WO2020181603A1 - 一种用于磁链观测的记忆电机绕组复用控制方法及系统 - Google Patents

一种用于磁链观测的记忆电机绕组复用控制方法及系统 Download PDF

Info

Publication number
WO2020181603A1
WO2020181603A1 PCT/CN2019/081819 CN2019081819W WO2020181603A1 WO 2020181603 A1 WO2020181603 A1 WO 2020181603A1 CN 2019081819 W CN2019081819 W CN 2019081819W WO 2020181603 A1 WO2020181603 A1 WO 2020181603A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
magnetization
winding
value
permanent magnet
Prior art date
Application number
PCT/CN2019/081819
Other languages
English (en)
French (fr)
Inventor
阳辉
李光旭
林鹤云
吕舒康
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/289,749 priority Critical patent/US11522481B2/en
Publication of WO2020181603A1 publication Critical patent/WO2020181603A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/12Stator flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the invention relates to the technical field of motor control, in particular to a memory motor winding multiplexing control method and system for flux linkage observation.
  • VFMM Variable Flux Memory Machine
  • PMSM Permanent Magnet Synchronous Machine
  • the DC magnetic modulation memory motor is a memory motor with independent magnetic modulation windings.
  • the magnetization state of low-coercivity permanent magnets is changed by applying current pulses to the magnetic modulation windings. It has the advantages of simple and accurate magnetic modulation. Since the magnetization winding of the DC magnetization memory motor only functions when the magnetization operation is required, and is in a redundant state during most of the running time, the utilization rate of the entire magnetization control system is low.
  • the present invention provides a memory motor winding multiplexing control method and system for flux linkage observation.
  • the present invention utilizes the magnetization windings in the redundant state during the non-magnetization period to make them As a flux observation winding, it realizes the permanent magnet flux observation function and improves the utilization and anti-disturbance ability of the control system.
  • the memory motor winding multiplexing control method for flux linkage observation of the present invention includes the following steps:
  • Step 1 When the memory motor needs to adjust the magnetization state of the permanent magnet, select the reference value of the magnetization current in the magnetization current query table according to the motor speed ⁇ m
  • Step 2 According to the reference value of the magnetizing current obtained in Step 1. And the actual value of the magnetization current i f , the DC magnetization winding is driven to generate the magnetization current through the current chopping method, so as to adjust the permanent magnet magnetization state of the memory motor;
  • Step Three in the memory of the motor during normal operation, the DC magnetic transfer collected winding induced voltage u f, and extracts DC tone modulation according to a magnetic induction coil winding magnetic potential induced voltage u f e f;
  • Step 4 Calculate the permanent magnet flux linkage value ⁇ pm according to the magnetization winding induced potential e f obtained in Step 3, and perform vector control on the memory motor according to the permanent magnet flux linkage value ⁇ pm .
  • the method for obtaining the magnetic modulation current look-up table in the first step is:
  • the current chopped control in the second step is to combine the actual value of the magnetization current i f with the reference value of the selected magnetization current
  • M sf is the mutual inductance of the DC magnetizing winding to the stator, It is the observed value of the induced electric potential of the DC magnetizing winding, which is obtained by the feedback of the output result of the proportional-integral regulator of the previous cycle after a delay;
  • the memory motor winding multiplexing control system for flux linkage observation of the present invention includes:
  • Magnetizing current reference value selection module used to select the magnetizing current reference value in the magnetizing current query table according to the motor speed ⁇ m when the memory motor needs to adjust the magnetization state of the permanent magnet
  • EMF extraction module in the memory of the motor for normal operation, the DC magnetic transfer collected winding induced voltage u f, and extracts the induced magnetic shunt winding induction potential voltage u f e f;
  • the permanent magnet flux calculation module is used to extract the magnetization winding induced potential e f output by the module according to the induced potential, and calculate the permanent magnet flux linkage value ⁇ pm to realize the vector control of the memory motor based on the permanent magnet flux linkage value ⁇ pm .
  • the method for obtaining the magnetic modulation current look-up table is:
  • the current chopping control method is specifically combining the actual value of the magnetization current i f with the reference value of the selected magnetization current A control method for generating a switching signal through hysteresis comparison.
  • the induced electric potential extraction module specifically includes:
  • M sf is the mutual inductance of the DC magnetizing winding to the stator, It is the observed value of the induced electric potential of the DC magnetizing winding, which is obtained through the feedback of the delayer;
  • Comparator used to compare the observed value of d-axis current Compared with the actual value of the d-axis current i d , the error is generated and input to the proportional-integral regulator;
  • Proportional-integral regulator used for proportional-integral adjustment according to the output of the comparator, and output the observed value of the induction potential of the DC magnetizing winding in this period And when the observed value of d-axis current When it is equal to the actual value of the d-axis current i d , the output result of the proportional-integral regulator is the actual value of the induced electric potential e f of the DC magnetizing winding;
  • the delayer is used to delay the output result of the proportional-integral regulator and feed it back to the d-axis current observation value calculation unit to participate in the calculation of the next cycle.
  • the permanent magnet flux calculation module specifically includes:
  • a unidirectional phase-locked loop for separating the q-axis component e f_q of the magnetization winding induced electric potential from the magnetization winding induced electric potential e f to obtain the d-axis component e f_d of the magnetization winding induced electric potential;
  • the adder is used to subtract the d-axis stator flux linkage ⁇ d from the DC magnetizing winding flux linkage ⁇ f to obtain the permanent magnet flux linkage ⁇ pm .
  • the DC magnetization winding in the redundant state during the non-magnetization period is used as the flux observation winding, which improves the utilization efficiency of the DC magnetization memory motor.
  • the permanent magnet flux linkage value is used in the vector control system for the feedforward decoupling of the current closed loop regulator, which reduces the interference of the flux linkage value change on the q-axis current control, improves the stability of the control system, and improves The dynamic performance of the speed control system.
  • Figure 1 is a schematic diagram of a control system according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of the induced potential extraction step in Figure 1;
  • Fig. 3 is a schematic diagram of the calculation steps of the permanent magnet flux linkage in Fig. 1;
  • Fig. 4 is a schematic diagram of the step of feedforward decoupling adjustment in Fig. 1.
  • This embodiment provides a memory motor winding multiplexing control method for flux linkage observation.
  • the control object is a DC magnetization memory motor.
  • the control process is shown in Figure 1.
  • the armature winding and the DC magnetization winding are in the motor.
  • Installed components; the three-phase inverter is driven by a vector control method via space vector modulation technology (SVPWM), its speed outer loop uses a PI regulator, the current inner loop uses a feedforward decoupling regulator, and the permanent flux observation
  • SVPWM space vector modulation technology
  • the magnetic modulation power converter adopts the H-bridge DC power converter structure.
  • the magnetic modulation power converter is driven in the DC magnetic winding by the current chopping control.
  • the magnetization current is adjusted to adjust the magnetization state of the permanent magnet.
  • the magnetization power converter is turned off, and the voltage sensor is used to collect the voltage of the magnetization winding to observe the permanent magnet flux linkage, thereby realizing the winding multiplexing of the DC magnetization winding control. Specifically include the following steps:
  • Step 1 When the memory motor needs to adjust the magnetization state of the permanent magnet, select the reference value of the magnetization current in the magnetization current query table according to the motor speed ⁇ m
  • the method for obtaining the magnetic modulation current look-up table is:
  • Step 2 According to the reference value of the magnetizing current obtained in Step 1. And the actual value of the magnetizing current i f , the DC magnetizing winding is driven to generate the magnetizing current through the current chopping method, so as to adjust the permanent magnet magnetization state of the memory motor; the current chopping method is specifically the actual value of the magnetizing current i f and select the reference value of magnetizing current A control method for generating a switching signal through hysteresis comparison.
  • Step Three in the memory of the motor during normal operation, the DC magnetic transfer collected winding induced voltage u f, and extracts DC tone modulation according to a magnetic induction coil winding magnetic potential induced voltage u f e f;
  • u f , i f , i d and e f are the magnetizing winding induced voltage, the magnetizing winding current, the d-axis current and the magnetizing winding induced potential respectively, and R f , L f and M sf are the magnetizing winding resistance, Self-inductance of the magnetizing winding and mutual inductance of the magnetizing winding to the stator;
  • the specific steps for extracting the induced electric potential e f of the magnetization winding include:
  • M sf is the mutual inductance of the DC magnetizing winding to the stator, It is the observed value of the induced electric potential of the DC magnetizing winding, which is obtained by the feedback of the output result of the proportional-integral regulator of the previous cycle after a delay;
  • Step 4 Calculate the permanent magnet flux linkage value ⁇ pm according to the magnetization winding induced potential e f obtained in Step 3, and perform vector control on the memory motor according to the permanent magnet flux linkage value ⁇ pm .
  • the induced electric potential e f of the magnetic tuning winding is composed of the permanent magnet flux induction component, the d-axis flux induction component and the q-axis flux induction component, which can be expressed as
  • e f_d and e f_q are the d-axis and q-axis components of the magnetization winding induced potential, respectively, and E f_ ⁇ d , E f_pm, and E f_ ⁇ q are the d-axis flux linkage, permanent magnet flux linkage, and q-axis flux linkage
  • E f_ ⁇ d , E f_pm, and E f_ ⁇ q are the d-axis flux linkage, permanent magnet flux linkage, and q-axis flux linkage
  • E f_d is the amplitude of the d-axis component of the induced electric potential of the magnetization winding.
  • R s , L d and L q are stator resistance, d-axis self-inductance and q-axis self-inductance respectively, and u d , u q , i d , i q , ⁇ e and ⁇ pm are d-axis voltage and q-axis voltage respectively , D-axis current, q-axis current, electrical angular velocity and permanent magnetic flux linkage, if you want to achieve decoupling control of d and q-axis current, you need to set the current with Perform voltage decoupling to obtain the control quantity in the form of voltage with Rewrite formula (6) as
  • u d_ref and u q_ref are the d and q axis current loop proportional-integral (PI) regulator output, respectively, with
  • the current loop feedforward decoupling regulator can be established according to formula (7), and the specific method is: set the given value of the d and q axis current with The error with the actual value of the feedback quantity d and q axis current is input into two proportional-integral regulators respectively, and the output quantities u d_ref and u q_ref of the d, q-axis current loop proportional-integral regulator are obtained ; the permanent magnet flux linkage value ⁇ pm And electrical angular velocity ⁇ e and calculate the given value of d and q axis voltage according to formula (7) with So as to realize the feedforward decoupling control.
  • This embodiment also provides a memory motor winding multiplexing control system for flux linkage observation, which corresponds to the above method one-to-one, including:
  • Magnetizing current reference value selection module used to select the magnetizing current reference value in the magnetizing current query table according to the motor speed ⁇ m when the memory motor needs to adjust the magnetization state of the permanent magnet
  • Current chopping control module used to select the reference value of the magnetization current output by the module according to the reference value of the magnetization current And the actual value of the magnetizing current i f , the DC magnetizing winding is driven to generate a magnetizing current through the method of current chopping, so as to adjust the magnetization state of the permanent magnet of the memory motor;
  • the current chopping method is specifically the actual value of the magnetizing current i f And select the reference value of magnetizing current
  • EMF extraction module in the memory of the motor for normal operation, the DC magnetic transfer collected winding induced voltage u f, and extracts the induced magnetic shunt winding induction potential voltage u f e f;
  • the permanent magnet flux calculation module is used to extract the magnetization winding induced potential e f output by the module according to the induced potential, and calculate the permanent magnet flux linkage value ⁇ pm to realize the vector control of the memory motor based on the permanent magnet flux linkage value ⁇ pm .
  • the method for obtaining the magnetic modulation current look-up table is:
  • the induced electric potential extraction module specifically includes:
  • M sf is the mutual inductance of the DC magnetizing winding to the stator, It is the observed value of the induced electric potential of the DC magnetizing winding, which is obtained through the feedback of the delayer;
  • Comparator used to compare the observed value of d-axis current Compared with the actual value of the d-axis current i d , the error is generated and input to the proportional-integral regulator;
  • Proportional-integral regulator used for proportional-integral adjustment according to the output of the comparator, and output the observed value of the induction potential of the DC magnetizing winding in this period And when the observed value of d-axis current When it is equal to the actual value of the d-axis current i d , the output result of the proportional-integral regulator is the actual value of the induced electric potential e f of the DC magnetizing winding;
  • the delayer is used to delay the output result of the proportional-integral regulator and feed it back to the d-axis current observation value calculation unit to participate in the calculation of the next cycle.
  • the permanent magnet flux calculation module specifically includes:
  • a unidirectional phase-locked loop for separating the q-axis component e f_q of the magnetization winding induced electric potential from the magnetization winding induced electric potential e f to obtain the d-axis component e f_d of the magnetization winding induced electric potential;
  • the adder is used to subtract the d-axis stator flux linkage ⁇ d from the DC magnetizing winding flux linkage ⁇ f to obtain the permanent magnet flux linkage ⁇ pm .
  • the disclosed system and method may be implemented in other ways.
  • the system embodiment described above is only illustrative.
  • the division of the modules and units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be Combined or can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种用于磁链观测的记忆电机绕组复用控制方法及系统,该方法包括以下步骤:一:在记忆电机需要调节磁化状态时,根据电机转速选择调磁电流参考值;二:通过电流反馈控制,驱动直流调磁绕组产生调磁电流,从而调节永磁体磁化状态;三:在记忆电机正常运行时,采集调磁绕组感应电压并提取调磁绕组感应电势;四:利用调磁绕组感应电势计算永磁磁链值,用于电机的矢量控制。通过将非调磁期处于冗余状态的调磁绕组用作磁链观测功能,能够提高直流调磁型记忆电机的利用效率,改善控制系统的动态性能和抗扰能力。

Description

一种用于磁链观测的记忆电机绕组复用控制方法及系统 技术领域
本发明涉及电机控制技术领域,尤其涉及一种用于磁链观测的记忆电机绕组复用控制方法及系统。
背景技术
可变磁通记忆电机(Variable Flux Memory Machine,VFMM)是一种通过改变永磁体磁化水平来实现拓宽调速范围的永磁电机。该类电机通过电枢绕组或者附加的调磁绕组施加瞬时的调磁电流脉冲来改变低矫顽力永磁体的磁化状态,克服了传统永磁同步电机(Permanent Magnet Synchronous Machine,PMSM)气隙磁场无法调节的问题。相比于混合励磁电机,记忆电机不需要持续的励磁电流,所以几乎没有电励磁损耗。记忆电机作为一种新概念的永磁电机,可望为电动汽车、风力发电、高速机床及飞轮储能等应用领域提供新型的永磁电机宽调速驱动系统。
直流调磁型记忆电机是一种具有独立的调磁绕组的记忆电机,通过对调磁绕组施加电流脉冲来改变低矫顽力永磁体的磁化状态,具有调磁简单、准确的优点。由于直流调磁型记忆电机的调磁绕组仅仅在需要调磁操作时发挥作用,而在绝大多数的运行时间里处于冗余状态,使得整个调磁控制系统利用率较低。
发明内容
发明目的:本发明针对现有技术存在的问题,提供一种用于磁链观测的记忆电机绕组复用控制方法及系统,本发明利用非调磁期处于冗余状态的调磁绕组,使其作为磁链观测绕组,实现永磁磁链观测功能,提高控制系统的利用率和抗扰能力。
技术方案:本发明所述的用于磁链观测的记忆电机绕组复用控制方法,包括以下步骤:
步骤一:在记忆电机需要调节永磁体磁化状态时,根据电机转速ω m在调磁电流查询表中选择调磁电流参考值
Figure PCTCN2019081819-appb-000001
步骤二:根据步骤一所得调磁电流参考值
Figure PCTCN2019081819-appb-000002
和调磁电流实际值i f,通过电流斩控的方式驱动直流调磁绕组产生调磁电流,从而调节记忆电机的永磁体磁化状态;
步骤三:在记忆电机正常运行时,采集直流调磁绕组感应电压u f,并根据直流调磁绕组感应电压u f提取调磁绕组感应电势e f
步骤四:根据步骤三所得调磁绕组感应电势e f,计算永磁磁链值ψ pm,并根据永磁磁链值ψ pm对记忆电机进行矢量控制。
进一步的,所述步骤一中调磁电流查询表获取方法为:
S1.1、根据永磁体不同磁化状态下记忆电机的机械特性,选取ψ MS1、ψ MS2……ψ MSk共k个磁化状态及其对应的转速ω m1、ω m2……ω mk构成离散对应关系;
S1.2、通过离线实验测定S1.1中所述k个磁化状态对应的调磁电流值i f1、i f2……i fk
S1.3、将S1.1中所述的转速ω m1、ω m2……ω mk和S1.2中所述的调磁电流值i f1、i f2……i fk的离散对应关系存储为调磁电流查询表。
进一步的,所述步骤二中电流斩控为将调磁电流实际值i f与选择调磁电流参考值
Figure PCTCN2019081819-appb-000003
进行滞环比较产生开关信号的控制方法。
进一步的,所述步骤三中提取调磁绕组感应电势e f的具体方法为:
S3.1、在当前周期,根据公式
Figure PCTCN2019081819-appb-000004
求得d轴电流观测值
Figure PCTCN2019081819-appb-000005
式中,M sf为直流调磁绕组对定子的互感,
Figure PCTCN2019081819-appb-000006
为直流调磁绕组感应电势观测值,通过上一周期比例-积分调节器的输出结果延时后反馈得到;
S3.2、将d轴电流观测值
Figure PCTCN2019081819-appb-000007
与d轴电流实际值i d比较后产生误差,输入至比例-积分调节器,比例-积分调节器的输出结果即为该周期的直流调磁绕组感应电势观测值
Figure PCTCN2019081819-appb-000008
S3.3、将步骤S3.2得到的直流调磁绕组感应电势观测值
Figure PCTCN2019081819-appb-000009
进行微分后作为反馈量参与下一周期的计算;
进一步的,所述步骤四中计算永磁磁链ψ pm的具体方法为:
S4.1、将调磁绕组感应电势e f输入至单相锁相环,分离调磁绕组感应电势q轴分量e f_q,得到调磁绕组感应电势d轴分量e f_d
S4.2、根据公式ψ f=K eω ee f_d计算调磁绕组磁链ψ f,式中K e和ω e分别为电势系数和电角速度,其中电势系数K e通过离线实验获得;
S4.3、将调磁绕组磁链ψ f减去d轴定子磁链ψ d,得到永磁磁链ψ pm
本发明所述的用于磁链观测的记忆电机绕组复用控制系统包括:
调磁电流参考值选择模块,用于在记忆电机需要调节永磁体磁化状态时,根据电机转速ω m在调磁电流查询表中选择调磁电流参考值
Figure PCTCN2019081819-appb-000010
电流斩控模块,用于根据调磁电流参考值选择模块输出的调磁电流参考值
Figure PCTCN2019081819-appb-000011
和调磁电流实际值i f,通过电流斩控的方式驱动直流调磁绕组产生调磁电流,从而调节记忆电机永磁体磁化状态;
感应电势提取模块,用于在记忆电机正常运行时,采集直流调磁绕组感应电压u f,并根据感应电压u f提取调磁绕组感应电势e f
永磁磁链计算模块,用于根据感应电势提取模块输出的调磁绕组感应电势e f,计算永磁磁链值ψ pm,以实现根据永磁磁链值ψ pm对记忆电机进行的矢量控制。
进一步的,所述调磁电流查询表获取方法为:
S1.1、根据永磁体不同磁化状态下记忆电机的机械特性,选取ψ MS1、ψ MS2……ψ MSk共k个磁化状态及其对应的转速ω m1、ω m2……ω mk构成离散对应关系;
S1.2、通过离线实验测定S1.1中所述k个磁化状态对应的调磁电流值i f1、i f2……i fk
S1.3、将S1.1中所述的转速ω m1、ω m2……ω mk和S2中所述的调磁电流值i f1、i f2……i fk的离散对应关系存储为调磁电流查询表。
进一步的,所述电流斩控方式具体为将调磁电流实际值i f与选择调磁电流参考值
Figure PCTCN2019081819-appb-000012
进行滞环比较产生开关信号的控制方法。
进一步的,所述感应电势提取模块具体包括:
d轴电流观测值计算单元,用于实现公式
Figure PCTCN2019081819-appb-000013
求得d轴电流观测值
Figure PCTCN2019081819-appb-000014
式中,M sf为直流调磁绕组对定子的互感,
Figure PCTCN2019081819-appb-000015
为直流调磁绕组感应电势观测值,通过延时器反馈得到;
比较器,用于将d轴电流观测值
Figure PCTCN2019081819-appb-000016
与d轴电流实际值i d比较后产生误差输入至比例-积分调节器;
比例-积分调节器,用于根据比较器的输出进行比例-积分调节,输出该周期的直流 调磁绕组感应电势观测值
Figure PCTCN2019081819-appb-000017
且当d轴电流观测值
Figure PCTCN2019081819-appb-000018
与d轴电流实际值i d相等时,比例-积分调节器输出结果为直流调磁绕组感应电势实际值e f
延时器,用于将比例-积分调节器的输出结果延时,反馈至d轴电流观测值计算单元,参与下一周期的计算。
进一步的,所述永磁磁链计算模块具体包括:
单向锁相环,用于从调磁绕组感应电势e f中分离调磁绕组感应电势q轴分量e f_q,得到调磁绕组感应电势d轴分量e f_d
直流调磁绕组磁链计算单元,用于实现公式ψ f=K eω ee f_d,得到直流调磁绕组磁链ψ f,式中K e和ω e分别为电势系数和电角速度,电势系数K e通过离线实验获得;
加法器,用于将直流调磁绕组磁链ψ f减去d轴定子磁链ψ d,得到永磁磁链ψ pm
有益效果:本发明与现有技术相比,其显著优点是:
1、利用绕组复用的原理,将非调磁期处于冗余状态的直流调磁绕组作为磁链观测绕组,提高了直流调磁型记忆电机的利用效率。
2、相比于现有的转子磁链观测技术,使用直流调磁绕组进行磁链观测时,绕组中电流几乎为零,更容易采集反电势信号,提高了转子磁链观测的精确度。
3、在矢量控制系统中使用永磁磁链值,用于电流闭环调节器的前馈解耦,减弱了磁链值变化对q轴电流控制的干扰,提高了控制系统的稳定性,改善了调速系统的动态性能。
附图说明
图1是本发明的一个实施例的控制系统原理图;
图2是图1中感应电势提取步骤的原理图;
图3是图1中永磁磁链计算步骤的原理图;
图4是图1中前馈解耦调节步骤的原理图。
具体实施方式
本实施例提供了一种用于磁链观测的记忆电机绕组复用控制方法,控制对象为直流调磁型记忆电机,控制过程如图1所示,电枢绕组与直流调磁绕组为电机内安装的部件;三相逆变器由矢量控制方式经由空间矢量调制技术(SVPWM)驱动,其转速外环采用PI调节器,电流内环采用前馈解耦调节器,使用磁链观测获得的永磁磁链值ψ pm实现前馈解耦;调磁功率变换器采用H桥直流功率变换器结构,在调磁期,通过电流斩控的方 式驱动调磁功率变换器在直流调磁绕组中产生调磁电流,从而调节永磁体磁化状态,在正常运行期,调磁功率变换器关断,利用电压传感器采集调磁绕组电压用于观测永磁磁链,进而实现直流调磁绕组的绕组复用控制。具体包括以下步骤:
步骤一:在记忆电机需要调节永磁体磁化状态时,根据电机转速ω m在调磁电流查询表中选择调磁电流参考值
Figure PCTCN2019081819-appb-000019
其中,所述调磁电流查询表获取方法为:
S1.1、根据永磁体不同磁化状态下记忆电机的机械特性,选取ψ MS1、ψ MS2……ψ MSk共k个磁化状态及其对应的转速ω m1、ω m2……ω mk构成离散对应关系;
S1.2、通过离线实验测定S1.1中所述k个磁化状态对应的调磁电流值i f1、i f2……i fk
S1.3、将S1.1中所述的转速ω m1、ω m2……ω mk和S1.2中所述的调磁电流值i f1、i f2……i fk的离散对应关系存储为调磁电流查询表。
步骤二:根据步骤一所得调磁电流参考值
Figure PCTCN2019081819-appb-000020
和调磁电流实际值i f,通过电流斩控的方式驱动直流调磁绕组产生调磁电流,从而调节记忆电机的永磁体磁化状态;所述电流斩控方式具体为将调磁电流实际值i f与选择调磁电流参考值
Figure PCTCN2019081819-appb-000021
进行滞环比较产生开关信号的控制方法。
步骤三:在记忆电机正常运行时,采集直流调磁绕组感应电压u f,并根据直流调磁绕组感应电压u f提取调磁绕组感应电势e f
对调磁绕组的电压方程进行分析:
Figure PCTCN2019081819-appb-000022
其中u f、i f、i d和e f分别为调磁绕组感应电压、调磁绕组电流、d轴电流和调磁绕组感应电势,R f、L f和M sf分别为调磁绕组电阻、调磁绕组自感和调磁绕组对定子的互感;
在磁链观测器件,调磁绕组电流i f为0,将等式右侧前两项忽略,公式(1)可改写为
Figure PCTCN2019081819-appb-000023
Figure PCTCN2019081819-appb-000024
因此,如图2所示,提取调磁绕组感应电势e f的具体步骤包括:
S3.1、在当前周期,根据公式
Figure PCTCN2019081819-appb-000025
求得d轴电流观测值
Figure PCTCN2019081819-appb-000026
式中,M sf为直流调磁绕组对定子的互感,
Figure PCTCN2019081819-appb-000027
为直流调磁绕组感应电势观测值,通过上一周期比例-积分调节器的输出结果延时后反馈得到;
S3.2、将d轴电流观测值
Figure PCTCN2019081819-appb-000028
与d轴电流实际值i d比较后产生误差,输入至比例-积分调节器,比例-积分调节器的输出结果即为该周期的直流调磁绕组感应电势观测值
Figure PCTCN2019081819-appb-000029
S3.3、将步骤S3.2得到的直流调磁绕组感应电势观测值
Figure PCTCN2019081819-appb-000030
进行微分后作为反馈量参与下一周期的计算;
步骤四:根据步骤三所得调磁绕组感应电势e f,计算永磁磁链值ψ pm,并根据永磁磁链值ψ pm对记忆电机进行矢量控制。
调磁绕组感应电势e f由永磁磁链感应分量、d轴磁链感应分量和q轴磁链感应分量组成,可表示为
Figure PCTCN2019081819-appb-000031
其中e f_d和e f_q分别为调磁绕组感应电势的d轴分量和q轴分量,E f_ψd、E f_pm和E f_ψq分别为由d轴磁链、永磁磁链和q轴磁链在调磁绕组感应的电势分量的幅值,其中永磁磁链在调磁绕组感应的电势分量的幅值E f_pm中包含所求的永磁磁链ψ pm,其关系可表示为下式
Figure PCTCN2019081819-appb-000032
其中E f_d为调磁绕组感应电势的d轴分量的幅值,根据公式(4)和(5)可得永磁磁链ψ pm的具体计算方法,如图3所示,具体包括:
S4.1、将调磁绕组感应电势e f输入至单相锁相环,分离调磁绕组感应电势q轴分量e f_q,得到调磁绕组感应电势d轴分量e f_d
S4.2、根据公式ψ f=K eω ee f_d计算调磁绕组磁链ψ f,式中K e和ω e分别为电势系数和电角速度,其中电势系数K e通过离线实验获得;
S4.3、将调磁绕组磁链ψ f减去d轴定子磁链ψ d,得到永磁磁链ψ pm
根据永磁磁链值ψ pm对记忆电机进行矢量控制的过程如图1和图4所示,其转速外环采用PI调节器,电流内环采用前馈解耦调节器,使用磁链观测获得的永磁磁链ψ pm值实现前馈解耦,dq坐标系下的电压方程为
Figure PCTCN2019081819-appb-000033
其中R s、L d和L q分别为定子电阻、d轴自感和q轴自感,u d、u q、i d、i q、ω e和ψ pm分别为d轴电压、q轴电压、d轴电流、q轴电流、电角速度和永磁磁链,若要实现对d、q轴电流的解耦控制,需要对电流给定
Figure PCTCN2019081819-appb-000034
Figure PCTCN2019081819-appb-000035
进行电压解耦得到电压形式的控制量
Figure PCTCN2019081819-appb-000036
Figure PCTCN2019081819-appb-000037
将公式(6)改写为
Figure PCTCN2019081819-appb-000038
其中
Figure PCTCN2019081819-appb-000039
Figure PCTCN2019081819-appb-000040
分别为d、q轴电压给定值,u d_ref和u q_ref分别为d、q轴电流环比例-积分(PI)调节器输出量,
Figure PCTCN2019081819-appb-000041
Figure PCTCN2019081819-appb-000042
为d、q轴电流给定值,根据公式(7)即可建立电流环前馈解耦调节器,其具体方法为:将d、q轴电流给定值
Figure PCTCN2019081819-appb-000043
Figure PCTCN2019081819-appb-000044
与反馈量d、q轴电流实际值的误差分别输入两个比例-积分调节器,得到d、q轴电流环比例-积分调节器输出量u d_ref和u q_ref;利用永磁磁链值ψ pm和电角速度ω e并根据公式(7)计算d、q轴电压给定值
Figure PCTCN2019081819-appb-000045
Figure PCTCN2019081819-appb-000046
从而实现前馈解耦控制。
本实施例还提供了一种用于磁链观测的记忆电机绕组复用控制系统,与上述方法一一对应,包括:
调磁电流参考值选择模块,用于在记忆电机需要调节永磁体磁化状态时,根据电机转速ω m在调磁电流查询表中选择调磁电流参考值
Figure PCTCN2019081819-appb-000047
电流斩控模块,用于根据调磁电流参考值选择模块输出的调磁电流参考值
Figure PCTCN2019081819-appb-000048
和调磁电流实际值i f,通过电流斩控的方式驱动直流调磁绕组产生调磁电流,从而调节记忆电机永磁体磁化状态;所述电流斩控方式具体为将调磁电流实际值i f与选择调磁电流参考值
Figure PCTCN2019081819-appb-000049
进行滞环比较产生开关信号的控制方法。
感应电势提取模块,用于在记忆电机正常运行时,采集直流调磁绕组感应电压u f,并根据感应电压u f提取调磁绕组感应电势e f
永磁磁链计算模块,用于根据感应电势提取模块输出的调磁绕组感应电势e f,计算永磁磁链值ψ pm,以实现根据永磁磁链值ψ pm对记忆电机进行的矢量控制。
其中,所述调磁电流查询表获取方法为:
S1.1、根据永磁体不同磁化状态下记忆电机的机械特性,选取ψ MS1、ψ MS2……ψ MSk共k个磁化状态及其对应的转速ω m1、ω m2……ω mk构成离散对应关系;
S1.2、通过离线实验测定S1.1中所述k个磁化状态对应的调磁电流值i f1、i f2……i fk
S1.3、将S1.1中所述的转速ω m1、ω m2……ω mk和S2中所述的调磁电流值i f1、i f2……i fk的离散对应关系存储为调磁电流查询表。
其中,所述感应电势提取模块具体包括:
d轴电流观测值计算单元,用于实现公式
Figure PCTCN2019081819-appb-000050
求得d轴电流观测值
Figure PCTCN2019081819-appb-000051
式中,M sf为直流调磁绕组对定子的互感,
Figure PCTCN2019081819-appb-000052
为直流调磁绕组感应电势观测值,通过延时器反馈得到;
比较器,用于将d轴电流观测值
Figure PCTCN2019081819-appb-000053
与d轴电流实际值i d比较后产生误差输入至比例-积分调节器;
比例-积分调节器,用于根据比较器的输出进行比例-积分调节,输出该周期的直流调磁绕组感应电势观测值
Figure PCTCN2019081819-appb-000054
且当d轴电流观测值
Figure PCTCN2019081819-appb-000055
与d轴电流实际值i d相等时,比例-积分调节器输出结果为直流调磁绕组感应电势实际值e f
延时器,用于将比例-积分调节器的输出结果延时,反馈至d轴电流观测值计算单元,参与下一周期的计算。
其中,所述永磁磁链计算模块具体包括:
单向锁相环,用于从调磁绕组感应电势e f中分离调磁绕组感应电势q轴分量e f_q,得到调磁绕组感应电势d轴分量e f_d
直流调磁绕组磁链计算单元,用于实现公式ψ f=K eω ee f_d,得到直流调磁绕组磁链ψ f,式中K e和ω e分别为电势系数和电角速度,电势系数K e通过离线实验获得;
加法器,用于将直流调磁绕组磁链ψ f减去d轴定子磁链ψ d,得到永磁磁链ψ pm
在本申请实施例中,应该理解到,所揭露的系统和方法可以通过其它的方式实现。例如,以上所描述的系统实施例仅仅是示意性的,例如,所述模块和单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种用于磁链观测的记忆电机绕组复用控制方法,其特征在于:包括以下步骤:
    步骤一:在记忆电机需要调节永磁体磁化状态时,根据电机转速ω m在调磁电流查询表中选择调磁电流参考值
    Figure PCTCN2019081819-appb-100001
    步骤二:根据步骤一所得调磁电流参考值
    Figure PCTCN2019081819-appb-100002
    和调磁电流实际值i f,通过电流斩控的方式驱动直流调磁绕组产生调磁电流,从而调节记忆电机的永磁体磁化状态;
    步骤三:在记忆电机正常运行时,采集直流调磁绕组感应电压u f,并根据直流调磁绕组感应电压u f提取调磁绕组感应电势e f
    步骤四:根据步骤三所得调磁绕组感应电势e f,计算永磁磁链值ψ pm,并根据永磁磁链值ψ pm对记忆电机进行矢量控制。
  2. 根据权利要求1所述的控制方法,其特征在于:所述步骤一中调磁电流查询表获取方法为:
    S1.1、根据永磁体不同磁化状态下记忆电机的机械特性,选取ψ MS1、ψ MS2……ψ MSk共k个磁化状态及其对应的转速ω m1、ω m2……ω mk构成离散对应关系;
    S1.2、通过离线实验测定S1.1中所述k个磁化状态对应的调磁电流值i f1、i f2……i fk
    S1.3、将S1.1中所述的转速ω m1、ω m2……ω mk和S1.2中所述的调磁电流值i f1、i f2……i fk的离散对应关系存储为调磁电流查询表。
  3. 根据权利要求1所述的控制方法,其特征在于:所述步骤二中电流斩控为将调磁电流实际值i f与选择调磁电流参考值
    Figure PCTCN2019081819-appb-100003
    进行滞环比较产生开关信号的控制方法。
  4. 根据权利要求1所述的控制方法,其特征在于:所述步骤三中提取调磁绕组感应电势e f的具体方法为:
    S3.1、在当前周期,根据公式
    Figure PCTCN2019081819-appb-100004
    求得d轴电流观测值
    Figure PCTCN2019081819-appb-100005
    式中,M sf为直流调磁绕组对定子的互感,
    Figure PCTCN2019081819-appb-100006
    为直流调磁绕组感应电势观测值,通过上一周期比例-积分调节器的输出结果延时后反馈得到;
    S3.2、将d轴电流观测值
    Figure PCTCN2019081819-appb-100007
    与d轴电流实际值i d比较后产生误差,输入至比例-积分 调节器,比例-积分调节器的输出结果即为该周期的直流调磁绕组感应电势观测值
    Figure PCTCN2019081819-appb-100008
    S3.3、将步骤S3.2得到的直流调磁绕组感应电势观测值
    Figure PCTCN2019081819-appb-100009
    进行微分后作为反馈量参与下一周期的计算;
  5. 根据权利要求1所述的控制方法,其特征在于:所述步骤四中计算永磁磁链ψ pm的具体方法为:
    S4.1、将调磁绕组感应电势e f输入至单相锁相环,分离调磁绕组感应电势q轴分量e f_q,得到调磁绕组感应电势d轴分量e f_d
    S4.2、根据公式ψ f=K eω ee f_d计算调磁绕组磁链ψ f,式中K e和ω e分别为电势系数和电角速度,其中电势系数K e通过离线实验获得;
    S4.3、将调磁绕组磁链ψ f减去d轴定子磁链ψ d,得到永磁磁链ψ pm
  6. 一种用于磁链观测的记忆电机绕组复用控制系统,其特征在于包括:
    调磁电流参考值选择模块,用于在记忆电机需要调节永磁体磁化状态时,根据电机转速ω m在调磁电流查询表中选择调磁电流参考值
    Figure PCTCN2019081819-appb-100010
    电流斩控模块,用于根据调磁电流参考值选择模块输出的调磁电流参考值
    Figure PCTCN2019081819-appb-100011
    和调磁电流实际值i f,通过电流斩控的方式驱动直流调磁绕组产生调磁电流,从而调节记忆电机永磁体磁化状态;
    感应电势提取模块,用于在记忆电机正常运行时,采集直流调磁绕组感应电压u f,并根据感应电压u f提取调磁绕组感应电势e f
    永磁磁链计算模块,用于根据感应电势提取模块输出的调磁绕组感应电势e f,计算永磁磁链值ψ pm,以实现根据永磁磁链值ψ pm对记忆电机进行的矢量控制。
  7. 根据权利要求6所述的控制系统,其特征在于:所述调磁电流查询表获取方法为:
    S1.1、根据永磁体不同磁化状态下记忆电机的机械特性,选取ψ MS1、ψ MS2……ψ MSk共k个磁化状态及其对应的转速ω m1、ω m2……ω mk构成离散对应关系;
    S1.2、通过离线实验测定S1.1中所述k个磁化状态对应的调磁电流值i f1、i f2……i fk
    S1.3、将S1.1中所述的转速ω m1、ω m2……ω mk和S2中所述的调磁电流值i f1、i f2……i fk的离散对应关系存储为调磁电流查询表。
  8. 根据权利要求6所述的控制系统,其特征在于:所述电流斩控方式具体为将调 磁电流实际值i f与选择调磁电流参考值
    Figure PCTCN2019081819-appb-100012
    进行滞环比较产生开关信号的控制方法。
  9. 根据权利要求6所述的控制系统,其特征在于:所述感应电势提取模块具体包括:
    d轴电流观测值计算单元,用于实现公式
    Figure PCTCN2019081819-appb-100013
    求得d轴电流观测值
    Figure PCTCN2019081819-appb-100014
    式中,M sf为直流调磁绕组对定子的互感,
    Figure PCTCN2019081819-appb-100015
    为直流调磁绕组感应电势观测值,通过延时器反馈得到;
    比较器,用于将d轴电流观测值
    Figure PCTCN2019081819-appb-100016
    与d轴电流实际值i d比较后产生误差输入至比例-积分调节器;
    比例-积分调节器,用于根据比较器的输出进行比例-积分调节,输出该周期的直流调磁绕组感应电势观测值
    Figure PCTCN2019081819-appb-100017
    且当d轴电流观测值
    Figure PCTCN2019081819-appb-100018
    与d轴电流实际值i d相等时,比例-积分调节器输出结果为直流调磁绕组感应电势实际值e f
    延时器,用于将比例-积分调节器的输出结果延时,反馈至d轴电流观测值计算单元,参与下一周期的计算。
  10. 根据权利要求6所述的控制系统,其特征在于:所述永磁磁链计算模块具体包括:
    单向锁相环,用于从调磁绕组感应电势e f中分离调磁绕组感应电势q轴分量e f_q,得到调磁绕组感应电势d轴分量e f_d
    直流调磁绕组磁链计算单元,用于实现公式ψ f=K eω ee f_d,得到直流调磁绕组磁链ψ f,式中K e和ω e分别为电势系数和电角速度,电势系数K e通过离线实验获得;
    加法器,用于将直流调磁绕组磁链ψ f减去d轴定子磁链ψ d,得到永磁磁链ψ pm
PCT/CN2019/081819 2019-03-13 2019-04-08 一种用于磁链观测的记忆电机绕组复用控制方法及系统 WO2020181603A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/289,749 US11522481B2 (en) 2019-03-13 2019-04-08 Memory motor winding multiplexing control method and system for flux linkage observation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910188100.4A CN109818541B (zh) 2019-03-13 2019-03-13 一种用于磁链观测的记忆电机绕组复用控制方法及系统
CN201910188100.4 2019-03-13

Publications (1)

Publication Number Publication Date
WO2020181603A1 true WO2020181603A1 (zh) 2020-09-17

Family

ID=66608805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081819 WO2020181603A1 (zh) 2019-03-13 2019-04-08 一种用于磁链观测的记忆电机绕组复用控制方法及系统

Country Status (3)

Country Link
US (1) US11522481B2 (zh)
CN (1) CN109818541B (zh)
WO (1) WO2020181603A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995109B (zh) * 2019-10-29 2021-08-10 东南大学 一种交流调磁型记忆电机直接转矩磁链控制方法
CN110995085B (zh) * 2019-10-31 2021-06-22 东南大学 考虑不可控发电故障的变磁通记忆电机多步调磁控制方法
CN112468035B (zh) * 2020-12-21 2022-07-12 哈尔滨工业大学 可调磁通永磁同步电机全速域效率最优控制磁化状态选择方法及在线控制方法
CN112671289B (zh) * 2021-01-13 2022-08-16 东南大学 一种记忆电机宽速度范围调磁控制方法
CN113676108B (zh) * 2021-08-25 2022-03-08 哈尔滨市科佳通用机电股份有限公司 一种感应电机转子磁链的观测方法
CN114593027A (zh) * 2022-03-21 2022-06-07 王万强 机械芯储能装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388639A (zh) * 2008-11-03 2009-03-18 北京清能华福风电技术有限公司 双馈风力发电机无位置传感器矢量控制方法
CN106992729A (zh) * 2017-05-11 2017-07-28 东南大学 一种定子永磁型记忆电机永磁磁链分段控制方法
CN109150022A (zh) * 2018-08-21 2019-01-04 东南大学 一种基于电流解耦的记忆电机调磁转矩脉动的抑制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814677A (en) * 1987-12-14 1989-03-21 General Electric Company Field orientation control of a permanent magnet motor
JP3331734B2 (ja) * 1993-05-18 2002-10-07 株式会社明電舎 回転電機の制御方式
JP5167631B2 (ja) * 2006-11-30 2013-03-21 株式会社デンソー モータの制御方法及びそれを利用するモータ制御装置
US8860356B2 (en) * 2007-09-18 2014-10-14 Kabushiki Kaisha Toshiba Variable magnetic flux motor drive system
JP5838038B2 (ja) * 2011-04-22 2015-12-24 サンデンホールディングス株式会社 モータ制御装置
US8860342B2 (en) * 2011-09-15 2014-10-14 Curtiss-Wright Electro-Mechanical Corporation System and method for controlling a permanent magnet motor
CN103151859A (zh) * 2013-02-01 2013-06-12 东南大学 一种磁通切换型表贴式永磁记忆电机
CN103199661B (zh) * 2013-04-25 2015-04-29 东南大学 一种磁通切换型内置式永磁记忆电机
JP6199776B2 (ja) * 2014-03-11 2017-09-20 株式会社荏原製作所 電動機の駆動装置
CN106537760B (zh) * 2015-01-28 2020-03-31 松下知识产权经营株式会社 电动机控制装置以及该装置中的转矩常数的校正方法
JP6868772B2 (ja) * 2016-02-25 2021-05-12 パナソニックIpマネジメント株式会社 モータ制御装置およびモータ制御方法
JP6646484B2 (ja) * 2016-03-15 2020-02-14 サンデン・オートモーティブコンポーネント株式会社 モータ制御装置
CN107017818B (zh) * 2017-05-17 2019-05-28 东南大学 一种定子永磁型记忆电机直接转矩控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388639A (zh) * 2008-11-03 2009-03-18 北京清能华福风电技术有限公司 双馈风力发电机无位置传感器矢量控制方法
CN106992729A (zh) * 2017-05-11 2017-07-28 东南大学 一种定子永磁型记忆电机永磁磁链分段控制方法
CN109150022A (zh) * 2018-08-21 2019-01-04 东南大学 一种基于电流解耦的记忆电机调磁转矩脉动的抑制方法

Also Published As

Publication number Publication date
US20220006404A1 (en) 2022-01-06
CN109818541A (zh) 2019-05-28
CN109818541B (zh) 2020-10-02
US11522481B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2020181603A1 (zh) 一种用于磁链观测的记忆电机绕组复用控制方法及系统
EP3002872B1 (en) Methods of estimating rotor magnet temperature and systems thereof
Bojoi et al. Unified direct-flux vector control of induction motor drives with maximum torque per ampere operation
CN111245328B (zh) 查表法结合调节器的永磁同步电机控制方法
CN103872951A (zh) 基于滑模磁链观测器的永磁同步电机转矩控制方法
Chen et al. Interior permanent magnet synchronous motor linear field-weakening control
Halder et al. MTPA based Sensorless Control of PMSM using position and speed estimation by Back-EMF method
Bariša et al. Comparison of maximum torque per ampere and loss minimization control for the interior permanent magnet synchronous generator
WO2020215588A1 (zh) 基于功能切换的直流调磁型记忆电机无位置控制方法及系统
Xu et al. A novel resonant frequency tracking control for linear compressor based on MRAS method
Lee et al. Single-phase inverter drive for interior permanent magnet machines
CN107979314A (zh) 一种变速开关磁阻风力发电机最大功率跟踪控制方法
Kakodia et al. A comparative study of DFOC and IFOC for IM drive
Won et al. Improved FOC of IPMSM using finite-state model predictive current control for EV
Zahraoui et al. Synchronous reluctance motor performance improvement using MTPA control strategy and five-level inverter topology
Zhang et al. Sensorless Control of Synchronous Reluctance Motor over Full Speed Range
Yuan et al. Research of control methods for axial field flux-switching permanent magnet machine
Sakamoto et al. Position sensorless vector control of permanent magnet synchronous motors for electrical household appliances
Lv et al. A comparative study of three starting strategies for an aero flywheel motor using the modified DTC method
Alkhafaji et al. Design and Analysis of Synchronous Reluctance Motor (synrm) using Matlab Simulink
Lei Notice of Violation of IEEE Publication Principles: Universal MTPA control for permanent magnet synchronous motor drives
Xia et al. Speed sensorless control in direct-drive permanent magnet synchronous generator system
Yuan et al. Optimization control of large-capacity high-speed flywheel energy storage systems
Luo et al. Sensorless vector control of IPMSM drive system with small DC-link capacitor
Demirkov Improved wind turbine control using maximum torque per ampere control strategy taking into account the magnetic saturation.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918966

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19918966

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/03/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19918966

Country of ref document: EP

Kind code of ref document: A1