WO2020181433A1 - 一种自由空间光通信方法及发射机、接收机 - Google Patents

一种自由空间光通信方法及发射机、接收机 Download PDF

Info

Publication number
WO2020181433A1
WO2020181433A1 PCT/CN2019/077545 CN2019077545W WO2020181433A1 WO 2020181433 A1 WO2020181433 A1 WO 2020181433A1 CN 2019077545 W CN2019077545 W CN 2019077545W WO 2020181433 A1 WO2020181433 A1 WO 2020181433A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection signal
wireless detection
transmitter
receiver
signal
Prior art date
Application number
PCT/CN2019/077545
Other languages
English (en)
French (fr)
Inventor
沈嘉
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980093061.8A priority Critical patent/CN113557678A/zh
Priority to PCT/CN2019/077545 priority patent/WO2020181433A1/zh
Priority to EP19919179.2A priority patent/EP3930219A4/en
Publication of WO2020181433A1 publication Critical patent/WO2020181433A1/zh
Priority to US17/467,105 priority patent/US11799545B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication

Definitions

  • the present disclosure relates to but is limited to the field of communications, and more specifically, to a method, system, transmitter, and receiver for Free Space Optical Communications (FSO: Free Space Optical Communications).
  • FSO Free Space Optical Communications
  • FSO refers to a communication technology that uses light waves as a carrier to transmit information in a vacuum or atmosphere. It can be divided into atmospheric optical communication, inter-satellite optical communication and satellite-to-ground optical communication, which can also be called optical wireless communication. Unlike optical fiber communication, FSO does not require wired connection and can be used in wireless communication systems.
  • the existing wireless communication frequency bands (including microwave frequency band and millimeter wave frequency band) have been used by 4G and 5G, and it is difficult to find more spectrum resources to achieve higher transmission rates, while FSO can use spectrum resources to achieve data rates above Gbps , And has the advantages of good directivity, low interference, good security, full duplex, etc. It is considered to be an important candidate technology for B5G/6G, which can be used in various scenarios such as the Internet of Vehicles, the Internet of Things, robot communication, and wireless backhaul. .
  • the traditional FSO system is shown in Figure 1, which transmits wireless data through optical signals sent from the FSO transmitter to the FSO receiver.
  • a narrower directional beam is usually used for FSO communication.
  • the achievable coverage distance and data rate are related to the intensity of the optical signal.
  • strong optical signals may cause harm to the human body (especially human eyes), and the transmit power of the optical signal must be limited according to the application scenario.
  • the embodiments of the present disclosure provide a free-space optical communication method, transmitter and receiver.
  • embodiments of the present disclosure provide a free-space optical communication method, including:
  • the transmission of the optical signal is adjusted according to the detection result to reduce the intensity of the optical signal or suspend the transmission of the optical signal when the wireless detection signal is blocked.
  • embodiments of the present disclosure provide a free-space optical communication method, including:
  • the transmitter transmits wireless data to the receiver through an optical signal; there is a wireless detection signal different from the optical signal between the transmitter and the receiver;
  • embodiments of the present disclosure provide a free-space optical communication method, including:
  • the receiver receives the wireless data transmitted by the transmitter to the receiver through an optical signal
  • embodiments of the present disclosure provide a free-space optical communication method, including:
  • the receiver receives the wireless data transmitted by the transmitter to the receiver through an optical signal
  • the receiver transmits a wireless detection signal different from the optical signal, and the wireless detection signal is distributed around the optical signal.
  • a transmitter for free-space optical communication including:
  • the optical signal transmitting module is configured to transmit wireless data to the receiver through an optical signal, and there is a wireless detection signal different from the optical signal between the transmitter and the receiver;
  • a determining module configured to determine whether the wireless detection signal is blocked
  • the adjustment module is configured to reduce the intensity of the optical signal or suspend the emission of the optical signal when the wireless detection signal is blocked.
  • a free-space optical communication receiver including:
  • the optical signal receiving module is configured to receive wireless data transmitted by the transmitter to the receiver through optical signals
  • a detection signal receiving module configured to receive a wireless detection signal different from the optical signal transmitted by the transmitter
  • the feedback module is configured to feed back information about whether the wireless detection signal is blocked to the transmitter.
  • a free-space optical communication receiver including:
  • the optical signal receiving module is configured to receive wireless data transmitted by the transmitter to the receiver through optical signals
  • the detection signal transmitting module is configured to transmit a wireless detection signal different from the optical signal, and the wireless detection signal is distributed around the optical signal.
  • the embodiments of the present disclosure also provide a transmitter, wherein the transmitter includes a processor, a memory, a communication interface, and one or more programs, and the one or more programs are stored in the memory. And is configured to be executed by the processor, and the program includes instructions for executing steps of any method in the second aspect of the embodiments of the present disclosure.
  • the embodiments of the present disclosure also provide a receiver, where the receiver includes a processor, a memory, a communication interface, and one or more programs, and the one or more programs are stored in the memory. And is configured to be executed by the processor, and the program includes instructions for executing steps of any method in the third aspect or the fourth aspect of the embodiments of the present disclosure.
  • Figure 1 is a schematic diagram of FSO transmitter and FSO receiver communicating through weaker optical signals that do not affect human safety;
  • Fig. 2 is a flowchart of an FSO optical communication method according to an exemplary embodiment of the present disclosure
  • Fig. 3 is a flowchart of an FSO optical communication method executed by a transmitter according to an exemplary embodiment of the present disclosure
  • Fig. 7 is a schematic diagram of modules of an FSO transmitter according to an exemplary embodiment of the present disclosure.
  • FIG. 8, FIG. 9, FIG. 10, and FIG. 11 are schematic diagrams of modules of an FSO receiver according to an exemplary embodiment of the present disclosure
  • Fig. 12 is a schematic structural diagram of an FSO optical communication system according to an exemplary embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a stronger FSO optical signal transmission when the radar does not detect an obstruction in an exemplary embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of stopping FSO optical signal transmission when radar detects an obstruction in an exemplary embodiment of the present disclosure
  • 15 is a schematic diagram of switching to weaker FSO optical signal transmission when the radar detects an obstruction in an exemplary embodiment of the present disclosure
  • FIG. 16 is a schematic diagram showing that the FSO transmitter can perform stronger FSO optical signal transmission when the FSO receiver does not detect obstructions in an exemplary embodiment of the present disclosure
  • FIG. 17 is a schematic diagram of the FSO transmitter stopping FSO optical signal transmission when the feedback signal shows that an obstruction is detected in an exemplary embodiment of the present disclosure
  • FIG. 18 is a schematic diagram of the FSO transmitter switching to weaker FSO optical signal transmission when the feedback signal shows that an obstruction is detected in an exemplary embodiment of the present disclosure
  • Figure 19 is a schematic diagram of the FSO receiver continuously sending feedback information to the FSO transmitter when no obstruction is detected, and the FSO transmitter can transmit stronger FSO optical signals;
  • FIG. 20 is a schematic diagram of the FSO receiver stopping sending feedback information indicating that the detection signal is received when an obstruction is detected, and the FSO transmitter stopping FSO optical signal transmission;
  • Figure 21 is a schematic diagram of the FSO receiver stopping sending feedback information indicating that the detection signal is received when an obstruction is detected, and the FSO transmitter switching to a weaker FSO optical signal transmission;
  • Figure 22 is a schematic diagram of the transmission of stronger FSO optical signals when the FSO transmitter receives all the detection signals
  • Figure 23 is a schematic diagram of suspending FSO optical signal transmission when the FSO transmitter cannot receive the detection signal
  • Figure 24 is a schematic diagram of switching to the weaker FSO optical signal transmission when the FSO transmitter cannot receive the detection signal.
  • the present disclosure includes and contemplates combinations with features and elements known to those of ordinary skill in the art.
  • the embodiments, features, and elements disclosed in the present disclosure can also be combined with any conventional features or elements to form a unique invention solution defined by the claims.
  • Any feature or element of any embodiment can also be combined with features or elements from other invention solutions to form another unique invention solution defined by the claims. Therefore, it should be understood that any feature shown and/or discussed in this disclosure can be implemented individually or in any suitable combination. Therefore, the embodiments are not restricted except for the restrictions made according to the appended claims and their equivalents.
  • various modifications and changes can be made within the protection scope of the appended claims.
  • the specification may have presented the method and/or process as a specific sequence of steps. However, to the extent that the method or process does not depend on the specific order of the steps described herein, the method or process should not be limited to the steps in the specific order described. As those of ordinary skill in the art will understand, other sequence of steps are also possible. Therefore, the specific order of steps set forth in the specification should not be construed as a limitation on the claims. In addition, the claims for the method and/or process should not be limited to performing their steps in the written order, and those skilled in the art can easily understand that these orders can be changed and still remain within the spirit and scope of the embodiments of the present disclosure. Inside.
  • An exemplary embodiment of the present disclosure provides a free-space optical communication method.
  • a transmitter and a receiver transmit wireless data through an optical signal, and the optical signal is detected around the optical signal between the transmitter and the receiver.
  • the signal transmission is adjusted. As shown in Figure 2, it includes:
  • Step 110 Transmit wireless data through optical signals between the transmitter and the receiver
  • Step 120 Transmit a wireless detection signal different from the optical signal between the transmitter and the receiver;
  • Step 130 Detect whether the wireless detection signal is blocked
  • Step 140 Adjust the transmission of the optical signal according to the detection result, so as to reduce the intensity of the optical signal or suspend the transmission of the optical signal when the wireless detection signal is blocked.
  • the transmitting a wireless detection signal different from the optical signal includes:
  • a wireless detection signal that is safe for human eyes is transmitted, and the wireless detection signal is distributed around the optical signal.
  • the detecting whether the wireless detection signal is blocked includes:
  • the above-mentioned wireless detection signal is transmitted.
  • the above-mentioned wireless detection signal can be transmitted to detect whether there are obstructions around the optical signal in real time. With obstructions, the transmission of optical signals can be restricted or a weaker optical signal can be emitted instead.
  • the transmitter transmits the wireless detection signal and receives the echo of the wireless detection signal, and judges whether there is an obstruction around the optical signal according to the receiving situation, that is, whether the wireless detection signal is blocked, if there is a wireless detection
  • the signal is blocked, that is, whether there is an obstruction around the optical signal, and if the wireless detection signal is not obstructed, it means that there is no obstruction around the optical signal.
  • radar detection including:
  • the transmitter or receiver discovers the target through radar detection and determines the distance of the target, and the radar transmits a wireless detection signal;
  • the distance of the target measured by the wireless detection signal (referring to the distance from the radar to the target) should be consistent with the distance of the receiver (referring to the distance from the radar to the receiver), that is to say , Within the allowable error range, the two distances should be equal. If there are obstructions around the optical signal, then at least one wireless detection signal measures the target distance and the receiver distance does not match. From this, it can be determined whether there are obstructions around the optical signal.
  • the receiver performs radar detection, it needs to feed back information about whether there are obstructions around the optical signal to the transmitter.
  • the receiver feeds back the data detected by the radar to the transmitter, and it is also possible for the transmitter to determine whether there are obstructions around the optical signal.
  • the radar of the embodiments of the present disclosure may use millimeter waves, lasers, etc. as radar signals, but it is not limited to this, and other types of electromagnetic waves may also be used. It can be selected according to the actual application environment, detection distance, accuracy requirements, etc.
  • the transmitter transmits a wireless detection signal, and it is determined whether the wireless detection signal is blocked according to the situation of the receiver receiving the wireless detection signal, and the receiver feeds back relevant information to the transmitter.
  • the detecting whether the wireless detection signal is blocked includes, for example:
  • the transmitter transmits a wireless detection signal
  • the receiver receives the wireless detection signal and feeds back information to the transmitter. If the wireless detection signal is received, the feedback indicates that the wireless detection signal is not blocked. If at least one wireless detection signal has not been received, feedback the second indication information indicating that the wireless detection signal is blocked;
  • the transmitter judges whether the wireless detection signal is blocked according to the type of the received instruction information.
  • the receiver determines whether there is an obstruction around the optical signal according to the reception result. If the receiver feeds back the reception result of the wireless detection signal, the transmitter determines whether there is an obstruction around the optical signal according to the reception result.
  • Example 3 the above detection is implemented by the transmitter transmitting a wireless detection signal, and the receiver determines whether to feed back indication information to the transmitter according to the receiving situation.
  • the detecting whether the wireless detection signal is blocked includes:
  • the transmitter transmits a wireless detection signal
  • the receiver If the receiver receives all of the wireless detection signals, it will continue to feed back information to the transmitter, and if it does not receive at least one of the wireless detection signals, it will stop feeding back information;
  • the transmitter When the transmitter receives the feedback information, it determines that the wireless detection signal is not blocked, and when it does not receive the feedback information, it determines that the wireless detection signal is blocked.
  • Example 4 the above detection is achieved by the receiver transmitting the wireless detection signal, and the transmitter determines whether there is an obstruction around the optical signal (that is, whether the wireless detection signal is obstructed) according to the receiving situation.
  • the detecting whether the wireless detection signal is blocked includes:
  • the receiver transmits a wireless detection signal
  • the transmitter receives the wireless detection signal, and if the wireless detection signals are all received, it is determined that the wireless detection signal is not blocked, and if at least one wireless detection signal is not received, the wireless detection signal is determined Obscured.
  • the type of the wireless detection signal includes any one or more of the following signals: optical signal, microwave signal, milliwave, laser signal, infrared signal.
  • the detection signal can also use optical signals,
  • optical signal refers to the optical signal used for optical communication between a transmitter and a receiver.
  • the detection signal also involves transmission and reception
  • the transmitter and receiver in this article refer to devices that transmit and receive optical signals.
  • the information fed back between the transmitter and the receiver can be transmitted through a wired channel or a wireless channel, for example, through the Internet of Things, mobile communications, and the like.
  • adjusting the transmission of the optical signal according to the detection result includes:
  • the first optical signal is transmitted.
  • the second optical signal When transmitting the first optical signal, if it is detected that the wireless detection signal is blocked, the second optical signal is transmitted instead or the transmission of the optical signal is suspended;
  • the intensity of the second optical signal is less than the intensity of the first optical signal.
  • it may further include:
  • the first optical signal is transmitted between the transmitter and the receiver instead.
  • the intensity of the optical signal when the first optical signal is switched to the second optical signal, the intensity of the optical signal becomes smaller, and vice versa, when the second optical signal is switched to the first optical signal, the intensity of the optical signal becomes larger.
  • the first optical signal and the second optical signal may be signals of the same type or signals of different types.
  • the intensity can also use parameters such as light intensity, and the effect is equivalent.
  • the above-mentioned first optical signal is the optical signal emitted in the working mode without obstruction, and is not limited to a specific optical signal, because when there is no obstruction, the Different optical signals can also be used for communication transmission.
  • the second optical signal is not limited to a specific kind of optical signal, but it needs to be safe for the human eye, please refer to related safety standards.
  • the optical signal when the wireless detection signal is not blocked, the optical signal starts to be transmitted, or the intensity of the optical signal is increased, or the type of the optical signal is changed from a lower energy density type Adjust to a higher energy density type.
  • the above-mentioned embodiments of the present disclosure provide a communication method of an FSO optical communication system that can ensure the safety of persons in a link.
  • a key issue of FSO is how to ensure the safety of people on the link, especially the safety of human eyes. If the transmission intensity of the FSO system is directly reduced to ensure human eye safety, it will severely limit the coverage and throughput of the FSO system.
  • the above and subsequent embodiments of the present disclosure use beams of wireless detection signals (such as microwaves, millimeter waves, low-power optical signals, etc.) that are safe for human eyes to construct a "fence" around the FSO optical path.
  • the embodiments of the present disclosure can suspend FSO transmission or reduce power emission when a person approaches the FSO optical path, and perform FSO transmission only when there are no obstructions around the optical path, so that higher-intensity FSO can be used while ensuring human eye safety.
  • the signal communicates wirelessly to obtain a higher data rate and greater coverage.
  • a free-space optical communication method at the transmitter side is provided, as shown in FIG. 3, including:
  • Step 210 The transmitter transmits wireless data to the receiver through an optical signal, and there is a wireless detection signal different from the optical signal between the transmitter and the receiver;
  • Step 220 The transmitter determines whether the wireless detection signal is blocked
  • Step 230 When the wireless detection signal is blocked, the intensity of the optical signal is reduced or the transmission of the optical signal is suspended.
  • the wireless detection signal is distributed around the optical signal.
  • the transmitter determining whether the wireless detection signal is blocked includes: the transmitter transmits the wireless detection signal through a radar, and when part or all of the wireless detection signal is blocked, the The transmitter measures the distance between the transmitter and the obstruction; if the distance between the transmitter and the obstruction is the same as the distance between the transmitter and the receiver, determine the wireless The detection signal is not blocked. If it is inconsistent, it is determined that the wireless detection signal is blocked.
  • determining whether the wireless detection signal is blocked by the transmitter includes: the transmitter receives, through a wireless channel or a wired channel, whether there are obstructions around the optical signal fed back by the receiver through radar detection. Indication information, determining whether there is an obstruction around the optical signal according to the indication information.
  • the detection result of the transmitter determining whether the wireless detection signal is blocked includes:
  • the transmitter transmits a wireless detection signal
  • the transmitter receives feedback information sent by the receiver through a wireless channel or a wired channel; the feedback information is used to indicate that the wireless detection signal is all received or not blocked, or part of the wireless detection signal Or all have not been received;
  • the transmitter determines whether the wireless detection signal is blocked according to the information fed back by the receiver.
  • the determining by the transmitter whether the wireless detection signal is blocked includes:
  • the transmitter transmits the wireless detection signal
  • the transmitter receives feedback information continuously sent by the receiver through a wireless channel or a wired channel, and the feedback information is used to indicate that the wireless detection signals are all received or not blocked;
  • the transmitter When the transmitter receives the feedback information, it determines that the wireless detection signal is not blocked, and when it does not receive the feedback information, it determines that the wireless detection signal is blocked.
  • the determining by the transmitter whether the wireless detection signal is blocked includes:
  • the transmitter receives the wireless detection signal transmitted by the receiver, and if the wireless detection signal is received, it is determined that the wireless detection signal is not blocked, and if the wireless detection signal is not received or is only partially received When it arrives, it is determined that the wireless detection signal is blocked.
  • the type of the wireless detection signal includes any one or more of the following signals: optical signal, microwave signal, milliwave, laser signal, and infrared signal.
  • the information fed back between the transmitter and the receiver can be transmitted through a wired channel or a wireless channel, for example, through the Internet of Things, mobile communications, and the like.
  • the transmitter adjusting the emission of the optical signal according to the detection result includes:
  • the transmitter When the transmitter detects that the wireless detection signal is not blocked, it starts to transmit the first optical signal to the receiver.
  • the transmitter adjusting the transmission of the optical signal according to the detection result may also include: when the transmitter is transmitting the first optical signal, if it detects that the wireless detection signal is blocked, then transmitting the second optical signal instead.
  • the intensity of the second optical signal is less than the intensity of the first optical signal.
  • adjusting the transmission of the optical signal by the transmitter according to the detection result may also include: when the transmitter transmits the second optical signal, if it detects that the second optical signal is not blocked, changing To emit the first optical signal.
  • An exemplary embodiment of the present disclosure also provides a free-space optical communication method on the receiver side, including:
  • the receiver discovers the target through radar detection and determines the distance of the target.
  • the radar transmits a multi-channel wireless detection signal that is safe for human eyes, and the wireless detection signal is different from the optical signal between the receiver and the transmitter;
  • the receiver feeds back to the transmitter through a wireless channel or a wired channel, indicating whether there is an obstruction around the optical signal.
  • the receiver judges whether the distances of the targets measured by the multiple wireless detection signals are consistent with the distances of the receiver, if yes, feed back the indication information that there are no obstructions around the optical signal, if not, feed back There is indication information of obstructions around the optical signal.
  • An exemplary embodiment of the present disclosure also provides a free-space optical communication method on the receiver side, as shown in FIG. 4, including:
  • Step 310 The receiver receives the wireless data transmitted by the transmitter to the receiver through an optical signal
  • Step 320 The receiver receives a wireless detection signal that is different from the optical signal transmitted by the transmitter, and the wireless detection signal is distributed around the optical signal;
  • Step 330 The receiver feeds back information to the transmitter whether the wireless detection signal is blocked; wherein, if all the wireless detection signals are received, the receiver feeds back the first signal indicating that the wireless detection signal is not blocked. An indication information; if part or all of the wireless detection signal is not received, the second indication information indicating that the wireless detection signal is blocked is fed back.
  • An exemplary embodiment of the present disclosure also provides a free-space optical communication method on the receiver side, as shown in FIG. 5, including:
  • Step 410 The receiver receives the wireless data transmitted by the transmitter to the receiver through an optical signal
  • Step 420 The receiver receives a wireless detection signal different from the optical signal transmitted by the transmitter, and the wireless detection signal is distributed around the optical signal;
  • Step 430 The receiver feeds back information to the transmitter whether the wireless detection signal is blocked; wherein, if all the wireless detection signals are received, the receiver continues to feed back information to the transmitter, if If part or all of the wireless detection signal is not received, the receiver stops feeding back information; the feedback information is used to indicate that the wireless detection signal is not blocked.
  • An exemplary embodiment of the present disclosure also provides a free-space optical communication method on the receiver side, as shown in FIG. 6, including:
  • Step 510 The receiver receives the wireless data transmitted by the transmitter to the receiver through an optical signal
  • Step 520 The receiver transmits a wireless detection signal different from the optical signal, and the wireless detection signal is distributed around the optical signal.
  • the wireless detection signal includes any one or more of the following signals: optical signals that are safe for human eyes; microwave signals; milliwave signals; Safe laser signal; infrared signal.
  • An exemplary embodiment of the present disclosure also provides a transmitter for free space optical communication, as shown in FIG. 7, including:
  • the optical signal transmitting module 101 is configured to transmit wireless data to a receiver through an optical signal, and there is a wireless detection signal different from the optical signal between the transmitter and the receiver;
  • the determining module 102 is configured to determine whether the wireless detection signal is blocked
  • the adjustment module 103 is configured to reduce the intensity of the optical signal or suspend the emission of the optical signal when the wireless detection signal is blocked.
  • the wireless detection signal is distributed around the optical signal.
  • the determining module includes:
  • a radar unit configured to transmit the wireless detection signal, and when part or all of the wireless detection signal is blocked, measure the distance between the transmitter and the blocking object;
  • a determining unit configured to determine that the wireless detection signal is not blocked if the distance between the transmitter and the obstruction is the same as the distance between the transmitter and the receiver, and if not, then It is determined that the wireless detection signal is blocked.
  • the determining module includes:
  • the determining module includes:
  • a detection signal transmitting unit configured to transmit the wireless detection signal
  • the information receiving unit is configured to receive feedback information sent by the receiver through a wireless channel or a wired channel; the feedback information is used to indicate that the wireless detection signal is all received or not blocked, or that the wireless detection signal is Part or all of has not been received;
  • the judgment unit is configured to judge whether the wireless detection signal is blocked according to the information fed back by the receiver.
  • the determining module includes:
  • the determining module includes:
  • a detection signal transmitting unit configured to transmit the wireless detection signal
  • An information receiving unit configured to receive feedback information continuously sent by the receiver through a wireless channel or a wired channel, the feedback information being used to indicate that the wireless detection signals are all received or not blocked;
  • the determining unit is configured to determine that the wireless detection signal is not blocked when the feedback information is received, and determine that the wireless detection signal is blocked when the feedback information is not received.
  • the determining module includes:
  • the determining module includes:
  • An information receiving unit configured to receive the wireless detection signal transmitted by the receiver
  • the judging unit is configured to determine that the wireless detection signal is not blocked if all the wireless detection signals are received, and if the wireless detection signal is not received or only part of it is received, then it is determined that the wireless detection signal is Occlude.
  • the wireless detection signal in the above example includes any one or more of the following signals: optical signals, microwave signals, milliwave signals, laser signals and infrared signals that are safe for human eyes.
  • the adjustment module includes:
  • the first adjusting unit is configured to control the optical signal transmitting module to start transmitting the first optical signal to the receiver when detecting that the wireless detection signal is not blocked.
  • the adjustment module may further include: a second adjustment unit configured to control the optical signal emission module if it is detected that the wireless detection signal is blocked when the optical signal emission module emits the first optical signal Transmit the second optical signal or suspend the transmission of the optical signal;
  • the intensity of the second optical signal is less than the intensity of the first optical signal.
  • the adjustment module may further include: a third adjustment unit configured to control the optical signal if it is detected that the second optical signal is not blocked when the optical signal emission module emits the second optical signal The transmitting module transmits the first optical signal instead.
  • a receiver for free-space optical communication is provided. As shown in FIG. 8, in addition to an optical signal receiving module configured to receive optical signals sent by the transmitter to realize communication, Also includes:
  • the radar module 201 is configured to transmit a wireless detection signal that is safe for human eyes, detect and find a target and determine the distance of the target, and the wireless detection signal is different from the optical signal between the receiver and the transmitter;
  • the determining module 203 determines whether the distance of the target measured by the wireless detection signal is consistent with the distance of the receiver, if yes, it is determined that there is no obstruction around the optical signal, and if not, it is determined that there is obstruction around the optical signal Thing
  • the feedback module 205 is configured to feed back to the transmitter through a wireless channel or a wired channel, indicating whether there are obstructions around the optical signal.
  • a receiver for free-space optical communication includes:
  • the optical signal receiving module 301 is configured to receive wireless data transmitted by the transmitter to the receiver through optical signals;
  • the detection signal receiving module 303 is configured to receive a wireless detection signal that is different from the optical signal transmitted by the transmitter;
  • the feedback module 305 is configured to feed back information about whether the wireless detection signal is blocked to the transmitter through a wireless channel or a wired channel.
  • the wireless detection signal emitted by the transmitter is a wireless detection signal that is safe for human eyes, and the wireless detection signal is distributed around the optical signal.
  • the detection signal receiving module 303 is configured to receive the wireless detection signal transmitted by the transmitter;
  • the feedback module 305 is configured to feed back information to the transmitter, wherein, if all the wireless detection signals are received, the first indication information indicating that the wireless detection signal is not blocked is fed back; if the wireless detection signal is If part or all of is not received, the second indication information indicating that the wireless detection signal is blocked is fed back.
  • a receiver for free space optical communication includes:
  • the optical signal receiving module 401 is configured to receive wireless data transmitted by the transmitter to the receiver through optical signals;
  • the detection signal receiving module 403 is configured to receive a wireless detection signal that is different from the optical signal transmitted by the transmitter;
  • the feedback module 405 is configured to feed back information on whether the wireless detection signal is blocked to the transmitter through a wireless channel or a wired channel.
  • the wireless detection signal emitted by the transmitter is a wireless detection signal that is safe for human eyes, and the wireless detection signal is distributed around the optical signal.
  • the detection signal receiving module 403 is configured to receive the wireless detection signal transmitted by the transmitter;
  • the feedback module 405 is configured to: if all the wireless detection signals are received, continue to feed back information to the transmitter, and if part or all of the wireless detection signals are not received, then stop the feedback information; The feedback information is used to indicate that the wireless detection signal is blocked.
  • a receiver for free space optical communication includes:
  • the optical signal receiving module 501 is configured to receive wireless data transmitted by the transmitter to the receiver through optical signals;
  • the detection signal transmitting module 503 is configured to transmit a wireless detection signal different from the optical signal, and the wireless detection signal is distributed around the optical signal.
  • the wireless detection signal includes any one or more of the following signals: optical signals that are safe for human eyes, microwave signals, milliwave signals, laser signals that are safe for human eyes, and infrared signal.
  • the FSO optical communication system includes an FSO transmitter 1 and an FSO receiver 2.
  • the FSO transmitter 1 and the FSO receiver 2 perform wireless communication through optical signals.
  • the FSO optical path 121 (also referred to as the optical path 121) of the optical signal is located between the FSO transmitter 1 and the FSO receiver 2.
  • Multiple detection signals are also transmitted between the FSO transmitter 1 and the FSO receiver 2.
  • the transmission path 122 of the multiple detection signals forms a detection area around the optical path 121 of the optical signal, and surrounds the FSO optical path 121 (equivalent to Construct an electronic fence around the light path 121).
  • the transmission path 122 of the detection signal will be blocked (that is, the electronic fence is touched), and the system can detect it in time, thereby switching the optical signal or adjusting the intensity of the optical signal. Change the intensity or type of the optical signal.
  • the optical signal is transmitted through the optical signal transmitting hole 13 on the housing 11 of the FSO transmitter 1 and received through the optical signal receiving hole 23 on the housing 21 of the FSO receiver 2.
  • the detection signal can pass through the detection hole 12 on the housing 11 of the FSO transmitter 1 (6 are shown in the figure, but it can also be 2, 3, 4, 5, 7, 8 or more.
  • transmissions are received through the detection hole 22 on the housing 21 of the FSO receiver 2; it can also be transmitted through the detection hole 12 on the housing 21 of the FSO receiver 2 and through the detection hole 12 on the housing 11 of the FSO transmitter 1.
  • the detection hole 12 receives.
  • FIG. 12 shows the external structure of the transmitter and receiver of the FSO, and the corresponding hardware structure of the transmitter and receiver will be described below through other embodiments.
  • a transmitter for free-space optical communication which includes a housing with an optical signal transmitting hole and an optical signal transmitting device installed on the housing.
  • the machine also includes a detection device and an optical signal adjustment device installed on the casing, wherein:
  • the detection device is configured to obtain the detection result of whether there are obstructions around the optical signal, and the optical signal is transmitted between the transmitter and the receiver;
  • the optical signal control device is configured to adjust the optical signal emission of the optical signal emission device according to the detection result, so as to limit the intensity of the optical signal emission or stop the transmission when there are obstructions around the optical signal.
  • the emission of light signals is configured to adjust the optical signal emission of the optical signal emission device according to the detection result, so as to limit the intensity of the optical signal emission or stop the transmission when there are obstructions around the optical signal.
  • the detection device and/or the optical signal adjustment device may be installed in the housing, but the present disclosure is not limited to this, and may also be installed in whole or in part outside the housing.
  • the detection device includes:
  • a radar configured to transmit multiple wireless detection signals that are safe for human eyes, find a target and measure the distance of the target, the multiple wireless detection signals are distributed around the optical signal;
  • the processor is configured to determine whether the distance of the target measured by the multi-channel wireless detection signal is consistent with the distance of the receiver, if it is, it is determined that there is no obstruction around the optical signal, and if not, it is determined that the optical signal There are obstructions around the signal.
  • the detection device includes:
  • the communication module is configured to receive, through a wireless channel or a wired channel, the indication information of whether there are obstructions around the optical signal fed back by the receiver after being detected by the radar;
  • the processor is configured to determine whether there is an obstruction around the optical signal according to the instruction information.
  • the detection device includes:
  • a detection signal transmitter configured to transmit multiple wireless detection signals that are safe for human eyes, and the multiple wireless detection signals are distributed around the optical signal;
  • the communication module is configured to receive the indication information of whether there are obstructions around the optical signal fed back by the receiver through a wireless channel or a wired channel;
  • the processor is configured to determine whether there is an obstruction around the optical signal according to the instruction information.
  • the detection device includes:
  • a detection signal transmitter configured to transmit multiple wireless detection signals that are safe for human eyes, and the multiple wireless detection signals are distributed around the optical signal;
  • a communication module configured to receive the receiving results of the multiple wireless detection signals fed back by the receiver through a wireless channel or a wired channel;
  • the processor is configured to determine that if the receiving result is that the multiple wireless detection signals are received, determine that there is no obstruction around the optical signal, and if at least one wireless detection signal is not received, determine that the optical signal There are obstructions around the signal.
  • the housing is provided with a plurality of detection signal emission holes for transmitting the multiple wireless detection signals, and the plurality of detection signal emission holes are arranged around the optical signal emission holes; the wireless detection
  • the signal includes any one or more of the following signals: optical signal, microwave signal, milliwave signal, laser signal that is safe for human eyes, infrared signal.
  • the detection device includes:
  • a detection signal receiver configured to receive a multi-channel wireless detection signal that is safe for human eyes transmitted by the receiver, and the multi-channel wireless detection signal is distributed around the optical signal;
  • the processor is configured to determine that there is no obstruction around the optical signal when the multiple wireless detection signals are all received, and determine that there is obstruction around the optical signal when at least one wireless detection signal is not received Things.
  • the optical signal control device adjusting the emission of the optical signal according to the detection result includes:
  • controlling the optical signal emitting device to start emitting the first optical signal to the receiver
  • the optical signal emitting device When the optical signal emitting device emits the first optical signal, if the detecting device determines that there is an obstruction around the optical signal according to the detection result, the optical signal emitting device is controlled to emit to the human eye instead. Safe second optical signal or stop the emission of optical signal;
  • the intensity of the second optical signal is less than the intensity of the first optical signal.
  • the optical signal control device adjusting the emission of the optical signal according to the detection result may further include: when the optical signal emission device emits the second optical signal, as the detection device determines the If there is no obstruction around the optical signal, the optical signal emitting device is controlled to emit the first optical signal instead.
  • optical signal control device can be implemented by using devices such as processors, programmable logic controllers and other ICs with logic operation functions.
  • a receiver for free space optical communication which includes a housing with an optical signal receiving window and an optical signal receiving device mounted on the housing, wherein, The receiver also includes a radar, a processor and a communication module installed on the housing, wherein:
  • the radar is configured to emit multiple wireless detection signals that are safe for human eyes distributed around the optical signal, detect and find a target and determine the distance of the target, the wireless detection signal is different from the optical signal;
  • the processor is configured to determine whether the distance of the target measured by the multi-channel wireless detection signal is consistent with the distance of the receiver, if yes, determine that there is no obstruction around the optical signal, if not, determine that the optical signal There are obstructions around the signal;
  • the communication module is configured to feed back to the transmitter through a wireless channel or a wired channel, indicating whether there are obstructions around the optical signal.
  • a receiver for free space optical communication which includes a housing with an optical signal receiving window and an optical signal receiving device mounted on the housing, wherein, The receiver also includes:
  • the detection signal receiver is installed on the housing and is configured to receive multiple wireless detection signals transmitted by the transmitter that are safe for human eyes, and the multiple wireless detection signals are distributed between the receiver and the transmitter.
  • the multiple wireless detection signals are distributed between the receiver and the transmitter.
  • the communication module is configured to feed back the reception result of the multi-channel wireless detection signal to the transmitter.
  • a receiver for free space optical communication which includes a housing with an optical signal receiving window and an optical signal receiving device mounted on the housing, wherein, The receiver also includes:
  • the detection signal receiver is installed on the housing and is configured to receive a multi-channel wireless detection signal transmitted by a transmitter that is safe for human eyes.
  • the multi-channel wireless detection signal is distributed between the receiver and the transmitter.
  • the processor is configured to obtain the reception result of the detection signal receiver, if the multiple wireless detection signals are received, determine that there is no obstruction around the optical signal, and if at least one wireless detection signal is not received , Determine that there is an obstruction around the optical signal;
  • the communication module is configured to feed back to the transmitter the indication information of whether there is an obstruction around the optical signal determined by the processor.
  • a receiver for free space optical communication which includes a housing with an optical signal receiving window and an optical signal receiving device mounted on the housing, wherein, The receiver also includes:
  • the detection signal receiver is installed on the housing and is configured to receive multiple wireless detection signals transmitted by the transmitter that are safe for human eyes, and the multiple wireless detection signals are distributed between the receiver and the transmitter.
  • the multiple wireless detection signals are distributed between the receiver and the transmitter.
  • the communication module is configured to continuously feed back information to the transmitter if the multiple wireless detection signals are received, and stop the feedback information if at least one of the wireless detection signals is not received; the feedback information is used to indicate There is no obstruction around the optical signal.
  • a receiver for free-space optical communication which includes a housing with an optical signal receiving window and an optical signal receiving device installed on the housing, wherein, The receiver also includes:
  • the detection signal transmitter is configured to transmit multiple wireless detection signals that are safe for human eyes, and the multiple wireless detection signals are distributed around the optical signal.
  • the housing is provided with a plurality of detection signal emission holes for transmitting the multiple wireless detection signals, and the plurality of detection signal emission holes are arranged around the optical signal receiving window;
  • the detection signal includes any one or more of the following signals: optical signals, microwave signals, milli-wave signals, laser signals that are safe for human eyes, and infrared signals.
  • the foregoing embodiments of the transmitter and receiver are used to implement the FSO optical communication method of the foregoing embodiment respectively.
  • millimeter waves or lidar are used to generate detection signals.
  • a radar is installed in the FSO transmitter.
  • a number of millimeter wave or lidar signal sources are arranged around the FSO transmitting hole. Corresponding holes are set on the housing of the transmitter.
  • Road millimeter wave or lidar signal When no obstruction is detected by all millimeter wave or lidar signals, it can be judged that there is no obstruction around the FSO optical path, and the transmission of stronger FSO optical signals that may affect the safety of human eyes can be started or continued to obtain greater coverage and greater coverage. High transmission rate.
  • the millimeter wave or lidar signal detects obstructions, it can be judged that there are obstructions around the FSO optical path, and the FSO transmitter stops the transmission of the FSO optical signal, as shown in Figure 14. In another example, at this time, it is also possible to switch to a weaker optical signal that does not affect human eye safety, as shown in FIG. 15, to ensure personal safety.
  • the FSO transmission can be stopped or the power emission can be reduced when a person approaches the FSO optical path, and the FSO transmission can be performed only when there is no obstruction around the optical path, so that a higher intensity FSO signal can be used while ensuring the safety of the human eye Carry on wireless communication, get higher data rate and larger coverage.
  • radar is used to detect obstructions, and there is no need to install detection signal receiving and transmitting equipment at the FSO receiver end, which reduces the complexity of the equipment. It does not rely on the cooperation of the receiving and transmitting ends to detect obstructions, and has high reliability.
  • the transmitter transmits a detection signal to the receiver, and the receiver feedbacks information indicating whether there is an obstruction.
  • a plurality of detection signal transmitters are arranged around the FSO transmitting hole, and corresponding detection holes are set on the housing of the transmitter and the receiver, and multiple detections are transmitted around the FSO optical path.
  • the detection signal is received by the FSO receiver.
  • the FSO receiver can receive all the detection signals, it can be judged that there are no obstructions around the FSO optical path, and the FSO transmitter can start or continue the transmission of stronger FSO optical signals that may affect the safety of human eyes, and obtain greater coverage and better coverage. High transmission rate.
  • the FSO receiver When the FSO receiver cannot receive the detection signal, it means that at least one detection signal is blocked by an obstruction. It can be judged that there is an obstruction around the FSO optical path, and the FSO receiver sends feedback information to the FSO transmitter to indicate that an obstruction is present. After receiving the feedback information, the FSO transmitter stops the transmission of the FSO optical signal, as shown in Figure 17. In another example, at this time, it is also possible to switch to a weaker optical signal that does not affect human eye safety, as shown in FIG. 18, to ensure personal safety.
  • the FSO transmission can be stopped or the power emission can be reduced when a person approaches the FSO optical path, and the FSO transmission can be performed only when there is no obstruction around the optical path, so that a higher intensity FSO signal can be used while ensuring the safety of the human eye Carry on wireless communication, get higher data rate and larger coverage.
  • this embodiment adopts the method of sending detection signals at the FSO transmitter and receiving at the FSO receiver, which can solve the problem of limited radar detection range, reduced long-distance detection accuracy, and difficulty in distinguishing obstructions and FSO receivers. The problem is that it can detect obstructions around the FSO optical path at a longer distance and more accurately.
  • the transmitter transmits a wireless detection signal (also referred to as a detection signal in the text) to the receiver, and the receiver continuously feeds back the signal, and stops the feedback information when an obstruction occurs.
  • a wireless detection signal also referred to as a detection signal in the text
  • a plurality of detection signal transmitters are arranged around the FSO transmitting hole, and corresponding detection holes are arranged on the housings of the transmitter and the receiver to transmit multiple channels around the FSO optical path.
  • the detection signal is received by the FSO receiver.
  • the FSO receiver can receive all detection signals and no obstructions are detected, the FSO receiver continues to send feedback signals to the FSO transmitter, indicating that there are no obstructions around the FSO optical path, and the FSO transmitter can start or continue to affect the human eye Safe and strong FSO optical signal transmission, to obtain larger coverage and higher transmission rate.
  • the FSO receiver When the FSO receiver cannot receive the detection signal, it means that at least one of the detection signals is blocked by an obstruction. It can be judged that there is an obstruction around the FSO optical path, and the FSO receiver stops sending feedback indicating that the detection signal is received to the FSO transmitter. Information to indicate that there are obstructions around the FSO optical path, and the FSO transmitter then stops the transmission of the FSO optical signal, as shown in Figure 20. In another example, at this time, it is also possible to switch to a weaker optical signal that does not affect human eye safety as shown in FIG. 21 to ensure personal safety.
  • the FSO transmission can be stopped or the power emission can be reduced when a person approaches the FSO optical path, and the FSO transmission can be performed only when there is no obstruction around the optical path, so that a higher intensity FSO signal can be used while ensuring the safety of the human eye Carry on wireless communication, get higher data rate and larger coverage.
  • this embodiment adopts the method of sending detection signals at the FSO transmitter and receiving at the FSO receiver, which can solve the problem of limited radar detection range, reduced long-distance detection accuracy, and difficulty in distinguishing obstructions and FSO receivers. The problem is that it can detect obstructions around the FSO optical path at a longer distance and more accurately.
  • this embodiment can also solve the problem of missing feedback information, that is, if the FSO transmitter misses the feedback information sent by the FSO receiver indicating that the detection signal is received, The transmission of the FSO optical signal will be suspended or switched to a weaker optical signal that does not affect the safety of human eyes, and personal safety can also be ensured when the feedback information is missed.
  • a detection signal from the receiver to the transmitter is used, and the transmitter determines whether there is an obstruction.
  • a number of detection signal transmitters are arranged around the FSO receiving window, and corresponding detection holes are set on the transmitter and receiver housings to transmit multiple detection signals around the FSO optical path .
  • the FSO transmitter receives the detection signal.
  • the FSO transmitter can receive all the detection signals, it can be judged that there are no obstructions around the FSO optical path, and the FSO transmitter can start or continue the transmission of stronger FSO optical signals that may affect the safety of human eyes to obtain greater coverage And higher transmission rate.
  • the FSO transmitter When the FSO transmitter cannot receive the detection signal, it means that at least one detection signal is blocked by an obstruction. It can be judged that there is an obstruction around the FSO optical path, and the FSO transmitter stops the transmission of the FSO optical signal, as shown in Figure 23. In another example, at this time, it is also possible to switch to a weaker light signal that does not affect human eye safety, as shown in Figure 24, to ensure personal safety.
  • the FSO transmission can be stopped or the power emission can be reduced when a person approaches the FSO optical path, and the FSO transmission can be performed only when there is no obstruction around the optical path, so that a higher intensity FSO signal can be used while ensuring the safety of the human eye Carry on wireless communication, get higher data rate and larger coverage.
  • this embodiment uses the method of sending detection signals at the FSO receiver and receiving at the FSO transmitter, which can solve the problem of limited radar detection range, reduced long-distance detection accuracy, and difficulty in distinguishing obstructions and FSO receivers. The problem is that it can detect obstructions around the FSO optical path at a longer distance and more accurately.
  • this embodiment saves the transmission of feedback information, can reduce the overhead of wireless signaling, improve the utilization efficiency of the wireless link, and can also avoid feedback delays and accelerate the response speed of the FSO transmitter. , Which is more conducive to protecting personal safety.
  • the achievable coverage distance and data rate are related to the intensity of the optical signal.
  • the greater the intensity of the optical signal the longer the coverage distance and the higher the data rate.
  • strong optical signals may cause harm to the human body (especially the human eyes).
  • For terrestrial wireless communication since the optical path often passes through areas where people appear, in order to protect the safety of human eyes, only lower power transmission can be used. Realize long-distance coverage and high data rate transmission.
  • the embodiments of the present disclosure can suspend FSO transmission or reduce power emission when a person approaches the FSO optical path, and perform FSO transmission only when there are no obstructions around the optical path, so that higher-intensity FSO signals can be used while ensuring human eye safety. Carry on wireless communication, get higher data rate and larger coverage.
  • a camera and AI image recognition can also be used to determine whether there are obstructions around the FSO optical path.
  • Such software may be distributed on a computer-readable medium
  • the computer-readable medium may include a computer storage medium (or non-transitory medium) and a communication medium (or transitory medium).
  • the term computer storage medium includes volatile and non-volatile data implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data).
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, tapes, magnetic disk storage or other magnetic storage devices, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media .

Abstract

本公开实施例公开了自由空间光通信方法及发射机、接收机,所述方法包括:在发射机和接收机之间通过光信号传输无线数据;在发射机和接收机之间发射与所述光信号不同的无线探测信号;检测所述无线探测信号是否被遮挡;根据检测结果对所述光信号的传输进行调整,以在所述无线探测信号被遮挡时降低所述光信号的强度或者中止所述光信号的传输。

Description

一种自由空间光通信方法及发射机、接收机 技术领域
本公开涉及但限于通信领域,更具体地,涉及一种自由空间光通信(FSO:Free Space Optical Communications)方法、系统及发射机、接收机。
背景技术
FSO是指以光波为载体,在真空或大气中传递信息的通信技术。可分为大气光通信、卫星间光通信和星地光通信,也可以称为光无线通信。与光纤通信不同,FSO不需要借助有线连接,可以用于无线通信系统。现有的无线通信频段(包括微波频段、毫米波频段)已经被4G、5G使用,很难再找到更多频谱资源实现更高的传输速率,而FSO可以利用光谱资源,实现Gbps以上的数据率,且具有指向性好、干扰小、安全性好、全双工等优势,被认为是B5G/6G的重要候选技术,可以用于车联网、物联网、机器人通信、无线回传等多种场景。
传统的FSO系统如图1所示,通过FSO发射机向FSO接收机发送的光信号传输无线数据。为了传输较高数据率,通常采用较窄的定向光束进行FSO通信。
在FSO系统中,可实现的覆盖距离和数据率与光信号的强度有关,光信号的强度越大,则覆盖距离越远,数据率越高;光信号的强度越小,则覆盖距离越近,数据率越低。但较强的光信号可能对人体(尤其是人眼)可能造成伤害,必须根据应用场景限制光信号的发射功率。
对于空地中继、水面通信、固定中继等特殊场景,由于可以保证光路上无人,可以以较高功率传输,从而实现较大覆盖和较高的数据率。但对于地面无线通信,由于光路往往经过人群出现的区域,则为了保护人眼安全,只能用较低的功率传输,无法实现远距离覆盖和高数据率传输。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
为解决现有存在的技术问题,本公开实施例提供了一种自由空间光通信方法及发射机、接收机。
第一方面,本公开实施例提供了一种自由空间光通信方法,包括:
在发射机和接收机之间通过光信号传输无线数据;
在发射机和接收机之间发射与所述光信号不同的无线探测信号;
检测所述无线探测信号是否被遮挡;
根据检测结果对所述光信号的传输进行调整,以在所述无线探测信号被遮挡时降低所述光信号的强度或者中止所述光信号的传输。
第二方面,本公开实施例提供了一种自由空间光通信方法,包括:
发射机通过光信号向接收机传输无线数据;所述发射机与接收机之间存在与所述光信号不同的无线探测信号;
所述发射机确定所述无线探测信号是否被遮挡;
在所述无线探测信号被遮挡时降低所述光信号的强度或者中止所述光信号的发射。
第三方面,本公开实施例提供了一种自由空间光通信方法,包括:
接收机接收发射机通过光信号向所述接收机传输的无线数据;
所述接收机接收所述发射机发射的与所述光信号不同的无线探测信号;
向所述发射机反馈所述无线探测信号是否被遮挡的信息。
第四方面,本公开实施例提供了一种自由空间光通信方法,包括:
接收机接收发射机通过光信号向所述接收机传输的无线数据;
所述接收机发射与所述光信号不同的无线探测信号,所述无线探测信号分布在所述光信号的周围。
第五方面,本公开实施例提供了一种自由空间光通信的发射机,包括:
光信号发射模块,设置为通过光信号向接收机传输无线数据,所述发射机与接收机之间存在与所述光信号不同的无线探测信号;
确定模块,设置为确定所述无线探测信号是否被遮挡;
调整模块,设置为在所述无线探测信号被遮挡时降低所述光信号的强度或者中止所述光信号的发射。
第六方面,本公开实施例提供了一种自由空间光通信的接收机,包括:
光信号接收模块,设置为接收发射机通过光信号向所述接收机传输的无线数据;
探测信号接收模块,设置为接收所述发射机发射的与所述光信号不同的无线探测信号;
反馈模块,设置为向所述发射机反馈所述无线探测信号是否被遮挡的信息。
第七方面,本公开实施例提供了一种自由空间光通信的接收机,包括:
光信号接收模块,设置为接收发射机通过光信号向所述接收机传输的无线数据;
探测信号发射模块,设置为发射与所述光信号不同的无线探测信号,所述无线探测信号分布在所述光信号的周围。
第八方面,本公开实施例还提供了一种发射机,其中,该发射机包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本公开实施例第二方面中任一方法的步骤的指令。
第九方面,本公开实施例还提供了一种接收机,其中,该接收机包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本公开实施例第三方面或第四方面中任一方法的步骤的指令。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1是FSO发射机和FSO接收机通过不影响人安全的较弱光信号进行通信的示意图;
图2是本公开一示例性实施例的FSO光通信方法的流程图;
图3是本公开一示例性实施例的发射机执行的FSO光通信方法的流程图;
图4、图5和图6分别是本公开一种示例性实施例的接收机执行的FSO光通信方法的流程图;
图7是本公开一示例性实施例的FSO发射机的模块示意图;
图8、图9、图10和图11分别是本公开一示例性实施例的FSO接收机的模块示意图;
图12是本公开一示例性实施例的FSO光通信系统的结构示意图;
图13是本公开一示例性实施例中,当雷达没有探测到遮挡物时,可进行较强FSO光信号传输的示意图;
图14是本公开一示例性实施例中,当雷达探测到遮挡物时,中止FSO光信号传输的示意图;
图15是本公开一示例性实施例中,当雷达探测到遮挡物时,切换到较弱的FSO光信号传输的示意图;
图16是本公开一示例性实施例中,当FSO接收机没有探测到遮挡物时,FSO发射机可进行较强FSO光信号传输的示意图;
图17是本公开一示例性实施例中,当反馈信号显示探测到遮挡物时,FSO发射机中止FSO光信号传输的示意图;
图18是本公开一示例性实施例中,当反馈信号显示探测到遮挡物时,FSO发射机切换到较弱的FSO光信号传输的示意图;
图19是当FSO接收机没有探测到遮挡物时,向FSO发射机持续发送反馈信息,FSO发射机可进行较强FSO光信号传输的示意图;
图20是当探测到遮挡物时,FSO接收机中止发送表示收到探测信号的反馈信息,FSO发射机中止FSO光信号传输的示意图;
图21是当探测到遮挡物时,FSO接收机中止发送表示收到探测信号的反馈信息,FSO发射机切换到较弱的FSO光信号传输的示意图;
图22是当FSO发射机收到所有探测信号时,可进行较强FSO光信号的传输的示意图;
图23是当FSO发射机无法收到探测信号时,中止FSO光信号传输的示意图;
图24是当FSO发射机无法收到探测信号时,切换到较弱的FSO光信号传输的示意图。
具体实施方式
本公开描述了多个实施例,但是该描述是示例性的,而不是限制性的,并且对于本领域的普通技术人员来说显而易见的是,在本公开所描述的实施例包含的范围内可以有更多的实施例和实现方案。尽管在附图中示出了许多可能的特征组合,并在具体实施方式中进行了讨论,但是所公开的特征的许多其它组合方式也是可能的。除非特意加以限制的情况以外,任何实施例的任何特征或元件可以与任何其它实施例中的任何其他特征或元件结合使用,或可以替代任何其它实施例中的任何其他特征或元件。
本公开包括并设想了与本领域普通技术人员已知的特征和元件的组合。本公开已经公开的实施例、特征和元件也可以与任何常规特征或元件组合,以形成由权利要求限定的独 特的发明方案。任何实施例的任何特征或元件也可以与来自其它发明方案的特征或元件组合,以形成另一个由权利要求限定的独特的发明方案。因此,应当理解,在本公开中示出和/或讨论的任何特征可以单独地或以任何适当的组合来实现。因此,除了根据所附权利要求及其等同替换所做的限制以外,实施例不受其它限制。此外,可以在所附权利要求的保护范围内进行各种修改和改变。
此外,在描述具有代表性的实施例时,说明书可能已经将方法和/或过程呈现为特定的步骤序列。然而,在该方法或过程不依赖于本文所述步骤的特定顺序的程度上,该方法或过程不应限于所述的特定顺序的步骤。如本领域普通技术人员将理解的,其它的步骤顺序也是可能的。因此,说明书中阐述的步骤的特定顺序不应被解释为对权利要求的限制。此外,针对该方法和/或过程的权利要求不应限于按照所写顺序执行它们的步骤,本领域技术人员可以容易地理解,这些顺序可以变化,并且仍然保持在本公开实施例的精神和范围内。
本公开一示例性的实施例提供了一种自由空间光通信方法,发射机和接收机之间通过光信号传输无线数据,通过对发射机和接收机之间光信号的周围进行检测来对光信号的传输进行调整。如图2所示,包括:
步骤110,在发射机和接收机之间通过光信号传输无线数据;
步骤120,在发射机和接收机之间发射与所述光信号不同的无线探测信号;
步骤130,检测所述无线探测信号是否被遮挡;
步骤140,根据检测结果对所述光信号的传输进行调整,以在所述无线探测信号被遮挡时降低所述光信号的强度或者中止所述光信号的传输。
在本公开一示例性的实施例中,所述发射与所述光信号不同的无线探测信号,包括:
发射对人眼安全的无线探测信号,所述无线探测信号分布在所述光信号的周围。
在本公开一示例性的实施例中,所述检测所述无线探测信号是否被遮挡,包括:
接收所述无线探测信号或者其回波,根据接收结果确定所述无线探测信号是否被遮挡。
发射机和接收机之间开始光通信之后,即发射上述无线探测信号,在发射机和接收机通信的过程中,通过发射上述无线探测信号,可以实时检测光信号周围是否有遮挡物,一旦发现有遮挡物,即可限制中止光信号的传输或者改为发射较弱的光信号。
在示例一中,发射机发射无线探测信号并接收所述无线探测信号的回波,根据接收的情况判断光信号周围是否有遮挡物,也即所述无线探测信号是否被遮挡,如果有无线探测信号被遮挡,即表示光信号的周围是否有遮挡物,如果所述无线探测信号全部未被遮挡,即表示光信号的周围没有遮挡物。
本示例通过雷达探测的方式来实现,包括:
所述发射机或接收机通过雷达探测发现目标并测定目标的距离,所述雷达发射无线探测信号;
判断通过所述无线探测信号测定的目标的距离是否均与所述接收机的距离一致,如果是,确定所述无线探测信号未被遮挡,如果否,确定所述无线探测信号被遮挡。
如果光信号的周围没有遮挡物时,那么所述无线探测信号测定的目标的距离(指雷达到目标的距离)均应该与接收机的距离(指雷达到接收机的距离)一致,也就是说,在允许的误差范围内,该两个距离应该相等。如果光信号的周围有遮挡物时,那么至少有一路无线探测信号测定的目标的距离与接收机的距离不一致。由此可以确定光信号的周围是否 有遮挡物。
在该示例中,如果是接收机进行雷达探测,则需要将光信号周围是否有遮挡物的信息反馈到发送机。当然,接收机将雷达探测到的数据反馈到发射机,由发射机来判断光信号周围是否有遮挡物也是可以的。
本公开实施例的雷达可以使用毫米波、激光等作为雷达信号,但不局限于此,也可以使用其他类型的电磁波。具体可以根据实际应用的环境、探测距离、精度要求等来选用。
在示例二中,发射机发射无线探测信号,根据所述接收机接收所述无线探测信号的情况判断所述无线探测信号是否被遮挡,接收机将相关的信息反馈给发射机。所述检测所述无线探测信号是否被遮挡例如包括:
所述发射机发射无线探测信号,所述接收机接收所述无线探测信号,并向所述发射机反馈信息,其中,如果所述无线探测信号均被接收到,反馈表示无线探测信号没有被遮挡的第一指示信息;如果至少有一路无线探测信号未被接收到,反馈表示无线探测信号被遮挡的第二指示信息;
所述发射机根据收到的指示信息的类型判断无线探测信号是否被遮挡。
在该示例中,如果接收机反馈的是光信号周围是否有遮挡物的指示信息,则由接收机根据接收结果来判定光信号周围是否有遮挡物。如果接收机反馈的是所述无线探测信号的接收结果,则由发射机根据接收结果来判定光信号周围是否有遮挡物。
在示例三中,上述检测通过发射机发射无线探测信号,而接收机根据接收情况确定是否向发射机反馈指示信息的方式来实现。所述检测所述无线探测信号是否被遮挡包括:
所述发射机发射无线探测信号;
所述接收机如果接收到全部所述无线探测信号,则持续向所述发射机反馈信息,如果未接收到其中至少一路无线探测信号,则中止反馈信息;
所述发射机在接收到所述反馈的信息时,确定所述无线探测信号未被遮挡,在没有接收到所述反馈的信息时,确定所述无线探测信号被遮挡。
在示例四中,上述检测通过接收机发射无线探测信号,发射机根据接收情况判断光信号周围是否有遮挡物(即判断所述无线探测信号是否被遮挡)的方式来实现。所述检测所述无线探测信号是否被遮挡包括:
所述接收机发射无线探测信号;
所述发射机接收所述无线探测信号,如果所述无线探测信号均被接收到,确定所述无线探测信号未被遮挡,如果至少有一路无线探测信号未被接收到,确定所述无线探测信号被遮挡。
上述示例中,无线探测信号在类型上包括以下信号中的任意一种或更多种:光信号、微波信号、毫光波、激光信号、红外信号。虽然探测信号也可以使用光信号,
在本文中,除非上下文中有相反指示,光信号是指发射机和接收机之间进行光通信所使用的光信号。
在本文中,虽然探测信号也涉及发射和接收,但本文中的发射机和接收机是指发射光信号和接收光信号的设备。
上述示例中,发射机和接收机之间反馈的信息可以通过有线信道或无线信道来传输,例如,可以通过物联网、移动通信等方式传输。
在本公开一示例性的实施例中,根据检测结果对所述光信号的传输进行调整,包括:
检测到所述无线探测信号未被遮挡时,开始在传输第一光信号。
在传输所述第一光信号时,如检测到所述无线探测信号被遮挡,则改为传输第二光信号或者中止光信号的传输;
其中,所述第二光信号的强度小于所述第一光信号的强度。
在该示例性的实施例中,还可以包括:
在传输所述第二光信号时,如检测到所述第二光信号未受到遮挡,则改为在所述发射机和接收机之间传输所述第一光信号。
在本公开实施例中,由第一光信号向第二光信号切换时,光信号的强度变小,反之,在由第二光信号向第一光信号切换时,光信号的强度变大。第一光信号和第二光信号可以是类型相同的信号,也可以是类型不同的信号。而强度也可以使用光强等参数,效果是等同的。
需要说明的是,对本公开实施例来说,上述第一光信号是在没有遮挡物的工作模式下发射的光信号,不局限于某一特定的光信号,因为在没有遮挡物时,由于光通信传输的需要,也可以使用不同的光信号。而第二光信号也不局限于特定的一种光信号,但需要是对人眼安全的,可参见相关安全标准。
本公开上述实施例中,在所述无线探测信号未被遮挡时,开始传输所述光信号,或将所述光信号的强度提高,或将所述光信号的类型从较低能量密度的类型调整到较高能量密度的类型。
在所述无线探测信号被遮挡时,中止传输所述光信号,或将所述光信号的强度降低,或将所述光信号的类型从较高能量密度的类型调整到较低能量密度的类型。
本公开上述实施例提供了一种可以保障链路中人员安全的FSO光通信系统的通信方法。FSO的一种关键问题是如何保证链路上的人员安全,尤其是人眼安全。如果直接降低FSO系统的发射强度,来保证人眼安全,会严重限制了FSO系统的覆盖范围和吞吐量。而本公开上述及后续实施例采用对人眼安全的无线探测信号(如微波、毫米波、低功率光信号等)的波束在FSO光路周围构建一个“围栏”。在开始FSO发射前,先确认“围栏”内没有遮挡物,再开始FSO传输;在FSO信号发送过程中,一旦构成“围栏”的无线信号检测到遮挡物进入“围栏”范围,马上中断FSO发射。因此,本公开实施例可以在人员靠近FSO光路时中止FSO传输或减弱功率发射,只有在光路周围没有遮挡物的情况下才进行FSO传输,从而可以保证人眼安全的情况下采用较高强度的FSO信号进行无线通信,获得更高的数据率和更大覆盖范围。
本公开一示例性的实施例中,提供了一种发射机侧的自由空间光通信方法,如图3所示,包括:
步骤210,发射机通过光信号向接收机传输无线数据,所述发射机与接收机之间存在与所述光信号不同的无线探测信号;
步骤220,所述发射机确定所述无线探测信号是否被遮挡;
步骤230,在所述无线探测信号被遮挡时降低所述光信号的强度或者中止所述光信号的发射。
在本实施例中,所述无线探测信号分布在所述光信号的周围。
在一示例中,所述发射机确定所述无线探测信号是否被遮挡,包括:所述发射机通过 雷达发射所述无线探测信号,当所述无线探测信号的部分或全部被遮挡时,所述发射机测量所述发射机与遮挡物之间的距离;如果所述发射机与所述遮挡物之间的距离同所述发射机与所述接收机之间的距离一致,则确定所述无线探测信号未被遮挡,如果不一致,则确定所述无线探测信号被遮挡。
在一示例中,所述发射机确定所述无线探测信号是否被遮挡,包括:所述发射机通过无线信道或有线信道接收所述接收机通过雷达探测后反馈的光信号周围是否有遮挡物的指示信息,根据所述指示信息确定所述光信号周围是否有遮挡物。
在一示例中,所述发射机确定无线探测信号是否被遮挡的检测结果,包括:
所述发射机发射无线探测信号;
所述发射机通过无线信道或有线信道接收所述接收机发送的反馈信息;所述反馈信息用于指示所述无线探测信号全部被接收到或者没有被遮挡,或者所述无线探测信号中的部分或全部未被接收到;
所述发射机根据所述接收机反馈的信息确定所述无线探测信号是否被遮挡。
在一示例中,所述发射机确定所述无线探测信号是否被遮挡,包括:
所述发射机发射所述无线探测信号;
所述发射机通过无线信道或有线信道接收所述接收机持续发送的反馈信息,所述反馈信息用于指示所述无线探测信号全部被接收到或者没有被遮挡;
所述发射机在接收到所述反馈信息时,确定所述无线探测信号未被遮挡,在没有接收到所述反馈信息时,确定所述无线探测信号被遮挡。
在一示例中,所述发射机确定所述无线探测信号是否被遮挡,包括:
所述发射机接收所述接收机发射的无线探测信号,如果所述无线探测信号均被接收到,则确定所述无线探测信号未被遮挡,如果无线探测信号未被接收到或者只有部分被接收到,则确定所述无线探测信号被遮挡。
上述示例中,无线探测信号在类型上包括以下信号中的任意一种或多种:光信号、微波信号、毫光波、激光信号、红外信号。
上述示例中,发射机和接收机之间反馈的信息可以通过有线信道或无线信道来传输,例如,可以通过物联网、移动通信等方式传输。
在本公开一示例性的实施例中,所述发射机根据检测结果对光信号的发射进行调整,包括:
所述发射机在检测到所述无线探测信号未被遮挡时,开始向所述接收机发射第一光信号。
此外,所述发射机根据检测结果对光信号的发射进行调整,还可以包括:所述发射机在发射所述第一光信号时,如检测到无线探测信号被遮挡,则改为发射第二光信号或者中止光信号的发射;
其中,所述第二光信号的强度小于所述第一光信号的强度。
此外,所述发射机根据检测结果对光信号的发射进行调整,还可以包括:所述发射机在发射所述第二光信号时,如检测到所述第二光信号未受到遮挡,则改为发射所述第一光信号。
本公开一示例性的实施例还提供了一种接收机侧的自由空间光通信方法,包括:
接收机通过雷达探测发现目标并测定目标的距离,所述雷达发射对人眼安全的多路无线探测信号,所述无线探测信号与所述接收机与发射机之间的光信号不同;
所述接收机通过无线信道或有线信道向所述发射机反馈所述光信号周围是否有遮挡物的指示信息。
其中,所述接收机判断所述多路无线探测信号测定的目标的距离是否均与所述接收机的距离一致,如果是,反馈所述光信号周围无遮挡物的指示信息,如果否,反馈所述光信号周围有遮挡物的指示信息。
本公开一示例性的实施例还提供了一种接收机侧的自由空间光通信方法,如图4所示,包括:
步骤310,接收机接收发射机通过光信号向所述接收机传输的无线数据;
步骤320,所述接收机接收所述发射机发射的与所述光信号不同的无线探测信号,所述无线探测信号分布在所述光信号的周围;
步骤330,所述接收机向所述发射机反馈无线探测信号是否被遮挡的信息;其中,如果所述无线探测信号全部被接收到,则所述接收机反馈表示无线探测信号没有被遮挡的第一指示信息;如果所述无线探测信号的部分或全部未被接收到,反馈表示无线探测信号被遮挡的第二指示信息。
本公开一示例性的实施例还提供了一种接收机侧的自由空间光通信方法,如图5所示,包括:
步骤410,接收机接收发射机通过光信号向所述接收机传输的无线数据;
步骤420,所述接收机接收所述发射机发射的与所述光信号不同的无线探测信号,所述无线探测信号分布在所述光信号的周围;
步骤430,所述接收机向所述发射机反馈无线探测信号是否被遮挡的信息;其中,如果所述无线探测信号全部被接收到,则所述接收机持续向所述发射机反馈信息,如果所述无线探测信号中的部分或全部未被接收到,则所述接收机中止反馈信息;所述反馈的信息用于指示所述无线探测信号没有被遮挡。
本公开一示例性的实施例还提供了一种接收机侧的自由空间光通信方法,如图6所示,包括:
步骤510,接收机接收发射机通过光信号向所述接收机传输的无线数据;
步骤520,所述接收机发射与所述光信号不同的无线探测信号,所述无线探测信号分布在所述光信号的周围。
在上述任一接收机侧的自由空间光通信方法,所述无线探测信号包括以下信号中的任意一种或更多种:对人眼安全的光信号;微波信号;毫光波信号;对人眼安全的激光信号;红外信号。
本公开一示例性的实施例还提供了一种自由空间光通信的发射机,如图7所示,包括:
光信号发射模块101,设置为通过光信号向接收机传输无线数据,所述发射机与接收机之间存在与所述光信号不同的无线探测信号;
确定模块102,设置为确定所述无线探测信号是否被遮挡,;
调整模块103,设置为在所述无线探测信号被遮挡时降低所述光信号的强度或者中止所述光信号的发射。
其中,所述无线探测信号分布在所述光信号的周围。
在一示例中,所述确定模块包括:
雷达单元,设置为发射所述无线探测信号,当所述无线探测信号的部分或全部被遮挡时,测量所述发射机与遮挡物之间的距离;
判定单元,设置为如果所述发射机与所述遮挡物之间的距离同所述发射机与所述接收机之间的距离一致,则确定所述无线探测信号未被遮挡,如果不一致,则确定所述无线探测信号被遮挡。
在一示例中,所述确定模块包括:
所述确定模块包括:
探测信号发射单元,设置为发射所述无线探测信号;
信息接收单元,设置为通过无线信道或有线信道接收所述接收机发送的反馈信息;所述反馈信息用于指示所述无线探测信号全部被接收到或者没有被遮挡,或者所述无线探测信号中的部分或全部未被接收到;
判断单元,设置为根据所述接收机反馈的信息判断所述无线探测信号是否被遮挡。
在一示例中,所述确定模块包括:
所述确定模块包括:
探测信号发射单元,设置为发射所述无线探测信号;
信息接收单元,设置为通过无线信道或有线信道接收所述接收机持续发送的反馈信息,所述反馈信息用于指示所述无线探测信号全部被接收到或者没有被遮挡;
判断单元,设置为在接收到所述反馈信息时,确定所述无线探测信号未被遮挡,在没有接收到所述反馈信息时,确定所述无线探测信号被遮挡。
在一示例中,所述确定模块包括:
所述确定模块包括:
信息接收单元,设置为接收所述接收机发射的无线探测信号;
判断单元,设置为如果所述无线探测信号均被接收到,则确定所述无线探测信号未被遮挡,如果无线探测信号未被接收到或者只有部分被接收到,则确定所述无线探测信号被遮挡。
上述示例中的无线探测信号包括以下信号中的任意一种或更多种:对人眼安全的光信号、微波信号、毫光波信号、对人眼安全的激光信号和红外信号。
在本公开一实施例性的实施例中,所述调整模块包括:
第一调整单元,设置为在检测到所述无线探测信号未被遮挡时,控制所述光信号发射模块开始在向所述接收机发射第一光信号。
所述调整模块还可以包括:第二调整单元,设置为在所述光信号发射模块发射所述第一光信号时,如果检测到所述无线探测信号被遮挡,则控制所述光信号发射模块改为发射第二光信号或者中止光信号的发射;
其中,所述第二光信号的强度小于所述第一光信号的强度。
所述调整模块还可以包括:第三调整单元,设置为在所述光信号发射模块发射所述第二光信号时,如果检测到所述第二光信号未受到遮挡,则控制所述光信号发射模块改为发 射所述第一光信号。
在本公开一实施例性的实施例中,提供了一种自由空间光通信的接收机,如图8所示,除了设置为接收发射机发送的光信号以实现通信的光信号接收模块外,还包括:
雷达模块201,设置为发射对人眼安全的无线探测信号,探测发现目标并测定目标的距离,所述无线探测信号与所述接收机与发射机之间的光信号不同;
判定模块203,判断所述无线探测信号测定的目标的距离是否均与所述接收机的距离一致,如果是,确定所述光信号周围无遮挡物,如果否,确定所述光信号周围有遮挡物;
反馈模块205,设置为通过无线信道或有线信道向所述发射机反馈所述光信号周围是否有遮挡物的指示信息。
在本公开一实施例性的实施例中,提供了一种自由空间光通信的接收机,如图9所示,该自由空间光通信的接收机包括:
光信号接收模块301,设置为接收发射机通过光信号向所述接收机传输的无线数据;
探测信号接收模块303,设置为接收所述发射机发射的与所述光信号不同的无线探测信号;
反馈模块305,设置为通过无线信道或有线信道向所述发射机反馈所述无线探测信号是否被遮挡的信息。
其中,所述发射机发射的无线探测信号为对人眼安全的无线探测信号,所述无线探测信号分布在所述光信号的周围。
其中,所述探测信号接收模块303设置为接收所述发射机发射的所述无线探测信号;
所述反馈模块305设置为:向所述发射机反馈信息,其中,如果所述无线探测信号全部被接收到,则反馈表示无线探测信号没有被遮挡的第一指示信息;如果所述无线探测信号的部分或全部未被接收到,则反馈表示无线探测信号被遮挡的第二指示信息。
在本公开一实施例性的实施例中,提供了一种自由空间光通信的接收机,如图10所示,该自由空间光通信的接收机包括:
光信号接收模块401,设置为接收发射机通过光信号向所述接收机传输的无线数据;
探测信号接收模块403,设置为接收所述发射机发射的与所述光信号不同的无线探测信号;
反馈模块405,设置为通过无线信道或有线信道向所述发射机反馈所述无线探测信号是否被遮挡的信息。
其中,所述发射机发射的无线探测信号为对人眼安全的无线探测信号,所述无线探测信号分布在所述光信号的周围。
所述探测信号接收模块403设置为接收所述发射机发射的所述无线探测信号;
所述反馈模块405设置为:如果所述无线探测信号全部被接收到,则持续向所述发射机反馈信息,如果所述无线探测信号中的部分或全部未被接收到,则中止反馈信息;所述反馈的信息用于指示所述无线探测信号被遮挡。
在本公开一实施例性的实施例中,提供了一种自由空间光通信的接收机,如图11所示,该自由空间光通信的接收机包括:
光信号接收模块501,设置为接收发射机通过光信号向所述接收机传输的无线数据;
探测信号发射模块503,设置为发射与所述光信号不同的无线探测信号,所述无线探测信号分布在所述光信号的周围。
在上述任意实施例中,所述无线探测信号包括以下信号中的任意一种或更多种:对人眼安全的光信号、微波信号、毫光波信号、对人眼安全的激光信号、和红外信号。
在本公开一示例性的实施例,如图12所示,FSO光通信系统包括FSO发射机1和FSO接收机2,FSO发射机1与FSO接收机2之间通过光信号进行无线通信,该光信号的FSO光路121(也称为光路121)位于FSO发射机1和FSO接收机2之间。在FSO发射机1与FSO接收机2之间还传输多路探测信号,该多路探测信号的传输路径122在光信号的光路121周围形成一个探测区域,将FSO光路121包围在其中(相当于在光路121周围构建一个电子围栏)。如果遮挡物进入探测区域,则会阻断探测信号的传输路径122(即触碰了电子围栏),系统就可以及时探测到,从而开关所述光信号或调整所述光信号的强度,如可改变所述光信号的强度或类型。如图12所示,光信号通过FSO发射机1的壳体11上的光信号发射孔13发射,通过FSO接收机2的壳体21上的光信号接收孔23接收。而探测信号可以通过FSO发射机1的壳体11上的探测孔12(图中示出了6个,但也可以是2个,3个,4个,5个,7个,8个或更多个)发射,通过FSO接收机2的壳体21上的探测孔22接收;也可以通过FSO接收机2的壳体21上的探测孔12发射,通过FSO发射机1的壳体11上的探测孔12接收。
上述图12示出了FSO的发射机和接收机外部的结构,下面再通过其他实施例对发射机和接收机的相应硬件结构进行说明。
在本公开一示例性的实施例中,提供了一种自由空间光通信的发射机,包括带有光信号发射孔的壳体以及安装在所述壳体上的光信号发射装置,所述发射机还包括安装在所述壳体上的检测装置和光信号调整装置,其中:
所述检测装置,设置为获取光信号周围是否有遮挡物的检测结果,所述光信号在发射机和接收机之间传输;
所述光信号控制装置,设置为根据所述检测结果对所述光信号发射装置的光信号发射进行调整,以在所述光信号周围有遮挡物时限制所述光信号发射的强度或者中止所述光信号的发射。
在本实施例中,检测装置和/或光信号调整装置可以安装在壳体内,但本公开不局限于此,也可以全部或部分设置在壳体外。
在一示例中,所述检测装置包括:
雷达,设置为发射对人眼安全的多路无线探测信号,发现目标并测定目标的距离,所述多路无线探测信号分布在所述光信号周围;
处理器,设置为判断通过所述多路无线探测信号测定的目标的距离是否均与所述接收机的距离一致,如果是,确定所述光信号周围没有遮挡物,如果否,确定所述光信号周围有遮挡物。
在一示例中,所述检测装置包括:
通信模块,设置为通过无线信道或有线信道接收所述接收机通过雷达探测后反馈的所述光信号周围是否有遮挡物的指示信息;
处理器,设置为根据所述指示信息确定所述光信号周围是否有遮挡物。
在一示例中,所述检测装置包括:
探测信号发射器,设置为发射对人眼安全的多路无线探测信号,所述多路无线探测信号分布在所述光信号周围;
通信模块,设置为通过无线信道或有线信道接收所述接收机反馈的所述光信号周围是否有遮挡物的指示信息;
处理器,设置为根据所述指示信息确定所述光信号周围是否有遮挡物。
在一示例中,所述检测装置包括:
探测信号发射器,设置为发射对人眼安全的多路无线探测信号,所述多路无线探测信号分布在所述光信号周围;
通信模块,设置为通过无线信道或有线信道接收所述接收机反馈的所述多路无线探测信号的接收结果;
处理器,设置为所述接收结果如果是所述多路无线探测信号均被接收到,确定所述光信号周围没有遮挡物,如果是至少有一路无线探测信号未被接收到,确定所述光信号周围有遮挡物。
上述示例中,所述壳体上设置有用于发射所述多路无线探测信号的多个探测信号发射孔,所述多个探测信号发射孔设置在所述光信号发射孔周围;所述无线探测信号包括以下信号中的任意一种或更多种线:光信号、微波信号、毫光波信号、对人眼安全的激光信号、红外信号。
在一示例中,所述检测装置包括:
探测信号接收器,设置为接收接收机发射的对人眼安全的多路无线探测信号,所述多路无线探测信号分布在所述光信号周围;
处理器,设置为在所述多路无线探测信号均被接收到时,确定所述光信号周围没有遮挡物,在至少有一路无线探测信号未被接收到时,确定所述光信号周围有遮挡物。
在本公开一示例性实施例中,所述光信号控制装置根据检测结果对光信号的发射进行调整,包括:
在所述检测装置根据所述检测结果确定所述光信号周围没有遮挡物时,控制所述光信号发射装置开始向接收机发射第一光信号;
在所述光信号发射装置发射所述第一光信号时,如所述检测装置根据所述检测结果确定所述光信号周围有遮挡物,则控制所述光信号发射装置改为发射对人眼安全的第二光信号或者中止光信号的发射;
其中,所述第二光信号的强度小于所述第一光信号的强度。
所述光信号控制装置根据检测结果对光信号的发射进行调整,还可以包括:在所述光信号发射装置发射所述第二光信号时,如所述检测装置根据所述检测结果确定所述光信号周围没有遮挡物,则控制所述光信号发射装置改为发射所述第一光信号。
上述光信号控制装置可以采用处理器、可编程逻辑控制器等具有逻辑运算功能的IC等器件来实现。
在本公开一示例性实施例中,提供了一种自由空间光通信的接收机,其中,包括带有光信号接收窗口的壳体以及安装在所述壳体上的光信号接收装置,其中,所述接收机还包括安装在所述壳体上的雷达、处理器和通信模块,其中:
所述雷达设置为发射分布在光信号周围的对人眼安全的多路无线探测信号,探测发现目标并测定目标的距离,所述无线探测信号与所述光信号不同;
所述处理器设置为判断所述多路无线探测信号测定的目标的距离是否均与所述接收机的距离一致,如果是,确定所述光信号周围无遮挡物,如果否,确定所述光信号周围有遮挡物;
所述通信模块设置为通过无线信道或有线信道向所述发射机反馈所述光信号周围是否有遮挡物的指示信息。
在本公开一示例性实施例中,提供了一种自由空间光通信的接收机,其中,包括带有光信号接收窗口的壳体以及安装在所述壳体上的光信号接收装置,其中,所述接收机还包括:
探测信号接收器,安装在所述壳体上,设置为接收发射机发射的对人眼安全的多路无线探测信号,所述多路无线探测信号分布在所述接收机与发射机之间的光信号的周围;
所述通信模块,设置为向所述发射机反馈所述多路无线探测信号的接收结果。
在本公开一示例性实施例中,提供了一种自由空间光通信的接收机,其中,包括带有光信号接收窗口的壳体以及安装在所述壳体上的光信号接收装置,其中,所述接收机还包括:
探测信号接收器,安装在所述壳体上,设置为接收发射机发射的对人眼安全的多路无线探测信号,所述多路无线探测信号分布在所述接收机与发射机之间的光信号的周围;
处理器,设置为获取所述探测信号接收器的接收结果,如果所述多路无线探测信号均被接收到,确定所述光信号周围没有遮挡物,如果至少有一路无线探测信号未被接收到,确定所述光信号周围有遮挡物;
通信模块,设置为向所述发射机反馈所述处理器确定的所述光信号周围是否有遮挡物的指示信息。
在本公开一示例性实施例中,提供了一种自由空间光通信的接收机,其中,包括带有光信号接收窗口的壳体以及安装在所述壳体上的光信号接收装置,其中,所述接收机还包括:
探测信号接收器,安装在所述壳体上,设置为接收发射机发射的对人眼安全的多路无线探测信号,所述多路无线探测信号分布在所述接收机与发射机之间的光信号的周围;
通信模块,设置为如果接收到所述多路无线探测信号,则持续向所述发射机反馈信息,如果未接收到其中至少一路无线探测信号,则中止反馈信息;所述反馈的信息用于指示所述光信号周围没有遮挡物。
在本公开一示例性实施例中,提供了一种自由空间光通信的接收机,其中,包括带有光信号接收窗口的壳体以及安装在所述壳体上的光信号接收装置,其中,所述接收机还包括:
探测信号发射器,设置为发射对人眼安全的多路无线探测信号,所述多路无线探测信号分布在所述光信号周围。
在一示例中,所述壳体上设置有用于发射所述多路无线探测信号的多个探测信号发射孔,所述多个探测信号发射孔设置在所述光信号接收窗口周围;所述无线探测信号包括以 下信号中的任意一种或更多种线:光信号、微波信号、毫光波信号、对人眼安全的激光信号、红外信号。
上述发射机和接收机的实施例用于分别实现前述实施例的FSO光通信方法。
下面结合附图,对上述实施例的不同工作方式进行说明。
在本公开一示例性的实施例,采用毫米波或激光雷达产生探测信号。如图13所示,在FSO发射机中设置有雷达,围绕FSO发射孔,设置多个毫米波或激光雷达信号源,并在发射机的壳体上设置相应的孔,在FSO光路周围产生多路毫米波或激光雷达信号。当所有毫米波或激光雷达信号均没有探测到遮挡物时,则可以判断FSO光路周围没有遮挡物,可以开始或继续可能影响人眼安全的较强FSO光信号的传输,获得较大覆盖和较高传输速率。
当毫米波或激光雷达信号探测到遮挡物时,则可以判断FSO光路周围出现了遮挡物,则FSO发射机中止FSO光信号的传输,如图14所示。在另一示例中,此时也可以切换到不影响人眼安全的较弱光信号,如图15所示,以确保人身安全。
采用本实施例,可以在人员靠近FSO光路时中止FSO传输或减弱功率发射,只有在光路周围没有遮挡物的情况下才进行FSO传输,从而可以保证人眼安全的情况下采用较高强度的FSO信号进行无线通信,获得更高的数据率和更大覆盖范围。本实施例采用雷达探测遮挡物,不需要在FSO接收机端安装探测信号收、发设备,降低了设备的复杂度。不依赖收、发两端的配合来探测遮挡物,具有较高可靠性。
在本公开一示例性的实施例中,发射机向接收机发射探测信号,接收机反馈信息指示是否出现遮挡物。
如图16所示,在FSO发射机中,围绕FSO发射孔,设置多个探测信号发射器,并在发射机和接收机的壳体上设置相应的探测孔,在FSO光路周围传输多路探测信号,由FSO接收机接收所述探测信号。当FSO接收机可以收到所有探测信号时,则可以判断FSO光路周围没有遮挡物,则FSO发射机可以开始或继续可能影响人眼安全的较强FSO光信号的传输,获得较大覆盖和较高传输速率。
当FSO接收机无法收到探测信号时,说明至少有一路探测信号被遮挡物遮挡,则可以判断FSO光路周围出现了遮挡物,则FSO接收机向FSO发射机发送反馈信息,指示出现遮挡物。收到反馈信息后,FSO发射机中止FSO光信号的传输,如图17所示。在另一示例中,此时也可切换到不影响人眼安全的较弱光信号,如图18所示,以确保人身安全。
采用本实施例,可以在人员靠近FSO光路时中止FSO传输或减弱功率发射,只有在光路周围没有遮挡物的情况下才进行FSO传输,从而可以保证人眼安全的情况下采用较高强度的FSO信号进行无线通信,获得更高的数据率和更大覆盖范围。相对采用雷达探测的实施例,本实施例采用在FSO发射机发送探测信号、在FSO接收机接收的方式,可以解决雷达探测距离有限、远距离探测精度降低、难以分辨遮挡物和FSO接收机等问题,可以在更远距离、更精确的探测FSO光路周围的遮挡物。
在本公开一示例性的实施例中,发射机向接收机发射无线探测信号(文中也简称为探测信号),接收机持续反馈信号,而在出现遮挡物时中止反馈信息。
如图19所示,在FSO发射机中,围绕FSO发射孔,设置多个探测信号发射器,并在发射机和接收机的壳体上设置相应的探测孔,以在FSO光路周围传输多路探测信号,由FSO接收机接收所述探测信号。当FSO接收机可以收到所有探测信号,没有探测到遮挡物时,FSO接收机持续向FSO发射机发送反馈信号,表示FSO光路周围没有遮挡物, 则FSO发射机可以开始或继续可能影响人眼安全的较强FSO光信号的传输,获得较大覆盖和较高传输速率。
当FSO接收机无法收到探测信号时,说明至少有一路探测信号被遮挡物遮挡,则可以判断FSO光路周围出现了遮挡物,则FSO接收机中止向FSO发射机发送表示收到探测信号的反馈信息,以指示FSO光路周围有遮挡物,FSO发射机随之中止FSO光信号的传输,如图20所示。在另一示例中,此时也可切换到不影响人眼安全的较弱光信号如图21所示,以确保人身安全。
采用本实施例,可以在人员靠近FSO光路时中止FSO传输或减弱功率发射,只有在光路周围没有遮挡物的情况下才进行FSO传输,从而可以保证人眼安全的情况下采用较高强度的FSO信号进行无线通信,获得更高的数据率和更大覆盖范围。相对采用雷达探测的实施例,本实施例采用在FSO发射机发送探测信号、在FSO接收机接收的方式,可以解决雷达探测距离有限、远距离探测精度降低、难以分辨遮挡物和FSO接收机等问题,可以在更远距离、更精确的探测FSO光路周围的遮挡物。相对接收机在发现遮挡物时发送反馈信息的方式,本实施例还可以解决反馈信息漏检的问题,即如果FSO发射机漏检了FSO接收机发送的表示收到探测信号的反馈信息,也会中止FSO光信号的传输,或切换到不影响人眼安全的较弱光信号,则在反馈信息漏检时也可以确保人身安全。
在本公开一示例性的实施例中,采用接收机向发射机的探测信号,发射机判断是否存在遮挡物。
如图22所示,在FSO接收机中,围绕FSO接收窗口,设置多个探测信号发射器,在发射机和接收机壳体上设置相应的探测孔,以在FSO光路周围传输多路探测信号。由FSO发射机接收所述探测信号。当FSO发射机可以收到所有探测信号时,则可以判断FSO光路周围没有遮挡物,则FSO发射机可以开始或继续进行可能影响人眼安全的较强FSO光信号的传输,以获得较大覆盖和较高传输速率。
当FSO发射机无法收到探测信号时,说明至少有一路探测信号被遮挡物遮挡,则可以判断FSO光路周围出现了遮挡物,则FSO发射机中止FSO光信号的传输,如图23所示。在另一示例中,此时也可切换到不影响人眼安全的较弱光信号,如图24,以确保人身安全。
采用本实施例,可以在人员靠近FSO光路时中止FSO传输或减弱功率发射,只有在光路周围没有遮挡物的情况下才进行FSO传输,从而可以保证人眼安全的情况下采用较高强度的FSO信号进行无线通信,获得更高的数据率和更大覆盖范围。相对采用雷达探测的实施例,本实施例采用在FSO接收机发送探测信号、在FSO发射机接受的方式,可以解决雷达探测距离有限、远距离探测精度降低、难以分辨遮挡物和FSO接收机等问题,可以在更远距离、更精确的探测FSO光路周围的遮挡物。相对接收机反馈信息的方式,本实施例省去了反馈信息的传输,可以降低无线信令的开销,提高无线链路的利用效率,同时也可以避免反馈时延,加快FSO发射机的反应速度,更有利于保障人身安全。
在FSO系统中,可实现的覆盖距离和数据率与光信号的强度有关,光信号的强度越大,则覆盖距离越远,数据率越高。但较强的光信号可能对人体(尤其是人眼)可能造成伤害,对于地面无线通信,由于光路往往经过人群出现的区域,则为了保护人眼安全,只能用较低的功率传输,无法实现远距离覆盖和高数据率传输。
而本公开实施例可以在人员靠近FSO光路时中止FSO传输或减弱功率发射,只有在光路周围没有遮挡物的情况下才进行FSO传输,从而可以保证人眼安全的情况下采用较高强度的FSO信号进行无线通信,获得更高的数据率和更大覆盖范围。
除了本公开上述实施例所采用的发送探测信号对遮挡物进行探测外,也可以采用摄像头和AI图像识别的方式判断FSO光路周围是否有遮挡物。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (32)

  1. 一种自由空间光通信方法,包括:
    在发射机和接收机之间通过光信号传输无线数据;
    在发射机和接收机之间发射与所述光信号不同的无线探测信号;
    检测所述无线探测信号是否被遮挡;
    根据检测结果对所述光信号的传输进行调整,以在所述无线探测信号被遮挡时降低所述光信号的强度或者中止所述光信号的传输。
  2. 一种自由空间光通信方法,包括:
    发射机通过光信号向接收机传输无线数据;所述发射机与接收机之间存在与所述光信号不同的无线探测信号;
    所述发射机确定所述无线探测信号是否被遮挡;在所述无线探测信号被遮挡时降低所述光信号的强度或者中止所述光信号的发射。
  3. 如权利要求2所述的自由空间光通信方法,所述无线探测信号分布在所述光信号的周围。
  4. 如权利要求2或3所述的自由空间光通信方法,其中:
    所述发射机确定所述无线探测信号是否被遮挡包括:
    所述发射机通过雷达发射所述无线探测信号,当所述无线探测信号的部分或全部被遮挡时,所述发射机测量所述发射机与遮挡物之间的距离;如果所述发射机与所述遮挡物之间的距离同所述发射机与所述接收机之间的距离一致,则确定所述无线探测信号未被遮挡,如果不一致,则确定所述无线探测信号被遮挡。
  5. 如权利要求2或3所述的自由空间光通信方法,其中:
    所述发射机确定所述无线探测信号是否被遮挡包括:
    所述发射机发射所述无线探测信号;
    所述发射机接收所述接收机发送的反馈信息;所述反馈信息用于指示所述无线探测信号全部被接收到或者没有被遮挡,或者所述无线探测信号中的部分或全部未被接收到;
    所述发射机根据所述接收机反馈的信息确定所述无线探测信号是否被遮挡。
  6. 如权利要求2或3所述的自由空间光通信方法,其中:
    所述发射机确定所述无线探测信号是否被遮挡包括:
    所述发射机发射所述无线探测信号;
    所述发射机接收所述接收机持续发送的反馈信息,所述反馈信息用于指示所述无线探测信号全部被接收到或者没有被遮挡;所述发射机在接收到所述反馈信息时,确定所述无线探测信号未被遮挡,在没有接收到所述反馈信息时,确定所述无线探测信号被遮挡。
  7. 如权利要求2或3所述的自由空间光通信方法,其中:
    所述发射机确定所述无线探测信号是否被遮挡包括:
    所述发射机接收所述接收机发射的无线探测信号,如果所述无线探测信号均被接收到, 则确定所述无线探测信号未被遮挡,如果无线探测信号未被接收到或者只有部分被接收到,则确定所述无线探测信号被遮挡。
  8. 如权利要求2-7中任一所述的自由空间光通信方法,其中
    所述无线探测信号包括以下信号中的任意一种或多种:
    对人眼安全的光信号;
    微波信号;
    毫光波信号;
    对人眼安全的激光信号;
    红外信号。
  9. 一种自由空间光通信方法,包括:
    接收机接收发射机通过光信号向所述接收机传输的无线数据;
    所述接收机接收所述发射机发射的与所述光信号不同的无线探测信号;
    向所述发射机反馈所述无线探测信号是否被遮挡的信息。
  10. 如权利要求9所述的自由空间光通信方法,其中:
    所述发射机发射的无线探测信号为对人眼安全的无线探测信号,所述无线探测信号分布在所述光信号的周围。
  11. 如权利10所述的自由空间光通信方法,其中:
    接收所述发射机发射所述光信号不同的无线探测信号,向所述发射机反馈所述无线探测信号是否被遮挡,包括:
    所述接收机接收所述发射机发射无线探测信号,并向所述发射机反馈信息,其中,如果所述无线探测信号全部被接收到,则所述接收机反馈表示无线探测信号没有被遮挡的第一指示信息;如果所述无线探测信号的部分或全部未被接收到,则所述接收机反馈表示无线探测信号被遮挡的第二指示信息。
  12. 如权利要求10所述的自由空间光通信方法,其中:
    接收所述发射机发射的与所述光信号不同的无线探测信号,向所述发射机反馈所述无线探测信号是否被遮挡,包括:
    所述接收机接收所述发射机发射的无线探测信号,
    如果所述无线探测信号全部被接收到,则所述接收机持续向所述发射机反馈信息,如果所述无线探测信号中的部分或全部未被接收到,则所述接收机中止反馈信息;所述反馈的信息用于指示所述无线探测信号没有被遮挡。
  13. 如权利要求9-12中任一项所述的自由空间光通信方法,其中:
    所述无线探测信号包括以下信号中的任意一种或更多种:
    对人眼安全的光信号;
    微波信号;
    毫光波信号;
    对人眼安全的激光信号;
    红外信号。
  14. 一种自由空间光通信方法,包括:
    接收机接收发射机通过光信号向所述接收机传输的无线数据;
    所述接收机发射与所述光信号不同的无线探测信号,所述无线探测信号分布在所述光信号的周围。
  15. 如权利要求14所述的自由空间光通信方法,其中:
    所述无线探测信号包括以下信号中的任意一种或更多种:
    对人眼安全的光信号;
    微波信号;
    毫光波信号;
    对人眼安全的激光信号;
    红外信号。
  16. 一种自由空间光通信的发射机,包括:
    光信号发射模块,设置为通过光信号向接收机传输无线数据,所述发射机与接收机之间存在与所述光信号不同的无线探测信号;
    确定模块,设置为确定所述无线探测信号是否被遮挡;
    调整模块,设置为在所述无线探测信号被遮挡时降低所述光信号的强度或者中止所述光信号的发射。
  17. 如权利要求16所述的自由空间光通信的发射机,
    所述无线探测信号分布在所述光信号的周围。
  18. 如权利要求16或17所述的自由空间光通信的发射机,其中:
    所述确定模块包括:
    雷达单元,设置为发射所述无线探测信号,当所述无线探测信号的部分或全部被遮挡时,测量所述发射机与遮挡物之间的距离;
    判断单元,设置为如果所述发射机与所述遮挡物之间的距离同所述发射机与所述接收机之间的距离一致,则确定所述无线探测信号未被遮挡,如果不一致,则确定所述无线探测信号被遮挡。
  19. 如权利要求16或17所述的自由空间光通信的发射机,其中:
    所述确定模块包括:
    探测信号发射单元,设置为发射所述无线探测信号;
    信息接收单元,设置为接收所述接收机发送的反馈信息;所述反馈信息用于指示所述无线探测信号全部被接收到或者没有被遮挡,或者所述无线探测信号中的部分或全部未被接收到;
    判断单元,设置为根据所述接收机反馈的信息判断所述无线探测信号是否被遮挡。
  20. 如权利要求16或17所述的自由空间光通信的发射机,其中:
    所述确定模块包括:
    探测信号发射单元,设置为发射所述无线探测信号;
    信息接收单元,设置为接收所述接收机持续发送的反馈信息,所述反馈信息用于指示所述无线探测信号全部被接收到或者没有被遮挡;
    判断单元,设置为在接收到所述反馈信息时,确定所述无线探测信号未被遮挡,在没有接收到所述反馈信息时,确定所述无线探测信号被遮挡。
  21. 如权利要求16或17所述的自由空间光通信的发射机,其中:
    所述确定模块包括:
    信息接收单元,设置为接收所述接收机发射的无线探测信号;
    判断单元,设置为如果所述无线探测信号均被接收到,则确定所述无线探测信号未被遮挡,如果无线探测信号未被接收到或者只有部分被接收到,则确定所述无线探测信号被遮挡。
  22. 如权利要求16-21中任一项所述的自由空间光通信的发射机,
    所述无线探测信号包括以下信号中的任意一种或多种:对人眼安全的光信号、微波信号、毫光波信号、对人眼安全的激光信号、和红外信号。
  23. 一种自由空间光通信的接收机,包括:
    光信号接收模块,设置为接收发射机通过光信号向所述接收机传输的无线数据;
    探测信号接收模块,设置为接收所述发射机发射的与所述光信号不同的无线探测信号;
    反馈模块,设置为向所述发射机反馈所述无线探测信号是否被遮挡的信息。
  24. 如权利要求23所述的自由空间光通信的接收机,其中:
    所述发射机发射的无线探测信号为对人眼安全的无线探测信号,所述无线探测信号分布在所述光信号的周围。
  25. 如权利要求24所述的自由空间光通信的接收机,其中:
    所述探测信号接收模块设置为接收所述发射机发射的无线探测信号,
    所述反馈模块设置为:向所述发射机反馈信息,其中,如果所述无线探测信号全部被接收到,则反馈表示无线探测信号没有被遮挡的第一指示信息;如果所述无线探测信号的部分或全部未被接收到,则反馈表示无线探测信号被遮挡的第二指示信息。
  26. 如权利要求24所述的自由空间光通信的接收机,其中:
    所述探测信号接收模块设置为接收所述发射机发射的无线探测信号;
    所述反馈模块设置为:如果所述无线探测信号全部被接收到,则持续向所述发射机反馈信息,如果所述无线探测信号中的部分或全部未被接收到,则中止反馈信息;所述反馈的信息用于指示所述无线探测信号被遮挡。
  27. 如权利要求23-26中任一项所述的自由空间光通信的接收机,其中:
    所述无线探测信号包括以下信号中的任意一种或更多种:对人眼安全的光信号、微波信号、毫光波信号、对人眼安全的激光信号、和红外信号。
  28. 一种自由空间光通信的接收机,包括:
    光信号接收模块,设置为接收发射机通过光信号向所述接收机传输的无线数据;
    探测信号发射模块,设置为发射与所述光信号不同的无线探测信号,所述无线探测信号分布在所述光信号的周围。
  29. 如权利要求28所述的自由空间光通信的接收机,其中:
    所述无线探测信号包括以下信号中的任意一种或更多种:对人眼安全的光信号、微波信号、毫光波信号、对人眼安全的激光信号、和红外信号。
  30. 一种发射机,其中,该发射机包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求2-8中任一项所述的方法中的步骤的指令。
  31. 一种接收机,其中,该接收机包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求9-13中任一项所述的方法中的步骤的指令。
  32. 一种接收机,其中,该接收机包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求14-15中任一项所述的方法中的步骤的指令。
PCT/CN2019/077545 2019-03-08 2019-03-08 一种自由空间光通信方法及发射机、接收机 WO2020181433A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980093061.8A CN113557678A (zh) 2019-03-08 2019-03-08 一种自由空间光通信方法及发射机、接收机
PCT/CN2019/077545 WO2020181433A1 (zh) 2019-03-08 2019-03-08 一种自由空间光通信方法及发射机、接收机
EP19919179.2A EP3930219A4 (en) 2019-03-08 2019-03-08 METHOD FOR OPTICAL COMMUNICATIONS IN FREE SPACE, AND TRANSMITTER AND RECEIVER
US17/467,105 US11799545B2 (en) 2019-03-08 2021-09-03 Free space optical communications method, and transmitter and receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/077545 WO2020181433A1 (zh) 2019-03-08 2019-03-08 一种自由空间光通信方法及发射机、接收机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/467,105 Continuation US11799545B2 (en) 2019-03-08 2021-09-03 Free space optical communications method, and transmitter and receiver

Publications (1)

Publication Number Publication Date
WO2020181433A1 true WO2020181433A1 (zh) 2020-09-17

Family

ID=72427177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077545 WO2020181433A1 (zh) 2019-03-08 2019-03-08 一种自由空间光通信方法及发射机、接收机

Country Status (4)

Country Link
US (1) US11799545B2 (zh)
EP (1) EP3930219A4 (zh)
CN (1) CN113557678A (zh)
WO (1) WO2020181433A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113596202A (zh) * 2021-07-06 2021-11-02 维沃移动通信有限公司 光敏传感器的控制方法及电子设备
CN113596202B (zh) * 2021-07-06 2024-05-14 维沃移动通信有限公司 光敏传感器的控制方法及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181278A1 (ja) * 2022-03-24 2023-09-28 日本電信電話株式会社 光無線通信システム、光無線通信方法及び光送信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110150472A1 (en) * 2009-12-21 2011-06-23 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Data center with free-space optical communications
CN103825656A (zh) * 2013-12-10 2014-05-28 上海航天测控通信研究所 基于tcp/ip的可见光通信系统及方法
CN107436430A (zh) * 2017-08-07 2017-12-05 周俊 高安全性光电遥感设备扫描探测装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229593A (en) * 1991-10-08 1993-07-20 International Business Machines Corporation Apparatus and method for safe, free space laser communication
JP3108960B2 (ja) * 1992-06-30 2000-11-13 京セラ株式会社 光空間伝送装置
US5808760A (en) * 1994-04-18 1998-09-15 International Business Machines Corporation Wireless optical communication system with adaptive data rates and/or adaptive levels of optical power
US6643466B1 (en) * 2000-09-29 2003-11-04 Lucent Technologies Inc. Method and apparatus for controlling signal power level in free space communication
US7203424B2 (en) * 2000-10-13 2007-04-10 Kiribati Wireless Ventures Llc Automatic laser power control in an optical communication system
JP4375076B2 (ja) * 2004-03-25 2009-12-02 Kddi株式会社 光無線伝送システム
GB201820402D0 (en) * 2018-12-14 2019-01-30 Purelifi Ltd Motion sensing LiFi access point
US11082128B1 (en) * 2020-02-10 2021-08-03 SA Photonics, Inc. Free space optical terminal with dither based alignment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110150472A1 (en) * 2009-12-21 2011-06-23 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Data center with free-space optical communications
CN103825656A (zh) * 2013-12-10 2014-05-28 上海航天测控通信研究所 基于tcp/ip的可见光通信系统及方法
CN107436430A (zh) * 2017-08-07 2017-12-05 周俊 高安全性光电遥感设备扫描探测装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113596202A (zh) * 2021-07-06 2021-11-02 维沃移动通信有限公司 光敏传感器的控制方法及电子设备
CN113596202B (zh) * 2021-07-06 2024-05-14 维沃移动通信有限公司 光敏传感器的控制方法及电子设备

Also Published As

Publication number Publication date
US20210399800A1 (en) 2021-12-23
EP3930219A1 (en) 2021-12-29
US11799545B2 (en) 2023-10-24
EP3930219A4 (en) 2022-03-02
CN113557678A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
US10020689B2 (en) Power transmitting device, power receiving device, power supply system, and power supply method
US10506581B2 (en) Point-to-point radio system, point-to-point radio apparatus, and communication control method
KR102309726B1 (ko) 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템
US20120206299A1 (en) Millimeter-wave communications using a reflector
US9729233B2 (en) Communication device
JP6852028B2 (ja) 電子装置及び方法
US11799545B2 (en) Free space optical communications method, and transmitter and receiver
US10444343B2 (en) Mobile navigation method and system
JP2005244362A (ja) ミリ波通信システム、ミリ波送信装置およびミリ波受信装置
US11888517B2 (en) Method for a data transmission between a first and a second module and system including mobile parts for carrying out the method
JP2017005579A (ja) ミリ波通信システムおよびミリ波通信方法
CN107682079B (zh) 一种用于自动跟踪fso设备中控制光学调节的方法
KR102338874B1 (ko) 항적 탐지 기만 시스템, 방법, 컴퓨터 판독 가능한 기록매체 및 컴퓨터 프로그램
RU2416875C1 (ru) Способ регулировки излучаемой мощности
CN110557198A (zh) 光通信控制方法、装置和通信系统
JPS5995746A (ja) 光空間伝播型ネツトワ−ク
WO2019163572A1 (ja) 無線送電システム、受電機、送電機、及び無線送電方法
KR20120120026A (ko) 레이저 통신 장치로 구성되는 레이저 통신 시스템 및 경로 설정 방법과, 레이저 통신 메쉬 네트워크 시스템
CN117728876A (zh) 无人机、无人机蜂群、无人机蜂群泛光通信方法及系统
JP2006166111A (ja) 微弱無線通信システム
JP2980081B2 (ja) 誘導装置
CN116506014A (zh) 应用于LiFi通信的收发器
RU82382U1 (ru) Антенно-приемный комплекс
SU1570010A1 (ru) Способ передачи дискретной информации по радиолини м односторонней св зи
WO2024003330A3 (fr) Procédé de contrôle d'un organe pilotable à distance faisant intervenir un ou plusieurs objets mobiles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019919179

Country of ref document: EP

Effective date: 20210923