WO2020181436A1 - 一种网络节点、汇聚节点和无线接入网络 - Google Patents

一种网络节点、汇聚节点和无线接入网络 Download PDF

Info

Publication number
WO2020181436A1
WO2020181436A1 PCT/CN2019/077554 CN2019077554W WO2020181436A1 WO 2020181436 A1 WO2020181436 A1 WO 2020181436A1 CN 2019077554 W CN2019077554 W CN 2019077554W WO 2020181436 A1 WO2020181436 A1 WO 2020181436A1
Authority
WO
WIPO (PCT)
Prior art keywords
demultiplexer
combiner
network
optical
communication device
Prior art date
Application number
PCT/CN2019/077554
Other languages
English (en)
French (fr)
Inventor
徐海东
吴邻江
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/077554 priority Critical patent/WO2020181436A1/zh
Publication of WO2020181436A1 publication Critical patent/WO2020181436A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • This application relates to the field of optical communication technology, and in particular to a network node, an aggregation node and a wireless access network.
  • each base station needs its own cold zone equipment, background transmission equipment, and power supply. Therefore, with the increase of base stations, the energy consumption and operation and maintenance costs of base stations will continue to increase.
  • the C-RAN network is a green wireless access network architecture based on centralized processing, collaborative radio, and real-time cloud.
  • the baseband processing unit (building baseband unit, BBU) can be centrally managed at the aggregation node. In this way, the energy consumption and operation and maintenance costs of the base station can be reduced.
  • the convergence node in the C-RAN network and the remote radio unit (RRU) are connected by optical fiber. Since the distance between the sink node and the RRU is generally long, and each RRU from the sink node needs to receive and send a pair of long-distance optical fiber connections, long-distance optical fibers are scarce, which will restrict the development of C-RAN networks.
  • This application provides a network node, a convergence node, and a wireless access network, which can share network-side optical fibers between the network node and the upstream nodes of the network node, thereby helping to reduce the demand for optical fibers in the C-RAN network, thereby enabling Promote the development of C-RAN network.
  • the present application provides a network node that includes at least one first combiner/demultiplexer, a first optical module, and a first communication device.
  • the first combiner/demultiplexer and the first communication device pass through the An optical module is connected.
  • the first multiplexer/demultiplexer is connected to the network-side optical fiber, and is used to receive the first multiplexed light wave containing N first optical carriers from the upstream node of the network node through the network-side fiber, and split the first multiplexed light wave according to The preset rule selects M first optical carriers from the N first optical carriers as M drop waves, and transmits the M drop waves to the first optical module.
  • the first optical module is configured to convert M drop waves into M first signals, and transmit the M first signals to the first communication device.
  • the first communication device is configured to receive M first signals, where one first optical carrier carries one first signal, M is a positive integer, and N is an integer greater than 1.
  • the first communication device is also used to generate L second signals, where L is a positive integer.
  • the first optical module is also used to convert the L second signals into L second optical carriers, and transmit the L second optical carriers to the first combiner/demultiplexer.
  • the first combiner/demultiplexer is also used to combine the L second optical carriers to obtain a second combined light wave, and send the second combined light wave to the upstream node of the network node through the network-side optical fiber.
  • the network node can be connected with the upstream node of the network node through the first combiner/demultiplexer, so that the network node can receive the first combined light wave from the upstream node of the network node, and can send it to the network node
  • the upstream node sends the second light wave.
  • the optical fiber can be shared between the network node and the upstream node of the network node, which helps to reduce the number of long-distance optical fibers used.
  • the first combiner/demultiplexer is also used to transparently transmit (N-M) first optical carriers other than M drop waves to the downstream node of the network node through the network-side optical fiber.
  • N-M transparently transmit
  • the first combiner/demultiplexer is also used to transparently transmit (N-M) first optical carriers other than M drop waves to the downstream node of the network node through the network-side optical fiber.
  • N-M transparently transmit
  • the first combiner/demultiplexer can be backed up.
  • the at least one first combiner/demultiplexer includes an east-direction first combiner/demultiplexer and a west-direction first combiner/demultiplexer, and the east-direction first combiner/demultiplexer is used for To the west, the first combiner/demultiplexer transparently transmits (NM) first optical carriers except for M drop waves.
  • the westward first combiner/demultiplexer is used to combine the L second optical carriers to obtain the second combined light wave, and after the (NM) first optical carrier and the second combined light wave are combined, pass the network
  • the side fiber is sent to the downstream node of the network node.
  • the network node further includes a first switch, the first optical module includes a pair of a first color light module and a first white light module, the first combiner/demultiplexer is connected to one end of the first switch through the first color light module, and the first communication device It is connected to the other end of the first switch through the first white light module pair.
  • the first combiner/demultiplexer is arranged inside the first switch.
  • the network node further includes a third communication device and a third white light module
  • the third communication device is connected to the first combiner/demultiplexer through the third white light module.
  • the first combiner/demultiplexer is also used to receive white light from the upstream node of the network node through the network-side optical fiber, and transmit the white light to the third white light module.
  • the third communication device is used to receive the white light from the third white light module.
  • the third communication device is also used to transmit white light to the third white light module.
  • the third communication device may be a router in the network node of the D-RAN network.
  • switch the router or switch can be connected to the original BBU (that is, the BBU in the network node of the D-RAN network).
  • the network node further includes a third communication device and a third color light module
  • the third communication device is connected to the first combiner/demultiplexer through the third color light module.
  • the first combiner/demultiplexer is also used to receive the drop wave of the specific wavelength from the upstream node of the network node, and transmit the drop wave of the specific wavelength to the third color optical module.
  • the third color light module is used to convert the drop wave of a specific wavelength into a specific signal and transmit the specific signal to the third communication device.
  • the third color light module is also used to receive a specific signal from the third communication device, convert the specific signal into a specific wavelength wave, and transmit the specific wavelength wave to the first combiner/demultiplexer. In this way, it is possible to support the passage of third-party traffic (that is, the drop of a specific wavelength or the add of a specific wavelength).
  • the network-side optical fiber can support the color light band, and can also support the color light wave band and the white light wave band, and the white light wave band and the color light wave band are different bands.
  • the network-side optical fiber may be an optical fiber that transmits and receives bidirectionally, that is, an optical fiber can simultaneously receive and transmit optical carriers in two directions. In this way, one fiber is saved, which in turn helps to further reduce the number of fibers on the network side, thereby saving fiber resources.
  • the network-side optical fiber may be a pair of optical fibers separated for transmission and reception. That is, the optical carrier is received in one network-side optical fiber, and the optical carrier is sent in another network-side optical fiber. In this way, the bandwidth of optical carrier transmission can be increased.
  • the network-side optical fiber may be a pair of network-side optical fibers that transmit and receive bidirectionally. That is, in each optical fiber in a pair of network-side optical fibers, optical carriers in two directions can be received and sent at the same time.
  • the third white light module is a (Bidirectional, BIDI) white light module.
  • the third white light module may be a used white light module or a BIDI White light module.
  • the present application provides a sink node, which includes at least one second combiner/demultiplexer, a second optical module, and a second communication device.
  • the second combiner/demultiplexer and the second communication device pass through The second optical module is connected; the second communication device is used to generate N first signals.
  • the second optical module is used to convert the N first signals into N first optical carriers, and transmit the N first optical carriers to the second combiner/demultiplexer.
  • the second combiner/demultiplexer is connected to the network-side optical fiber, and is used to combine the N first optical carriers to obtain the first combined optical wave, and transmit the first combined optical wave to the network node through the network-side optical fiber.
  • the second multiplexer/demultiplexer is also used to receive a second multiplexed light wave containing L second optical carriers from a network node, split the second multiplexed light wave, and transmit L second lights to the second optical module Carrier.
  • the second optical module is also used to convert the L second optical carriers into L second signals, and transmit the L second signals to the second communication device.
  • the second communication device is also used to receive L second signals, where N is an integer greater than 1.
  • the second combiner/demultiplexer and the network node can be connected through the network-side optical fiber, so that the convergence node and the network node share the optical fiber, which helps to form a wireless access network.
  • the sink node further includes at least one second switch, and the second optical module includes a second pair of white light modules and a second color light module; the second combiner/demultiplexer is connected to the second color light module through the second color light module.
  • One end of the second switch is connected, and the second communication device is connected to the other end of the second switch through the second white light module pair.
  • the second combiner/demultiplexer is arranged inside the second switch. In this way, it helps to improve the integration of the second switch.
  • the sink node When the sink node is the sink node in the C-RAN network (also known as the convergence room), and the above network node is the network node in the C-RAN network, in order to be compatible with the white light in the D-RAN network before the transition, the sink node also It includes a fourth communication device and a fourth white light module, and the fourth communication device is connected to the second combiner/demultiplexer through the fourth white light module.
  • the fourth communication device is used to transmit white light to the second combiner/demultiplexer.
  • the fourth communication device is also used to receive white light from the second combiner/demultiplexer.
  • the sink node further includes a fourth communication device and a fourth color light module, and the fourth communication device is connected to the second combiner/demultiplexer through the fourth color light module.
  • the second combiner/demultiplexer is also used to determine the add-on of the specific wavelength and transmit the add-on of the specific wavelength to the fourth color optical module.
  • the fourth color light module is used to convert the wavelength of the specific wavelength from the second combiner/demultiplexer into a specific signal, and transmit the specific signal to the fourth communication device.
  • the fourth color light module is also used to receive a specific signal from the fourth communication device, convert the specific signal into a specific wavelength drop, and transmit the specific wavelength drop to the second combiner/demultiplexer. In this way, it is possible to support the passage of third-party traffic (that is, the drop of a specific wavelength or the add of a specific wavelength).
  • the wavelength band supported by the network-side optical fiber may be a color light band, or a color light wave band and a white light wave band, where the white light wave band and the color light wave band are different wavelength bands.
  • the network-side optical fiber may be an optical fiber that transmits and receives bidirectionally, that is, an optical fiber can simultaneously receive and transmit optical carriers in two directions. In this way, one fiber is saved, which in turn helps to further reduce the number of fibers on the network side, thereby saving fiber resources.
  • the network-side optical fiber may be a pair of optical fibers separated for transmission and reception. That is, the optical carrier is received in one network-side optical fiber, and the optical carrier is sent in another network-side optical fiber. In this way, the bandwidth of optical carrier transmission can be increased.
  • the network-side optical fiber may be a pair of network-side optical fibers that transmit and receive bidirectionally. That is, in each optical fiber in a pair of network-side optical fibers, optical carriers in two directions can be received and sent at the same time.
  • the third white light module may be a BIDI white light module.
  • the third white light module may be a used white light module or BIDI white light module.
  • embodiments of the present application provide a wireless access network, the wireless access network including any one of the network nodes in the first aspect or the first aspect, and any of the second or second aspects described above A kind of sink node.
  • Figure 1 is a schematic diagram of the architecture of a network node proposed in this application.
  • FIG. 2 is a schematic diagram of another network node architecture proposed in this application.
  • FIG. 3 is a schematic diagram of another network node architecture proposed in this application.
  • FIG. 4 is a schematic diagram of another network node architecture proposed in this application.
  • FIG. 5 is a schematic diagram of another network node architecture proposed in this application.
  • Figure 6a is a schematic diagram of optical carrier transmission proposed in this application.
  • Figure 6a-1 is a schematic diagram of optical carrier transmission proposed in this application.
  • Figure 6b is a schematic diagram of another optical carrier transmission proposed in this application.
  • Figure 6c is a schematic diagram of another optical carrier transmission proposed in this application.
  • Figure 6d is a schematic diagram of another optical carrier transmission proposed in this application.
  • Fig. 6e is a schematic diagram of another optical carrier transmission proposed in this application.
  • Figure 6f is a schematic diagram of another optical carrier transmission proposed in this application.
  • FIG. 7 is a schematic diagram of the architecture of a convergence node proposed in this application.
  • FIG. 8 is a schematic diagram of the architecture of another convergence node proposed in this application.
  • FIG. 9 is a schematic diagram of the architecture of another convergence node proposed in this application.
  • FIG. 10 is a schematic diagram of the architecture of another convergence node proposed in this application.
  • FIG. 11 is a schematic diagram of the architecture of another convergence node proposed in this application.
  • FIG. 12 is a schematic diagram of a wireless access network architecture proposed in this application.
  • At least one (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one of a, b or c ( A) which can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c", where a, b, c can be single or There can be more than one.
  • FIGS. 1 to 5 the schematic diagrams of the architecture of different network nodes provided in this application.
  • 6a-6f are schematic diagrams of different optical carrier transmission provided by this application.
  • Figures 7-11 are schematic diagrams of the architecture of different aggregation nodes provided by this application, and
  • Figure 12 is a schematic diagram of the wireless access network architecture provided by this application. Described below separately.
  • Fig. 1 exemplarily shows a schematic diagram of the architecture of a network node provided in this application.
  • the network node includes at least one first combiner/demultiplexer, a first optical module, and a first communication device.
  • the first combiner/demultiplexer and the first communication device are connected through the first optical module.
  • FIG. 1 illustrates that the network node includes a first combiner/demultiplexer 11, a first optical module 12, and a first communication device 13 as an example.
  • the first multiplexer/demultiplexer is connected to the network-side optical fiber, and is used to receive the first multiplexed light wave containing N first optical carriers from the upstream node of the network node through the network-side fiber, and split the first multiplexed light wave, According to a preset rule, M first optical carriers are selected from the N first optical carriers as M drop waves, and the M drop waves are transmitted to the first optical module.
  • the first optical module is configured to convert M drop waves into M first signals, and transmit the M first signals to the first communication device.
  • the first communication device is configured to receive M first signals.
  • a first optical carrier carries a first signal
  • M is a positive integer
  • N is an integer greater than 1.
  • the first communication device is also used to generate L second signals.
  • the first optical module is also used to convert the L second signals into L second optical carriers, and transmit the L second optical carriers to the first combiner/demultiplexer.
  • the first combiner/demultiplexer is also used to combine the L second optical carriers to obtain a second combined light wave, and send the second combined light wave to the upstream node of the network node through the network-side optical fiber.
  • L is a positive integer.
  • the first combiner/demultiplexer receives the first combined light wave from the upstream node of the network node, which is in the downstream direction.
  • the first combiner/demultiplexer receives the second optical carrier from the first communication device (that is, the second signal is converted into the second optical carrier by the first optical module), and is in the upstream direction.
  • the first combiner/demultiplexer can realize the connection between the network node and the upstream node of the network node, so that the network node can receive the first combination from the upstream node of the network node.
  • Light wave and can send a second light wave to the upstream node of the network node.
  • the optical fiber can be shared between the network node and the upstream node of the network node, which helps to reduce the number of long-distance optical fibers used.
  • Combiner/demultiplexer (such as the first combiner/demultiplexer or the second combiner/demultiplexer)
  • the combiner/demultiplexer can also be called a wavelength division multiplexer, or a wavelength multiplexer/demultiplexer.
  • the multiplexer/demultiplexer uses wavelength-division multiplexing (WDM) technology, that is, at least two optical carriers of different wavelengths (such as the first optical carrier or the second optical carrier) are transmitted through the multiplexer at the transmitting end (Also called multiplexer, multiplexer) are combined together, and coupled to the optical fiber for transmission, at the receiving end through the splitter (also called demultiplexer or demultiplexer, demultiplexer) to combine various wavelengths
  • WDM wavelength-division multiplexing
  • the preset rule may be the up-wave and down-wave occupied by the network node.
  • Drop waves can also be understood as waves allocated to network nodes in the downlink direction.
  • Wave up can also be understood as a wave allocated to network nodes in the upstream direction.
  • the preset rule is that the downstream waves that a network node can occupy are ⁇ a-1 and ⁇ a-2 , and the occupied upstream waves can be ⁇ b-1 and ⁇ b-2 .
  • the first combiner/demultiplexer can filter out ⁇ a-1 and ⁇ a-2 from the first optical carrier separated in the first combined optical wave as the drop waves, and combine ⁇ a-1 and ⁇ a -2 is transmitted to the first optical module.
  • ⁇ a-1 and ⁇ b-1 may be the same (such as transmission in different optical fibers) or different (such as transmission in different optical fibers); similarly, ⁇ a-2 and ⁇ b-2 may The same (such as transmission in different optical fibers), or may be different (such as transmission in the same optical fiber), the specific needs to be determined according to the situation of the network-side optical fiber.
  • the downstream nodes of the network node and the network node occupy different wavelengths of the downstream waves, and the occupied wavelengths of the upstream waves are also different. In this way, wavelength isolation between different network nodes can be achieved.
  • the drop wavelengths occupied by network node A can be ⁇ a-1 and ⁇ a-2
  • the drop wavelengths occupied by downstream node B of network node A It can be ⁇ a-3 and ⁇ a-4 .
  • the remaining (NM) first optical carriers may have the following two types: Processing method.
  • the first combiner/demultiplexer is also used to transparently transmit (N-M) first optical carriers other than M drop waves to the downstream node of the network node through the network-side optical fiber.
  • the network node includes the first east combiner/demultiplexer and the first west combiner/demultiplexer, it may be the first east combiner/demultiplexer which will be the (NM)th excluding the M drop waves.
  • An optical carrier is transparently transmitted to the westward first combiner/demultiplexer, and then the westward first combiner/demultiplexer transmits the (NM) first optical carriers except for M drop-waves to the downstream node of the network node through the network side fiber.
  • the first combiner/demultiplexer receives the first combined light wave containing N first optical carriers from the upstream node of the network node through the network-side optical fiber, and the network node can filter out M drop waves and remove M drop waves.
  • the wave is transmitted to the first optical module, and the remaining (NM) first optical carriers are transparently transmitted to the downstream node of the network node.
  • the first combiner/demultiplexer is also used for demultiplexing the first combined light wave to obtain N first optical carriers, drop all the N first optical carriers, and transmit them to the first communication device. After that, the first combiner/demultiplexer combines the N first optical carriers to obtain the first combined optical wave, which is transmitted to the downstream node of the network node. In this way, N first optical carriers can be shared among various network nodes. Moreover, the first combiner/demultiplexer does not need to transparently transmit the optical carrier to the downstream node of the network node, which helps to simplify the structure of the first combiner/demultiplexer.
  • Optical module first optical module or second optical module
  • the optical module can convert the optical carrier into an electric signal (first signal or second signal), or convert the electric signal into an optical carrier.
  • the first optical module may be a first color optical module, and the first combiner/demultiplexer and the first communication device are directly connected through the first optical module.
  • the first color light module may be a 50GE color light module, a 25GE color light module, or a 100GE color light module.
  • the network-side optical fiber refers to an optical fiber connecting a network node to a downstream node of the network node (such as a network node), or may also be an optical fiber connecting a network node to an upstream node of the network node (such as a sink node). It can also be understood as an optical fiber shared by the network node and the upstream node of the network node and the downstream node of the network node.
  • the first communication device may be an RRU, or a lower part of building baseband unit (BBL) + RRU, or an active antenna unit (AAU).
  • BBL building baseband unit
  • AAU active antenna unit
  • the first combiner/demultiplexer can be backed up.
  • the at least one first combiner/demultiplexer may include the first east combiner/demultiplexer and the first west combiner/demultiplexer.
  • FIG. 2 it is a schematic diagram of another network node architecture provided by this application.
  • the network node includes a first east combiner/demultiplexer 111, a west first combiner/demultiplexer 112, a first optical module 12, and a first communication device 13.
  • the first east combiner/demultiplexer is connected to the first communication device through the first optical module.
  • the eastward first combiner/demultiplexer is used to transparently transmit (NM) first optical carriers except for the M drop waves to the westward first combiner/demultiplexer; the eastward first combiner/demultiplexer
  • the demultiplexer is also used to combine the L second optical carriers of the network node with the (NM) first optical carriers from the downstream node of the network node, and send them to the upstream of the network node through the network-side optical fiber. node.
  • the westward first combiner/demultiplexer is used to combine the L second optical carriers to obtain the second combined light wave, and after the (NM) first optical carrier and the second combined light wave are combined, pass the network
  • the side fiber is sent to the downstream node of the network node.
  • the eastward first combiner/demultiplexer receives (NM) first optical carriers from the downstream node of the network node, and it may be the westward first combiner/demultiplexer that receives the first optical carrier from the network node.
  • the (NM) first optical carrier of the downstream node is then transparently transmitted to the first east combiner/demultiplexer.
  • the first east combiner/demultiplexer is the first east combiner/demultiplexer
  • the west first combiner/demultiplexer is the first west combiner/demultiplexer
  • the east first combiner/demultiplexer The combiner/demultiplexer and the first west combiner/demultiplexer are mutually backup.
  • the network node may be a network node in the C-RAN network.
  • the eastward first combiner/demultiplexer and the westward first combiner/demultiplexer can be inserted into the network nodes of the D-RAN network one by one.
  • the first east combiner/demultiplexer and the first west combiner/demultiplexer can also be integrated.
  • the network node includes a first east combiner/demultiplexer 111, a west first combiner/demultiplexer 112, a first optical module 12, a first communication device 13, and a first switch 14.
  • the first optical module 12 includes a first colored light module 121 and a first white light module pair 122.
  • the east first combiner/demultiplexer 111 is connected to one end of the first switch 14 through the first color light module 121, and the west first combiner/demultiplexer 112 is also connected to one end of the first switch 14 through the first color light module 121 Connected, the first communication device 13 is connected to the other end of the first switch 14 through the first white light module pair 122.
  • the interface between the first communication device and the first combiner/demultiplexer can be increased, so that the number of the first communication device in the network node can be increased.
  • the first switch may include a first switch arranged in the east direction and a first switch arranged in the west direction.
  • the first switch set to the east and the first switch set to the west can be mutually backup to prevent a single point of failure.
  • the first combiner/demultiplexer can be arranged inside the first switch. It can also be understood that the first combiner/demultiplexer is integrated on the first switch.
  • FIG. 4 it is a schematic diagram of another network node architecture provided by this application.
  • the network node includes the first east combiner/demultiplexer 111, the west first combiner/demultiplexer 112, the first color light module 121, the first white light module pair 122, the first communication device 13, and the third communication device 15. And the third white light module 16.
  • the third communication device 15 is connected to the first combiner/demultiplexer 11 through the third white light module 16.
  • the first combiner/demultiplexer (the first east combiner/demultiplexer or the west first combiner/demultiplexer) is also used to receive the white light from the upstream node of the network node through the network-side optical fiber, and transmit the white light to The third white light module.
  • the third communication device is used to receive the white light from the third white light module.
  • the third communication device is also used to transmit white light to the third white light module.
  • the connection relationship and function between the first east combiner/demultiplexer 111, the west first combiner/demultiplexer 112, the first color light module 121, the first white light module pair 122 and the first communication device 13 can be For further reference, the description of FIG. 3 above will not be repeated here.
  • the network node shown in FIG. 4 may be a network node in the C-RAN network.
  • the third communication device It can be a router (rounter) or a switch (lsw) in a network node of a D-RAN network, a router or a switch and an original BBU (also called a stock BBU, that is, a BBU in a network node of a D-RAN network).
  • an original BBU also called a stock BBU, that is, a BBU in a network node of a D-RAN network.
  • white light can all be used as drop waves at network nodes; in the upstream direction, white light can be used as all waves drop at network nodes. It can also be understood that the white light does not need to pass through the first combiner/demultiplexer.
  • the network node is a network node in a C-RAN network, it can also be understood that white light is shared among network nodes in the C-RAN network.
  • FIG. 5 it is a schematic diagram of another network node architecture provided by this application.
  • the network node includes a first east combiner/demultiplexer 111, a west first combiner/demultiplexer 112, a first color light module 121, a first white light module pair 122, a third communication device 15 and a third color light module 17.
  • the third communication device 15 is connected to the first combiner/demultiplexer (the first east combiner/demultiplexer 111 and the first west combiner/demultiplexer 112) through the third color light module 17.
  • the first combiner/demultiplexer (eastward first combiner/demultiplexer 111 and westward first combiner/demultiplexer 112) is also used to receive the drop wave of a specific wavelength from the upstream node of the network node, and to the first The tri-color optical module transmits the drop wave of a specific wavelength.
  • the third color light module is used to convert the drop wave of a specific wavelength into a specific signal and transmit the specific signal to the third communication device.
  • the third color light module is also used to receive a specific signal from the third communication device, convert the specific signal into a specific wavelength wave, and transmit the specific wavelength wave to the first combiner/demultiplexer.
  • connection relationship and functions between the first east combiner/demultiplexer 111, the west first combiner/demultiplexer 112, the first color light module 121, the first white light module pair 122 and the first communication device 13 can be further referred to The description of Figure 3 above will not be repeated here.
  • the network node shown in FIG. 5 can also be understood as replacing the position of the third white light module 16 in the network node shown in FIG. 4 with the third color light module 17.
  • the third color light module may be a specific color light module or a specific BIDI color light module.
  • the network-side optical fiber may be a single optical fiber with both transmitting and receiving directions, a pair of optical fibers with separate transmitting and receiving directions, or a pair of network-side optical fibers with transmitting and receiving directions.
  • the following describes three specific implementation methods respectively.
  • the arrowed line indicates the transmission direction of the optical carrier.
  • the following embodiment will be described as an example in the following row direction.
  • the wavelength of the direction of the upstream optical carrier is not drawn, and only the transmission direction of the optical carrier is indicated by a line with an arrow. It should be noted that the uplink optical carrier and the downlink optical carrier transmitted in a network-side optical fiber have different wavelengths.
  • the first combiner/demultiplexer is connected to a network-side optical fiber in both directions.
  • FIG. 6a is a schematic diagram of optical carrier transmission provided by this application.
  • the east-bound first combiner/demultiplexer receives 24 first optical carriers (24 first optical carriers) from the upstream node of the network node through a network-side optical fiber that is both transceiving and receiving.
  • Different wavelengths can be used ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 ... ⁇ 24 ⁇ ) the first combined light wave.
  • the first east combiner/demultiplexer selects 2 drop waves (such as ⁇ 1 and ⁇ 2 ) from the 24 first optical carriers, transmits the 2 drop waves to the first color light module, and transfers the remaining 22
  • the first optical carrier is transparently transmitted to the first west combiner/demultiplexer.
  • one first color light module corresponds to one drop wave.
  • FIG. 6a is represented by a color light module.
  • the westward first combiner/demultiplexer is used to combine the 2 add waves (such as ⁇ 1 and ⁇ 2 ) from the first color optical module and the 22 first optical carriers from the eastward first combiner/demultiplexer ,
  • the first combined light wave is obtained, and the obtained first combined light wave (including 24 first optical carriers) is transmitted to the downstream node of the network node through a network-side optical fiber that is both transceiving and receiving.
  • the two-way optical fiber connection is used for transmitting and receiving, that is, the optical carrier of the receiving and transmitting directions can be simultaneously transmitted in one optical fiber (the wavelength of the optical carrier of the receiving and transmitting directions of the simultaneous transmission is different). In this way, one fiber can be saved, which helps to further reduce the number of fibers on the network side, thereby saving fiber resources.
  • the eastward first combiner/demultiplexer can receive white light from the upstream node of the network node through a network-side optical fiber that transmits and receives bidirectionally, and transmits the white light to the third white light module. That is, the white light is all drop waves of the network node.
  • the third white light module shown in FIG. 4 may be a BIDI white light module.
  • the BIDI white light module is a transceiver bidirectional optical module.
  • the BIDI white light module has only one port and is filtered by the filter in the BIDI white light module, which can simultaneously complete the emission of the optical carrier of one wavelength and the light of another wavelength. Carrier reception, or vice versa.
  • the local end transmits an optical carrier of 1310nm and receives an optical carrier of 1330nm at the same time.
  • the opposite end uses the opposite wavelength to that of the local end, that is, it transmits 1330nm optical carrier and receives 1310nm optical carrier. Therefore, BIDI white light modules must be used in pairs at both ends of the link.
  • the first combiner/demultiplexer when the first combiner/demultiplexer is connected to a network-side optical fiber that is both transmitting and receiving, the wavelengths of the optical carriers in the upstream direction and the downstream direction are different.
  • Figure 6a-1 another schematic diagram of optical carrier transmission is provided for this application.
  • the downstream optical carrier in order to distinguish the upstream optical carrier from the downstream optical carrier, the downstream optical carrier is represented by ⁇ a-1 , ⁇ a-2 , and ⁇ a-3
  • the upstream optical carrier is represented by ⁇ b-1 , ⁇ b -2 , ⁇ b-3 and so on.
  • the east-bound first combiner/demultiplexer receives 24 first optical carriers from the upstream node of the network node through a network-side optical fiber that is both transceiving and receiving (the 24 first optical carriers have different wavelengths, available ⁇ ⁇ a-1 , ⁇ a-2 , ⁇ a-3 , ⁇ a-4 ... ⁇ a-24 ⁇ represents the first combined light wave.
  • the eastward first combiner/demultiplexer selects 2 drop waves ( ⁇ a-1 and ⁇ a-2 ) from the 24 first optical carriers, and divides the 2 drop waves ( ⁇ a-1 and ⁇ a-2) ) Is transmitted to the first color optical module, and the remaining 22 first optical carriers ( ⁇ a-3 , ⁇ a-4 ... ⁇ a-24 ⁇ ) are transparently transmitted to the first west combiner/demultiplexer.
  • the eastward first combiner/demultiplexer is also used to transmit the 2 waves ( ⁇ b-1 , ⁇ b-2 ) from the first color light module and the 22 transparent transmission from the westward first combiner/demultiplexer After the optical carrier ( ⁇ b-3 , ⁇ b-4 ... ⁇ b-24 ⁇ ) is multiplexed, it is transmitted to the upstream node of the network node through a network-side optical fiber that is both transmitting and receiving.
  • FIG. 6b is a schematic diagram of another optical carrier transmission provided by this application.
  • the east-bound first combiner/demultiplexer receives a downstream node containing 23 first optical carriers and a specific wavelength from the upstream node of the network node through a network-side optical fiber that is both transceiving and receiving.
  • the first combined light wave of the wave can be represented by ⁇ 1 , ⁇ 2 , ⁇ 3 ... ⁇ 23 , ⁇ ⁇ ⁇ .
  • the eastward first combiner/demultiplexer screens out 2 drop waves (such as ⁇ 1 and ⁇ 2 ) from the 24 first optical carriers, transmits the 2 drop waves to the first color optical module, and transfers the specific wavelength
  • the lower wave (such as ⁇ ⁇ ) is transmitted to the third color optical module, the eastward first combiner/demultiplexer transparently transmits the remaining 21 first optical carriers to the westward first combiner/demultiplexer, where the specific wavelength
  • the next wave corresponds to a third color light module.
  • the west first combiner/demultiplexer adds the 2 wavelengths from the first color optical module, 21 first optical carriers from the east first combiner/demultiplexer, and the specific wavelength of the third color optical module.
  • the waves are multiplexed to obtain the first combined light wave, and the obtained first combined light wave is transmitted to the downstream node of the network node.
  • For the upstream direction please refer to the introduction of the downstream direction, which will not be repeated here.
  • the drop wave of a specific wavelength in the uplink direction may be ⁇ ⁇
  • the drop wave of a specific wavelength in the downlink direction may be ⁇ ⁇
  • ⁇ ⁇ and ⁇ ⁇ are not equal.
  • the first combiner/demultiplexer is connected to a pair of network-side optical fibers that are both transmitting and receiving.
  • FIG. 6c is a schematic diagram of another optical carrier transmission provided by this application.
  • the eastward first combiner/demultiplexer receives the 24 first optical carriers (such as ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 ... ⁇ 24 ⁇ ), that is, each network-side optical fiber in a pair of network-side optical fibers that receive and send bidirectionally receives the first combined optical wave from the upstream node of the network node.
  • the 24 first optical carriers such as ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 ... ⁇ 24 ⁇
  • the eastward first combiner/demultiplexer executes for each optical fiber in a pair of network-side optical fibers that are both transceiving and receiving: select 2 drop waves (such as ⁇ 1 and ⁇ 2 ) from the 24 first optical carriers, and combine 2
  • select 2 drop waves such as ⁇ 1 and ⁇ 2
  • the two drop waves are transmitted to the first color optical module, and the remaining 22 first optical carriers are transparently transmitted to the first west combiner/demultiplexer.
  • the westward first combiner/demultiplexer executes separately for each network-side fiber: transparently transmits the 2 add-waves (such as ⁇ 1 and ⁇ 2 ) from the first color optical module and the eastward first combiner/demultiplexer
  • the 22 first optical carriers are combined to obtain the first combined optical wave, and the first combined optical wave is transmitted to the downstream node of the network node through a pair of network-side optical fibers that transmit and receive bidirectionally.
  • each network-side optical fiber performs the transmission of the first combined light wave or the first optical carrier, so that the bandwidth can be doubled.
  • the upstream direction and the downstream direction can be realized through different network-side optical fibers.
  • the eastward first combiner/demultiplexer receives white light from the upstream node of the network node through one of the two-way transceiver pair of network-side optical fibers, and transmits the white light as the downstream wave to the second Three white light modules.
  • the other optical fiber of the pair of network-side optical fibers that transmit and receive bidirectionally receives white light from the third communication device in the network node, and transmits the white light to the third white light module.
  • the third white light module may be a used white light module or a BIDI white light module.
  • FIG. 6d is a schematic diagram of another optical carrier transmission provided by this application.
  • the eastward first combiner/demultiplexer receives the downstream node containing 23 first optical carriers and 1 specific wavelength from the upstream node of the network node through a pair of network-side optical fibers that transmit and receive bidirectionally.
  • the first combined light wave of the wave can be represented by ⁇ 1 , ⁇ 2 , ⁇ 3 ... ⁇ 23 , ⁇ ⁇ ⁇ .
  • the eastward first combiner/demultiplexer executes for each fiber in a pair of network-side fibers that are both transceiving and receiving: select 2 drop waves ( ⁇ 1 and ⁇ 2 ) from the 23 first optical carriers, and combine the 2
  • the drop wave is transmitted to the first color light module, and the drop wave of a specific wavelength (such as ⁇ ⁇ ) is transmitted to the third color light module, and the remaining 21 first optical carriers are transparently transmitted to the first west combiner/demultiplexer .
  • the westward first combiner/demultiplexer is executed separately for each network side fiber: receiving 2 add-waves (such as ⁇ 1 and ⁇ 2 ) from the first color light module, and 21 from the eastward first combiner/demultiplexer A first optical carrier and a specific wavelength from the third color optical module are combined to obtain a first combined optical wave, and the obtained first combined optical wave is transmitted to a downstream node of the network node.
  • receives 2 add-waves such as ⁇ 1 and ⁇ 2
  • 21 from the eastward first combiner/demultiplexer
  • a first optical carrier and a specific wavelength from the third color optical module are combined to obtain a first combined optical wave, and the obtained first combined optical wave is transmitted to a downstream node of the network node.
  • For the upstream direction please refer to the introduction of the downstream direction, which will not be repeated here.
  • Implementation mode three the first combiner/demultiplexer is connected to a pair of optical fibers separated from the transceiver.
  • FIG. 6e is a schematic diagram of yet another optical carrier transmission provided by this application.
  • the east-bound first combiner/demultiplexer receives 48 first optical carriers (e.g., ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 ... ⁇ 48 ⁇ ) the first combined light wave.
  • the eastward first combiner/demultiplexer selects 4 drop waves (such as ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 ) from the 48 first optical carriers, and transmits the 4 drop waves to the first color light module ,
  • the remaining 44 first optical carriers are transparently transmitted to the first west combiner/demultiplexer.
  • the first west combiner/demultiplexer will add 4 waves from the first color optical module (such as ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 ) are combined with the 44 first optical carriers transparently transmitted from the eastward first combiner/demultiplexer to obtain the first combined optical wave again, and transmit and receive one of the separated pairs of optical fibers through the network side.
  • the root optical fiber transmits the first combined light wave to the downstream node of the network node.
  • the east-bound first combiner/demultiplexer also receives white light from the upstream node of the network node through one of a pair of network-side fibers that are separated for transmission and reception, and transmits the white light as a downstream wave to the third white light. Module.
  • the upstream direction please refer to the introduction of the downstream direction, which will not be repeated here. In this way, the first combined light wave, the first light carrier, and the white light can be sent and received through different optical fibers, and the maximum bandwidth can be used.
  • the third white light module is an old white light. Module or BIDI white light module.
  • FIG. 6f is a schematic diagram of another optical carrier transmission provided by this application.
  • the eastward first combiner/demultiplexer uses a pair of network-side optical fibers separated for transmission and reception to receive downstream nodes containing 47 first optical carriers and a specific wavelength from the upstream node of the network node.
  • the first combined light wave of the wave can be represented by ⁇ 1 , ⁇ 2 , ⁇ 3 ... ⁇ 47 , ⁇ ⁇ ⁇ .
  • the eastward first combiner/demultiplexer selects 4 drop waves (such as ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 ) from the 47 first optical carriers, and transmits the 4 drop waves to the first color light module , And transmit the drop wave of a specific wavelength (such as ⁇ ⁇ ) to the third color optical module, and the eastward first combiner/demultiplexer transmits the remaining 43 first optical carriers to the westward first combiner/demultiplexer .
  • the westward first combiner/demultiplexer adds the 4 waves from the first color light module (such as ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 ), and 43 first combiners/demultiplexers from the eastward first combiner/demultiplexer.
  • the optical carrier is combined with the upper wave of the specific wavelength from the third color optical module to obtain the first combined optical wave, and the obtained first combined optical wave is transmitted to the downstream node of the network node.
  • the upstream direction please refer to the introduction of the downstream direction, which will not be repeated here.
  • Fig. 7 exemplarily shows a schematic diagram of the architecture of a sink node provided in this application.
  • the convergence node includes at least one second combiner/demultiplexer 21, a second optical module 22, and a second communication device 23.
  • the second combiner/demultiplexer 21 and the second communication device 23 are connected through the second optical module 22.
  • the second communication device is used to generate N first signals.
  • the second optical module is used to convert the N first signals into N first optical carriers, and transmit the N first optical carriers to the second combiner/demultiplexer.
  • the second combiner/demultiplexer connected to the network-side optical fiber, is used to combine the N first optical carriers to obtain the first combined optical wave, and transmit the first combined optical wave to the network node through the network-side optical fiber, where N is An integer greater than 1.
  • the second multiplexer/demultiplexer is also used to receive a second multiplexed light wave containing L second optical carriers from a network node, split the second multiplexed light wave, and transmit L second lights to the second optical module Carrier.
  • the second optical module is also used to convert the L second optical carriers into L second signals, and transmit the L second signals to the second communication device.
  • the second communication device is also used to receive L second signals.
  • the second combiner/demultiplexer and the network node can be connected through the network-side optical fiber, so that the aggregation node and the network node share the optical fiber, which helps to form a wireless access network.
  • the description of the second combiner/demultiplexer can refer to the description of the combiner/demultiplexer in FIG. 1 above.
  • the second communication device may be a baseband processing unit BBU or a baseband processing unit BBU pool, where the BBU pool part may be virtual.
  • the sink node is a sink node in a C-RAN network (also referred to as a sink room), and the aforementioned network node is a network node in a C-RAN network
  • the first communication device and the second communication device A CPRI optical interface can be used between the two communication devices, or an eCPRI interface can also be used.
  • the BBU is the second communication device
  • the RRU is the first communication device
  • the CPRI optical interface is used between the BBU and the RRU.
  • BBH is the second communication device
  • BBL+RRU is the first communication device
  • an eCPRI interface is used between BBH and BBL+RRU.
  • the second optical module may be a second color light module, and the second combiner/demultiplexer and the second communication device may be directly connected through the second color light module.
  • the second color light module corresponds to the first color light module in FIG. 3, and the second color light module may be a 50GE color light module, a 25GE color light module, or a 100GE color light module.
  • At least one first combiner/demultiplexer in the network node includes the first east combiner/demultiplexer and the first west combiner/demultiplexer
  • at least one second combiner/demultiplexer in the sink node is also Including the second east combiner/demultiplexer and the second west combiner/demultiplexer, where the first east combiner/demultiplexer corresponds to the second east combiner/demultiplexer, and the first west combiner/demultiplexer The device corresponds to the second west combiner/demultiplexer.
  • the convergence node includes a second east combiner/demultiplexer 211, a second west combiner/demultiplexer 212, a second optical module 22 and a second communication device 23.
  • the east second combiner/demultiplexer 211 and the second communication device 23 are connected through the second optical module 22, and the west second combiner/demultiplexer 212 and the second communication device 23 are also connected through the second optical module 22.
  • the convergence node includes at least one second combiner/demultiplexer, a second optical module, a second communication device, and at least one second switch.
  • the second optical module includes a second pair of white light modules and a second color light module.
  • Fig. 9 shows that the convergence node includes a second east combiner/demultiplexer 211, a west second combiner/demultiplexer 212, a second optical module 22, a second communication device 23, and a second switch 24.
  • the second optical module 22 The second white light module pair 222 and the second color light module 221 are included as an example for description.
  • the second east combiner/demultiplexer is connected to one end of the second switch through the second color light module, and the second communication device is connected to the other end of the second switch through the second white light module pair.
  • the second west combiner/demultiplexer is connected to one end of the second switch through the second color light module, and the second communication device is connected to the other end of the second switch through the second white light module pair.
  • the second switch may also include a second switch set to the east and a second switch set to the west. Set the second switch in the east and set the second switch in the west as mutual backup to prevent single points of failure.
  • the second combiner/demultiplexer is arranged inside the second switch. It can also be understood that the second combiner/demultiplexer is integrated on the second switch, which helps to improve the integration of the second switch.
  • the convergence node includes a second east combiner/demultiplexer 211, a west second combiner/demultiplexer 212, a second white light module pair 222, a second color light module 221, a second communication device 23, a second switch 24,
  • the fourth communication device 25 and the fourth white light module 26, and the fourth communication device 25 and the second combiner/demultiplexer 21 are connected through the fourth white light module 26.
  • the fourth communication device is used to transmit white light to the second combiner/demultiplexer; the fourth communication device is also used to receive white light from the second combiner/demultiplexer.
  • the sink node shown in FIG. 10 is the sink node in the C-RAN network.
  • the fourth communication device may It is the router (rounter) or switch (lsw) in the convergence node of the D-RAN network. In this way, a smooth transition from the D-RAN network to the C-RAN network can be realized, and it is compatible with the white light in the D-RAN network before the transition .
  • Figure 10 can also be understood as adding at least one second combiner/demultiplexer and at least one second switch to the convergence node of the D-RAN network before the transition, and the fourth communication device in the D-RAN network passes the fourth white light
  • the module is connected to the second combiner/demultiplexer.
  • the network-side optical fiber may be an optical fiber that transmits and receives bidirectionally, that is, an optical fiber can simultaneously receive and transmit optical carriers in two directions. In this way, one fiber is saved, which in turn helps to further reduce the number of fibers on the network side, thereby saving fiber resources.
  • the network-side optical fiber may be a pair of optical fibers separated for transmission and reception. That is, the optical carrier is received in one network-side optical fiber, and the optical carrier is sent in another network-side optical fiber. In this way, the bandwidth of optical carrier transmission can be increased.
  • the network-side optical fiber may be a pair of network-side optical fibers that transmit and receive bidirectionally. That is, in each optical fiber in a pair of network-side optical fibers, optical carriers in two directions can be received and sent at the same time.
  • the fourth white light module is a BIDI white light module.
  • the fourth white light module is a used white light module or a BIDI white light module.
  • FIG. 11 it is a schematic diagram of the architecture of another convergence node provided in this application.
  • the convergence node includes the east second combiner/demultiplexer 211, the west second combiner/demultiplexer 212, the second white light module pair 222, the second color light module 221, the second communication device 23, the second switch 24, The fourth communication device 25 and the fourth color light module 27, and the fourth communication device 25 is connected to the second combiner/demultiplexer 21 through the fourth color light module 27.
  • the second combiner/demultiplexer (the east-bound second combiner/demultiplexer 211 or the west-bound second combiner/demultiplexer 212) is also used to determine the wavelength of a specific wavelength and transmit the specific wavelength to the fourth color light module
  • the wave; the fourth color light module used to convert the wave of a specific wavelength from the second combiner/demultiplexer into a specific signal, and transmit the specific signal to the fourth communication device.
  • the fourth color light module is also used to receive a specific signal from the fourth communication device, convert the specific signal into a specific wavelength drop, and transmit the specific wavelength drop to the second combiner/demultiplexer.
  • connection relationship between the east second combiner/demultiplexer 211, the west second combiner/demultiplexer 212, the second white light module pair 222, the second color light module 221, the second communication device 23 and the second switch 24 For further functions, please refer to the introduction of Fig. 8 and Fig. 9, which will not be repeated here.
  • the sink node is a sink node in the C-RAN network
  • the fourth white light module may be the same as the third white light module in FIG. 4
  • the fourth white light module is the same white light module as the third white light module in FIG. 4.
  • the fourth color light module corresponds to the third color light module in FIG. 5, and it can also be understood that the fourth color light module and the third color light module in FIG. 4 are the same color light module.
  • the network-side optical fiber supports the color light band.
  • the network-side fiber may also support the color light band and the white light band, and the white light wave band and the color light wave band are different bands.
  • it may be C-band colored light and O-band white light.
  • FIG. 12 exemplarily shows a schematic diagram of a wireless access network architecture provided by this application.
  • the wireless access network includes network nodes and convergence nodes.
  • the network node may be the network node shown in any one of FIGS. 2 to 5, and the sink node may be the sink node shown in any of FIGS. 8 to 11.
  • Fig. 12 takes the four network nodes shown in Fig. 2 and one sink node shown in Fig. 8 as examples.
  • the function introduction of each structure in the sink node and the network node in the network can be referred to the related description in the foregoing embodiment, which will not be repeated here.
  • the first combiner/demultiplexer in the network node is connected to the second combiner/demultiplexer in the sink node through the network side fiber (one of the first combiner/demultiplexer and the second combiner/demultiplexer).
  • the inter-network is called a mobile fronthaul network), and the network-side optical fiber is shared between 4 network nodes.
  • the radio access network can be a C-RAN network, which can be a smooth transition from a D-RAN network to a C-RAN network.
  • 4 network nodes and aggregation nodes can form a ring to achieve one ring and one fiber, that is, aggregation nodes and 4 The network nodes share the network-side optical fiber. In this way, the optical fiber can be shared between multiple network nodes and the aggregation node, thereby reducing the demand for long-distance scarce optical fibers in the C-RAN network and contributing to the development of the C-RAN network.
  • the four network nodes shown in FIG. 12 may be transitioned from the network nodes in the D-RAN network to the network nodes in the C-RAN network one by one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种网络节点、汇聚节点及无线接入网。其中网络节点包括至少一个第一合/分波器、第一光模块和第一通信装置,第一合/分波器与第一通信装置通过第一光模块相连。第一合/分波器与网络侧光纤相连,用于通过网络侧光纤接收来自网络节点的上游节点的包含N个第一光载波的第一合光波,对第一合光波进行分波,根据预设规则从N个第一光载波中筛选出M个第一光载波,作为M个下波,并将M个下波传输至第一光模块。第一光模块,用于将M个下波转化为M个第一信号,并将M个第一信号传输至第一通信装置。如此,网络节点与网络节点的上游节点和网络节点的下游节点之间共用光纤,从而有助于减少光纤的使用数量。

Description

一种网络节点、汇聚节点和无线接入网络 技术领域
本申请涉及光通信技术领域,尤其涉及一种网络节点、汇聚节点和无线接入网络。
背景技术
随着互联网的发展,移动用户数量及业务量高速增长,无线通信基站的数量急剧增加。在传统的蜂窝网络架构中每个基站需要各自的冷区设备、后台传输设备和电源等。因此,随着基站的增加,基站的能耗以及运维成本也会不断增加。
为了优化网络架构,C-RAN网络应运而生。C-RAN网络是基于集中统一处理(centralized processing),协作式无线电(collaborative radio)和实时云处理(real-time cloud)的绿色无线接入网络架构。C-RAN网络架构中可实现基带处理单元(building base band unit,BBU)在汇聚节点集中管理,如此,可降低基站的能耗和运维成本。
目前,C-RAN网络中的汇聚节点和远端射频模块(remote radio unit,RRU)之间通过光纤连接。由于汇聚节点和RRU之间的距离一般较远,且汇聚节点到每个RRU均需要收和发一对长距离光纤连接,但是长距离光纤比较稀缺,进而会限制C-RAN网络的发展。
发明内容
本申请提供一种网络节点、汇聚节点和无线接入网络,可使网络节点与网络节点的上游节点之间共用网络侧光纤,从而有助于减少C-RAN网络中光纤的需求量,从而可促进C-RAN网络的发展。
第一方面,本申请提供一种网络节点,该网络节点包括至少一个第一合/分波器、第一光模块和第一通信装置,第一合/分波器与第一通信装置通过第一光模块相连。第一合/分波器与网络侧光纤相连,用于通过网络侧光纤接收来自网络节点的上游节点的包含N个第一光载波的第一合光波,对第一合光波进行分波,根据预设规则从N个第一光载波中筛选出M个第一光载波,作为M个下波,并将M个下波传输至第一光模块。第一光模块,用于将M个下波转化为M个第一信号,并将M个第一信号传输至第一通信装置。第一通信装置,用于接收M个第一信号,其中,一个第一光载波承载有一个第一信号,M为正整数,N为大于1的整数。
第一通信装置,还用于生成L个第二信号,L为正整数。第一光模块,还用于将L个第二信号转化为L个第二光载波,并将L个第二光载波传输至第一合/分波器。第一合/分波器,还用于根据L个第二光载波进行合波,得到第二合光波,并将第二合光波通过网络侧光纤向网络节点的上游节点发送。
基于上述网络节点,通过第一合/分波器可实现网络节点与网络节点的上游节点之间的相连,从而该网络节点可从网络节点的上游节点接收第一合光波,且可向网络节点的上游节点发送第二光波。如此,可实现了网络节点与网络节点的上游节点之间共享光纤,有助于减少长距离光纤的使用数量。
在一种可能的实现方式中,第一合/分波器,还用于通过网络侧光纤向网络节点的下游节点透传除M个下波外的(N-M)个第一光载波。如此,可实现网络节点与网络节网络节点的下游节点之间共用光纤,从而有助于进一步减少光纤的使用数量。进一步,网络节点、 网络节点的上游节点和网络节点的下游节点形成C-RAN网络时,由于对长距离光纤的使用数量较少,有助于促进C-RAN网络的发展。
为了防止因第一合/分波器发生故障或者网络节点中网络侧光纤部分发生断裂,造成网络节点故障的问题,可对第一合/分波器进行备份。在一种可能的实现方式中,至少一个第一合/分波器包括东向第一合/分波器和西向第一合/分波器,东向第一合/分波器,用于向西向第一合/分波器透传除M个下波外的(N-M)个第一光载波。西向第一合/分波器,用于根据L个第二光载波进行合波,得到第二合光波,并对(N-M)个第一光载波和第二合光波进行合波后,通过网络侧光纤发送至网络节点的下游节点。
为了增加第一通信装置与第一合/分波器连接的接口,以实现网络节点中增加第一通信装置的数量。网络节点还包括第一交换机,第一光模块包括第一彩光模块和第一白光模块对,第一合/分波器通过第一彩光模块与第一交换机的一端相连,第一通信装置通过第一白光模块对与第一交换机的另一端相连。
进一步,为了提高网络节点的集成度,第一合/分波器设置于第一交换机内部。
在一种可能的实现方式中,网络节点还包括第三通信装置和第三白光模块,第三通信装置通过第三白光模块与第一合/分波器连接。第一合/分波器,还用于通过网络侧光纤接收来自网络节点的上游节点的白光,并将白光传输至第三白光模块。第三通信装置,用于接收来自第三白光模块的白光。第三通信装置,还用于向第三白光模块传输白光。当网络节点为C-RAN网络中的网络节点、且C-RAN网络是从D-RAN网络过渡到C-RAN网络时,第三通信装置可以是D-RAN网络的网络节点中的路由器(rounter)或交换机(lsw),路由器或交换机可与原BBU(即D-RAN网络的网络节点中的BBU)相连。如此,一方面,可实现D-RAN网络向C-RAN网络平滑过渡,另一方面,过渡后的C-RAN网络可兼容过渡前的D-RAN网络中的白光。
在一种可能的实现方式中,网络节点还包括第三通信装置和第三彩光模块,第三通信装置通过第三彩光模块与第一合/分波器连接。第一合/分波器,还用于接收来自网络节点的上游节点的特定波长的下波,并向第三彩光模块传输特定波长的下波。第三彩光模块,用于将特定波长的下波转化为特定信号,并将特定信号传输至第三通信装置。第三彩光模块,还用于接收来自第三通信装置的特定信号,并将特定信号转化为特定波长的上波、并将特定波长的上波传输至第一合/分波器。如此,可以实现支持第三方流量(即特定波长的下波或特定波长的上波)通过。
在一种可能的实现方式中,网络侧光纤可支持彩光波段,也可支持彩光波段和白光波段,白光波段和彩光波段为不同的波段。
在一种可能的实现方式中,网络侧光纤可以为收发双向的一根光纤,即在一根光纤中可以同时接收和发送两个方向的光载波。如此,节省出一根光纤,进而有助于进一步减少网络侧光纤的数量,从而节省光纤资源。
在另一种可能的实现方式,网络侧光纤可以为收发分离的一对光纤。即在一根网络侧光纤中接收光载波,在另一根网络侧光纤中发送光载波。如此,可以增加光载波传输的带宽。
在再一种可能的实现方式,网络侧光纤可以为收发双向的一对网络侧光纤。即在一对网络侧光纤中的每根光纤中,可以同时接收和发送两个方向的光载波。
在一种可能的实现方式中,在第一合/分波器通过收发双向的一根光纤相连的情况下, 第三白光模块为(Bidirectional,BIDI)白光模块。
在一种可能的实现方式中,在第一合/分波器通过收发分离的一对光纤或者收发双向的一对网络侧光纤相连的情况下,第三白光模块可为利旧白光模块或BIDI白光模块。
第二方面,本申请提供的一种汇聚节点,该汇聚节点包括至少一个第二合/分波器、第二光模块和第二通信装置,第二合/分波器与第二通信装置通过第二光模块相连;第二通信装置,用于生成N个第一信号。第二光模块,用于将N个第一信号转化为N个第一光载波,并向第二合/分波器传输N个第一光载波。第二合/分波器,与网络侧光纤相连,用于对N个第一光载波进行合波,得到第一合光波,并将第一合光波通过网络侧光纤传输至网络节点。
第二合/分波器,还用于接收来自网络节点的包含L个第二光载波的第二合光波,对第二合光波进行分波,并向第二光模块传输L个第二光载波。第二光模块,还用于将L个第二光载波转化为L个第二信号,并向第二通信装置传输L个第二信号。第二通信装置,还用于接收L个第二信号,N为大于1的整数。
基于上述方案,第二合/分波器与网络节点可通过网络侧光纤相连,以实现汇聚节点与网络节点共用光纤,有助于形成无线接入网络。
在一种可能的实现方式中,汇聚节点还包括至少一个第二交换机,第二光模块包括第二白光模块对和第二彩光模块;第二合/分波器通过第二彩光模块与第二交换机的一端相连,第二通信装置通过第二白光模块对与第二交换机的另一端相连。
在一种可能的实现方式中,第二合/分波器设置于第二交换机内部。如此,有助于提高第二交换机的集成度。
当汇聚节点为C-RAN网络中的汇聚节点(也可称为汇聚机房),上述网络节点为C-RAN网络中的网络节点时,为了兼容过渡前D-RAN网络中的白光,汇聚节点还包括第四通信装置和第四白光模块,第四通信装置与第二合/分波器通过第四白光模块相连。第四通信装置,用于将白光传输至第二合/分波器。第四通信装置,还用于接收来自第二合/分波器的白光。
在一种可能的实现方式中,汇聚节点还包括第四通信装置和第四彩光模块,第四通信装置通过第四彩光模块与第二合/分波器相连。第二合/分波器,还用于确定特定波长的上波,并向第四彩光模块传输特定波长的上波。第四彩光模块,用于将来自第二合/分波器的特定波长的上波转化为特定信号,并将特定信号传输至第四通信装置。第四彩光模块,还用于接收来自第四通信装置的特定信号,并将特定信号转化为特定波长的下波、并将特定波长的下波传输至第二合/分波器。如此,可以实现支持第三方流量(即特定波长的下波或特定波长的上波)通过。
在一种可能的实现方式中,网络侧光纤支持的波段可以为彩光波段,也可以为彩光波段和白光波段,其中,白光波段和彩光波段为不同的波段。
在一种可能的实现方式中,网络侧光纤可以为收发双向的一根光纤,即在一根光纤中可以同时接收和发送两个方向的光载波。如此,节省出一根光纤,进而有助于进一步减少网络侧光纤的数量,从而节省光纤资源。
在另一种可能的实现方式,网络侧光纤可以为收发分离的一对光纤。即在一根网络侧光纤中接收光载波,在另一根网络侧光纤中发送光载波。如此,可以增加光载波传输的带宽。
在再一种可能的实现方式,网络侧光纤可以为收发双向的一对网络侧光纤。即在一对网络侧光纤中的每根光纤中,可以同时接收和发送两个方向的光载波。
在一种可能的实现方式中,在第一合/分波器通过收发双向的一根光纤相连的情况下,第三白光模块可为BIDI白光模块。
在另一种可能的实现方式中,在第一合/分波器通过收发分离的一对光纤或者收发双向的一对网络侧光纤相连的情况下,第三白光模块可为利旧白光模块或BIDI白光模块。
第三方面,本申请实施例提供一种无线接入网络,该无线接入网络包括上述第一方面或第一方面中的任意一种网络节点,以及上述第二方面或第二方面中的任意一种汇聚节点。
附图说明
图1为本申请提的一种网络节点的架构示意图;
图2为本申请提的另一种网络节点架构示意图;
图3为本申请提的另一种网络节点架构示意图;
图4为本申请提的另一种网络节点架构示意图;
图5为本申请提的另一种网络节点架构示意图;
图6a为本申请提的一种光载波传输的示意图;
图6a-1为本申请提的一种光载波传输的示意图;
图6b为本申请提的另一种光载波传输的示意图;
图6c为本申请提的另一种光载波传输的示意图;
图6d为本申请提的另一种光载波传输的示意图;
图6e为本申请提的另一种光载波传输的示意图;
图6f为本申请提的另一种光载波传输的示意图;
图7为本申请提的一种汇聚节点的架构示意图;
图8为本申请提的另一种汇聚节点的架构示意图;
图9为本申请提的另一种汇聚节点的架构示意图;
图10为本申请提的另一种汇聚节点的架构示意图;
图11为本申请提的另一种汇聚节点的架构示意图;
图12为本申请提的一种无线接入网络架构示意图。
具体实施方式
本申请的说明书实施例和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
如图1-图5所示,为本申请提供的不同的网络节点的架构示意图。图6a-图6f为本申请提供的不同的光载波传输示意图。图7-图11为本申请提供的不同的汇聚节点的架构示意图,图12为本申请提供的无线接入网络架构示意图。下面分别说明。
图1示例性示出了为本申请提供的一种网络节点的架构示意图。如图1所示,该网络节点包括至少一个第一合/分波器、第一光模块和第一通信装置,第一合/分波器与第一通信 装置通过第一光模块相连。图1以该网络节点包括第一合/分波器11、第一光模块12和第一通信装置13为例说明。
第一合/分波器,与网络侧光纤相连,用于通过网络侧光纤接收来自网络节点的上游节点的包含N个第一光载波的第一合光波,对第一合光波进行分波,根据预设规则从N个第一光载波中筛选出M个第一光载波,作为M个下波,并将M个下波传输至第一光模块。第一光模块,用于将M个下波转化为M个第一信号,并将M个第一信号传输至第一通信装置。第一通信装置,用于接收M个第一信号。其中,一个第一光载波承载有一个第一信号,M为正整数,N为大于1的整数。
第一通信装置,还用于生成L个第二信号。第一光模块,还用于将L个第二信号转化为L个第二光载波,并将L个第二光载波传输至第一合/分波器。第一合/分波器,还用于根据L个第二光载波进行合波,得到第二合光波,并将第二合光波通过网络侧光纤向网络节点的上游节点发送。其中,L为正整数。
需要说明的,第一合/分波器接收来自网络节点的上游节点的第一合光波,为下行方向。第一合/分波器接收来自第一通信装置的第二光载波(即经第一光模块将第二信号转化为第二光载波),为上行方向。
从图1所示的网络节点可以看出,通过第一合/分波器可实现网络节点与网络节点的上游节点之间的相连,从而该网络节点可从网络节点的上游节点接收第一合光波,且可向网络节点的上游节点发送第二光波。如此,可实现了网络节点与网络节点的上游节点之间共享光纤,有助于减少长距离光纤的使用数量。
下面对图1所示的结构分别进行介绍说明。
一、合/分波器(比如第一合/分波器或第二合/分波器)
合/分波器也可称为波分复用器,或者也可称波长复用/解复用器。合/分波器利用的是波分复用技术(wavelength-division multiplexing,WDM),即将至少两种不同波长的光载波(例如第一光载波或第二光载波)在发送端经复用器(也称合波器,multiplexer)汇合在一起,并耦合到光纤中进行传输,在接收端经分波器(也称解复用器或去复用器,demulti-plexer)将各种波长的光载波进行分离,然后由光接收机相应的进一步处理恢复出光载波承载的信号(第一信号或第二信号)。
在一种可能的实现方式中,预设规则可以为网络节点占用的上波和下波。下波也可以理解为,下行方向中给网络节点分配的波。上波也可以理解为,上行方向中给网络节点分配的波。比如,预设规则为网络节点可以占用的下波为λ a-1和λ a-2,占用的上波可为λ b-1和λ b-2。示例性地,第一合/分波器可将第一合光波中分离后的第一光载波中筛选出λ a-1和λ a-2作为下波,并将λ a-1和λ a-2传输至第一光模块。其中,λ a-1和λ b-1可能相同(如在不同的光纤中传输),也可能不相同(如在不同的光纤中传输);类似的,λ a-2和λ b-2可能相同(如在不同的光纤中传输),也可能不相同(如在相同的光纤中传输),具体需要依据网络侧光纤的情况来确定。
其中,网络节点和网络节点的下游节点占用的下波的波长不同,且占用的上波的波长也不相同。如此,可实现不同的网络节点之间在波长上隔离。以网络节点A和网络节点A的下游节点B为例说明,网络节点A占用的下波的波长可为λ a-1和λ a-2,网络节点A的下游节点B占用的下波的波长可为λ a-3和λ a-4
在一种可能的实现方式中,第一合/分波器从N个第一光载波中筛选出M个第一光载波 后,对剩余的(N-M)个第一光载波可有如下两种处理方式。
处理方式一
第一合/分波器,还用于通过网络侧光纤透传除M个下波外的(N-M)个第一光载波至网络节点的下游节点。进一步,网络节点若包括东向第一合/分波器和西向第一合/分波器时,可以是东向第一合/分波器将除M个下波外的(N-M)个第一光载波透传至西向第一合/分波,之后西向第一合/分波器通过网络侧光纤将除M个下波外的(N-M)个第一光载波至网络节点的下游节点。
示例性地,第一合/分波器通过网络侧光纤接收来自网络节点的上游节点的包含N个第一光载波的第一合光波,网络节点可筛选出M个下波并将M个下波传输至第一光模块,将剩余的(N-M)个第一光载波透传至网络节点的下游节点。
处理方式二
第一合/分波器,还用于将第一合光波进行分波,得到N个第一光载波,将N个第一光载波全部下波,并传输至第一通信装置。之后第一合/分波器将N个第一光载波再进行合波得到第一合光波,传输至网络节点的下游节点。如此,可实现各个网络节点之间共享N个第一光载波。而且,第一合/分波器不需要向该网络节点的下游节点透传光载波,如此,有助于简化第一合/分波器的构造。
二、光模块(第一光模块或第二光模块)
光模块可将光载波转化为电信号(第一信号或第二信号),也可以将电信号转化为光载波。
在一种可能的实现方式中,第一光模块可以为第一彩光模块,第一合/分波器与第一通信装置通过第一光模块直接相连。其中,第一彩光模块可为50GE彩光模块、也可以为25GE彩光模块、也可以为100GE彩光模块。
三、网络侧光纤
网络侧光纤指网络节点与该网络节点的下游节点(比如网络节点)相连的光纤,或者也可以是网络节点与该网络节点的上游节点(比如汇聚节点)相连的光纤。也可以理解为,该网络节点与该网络节点的上游节点和该网络节点的下游节点共用的光纤。
四、第一通信装置
第一通信装置可以是RRU,也可以是基带处理单元的下部分(low part of building base band unit,BBL)+RRU,也可以是有源天线单元(active antenna unit,AAU)。
为了防止因第一合/分波器发生故障或者网络节点中网络侧光纤部分发生断裂,造成网络节点故障的问题,可对第一合/分波器进行备份。在一种可能的实现方式中,至少一个第一合/分波器可包括东向第一合/分波器和西向第一合/分波器。如图2所示,为本申请提供的另一种网络节点架构示意图。该网络节点包括东向第一合/分波器111、西向第一合/分波器112、第一光模块12和第一通信装置13。一种情况下,东向第一合/分波器通过第一光模块与第一通信装置相连。在该情况下,东向第一合/分波器,用于向西向第一合/分波器透传除M个下波外的(N-M)个第一光载波;东向第一合/分波器,还用于根据该网络节点的L个第二光载波和来自该网络节点的下游节点的(N-M)个第一光载波进行合波后,通过网络侧光纤发送至网络节点的上游节点。西向第一合/分波器,用于根据L个第二光载波进行合波,得到第二合光波,并对(N-M)个第一光载波和第二合光波进行合波后,通过网络侧光纤发送至网络节点的下游节点。
在一种可能的实现方式中,东向第一合/分波器接收来自网络节点的下游节点的(N-M)个第一光载波,可以是西向第一合/分波器接收来自网络节点的下游节点的(N-M)个第一光载波,之后透传至东向第一合/分波器。
可选地,东向第一合/分波器为东向设置的第一合/分波器,西向第一合/分波器为西向设置的第一合/分波器,东向第一合/分波器和西向第一合/分波器互为备份。
在一种可能的情况下,网络节点可以是C-RAN网络中的网络节点,当C-RAN网络是从D-RAN网络过渡到C-RAN网络时,为了保证回传网络中的业务不中断,以及D-RAN网络平滑向C-RAN网络过渡,可以将东向第一合/分波器与西向第一合/分波器逐一插入D-RAN网络的网络节点中。
在另一种可能的实现方式中,东向第一合/分波器与西向第一合/分波器也可以集成在一起。
如图3所示,为本申请提供的另一种网络节点的架构示意图。该网络节点包括东向第一合/分波器111、西向第一合/分波器112、第一光模块12、第一通信装置13和第一交换机14。其中,第一光模块12包括第一彩光模块121和第一白光模块对122。东向第一合/分波器111通过第一彩光模块121与第一交换机14的一端相连,西向第一合/分波器112也通过第一彩光模块121与第一交换机14的一端相连,第一通信装置13通过第一白光模块对122与第一交换机14的另一端相连。
通过在网络节点设置第一交换机,可增加第一通信装置与第一合/分波器连接的接口,以实现网络节点中增加第一通信装置的数量。
在一种可能的实现方式中,第一交换机可以包括设置于东向的第一交换机和设置于西向的第一交换机。设置东向的第一交换机和设置与西向的第一交换机可互为备份,以防止单点故障。
进一步,为了提高网络节点的集成度,可将第一合/分波器设置于第一交换机内部。也可以理解为,第一合/分波器集成于第一交换机上。
如图4所示,为本申请提供的另一种网络节点的架构示意图。该网络节点包括东向第一合/分波器111、西向第一合/分波器112、第一彩光模块121、第一白光模块对122、第一通信装置13、第三通信装置15和第三白光模块16。第三通信装置15通过第三白光模块16与第一合/分波器11连接。第一合/分波器(东向第一合/分波器或西向第一合/分波器),还用于通过网络侧光纤接收来自网络节点的上游节点的白光,并将白光传输至第三白光模块。第三通信装置,用于接收来自第三白光模块的白光。第三通信装置,还用于向第三白光模块传输白光。其中,东向第一合/分波器111、西向第一合/分波器112、第一彩光模块121、第一白光模块对122和第一通信装置13之间的连接关系以及功能可进一步参见上述图3的描述,此处不再赘述。
在一种可能的实现方式中,图4所示的网络节点可以是C-RAN网络中的网络节点,当C-RAN网络是从D-RAN网络过渡到C-RAN网络时,第三通信装置可以是D-RAN网络的网络节点中的路由器(rounter)或交换机(lsw),路由器或交换机与可与原BBU(也称为存量BBU,即D-RAN网络的网络节点中的BBU)。如此,一方面,可实现D-RAN网络向C-RAN网络平滑过渡,另一方面,过渡后的C-RAN网络可兼容过渡前的D-RAN网络中的白光。
进一步,在下行方向,白光可在网络节点全部作为下波;在上行方向,白光可在网络 节点全部作为上波。也可以理解为,白光不需要经过第一合分波器的透传。在网络节点为C-RAN网络中网络节点时,也可以理解为,C-RAN网络中的网络节点间白光共用。
如图5所示,为本申请提供的另一种网络节点的架构示意图。该网络节点包括东向第一合/分波器111、西向第一合/分波器112、第一彩光模块121、第一白光模块对122、第三通信装置15和第三彩光模块17。第三通信装置15通过第三彩光模块17与第一合/分波器(东向第一合/分波器111和西向第一合/分波器112)连接。第一合/分波器(东向第一合/分波器111和西向第一合/分波器112),还用于接收来自网络节点的上游节点的特定波长的下波,并向第三彩光模块传输特定波长的下波。第三彩光模块,用于将特定波长的下波转化为特定信号,并将特定信号传输至第三通信装置。第三彩光模块,还用于接收来自第三通信装置的特定信号,并将特定信号转化为特定波长的上波、并将特定波长的上波传输至第一合/分波器。东向第一合/分波器111、西向第一合/分波器112、第一彩光模块121、第一白光模块对122和第一通信装置13之间的连接关系和功能可进一步参见上述图3的描述,此处不再赘述。
基于图5所示的网络节点,可以实现支持第三方流量(即特定波长的下波或特定波长的上波)通过。
图5所示的网络节点也可以理解为,将图4所示的网络节点中的第三白光模块16的位置替换为第三彩光模块17。其中,第三彩光模块可以特定的彩光模块,也可以是特定的BIDI彩光模块。
在上述任一实施例中,网络侧光纤为可为收发双向的一根光纤,也可为收发分离的一对光纤,或者也可以为收发双向的一对网络侧光纤。
针对不用的网络侧光纤,以下结合具体的三种实现方式分别进行说明。下述图6a至图6f中,带箭头的线条表示光载波的传输方向,为了便于方案的说明,以下实施例以下行方向为例说明。在图6a至图6f中,上行光载波的方向的波长未画出,仅用带箭头线指示出光载波的传输方向。需要说明的是,在一根网络侧光纤中传输的上行光载波和下行光载波的波长不同。
实现方式一,第一合/分波器与收发双向的一根网络侧光纤相连。
示例一,基于上述图4,图6a为本申请提供的一种光载波传输的示意图。如图6a所示,针对下行方向,东向第一合/分波器通过收发双向的一根网络侧光纤接收来自网络节点的上游节点的包含24个第一光载波(24个第一光载波的波长不同,可用{λ 1,λ 2,λ 3,λ 4...λ 24}表示)的第一合光波。东向第一合/分波器从24个第一光载波中筛选出2个下波(如λ 1和λ 2),将2个下波传输至第一彩光模块,将剩余的22个第一光载波透传至西向第一合/分波器。其中,一个第一彩光模块对应一个下波,为了便于说明,图6a用一个彩光模块表示。西向第一合/分波器用于将来自第一彩光模块的2个上波(如λ 1和λ 2)和来自东向第一合/分波器的22个第一光载波进行合波,得到第一合光波,并将得到的第一合光波(包含24个第一光载波)通过该收发双向的一根网络侧光纤传输至该网络节点的下游节点。通过收发双向的一根光纤相连,即在一根光纤中可以同时传输收和发两个方向的光载波(同时传输的收和发两个方向的光载波的波长不同)。如此,可节省出一根光纤,有助于进一步减少网络侧光纤的数量,从而节省光纤资源。
可选地,针对下行方向,东向第一合/分波器可通过收发双向的一根网络侧光纤从该网络节点的上游节点接收白光,并将白光传输至第三白光模块。即,白光为该网络节点的全 部下波。
在一种可能的实现方式中,在第一合/分波器与收发双向的一根光纤相连时,图4所示的第三白光模块可为BIDI白光模块。
需要说明的是,BIDI白光模块即是收发双向的光模块,BIDI白光模块只有一个端口,通过BIDI白光模块中的滤波器进行滤波,可同时完成一个波长的光载波的发射和另一个波长的光载波的接收,或者相反。比如,本端发射1310nm的光载波,同时接收1330nm的光载波。而对端使用的波长正好和本端相反,即发射1330nm的光载波,接收1310nm的光载波。因此,BIDI白光模块在链路的两端必须是成对使用。
需要说明的是,第一合/分波器与收发双向的一根网络侧光纤相连时,上行方向和下行方向的光载波的波长不同。如图6a-1所示,为本申请提供另一种光载波传输的示意图。在图6a-1所示,为了区分上行光载波和下行光载波,下行光载波用λ a-1,λ a-2,λ a-3等表示,上行光载波用λ b-1,λ b-2、λ b-3等表示。针对下行方向,东向第一合/分波器通过收发双向的一根网络侧光纤接收来自网络节点的上游节点的包含24个第一光载波(24个第一光载波的波长不同,可用{λ a-1,λ a-2,λ a-3,λ a-4...λ a-24}表示)的第一合光波。东向第一合/分波器从24个第一光载波中筛选出2个下波(λ a-1和λ a-2),将2个下波(λ a-1和λ a-2)传输至第一彩光模块,将剩余的22个第一光载波({λ a-3,λ a-4...λ a-24})透传至西向第一合/分波器。东向第一合/分波器还用于将来自第一彩光模块的2个上波(λ b-1,λ b-2)和来自西向第一合/分波器透传的22个光载波({λ b-3,λ b-4...λ b-24})进行合波之后,通过该收发双向的一根网络侧光纤传输至该网络节点的上游节点。
示例二,基于上述图5,图6b为本申请提供的另一种光载波传输的示意图。如图6b所示,针对下行方向,东向第一合/分波器通过收发双向的一根网络侧光纤接收来自网络节点的上游节点的包含23个第一光载波和1个特定波长的下波的第一合光波,可用{λ 1,λ 2,λ 3...λ 23,λ α}表示。东向第一合/分波器从24个第一光载波中筛选出2个下波(比如λ 1和λ 2),将2个下波传输至第一彩光模块,并将特定波长的下波(如λ α)传输至第三彩光模块,东向第一合/分波器将剩余的21个第一光载波透传至西向第一合/分波器,其中,特定波长的下波对应一个第三彩光模块。西向第一合/分波器将来自第一彩光模块的2个上波、来自东向第一合/分波器的21个第一光载波和来自第三彩光模块的特定波长的上波进行合波,得到第一合光波,并将得到的第一合光波传输至该网络节点的下游节点。上行方向可参见下行方向的介绍,此处不再赘述。
需要说明的是,在上行方向中的特定波长的下波可为λ α,在下行方向中特定波长的下波可为λ β,λ α和λ β不相等。
实现方式二,第一合/分波器与收发双向的一对网络侧光纤相连。
示例三,基于上述图4,图6c为本申请提供的另一种光载波传输的示意图。如图6c所示,针对下行方向,东向第一合/分波器通过收发双向的一对网络侧光纤接收来自网络节点的上游节点的包含24个第一光载波(如{λ 1,λ 2,λ 3,λ 4...λ 24})的第一合光波,即收发双向的一对网络侧光纤中的每根网络侧光纤均接收来自网络节点的上游节点的第一合光波。东向第一合/分波器针对收发双向的一对网络侧光纤中的每根光纤执行:从24个第一光载波中筛选出2个下波(比如λ 1和λ 2),将2个下波传输至第一彩光模块,将剩余的22个第一光载波透传至西向第一合/分波器。西向第一合/分波器针对每根网络侧光纤分别执行:将来自第一彩光模块的2个上波(比如λ 1和λ 2)和来自东向第一合/分波器透传 的22个第一光载波进行合波,得到第一合光波,并通过收发双向的一对网络侧光纤将第一合光波传输至该网络节点的下游节点。通过收发双向的一对网络侧光纤,每根网络侧光纤都进行第一合光波或第一光载波的传输,如此,可以实现带宽翻倍。
为了进一步增加传输白光的带宽,对于白光,上行方向和下行方向可通过不同的网络侧光纤实现。也可以理解为,下行方向,东向第一合/分波器通过收发双向的一对网络侧光纤中一根光纤从该网络节点的上游节点接收白光,并将白光作为下波,传输至第三白光模块。上行方向,通过收发双向的一对网络侧光纤中另一根光纤从该网络节点中的第三通信装置接收白光,并将白光传输至第三白光模块。
在一种可能的实现方式中,在第一合/分波器与收发双向的一对网络侧光纤相连的情况下,第三白光模块可为利旧白光模块或BIDI白光模块。
示例四,基于上述图5,图6d为本申请提供的另一种光载波传输的示意图。如图6d所示,针对下行方向,东向第一合/分波器通过收发双向的一对网络侧光纤接收来自网络节点的上游节点的包含23个第一光载波和1个特定波长的下波的第一合光波,可用{λ 1,λ 2,λ 3...λ 23,λ α}表示。东向第一合/分波器针对收发双向的一对网络侧光纤中的每根光纤执行:从23个第一光载波中筛选出2个下波(λ 1和λ 2),将2个下波传输至第一彩光模块,并将特定波长的下波(如λ α)传输至第三彩光模块,将剩余的21个第一光载波透传至西向第一合/分波器。西向第一合/分波器针对每根网络侧光纤分别执行:接收来自第一彩光模块的2个上波(比如λ 1和λ 2)、来自东向第一合/分波器的21个第一光载波和来自第三彩光模块的特定波长的上波进行合波,得到第一合光波,并将得到的第一合光波传输至该网络节点的下游节点。上行方向可参见下行方向的介绍,此处不再赘述。
实现方式三,第一合/分波器与收发分离的一对光纤相连。
示例五,基于上述图4,图6e为本申请提供的又一种光载波传输的示意图。如图6e所示,针对下行方向,东向第一合/分波器通过收发分离的一对网络侧光纤中的一根光纤接收来自网络节点的上游节点的包含48个第一光载波(如{λ 1,λ 2,λ 3,λ 4...λ 48})的第一合光波。东向第一合/分波器从48个第一光载波中筛选出4个下波(比如λ 1、λ 2、λ 3和λ 4),将4个下波传输至第一彩光模块,将剩余的44个第一光载波透传至西向第一合/分波器.西向第一合/分波器将来自第一彩光模块的4个上波(比如λ 1、λ 2、λ 3和λ 4)和来自东向第一合/分波器透传的44个第一光载波进行合波,再次得到第一合光波,并通过网络侧收发分离的一对光纤中的一根光纤将第一合光波传输至该网络节点的下游节点。可选地,东向第一合/分波器也通过收发分离的一对网络侧光纤中的一根光纤从该网络节点的上游节点接收白光,并将白光作为下波,传输至第三白光模块。上行方向可参见下行方向的介绍,此处不再赘述。如此,第一合光波、第一光载波以及白光,收和发可分别走不同的光纤,可使用最大带宽。
在一种可能的实现方式中,在第一合/分波器可与收发双向的一对网络侧光纤相连,或与收发分离的一对光纤相连的情况下,第三白光模块为利旧白光模块或BIDI白光模块。
示例六,基于上述图5,图6f为本申请提供的另一种光载波传输的示意图。如图6f所示,针对下行方向,东向第一合/分波器通过收发分离的一对网络侧光纤接收来自网络节点的上游节点的包含47个第一光载波和1个特定波长的下波的第一合光波,可用{λ 1,λ 2,λ 3...λ 47,λ α}表示。东向第一合/分波器从47个第一光载波中筛选出4个下波(比如λ 1、λ 2、λ 3和λ 4),将4个下波传输至第一彩光模块,并将特定波长的下波(如λ α)传 输至第三彩光模块,东向第一合/分波器将剩余的43个第一光载波透传至西向第一合/分波器。西向第一合/分波器将来自第一彩光模块的4个上波(比如λ 1、λ 2、λ 3和λ 4)、来自东向第一合/分波器的43个第一光载波和来自第三彩光模块的特定波长的上波进行合波,得到第一合光波,并将得到的第一合光波传输至该网络节点的下游节点。上行方向可参见下行方向的介绍,此处不再赘述。
图7示例性示出了为本申请提供的一种汇聚节点的架构示意图。该汇聚节点包括至少一个第二合/分波器21、第二光模块22和第二通信装置23,第二合/分波器21与第二通信装置23通过第二光模块22相连。
第二通信装置,用于生成N个第一信号。第二光模块,用于将N个第一信号转化为N个第一光载波,并向第二合/分波器传输N个第一光载波。第二合/分波器,与网络侧光纤相连,用于对N个第一光载波进行合波,得到第一合光波,并将第一合光波通过网络侧光纤传输至网络节点,N为大于1的整数。
第二合/分波器,还用于接收来自网络节点的包含L个第二光载波的第二合光波,对第二合光波进行分波,并向第二光模块传输L个第二光载波。第二光模块,还用于将L个第二光载波转化为L个第二信号,并向第二通信装置传输L个第二信号。第二通信装置,还用于接收L个第二信号。
从图7所示的汇聚节点可以看出,第二合/分波器与网络节点可通过网络侧光纤相连,以实现汇聚节点与网络节点共用光纤,有助于形成无线接入网络。
此处,第二合/分波器的说明可参见上述图1中合/分波器的说明。
在一种可能的实现方式中,第二通信装置可为基带处理单元BBU,也可以为基带处理单元BBU池,其中,BBU池部分可以是虚拟的。
在一种可能的实现方式中,当汇聚节点为C-RAN网络中的汇聚节点(也可称为汇聚机房),上述网络节点为C-RAN网络中的网络节点时,第一通信装置和第二通信装置之间可采用CPRI光接口,或者也可以采用eCPRI接口。例如,BBU为第二通信装置,RRU为第一通信装置,BBU和RRU之间采用CPRI光接口。在比如,BBH为第二通信装置,BBL+RRU为第一通信装置,BBH与BBL+RRU之间采用eCPRI接口。
在一种可能的实现方式中,第二光模块可以为第二彩光模块,第二合/分波器与第二通信装置可通过第二彩光模块直接相连。其中,第二彩光模块与上述图3中的第一彩光模块对应,第二彩光模块可为50GE彩光模块、也可以为25GE彩光模块、也可以为100GE彩光模块。
进一步,网络节点中的至少一个第一合/分波器包括东向第一合/分波器和西向第一合/分波器时,汇聚节点中的至少一个第二合/分波器也包括东向第二合/分波器和西向第二合/分波器,其中,东向第一合/分波器与东向第二合/分波器对应,西向第一合/分波器与西向第二合/分波器对应。如图8所示,该汇聚节点包括东向第二合/分波器211、西向第二合/分波器212、第二光模块22和第二通信装置23。东向第二合/分波器211与第二通信装置23通过第二光模块22相连,西向第二合/分波器212与第二通信装置23也通过第二光模块22相连。
如图9所示,为本申请提供的另一种汇聚节点的架构示意图。该汇聚节点包括至少一个第二合/分波器、第二光模块、第二通信装置和至少一个第二交换机,第二光模块包括第二白光模块对和第二彩光模块。图9以汇聚节点包括东向第二合/分波器211、西向第二合 /分波器212、第二光模块22、第二通信装置23和一个第二交换机24,第二光模块22包括第二白光模块对222和第二彩光模块221为例说明。东向第二合/分波器通过第二彩光模块与第二交换机的一端相连,第二通信装置通过第二白光模块对与第二交换机的另一端相连。西向第二合/分波器通过第二彩光模块与第二交换机的一端相连,第二通信装置通过第二白光模块对与第二交换机的另一端相连。
在一种可能的实现方式中,第二交换机也可以包括设置与东向的第二交换机和设置与西向的第二交换机。设置东向的第二交换机和设置与西向的第二交换机互为备份,可防止单点故障。
在一种可能的实现方式中,第二合/分波器设置于第二交换机内部。也可以理解为,第二合/分波器集成于第二交换机上,如此,有助于提高第二交换机的集成度。
如图10所示,为本申请提供的另一种汇聚节点的架构示意图。该汇聚节点包括东向第二合/分波器211、西向第二合/分波器212、第二白光模块对222、第二彩光模块221、第二通信装置23、第二交换机24、第四通信装置25和第四白光模块26,第四通信装置25与第二合/分波器21通过第四白光模块26相连。第四通信装置,用于将白光传输至第二合/分波器;第四通信装置,还用于接收来自第二合/分波器的白光。东向第二合/分波器211、西向第二合/分波器212、第二白光模块对222、第二彩光模块221、第二通信装置23和第二交换机24之间的连接关系及功能可参见上述图8和图9的介绍,此处不再赘述。
在一种可能的实现方式中,图10所示的汇聚节点是C-RAN网络中的汇聚节点,当C-RAN网络是从D-RAN网络过渡到C-RAN网络时,第四通信装置可以是D-RAN网络的中汇聚节点中的路由器(rounter)或交换机(lsw),如此,可实现D-RAN网络向C-RAN网络平滑过渡,且可兼容过渡前的D-RAN网络中的白光。
图10也可以理解为,在过渡前的D-RAN网络的汇聚节点中增加至少一个第二合/分波器和至少一个第二交换机,D-RAN网络中的第四通信装置通过第四白光模块连接到第二合/分波器上。
在一种可能的实现方式中,网络侧光纤可以为收发双向的一根光纤,即在一根光纤中可以同时接收和发送两个方向的光载波。如此,节省出一根光纤,进而有助于进一步减少网络侧光纤的数量,从而节省光纤资源。
在另一种可能的实现方式,网络侧光纤可以为收发分离的一对光纤。即在一根网络侧光纤中接收光载波,在另一根网络侧光纤中发送光载波。如此,可以增加光载波传输的带宽。
在再一种可能的实现方式,网络侧光纤可以为收发双向的一对网络侧光纤。即在一对网络侧光纤中的每根光纤中,可以同时接收和发送两个方向的光载波。
在上述任一实施例中,在第二合/分波器与收发双向的一根光纤相连的情况下,第四白光模块为BIDI白光模块。在第二合/分波器与收发分离的一对光纤或者收发双向的一对网络侧光纤相连的情况下,第四白光模块为利旧白光模块或BIDI白光模块。
需要说明的是,BIDI白光模块的详细介绍可参见上述图6a中的相关内容,此处不再赘述。
如图11所示,为本申请提供的另一种汇聚节点的架构示意图。该汇聚节点包括东向第二合/分波器211、西向第二合/分波器212、第二白光模块对222、第二彩光模块221、第二通信装置23、第二交换机24、第四通信装置25和第四彩光模块27,第四通信装置25 通过第四彩光模块27与第二合/分波器21相连。第二合/分波器(东向第二合/分波器211或西向第二合/分波器212),还用于确定特定波长的上波,并向第四彩光模块传输特定波长的上波;第四彩光模块,用于将来自第二合/分波器的特定波长的上波转化为特定信号,并将特定信号传输至第四通信装置。第四彩光模块,还用于接收来自第四通信装置的特定信号,并将特定信号转化为特定波长的下波、并将特定波长的下波传输至第二合/分波器。东向第二合/分波器211、西向第二合/分波器212、第二白光模块对222、第二彩光模块221、第二通信装置23和第二交换机24之间的连接关系及进一步功能可参见上述图8和图9的介绍,此处不再赘述。
在一种可能的实现方式中,汇聚节点是C-RAN网络中的汇聚节点,上述网络节点为C-RAN网络中的网络节点时,第四白光模块可与上述图4中的第三白光模块对应,也可以理解为,第四白光模块与上述图4中的第三白光模块为相同的白光模块。第四彩光模块与上述图5的第三彩光模块对应,也可以理解为,第四彩光模块与上述图4中的第三彩光模块为相同的彩光模块。
上述任一实施例中,网络侧光纤支持彩光波段。或者,网络侧光纤也可以支持彩光波段和白光波段,白光波段和彩光波段为不同的波段。示例性地,可以是C波段的彩光和O波段的白光。
图12示例性示出了为本申请提供的一种无线接入网络架构示意图。该无线接入网络包括网络节点和汇聚节点。其中,网络节点可以如上述图2至5任一个所示的网络节点,汇聚节点可如上述图8至11任一个所示的汇聚节点。图12以图2所示的四个网络节点和图8所示的一个汇聚节点为例说明。该网络中汇聚节点和网络节点中的各结构的功能介绍可参见上述实施例中的相关描述,此处不再赘述。
需要说明的是,网络节点中的第一合/分波器通过网络侧光纤与汇聚节点中的第二合/分波器相连(第一合/分波器和第二合/分波器之间的网络称为移动前传网络),4个网络节点之间共用该网络侧光纤。
该无线接入网络可以为C-RAN网络,可以是从D-RAN网络平滑过渡到C-RAN网络,4个网络节点和汇聚节点可组成环形,实现一环一纤,即汇聚节点和4个网络节点共用网络侧光纤,如此,可实现了多个网络节点与汇聚节点之间共享光纤,从而可减少C-RAN网络中长距离的稀缺光纤的需求,有助于C-RAN网络的发展。
进一步,图12所示的4个网络节点可以是逐一从D-RAN网络中的网络节点向C-RAN网络中的网络节点过渡的。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,在不脱离本发明的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (19)

  1. 一种网络节点,其特征在于,包括至少一个第一合/分波器、第一光模块和第一通信装置,所述第一合/分波器与所述第一通信装置通过所述第一光模块相连;
    所述第一合/分波器,与网络侧光纤相连,用于通过所述网络侧光纤接收来自所述网络节点的上游节点的包含N个第一光载波的第一合光波,对所述第一合光波进行分波,根据预设规则从所述N个第一光载波中筛选出M个第一光载波,作为M个下波,并将所述M个下波传输至所述第一光模块,一个第一光载波承载有一个第一信号,其中,所述M为正整数,所述N为大于1的整数;
    所述第一光模块,用于将所述M个下波转化为M个第一信号,并将所述M个第一信号传输至所述第一通信装置;
    所述第一通信装置,用于接收所述M个第一信号;
    所述第一通信装置,还用于生成L个第二信号,所述L为正整数;
    所述第一光模块,还用于将所述L个第二信号转化为L个第二光载波,并将所述L个第二光载波传输至所述第一合/分波器;
    所述第一合/分波器,还用于根据所述L个第二光载波进行合波,得到第二合光波,并将所述第二合光波通过所述网络侧光纤向所述网络节点的所述上游节点发送。
  2. 如权利要求1所述的网络节点,其特征在于,所述第一合/分波器,还用于通过所述网络侧光纤向所述网络节点的下游节点透传除所述M个下波外的(N-M)个第一光载波。
  3. 如权利要求2所述的网络节点,其特征在于,所述至少一个第一合/分波器包括东向第一合/分波器和西向第一合/分波器;
    所述第一合/分波器还用于通过所述网络侧光纤透传除所述M个下波外的(N-M)个第一光载波至所述网络节点的下游节点,包括:
    所述东向第一合/分波器,用于向所述西向第一合/分波器透传除所述M个下波外的(N-M)个第一光载波;
    所述西向第一合/分波器,用于根据所述L个第二光载波进行合波,得到第二合光波,并对所述(N-M)个第一光载波和所述第二合光波进行合波后,通过所述网络侧光纤发送至所述网络节点的下游节点。
  4. 如权利要求1至3任一项所述的网络节点,其特征在于,所述网络节点还包括第一交换机,所述第一光模块包括第一彩光模块和第一白光模块对;
    所述第一合/分波器通过所述第一彩光模块与所述第一交换机的一端相连,所述第一通信装置通过所述第一白光模块对与所述第一交换机的另一端相连。
  5. 如权利要求4所述的网络节点,其特征在于,所述第一合/分波器设置于所述第一交换机内部。
  6. 如权利要求1至5任一项所述的网络节点,其特征在于,所述网络节点还包括第三通信装置和第三白光模块,所述第三通信装置通过所述第三白光模块与所述第一合/分波器连接;
    所述第一合/分波器,还用于通过所述网络侧光纤接收来自所述网络节点的上游节点的白光,并将所述白光传输至所述第三白光模块;
    所述第三通信装置,用于接收来自所述第三白光模块的所述白光;
    所述第三通信装置,还用于向所述第三白光模块传输所述白光。
  7. 如权利要求1至5任一项所述的网络节点,其特征在于,所述网络节点还包括第三通信装置和第三彩光模块,所述第三通信装置通过所述第三彩光模块与所述第一合/分波器连接;
    所述第一合/分波器,还用于接收来自所述网络节点的上游节点的特定波长的下波,并向所述第三彩光模块传输所述特定波长的下波;
    所述第三彩光模块,用于将所述特定波长的下波转化为特定信号,并将所述特定信号传输至所述第三通信装置;
    所述第三彩光模块,还用于接收来自所述第三通信装置的所述特定信号,并将所述特定信号转化为特定波长的上波、并将所述特定波长的上波传输至所述第一合/分波器。
  8. 如权利要求1至7任一项所述的网络节点,其特征在于,所述网络侧光纤支持的波段包括以下中的任一项:
    彩光波段;
    彩光波段和白光波段,所述白光波段和所述彩光波段为不同的波段。
  9. 如权利要求1至8任一项所述的网络节点,其特征在于,所述网络侧光纤为:
    收发双向的一根光纤;或者,
    收发分离的一对光纤;或者,
    收发双向的一对光纤。
  10. 如权利要求5所述的网络节点,其特征在于,在所述第一合/分波器通过所述收发双向的一根光纤相连的情况下,所述第三白光模块为BIDI白光模块;或者,
    在所述第一合/分波器通过所述收发分离的一对光纤或者收发双向的一对网络侧光纤相连的情况下,所述第三白光模块为利旧白光模块或BIDI白光模块。
  11. 一种汇聚节点,其特征在于,包括至少一个第二合/分波器、第二光模块和第二通信装置,所述第二合/分波器与所述第二通信装置通过所述第二光模块相连;
    所述第二通信装置,用于生成N个第一信号,所述N为大于1的整数;
    所述第二光模块,用于将所述N个第一信号转化为N个第一光载波,并向所述第二合/分波器传输所述N个第一光载波;
    所述第二合/分波器,与网络侧光纤相连,用于对所述N个第一光载波进行合波,得到第一合光波,并将所述第一合光波通过所述网络侧光纤传输至网络节点;
    所述第二合/分波器,还用于接收来自所述网络节点的包含L个第二光载波的第二合光波,对所述第二合光波进行分波,并向所述第二光模块传输所述L个第二光载波;
    所述第二光模块,还用于将所述L个第二光载波转化为L个第二信号,并向所述第二通信装置传输所述L个第二信号;
    所述第二通信装置,还用于接收所述L个第二信号。
  12. 如权利要求11所述的汇聚节点,其特征在于,所述汇聚节点还包括至少一个第二交换机,所述第二光模块包括第二白光模块对和第二彩光模块;
    所述第二合/分波器与所述第二通信装置通过所述第二光模块相连,具体包括:
    所述第二合/分波器通过所述第二彩光模块与所述第二交换机的一端相连,所述第二通信装置通过所述第二白光模块对与所述第二交换机的另一端相连。
  13. 如权利要求12所述的汇聚节点,其特征在于,所述第二合/分波器设置于所述第 二交换机内部。
  14. 如权利要求11至13任一项所述的汇聚节点,其特征在于,所述汇聚节点还包括第四通信装置和第四白光模块,所述第四通信装置与所述第二合/分波器通过所述第四白光模块相连;
    所述第四通信装置,用于将白光传输至所述第二合/分波器;
    所述第四通信装置,还用于接收来自所述第二合/分波器的白光。
  15. 如权利要求11至13任一项所述的汇聚节点,其特征在于,所述汇聚节点还包括第四通信装置和第四彩光模块,所述第四通信装置通过所述第四彩光模块与所述第二合/分波器相连;
    所述第二合/分波器,还用于确定特定波长的上波,并向所述第四彩光模块传输所述特定波长的上波;
    所述第四彩光模块,用于将来自所述第二合/分波器的所述特定波长的上波转化为特定信号,并将所述特定信号传输至所述第四通信装置;
    所述第四彩光模块,还用于接收来自所述第四通信装置的特定信号,并将所述特定信号转化为特定波长的下波、并将所述特定波长的下波传输至所述第二合/分波器。
  16. 如权利要求11至15任一项所述的汇聚节点,其特征在于,所述网络侧光纤支持的波段包括以下内容中的任一项:
    彩光波段;
    彩光波段和白光波段,所述白光波段和所述彩光波段为不同的波段。
  17. 如权利要求11至16任一项所述的汇聚节点,其特征在于,所述网络侧光纤为:
    收发双向的一根光纤;或者,
    收发分离的一对光纤;或者,
    收发双向的一对网络侧光纤。
  18. 如权利要求14所述的汇聚节点,其特征在于,在所述第二合/分波器与所述收发双向的一根光纤相连的情况下,所述第四白光模块为BIDI白光模块;或者,
    在所述第二合/分波器与所述收发分离的一对光纤或者收发双向的一对网络侧光纤相连的情况下,所述第四白光模块为利旧白光模块或BIDI白光模块。
  19. 一种无线接入网络,其特征在于,包括上述权利要求1至10中任一项所述的网络节点和上述权利要求11至18中任一项所述汇聚节点。
PCT/CN2019/077554 2019-03-08 2019-03-08 一种网络节点、汇聚节点和无线接入网络 WO2020181436A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/077554 WO2020181436A1 (zh) 2019-03-08 2019-03-08 一种网络节点、汇聚节点和无线接入网络

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/077554 WO2020181436A1 (zh) 2019-03-08 2019-03-08 一种网络节点、汇聚节点和无线接入网络

Publications (1)

Publication Number Publication Date
WO2020181436A1 true WO2020181436A1 (zh) 2020-09-17

Family

ID=72427185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077554 WO2020181436A1 (zh) 2019-03-08 2019-03-08 一种网络节点、汇聚节点和无线接入网络

Country Status (1)

Country Link
WO (1) WO2020181436A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022001714A1 (zh) * 2020-06-28 2022-01-06 华为技术有限公司 组网系统以及相关数据传输方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237293A (zh) * 2008-03-03 2008-08-06 中兴通讯股份有限公司 波分时分混合复用无源光网络系统
US20090226172A1 (en) * 2007-05-30 2009-09-10 Tellabs Operations, Inc. Reconfigurable optical add/drop multiplexer and procedure for outputting optical signals from such multiplexer
CN102572620A (zh) * 2012-02-02 2012-07-11 中兴通讯股份有限公司 一种光模块及光波复用系统
CN205430266U (zh) * 2015-11-24 2016-08-03 上海欣诺通信技术有限公司 基于波分复用的吉比特无源光网传输系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090226172A1 (en) * 2007-05-30 2009-09-10 Tellabs Operations, Inc. Reconfigurable optical add/drop multiplexer and procedure for outputting optical signals from such multiplexer
CN101237293A (zh) * 2008-03-03 2008-08-06 中兴通讯股份有限公司 波分时分混合复用无源光网络系统
CN102572620A (zh) * 2012-02-02 2012-07-11 中兴通讯股份有限公司 一种光模块及光波复用系统
CN205430266U (zh) * 2015-11-24 2016-08-03 上海欣诺通信技术有限公司 基于波分复用的吉比特无源光网传输系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022001714A1 (zh) * 2020-06-28 2022-01-06 华为技术有限公司 组网系统以及相关数据传输方法

Similar Documents

Publication Publication Date Title
US9184842B2 (en) Apparatus for communicating a plurality of antenna signals at different optical wavelengths
CN109155644B (zh) 支持mimo服务的天线分散系统
KR100443312B1 (ko) 무선 기지국 네트워크 시스템 및 기지국 전환 방법
EP1813042B8 (en) Communications method, particularly for a mobile radio network
EP2753141B1 (en) Data interaction system and method thereof
JP5894094B2 (ja) 分散型無線通信基地局システム、olt部、及びonu部
WO2021031832A1 (zh) 波分复用系统、局端装置及远端装置
JP2014110574A (ja) 光無線アクセスシステム
KR20070025572A (ko) 안정적인 tdd 방식의 무선 서비스가 가능하도록 하는rof 링크 장치
CN113543151A (zh) 4g/5g信号无线覆盖方法
Ma et al. Evolution and trends of broadband access technologies and fiber-wireless systems
WO2020181436A1 (zh) 一种网络节点、汇聚节点和无线接入网络
CN104618205B (zh) 一种室内固网接入和移动通信信号覆盖综合系统
Bhatt et al. Fiber-wireless (Fi-Wi) architectural technologies: A survey
EP3138220B1 (en) Optical switch for a radio access network
CN112564803A (zh) 一种5g前传网络传输系统
JP5567748B2 (ja) 信号を送信ノードから複数の受信ノードに送信する通信システム、ノード、及び方法
CN114124222A (zh) 光处理单元、光传送系统及光传送方法
KR102466636B1 (ko) 분산형 안테나 시스템
KR102469181B1 (ko) 무선 엑세스 네트워크 시스템
EP2510707B1 (en) Method and device for data processing in a passive optical network
JP6052899B2 (ja) 光アクセスシステム
KR101771535B1 (ko) 혼합형 전송방식의 분산안테나시스템
JP3591725B2 (ja) 光ファイバ線路を用いた通信システム
Mukhopadhyay et al. A resilient packet ring based backhaul for LTE networks that reduces handover latency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918920

Country of ref document: EP

Kind code of ref document: A1