WO2020181676A1 - 一种全工况辅助脱硝系统及运行方法 - Google Patents
一种全工况辅助脱硝系统及运行方法 Download PDFInfo
- Publication number
- WO2020181676A1 WO2020181676A1 PCT/CN2019/092428 CN2019092428W WO2020181676A1 WO 2020181676 A1 WO2020181676 A1 WO 2020181676A1 CN 2019092428 W CN2019092428 W CN 2019092428W WO 2020181676 A1 WO2020181676 A1 WO 2020181676A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- storage medium
- heat storage
- feedwater
- heat
- regulating valve
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract description 5
- 238000005338 heat storage Methods 0.000 claims abstract description 168
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000003546 flue gas Substances 0.000 claims abstract description 43
- 238000010521 absorption reaction Methods 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 54
- 230000001105 regulatory effect Effects 0.000 claims description 53
- 239000003054 catalyst Substances 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- 238000011017 operating method Methods 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 26
- 230000008859 change Effects 0.000 description 5
- 239000003245 coal Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8631—Processes characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/343—Heat recovery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8696—Controlling the catalytic process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/10—Water tubes; Accessories therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22D—PREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
- F22D1/00—Feed-water heaters, i.e. economisers or like preheaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22D—PREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
- F22D5/00—Controlling water feed or water level; Automatic water feeding or water-level regulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G1/00—Steam superheating characterised by heating method
- F22G1/02—Steam superheating characterised by heating method with heat supply by hot flue gases from the furnace of the steam boiler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
- F23J15/06—Arrangements of devices for treating smoke or fumes of coolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M5/00—Casings; Linings; Walls
- F23M5/08—Cooling thereof; Tube walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/30—Technologies for a more efficient combustion or heat usage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Definitions
- the invention relates to the technical field of coal-fired power generation denitration technology, in particular to a full-working condition auxiliary denitration system and an operation method.
- NO x nitrogen oxides
- NO nitrogen oxides
- NO 2 nitrogen dioxide
- NO x Nitrogen oxides
- NO x have varying degrees of toxicity and are very harmful to the environment.
- China power system has a large proportion of coal-fired power generation and thermal motor assembly capacity. The country has increased the binding and hard target of denitrification for energy saving and emission reduction targets. In order to avoid excessive NO x pollution caused by coal combustion in the boiler, coal should be denitrified.
- SCR Selective Catalytic Reduction
- the temperature of the flue gas entering the SCR denitrification device should be appropriately increased so that the temperature remains within the optimal operating temperature range of the denitrification system and does not change much.
- the purpose of the present invention is to provide a full-condition auxiliary denitrification system and operation method.
- the system adds a heat storage device, and uses the heat storage medium to store high temperature heat under high load.
- the heat storage medium is used to reheat the flue gas, the temperature of the flue gas entering the SCR denitration device does not change much, and it is always kept within the working range.
- a full-condition auxiliary denitrification system including water-cooled wall 1, screen superheater 2, final stage superheater 3, final stage reheater 4, heat storage medium heater 5, low temperature reheater 6, connected in sequence Economizer 7, SCR denitrification device 8, air preheater 9, also including heat storage medium tank 10, heat storage medium and feed water heat exchanger 11, heat storage medium outlet regulating valve 12, feed water regulating valve 13, heat storage The medium pump 14 and the bypass feed water regulating valve 15; the inlet of the heat storage medium heater 5 is connected to the cold and heat storage medium outlet of the heat storage medium tank 10 through the heat storage medium pump 14; the outlet of the heat storage medium heater 5 The heat storage medium inlet of the heat storage medium tank 10 is connected through a pipeline; the heat storage medium is connected to the heat storage medium inlet of the water supply heat exchanger 11 and the heat storage medium outlet of the heat storage medium tank 10 through the heat storage medium The outlet regulating valve 12 is connected, and the heat storage medium is connected with the heat storage medium outlet of the feedwater heat exchanger 11 and the cold heat storage medium
- the heat storage medium heater 5 is arranged at the corner of the flue between the final stage reheater 4 and the low temperature reheater 6.
- the temperature of the flue gas at the flue where the heat storage medium heater 5 is located is greater than 550°C.
- the heat storage medium used in the heat storage medium tank 10 is a single-phase flow medium such as molten salt and heat transfer oil.
- the heat storage medium pump 14 is started, and the heat storage medium pump 14 is used to cool the heat exchange between the heat storage medium heater 5 and the high-temperature flue gas.
- the flow rate of the heat storage medium is adjusted.
- the heated heat storage medium is re-stored into the heat storage medium tank 10 through the heat storage medium inlet of the heat storage medium tank 10, and enters by closing or reducing the heat storage medium outlet regulating valve 12
- the heat storage medium and the heat storage medium flow of the feedwater heat exchanger 11 are adjusted, and the feedwater flow into the heat storage medium and feedwater heat exchanger (11) is adjusted through the feedwater regulating valve 13, assisted by the bypass feedwater regulating valve 15
- the feed water regulating valve 13 regulates the total feed water flow into the economizer 7.
- the regulation objective is to store the excess heat in the high-temperature flue gas to the heat storage medium during the high-load operation of the boiler to ensure that the flue gas temperature entering the SCR denitrification device 8 is at
- the denitrification system is within the optimal operating temperature range to ensure the denitrification efficiency while matching the total feed water volume with the boiler load; when the boiler is operating at low load and the flue gas temperature entering the SCR denitrification device 8 cannot reach the flue gas temperature within the catalyst activity range, pass
- the heat storage medium pump 14 adjusts the flow of the heat storage medium that enters the heat storage medium heater 5 for heat exchange with the flue gas, and at the same time, opens or increases the heat storage medium outlet regulating valve 12 to exchange heat between the heat storage medium and the feed water.
- the heat storage medium flow rate of the heat storage device 11 is adjusted, and the feed water flow entering the heat storage medium and the feed water heat exchanger 11 is adjusted through the feed water regulating valve 13, and the bypass feed water regulating valve 15 assists the feed water regulating valve 13 to enter the coal saving
- the total feed water flow rate of the device 7 is adjusted, and the adjustment goal is: to match the total feed water volume with the boiler load, increase the flue gas temperature, increase the feed water temperature, and reduce the heat absorption of the feed water in the economizer 7, so that it reaches the SCR denitration
- the flue gas temperature of the device reaches the optimal operating temperature range of the denitration system to ensure the denitration efficiency.
- the present invention has the following advantages:
- the present invention can adjust the temperature of the flue gas entering the denitration device to ensure that the temperature of the flue gas entering the denitration device is always maintained within the optimal operating temperature range of the denitration system to ensure denitration Efficiency:
- the invention has simple structure, low investment, low pollutant emission and good environmental protection benefits.
- the present invention stores the excess heat in the high-temperature flue gas when the load is high, so as to make up for the insufficient heat at the low load and improve the energy utilization rate.
- the present invention can adjust the heat storage medium outlet regulating valve 12 to control the temperature and flow of the heat storage medium entering the heat storage medium and the feedwater heat exchanger, and regulate the feedwater regulating valve 13 and the bypass feedwater regulating valve 15 to control entering the economizer
- the total feed water temperature and flow rate of 7 increases the feed water temperature by exchanging heat with the heat storage medium outside the coal-fired unit, which is beneficial to improve the flexibility of the coal-fired power station.
- Figure 1 is a schematic diagram of the auxiliary denitrification system in all working conditions of the present invention.
- a full-condition auxiliary denitration system of the present invention includes a water-cooled wall 1, a screen superheater 2, a final stage superheater 3, a final stage reheater 4, and a heat storage medium heater connected in sequence. 5.
- the inlet of the heat storage medium heater 5 is connected to the cold and heat storage medium outlet of the heat storage medium tank 10 through the heat storage medium pump 14;
- the outlet of the heat storage medium heater 5 is connected to the heat storage medium inlet of the heat storage medium tank 10 through a pipeline;
- the heat storage medium is connected to the heat storage medium inlet of the feedwater heat exchanger 11 and the heat storage medium of the heat storage medium tank 10
- the heat medium outlet is connected through the heat storage medium outlet regulating valve 12, the heat storage medium and the heat storage medium outlet of the feedwater heat exchanger 11 are connected with the cold heat storage medium inlet of the heat storage medium tank 10 through a pipeline;
- the heat storage medium is connected with The feedwater inlet of the feedwater heat exchange
- the heat storage medium heater 5 is arranged at the corner of the flue between the last-stage reheater 4 and the low-temperature reheater 6, where the flue gas temperature is high to ensure the denitration system under all working conditions Optimal operating temperature required.
- the temperature of the flue gas at the flue where the heat storage medium heater 5 is located is greater than 550° C., to ensure that the stored energy of the heat storage medium is high-grade energy.
- the type of heat storage medium used in the heat storage medium tank 10 is a single-phase flow medium such as molten salt and heat transfer oil to ensure single-phase flow in the heat exchanger and improve system safety and stability.
- the operating method of the full-condition auxiliary denitration system of the present invention when the boiler is operating at a high load, the heat storage medium pump 14 is started, and the heat storage medium pump 14 enters the heat storage medium heater 5 and high temperature flue gas.
- the flow rate of the cold and heat storage medium for heat exchange is adjusted.
- the heated heat storage medium is re-stored into the heat storage medium tank 10 from the heat storage medium inlet of the heat storage medium tank 10, and adjusted by closing or reducing the heat storage medium outlet
- the valve 12 adjusts the flow of the heat storage medium entering the heat storage medium and feedwater heat exchanger 11, and adjusts the flow of the feedwater entering the heat storage medium and feedwater heat exchanger 11 through the feedwater regulating valve 13, and bypasses the feedwater regulating valve.
- Auxiliary feed water regulating valve 13 adjusts the total feed water flow into the economizer 7.
- the adjustment objective is to store the excess heat in the high-temperature flue gas to the heat storage medium when the boiler is operating at high load to ensure that the flue gas enters the SCR denitrification device 8.
- the temperature is within the optimal operating temperature range of the denitrification system to ensure the denitrification efficiency while matching the total feed water volume with the boiler load; when the boiler is operating at low load and the flue gas temperature enters the SCR denitrification device 8 and the flue gas temperature cannot reach the catalyst activity range ,
- the heat storage medium pump 14 adjusts the flow of the heat storage medium that enters the heat storage medium heater 5 and the flue gas heat exchange, and at the same time, opens or adjusts the heat storage medium outlet regulating valve 12 to adjust the heat storage medium and feed water
- the heat storage medium flow rate of the heat exchanger 11 is adjusted, and the feed water flow entering the heat storage medium and the feed water heat exchanger 11 is adjusted through the feed water regulating valve 13, and the bypass feed water regulating valve 15 assists the feed water regulating valve 13 to enter
- the total feed water flow rate of the economizer 7 is adjusted.
- the adjustment objective is to match the total feed water volume with the boiler load, increase the flue gas temperature, increase the feed water temperature, and reduce the heat absorption of the feed water in the economizer 7, so as to reach
- the flue gas temperature of the SCR denitration device reaches the optimal operating temperature range of the denitration system to ensure the denitration efficiency.
- the invention uses high-temperature heat storage medium to store heat, breaks the coupling between the boiler load of the thermal system unit and the flue gas temperature entering the SCR denitrification device, adjusts the heat storage medium flow into the heat storage medium heater 5, and absorbs the flue gas when operating at high load
- the excess energy is stored in the heat storage medium tank 10, and the flue gas temperature is appropriately reduced, and the flue gas is heated during low-load operation to ensure that the flue gas temperature entering the SCR denitrification device 8 does not change much with the boiler load, and it is always kept at the highest level of the denitration system.
- the denitration efficiency is ensured, and the energy utilization rate is improved; in addition, the heat storage medium outlet regulating valve 12 and the feedwater regulating valve 13 are adjusted to control the temperature and flow of the feedwater entering the heat storage medium and the feedwater heat exchanger 11. Exchanging heat with the heat storage medium outside the coal-fired unit to increase the feedwater temperature is beneficial to improve the flexibility of the coal-fired power station; the bypass feedwater regulating valve 15 assists the feedwater regulating valve 13 to adjust the total feedwater flow into the economizer 7, Make the total water supply match the boiler load.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Treating Waste Gases (AREA)
- Air Supply (AREA)
Abstract
Description
Claims (5)
- 一种全工况辅助脱硝系统,其特征在于:包括依次相连通的水冷壁(1)、屏式过热器(2)、末级过热器(3)、末级再热器(4)、储热介质加热器(5)、低温再热器(6)、省煤器(7)、SCR脱硝装置(8)、空气预热器(9),还包括储热介质罐(10)、储热介质与给水换热器(11)、热储热介质出口调节阀(12)、给水调节阀(13)、储热介质泵(14)和旁路给水调节阀(15);所述储热介质加热器(5)的入口通过储热介质泵(14)与储热介质罐(10)的冷储热介质出口相连通;储热介质加热器(5)的出口通过管道与储热介质罐(10)的热储热介质入口相连通;所述储热介质与给水换热器(11)的储热介质入口和储热介质罐(10)的热储热介质出口通过热储热介质出口调节阀(12)相连通,储热介质与给水换热器(11)的储热介质出口与储储热介质罐(10)的冷储热介质入口通过管道相连通;储热介质与给水换热器(11)的给水入口与给水调节阀(13)相连通,储热介质与给水换热器(11)的给水出口通过管道与省煤器(7)的给水入口相连通;所述旁路给水调节阀(15)的给水入口与给水调节阀(13)的给水入口相连通,旁路给水调节阀(15)的给水出口与省煤器(7)的给水入口相连通;所述屏式过热器(2)的过热蒸汽出口与末级过热器(3)的过热蒸汽入口相连通;低温再热器(6)的再热蒸汽出口与末级再热器(4)的再热蒸汽入口相连通;省煤器(7)的给水出口与水冷壁(1)通过管道相连通。
- 根据权利要求1所述的一种全工况辅助脱硝系统,其特征在于:所述储热介质加热器(5)布置于末级再热器(4)和低温再热器(6)之间的烟道拐角处。
- 根据权利要求1所述的一种全工况辅助脱硝系统,其特征在于:所述储热介质加热器(5)所处烟道处的烟气温度大于550℃。
- 根据权利要求1所述的一种全工况辅助脱硝系统,其特征在于:所述储热介质罐(10)使用的储热介质种类为熔盐、导热油类单相流动的介质。
- 权利要求1至4任一项所述的一种全工况辅助脱硝系统的运行方法,其特征在于:当锅炉高负荷运行时,启动储热介质泵(14),通过储热介质泵(14)对进入储热介质加热器(5)与高温烟气热交换的冷储热介质的流量进行调节,加热后的储热介质由储热介质罐(10)的热储热介质入口重新存入储热介质罐(10),通过关闭或调小热储热介质出口调节阀(12)对进入储热介质与给水换热器(11)的热储热介质流量进行调节,通过给水调节阀(13)对进入储热介质与给水换热器(11)的给水流量进行调节,通过旁路给水调节阀(15)辅助给水调节阀(13)对进入省煤器(7)的总给水流量进行调节,调节目标为:在锅炉高负荷运行时存储高温烟气中多余热量至储热介质,保证进入SCR脱硝装置(8)的烟气温度脱硝系统最佳运行温度范围内,确保脱硝效率,同时使得总给水量与锅炉负荷匹配;当锅炉低负荷运行且烟气温度进入SCR脱硝装置(8)的烟气温度无法达到在催化剂活性范围时,通过储热介质泵(14)对进入储热介质加热器(5)与烟气热交换的储热介质的流量进行调节,同时通过打开或调大热储热介质出口调节阀(12)对进入储热介质与给水换热器(11)的热储热介质流量进行调节,以及通过给水调节阀(13)对进入储热介质与给水换热器(11)的给水流量进行调节,通过旁路给水调节阀(15)辅助给水调节阀(13)对进入省煤器(7)的总给水流量进行调节,调节调节目标为:使得总给水量与锅炉负荷相匹配,提高烟气温度,提高给水温度,减少给水在省煤器(7)中的吸热量,使得到达SCR脱硝装置的烟气温度达到脱硝系统最佳运行温度范围内,确保脱硝效率。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/042,933 US10960353B2 (en) | 2019-03-11 | 2019-06-22 | All-condition auxiliary denitration system and operation method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910181981.7A CN109945223B (zh) | 2019-03-11 | 2019-03-11 | 一种全工况辅助脱硝系统及运行方法 |
CN201910181981.7 | 2019-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020181676A1 true WO2020181676A1 (zh) | 2020-09-17 |
Family
ID=67008583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/092428 WO2020181676A1 (zh) | 2019-03-11 | 2019-06-22 | 一种全工况辅助脱硝系统及运行方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10960353B2 (zh) |
CN (1) | CN109945223B (zh) |
WO (1) | WO2020181676A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115234323A (zh) * | 2022-08-31 | 2022-10-25 | 华能国际电力股份有限公司 | 一种带储热储压的燃煤发电系统及运行方法 |
CN115539935A (zh) * | 2022-09-16 | 2022-12-30 | 西安热工研究院有限公司 | 一种灵活调节锅炉再热汽温的烟道系统 |
CN116447610A (zh) * | 2023-03-17 | 2023-07-18 | 国能南京电力试验研究有限公司 | Scr脱硝系统 |
CN116481014A (zh) * | 2023-03-17 | 2023-07-25 | 国能南京电力试验研究有限公司 | Scr脱硝系统 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110686266B (zh) * | 2019-09-18 | 2021-09-21 | 国能龙源环保有限公司 | 可实现scr脱硝系统低负荷投运的烟气升温系统及其方法 |
CN111636934B (zh) * | 2020-05-24 | 2021-03-16 | 西安交通大学 | 一种高效清洁高变负荷速率燃煤发电系统及运行方法 |
CN112097555A (zh) * | 2020-07-24 | 2020-12-18 | 中国电力工程顾问集团中南电力设计院有限公司 | 基于熔盐储能系统的火力发电厂低负荷脱硝系统 |
CN112856849A (zh) * | 2021-03-30 | 2021-05-28 | 西安热工研究院有限公司 | 一种回收烟气中潜热的火电系统储能调峰系统及工作方法 |
CN114053955B (zh) * | 2021-11-16 | 2024-04-23 | 西安热工研究院有限公司 | 基于火电厂燃煤机组调峰储热的尿素水解制氨系统及方法 |
CN114110638B (zh) * | 2021-11-26 | 2024-01-19 | 西安热工研究院有限公司 | 一种空预器旁路高效烟气余热利用自动调节系统及方法 |
CN114440292B (zh) * | 2021-12-11 | 2024-09-03 | 华能(浙江)能源开发有限公司长兴分公司 | 一种利用电站锅炉烟气进行移动蓄热的系统及其方法 |
CN114288852A (zh) * | 2022-02-16 | 2022-04-08 | 西安西热锅炉环保工程有限公司 | 一种宽负荷燃煤锅炉脱硝系统及其工作方法 |
CN114704815B (zh) * | 2022-04-08 | 2023-11-07 | 西安热工研究院有限公司 | 蒸汽储热系统 |
CN114791748B (zh) * | 2022-05-20 | 2024-04-09 | 湖南省湘电试验研究院有限公司 | 一种锅炉的温控系统 |
CN114909193B (zh) * | 2022-06-21 | 2024-02-27 | 西安热工研究院有限公司 | 一种基于熔盐储热的火电机组灵活运行系统 |
CN115307473A (zh) * | 2022-08-11 | 2022-11-08 | 西安西热锅炉环保工程有限公司 | 一种利用燃煤锅炉烟气热量储热系统及方法 |
CN115341970A (zh) * | 2022-09-13 | 2022-11-15 | 内蒙古卓安电力科技有限公司 | 燃煤机组回热系统 |
CN115614770A (zh) * | 2022-09-16 | 2023-01-17 | 中国大唐集团科学技术研究总院有限公司西北电力试验研究院 | 一种深度调峰的高温烟气利用系统 |
CN116173643A (zh) * | 2023-02-07 | 2023-05-30 | 浙江菲达环保科技股份有限公司 | 一种水泥炉窑高温低尘除尘脱硝一体化装置及工艺 |
CN116336493B (zh) * | 2023-04-04 | 2024-08-02 | 北京怀柔实验室 | 锅炉烟气加热熔盐的储热系统及控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070231232A1 (en) * | 2000-12-01 | 2007-10-04 | Fuel Tech, Inc. | SELECTIVE CATALYTIC REDUCTION OF NOx ENABLED BY UREA DECOMPOSITION IN HEAT-EXCHANGER BYPASS |
CN103673650A (zh) * | 2013-12-13 | 2014-03-26 | 南京凯盛开能环保能源有限公司 | 一种钢厂富余煤气与饱和蒸汽综合利用系统及方法 |
CN104295364A (zh) * | 2014-10-15 | 2015-01-21 | 太原理工大学 | 基于煤层气的多余热资源分布式能源系统 |
CN205447779U (zh) * | 2015-11-18 | 2016-08-10 | 国网山东省电力公司电力科学研究院 | 防止scr烟气脱硝系统催化剂烧结的烟温调节系统 |
CN107478067A (zh) * | 2017-09-14 | 2017-12-15 | 思安新能源股份有限公司 | 热回收系统 |
CN206973508U (zh) * | 2017-05-25 | 2018-02-06 | 东方电气集团东方锅炉股份有限公司 | 一种燃机余热熔盐储热系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5943865A (en) * | 1998-12-03 | 1999-08-31 | Cohen; Mitchell B. | Reheating flue gas for selective catalytic systems |
CN103727552A (zh) * | 2014-01-07 | 2014-04-16 | 中国能源建设集团广东省电力设计研究院 | 可调式脱硝烟温控制系统 |
CN103836607B (zh) * | 2014-03-05 | 2015-12-09 | 华电电力科学研究院 | 火电厂scr脱硝反应器工作温度控制装置及其控制方法 |
CN104028104B (zh) * | 2014-06-24 | 2016-01-13 | 中国电力工程顾问集团华东电力设计院有限公司 | 设有省煤器再循环系统的脱硝装置及发电机组 |
CN107726305B (zh) * | 2017-11-03 | 2019-04-12 | 西安交通大学 | 一种适合全负荷scr脱硝的锅炉及工作方法 |
CN109316952B (zh) * | 2018-10-11 | 2021-06-01 | 浙江浙能催化剂技术有限公司 | 一种非电领域的烟气超低排放设备及工艺 |
-
2019
- 2019-03-11 CN CN201910181981.7A patent/CN109945223B/zh active Active
- 2019-06-22 WO PCT/CN2019/092428 patent/WO2020181676A1/zh active Application Filing
- 2019-06-22 US US17/042,933 patent/US10960353B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070231232A1 (en) * | 2000-12-01 | 2007-10-04 | Fuel Tech, Inc. | SELECTIVE CATALYTIC REDUCTION OF NOx ENABLED BY UREA DECOMPOSITION IN HEAT-EXCHANGER BYPASS |
CN103673650A (zh) * | 2013-12-13 | 2014-03-26 | 南京凯盛开能环保能源有限公司 | 一种钢厂富余煤气与饱和蒸汽综合利用系统及方法 |
CN104295364A (zh) * | 2014-10-15 | 2015-01-21 | 太原理工大学 | 基于煤层气的多余热资源分布式能源系统 |
CN205447779U (zh) * | 2015-11-18 | 2016-08-10 | 国网山东省电力公司电力科学研究院 | 防止scr烟气脱硝系统催化剂烧结的烟温调节系统 |
CN206973508U (zh) * | 2017-05-25 | 2018-02-06 | 东方电气集团东方锅炉股份有限公司 | 一种燃机余热熔盐储热系统 |
CN107478067A (zh) * | 2017-09-14 | 2017-12-15 | 思安新能源股份有限公司 | 热回收系统 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115234323A (zh) * | 2022-08-31 | 2022-10-25 | 华能国际电力股份有限公司 | 一种带储热储压的燃煤发电系统及运行方法 |
CN115539935A (zh) * | 2022-09-16 | 2022-12-30 | 西安热工研究院有限公司 | 一种灵活调节锅炉再热汽温的烟道系统 |
CN116447610A (zh) * | 2023-03-17 | 2023-07-18 | 国能南京电力试验研究有限公司 | Scr脱硝系统 |
CN116481014A (zh) * | 2023-03-17 | 2023-07-25 | 国能南京电力试验研究有限公司 | Scr脱硝系统 |
Also Published As
Publication number | Publication date |
---|---|
CN109945223B (zh) | 2020-10-27 |
CN109945223A (zh) | 2019-06-28 |
US20210016224A1 (en) | 2021-01-21 |
US10960353B2 (en) | 2021-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020181676A1 (zh) | 一种全工况辅助脱硝系统及运行方法 | |
US10968784B2 (en) | Flexible coal-fired power generation system and operation method thereof | |
US11560879B2 (en) | Solar-aided coal-fired flexible power generation system and operation method thereof | |
CN113586185A (zh) | 一种燃煤锅炉烟气与蒸汽联合储热深度调峰系统及运行方法 | |
CN102252339B (zh) | 一种降低电站锅炉排烟温度的系统 | |
CN114704815B (zh) | 蒸汽储热系统 | |
WO2021238321A1 (zh) | 一种构型自适应高效灵活清洁燃煤发电系统及运行方法 | |
CN113803706B (zh) | 一种基于热风再循环利用锅炉尾部烟气余热的发电系统 | |
CN114263924A (zh) | 一种火电厂烟气余热回收储能系统 | |
CN113669748A (zh) | 一种采用间壁式换热耦合燃煤锅炉全负荷脱硝的系统及方法 | |
CN105333450A (zh) | 一种热力发电的回热、余热综合梯级利用的系统 | |
CN106895390A (zh) | 一种电站锅炉多元异质余热利用系统 | |
CN115371074B (zh) | 一种利用熔盐储热-换热提升低负荷脱硝入口烟温的系统 | |
WO2023246030A1 (zh) | 基于熔盐储热的火电机组灵活运行系统 | |
CN116045709A (zh) | 一种带烟气温度控制的熔盐储能调峰系统 | |
CN114791748A (zh) | 一种锅炉的温控系统 | |
CN206682921U (zh) | 一种电站锅炉多元异质余热利用系统 | |
CN205279139U (zh) | 一种热力发电的回热、余热综合梯级利用的系统 | |
CN215411832U (zh) | 超临界电站锅炉全负荷脱硝的复合热水再循环系统 | |
CN216924403U (zh) | 能实现锅炉全负荷脱硝和主再热汽温调整的双融合系统 | |
CN213421062U (zh) | 一种电站锅炉全负荷脱硝综合优化装置 | |
CN214172192U (zh) | 加热再循环烟气的超临界二氧化碳锅炉系统 | |
CN108613164A (zh) | 一种改善低负荷下脱硝效果的给水加热系统 | |
CN209054578U (zh) | 一种燃煤电站烟气余热利用系统 | |
CN206637594U (zh) | 一种一次风及烟气余热联合利用系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19918891 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19918891 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19918891 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19918891 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/05/2022) |