WO2020181468A1 - 显示装置及其操作方法 - Google Patents

显示装置及其操作方法 Download PDF

Info

Publication number
WO2020181468A1
WO2020181468A1 PCT/CN2019/077700 CN2019077700W WO2020181468A1 WO 2020181468 A1 WO2020181468 A1 WO 2020181468A1 CN 2019077700 W CN2019077700 W CN 2019077700W WO 2020181468 A1 WO2020181468 A1 WO 2020181468A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
transparent area
display screen
display device
optical function
Prior art date
Application number
PCT/CN2019/077700
Other languages
English (en)
French (fr)
Inventor
夏曾强
孔超
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/640,408 priority Critical patent/US11210051B2/en
Priority to CN201980000306.8A priority patent/CN110088820B/zh
Priority to PCT/CN2019/077700 priority patent/WO2020181468A1/zh
Publication of WO2020181468A1 publication Critical patent/WO2020181468A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • G06F3/1446Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display display composed of modules, e.g. video walls
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/147Digital output to display device ; Cooperation and interconnection of the display device with other functional units using display panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1601Constructional details related to the housing of computer displays, e.g. of CRT monitors, of flat displays
    • G06F1/1605Multimedia displays, e.g. with integrated or attached speakers, cameras, microphones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • G06F3/1431Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display using a single graphics controller
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • G06F3/1438Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display using more than one graphics controller
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections

Definitions

  • the embodiment of the present disclosure relates to a display device and an operation method thereof.
  • Camera modules are usually installed in current electronic display products, and in order to pursue a narrow frame and high screen-to-body ratio to obtain a better display effect, it is necessary to dig grooves and holes in the position corresponding to the camera module on the display screen. Allows external light to enter the camera module.
  • At least one embodiment of the present disclosure provides a display device including a main display screen, a sub display, and an optical function processor.
  • the main display screen has a display surface and includes a transparent area;
  • the secondary display is located on the side of the main display screen opposite to the display surface, and is configured to project to the transparent area of the main display screen
  • the image light is displayed in the transparent area;
  • the optical function processor is located on the side of the main display screen opposite to the display surface, and is configured to perform at least one of the following operations: receiving from the main The display side of the display screen transmits light from the transparent area; and the light is emitted to the display side of the main display screen through the transparent area of the main display screen.
  • the display device provided by at least one embodiment of the present disclosure further includes a switch.
  • the switcher is located on the side of the main display screen opposite to the display surface, and is configured to enable the display device to display in the transparent area on the secondary display and the optical function processor to perform all operations. Switch between the above operations.
  • the switch includes a first reflector.
  • the first mirror is configured to switch between a first state and a second state; in the first state, the first mirror is configured to reflect the image light of the secondary display to the transparent Area; in the second state, the first reflector is configured to reflect light that has passed through the transparent area from the display side of the main display screen to the optical function processor or the optical function The light emitted by the processor is reflected to the transparent area.
  • the switch further includes a second reflector.
  • the second reflector is configured to reflect the image light of the secondary display to the reflective surface of the first reflector in the first state, and to further transmit the secondary display through the first reflector The image light is reflected to the transparent area.
  • the display surface of the secondary display is substantially parallel to the display surface of the main display screen, and the display surface of the secondary display faces the main display screen. Attached to the side of the main display screen opposite to the display surface.
  • the second reflector is disposed on the display side of the secondary display, and the reflective surface of the second reflector faces the display surface of the secondary display. It forms an angle of about 45° with the display surface of the secondary display.
  • the orthographic projection of the reflective surface of the first mirror on the main display screen covers the transparent area; in the first state, the first The reflecting surface of a reflecting mirror faces the reflecting surface of the second reflecting mirror and forms an angle of about 90° with the reflecting surface of the second reflecting mirror.
  • the display surface of the secondary display is perpendicular to the display surface of the main display screen, and the reflective surface of the first reflector is on the main display screen.
  • the front projection covers the transparent area; in the first state, the reflective surface of the first reflector faces the display surface of the secondary display and forms an angle of about 45° with the display surface of the primary display.
  • the reflective surface of the first reflector faces the optical function processor and is connected to the display surface of the main display screen. At an angle of about 45°.
  • the display device provided by at least one embodiment of the present disclosure further includes a driver configured to rotate the first mirror around a rotation axis to switch between the first state and the second state.
  • the rotation axis is parallel to the reflective surface of the first reflector and the display surface of the main display screen.
  • the rotation axis passes through the center of the first reflector and is perpendicular to the display surface of the main display screen.
  • the switcher includes a moving member connected to the secondary display and the optical function processor and configured to be in the third state and the second state. Switch between four states;
  • the moving member is configured to move the secondary display to a position facing the transparent area, and at the same time move the optical function processor to a position away from the transparent area;
  • the moving member is configured to move the optical function processor to a position facing the transparent area, while moving the secondary display to a position away from the transparent area.
  • the switcher includes a moving member connected to the secondary display, and the display surface of the optical function processor faces the transparent area,
  • the moving member is configured to move the sub display between the optical function processor and the transparent area or move the sub display away from between the optical function processor and the transparent area.
  • the primary display screen and the secondary display are liquid crystal display screens or organic light emitting diode display screens.
  • the primary display screen and the secondary display are flexible organic light emitting diode display screens.
  • the primary display screen and the secondary display are two parts of the overall display screen, and the secondary display is bent to the main display screen. The opposite side of the display surface.
  • the optical function processor includes at least one of a camera module, a 3D structured light module, a time-of-flight 3D imaging module, and an infrared sensing module.
  • At least one embodiment of the present disclosure provides an operating method of a display device.
  • the operating method includes: driving an area of the primary display screen except the transparent area to display an image; driving the secondary display to display an image and The image light is projected onto the transparent area to be combined with the image displayed in the area other than the transparent area of the main display screen to form a complete image; driving the optical function processor to perform at least one of the following operations: Receiving light passing through the transparent area from the display side of the main display screen; and emitting light to the display side of the main display screen through the transparent area of the main display screen.
  • the optical function processor when the optical function processor performs the operation, a part or all of the area of the main display screen other than the transparent area is displayed image.
  • FIG. 1 is a schematic block diagram of a display device provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a planar structure of a display device according to an embodiment of the present disclosure
  • 3a is a schematic cross-sectional view along the M-N direction in FIG. 2 of a display device in a first state according to an embodiment of the present disclosure
  • FIG. 3b is a schematic cross-sectional view of the display device shown in FIG. 3a in a second state
  • FIG. 4a is a schematic cross-sectional view of a display device in a first state according to another embodiment of the disclosure.
  • FIG. 4b is a schematic cross-sectional view of the display device shown in FIG. 4a in a second state
  • FIG. 5 is a schematic diagram of a planar structure of a display device provided by another embodiment of the present disclosure.
  • FIG. 6a is a schematic cross-sectional view of a display device in a third state according to still another embodiment of the present disclosure.
  • FIG. 6b is a schematic cross-sectional view of the display device shown in FIG. 6a in a fourth state
  • FIG. 7a is a schematic cross-sectional view of a display device in a first state according to another embodiment of the present disclosure.
  • FIG. 7b is a schematic cross-sectional view of the display device shown in FIG. 7a in a second state.
  • FIG. 8a is a schematic diagram of a special-shaped screen provided by an embodiment of the present disclosure.
  • Fig. 8b is a schematic diagram of a special-shaped screen provided by another embodiment of the present disclosure.
  • FIG. 1 is a schematic block diagram of a display device provided by at least one embodiment of the present disclosure.
  • the display device 10 includes a processor 100, a memory 110, an interface unit 120, a sensor 130, a camera module 140, a display screen 150, a touch screen 160, and the like.
  • the display device 10 may be any portable display device, including but not limited to a smart phone, a tablet computer, a media player, etc., and may also include a combination of two or more of them. It should be noted that the display device 10 is only an embodiment of the present disclosure, and the components of the display device may have more or fewer components than those shown in FIG. 1, or have different component configurations.
  • the various components shown in FIG. 1 may be implemented by hardware, software, or a combination of software and hardware, including one or more signal processing circuits and/or application specific integrated circuits.
  • the processor 100 may include one or more central processing units (CPUs) or other forms of processors having data processing capabilities and/or instruction execution capabilities, and may control other components in the display device 10 to perform desired functions.
  • CPUs central processing units
  • the memory 110 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 110 may be used to store software programs and various data.
  • the interface unit 120 is used to connect an external device with the display device 10.
  • the interface unit 120 may include a wired or wireless headset port, an external power supply port (or battery charging port), and the like.
  • the interface unit 120 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more components in the display device 10. It can also be used to connect the display device 10 and the external device. Transfer data between devices, etc.
  • the display device 10 may include at least one sensor 130, such as a distance sensor, a 3D structured light sensor, a Time of Flight (ToF) sensor, and so on.
  • the distance sensor may include an infrared sensing sensor that includes an infrared transmitter and an infrared detector.
  • the infrared light emitted by the infrared transmitter is received by the infrared detector, it means that the external object is close to the display device 10 (the infrared light emitted by the infrared transmitter is reflected by the external object).
  • the display device 10 for example, automatically turns off the display screen 150 and the touch screen 160 to prevent misoperation.
  • the 3D structured light sensor and the Time of Flight (ToF) sensor can be used for face recognition to unlock the display device 10 and the like.
  • the display device 10 may also include other sensors such as an acceleration sensor, a fingerprint sensor, an iris sensor, etc., to realize corresponding functions. It should be noted that the specific implementation of the sensor in the present disclosure can refer to well-known sensor technology, which will not be repeated here.
  • the camera module 140 includes, for example, a lens, an image sensor, an image processing chip, and the like.
  • the optical image of the scene generated by the lens is projected onto the surface of the image sensor (image sensor includes CCD and CMOS) and converted into electrical signals, which are converted into digital image signals after analog-to-digital conversion by the image processing chip, and then sent to the processor 100 for processing.
  • the image of the scene is instantly output on the display screen 150.
  • the camera module 140 may include, for example, a front camera module and a rear camera module.
  • the front camera module is usually activated when the user takes a selfie or a video call
  • the rear camera module is usually activated when the user takes a scene.
  • the camera module 140 may include more than one lens.
  • the display screen 150 also called a display panel, displays visual output to the user.
  • the visual output can include text, graphics, video, and any combination thereof.
  • the display screen can be configured as a liquid crystal display panel, an organic light emitting diode display panel, and other common forms.
  • the touch screen 160 also called a touch panel, can collect user touch operations on or near it, and implement predetermined functions according to a preset program. It should be noted that the touch screen 160 can cover the display screen 150.
  • the touch screen 150 transforms the detected contact into an interaction with a user interface object such as one or more soft keys displayed on the display screen.
  • a user interface object such as one or more soft keys displayed on the display screen.
  • the touch screen 160 and the display screen 150 are used as two independent components, in some embodiments, the touch screen 160 and the display screen 150 may be integrated into one component. This is not limited.
  • the display device 10 also includes a power supply system 170 for supplying power to various components.
  • the power supply system 170 may include a power management system, one or more power sources (such as batteries), a charging system, a power failure detection circuit, a power converter or an inverter, and are related to the generation, management and distribution of power in the display device 10 Any other components of the association.
  • the realization of the functions of certain components in the display device depends on
  • the assembly and the display screen 150 are arranged on the front of the display device at the same time, thereby affecting the increase of the screen-to-body ratio of the display device.
  • one solution is to dig grooves and holes on the display screen 150, and install the above-mentioned components at the positions of the grooves and holes. This solution will reduce the aesthetics of the display screen.
  • At least one embodiment of the present disclosure provides a display device including: a primary display screen, a secondary display, and an optical function processor.
  • the main display screen has a display surface and includes a transparent area; the sub display is located on the side of the main display screen opposite to the display surface and is configured to project image light to the transparent area of the main display screen To display in the transparent area; an optical function processor, located on the side of the main display screen opposite to the display surface, and configured to perform at least one of the following operations: receiving information from the main display screen The light passing through the transparent area on the display side; and the light is emitted to the display side of the main display screen through the transparent area of the main display screen.
  • At least one embodiment of the present disclosure also provides an operation method corresponding to the above-mentioned display device.
  • the display device provided by the embodiment of the present disclosure can display through the transparent area, and can also realize the function of the optical function processor through the transparent area, and the optical function processor is always in a hidden state.
  • the image displayed on the secondary display can be projected on the transparent area of the main display, while the area of the main display except the transparent area can display the image.
  • the optical function processor (for example, the front camera module) can realize its corresponding function through the transparent area of the main display screen while remaining hidden, maintaining the integration and waterproof and dustproof performance of the display device. .
  • FIG. 2 is a schematic diagram of a planar structure of a display device provided by an embodiment of the present disclosure.
  • the display device 10 includes a main display screen 200, a sub display 300 and an optical function processor 400.
  • the main display screen 200 has a display surface and includes a transparent area 250.
  • the display surface of the main display screen 200 may be displayed for the user to watch.
  • the side where the display surface of the main display screen 200 is located is called the display side of the main display screen 200.
  • the secondary display 300 is disposed on the side of the main display screen 200 opposite to the display surface, and is configured to project image light to the transparent area 250 of the main display screen 200 for display in the transparent area 250.
  • the optical function processor 400 is disposed on the side of the main display screen 200 opposite to the display surface, and is configured to perform at least one of the following operations: receiving light transmitted through the transparent area 250 from the display side of the main display screen 200; and passing The transparent area 250 of the main display screen 200 emits light to the display side of the main display screen 200.
  • FIG. 2 the display surface of the main display screen 200 is shown, and the auxiliary display 300 and the optical function processor 400 are shown by dashed lines, indicating that they are located on the side of the main display screen 200 opposite to the display surface.
  • the area (shaded area) of the main display screen 200 other than the transparent area 250 includes a display area, which includes a pixel structure, data lines, scan lines, etc. ( 2) is used to display images, and the transparent area 250 does not include the above-mentioned pixel structure, data lines, scan lines, etc. for displaying images, that is, the transparent area 250 itself can transmit light, but not Display the image.
  • the transparent area 250 may be arranged at the edge of the display area or inside the display area, that is, the transparent area 250 is surrounded by the display area.
  • the transparent area 250 and the display area of the main display screen 200 may jointly form a rectangular area, so that the main display screen 200 and the sub-display 300 may jointly display images in a rectangular area.
  • the embodiments according to the present disclosure are not limited thereto.
  • the area jointly formed by the transparent area 300 and the display area of the main display screen 200 may be a chamfered rectangle, a circle, an ellipse, a regular polygon, or other irregular shapes. The embodiment has no particular limitation on this.
  • the shape and size of the transparent area 250 are not limited, as long as it does not affect the optical function processor 400 to perform the above operations smoothly to realize the function of the optical function processor 400.
  • the shape of the transparent area 250 may be a graphic similar to the shape of the lens of the front camera module (for example, a circle), or other graphics such as a square.
  • the size of the transparent area 250 can be the same as the size of the cross-section of the lens of the front camera module, or it can be larger than the size of the cross-section of the lens of the front camera module to ensure the light of the lens of the front camera module
  • the aperture is not limited by the transparent area 250.
  • the shape of the transparent area 250 may be continuous or discontinuous.
  • the shape of the transparent area 250 may be multiple graphics corresponding to the multiple lenses, or may be A large graphic enough to include multiple graphics corresponding to the multiple shots.
  • the image displayed by the secondary display 300 through the transparent area 250 can be compared with the area of the main display 200 except the transparent area 250 (that is, the display area of the main display 200 described above). )
  • the displayed images are stitched together to display the complete image together.
  • the secondary display 300 displays the first part of a complete frame of image, and the first part of the complete image displayed on the secondary display 300 is projected onto the transparent area 250 for display, which is complete with the frame displayed in the display area of the primary display 200
  • the second part of the image is joined together so that the user can view the complete image of the frame on the display side of the main display screen 200.
  • the shape and size of the secondary display 300 are not limited, as long as it does not affect the user to view the above-mentioned complete image on the primary display 200.
  • the shape and size of part or all of the display area of the secondary display 300 are the same as the shape and size of the transparent area 250, and this part or all of the display area displays the first part of the complete image of the frame and can be projected onto the transparent area 250 To display.
  • the secondary display 300 may be a secondary display similar to the main display 200; for example, in some examples, the secondary display may be a projection device with a projection function.
  • the projections of the secondary display 300 and the optical function processor 400 on the primary display screen 200 and the transparent area 250 are approximately in the same straight line, and Distributed on both sides of the transparent area 250.
  • the position setting of the secondary display 300 and the optical function processor 400 relative to the transparent area 250 is not limited to this.
  • the position of the transparent area 250 on the main display 200 can be changed accordingly, as long as it can be realized.
  • the technical effect of the display device in the present disclosure is sufficient.
  • the display device provided by at least one embodiment of the present disclosure further includes a switcher (not shown in FIG. 2).
  • the switcher is located on the side of the main display screen 200 opposite to the display surface, and is configured to switch the display device between the display of the sub display 300 in the transparent area 250 and the optical function processor 400 performing the above operations.
  • the switcher can project the image light of the secondary display 300 to the transparent area 250 through optical path conversion, and can also transmit the light from the display side of the main display 200 through the transparent area 250 to the optical function processor 400 through optical path conversion.
  • the light emitted by the optical function processor 400 is transmitted to the display side of the main display screen 200 through the transparent area 250.
  • the positions of the secondary display 300 and the optical function processor 400 can be set so that both can achieve corresponding operations at the same time, that is, the secondary display 300 is in the transparent area.
  • the optical component 400 receives or emits light through the transparent area.
  • the image light of the secondary display 300 may be projected to the transparent area in a direction inclined relative to the display surface of the main display screen, and the light emitted or received by the optical function processor 400 may propagate in a direction inclined relative to the display surface of the main display screen.
  • FIG. 3a is a schematic cross-sectional view of a display device in a first state along the M-N direction in FIG. 2 according to an embodiment of the present disclosure
  • FIG. 3b is a schematic cross-sectional view of the display device shown in FIG. 3a in a second state.
  • the first state is a state in which the secondary display 300 performs display in the transparent area 250
  • the second state is a state in which the optical function processor 400 performs its corresponding operations through the transparent area 250.
  • the switch includes a first mirror 500.
  • the first mirror 500 is configured to be switchable between the first state and the second state; in the first state, as shown in FIG. 3a, the first mirror 500 is configured to reflect the image light of the secondary display 300 to a transparent Area 250; In the second state, as shown in FIG. 3b, the first mirror 500 is configured to reflect the light passing through the transparent area 250 from the display side of the main display screen 200 to the optical function processor 400 or process the optical function The light emitted by the sensor 400 is reflected to the transparent area 250.
  • the first reflector 500 can reflect light perpendicular to the main display screen 200 into parallel to the main display screen 200.
  • the first reflector 500 can also reflect light parallel to the main display screen 200. It is perpendicular to the main display screen 200, so that the image light emitted by the auxiliary display 300 is parallel to the main display screen 200, and the optical function processor 400 can receive or emit light parallel to the main display screen, thereby realizing the technology of the display device effect.
  • the switcher further includes a second reflector 600.
  • the second mirror 600 is configured to reflect the image light of the sub-display 300 to the reflective surface of the first mirror 500 in the first state, and to further reflect the image light of the sub-display 300 to the reflective surface of the first mirror 500 through the first mirror 500 Transparent area 250.
  • the image light of the secondary display 300 is reflected twice by the second mirror 600 and the first mirror 500, it is transmitted perpendicular to the transparent area 250, so that the user can see through the transparent area 250 on the display side of the main display 200
  • the image displayed on the secondary display 300 (for example, the first part of the above-mentioned complete image).
  • the display surface of the secondary display 300 is substantially parallel to the display surface of the primary display 200, and the secondary display 300 has its display surface facing away from the The main display screen 200 is attached to the side of the main display screen 200 opposite to the display surface. Therefore, the display surface of the sub display 300 can emit image light perpendicular to the main display 200.
  • substantially parallel includes completely parallel and non-parallel with an included angle within 3°.
  • the second reflector 600 is arranged on the display side of the secondary display 300, and the reflective surface of the second reflector 600 faces the display surface of the secondary display 300 and is approximately 45° from the display surface of the secondary display 300. angle. Therefore, the second mirror 600 can change the image light from the secondary display 300 perpendicular to the main display screen 200 to be parallel to the main display screen 200.
  • the approximate angle is allowed to have a deviation of, for example, plus or minus 3°, and the following is the same as this, and will not be repeated.
  • the first reflecting mirror 500 is arranged on the side of the main display screen 200 opposite to the display surface, and the orthographic projection of the reflecting surface of the first reflecting mirror 500 on the main display screen 200 covers the main display screen 200.
  • the reflective surface of the first reflector 500 and the display surface of the main display screen 200 form an angle of about 45°.
  • the first reflector 500 can reflect the image light parallel to the main display screen 200 after being reflected by the second reflector 600 into image light perpendicular to the main display screen 200 and project it on the transparent area 250, so that the user can On the display side of the main display screen 200, the image displayed on the secondary display 300 can be viewed through the transparent area 250, for example, the first part of the above-mentioned complete image.
  • the display area of the main display screen 200 simultaneously displays the second part of the frame of the complete image, the user can view the frame of the complete image.
  • FIG. 4a is a schematic cross-sectional view of a display device in a first state according to another embodiment of the present disclosure
  • FIG. 4b is a schematic cross-sectional view of the display device shown in FIG. 4a in a second state.
  • the arrangement of the first mirror 500 is the same as that shown in FIG. 3a, except that the display surface of the secondary display 300 is perpendicular to that of the main display 200 The display surface faces the reflective surface of the first reflector 500, so that the image light of the secondary display 300 can be directly reflected by the first reflector 500 and then projected onto the transparent area 250.
  • the first mirror 500 can be switched from the first state to the second state.
  • the first mirror 500 can be switched from the first state shown in FIG. 3a to the second state shown in FIG. 3b.
  • the reflecting surface of the first reflecting mirror 500 faces the optical function processor 400 and forms an angle of about 45° with the display surface of the main display screen.
  • the optical function processor 400 can receive or emit light parallel to the main display screen 200 to realize the function of the optical function processor 400.
  • the optical function processor 400 is a front camera module
  • the front camera The lens of the module faces the reflecting surface of the first reflecting mirror 500 in the second state to receive light parallel to the main display screen 200.
  • the first mirror 500 rotates around a rotation axis in a first state (for example, as shown in FIG. 3a) and a second state (for example, as shown in FIG. 3b). Shown) to switch between.
  • the first mirror 500 may be driven to rotate around the rotation axis by an electric motor or the like.
  • the rotation axis is introduced to describe the rotation mode of the first mirror 500, and may not be an actual structure or component. Of course, in some examples, there may also be actual structures and components corresponding to the rotating shaft, which is not limited in the present disclosure.
  • the rotation axis may be parallel to the reflective surface of the first mirror 500 and the display surface of the main display screen 200.
  • the extension direction of the rotation axis is perpendicular to the Y axis and the Z axis shown in FIG. 3a, and the rotation axis passes through the center of the first mirror 500, so that the first mirror 500 can Rotate about the rotation axis by an angle of about 90° to switch between the first state shown in FIG. 3a and the second state shown in FIG. 3b.
  • 3a and 3b are closely adjacent to the transparent area 250 in the Y-axis direction, which is schematic.
  • the rotation axis may also pass through the center of the first reflector 500 and be perpendicular to the display surface of the main display 200 (for example, perpendicular to the X axis and Y axis).
  • the reflective surface of the first mirror 500 when the first mirror 500 shown in FIG. 3a rotates around the rotation axis, the reflective surface of the first mirror 500 always forms an angle of about 45° with the display surface of the main display screen 200.
  • the first mirror 500 may rotate about an angle of 180° around the rotation axis to switch between the first state and the second state.
  • the configuration in which the rotation axis of the first reflector 500 passes through the center of the first reflector 500 and is perpendicular to the display surface of the main display 200 can also be applied to the secondary display 300 and the optical function processor 400 in the main display
  • the projection on the screen 200 and the transparent area 250 are not on the same straight line.
  • FIG. 5 is a schematic diagram of a planar structure of a display device according to another embodiment of the present disclosure. It should be noted that the cross-sectional schematic view of the display device shown in FIG. 5 in the first state along the MN direction in FIG. 5 may be similar to FIG. 3a or FIG. 4a, and the display device shown in FIG. The schematic cross-sectional view in the MN direction may be similar to that of Fig. 3b or Fig. 4b.
  • the projection of the secondary display 300 and the optical function processor 400 on the main display screen 200 and the transparent area 250 are not in the same straight line (for example, the transparent area 250 is located on the main display On a corner of the screen 200), the first reflector 500 (not shown in FIG. 5) and the second reflector 600 (not shown in FIG. 5) can be configured with reference to the above-mentioned embodiment, and will not be repeated here;
  • the first mirror 500 can be rotated around a rotation axis passing through the center of the first mirror 500 and perpendicular to the display surface of the main display screen 200 by an angle of, for example, about 90° to switch between the first state and the second state.
  • first reflector 500 can also rotate other angles (for example, about 120°, about 135°, etc.) around the rotation axis to complete the switching between the first state and the second state.
  • the other angles are controlled by the secondary display 300,
  • the relative positions of the optical function processor 400 and the transparent area 250 are determined as long as the technical effect of the display device in the present disclosure can be achieved.
  • some embodiments of the present disclosure do not limit the shape and size of the first reflector 500, as long as the projection of the reflective surface of the first reflector 500 on the main display screen 200 can completely cover the transparent area 250.
  • some embodiments of the present disclosure do not limit the shape and size of the second mirror 600.
  • the projection of the reflective surface of the second mirror 600 on the secondary display 300 can completely cover the display of the secondary display 300.
  • the display area of the first part of a complete image is sufficient.
  • some embodiments of the present disclosure do not limit the specific positions of the secondary display 300, the optical function processor 400, the first reflector 500, and the second reflector 600 on the side of the main display screen opposite to the display surface, as long as It is sufficient that the technical effects of the display device in the present disclosure can be achieved.
  • the image light of the secondary display 300 can be transmitted to the transparent area 250 for display through the lens assembly, or through The switch moves the secondary display 300 and the optical function processor 400 so that one of them faces the transparent area 250 to achieve the technical effect of the display device in the present disclosure.
  • FIG. 6a is a schematic cross-sectional view of a display device in a third state according to another embodiment of the present disclosure
  • FIG. 6b is a schematic cross-sectional view of the display device shown in FIG. 6a in a fourth state.
  • the switch may include a moving member 700.
  • the secondary display 300 and the optical function processor 400 are both connected to the moving member 700.
  • the secondary display 300 and the optical function processor 400 are both disposed on the moving member 700, and the moving member 700 is configured as Switch between the third state and the fourth state.
  • the moving member 700 is configured to move the sub display 300 to a position facing the transparent area 250, while moving the optical function processor 400 to a position away from the transparent area 250; in the fourth state, move The member 700 is configured to move the optical function processor 400 to a position facing the transparent area 250 while moving the sub display 300 to a position away from the transparent area 250.
  • the display surface of the secondary display 300 faces the transparent area 250, so that the image light of the secondary display 300 can be directly projected on the transparent area 250 for display; the display device 10 can control the moving member 700 moves in the A1 direction shown by the arrow in FIG. 6a, for example, to switch to the fourth state as shown in FIG. 6b.
  • the optical function processor 400 is facing the transparent area 250.
  • the optical function processor 400 when the optical function processor 400 is a front camera module, the lens of the front camera module is facing transparent Area 250, so that the optical function module 400 can realize its function through the transparent area 250; the display device 10 can control the moving member 700 to move in the A2 direction shown by the arrow in FIG. 6b, for example, to switch to the second as shown in FIG. 6a Three states.
  • the third state is similar to the first state, in which the display device makes the secondary display 300 display in the transparent area 250; the fourth state is similar to the second state, and the display device makes the optical function
  • the processor 400 performs corresponding operations of the optical function processor 400 through the transparent area 250.
  • the present disclosure does not limit the shape and size of the moving member 700 and the connection with the secondary display 300 and the optical function processor 400, as long as the moving member 700 can move the secondary display 300 and the optical function processor 400 to It suffices to directly face the transparent area 250.
  • the movement mode of the moving member 700 is not limited to translation, and may also include rotation, which is not limited in the present disclosure.
  • FIG. 7a is a schematic cross-sectional view of a display device in a first state according to another embodiment of the present disclosure
  • FIG. 7b is a schematic cross-sectional view of the display device shown in FIG. 7a in a second state.
  • the optical function processor 400 is arranged at a position facing the transparent area 250, and the secondary display 300 is connected to the moving member 700.
  • the secondary display 300 in the first state, is located between the transparent area 250 and the optical function processor 400 and its display surface faces the transparent area 250, so that the image light of the secondary display 300 can be directly projected on the transparent area.
  • Display on the area 250; the display device 10 can control the moving member 700 to move in the direction B1 as shown by the arrow in FIG. 7a, to move the secondary display 300 away from the optical function processor 400 and the transparent area 250, thereby switching to
  • the second state is shown in Figure 7b.
  • FIG. 7b for example, as shown in FIG.
  • the optical function processor 400 in the second state, is facing the transparent area 250, and the secondary display 300 (and the moving member 700) is away from the light path between the optical function processor 400 and the transparent area 250, and the optical
  • the function module 400 can realize its function through the transparent area 250; the display device 10 can control the moving member 700 to move in the B2 direction as shown by the arrow in FIG. 7b, so as to move the secondary display to the optical function processor and the optical function processor.
  • the display device 10 can control the moving member 700 to move in the B2 direction as shown by the arrow in FIG. 7b, so as to move the secondary display to the optical function processor and the optical function processor.
  • the secondary display 300 in the second state (or the fourth state), can be made not to display (that is, not to emit light), so as to prevent the light emitted by the secondary display 300 from affecting
  • the optical function processor 400 causes interference; in the first state (or the third state), the optical function processor 400 can be disabled to reduce the power consumption of the display device.
  • the primary display screen 200 and the secondary display 300 may be liquid crystal display screens or organic light emitting diode display screens.
  • the primary display 200 and the secondary display 300 may be flexible organic light emitting diode display screens.
  • the main display 200 and the sub display 300 may be two separate display screens.
  • the main display 200 and the sub display 300 may be two parts of an overall display screen (for example, the following special-shaped screen).
  • Fig. 8a is a schematic diagram of a special-shaped screen provided by an embodiment of the present disclosure.
  • the special-shaped screen 20 includes two parts, a main display 200 and a sub display 300.
  • the main display screen 200 includes a transparent area 250, and the area except the transparent area 250 of the main display screen 200 and the sub display 300 can simultaneously form pixel circuits, data lines, scan lines, etc. for displaying images through a semiconductor process.
  • the special-shaped screen 20 further includes a bending part 240, and the bending part is connected to the main display 200 and the sub display 300.
  • the special-shaped screen 20 is a flexible organic light-emitting diode display screen
  • the secondary display 300 can be bent to the side of the main display screen 200 opposite to the display surface by bending the bending portion 240 once, for example, as shown in FIG.
  • the secondary display 300 is attached to the side of the main display 200 opposite to the display surface in such a manner that the display surface thereof faces away from the main display 200.
  • Fig. 8b is a schematic diagram of a special-shaped screen provided by another embodiment of the present disclosure.
  • the bending portion of the flexible organic light emitting diode shaped screen 20 is different from the bending portion shown in FIG. 8a, and the bending portion 240 shown in FIG. 8b can be bent twice.
  • the secondary display 300 is bent to the side opposite to the display surface of the main display 200 and the display surface of the secondary display is perpendicular to the display surface of the main display (for example, as shown in FIG. 4a). It should be noted that, at this time, firmware can be used to fix the side of the sub display 300 opposite to the display surface of the sub display 300 to make the setting of the sub display 300 stable.
  • the method of forming the main display screen and the auxiliary display screen through the special-shaped screen is not only applicable to the display device shown in Figs. 3a and 4a, as long as the shape of the bending part and the number of bending are set appropriately, it can also be applied to, for example,
  • the display device shown in FIG. 5 is not limited in this disclosure.
  • the optical function processor 400 may include a camera module (for example, the front camera module shown in FIG. 1), a 3D structured light module (for example, FIG. 1 The 3D structured light sensor mentioned in the embodiment), the time-of-flight method 3D imaging module (for example, the time-of-flight sensor mentioned in the embodiment of FIG. 1), and the infrared sensing module (for example, the time-of-flight sensor mentioned in the embodiment of FIG. 1) Infrared sensing sensor), etc.
  • a camera module for example, the front camera module shown in FIG. 1
  • a 3D structured light module for example, FIG. 1 The 3D structured light sensor mentioned in the embodiment
  • the time-of-flight method 3D imaging module for example, the time-of-flight sensor mentioned in the embodiment of FIG. 1
  • the infrared sensing module for example, the time-of-flight sensor mentioned in the embodiment of FIG. 1 Infrared sensing sensor
  • the optical function processor 400 may only include a camera module to realize the function of self-portrait or video call; for example, the optical function processor 400 may further include a 3D structured light module or a time-of-flight 3D imaging module to realize human Face recognition, unlocking, etc.; the present disclosure includes but is not limited to this.
  • the structure and working principle of the above-mentioned optical function processor can refer to existing or possible related technologies in the future, which is not limited in the present disclosure.
  • At least one embodiment of the present disclosure further provides an operation method of the display device provided by the above-mentioned embodiment, the operation method includes: driving an area of the main display screen except the transparent area to display an image; driving the auxiliary display to display the image and light the image Projected to the transparent area, and combined with the image displayed in the area other than the transparent area of the main display screen to form a complete image; drive the optical function processor to perform at least one of the following operations: receive the transparent display side from the main display screen And the light is emitted to the display side of the main display screen through the transparent area of the main display screen.
  • driving the secondary display to display an image and projecting the image light to the transparent area and driving the optical function processor to perform the operation are performed at different times. For example, driving the secondary display to display the first part of a complete frame of image and projecting the image light to the transparent area, while driving the area other than the transparent area of the main display screen to display the second part of the complete image of the frame, so that the user can The complete image of the frame is viewed on the display side of the main display screen.
  • the optical function processor does not work to reduce the power consumption of the display device.
  • the optical function processor when the optical function processor performs the operation, part or all of the area of the main display screen except the transparent area displays an image.
  • the optical function processor includes a front camera module.
  • the optical function module is used to take a selfie, for example, a part of the area of the main display screen excluding the transparent area (for example, the main display screen 200 in FIG. 2 The rectangular part below the transparent area 250) displays the image obtained by the Selfie for the user to watch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Computer Graphics (AREA)
  • Signal Processing (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

一种显示装置及其操作方法。该显示装置包括主显示屏、副显示器和光学功能处理器。主显示屏具有一显示面,且包括透明区域;副显示器设置于主显示屏的与显示面相反的一侧,并被配置为向主显示屏的透明区域投射图像光以在透明区域进行显示;光学功能处理器设置于主显示屏的与显示面相反的一侧,并被配置为执行以下操作至少之一:接收从主显示屏的显示侧透过透明区域的光线;以及通过主显示屏的透明区域向主显示屏的显示侧发射光线。该显示装置既可以通过透明区域进行显示,又可以通过透明区域实现光学功能处理器的功能,且光学功能处理器处于隐藏状态,提高了显示装置的屏占比,保持了显示装置的显示效果、美观性、一体化以及防水防尘性能。

Description

显示装置及其操作方法 技术领域
本公开的实施例涉及一种显示装置及其操作方法。
背景技术
随着社会的发展和进步,电子显示产品的应用越来越广泛,用户对电子显示产品的显示效果的要求也越来越高。当前的电子显示产品中通常会设置摄像模组,并且为了追求窄边框、高屏占比以获得更好的显示效果,需要在显示屏的与摄像模组对应的位置挖槽、开孔,以使得外界光线能够射入摄像模组。
发明内容
本公开至少一个实施例提供一种显示装置,所述显示装置包括主显示屏、副显示器以及光学功能处理器。所述主显示屏具有一显示面,且包括透明区域;所述副显示器位于所述主显示屏的与所述显示面相反的一侧,并被配置为向所述主显示屏的透明区域投射图像光以在所述透明区域进行显示;所述光学功能处理器位于所述主显示屏的与所述显示面相反的一侧,并被配置为执行以下操作至少之一:接收从所述主显示屏的显示侧透过所述透明区域的光线;以及通过所述主显示屏的透明区域向所述主显示屏的显示侧发射光线。
例如,本公开至少一个实施例提供的显示装置,还包括切换器。所述切换器位于所述主显示屏的与所述显示面相反的一侧,被配置为使所述显示装置在所述副显示器在所述透明区域进行显示和所述光学功能处理器执行所述操作之间进行切换。
例如,在本公开至少一个实施例提供的显示装置中,所述切换器包括第一反射镜。所述第一反射镜被配置为在第一状态和第二状态之间切换;在所述第一状态,所述第一反射镜被配置为将所述副显示器的图像光反射到所述透明区域;在所述第二状态,所述第一反射镜被配置为将从所述主显示屏的显示侧透过所述透明区域的光线反射至所述光学功能处理器或将 所述光学功能处理器发射的光线反射至所述透明区域。
例如,在本公开至少一个实施例提供的显示装置中,所述切换器还包括第二反射镜。所述第二反射镜被配置为将所述副显示器的图像光反射到处于所述第一状态的所述第一反射镜的反射面,并通过所述第一反射镜进一步将所述副显示器的图像光反射到所述透明区域。
例如,在本公开至少一个实施例提供的显示装置中,所述副显示器的显示面大致平行于所述主显示屏的显示面,且所述副显示器以其显示面背对所述主显示屏的方式贴附在所述主显示屏的与所述显示面相反的一侧。
例如,在本公开至少一个实施例提供的显示装置中,所述第二反射镜设置在所述副显示器的显示侧,所述第二反射镜的反射面面对所述副显示器的显示面且与所述副显示器的显示面呈约45°角度。
例如,在本公开至少一个实施例提供的显示装置中,所述第一反射镜的反射面在所述主显示屏上的正投影覆盖所述透明区域;在所述第一状态,所述第一反射镜的反射面面对所述第二反射镜的反射面且与所述第二反射镜的反射面呈约90°角度。
例如,在本公开至少一个实施例提供的显示装置中,所述副显示器的显示面垂直于所述主显示屏的显示面,所述第一反射镜的反射面在所述主显示屏上的正投影覆盖所述透明区域;在所述第一状态,所述第一反射镜的反射面面对所述副显示器的显示面且与所述主显示屏的显示面呈约45°角度。
例如,在本公开至少一个实施例提供的显示装置中,在所述第二状态,所述第一反射镜的反射面面对所述光学功能处理器,且与所述主显示屏的显示面呈约45°角度。
例如,本公开至少一个实施例提供的显示装置还包括驱动器,所述驱动器被配置为使所述第一反射镜围绕旋转轴旋转以在所述第一状态和所述第二状态之间切换。
例如,在本公开至少一个实施例提供的显示装置中,所述旋转轴平行于所述第一反射镜的反射面以及所述主显示屏的显示面。
例如,在本公开至少一个实施例提供的显示装置中,所述旋转轴经过所述第一反射镜的中心且垂直于所述主显示屏的显示面。
例如,在本公开至少一个实施例提供的显示装置中,所述切换器包括 移动构件,所述移动构件与所述副显示器和所述光学功能处理器连接,被配置为在第三状态和第四状态之间切换;
在所述第三状态,所述移动构件被配置为将所述副显示器移动到面对所述透明区域的位置,同时将所述光学功能处理器移动到远离所述透明区域的位置;
在所述第四状态,所述移动构件被配置为将所述光学功能处理器移动到面对所述透明区域的位置,同时将所述副显示器移动到远离所述透明区域的位置。
例如,在本公开至少一个实施例提供的显示装置中,所述切换器包括移动构件,所述移动构件与所述副显示器连接,所述光学功能处理器的显示面面对所述透明区域,所述移动构件被配置为将所述副显示器移动到所述光学功能处理器和所述透明区域之间或将所述副显示器从所述光学功能处理器和所述透明区域之间移开。
例如,在本公开至少一个实施例提供的显示装置中,所述主显示屏和所述副显示器为液晶显示屏或有机发光二极管显示屏。
例如,在本公开至少一个实施例提供的显示装置中,所述主显示屏和所述副显示器为柔性有机发光二极管显示屏。
例如,在本公开至少一个实施例提供的显示装置中,所述主显示屏和所述副显示器是整体显示屏的两个部分,所述副显示器被弯折到所述主显示屏的与所述显示面相反的一侧。
例如,在本公开至少一个实施例提供的显示装置中,所述光学功能处理器包括相机模组、3D结构光模组、飞行时间法3D成像模组、红外感测模组至少之一。
本公开至少一个实施例提供一种显示装置的操作方法,所述操作方法包括:驱动所述主显示屏的除所述透明区域之外的区域显示图像;驱动所述副显示器显示图像并将所述图像光投射到所述透明区域,以与所述主显示屏的除所述透明区域之外的区域显示的图像拼合成完整的图像;驱动所述光学功能处理器执行以下操作至少之一:接收从所述主显示屏的显示侧透过所述透明区域的光线;以及通过所述主显示屏的透明区域向所述主显示屏的显示侧发射光线。
例如,在本公开至少一个实施例提供的显示装置的操作方法中,驱动 所述副显示器显示图像并将所述图像光投射到所述透明区域与驱动所述光学功能处理器执行所述操作在不同的时间进行。
例如,在本公开至少一个实施例提供的显示装置的操作方法中,所述光学功能处理器执行所述操作时,所述主显示屏的除所述透明区域之外的区域的一部分或者全部显示图像。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开一个实施例提供的一种显示装置的示意框图;
图2为本公开一个实施例提供的一种显示装置的平面结构示意图;
图3a为本公开一个实施例提供的一种显示装置处于第一状态的沿图2中M-N方向的剖面示意图;
图3b为图3a所示的显示装置处于第二状态的剖面示意图;
图4a为本公开另一实施例提供的一种显示装置处于第一状态的剖面示意图;
图4b为图4a所示的显示装置处于第二状态的剖面示意图;
图5为本公开另一实施例提供的一种显示装置的平面结构示意图;
图6a为本公开再一实施例提供的一种显示装置处于第三状态的剖面示意图;
图6b为图6a所示的显示装置处于第四状态的剖面示意图;
图7a为本公开又一实施例提供的一种显示装置处于第一状态的剖面示意图;
图7b为图7a所示的显示装置处于第二状态的剖面示意图。
图8a为本公开一个实施例提供的一种异形屏的示意图;以及
图8b为本公开另一个实施例提供的一种异形屏的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。 显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
下面结合附图对本公开的几个实施例进行详细说明。需要说明的是,为了保持本公开实施例的说明的清楚和简要,可省略已知功能和已知部(组)件的详细说明。当本公开实施例的任一部(组)件在一个以上的附图中出现时,该部(组)件在每个附图中由相同或类似的参考标号表示。
图1为本公开至少一个实施例提供的一种显示装置的示意框图。显示装置10包括处理器100、存储器110、接口单元120、传感器130、摄像模组140、显示屏150以及触摸屏160等。显示装置10可以是任何便携式显示装置,包括但不限于智能手机、平板电脑、媒体播放器等,还可以包括其中两项或多项的组合。需要注意的是,显示装置10只是本公开的一个实施例,该显示装置的组件可以比图1所示具有更多或更少的组件,或具有不同的组件配置。图1所示的各种组件可以用硬件、软件或软硬件的组合来实现,包括一个或多个信号处理电路和/或专用集成电路。
处理器100可以包括一个或多个中央处理器(CPU)或者具有数据处理能力和/或指令执行能力的其它形式的处理器,并且可以控制显示装置10中的其他组件以执行期望的功能。
存储器110可以包括高速随机存取存储器,还可以包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器110可以用于存储软件程序以及各种数据。
接口单元120用于将外部装置与显示装置10连接。例如,接口单元120可以包括有线或无线头戴送受话器端口,外接电源端口(或电池充电端口)等。接口单元120可以用于接收来自外部装置的输入(例如,数据信息、电力等)并将接收到的输入传输到显示装置10中的一个或多个组件,也可以用于在显示装置10和外部装置之间传输数据等。
显示装置10可以包括至少一种传感器130,例如距离传感器、3D结构光传感器、飞行时间法(Time of Flight,ToF)传感器等。例如,距离传感器可以包括红外感测传感器,该红外感测传感器包括红外线发射器和红外线探测器。当红外线发射器发射的红外线被红外线探测器接收到时,说明外界物体接近显示装置10(红外线发射器发射的红外线被外界物体反射),此时,显示装置10例如会自动关闭显示屏150和触摸屏160以防发生误操作。3D结构光传感器和飞行时间法(Time of Flight,ToF)传感器可以用于人脸识别以对显示装置10进行解锁等。显示装置10还可以包括加速度传感器、指纹传感器、虹膜传感器等其他传感器,以实现对应的功能。需要说明的是,本公开中的传感器的具体实现方式可以参考公知的传感器技术,在此不再赘述。
摄像模组140例如包括镜头、图像传感器、图像处理芯片等。景物通过镜头生成的光学图像投射到图像传感器表面(图像传感器包括CCD和CMOS两种)变换为电信号,通过图像处理芯片模数转换后变为数字图像信号,再送到处理器100中加工处理,即时在显示屏150上输出该景物的图像。摄像模组140可以包括例如前置摄像模组和后置摄像模组,其中,前置摄像模组通常在用户自拍或视频通话时启用,后置摄像模组通常在用户拍摄景物时启用。在某些实施例中,摄像模组140可以包括不止一个镜头。
显示屏150,也称为显示面板,向用户显示可视输出。该可视输出可以包括文本、图形、视频及其任意组合。显示屏可以配置为液晶显示面板、有机发光二极管显示面板等常见形式。
触摸屏160,也称为触控面板,可以收集用户在其上或附近的触摸操作,并且根据预先设定的程式实现预定的功能。需要说明的是,触摸屏160可以覆盖显示屏150。触摸屏150将检测到的接触变换成与显示在显示屏上的诸如一个或多个软按键之类的用户界面对象的交互。虽然在图1所示 的显示装置10中,触摸屏160和显示屏150是作为两个独立的组件,但是在某些实施例中,可以将触摸屏160和显示屏150集成为一个组件,本公开对此不作限制。
显示装置10还包括用于为各种组件供电的电源系统170。该电源系统170可以包括电源管理系统、一个或多个电源(例如电池)、充电系统、电源故障检测电路、电源转换器或逆变器,及与显示装置10中的电能生成、管理和分布相关联的其他任何组件。
需要说明的是,根据该显示装置10的实际应用场景,本领域技术人员可以根据具体应用场景设置其他未示出的结构,也可以根据需要去除部分部件或结构,本公开对此不做限制。
随着科技的发展,用户追求显示装置具有窄边框、高屏占比的优点,但是,显示装置中某些组件(例如,摄像模组140中的前置摄像模组)的功能的实现有赖于将该组件与显示屏150一起同时设置于显示装置的正面,从而影响了显示装置的屏占比的提高。为了兼顾高屏占比和上述组件的功能,一种方案是在显示屏150上挖槽、开孔,并在所述槽、孔位置处设置上述组件,这种方案会降低显示屏的美观性,也限制了屏占比的进一步提高;另一种方案是通过电动升降部件实现前置摄像模组的使用和隐藏,这种方案虽然实现了高屏占比(全面屏),但是会破坏显示装置的一体化,降低显示装置的防水防尘性能。
本公开至少一个实施例提供一种显示装置,包括:主显示屏、副显示器和光学功能处理器。主显示屏,具有一显示面,且包括透明区域;副显示器,位于所述主显示屏的与所述显示面相反的一侧,并被配置为向所述主显示屏的透明区域投射图像光以在所述透明区域进行显示;光学功能处理器,位于所述主显示屏的与所述显示面相反的一侧,并被配置为执行以下操作至少之一:接收从所述主显示屏的显示侧透过所述透明区域的光线;以及通过所述主显示屏的透明区域向所述主显示屏的显示侧发射光线。
本公开至少一个实施例还提供对应于上述显示装置的操作方法。
本公开实施例提供的显示装置既可以通过透明区域进行显示,又可以通过透明区域实现光学功能处理器的功能,且光学功能处理器一直处于隐藏状态。一方面,副显示器显示的图像可以投射在主显示屏的透明区域,同时主显示屏的除透明区域之外的区域可以显示图像,当二者同时显示的 图像拼接为一帧完整图像时,用户会以为是显示装置的整个主显示屏在进行显示,使显示装置可以实现窄边框、高屏占比,且不需要对主显示屏进行挖槽、开孔等工艺,降低了主显示屏的制造工艺的难度,保持了显示装置的美观性。另一方面,光学功能处理器(例如,前置摄像模组)可以在保持隐藏的状态下,通过主显示屏的透明区域实现其对应的功能,保持了显示装置的一体化和防水防尘性能。
下面结合附图对本公开至少一个实施例中的显示装置及其操作方法进行详细说明。
图2为本公开一个实施例提供的一种显示装置的平面结构示意图。如图2所示,显示装置10包括主显示屏200、副显示器300和光学功能处理器400。主显示屏200具有一显示面且包括透明区域250。例如,主显示屏200的显示面可以进行显示以供用户观看,例如,主显示屏200的显示面所在的一侧称为主显示屏200的显示侧。副显示器300设置于主显示屏200的与显示面相反的一侧,并被配置为向主显示屏200的透明区域250投射图像光以在透明区域250进行显示。光学功能处理器400设置于主显示屏200的与显示面相反的一侧,并被配置为执行以下操作至少之一:接收从主显示屏200的显示侧透过透明区域250的光线;以及通过主显示屏200的透明区域250向主显示屏200的显示侧发射光线。例如,图2中示出了主显示屏200的显示面,副显示器300和光学功能处理器400用虚线示出,表示其位于主显示屏200的与显示面相反的一侧。
例如,在本公开至少一个实施例提供的显示装置中,主显示屏200除透明区域250之外的区域(阴影区)包括显示区,该显示区中包括像素结构、数据线、扫描线等(图2中未示出)以用于显示图像,而透明区域250中例如不包括上述用于显示图像的像素结构、数据线、扫描线等,即透明区域250本身可以透过光线,却并不显示图像。例如,透明区域250可以设置在显示区域的边缘处,也可以设置在显示区的内部,即,透光区域250被显示区域围绕。
例如,主显示屏200的透明区域250和显示区可以共同形成一个矩形区域,从而可以使得主显示屏200和副显示器300可以共同在一个矩形区域显示图像。然而,根据本公开的实施例不限于此,主显示屏200的透明区域300和显示区共同形成的区域可以为倒角矩形、圆形、椭圆形、正多 边形或其他不规则形状,本公开的实施例对此没有特别限制。
例如,在本公开至少一个实施例提供的显示装置中,对透明区域250的形状和尺寸不作限制,只要不影响光学功能处理器400顺利执行上述操作以实现光学功能处理器400的功能即可。例如,当光学功能处理器400为前置摄像模组时,透明区域250的形状可以为与前置摄像模组的镜头的形状相似的图形(例如,圆形),也可以为方形等其他图形;透明区域250的尺寸可以与前置摄像模组的镜头的横截面的尺寸相同,也可以大于前置摄像模组的镜头的横截面的尺寸,以确保前置摄像模组的镜头的通光孔径不被透明区域250限制。需要说明的是,透明区域250的形状可以连续或者不连续,例如,当前置摄像模组具有多个镜头时,透明区域250的形状可以为与该多个镜头对应的多个图形,也可以为一个足以包括该多个镜头对应的多个图形的大图形。
例如,在本公开至少一个实施例提供的显示装置中,副显示器300通过透明区域250显示的图像可以和主显示屏200的除透明区域250之外的区域(即上述主显示屏200的显示区)显示的图像被拼合以共同显示完整的图像。例如,副显示器300显示一帧完整图像的第一部分,且副显示器300显示的该帧完整图像的第一部分被投射到透明区域250上进行显示,与主显示屏200的显示区显示的该帧完整图像的第二部分拼合,从而用户可以在主显示屏200的显示侧观看到该帧完整图像。
例如,在本公开至少一个实施例提供的显示装置中,对副显示器300的形状和尺寸不作限制,只要不影响用户从主显示屏200上观看到上述一帧完整图像即可。例如,副显示器300的部分或者全部显示区域的形状和尺寸与透明区域250的形状和尺寸均相同,该部分或者全部显示区域显示该帧完整图像的第一部分,且可以被投射到透明区域250上进行显示。例如,在一些示例中,副显示器300可以是与主显示屏200类似的副显示屏;例如,在一些示例中,副显示器可以是具有投影功能的投影设备。
例如,在本公开至少一个实施例提供的显示装置中,如图2所示,副显示器300和光学功能处理器400在主显示屏200上的投影与透明区域250大致在同一条直线上,且分布于透明区域250的两侧。需要说明的是,副显示器300和光学功能处理器400相对于透明区域250的位置设置不限于此,例如可以随着透明区域250在主显示屏200上的位置的不同而相应变 化,只要能够实现本公开中的显示装置的技术效果即可。
例如,本公开至少一个实施例提供的显示装置,还包括切换器(图2中未示出)。该切换器位于主显示屏200的与显示面相反的一侧,被配置为使显示装置在副显示器300在透明区域250进行显示和光学功能处理器400执行上述操作之间进行切换。例如,该切换器可以通过光路变换将副显示器300的图像光投射到透明区域250,也可以通过光路变换使主显示屏200的显示侧透过透明区域250的光线传输到光学功能处理器400或使光学功能处理器400发射的光线透过透明区域250传输到主显示屏200的显示侧。
虽然以上实施例以包括切换装置为例进行了描述,但可以通过设置副显示器300和光学功能处理器400的位置而使得二者可以同时实现相应的操作,也就是说,副显示器300在透明区域显示图像的同时,光学部件400通过透明区域接收或发射光线。例如,副显示器300的图像光可以相对于主显示屏的显示面倾斜的方向投射到透明区域,光学功能处理器400发射或者接收的光线可以沿相对于主显示屏的显示面倾斜的方向传播。
图3a为本公开一个实施例提供的一种显示装置处于第一状态的沿图2中M-N方向的剖面示意图,图3b为图3a所示的显示装置处于第二状态的剖面示意图。例如,第一状态是副显示器300在透明区域250进行显示的状态,第二状态是光学功能处理器400通过透明区域250进行其相应操作的状态。
如图3a和图3b所示,切换器包括第一反射镜500。第一反射镜500被配置为可以在第一状态和第二状态之间切换;在第一状态,如图3a所示,第一反射镜500被配置为将副显示器300的图像光反射到透明区域250;在第二状态,如图3b所示,第一反射镜500被配置为将从主显示屏200的显示侧透过透明区域250的光线反射至光学功能处理器400或将光学功能处理器400发射的光线反射至透明区域250。例如,第一反射镜500可以将垂直于主显示屏200的光线反射变为平行于主显示屏200,根据光路可逆原理,第一反射镜500也可以将平行于主显示屏200的光线反射变为垂直于主显示屏200,因此,使副显示器300发出的图像光平行于主显示屏200,以及光学功能处理器400可以接收或发出平行于主显示屏的光线,从而可以实现显示装置的技术效果。
例如,在本公开至少一个实施例提供的显示装置中,如图3a所示,切换器还包括第二反射镜600。第二反射镜600被配置为将副显示器300的图像光反射到处于第一状态的第一反射镜500的反射面反射面,并通过第一反射镜500进一步将副显示器300的图像光反射到透明区域250。例如,副显示器300的图像光经过第二反射镜600和第一反射镜500的两次反射后,垂直于透明区域250透射,从而用户可以在主显示屏200的显示侧通过透明区域250观看到副显示器300显示的图像(例如,上述一帧完整图像的第一部分)。
例如,在本公开至少一个实施例提供的显示装置中,如图3a所示,副显示器300的显示面大致平行于主显示屏200的显示面,且副显示器300以其显示面背对所述主显示屏200的方式贴附在所述主显示屏200的与显示面相反的一侧。因此,副显示器300的显示面可以发出垂直于主显示屏200的图像光。需要说明的是,在本公开的实施例中,“大致平行”包括完全平行,以及夹角在3°以内的不平行。
例如,如图3a所示,第二反射镜600设置在副显示器300的显示侧,第二反射镜600的反射面面对副显示器300的显示面且与副显示器300的显示面呈约45°角度。因此,第二反射镜600可以将副显示器300发出的垂直于主显示屏200的图像光变为平行于主显示屏200。需要说明的是,在本公开的实施例中,大约的角度允许具有例如正负3°的偏差,以下与此相同,不再重复赘述。
例如,如图3a所示,第一反射镜500设置在主显示屏200的与显示面相反的一侧,且第一反射镜500的反射面在主显示屏200上的正投影覆盖所述主显示屏200的透明区域250;在第一状态,第一反射镜500的反射面面对第二反射镜600的反射面且与第二反射镜的反射面呈约90°角度。此时,第一反射镜500的反射面与主显示屏200的显示面呈约45°角度。因此,第一反射镜500可以将经过第二反射镜600反射后平行于主显示屏200的图像光反射变成垂直于主显示屏200的图像光并投射在透明区域250上,从而,用户可以在主显示屏200的显示侧通过透明区域250观看到副显示器300显示的图像,例如上述一帧完整图像的第一部分。此时,如果主显示屏200的显示区同时显示该帧完整图像的第二部分,用户就可以观看到该帧完整图像。
需要说明的是,虽然上述实施例示出了第一反射镜500和第二反射镜600两个反射镜,但根据本公开的实施例并不限于此。例如,在调整副显示器300和第一反射镜500的相对位置关系的情况下,也可以仅包括第一反射镜500,只要能够将副显示器300的图像光传输到透明区域250进行显示即可。图4a为本公开另一实施例提供的一种显示装置处于第一状态的剖面示意图,图4b为图4a所示的显示装置处于第二状态的剖面示意图。例如,如图4a所示的处于第一状态的显示装置10中,第一反射镜500的设置与图3a所示相同,不同之处在于,副显示器300的显示面垂直于主显示屏200的显示面且面对第一反射镜500的反射面,从而,副显示器300的图像光可以直接经第一反射镜500反射后投射到透明区域250上。
需要说明的是,对于图4a和图4b实施例,除了与图3a和图3b的实施例不同之处外,其他部分可以参照图3a和图3b的实施例的描述。
例如,在本公开至少一个实施例提供的显示装置中,第一反射镜500可以从第一状态切换到第二状态。例如,第一反射镜500可以从如图3a所示的第一状态切换到如图3b所示的第二状态。在第二状态,第一反射镜500的反射面面对光学功能处理器400,且与所述主显示屏的显示面呈约45°角度。此时,光学功能处理器400可以接收或发出平行于主显示屏200的光线,以实现光学功能处理器400的功能,例如,当光学功能处理器400为前置摄像模组时,前置摄像模组的镜头面对处于第二状态的第一反射镜500的反射面以接收平行于主显示屏200的光线。
例如,在本公开至少一个实施例提供的显示装置中,第一反射镜500以围绕旋转轴旋转的方式在第一状态(例如,如图3a所示)和第二状态(例如,如图3b所示)之间切换。例如,可以通过电动马达等驱动第一反射镜500围绕旋转轴旋转。需要说明的是,该旋转轴是为了描述第一反射镜500的旋转方式而引入的,可以不是实际存在的结构和部件。当然,在一些示例中,也可以具有实际存在的结构和部件与旋转轴对应,本公开对此不作限制。
例如,在本公开至少一个实施例提供的显示装置中,旋转轴可以平行于第一反射镜500的反射面以及主显示屏200的显示面。例如,对于图3a所示的显示装置,旋转轴的延伸方向垂直于图3a所示的Y轴和Z轴,且该旋转轴经过第一反射镜500的中心,从而,第一反射镜500可以围绕该 旋转轴旋转约90°角度以在图3a所示的第一状态和图3b所示的第二状态之间切换。需要说明的是,图3a和图3b所示的副显示器300和光学功能处理器400与透明区域250在Y轴方向上紧密相邻是示意性的。例如,在一些实施例中,为了方便第一反射镜500顺利旋转以在第一状态和第二状态之间切换,副显示器300和光学功能处理器400与透明区域250之间可以具有适当的间隔。
例如,在本公开至少一个实施例提供的显示装置中,旋转轴还可以经过第一反射镜500的中心且垂直于主显示屏200的显示面(例如,垂直于图2所示的X轴和Y轴)。例如,如图3a所示的第一反射镜500在围绕该旋转轴旋转时,第一反射镜500的反射面始终与主显示屏200的显示面呈约45°角度。例如,对于图3a所示的显示装置,第一反射镜500可以围绕该旋转轴旋转约180°角度以在第一状态和第二状态之间切换。
需要说明的是,第一反射镜500的旋转轴经过第一反射镜500的中心且垂直于主显示屏200的显示面的配置,还可以适用于副显示器300和光学功能处理器400在主显示屏200上的投影与透明区域250三者不在同一条直线上的情形。
图5为本公开另一实施例提供的一种显示装置的平面结构示意图。需要说明的是,图5所示的显示装置处于第一状态的沿图5中M-N方向的剖面示意图可以与图3a或图4a类似,图5所示的显示装置处于第二状态的沿图5中M-N方向的剖面示意图可以与图3b或图4b类似。
例如,在如图5所示的显示装置中,副显示器300和光学功能处理器400在主显示屏200上的投影与透明区域250三者不在同一条直线上(例如,透明区域250位于主显示屏200的一个角落上),第一反射镜500(图5中未示出)和第二反射镜600(图5中未示出)可以参考上述实施例进行设置,此处不再赘述;其中,第一反射镜500可以围绕经过第一反射镜500的中心且垂直于主显示屏200的显示面的旋转轴旋转例如约90°角度以在第一状态和第二状态之间切换。需要说明的是,第一反射镜500还可以围绕该旋转轴旋转其他角度(例如约120°、约135°等)以完成第一状态和第二状态的切换,该其他角度由副显示器300、光学功能处理器400和透明区域250三者之间的相对位置确定,只要能够实现本公开中的显示装置的技术效果即可。
需要说明的是,本公开的一些实施例对第一反射镜500的形状和尺寸不作限制,只要第一反射镜500的反射面在主显示屏200上的投影能够完全覆盖透明区域250即可。同样地,本公开的一些实施例对第二反射镜600的形状和尺寸也不作限制,例如,只要第二反射镜600的反射面在副显示器300上的投影能够完全覆盖副显示器300的显示上述一帧完整图像的第一部分的显示区域即可。此外,本公开的一些实施例对副显示器300、光学功能处理器400、第一反射镜500、第二反射镜600的在主显示屏与显示面相反的一侧的具体设置位置不作限定,只要能够实现本公开中的显示装置的技术效果即可。
需要说明的是,虽然以上实施例以反射镜为例进行了描述,但本公开的实施例不限于此,可以通过透镜组件将副显示器300的图像光传输至透明区域250进行显示,也可以通过切换器移动副显示器300和光学功能处理器400使二者之一正对透明区域250,以实现本公开中的显示装置的技术效果。
图6a为本公开再一实施例提供的一种显示装置处于第三状态的剖面示意图,图6b为图6a所示的显示装置处于第四状态的剖面示意图。
如图6a和图6b所示,切换器可以包括移动构件700。副显示器300和光学功能处理器400均与移动构件700连接,例如,如图6a和6b所示,副显示器300和光学功能处理器400均设置在移动构件700上,且移动构件700被配置为在第三状态和第四状态之间切换。具体地,在第三状态,移动构件700被配置为将副显示器300移动到面对透明区域250的位置,同时将光学功能处理器400移动到远离透明区域250的位置;在第四状态,移动构件700被配置为将光学功能处理器400移动到面对透明区域250的位置,同时将副显示器300移动到远离透明区域250的位置。例如,如图6a所示,在第三状态,副显示器300的显示面正对透明区域250,从而副显示器300的图像光可以直接投射在透明区域250上进行显示;显示装置10可以控制移动构件700沿例如图6a中箭头所示的A1方向移动,以切换到如图6b所示的第四状态。例如,如图6b所示,在第四状态,光学功能处理器400正对透明区域250,例如,当光学功能处理器400为前置摄像模组时,前置摄像模组的镜头正对透明区域250,从而,光学功能模组400可以通过透明区域250实现其功能;显示装置10可以控制移动构件700 沿例如图6b中箭头所示的A2方向移动,以切换到如图6a所示的第三状态。
需要说明的是,在本公开的实施例中,第三状态与第一状态相似,其中显示装置使副显示器300在透明区域250进行显示;第四状态与第二状态相似,显示装置使光学功能处理器400通过透明区域250进行光学功能处理器400的相应操作。
需要说明的是,本公开对移动构件700的形状和尺寸以及与副显示器300和光学功能处理器400的连接方式不作限制,只要移动构件700能够将副显示器300和光学功能处理器400分别移动到正对透明区域250的位置即可。需要说明的是,移动构件700的移动方式不限于平移,也可以包括转动等,本公开对此不作限制。
图7a为本公开又一实施例提供的一种显示装置处于第一状态的剖面示意图,图7b为图7a所示的显示装置处于第二状态的剖面示意图。
如图7a和图7b所示,光学功能处理器400设置在正对透明区域250的位置,副显示器300与移动构件700连接。例如,如图7a所示,在第一状态,副显示器300位于透明区域250和光学功能处理器400之间且其显示面正对透明区域250,从而副显示器300的图像光可以直接投射在透明区域250上进行显示;显示装置10可以控制移动构件700沿例如图7a中箭头所示的B1方向移动,以将副显示器300从光学功能处理器400和透明区域250之间移开,从而切换到如图7b所示的第二状态。例如,如图7b所示,在第二状态,光学功能处理器400正对透明区域250,副显示器300(与移动构件700)远离光学功能处理器400与透明区域250之间的光线路径,光学功能模组400可以通过透明区域250实现其功能;显示装置10可以控制移动构件700沿例如图7b中箭头所示的B2方向移动,以将所述副显示器移动到所述光学功能处理器和所述透明区域之间,从而切换到如图7a所示的第一状态。
需要说明的是,对于本公开的实施例提供的显示装置,在第二状态(或者第四状态)时,可以使副显示器300不显示(即不发光),从而避免副显示器300发出的光线对光学功能处理器400造成干扰;在第一状态(或者第三状态)时,可以使光学功能处理器400不工作以降低显示装置的功耗。
例如,在本公开至少一个实施例提供的显示装置中,主显示屏200和 副显示器300可以为液晶显示屏或有机发光二极管显示屏。
例如,在本公开至少一个实施例提供的显示装置中,主显示屏200和副显示器300可以为柔性有机发光二极管显示屏。
需要说明的是,在本公开的实施例中,主显示屏200和副显示器300可以是两块分立的显示屏。在本公开的部分实施例(例如,图3a和图4a所示的实施例)中,主显示屏200和副显示器300可以是整体显示屏(例如,下述异形屏)的两个部分。
图8a为本公开一个实施例提供的一种异形屏的示意图。例如,如图8a所示,该异形屏20包括主显示屏200和副显示器300两个部分。主显示屏200包括透明区域250,主显示屏200的除透明区域250之外的区域和副显示器300上可以通过半导体工艺同时形成像素电路、数据线、扫描线等以用于显示图像。例如,如图6所示,该异形屏20还包括弯折部240,该弯折部连接主显示屏200和副显示器300。例如该异形屏20为柔性有机发光二极管显示屏,可以通过对该弯折部240进行一次弯折可以将副显示器300弯折到主显示屏200的与显示面相反的一侧,例如,如图3a所示,使副显示器300以其显示面背对主显示屏200的方式贴附在主显示屏200的与显示面相反的一侧。
图8b为本公开另一个实施例提供的一种异形屏的示意图。例如,如图8b所示,该柔性有机发光二极管异形屏20的弯折部不同于图8a所示的弯折部,可以通过对图8b所示的弯折部240进行两次弯折可以将副显示器300弯折到主显示屏200的与显示面相反的一侧且使副显示器的显示面垂直于主显示屏的显示面(例如,如图4a所示)。需要说明的是,此时,可以使用固件在副显示器300的与副显示器300的显示面相反的一侧进行固定,使副显示器300的设置变得稳固。
需要说明的是,通过异形屏形成主显示屏和副显示器的方式不只适用于图3a和图4a所示的显示装置,只要合理地设置弯折部的形状以及弯折次数,还可以适用于例如图5所示的显示装置,本公开对此不作限制。
例如,在本公开至少一个实施例提供的显示装置中,光学功能处理器400可以包括相机模组(例如,图1所示的前置摄像模组)、3D结构光模组(例如,图1实施例中提到的3D结构光传感器)、飞行时间法3D成像模组(例如,图1实施例中提到的飞行时间法传感器)、红外感测模组(例 如,图1实施例中提到的红外感测传感器)等至少之一。例如,该光学功能处理器400可以仅包括相机模组以实现自拍或者视频通话的功能;例如,该光学功能处理器400可以进一步包括3D结构光模组或者飞行时间法3D成像模组以实现人脸识别解锁等;本公开包括但不限于此。上述光学功能处理器的结构和工作原理可以参考现有或未来可能出现的相关技术,本公开对此不作限制。
需要说明的是,为表示清楚,本公开附图所示实施例中并没有给出显示装置的全部结构。为实现显示装置的必要功能,本领域技术人员可以根据具体应用场景进行设置其他未示出的结构,本公开对此不作限制。
本公开至少一个实施例还提供一种上述实施例提供的显示装置的操作方法,该操作方法包括:驱动主显示屏的除透明区域之外的区域显示图像;驱动副显示器显示图像并将图像光投射到透明区域,以与主显示屏的除透明区域之外的区域显示的图像拼合成完整的图像;驱动光学功能处理器执行以下操作至少之一:接收从主显示屏的显示侧透过透明区域的光线;以及通过主显示屏的透明区域向主显示屏的显示侧发射光线。
例如,在本公开至少一个实施例提供的操作方法中,驱动副显示器显示图像并将图像光投射到透明区域与驱动光学功能处理器执行所述操作在不同的时间进行。例如,驱动副显示器显示一帧完整图像的第一部分并将图像光投射到透明区域,同时驱动主显示屏的除透明区域之外的区域显示该帧完整图像的第二部分,从而,用户可以在主显示屏的显示侧观看到该帧完整图像,此时,光学功能处理器不工作以降低显示装置的功耗。
例如,在本公开至少一个实施例提供的操作方法中,光学功能处理器执行所述操作时,主显示屏的除透明区域之外的区域的一部分或者全部显示图像。例如,光学功能处理器包括前置摄像模组,当使用该光学功能模组进行例如自拍时,主显示屏的除透明区域之外的区域的一部分(例如,图2中的主显示屏200的透明区域250以下的矩形部分)显示自拍所得到的图像供用户观看。
对于本公开,有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区 域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种显示装置,包括:
    主显示屏,具有一显示面,且包括透明区域;
    副显示器,位于所述主显示屏的与所述显示面相反的一侧,并被配置为向所述主显示屏的透明区域投射图像光以在所述透明区域进行显示;
    光学功能处理器,位于所述主显示屏的与所述显示面相反的一侧,并被配置为执行以下操作至少之一:接收从所述主显示屏的显示侧透过所述透明区域的光线;以及通过所述主显示屏的透明区域向所述主显示屏的显示侧发射光线。
  2. 根据权利要求1所述的显示装置,还包括切换器,位于所述主显示屏的非显示侧,被配置为使所述显示装置在所述副显示器在所述透明区域进行显示和所述光学功能处理器执行所述操作之间进行切换。
  3. 根据权利要求2所述的显示装置,其中,所述切换器包括第一反射镜,被配置为在第一状态和第二状态之间切换;
    在所述第一状态,所述第一反射镜被配置为将所述副显示器的图像光反射到所述透明区域;在所述第二状态,所述第一反射镜被配置为将从所述主显示屏的显示侧透过所述透明区域的光线反射至所述光学功能处理器或将所述光学功能处理器发射的光线反射至所述透明区域。
  4. 根据权利要求3所述的显示装置,其中,所述切换器还包括第二反射镜,被配置为将所述副显示器的图像光反射到处于所述第一状态的所述第一反射镜的反射面,并通过所述第一反射镜进一步将所述副显示器的图像光反射到透明区域。
  5. 根据权利要求4所述的显示装置,其中,所述副显示器的显示面大致平行于所述主显示屏的显示面,且所述副显示器以其显示面背对所述主显示屏的方式贴附在所述主显示屏的与所述显示面相反的一侧。
  6. 根据权利要求5所述的显示装置,其中,所述第二反射镜的反射面面对所述副显示器的显示面且与所述副显示器的显示面呈约45°角度。
  7. 根据权利要求6所述的显示装置,其中,所述第一反射镜的反射面在所述主显示屏上的正投影覆盖所述透明区域;在所述第一状态,所述第一反射镜的反射面面对所述第二反射镜的反射面且与所述第二反射镜的 反射面呈约90°角度。
  8. 根据权利要求3所述的显示装置,其中,所述副显示器的显示面垂直于所述主显示屏的显示面,所述第一反射镜的反射面在所述主显示屏上的正投影覆盖所述透明区域;
    在所述第一状态,所述第一反射镜的反射面面对所述副显示器的显示面且与所述主显示屏的显示面呈约45°角度。
  9. 根据权利要求3-8任一项所述的显示装置,其中,在所述第二状态,所述第一反射镜的反射面面对所述光学功能处理器,且与所述主显示屏的显示面呈约45°角度。
  10. 根据权利要求3-9任一项所述的显示装置,还包括驱动器,所述驱动器被配置为使所述第一反射镜围绕旋转轴旋转以在所述第一状态和所述第二状态之间切换。
  11. 根据权利要求10所述的显示装置,其中,所述旋转轴平行于所述第一反射镜的反射面以及所述主显示屏的显示面。
  12. 根据权利要求10所述的显示装置,其中,所述旋转轴经过所述第一反射镜的中心且垂直于所述主显示屏的显示面。
  13. 根据权利要求2所述的显示装置,其中,所述切换器包括移动构件,所述移动构件与所述副显示器和所述光学功能处理器连接,且被配置为在第三状态和第四状态之间切换;
    在所述第三状态,所述移动构件被配置为将所述副显示器移动到面对所述透明区域的位置,同时将所述光学功能处理器移动到远离所述透明区域的位置;
    在所述第四状态,所述移动构件被配置为将所述光学功能处理器移动到面对所述透明区域的位置,同时将所述副显示器移动到远离所述透明区域的位置。
  14. 根据权利要求2所述的显示装置,其中,所述切换器包括移动构件,所述移动构件与所述副显示器连接,所述光学功能处理器的显示面面对所述透明区域,所述移动构件被配置为将所述副显示器移动到所述光学功能处理器和所述透明区域之间或将所述副显示器从所述光学功能处理器和所述透明区域之间移开。
  15. 根据权利要求1-14任一项所述的显示装置,其中,所述主显示屏 和所述副显示器为液晶显示屏或有机发光二极管显示屏。
  16. 根据权利要求15所述的显示装置,其中,所述主显示屏和所述副显示器为柔性有机发光二极管显示屏。
  17. 根据权利要求1-13所述的显示装置,其中,所述主显示屏和所述副显示器是整体显示屏的两个部分,所述副显示器被弯折到所述主显示屏的与所述显示面相反的一侧。
  18. 根据权利要求1-17任一项所述的显示装置,其中,所述光学功能处理器包括相机模组、3D结构光模组、飞行时间法3D成像模组和红外感测模组至少之一。
  19. 根据权利要求1-18任一项所述的显示装置,其中,所述主显示屏包括显示区域,所述透光区域被所述显示区域围绕。
  20. 一种根据权利要求1所述的显示装置的操作方法,包括:
    驱动所述主显示屏的除所述透明区域之外的区域显示图像;
    驱动所述副显示器显示图像并将所述图像光投射到所述透明区域,以与所述主显示屏的除所述透明区域之外的区域显示的图像拼合成完整的图像;
    驱动所述光学功能处理器执行以下操作至少之一:接收从所述主显示屏的显示侧透过所述透明区域的光线;以及通过所述主显示屏的透明区域向所述主显示屏的显示侧发射光线。
  21. 根据权利要求20所述的操作方法,其中,驱动所述副显示器显示图像并将所述图像光投射到所述透明区域与驱动所述光学功能处理器执行所述操作在不同的时间进行。
  22. 根据权利要求20或21所述的操作方法,其中,
    所述光学功能处理器执行所述操作时,所述主显示屏的除所述透明区域之外的区域的一部分或者全部显示图像。
PCT/CN2019/077700 2019-03-11 2019-03-11 显示装置及其操作方法 WO2020181468A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/640,408 US11210051B2 (en) 2019-03-11 2019-03-11 Display device and operation method thereof
CN201980000306.8A CN110088820B (zh) 2019-03-11 2019-03-11 显示装置及其操作方法
PCT/CN2019/077700 WO2020181468A1 (zh) 2019-03-11 2019-03-11 显示装置及其操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/077700 WO2020181468A1 (zh) 2019-03-11 2019-03-11 显示装置及其操作方法

Publications (1)

Publication Number Publication Date
WO2020181468A1 true WO2020181468A1 (zh) 2020-09-17

Family

ID=67424502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077700 WO2020181468A1 (zh) 2019-03-11 2019-03-11 显示装置及其操作方法

Country Status (3)

Country Link
US (1) US11210051B2 (zh)
CN (1) CN110088820B (zh)
WO (1) WO2020181468A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113963630A (zh) * 2021-11-18 2022-01-21 维沃移动通信有限公司 电子设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035158B (zh) * 2019-05-15 2021-01-08 维沃移动通信有限公司 终端设备
CN110519431A (zh) * 2019-09-03 2019-11-29 广东虹勤通讯技术有限公司 一种电子设备
CN111277685B (zh) * 2020-01-21 2021-04-27 维沃移动通信有限公司 一种显示屏结构、电子设备以及显示方法
CN111416892A (zh) * 2020-02-18 2020-07-14 Oppo广东移动通信有限公司 电子设备
CN111416898B (zh) * 2020-04-15 2022-05-20 Oppo(重庆)智能科技有限公司 一种电子设备、电子设备的显示控制方法及存储介质
CN113556416B (zh) * 2020-04-21 2022-06-03 Oppo广东移动通信有限公司 电子设备
CN111986572B (zh) * 2020-08-07 2022-04-08 武汉华星光电半导体显示技术有限公司 一种可折叠显示装置
CN112929470B (zh) * 2021-01-20 2023-07-21 武汉科技大学 一种智能手机、前置摄像及显示补偿系统及封装方法
CN112947877A (zh) * 2021-02-25 2021-06-11 维沃移动通信有限公司 电子设备及其控制方法和控制装置
CN116030716A (zh) * 2022-10-31 2023-04-28 武汉天马微电子有限公司 一种显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202889424U (zh) * 2012-10-31 2013-04-17 广东欧珀移动通信有限公司 一种具有双显示屏的手机
CN103401963A (zh) * 2013-07-31 2013-11-20 广东欧珀移动通信有限公司 一种可透明显示的手机
CN104297987A (zh) * 2014-10-14 2015-01-21 天津三星电子有限公司 一种显示器及电子设备
US20160011702A1 (en) * 2014-07-11 2016-01-14 Apple Inc. Funneled touch sensor routing
CN106774689A (zh) * 2017-03-07 2017-05-31 广东欧珀移动通信有限公司 显示屏、显示屏组件及终端
CN107422466A (zh) * 2017-07-14 2017-12-01 华为技术有限公司 显示装置和终端设备
CN208386728U (zh) * 2018-06-04 2019-01-15 Oppo广东移动通信有限公司 图像处理模块、摄像头和电子设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801758A (en) * 1995-06-21 1998-09-01 Apple Computer, Inc. System and method for image capture and display utilizing time sharing across a single, two-way optical path
WO2009011946A1 (en) * 2007-04-17 2009-01-22 University Of Southern California Rendering for an interactive 360 degree light field display
KR102217056B1 (ko) * 2014-03-10 2021-02-19 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 구동 방법
CN111314521A (zh) * 2017-03-07 2020-06-19 Oppo广东移动通信有限公司 终端
US10615239B2 (en) 2017-03-07 2020-04-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Integration of display screen and optical fingerprint sensor
WO2018196149A1 (zh) * 2017-04-25 2018-11-01 华为技术有限公司 Lcd显示屏、电子设备及lcd显示屏的制作方法
WO2019062236A1 (zh) * 2017-09-30 2019-04-04 昆山国显光电有限公司 显示屏、显示屏驱动方法及其显示装置
CN109597267B (zh) * 2017-09-30 2020-06-23 昆山国显光电有限公司 显示装置及显示屏模组
CN107682489B (zh) * 2017-11-20 2019-11-19 珠海市魅族科技有限公司 一种移动终端和移动终端的显示屏控制方法
CN108683757B (zh) 2018-04-24 2020-03-20 Oppo广东移动通信有限公司 电子设备及电子装置
CN108683764A (zh) * 2018-07-18 2018-10-19 苏州天为幕烟花科技有限公司 手机背光板局部可移实现的手机全面屏技术
KR20200089380A (ko) * 2019-01-16 2020-07-27 삼성디스플레이 주식회사 표시 장치 및 그 제조방법
CN111445785B (zh) * 2019-01-16 2022-06-10 北京小米移动软件有限公司 电子设备及屏幕模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202889424U (zh) * 2012-10-31 2013-04-17 广东欧珀移动通信有限公司 一种具有双显示屏的手机
CN103401963A (zh) * 2013-07-31 2013-11-20 广东欧珀移动通信有限公司 一种可透明显示的手机
US20160011702A1 (en) * 2014-07-11 2016-01-14 Apple Inc. Funneled touch sensor routing
CN104297987A (zh) * 2014-10-14 2015-01-21 天津三星电子有限公司 一种显示器及电子设备
CN106774689A (zh) * 2017-03-07 2017-05-31 广东欧珀移动通信有限公司 显示屏、显示屏组件及终端
CN107422466A (zh) * 2017-07-14 2017-12-01 华为技术有限公司 显示装置和终端设备
CN208386728U (zh) * 2018-06-04 2019-01-15 Oppo广东移动通信有限公司 图像处理模块、摄像头和电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113963630A (zh) * 2021-11-18 2022-01-21 维沃移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN110088820A (zh) 2019-08-02
US11210051B2 (en) 2021-12-28
CN110088820B (zh) 2021-12-03
US20210141583A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
WO2020181468A1 (zh) 显示装置及其操作方法
TWI679630B (zh) 顯示裝置及顯示模組
US10896937B2 (en) Display devices having a light receiving opening in a display region
US11036958B2 (en) Light emitting display panel and manufacture method thereof, display device
US8042949B2 (en) Projection of images onto tangible user interfaces
CN109727540B (zh) 可折叠显示装置
EP3618408B1 (en) Electronic device
KR20200138518A (ko) 표시 장치
US20150049283A1 (en) Display apparatus and control method thereof
CN109599029B (zh) 显示屏、显示屏模组及显示装置
US11115596B2 (en) Full-screen display with sub-display camera
US20220090945A1 (en) Infrared sensing module, terminal device, and control method of terminal device
US20130286264A1 (en) Imaging device and projector unit
WO2023169213A1 (zh) 指纹识别模组及显示终端
KR102651701B1 (ko) 홀 디스플레이 및 이를 포함하는 전자 장치
EP4155814A1 (en) Display screen assembly, electronic device, and image acquisition method
WO2023202114A1 (zh) 电子设备及其控制方法、计算机设备、存储介质
WO2023276921A1 (ja) 空中浮遊映像表示装置
WO2023085069A1 (ja) 空中浮遊映像表示装置
TWI464630B (zh) 影像互動系統及其操控裝置
WO2022270384A1 (ja) 空中浮遊映像表示システム
WO2023162690A1 (ja) 空中浮遊映像表示装置
CN115295601A (zh) 显示模组和显示设备
KR20230161327A (ko) 전자 장치, 전자 장치에 관한 촬영 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918767

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19918767

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.05.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19918767

Country of ref document: EP

Kind code of ref document: A1