flue where the heat storage medium heater 5 is located is greater than 550° C., to ensure that the stored energy of the heat storage medium is high-grade energy.
  • the type of heat storage medium used in the heat storage medium tank 10 is a single-phase flow medium such as molten salt and heat transfer oil to ensure single-phase flow in the heat exchanger and improve system safety and stability.
  • the operating method of the full-condition auxiliary denitration system of the present invention when the boiler is operating at a high load, the heat storage medium pump 14 is started, and the heat storage medium pump 14 enters the heat storage medium heater 5 and high temperature flue gas.
  • the flow rate of the cold and heat storage medium for heat exchange is adjusted.
  • the heated heat storage medium is re-stored into the heat storage medium tank 10 from the heat storage medium inlet of the heat storage medium tank 10, and adjusted by closing or reducing the heat storage medium outlet
  • the valve 12 adjusts the flow of the heat storage medium entering the heat storage medium and feedwater heat exchanger 11, and adjusts the flow of the feedwater entering the heat storage medium and feedwater heat exchanger 11 through the feedwater regulating valve 13, and bypasses the feedwater regulating valve.
  • Auxiliary feed water regulating valve 13 adjusts the total feed water flow into the economizer 7.
  • the adjustment objective is to store the excess heat in the high-temperature flue gas to the heat storage medium when the boiler is operating at high load to ensure that the flue gas enters the SCR denitrification device 8.
  • the temperature is within the optimal operating temperature range of the denitrification system to ensure the denitrification efficiency while matching the total feed water volume with the boiler load; when the boiler is operating at low load and the flue gas temperature enters the SCR denitrification device 8 and the flue gas temperature cannot reach the catalyst activity range ,
  • the heat storage medium pump 14 adjusts the flow of the heat storage medium that enters the heat storage medium heater 5 and the flue gas heat exchange, and at the same time, opens or adjusts the heat storage medium outlet regulating valve 12 to adjust the heat storage medium and feed water
  • the heat storage medium flow rate of the heat exchanger 11 is adjusted, and the feed water flow entering the heat storage medium and the feed water heat exchanger 11 is adjusted through the feed water regulating valve 13, and the bypass feed water regulating valve 15 assists the feed water regulating valve 13 to enter
  • the total feed water flow rate of the economizer 7 is adjusted.
  • the adjustment objective is to match the total feed water volume with the boiler load, increase the flue gas temperature, increase the feed water temperature, and reduce the heat absorption of the feed water in the economizer 7, so as to reach
  • the flue gas temperature of the SCR denitration device reaches the optimal operating temperature range of the denitration system to ensure the denitration efficiency.
  • the invention uses high-temperature heat storage medium to store heat, breaks the coupling between the boiler load of the thermal system unit and the flue gas temperature entering the SCR denitrification device, adjusts the heat storage medium flow into the heat storage medium heater 5, and absorbs the flue gas when operating at high load
  • the excess energy is stored in the heat storage medium tank 10, and the flue gas temperature is appropriately reduced, and the flue gas is heated during low-load operation to ensure that the flue gas temperature entering the SCR denitrification device 8 does not change much with the boiler load, and it is always kept at the highest level of the denitration system.
  • the denitration efficiency is ensured, and the energy utilization rate is improved; in addition, the heat storage medium outlet regulating valve 12 and the feedwater regulating valve 13 are adjusted to control the temperature and flow of the feedwater entering the heat storage medium and the feedwater heat exchanger 11. Exchanging heat with the heat storage medium outside the coal-fired unit to increase the feedwater temperature is beneficial to improve the flexibility of the coal-fired power station; the bypass feedwater regulating valve 15 assists the feedwater regulating valve 13 to adjust the total feedwater flow into the economizer 7, Make the total water supply match the boiler load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)
  • Air Supply (AREA)

Abstract

一种全工况辅助脱硝系统及运行方法。该系统包括依次相连通的水冷壁(1)、屏式过热器(2)、末级过热器(3)、末级再热器(4)、储热介质加热器(5)、低温再热器(6)、省煤器(7)、SCR脱硝装置(8)、空气预热器(9),还包括储热介质罐(10)与给水换热器(11);通过与储热介质罐(10)冷储热介质出口相连通的储热介质泵(14)对进入储热介质加热器(5)的冷储热介质流量进行调节,使得储热介质吸热量与锅炉负荷相匹配,同时通过对进入给水换热器(11)的热储热介质流量和给水流量进行调节,通过旁路给水调节阀(15)辅助调节总给水流量,使得进入SCR脱硝装置(8)的烟气温度在不同锅炉负荷下保持在脱硝系统最佳运行温度范围内,确保脱硝效率。

Description

一种全工况辅助脱硝系统及运行方法 技术领域
本发明涉及燃煤发电脱硝技术领域,具体涉及一种全工况辅助脱硝系统及运行方法。
背景技术
燃煤电站产生的主要大气污染物之一是氮氧化合物(NO x),主要包括一氧化氮(NO)和二氧化氮(NO 2)等,其中一氧化氮(NO)约占煤炭燃烧生成NO x的95%。氮氧化合物(NO x)都具有不同程度的毒性,对环境破坏很大,此外我国电力系统中燃煤发电火电机组装机容量占比大,国家已对节能减排目标增加脱硝这一约束性硬指标,为避免锅炉内煤燃烧产生过多的NO x污染环境,应对煤进行脱硝处理。选择性催化还原技术(SCR)脱硝是目前最成熟的烟气脱硝技术,在催化剂的作用下选择性地与NO x反应生成N 2和H 20。但是SCR脱硝的反应催化剂温度要求在工作温度(280-420℃),温度过低会使催化剂活性降低,导致脱硝效率下降,温度过高易导致NO x生成量增加,催化剂因相变而活性退化。目前尚未有合理的的解决方案能够满足火电厂高负荷和低负荷运行的同时保证进入SCR脱硝装置的烟气温度保持在脱硝系统最佳运行温度范围内,需要解决的问题包括:
(1)在锅炉需要高负荷运行时,适当降低进入SCR脱硝装置的烟气温度,使得温度保持在脱硝系统最佳运行温度范围内变化不大。
(2)在锅炉需要低负荷运行时,适当升高进入SCR脱硝装置的烟气温度,使得温度保持在脱硝系统最佳运行温度范围内变化不大。
发明内容
为了解决上述现有技术存在的问题,本发明的目的在于提供一种全工况 辅助脱硝系统及运行方法,该系统增加储热装置,在高负荷时利用储热介质高温储热,在低负荷时利用储热介质重新加热烟气,使得进入SCR脱硝装置的烟气温度变化不大,始终保持在工作范围内。
为了达到上述目的,本发明采用如下技术方案:
一种全工况辅助脱硝系统,包括依次相连通的水冷壁1、屏式过热器2、末级过热器3、末级再热器4、储热介质加热器5、低温再热器6、省煤器7、SCR脱硝装置8、空气预热器9,还包括储热介质罐10、储热介质与给水换热器11、热储热介质出口调节阀12、给水调节阀13、储热介质泵14和旁路给水调节阀15;所述储热介质加热器5的入口通过储热介质泵14与储热介质罐10的冷储热介质出口相连通;储热介质加热器5的出口通过管道与储热介质罐10的热储热介质入口相连通;所述储热介质与给水换热器11的储热介质入口和储热介质罐10的热储热介质出口通过热储热介质出口调节阀12相连通,储热介质与给水换热器11的储热介质出口与储热介质罐10的冷储热介质入口通过管道相连通;储热介质与给水换热器11的给水入口与给水调节阀13相连通,储热介质与给水换热器11的给水出口通过管道与省煤器7的给水入口相连通;所述旁路给水调节阀15的给水入口与给水调节阀13的给水入口相连通,旁路给水调节阀15的给水出口与省煤器7的给水入口相连通;所述屏式过热器2的过热蒸汽出口与末级过热器3的过热蒸汽入口相连通;低温再热器6的再热蒸汽出口与末级再热器4的再热蒸汽入口相连通;省煤器7的给水出口与水冷壁1通过管道相连通。
所述储热介质加热器5布置于末级再热器4和低温再热器6之间的烟道拐角处。
所述储热介质加热器5所处烟道处的烟气温度大于550℃。
所述所述储热介质罐10使用的储热介质种类为熔盐、导热油类单相流动 的介质。
所述一种全工况辅助脱硝系统的运行方法,当锅炉高负荷运行时,启动储热介质泵14,通过储热介质泵14对进入储热介质加热器5与高温烟气热交换的冷储热介质的流量进行调节,加热后的储热介质由储热介质罐10的热储热介质入口重新存入储热介质罐10,通过关闭或调小热储热介质出口调节阀12对进入储热介质与给水换热器11的热储热介质流量进行调节,通过给水调节阀13对进入储热介质与给水换热器(11)的给水流量进行调节,通过旁路给水调节阀15辅助给水调节阀13对进入省煤器7的总给水流量进行调节,调节目标为:在锅炉高负荷运行时存储高温烟气中多余热量至储热介质,保证进入SCR脱硝装置8的烟气温度在脱硝系统最佳运行温度范围内,确保脱硝效率,同时使得总给水量与锅炉负荷匹配;当锅炉低负荷运行且烟气温度进入SCR脱硝装置8的烟气温度无法达到在催化剂活性范围时,通过储热介质泵14对进入储热介质加热器5与烟气热交换的储热介质的流量进行调节,同时通过打开或调大热储热介质出口调节阀12对进入储热介质与给水换热器11的热储热介质流量进行调节,以及通过给水调节阀13对进入储热介质与给水换热器11的给水流量进行调节,通过旁路给水调节阀15辅助给水调节阀13对进入省煤器7的总给水流量进行调节,调节调节目标为:使得总给水量与锅炉负荷相匹配,提高烟气温度,提高给水温度,减少给水在省煤器7中的吸热量,使得到达SCR脱硝装置的烟气温度达到脱硝系统最佳运行温度范围内,确保脱硝效率。
和现有技术相比,本发明具有以下优点:
(1)本发明通过增加储热介质加热器和储热介质罐,可以调节进入脱硝装置的烟气温度,保证进入脱硝装置的烟气温度始终保持在脱硝系统最佳运行温度范围内,确保脱硝效率;本发明结构简单,投资小,污染物排放低,环 保效益好。
(2)本发明通过增加储热,高负荷时存储高温烟气中的多余热量,弥补低负荷时的热量不足,提高了能量利用率。
(3)本发明可以调节热储热介质出口调节阀12控制进入储热介质与给水换热器的储热介质温度和流量,调节给水调节阀13和旁路给水调节阀15控制进入省煤器7的总给水温度和流量,通过在燃煤机组外与储热介质换热,提高给水温度,利于提高燃煤电站灵活性。
附图说明
图1为本发明全工况辅助脱硝系统示意图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步详细说明。
如图1所示,本发明一种全工况辅助脱硝系统,包括依次相连通的水冷壁1、屏式过热器2、末级过热器3、末级再热器4、储热介质加热器5、低温再热器6、省煤器7、SCR脱硝装置8、空气预热器9,还包括储热介质罐10、储热介质与给水换热器11、热储热介质出口调节阀12、给水调节阀13、储热介质泵14和旁路给水调节阀15;所述储热介质加热器5的入口通过储热介质泵14与储热介质罐10的冷储热介质出口相连通;储热介质加热器5的出口通过管道与储热介质罐10的热储热介质入口相连通;所述储热介质与给水换热器11的储热介质入口和储热介质罐10的热储热介质出口通过热储热介质出口调节阀12相连通,储热介质与给水换热器11的储热介质出口与储热介质罐10的冷储热介质入口通过管道相连通;储热介质与给水换热器11的给水入口与给水调节阀13相连通,储热介质与给水换热器11的给水出口通过管道与省煤器7的给水入口相连通;所述旁路给水调节阀15的给水入口与给水调节阀13的给水入口相连通,旁路给水调节阀15的给水出口与省 煤器7的给水入口相连通;所述屏式过热器2的过热蒸汽出口与末级过热器3的过热蒸汽入口相连通;低温再热器6的再热蒸汽出口与末级再热器4的再热蒸汽入口相连通;省煤器7的给水出口与水冷壁1通过管道相连通。
作为本发明的优选实施方式,储热介质加热器5布置于末级再热器4和低温再热器6之间的烟道拐角处,此处烟气温度高,保证全工况下脱硝系统所需最佳运行温度。
作为本发明的优选实施方式,储热介质加热器5所处烟道处的烟气温度大于550℃,保证储热介质存储能量为高品位能量。
作为本发明的优选实施方式,储热介质罐10使用的储热介质种类为熔盐、导热油等单相流动的介质,确保在换热器中单相流动,提高系统安全性和稳定性。
如图1所示,本发明全工况辅助脱硝系统的运行方法,当锅炉高负荷运行时,启动储热介质泵14,通过储热介质泵14对进入储热介质加热器5与高温烟气热交换的冷储热介质的流量进行调节,加热后的储热介质由储热介质罐10的热储热介质入口重新存入储热介质罐10,通过关闭或调小热储热介质出口调节阀12对进入储热介质与给水换热器11的热储热介质流量进行调节,通过给水调节阀13对进入储热介质与给水换热器11的给水流量进行调节,通过旁路给水调节阀15辅助给水调节阀13对进入省煤器7的总给水流量进行调节,调节目标为:在锅炉高负荷运行时存储高温烟气中多余热量至储热介质,保证进入SCR脱硝装置8的烟气温度在脱硝系统最佳运行温度范围内,确保脱硝效率,同时使得总给水量与锅炉负荷匹配;当锅炉低负荷运行且烟气温度进入SCR脱硝装置8的烟气温度无法达到在催化剂活性范围时,通过储热介质泵14对进入储热介质加热器5与烟气热交换的储热介质的流量进行调节,同时通过打开或调大热储热介质出口调节阀12对进入储热介 质与给水换热器11的热储热介质流量进行调节,以及通过给水调节阀13对进入储热介质与给水换热器11的给水流量进行调节,通过旁路给水调节阀15辅助给水调节阀13对进入省煤器7的总给水流量进行调节,调节调节目标为:使得总给水量与锅炉负荷相匹配,提高烟气温度,提高给水温度,减少给水在省煤器7中的吸热量,使得到达SCR脱硝装置的烟气温度达到脱硝系统最佳运行温度范围内,确保脱硝效率。
本发明采用高温储热介质储热,打破热力系统机组锅炉负荷和进入SCR脱硝装置烟气温度的耦合,调节进入储热介质加热器5的储热介质流量,当高负荷运行时吸收烟气中多余的能量存储于储热介质罐10,适当降低烟气温度,当低负荷运行时加热烟气,保证进入SCR脱硝装置8的烟气温度随锅炉负荷的变化不大,始终保持在脱硝系统最佳运行温度范围内,确保脱硝效率脱硝效率,提高能量利用率;另外调节热储热介质出口调节阀12和给水调节阀13控制进入储热介质与给水换热器11的给水温度和流量,通过在燃煤机组外与储热介质换热,提高给水温度,有利于提高燃煤电站灵活性;通过旁路给水调节阀15辅助给水调节阀13对进入省煤器7的总给水流量进行调节,使得总给水量与锅炉负荷相匹配。

Claims (5)

  1. 一种全工况辅助脱硝系统,其特征在于:包括依次相连通的水冷壁(1)、屏式过热器(2)、末级过热器(3)、末级再热器(4)、储热介质加热器(5)、低温再热器(6)、省煤器(7)、SCR脱硝装置(8)、空气预热器(9),还包括储热介质罐(10)、储热介质与给水换热器(11)、热储热介质出口调节阀(12)、给水调节阀(13)、储热介质泵(14)和旁路给水调节阀(15);所述储热介质加热器(5)的入口通过储热介质泵(14)与储热介质罐(10)的冷储热介质出口相连通;储热介质加热器(5)的出口通过管道与储热介质罐(10)的热储热介质入口相连通;所述储热介质与给水换热器(11)的储热介质入口和储热介质罐(10)的热储热介质出口通过热储热介质出口调节阀(12)相连通,储热介质与给水换热器(11)的储热介质出口与储储热介质罐(10)的冷储热介质入口通过管道相连通;储热介质与给水换热器(11)的给水入口与给水调节阀(13)相连通,储热介质与给水换热器(11)的给水出口通过管道与省煤器(7)的给水入口相连通;所述旁路给水调节阀(15)的给水入口与给水调节阀(13)的给水入口相连通,旁路给水调节阀(15)的给水出口与省煤器(7)的给水入口相连通;所述屏式过热器(2)的过热蒸汽出口与末级过热器(3)的过热蒸汽入口相连通;低温再热器(6)的再热蒸汽出口与末级再热器(4)的再热蒸汽入口相连通;省煤器(7)的给水出口与水冷壁(1)通过管道相连通。
  2. 根据权利要求1所述的一种全工况辅助脱硝系统,其特征在于:所述储热介质加热器(5)布置于末级再热器(4)和低温再热器(6)之间的烟道拐角处。
  3. 根据权利要求1所述的一种全工况辅助脱硝系统,其特征在于:所述储热介质加热器(5)所处烟道处的烟气温度大于550℃。
  4. 根据权利要求1所述的一种全工况辅助脱硝系统,其特征在于:所述储热介质罐(10)使用的储热介质种类为熔盐、导热油类单相流动的介质。
  5. 权利要求1至4任一项所述的一种全工况辅助脱硝系统的运行方法,其特征在于:当锅炉高负荷运行时,启动储热介质泵(14),通过储热介质泵(14)对进入储热介质加热器(5)与高温烟气热交换的冷储热介质的流量进行调节,加热后的储热介质由储热介质罐(10)的热储热介质入口重新存入储热介质罐(10),通过关闭或调小热储热介质出口调节阀(12)对进入储热介质与给水换热器(11)的热储热介质流量进行调节,通过给水调节阀(13)对进入储热介质与给水换热器(11)的给水流量进行调节,通过旁路给水调节阀(15)辅助给水调节阀(13)对进入省煤器(7)的总给水流量进行调节,调节目标为:在锅炉高负荷运行时存储高温烟气中多余热量至储热介质,保证进入SCR脱硝装置(8)的烟气温度脱硝系统最佳运行温度范围内,确保脱硝效率,同时使得总给水量与锅炉负荷匹配;当锅炉低负荷运行且烟气温度进入SCR脱硝装置(8)的烟气温度无法达到在催化剂活性范围时,通过储热介质泵(14)对进入储热介质加热器(5)与烟气热交换的储热介质的流量进行调节,同时通过打开或调大热储热介质出口调节阀(12)对进入储热介质与给水换热器(11)的热储热介质流量进行调节,以及通过给水调节阀(13)对进入储热介质与给水换热器(11)的给水流量进行调节,通过旁路给水调节阀(15)辅助给水调节阀(13)对进入省煤器(7)的总给水流量进行调节,调节调节目标为:使得总给水量与锅炉负荷相匹配,提高烟气温度,提高给水温度,减少给水在省煤器(7)中的吸热量,使得到达SCR脱硝装置的烟气温度达到脱硝系统最佳运行温度范围内,确保脱硝效率。
PCT/CN2019/092428 2019-03-11 2019-06-22 一种全工况辅助脱硝系统及运行方法 WO2020181676A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/042,933 US10960353B2 (en) 2019-03-11 2019-06-22 All-condition auxiliary denitration system and operation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910181981.7A CN109945223B (zh) 2019-03-11 2019-03-11 一种全工况辅助脱硝系统及运行方法
CN201910181981.7 2019-03-11

Publications (1)

Publication Number Publication Date
WO2020181676A1 true WO2020181676A1 (zh) 2020-09-17

Family

ID=67008583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092428 WO2020181676A1 (zh) 2019-03-11 2019-06-22 一种全工况辅助脱硝系统及运行方法

Country Status (3)

Country Link
US (1) US10960353B2 (zh)
CN (1) CN109945223B (zh)
WO (1) WO2020181676A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115234323A (zh) * 2022-08-31 2022-10-25 华能国际电力股份有限公司 一种带储热储压的燃煤发电系统及运行方法
CN115539935A (zh) * 2022-09-16 2022-12-30 西安热工研究院有限公司 一种灵活调节锅炉再热汽温的烟道系统
CN116447610A (zh) * 2023-03-17 2023-07-18 国能南京电力试验研究有限公司 Scr脱硝系统
CN116481014A (zh) * 2023-03-17 2023-07-25 国能南京电力试验研究有限公司 Scr脱硝系统

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110686266B (zh) * 2019-09-18 2021-09-21 国能龙源环保有限公司 可实现scr脱硝系统低负荷投运的烟气升温系统及其方法
CN111636934B (zh) * 2020-05-24 2021-03-16 西安交通大学 一种高效清洁高变负荷速率燃煤发电系统及运行方法
CN112097555A (zh) * 2020-07-24 2020-12-18 中国电力工程顾问集团中南电力设计院有限公司 基于熔盐储能系统的火力发电厂低负荷脱硝系统
CN112856849A (zh) * 2021-03-30 2021-05-28 西安热工研究院有限公司 一种回收烟气中潜热的火电系统储能调峰系统及工作方法
CN114053955B (zh) * 2021-11-16 2024-04-23 西安热工研究院有限公司 基于火电厂燃煤机组调峰储热的尿素水解制氨系统及方法
CN114110638B (zh) * 2021-11-26 2024-01-19 西安热工研究院有限公司 一种空预器旁路高效烟气余热利用自动调节系统及方法
CN114440292B (zh) * 2021-12-11 2024-09-03 华能(浙江)能源开发有限公司长兴分公司 一种利用电站锅炉烟气进行移动蓄热的系统及其方法
CN114288852A (zh) * 2022-02-16 2022-04-08 西安西热锅炉环保工程有限公司 一种宽负荷燃煤锅炉脱硝系统及其工作方法
CN114704815B (zh) * 2022-04-08 2023-11-07 西安热工研究院有限公司 蒸汽储热系统
CN114791748B (zh) * 2022-05-20 2024-04-09 湖南省湘电试验研究院有限公司 一种锅炉的温控系统
CN114909193B (zh) * 2022-06-21 2024-02-27 西安热工研究院有限公司 一种基于熔盐储热的火电机组灵活运行系统
CN115307473A (zh) * 2022-08-11 2022-11-08 西安西热锅炉环保工程有限公司 一种利用燃煤锅炉烟气热量储热系统及方法
CN115341970A (zh) * 2022-09-13 2022-11-15 内蒙古卓安电力科技有限公司 燃煤机组回热系统
CN115614770A (zh) * 2022-09-16 2023-01-17 中国大唐集团科学技术研究总院有限公司西北电力试验研究院 一种深度调峰的高温烟气利用系统
CN116173643A (zh) * 2023-02-07 2023-05-30 浙江菲达环保科技股份有限公司 一种水泥炉窑高温低尘除尘脱硝一体化装置及工艺
CN116336493B (zh) * 2023-04-04 2024-08-02 北京怀柔实验室 锅炉烟气加热熔盐的储热系统及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231232A1 (en) * 2000-12-01 2007-10-04 Fuel Tech, Inc. SELECTIVE CATALYTIC REDUCTION OF NOx ENABLED BY UREA DECOMPOSITION IN HEAT-EXCHANGER BYPASS
CN103673650A (zh) * 2013-12-13 2014-03-26 南京凯盛开能环保能源有限公司 一种钢厂富余煤气与饱和蒸汽综合利用系统及方法
CN104295364A (zh) * 2014-10-15 2015-01-21 太原理工大学 基于煤层气的多余热资源分布式能源系统
CN205447779U (zh) * 2015-11-18 2016-08-10 国网山东省电力公司电力科学研究院 防止scr烟气脱硝系统催化剂烧结的烟温调节系统
CN107478067A (zh) * 2017-09-14 2017-12-15 思安新能源股份有限公司 热回收系统
CN206973508U (zh) * 2017-05-25 2018-02-06 东方电气集团东方锅炉股份有限公司 一种燃机余热熔盐储热系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943865A (en) * 1998-12-03 1999-08-31 Cohen; Mitchell B. Reheating flue gas for selective catalytic systems
CN103727552A (zh) * 2014-01-07 2014-04-16 中国能源建设集团广东省电力设计研究院 可调式脱硝烟温控制系统
CN103836607B (zh) * 2014-03-05 2015-12-09 华电电力科学研究院 火电厂scr脱硝反应器工作温度控制装置及其控制方法
CN104028104B (zh) * 2014-06-24 2016-01-13 中国电力工程顾问集团华东电力设计院有限公司 设有省煤器再循环系统的脱硝装置及发电机组
CN107726305B (zh) * 2017-11-03 2019-04-12 西安交通大学 一种适合全负荷scr脱硝的锅炉及工作方法
CN109316952B (zh) * 2018-10-11 2021-06-01 浙江浙能催化剂技术有限公司 一种非电领域的烟气超低排放设备及工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231232A1 (en) * 2000-12-01 2007-10-04 Fuel Tech, Inc. SELECTIVE CATALYTIC REDUCTION OF NOx ENABLED BY UREA DECOMPOSITION IN HEAT-EXCHANGER BYPASS
CN103673650A (zh) * 2013-12-13 2014-03-26 南京凯盛开能环保能源有限公司 一种钢厂富余煤气与饱和蒸汽综合利用系统及方法
CN104295364A (zh) * 2014-10-15 2015-01-21 太原理工大学 基于煤层气的多余热资源分布式能源系统
CN205447779U (zh) * 2015-11-18 2016-08-10 国网山东省电力公司电力科学研究院 防止scr烟气脱硝系统催化剂烧结的烟温调节系统
CN206973508U (zh) * 2017-05-25 2018-02-06 东方电气集团东方锅炉股份有限公司 一种燃机余热熔盐储热系统
CN107478067A (zh) * 2017-09-14 2017-12-15 思安新能源股份有限公司 热回收系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115234323A (zh) * 2022-08-31 2022-10-25 华能国际电力股份有限公司 一种带储热储压的燃煤发电系统及运行方法
CN115539935A (zh) * 2022-09-16 2022-12-30 西安热工研究院有限公司 一种灵活调节锅炉再热汽温的烟道系统
CN116447610A (zh) * 2023-03-17 2023-07-18 国能南京电力试验研究有限公司 Scr脱硝系统
CN116481014A (zh) * 2023-03-17 2023-07-25 国能南京电力试验研究有限公司 Scr脱硝系统

Also Published As

Publication number Publication date
CN109945223B (zh) 2020-10-27
CN109945223A (zh) 2019-06-28
US20210016224A1 (en) 2021-01-21
US10960353B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2020181676A1 (zh) 一种全工况辅助脱硝系统及运行方法
US10968784B2 (en) Flexible coal-fired power generation system and operation method thereof
US11560879B2 (en) Solar-aided coal-fired flexible power generation system and operation method thereof
CN113586185A (zh) 一种燃煤锅炉烟气与蒸汽联合储热深度调峰系统及运行方法
CN102252339B (zh) 一种降低电站锅炉排烟温度的系统
CN114704815B (zh) 蒸汽储热系统
WO2021238321A1 (zh) 一种构型自适应高效灵活清洁燃煤发电系统及运行方法
CN113803706B (zh) 一种基于热风再循环利用锅炉尾部烟气余热的发电系统
CN114263924A (zh) 一种火电厂烟气余热回收储能系统
CN113669748A (zh) 一种采用间壁式换热耦合燃煤锅炉全负荷脱硝的系统及方法
CN105333450A (zh) 一种热力发电的回热、余热综合梯级利用的系统
CN106895390A (zh) 一种电站锅炉多元异质余热利用系统
CN115371074B (zh) 一种利用熔盐储热-换热提升低负荷脱硝入口烟温的系统
WO2023246030A1 (zh) 基于熔盐储热的火电机组灵活运行系统
CN116045709A (zh) 一种带烟气温度控制的熔盐储能调峰系统
CN114791748A (zh) 一种锅炉的温控系统
CN206682921U (zh) 一种电站锅炉多元异质余热利用系统
CN205279139U (zh) 一种热力发电的回热、余热综合梯级利用的系统
CN215411832U (zh) 超临界电站锅炉全负荷脱硝的复合热水再循环系统
CN216924403U (zh) 能实现锅炉全负荷脱硝和主再热汽温调整的双融合系统
CN213421062U (zh) 一种电站锅炉全负荷脱硝综合优化装置
CN214172192U (zh) 加热再循环烟气的超临界二氧化碳锅炉系统
CN108613164A (zh) 一种改善低负荷下脱硝效果的给水加热系统
CN209054578U (zh) 一种燃煤电站烟气余热利用系统
CN206637594U (zh) 一种一次风及烟气余热联合利用系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918891

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19918891

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19918891

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/05/2022)