WO2020179657A1 - Anti-glare coating film formation coating liquid, anti-glare coating film, and laminate including anti-glare coating film - Google Patents

Anti-glare coating film formation coating liquid, anti-glare coating film, and laminate including anti-glare coating film Download PDF

Info

Publication number
WO2020179657A1
WO2020179657A1 PCT/JP2020/008270 JP2020008270W WO2020179657A1 WO 2020179657 A1 WO2020179657 A1 WO 2020179657A1 JP 2020008270 W JP2020008270 W JP 2020008270W WO 2020179657 A1 WO2020179657 A1 WO 2020179657A1
Authority
WO
WIPO (PCT)
Prior art keywords
antiglare
group
coating
forming
coating liquid
Prior art date
Application number
PCT/JP2020/008270
Other languages
French (fr)
Japanese (ja)
Inventor
和輝 江口
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202080018097.2A priority Critical patent/CN113518802A/en
Priority to JP2021504042A priority patent/JPWO2020179657A1/ja
Priority to KR1020217030229A priority patent/KR20210132679A/en
Publication of WO2020179657A1 publication Critical patent/WO2020179657A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D185/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention is excellent in antiglare properties (antiglare function), can be formed on a glass substrate, and is capable of forming an antiglare film having a high refractive index.
  • the present invention relates to an antiglare coating and a laminate including the same.
  • Image display devices liquid crystal displays, organic EL displays, plasma displays, etc.
  • various devices such as televisions, personal computers, and smartphones reflect external light such as indoor lighting (fluorescent lamps, etc.) and sunlight on the display surface.
  • external light such as indoor lighting (fluorescent lamps, etc.) and sunlight on the display surface.
  • the antiglare treatment is a treatment for forming irregularities on the surface, and an effect of diffusely reflecting external light (antiglare effect) is obtained by the irregularities formed.
  • Patent Document 1 a treatment of etching the surface of a transparent base material such as glass with a chemical such as hydrofluoric acid (see Patent Document 1) and a treatment of forming an organic antiglare film having irregularities on the surface (Patent).
  • Patent Document 2 a treatment of forming an organic antiglare film having irregularities on the surface
  • Patent No. 5839134 International publication 2018/070426
  • the present invention is excellent in anti-glare properties (anti-glare function), can be formed on a glass substrate, an anti-glare film forming coating liquid capable of forming an anti-glare film having a high refractive index, It is an object of the present invention to provide an anti-glare film obtained from the coating liquid and a laminate having the same.
  • a coating liquid for forming an antiglare film containing the following components.
  • M 1 is silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg), tin (Sn) and zinc ( Zn) represents at least one metal selected from the group consisting of: R 1 may be substituted with a hydrogen atom or a fluorine atom, and is a halogen atom, a vinyl group, a glycidoxy group, a mercapto group or a methacryloxy group.
  • M 2 (X) k (II) (In the formula, M 2 is aluminum (Al), indium (In), zinc (Zn), zirconium (Zr), bismuth (Bi), lantern (La), tantalum (Ta), yttrium (Y) and cerium ( Ce) represents at least one metal selected from the group consisting of, X represents chlorine, nitric acid, sulfuric acid, acetic acid, sulfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate or a basic salt thereof, and k Represents the valence of M 2.
  • Solvent group (B) At least one selected from alcohols having a boiling point of 120°C or lower.
  • an antiglare film of the present invention By using the coating solution for forming an antiglare film of the present invention, it is possible to form an antiglare film that has excellent antiglare properties (antiglare function) and can be formed on a glass substrate and has a high refractive index.
  • Example 3 is an image of the substrate with an antiglare coating obtained in Example 2 observed with a three-dimensional white interference microscope Contour GT. It is an image which observed the substrate with an antiglare film obtained in Comparative Example 2 with a three-dimensional white interference microscope Contour GT.
  • the component (A) contained in the coating liquid for forming an antiglare film of the present invention is a first metal alkoxide represented by the following formula (I), a hydrolyzate thereof, or a partial condensate thereof.
  • M 1 is silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg), tin (Sn) and zinc (Zn).
  • R 1 may be substituted with a hydrogen atom or a fluorine atom and is substituted with a halogen atom, a vinyl group, a glycidoxy group, a mercapto group, a methacryloxy group, an acryloxy group, an iocyanate group, an amino group or a ureido group.
  • R 1 represents a hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom.
  • R 2 represents an alkyl group having 1 to 5 carbon atoms, and among them, preferably has 1 to 4 carbon atoms from the viewpoint of easy availability and storage stability of the composition.
  • n represents a valence of 2 to 5 of M 1 .
  • m is either 0 or 1 when the valence of M 1 is 2, 0 to 2 when the valence of M 1 is 3, and 0 to 3 when the valence of M 1 is 4. Yes, when the valence of M 1 is 5, it is any of 0 to 4.
  • the component (A) contained in the coating liquid for forming an antiglare coating of the present invention is preferably a partial condensate of silicon alkoxide, titanium alkoxide or zirconium alkoxide.
  • M 1 is a partial condensate of the metal alkoxide represented by the formula (I) selected from any of silicon (Si), titanium (Ti), tantalum (Ta), and zirconium (Zr). Can be mentioned.
  • the component (B) contained in the coating solution for forming an antiglare coating film of the present invention is at least one selected from the metal salts represented by the following formula (II) and the oxalate salt of M 2 in the following formula (II). Contains a metal salt.
  • X represents chlorine, nitric acid, sulfuric acid, acetic acid, sulfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate or a basic salt thereof.
  • nitrates of aluminum, indium, and cerium are preferable from the viewpoint of easy availability and storage stability of the composition.
  • k represents the valence of M 2 .
  • inorganic fine particles for example, inorganic fine particles, metalloxane oligomers, metalloxane polymers, leveling agents, surfactants and the like components are contained. May be good.
  • inorganic fine particles fine particles such as silica fine particles, alumina fine particles, titania fine particles and magnesium fluoride fine particles are preferable, and a colloidal solution of these inorganic fine particles is particularly preferable.
  • This colloidal solution may be a dispersion of inorganic fine particle powder in a dispersion medium, or may be a commercially available colloidal solution.
  • the average particle size of the inorganic fine particles is preferably 0.001 to 0.2 ⁇ m, more preferably 0.001 to 0.1 ⁇ m.
  • the dispersion medium for the inorganic fine particles include water and organic solvents.
  • the colloidal solution preferably has a pH or pKa adjusted to 1 to 10, more preferably 2 to 7, from the viewpoint of improving the stability of the coating liquid for forming an antiglare film.
  • the organic solvent used as the dispersion medium of the colloidal solution is methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, 2-methyl-2,4-pentanediol, diethylene glycol, dipropylene glycol, ethylene.
  • Alcohols such as glycol monopropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone; ethyl acetate , Esters such as butyl acetate and ⁇ -butyrolactone; solvents such as tetrahydrofuran and 1,4-dioxane can be mentioned. Of these, alcohols and ketones are preferable. These organic solvents can be used alone or in admixture of two or more as a dispersion medium.
  • the solvent group (A) contained in the coating liquid for forming an antiglare film of the present invention is at least one selected from glycol ethers having a boiling point of less than 160 ° C. and derivatives thereof, or ketones.
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, Propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol dimethyl ether, glycol ethers and derivatives thereof such as propylene glycol diethyl ether, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and the like, Among them, from the viewpoint of coating stability, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, propylene glycol
  • the solvent group (B) contained in the coating solution for forming an antiglare coating film of the present invention is at least one selected from alcohols having a boiling point of 120°C or lower. Specific examples thereof include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol and 2-methyl-2-propanol. Among them, the composition. From the viewpoint of storage stability of, methanol, ethanol, 2-propanol, 2-butanol and 2-methyl-1-propanol are preferable.
  • the coating liquid for forming an antiglare film of the present invention contains a solvent other than the solvent groups (A) and (B) (hereinafter, also referred to as other solvents) as necessary from the viewpoint of stability of the coating liquid. It may be.
  • solvents examples include alcohols such as hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, diacetone alcohol, ethylene glycol, diethylene glycol, dipropylene glycol, 2-methyl-2,4-pentanediol, Glycols such as propanediol, butanediol, pentanediol, hexanediol, heptanediol, ethylene glycol monobutyl ether, ethylene glycol dibutyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene Glycoldipropyl ether, propylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, di
  • ethylene glycol diethylene glycol, 2-methyl-2,4-pentanediol, propanediol, butanediol, ethylene glycol monobutyl ether, propylene glycol monopropyl ether, propylene.
  • the coating solution for forming an antiglare coating of the present invention comprises a first metal alkoxide represented by the above formula (I), a metal salt represented by the above formula (II), and oxalic acid represented by M 2 in the above formula (II). It is obtained by hydrolyzing and condensing in an organic solvent in the presence of at least one metal salt selected from salts, and then adding an appropriate solvent.
  • the solvents of the solvent groups (A) and (B) are added during the above hydrolysis / condensation and / or in the solvent addition step thereafter. At this time, other solvents may be added as needed.
  • the content ratio of the metal alkoxide of the metal atom (M 1) and a metal atom of the metal salt (M 2) in molar ratio terms satisfy the relationship of 0.01 ⁇ M 2 / (M 1 + M 2) ⁇ 0.7 Is preferable. If this value is less than 0.01, the mechanical strength of the obtained coating is not sufficient, which is not preferable. On the other hand, if it exceeds 0.7, the adhesion of the metal oxide layer to a substrate such as a glass substrate is lowered. In addition, when fired at a low temperature of 450° C. or lower, the chemical resistance of the obtained metal oxide layer tends to decrease.
  • the metal atom (M 1 ) means the sum of the metal atoms of a plurality of kinds, and the metal of the metal salt contained in the coating composition.
  • the metal atom (M 2 ) means the sum of plural kinds of metal atoms.
  • the solid content concentration in the coating liquid for forming an antiglare film is preferably in the range of 0.5 to 20% by mass when the metal alkoxide and the metal salt are converted into metal oxides.
  • the solid content exceeds 20% by mass, the storage stability of the coating composition deteriorates and it becomes difficult to control the film thickness of the antiglare coating.
  • the solid content is 0.5% by mass or less, the thickness of the obtained antiglare coating becomes small, and a large number of coatings are required to obtain a predetermined thickness.
  • the coating solution for forming an antiglare film is obtained by adding the first metal alkoxide (for example, silicon alkoxide or titanium alkoxide) represented by the formula (I) to the metal salt represented by the formula (II) and the formula (II). It is obtained by hydrolysis and condensation in an organic solvent in the presence of at least one metal salt (for example, an aluminum salt) selected from the M 2 alkoxides in the alkoxide.
  • the amount of water used for the hydrolysis of silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide is 0 in terms of molar ratio with respect to the total number of moles of silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide.
  • the molar ratio (amount of water (mol) / (total number of moles of metal alkoxide)) is 0.5 or less, the hydrolysis of the metal alkoxide becomes insufficient, and the film forming property is lowered or obtained. It is not preferable because it reduces the strength of the antiglare coating.
  • the molar ratio is more than 24, polycondensation continues to proceed and storage stability decreases, which is not preferable. The same applies when other metal alkoxides are used.
  • the coexisting metal salt for example, aluminum salt
  • the coexisting metal salt is a hydrous salt in the hydrolysis process when preparing the coating liquid for forming an antiglare film
  • it is used for hydrolysis because its water content participates in the reaction. It is necessary to consider the water content of the metal salt (for example, aluminum salt) with respect to the amount of water.
  • the coating solution for forming an antiglare film is produced by hydrolyzing and condensing a metal alkoxide.
  • the refractive index of the resulting antiglare film is within a predetermined range. It is possible to adjust with. For example, when silicon alkoxide and titanium alkoxide are selected as the metal alkoxide, by adjusting the mixing ratio thereof, it can be obtained within a predetermined range described later, specifically within the range of 1.45 to 2.1. It is possible to adjust the refractive index of the antiglare coating. From the viewpoint of antireflection of the laminate provided with the antiglare coating of the present invention, the refractive index of the antiglare coating of the present invention is preferably 1.48 to 1.8.
  • the composition molar ratio of silicon alkoxide and titanium alkoxide is determined according to the refractive index. It is possible.
  • This composition molar ratio is arbitrary, but for example, the refractive index of the antiglare coating from the coating liquid for forming an antiglare coating obtained by hydrolyzing only silicon alkoxide is a value of about 1.45. ..
  • the refractive index of the metal oxide layer from the coating composition obtained by hydrolyzing only the titanium alkoxide is a value of about 2.1.
  • the coating composition uses a predetermined ratio of silicon alkoxide and titanium alkoxide according to the refractive index value within that range. It is possible to manufacture.
  • the refractive index of the obtained antiglare coating can be adjusted by using other metal alkoxide.
  • the refractive index of the antiglare film can be adjusted by selecting film forming conditions in addition to the composition conditions. By doing so, it is possible to realize a desired refractive index value of the antiglare coating.
  • the firing temperature is preferably in the range of 100 ° C. to 300 ° C., more preferably in the range of 150 ° C. to 250 ° C.
  • the coating liquid for forming an antiglare film contains titanium alkoxide
  • the coating film is irradiated with ultraviolet rays (UV) before firing
  • the refractive index of the obtained antiglare film fluctuates.
  • the higher the amount of ultraviolet irradiation the higher the refractive index of the antiglare coating. Therefore, it is possible to select whether or not to irradiate the ultraviolet rays in order to realize a desired refractive index.
  • a desired refractive index can be achieved by selecting conditions such as composition, ultraviolet irradiation may not be performed.
  • the refractive index of the antiglare coating can be adjusted by selecting the irradiation amount. If the antiglare coating requires UV irradiation to obtain the desired refractive index, for example, a high pressure mercury lamp can be used. Then, using a high-pressure mercury lamp, total light irradiation 1000 mJ / cm 2 or more dose is preferably at 365nm terms, the dose of 3000mJ / cm 2 ⁇ 10000mJ / cm 2 is more preferable.
  • the UV light source is not particularly specified, and another UV light source can be used. When another light source is used, the same amount of integrated light as in the case of using the high pressure mercury lamp may be applied.
  • the coating liquid for forming an antiglare film contains a titanium alkoxide component, it has the property of gradually increasing the viscosity when stored at room temperature. Although there is no concern that it will be a serious problem in practical use, careful control of temperature and the like is required when the thickness of the antiglare coating is precisely controlled. Incidentally, such an increase in viscosity becomes more remarkable as the composition ratio of titanium alkoxide in the coating composition increases. It is considered that this is because titanium alkoxide has a higher hydrolysis rate than silicon alkoxide and the condensation reaction is fast.
  • the coating solution for forming an antiglare coating contains a titanium alkoxide component
  • a method of hydrolyzing a silicon alkoxide and a titanium alkoxide after mixing in a solvent such as a metal salt and an alcohol Is mentioned.
  • the stability of the condensate is improved, and a coating liquid for forming an antiglare film having a small change in viscosity can be obtained.
  • the coating liquid for forming an antiglare film described above can be obtained as a metal oxide film having antiglare properties by forming fine droplets and landing the liquid on a substrate at the time of coating.
  • the coating method include spray coating, mist coating, and inkjet coating, and among them, spray coating and inkjet coating are preferable.
  • the laminate of the present invention can be obtained by applying and firing a coating liquid for forming an antiglare film on various substrates including a glass substrate to form an antiglare film.
  • Various functional films such as an antireflection film can be formed on the antiglare film in accordance with the function required of the laminate.
  • the antireflection film brings about the effect of reducing the reflectance, reduces the glare due to the reflection of light, and when used in the image display device, can improve the transmittance of the light from the image display device.
  • the structure of the antireflection film is not particularly limited as long as it can suppress the reflection of light, and examples thereof include a film having a refractive index lower than that of the antiglare film (hereinafter, also referred to as a low refractive index film).
  • a film having a refractive index lower than that of the antiglare film hereinafter, also referred to as a low refractive index film.
  • the material constituting the low refractive index film include polysiloxane having a silicon atom to which a fluorine-containing organic group is bonded.
  • an antireflection film on the surface of the adhesion layer formed on the antiglare coating or other functional film, spin coating method, dip coating method, casting method, slit coating method, spray coating method, A method of applying by an electrostatic spray deposition method (ESD method) and then heat-treating as necessary, or a physical vapor deposition method (CVD method), a sputtering method, a PLD method, or the like on the surface of an adhesive layer.
  • ESD method electrostatic spray deposition method
  • CVD method physical vapor deposition method
  • a sputtering method a sputtering method
  • PLD method vapor deposition method
  • an antifouling film may be further laminated on the antiglare film or the antireflection film.
  • An antifouling film is a film that suppresses the adhesion of organic and inorganic substances to the surface, or a film that, even when organic and inorganic substances adhere to the surface, brings the effect of easily removing the adhered substances by cleaning such as wiping Is.
  • the thickness of the antifouling film is not particularly limited, but when the antifouling film is composed of a fluorine-containing organosilicon compound film, the film thickness is preferably 2 to 20 nm, more preferably 2 to 15 nm. More preferably, it is ⁇ 10 nm. When the film thickness is 2 nm or more, the film is uniformly covered by the antifouling layer, and can withstand practical use from the viewpoint of abrasion resistance. When the film thickness is 20 nm or less, the optical properties such as the haze value of the antiglare film substrate with the antifouling film formed thereon are good.
  • the in-plane standard deviation of haze of the antiglare coated substrate is 1 to 40%, and more preferably 1 to 30%. Within this range, when the substrate with the antiglare film is visually recognized from the user side, it can be visually recognized as if the uniform antiglare film treatment is applied, and the aesthetic appearance is excellent. Further, the touch feeling due to the unevenness of the antiglare film is not impaired.
  • the application of the antiglare coating substrate of the present invention is not particularly limited. Specific examples include transparent parts for vehicles (headlight covers, side mirrors, front transparent substrates, side transparent substrates, rear transparent substrates, instrument panel surfaces, etc.), meters, architectural windows, show windows, displays (notebook type).
  • Personal computer monitor, LCD, PDP, ELD, CRT, PDA, etc.
  • LCD color filter touch panel substrate, pickup lens, optical lens, spectacle lens, camera component, video component, CCD cover substrate, optical fiber end face, projector component , Copier parts, transparent substrate for solar cells (cover glass, etc.), mobile phone windows, backlight unit parts (light guide plate, cold cathode tube, etc.), backlight unit parts LCD brightness improvement film (prism, transflective film, etc.) Etc.), liquid crystal brightness enhancement film, organic EL light emitting device parts, inorganic EL light emitting device parts, phosphor light emitting device parts, optical filters, end faces of optical parts, illumination lamps, lighting equipment covers, amplified laser light sources, antireflection films. , Polarizing films, agricultural films and the like.
  • TEOS Tetraethoxysilane F13: Tridecafluorooctyltrimethoxysilane UPS: ⁇ -ureidopropyltriethoxysilane MPMS: 3-methacryloxypropyltrimethoxysilane TTE: Tetraethoxytitanium TIPT: Tetraisopropoxytitanium AN: Aluminum Nine Water Japanese MeOH: Methanol EtOH: Ethanol IPA: Isopropanol BCS: Butyl cellosolve PGME: Propylene glycol monomethyl ether PGMEA: Propylene glycol monomethyl ether acetate PG: Propylene glycol HG: 2-Methyl-2,4-pentanediol
  • AN (2.9 g), water (2.7 g) and EtOH (50.3 g) were added to a flask having a capacity of 200 mL and stirred to obtain an AN solution.
  • TEOS (23.1 g) was added to the AN solution, and the mixture was stirred at room temperature for 30 minutes. Then, TTE (8.4g) and EtOH (12.6g) were added, and also it stirred at room temperature for 30 minutes, and the solution K1 was obtained.
  • ⁇ Synthesis example 2> AN (2.9 g), water (2.6 g) and EtOH (50.6 g) were added to a flask having a capacity of 200 mL and stirred to obtain an AN solution.
  • TEOS (21.2 g) was added to the AN solution, and the mixture was stirred at room temperature for 30 minutes. Then, TTE (10.0g) and EtOH (12.7g) were added, and also it stirred at room temperature for 30 minutes, and the solution K2 was obtained.
  • AN (2.8 g), water (2.6 g) and EtOH (51.2 g) were added to a flask having a capacity of 200 mL and stirred to obtain an AN solution.
  • TEOS (17.7 g) was added to the AN solution, and the mixture was stirred at room temperature for 30 minutes. Then, TTE (12.9g) and EtOH (12.8g) were added, and also it stirred at room temperature for 30 minutes, and the solution K3 was obtained.
  • AN (2.9 g), water (2.7 g), EtOH (24.3 g) and IPA (24.3 g) were added to a 200 mL volumetric flask and stirred to obtain an AN solution.
  • 23.1 g of TEOS was added to the AN solution, and the mixture was stirred at room temperature for 30 minutes.
  • TIPT (10.5 g), EtOH (6.1 g) and IPA (6.1 g) were added, and the mixture was further stirred at room temperature for 30 minutes to obtain a solution K4.
  • ⁇ Synthesis example 7> AN (2.8 g), water (2.5 g) and EtOH (51.0 g) were added to a flask having a capacity of 200 mL and stirred to obtain an AN solution. TEOS (15.9 g) and MPMS (2.1 g) were added to the AN solution, and the mixture was stirred at room temperature for 30 minutes. Then, TTE (12.9g) and EtOH (12.8g) were added, and also it stirred at room temperature for 30 minutes, and the solution K7 was obtained.
  • AN (2.8 g), water (2.5 g) and EtOH (38.3 g) were added to a flask having a capacity of 200 mL and stirred to obtain an AN solution.
  • TEOS (16.8 g) was added to the AN solution, and the mixture was stirred at room temperature for 30 minutes.
  • TTE (12.9 g) and EtOH (12.8 g) were added, and the mixture was further stirred at room temperature for 30 minutes.
  • UPS (11.1 g) and EtOH (12.8 g) were added, and the mixture was stirred at room temperature for 30 minutes.
  • a solution K8 was obtained.
  • HG (10g), BCS (10g), and IPA (20g) were added to the K1 solution (60g), and the solution KM2 was obtained.
  • Spray coating was performed with the equipment and conditions shown below.
  • KL2 to KL4 and KM3 were formed on a glass substrate by spray coating under coating conditions II to prepare a substrate with an antiglare coating. Moreover, when the refractive index was measured using KM3, the refractive index was 1.43. In addition, the HAZE of the substrate formed with KM3 was 10.
  • KL6 was spray-coated as an antireflection layer on the above-mentioned substrate with an antiglare coating under coating conditions III.
  • the coating liquid for forming an antiglare film of the present invention while being excellent in antiglare property (antiglare function), it can be formed on a glass substrate and has a high refractive index. It is possible to provide a laminate including the same. This can contribute to improving the display quality of image display devices (liquid crystal displays, organic EL displays, plasma displays, etc.) provided in various devices such as televisions, personal computers, and smartphones.
  • image display devices liquid crystal displays, organic EL displays, plasma displays, etc.

Abstract

An anti-glare coating film formation coating liquid that contains the following components. Component (A): A first metal alkoxide represented by formula (I) or a hydrolyzate or partial condensate thereof. (I) R1 mM1(OR2)n-m. Component (B): A metal salt that includes a metal salt represented by formula (II) and/or an oxalate of M2 in formula (II). (II) M2(X)k. Solvent group (A): Glycol ethers that have a boiling point of less than 160°C or derivatives thereof; or ketones. Solvent group (B): Alcohols that have a boiling point of no more than 120°C. The symbols in formula 1 and formula 2 are defined in the description.

Description

防眩性被膜形成用塗布液、防眩性被膜及びそれを有する積層体Coating liquid for forming antiglare coating, antiglare coating and laminate having it
 本発明は、防眩性(アンチグレア機能)に優れるとともに、ガラス基板上に形成可能であり、高屈折率を有する防眩性被膜を形成出来る防眩性被膜形成用塗布液、該塗布液より得られる防眩性被膜及びそれを具備する積層体に関する。 INDUSTRIAL APPLICABILITY The present invention is excellent in antiglare properties (antiglare function), can be formed on a glass substrate, and is capable of forming an antiglare film having a high refractive index. The present invention relates to an antiglare coating and a laminate including the same.
 テレビ、パーソナルコンピュータ、スマートフォン等の各種デバイスが具備する画像表示装置(液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイ等)は、室内照明(蛍光灯等)、太陽光等の外光が表示面に映り込むと、反射像によって画像の視認性が低下することがある。
 外光の映り込みを抑制する方法として、画像表示装置の表示面に防眩処理(アンチグレア処理)を施す方法がある。防眩処理は、表面に凹凸を形成する処理であり、形成された凹凸によって外光を拡散反射する効果(防眩効果)が得られる。
 防眩処理の方法としては、ガラス等の透明基材の表面をフッ酸等の薬剤によりエッチングする処理(特許文献1参照)、表面に凹凸のある有機系の防眩膜を形成する処理(特許文献2参照)等が提案されている。
Image display devices (liquid crystal displays, organic EL displays, plasma displays, etc.) provided in various devices such as televisions, personal computers, and smartphones reflect external light such as indoor lighting (fluorescent lamps, etc.) and sunlight on the display surface. As a result, the visibility of the image may decrease due to the reflected image.
As a method of suppressing the reflection of external light, there is a method of applying antiglare treatment (anti-glare treatment) to the display surface of the image display device. The antiglare treatment is a treatment for forming irregularities on the surface, and an effect of diffusely reflecting external light (antiglare effect) is obtained by the irregularities formed.
As a method of antiglare treatment, a treatment of etching the surface of a transparent base material such as glass with a chemical such as hydrofluoric acid (see Patent Document 1) and a treatment of forming an organic antiglare film having irregularities on the surface (Patent). Reference 2) and the like have been proposed.
特許第5839134号Patent No. 5839134 国際公開2018/070426International publication 2018/070426
 しかし、ガラス基板表面を薬剤でエッチングする処理においては、薬剤の危険性が問題となり、表面に有機系の防眩膜を形成する処理においては、ガラス基板への塗布性や、膜上に更なる機能性膜を形成させる際の塗布性、密着性に問題が生じる。 However, in the process of etching the surface of the glass substrate with a chemical, the danger of the chemical becomes a problem, and in the process of forming an organic antiglare film on the surface, the coating property to the glass substrate and the additional property on the film Problems arise in coatability and adhesion when forming a functional film.
 以上の点から、本発明は、防眩性(アンチグレア機能)に優れるとともに、ガラス基板上に形成可能であり、高屈折率を有する防眩性被膜を形成出来る防眩性被膜形成用塗布液、該塗布液より得られる防眩性被膜及びそれを具備する積層体の提供を目的とする。 From the above points, the present invention is excellent in anti-glare properties (anti-glare function), can be formed on a glass substrate, an anti-glare film forming coating liquid capable of forming an anti-glare film having a high refractive index, It is an object of the present invention to provide an anti-glare film obtained from the coating liquid and a laminate having the same.
 本発明者は、前記の目的を達成するため鋭意研究を進めた結果、以下の要旨を有する本発明を完成するに至った。即ち、本発明は、以下の構成要件を有する。
1.下記の成分を含有する防眩性被膜形成用塗布液。
成分(A):下記式(I)で示される第1の金属アルコキシド、その加水分解物、もしくはその部分縮合物。
(ORn-m         (I)
(式中、Mは、珪素(Si)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ホウ素(B)、アルミニウム(Al)、マグネシウム(Mg)、スズ(Sn)および亜鉛(Zn)よりなる群から選択された少なくとも1種以上の金属を表す。Rは、水素原子またはフッ素原子で置換されてもよく、且つ、ハロゲン原子、ビニル基、グリシドキシ基、メルカプト基、メタクリロキシ基、アクリロキシ基、イオシアネート基、アミノ基またはウレイド基で置換されていてもよく、且つ、ヘテロ原子を有していてもよい炭素数1~20の炭化水素基を表す。Rは、炭素数1~5のアルキル基を表し、nは、Mの価数2~5を表す。mは、Mの価数が2の場合0または1、Mの価数が3の場合0~2のいずれかであり、Mの価数が4の場合0~3のいずれかであり、Mの価数が5の場合0~4のいずれかである。)
成分(B):下記式(II)で示される金属塩及び下記式(II)中のMの蓚酸塩から選ばれる少なくとも1種を含有する金属塩。
(X)           (II)
(式中、Mは、アルミニウム(Al)、インジウム(In)、亜鉛(Zn)、ジルコニウム(Zr)、ビスマス(Bi)、ランタン(La)、タンタル(Ta)、イットリウム(Y)およびセリウム(Ce)よりなる群から選択された少なくとも1種の金属を表し、Xは、塩素、硝酸、硫酸、酢酸、スルファミン酸、スルホン酸、アセト酢酸、アセチルアセトナートまたはこれらの塩基性塩を表し、kは、Mの価数を表す。)
溶媒群(A):沸点160℃未満のグリコールエーテルおよびその誘導体、もしくはケトン類から選ばれる少なくとも1種。
溶媒群(B):沸点120℃以下のアルコール類から選ばれる少なくとも1種。
As a result of diligent research to achieve the above object, the present inventor has completed the present invention having the following gist. That is, the present invention has the following constituent features.
1. A coating liquid for forming an antiglare film containing the following components.
Component (A): A first metal alkoxide represented by the following formula (I), a hydrolyzate thereof, or a partial condensate thereof.
R 1 m M 1 (OR 2 ) nm (I)
(In the formula, M 1 is silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg), tin (Sn) and zinc ( Zn) represents at least one metal selected from the group consisting of: R 1 may be substituted with a hydrogen atom or a fluorine atom, and is a halogen atom, a vinyl group, a glycidoxy group, a mercapto group or a methacryloxy group. Represents a hydrocarbon group having 1 to 20 carbon atoms, which may be substituted with an acryloxy group, an isocyanate group, an amino group or an ureido group and may have a hetero atom, and R 2 represents the number of carbon atoms. represents an alkyl group of 1 ~ 5, n is .m representing the valence number of 2 to 5 M 1 is 0 when the case valence of M 1 is 2 0 or 1, the valence of M 1 is 3 ~ If the valence of M 1 is 4, it is either 0 to 3, and if the valence of M 1 is 5, it is 0 to 4.)
Component (B): a metal salt containing at least one selected from oxalates M 2 of a metal salt and the following formula (II) in the following formula (II).
M 2 (X) k (II)
(In the formula, M 2 is aluminum (Al), indium (In), zinc (Zn), zirconium (Zr), bismuth (Bi), lantern (La), tantalum (Ta), yttrium (Y) and cerium ( Ce) represents at least one metal selected from the group consisting of, X represents chlorine, nitric acid, sulfuric acid, acetic acid, sulfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate or a basic salt thereof, and k Represents the valence of M 2. )
Solvent group (A): At least one selected from glycol ethers having a boiling point of less than 160 ° C. and derivatives thereof, or ketones.
Solvent group (B): At least one selected from alcohols having a boiling point of 120°C or lower.
 本発明の防眩性被膜形成用塗布液を用いることにより、防眩性(アンチグレア機能)に優れるとともに、ガラス基板上に形成可能であり、高屈折率を有する防眩性被膜を形成出来る。 By using the coating solution for forming an antiglare film of the present invention, it is possible to form an antiglare film that has excellent antiglare properties (antiglare function) and can be formed on a glass substrate and has a high refractive index.
実施例2で得られた防眩性被膜付き基板を、3次元白色干渉顕微鏡 Contour GTにて観察した画像である。3 is an image of the substrate with an antiglare coating obtained in Example 2 observed with a three-dimensional white interference microscope Contour GT. 比較例2で得られた防眩性被膜付き基板を、3次元白色干渉顕微鏡 Contour GTにて観察した画像である。It is an image which observed the substrate with an antiglare film obtained in Comparative Example 2 with a three-dimensional white interference microscope Contour GT.
 本発明の防眩性被膜形成用塗布液が含有する各成分につき、下記に詳述する。 Each component contained in the coating liquid for forming an antiglare film of the present invention will be described in detail below.
<成分(A)>
 本発明の防眩性被膜形成用塗布液が含有する成分(A)は、下記式(I)で示される第1の金属アルコキシド、その加水分解物、もしくはその部分縮合物である。
(ORn-m         (I)
 式中、Mは、珪素(Si)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ホウ素(B)、アルミニウム(Al)、マグネシウム(Mg)、スズ(Sn)および亜鉛(Zn)よりなる群から選択された少なくとも1種以上の金属を表す。その中でも、入手性の容易性および組成物の貯蔵安定性の観点から、珪素、チタン、ジルコニウム、アルミニウム、スズが好ましい。
 Rは、水素原子またはフッ素原子で置換されてもよく、且つ、ハロゲン原子、ビニル基、グリシドキシ基、メルカプト基、メタクリロキシ基、アクリロキシ基、イオシアネート基、アミノ基またはウレイド基で置換されていてもよく、且つ、ヘテロ原子を有していてもよい炭素数1~20の炭化水素基を表す。その中でも、入手性および安定性の観点から、置換基として、ビニル基、メルカプト基、メタクリロキシ基、アクリロキシ基、ウレイド基が好ましく、炭素数は1~10の炭化水素基が好ましい。
 Rは、炭素数1~5のアルキル基を表し、その中でも、入手性の容易性および組成物の貯蔵安定性の観点から、炭素数1~4が好ましい。
 nは、Mの価数2~5を表す。mは、Mの価数が2の場合0または1、Mの価数が3の場合0~2のいずれかであり、Mの価数が4の場合0~3のいずれかであり、Mの価数が5の場合0~4のいずれかである。
<Ingredient (A)>
The component (A) contained in the coating liquid for forming an antiglare film of the present invention is a first metal alkoxide represented by the following formula (I), a hydrolyzate thereof, or a partial condensate thereof.
R 1 m M 1 (OR 2 ) nm (I)
In the formula, M 1 is silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg), tin (Sn) and zinc (Zn). ) Represents at least one or more metals selected from the group consisting of. Among them, silicon, titanium, zirconium, aluminum and tin are preferable from the viewpoint of easy availability and storage stability of the composition.
R 1 may be substituted with a hydrogen atom or a fluorine atom and is substituted with a halogen atom, a vinyl group, a glycidoxy group, a mercapto group, a methacryloxy group, an acryloxy group, an iocyanate group, an amino group or a ureido group. And represents a hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom. Among these, vinyl groups, mercapto groups, methacryloxy groups, acryloxy groups, and ureido groups are preferable as the substituents, and hydrocarbon groups having 1 to 10 carbon atoms are preferable from the viewpoints of availability and stability.
R 2 represents an alkyl group having 1 to 5 carbon atoms, and among them, preferably has 1 to 4 carbon atoms from the viewpoint of easy availability and storage stability of the composition.
n represents a valence of 2 to 5 of M 1 . m is either 0 or 1 when the valence of M 1 is 2, 0 to 2 when the valence of M 1 is 3, and 0 to 3 when the valence of M 1 is 4. Yes, when the valence of M 1 is 5, it is any of 0 to 4.
 本発明の防眩性被膜形成用塗布液が含有する成分(A)は、中でも、シリコンアルコキシド、チタンアルコキシド又はジルコニウムアルコキシドの部分縮合物が好ましい。具体例を挙げると、Mが、珪素(Si)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)のいずれかから選ばれる前記式(I)で示される金属アルコキシドの部分縮合物が挙げられる。 Among them, the component (A) contained in the coating liquid for forming an antiglare coating of the present invention is preferably a partial condensate of silicon alkoxide, titanium alkoxide or zirconium alkoxide. As a specific example, M 1 is a partial condensate of the metal alkoxide represented by the formula (I) selected from any of silicon (Si), titanium (Ti), tantalum (Ta), and zirconium (Zr). Can be mentioned.
<成分(B)>
 本発明の防眩性被膜形成用塗布液が含有する成分(B)は、下記式(II)で示される金属塩及び下記式(II)中のMの蓚酸塩から選ばれる少なくとも1種の金属塩を含有する。
(X)           (II)
 式中、Mは、アルミニウム(Al)、インジウム(In)、亜鉛(Zn)、ジルコニウム(Zr)、ビスマス(Bi)、ランタン(La)、タンタル(Ta)、イットリウム(Y)およびセリウム(Ce)よりなる群から選択された少なくとも1種の金属を表す。Xは、塩素、硝酸、硫酸、酢酸、スルファミン酸、スルホン酸、アセト酢酸、アセチルアセトナートまたはこれらの塩基性塩を表す。その中でも、入手性の容易性および組成物の貯蔵安定性の観点から、アルミニウム、インジウム、セリウムの硝酸塩が好ましい。
kは、Mの価数を表す。
<Component (B)>
The component (B) contained in the coating solution for forming an antiglare coating film of the present invention is at least one selected from the metal salts represented by the following formula (II) and the oxalate salt of M 2 in the following formula (II). Contains a metal salt.
M 2 (X) k (II)
In the formula, M 2 is aluminum (Al), indium (In), zinc (Zn), zirconium (Zr), bismuth (Bi), lanthanum (La), tantalum (Ta), yttrium (Y) and cerium (Ce). ) Represents at least one metal selected from the group consisting of. X represents chlorine, nitric acid, sulfuric acid, acetic acid, sulfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate or a basic salt thereof. Among them, nitrates of aluminum, indium, and cerium are preferable from the viewpoint of easy availability and storage stability of the composition.
k represents the valence of M 2 .
<その他の成分>
  本発明の防眩性被膜形成用塗布液においては、上記した成分以外のその他の成分、例えば、無機微粒子、メタロキサンオリゴマー、メタロキサンポリマー、レベリング剤、界面活性剤等の成分が含まれていてもよい。
 無機微粒子としては、シリカ微粒子、アルミナ微粒子、チタニア微粒子、フッ化マグネシウム微粒子等の微粒子が好ましく、これらの無機微粒子のコロイド溶液が特に好ましい。このコロイド溶液は、無機微粒子粉を分散媒に分散したものでもよいし、市販品のコロイド溶液であってもよい。
 本発明においては、無機微粒子を含有させることにより、形成される防眩性被膜の表面形状やその他の機能を付与することが可能となる。無機微粒子としては、その平均粒子径が0.001~0.2μmであることが好ましく、更に好ましくは0.001~0.1μmである。
 無機微粒子の分散媒としては、水及び有機溶剤を挙げることができる。コロイド溶液としては、防眩性被膜形成用塗布液の安定性が向上する観点から、pH又はpKaが1~10に調整されていることが好ましく、より好ましくは2~7である。
 コロイド溶液の分散媒に用いる有機溶剤としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、2-メチル-2,4-ペンタンジオール、ジエチレングリコール、ジプロピレングリコール、エチレングリコールモノプロピルエーテル等のアルコール類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン等のエステル類;テトラヒドロフラン、1,4-ジオキサン等のエ-テル類を挙げることができる。これらの中で、アルコール類及びケトン類が好ましい。これら有機溶剤は、単独でまたは2種以上を混合して分散媒として使用することができる。
<Other ingredients>
In the coating liquid for forming an antiglare film of the present invention, other components than the above components, for example, inorganic fine particles, metalloxane oligomers, metalloxane polymers, leveling agents, surfactants and the like components are contained. May be good.
As the inorganic fine particles, fine particles such as silica fine particles, alumina fine particles, titania fine particles and magnesium fluoride fine particles are preferable, and a colloidal solution of these inorganic fine particles is particularly preferable. This colloidal solution may be a dispersion of inorganic fine particle powder in a dispersion medium, or may be a commercially available colloidal solution.
In the present invention, by incorporating the inorganic fine particles, it is possible to impart the surface shape and other functions of the antiglare coating to be formed. The average particle size of the inorganic fine particles is preferably 0.001 to 0.2 μm, more preferably 0.001 to 0.1 μm.
Examples of the dispersion medium for the inorganic fine particles include water and organic solvents. The colloidal solution preferably has a pH or pKa adjusted to 1 to 10, more preferably 2 to 7, from the viewpoint of improving the stability of the coating liquid for forming an antiglare film.
The organic solvent used as the dispersion medium of the colloidal solution is methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, 2-methyl-2,4-pentanediol, diethylene glycol, dipropylene glycol, ethylene. Alcohols such as glycol monopropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone; ethyl acetate , Esters such as butyl acetate and γ-butyrolactone; solvents such as tetrahydrofuran and 1,4-dioxane can be mentioned. Of these, alcohols and ketones are preferable. These organic solvents can be used alone or in admixture of two or more as a dispersion medium.
<溶媒群(A)>
 本発明の防眩性被膜形成用塗布液が含有する溶媒群(A)は、沸点160℃未満のグリコールエーテルおよびその誘導体、もしくはケトン類から選ばれる少なくとも1種である。具体的には、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコ
ールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテルなどのグリコールエーテル類及びその誘導体、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類が挙げられるが、その中でも、塗布安定性の観点から、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、メチルイソブチルケトンが好ましい。
<Solvent group (A)>
The solvent group (A) contained in the coating liquid for forming an antiglare film of the present invention is at least one selected from glycol ethers having a boiling point of less than 160 ° C. and derivatives thereof, or ketones. Specifically, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, Propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol dimethyl ether, glycol ethers and derivatives thereof such as propylene glycol diethyl ether, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and the like, Among them, from the viewpoint of coating stability, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, methyl Isobutyl ketone is preferred.
<溶媒群(B)>
 本発明の防眩性被膜形成用塗布液が含有する溶媒群(B)は、沸点120℃以下のアルコール類から選ばれる少なくとも1種である。具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノールが挙げられるが、その中でも、組成物の貯蔵安定性の観点から、メタノール、エタノール、2-プロパノール、2-ブタノール、2-メチル-1-プロパノールが好ましい。
<Solvent group (B)>
The solvent group (B) contained in the coating solution for forming an antiglare coating film of the present invention is at least one selected from alcohols having a boiling point of 120°C or lower. Specific examples thereof include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol and 2-methyl-2-propanol. Among them, the composition. From the viewpoint of storage stability of, methanol, ethanol, 2-propanol, 2-butanol and 2-methyl-1-propanol are preferable.
<その他の溶媒>
 本発明の防眩性被膜形成用塗布液には、塗布液の安定性等の観点から、溶媒群(A)及び(B)以外の溶媒(以下、その他の溶媒とも称する)が必要に応じ含まれても良い。
<Other solvents>
The coating liquid for forming an antiglare film of the present invention contains a solvent other than the solvent groups (A) and (B) (hereinafter, also referred to as other solvents) as necessary from the viewpoint of stability of the coating liquid. It may be.
 その他の溶媒の例としては、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、ジアセトンアルコールなどのアルコール類、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、2-メチル-2,4-ペンタンジオール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオールなどのグリコール類、エチレングリコールモノブチルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテルなどのグリコールエーテル類、酢酸メチル、酢酸エチル、乳酸エチル等のエステル類、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、γ-ブチロラクトン、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルホスホトリアミド、m-クレゾール、テトラヒドロフランなどが挙げられる。その中でも、入手性および組成物の貯蔵安定性の観点から、エチレングリコール、ジエチレングリコール、2-メチル-2,4-ペンタンジオール、プロパンジオール、ブタンジオール、エチレングリコールモノブチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、テトラヒドロフランは好ましく用いられる。 Examples of other solvents include alcohols such as hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, diacetone alcohol, ethylene glycol, diethylene glycol, dipropylene glycol, 2-methyl-2,4-pentanediol, Glycols such as propanediol, butanediol, pentanediol, hexanediol, heptanediol, ethylene glycol monobutyl ether, ethylene glycol dibutyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene Glycoldipropyl ether, propylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, glycol ethers such as diethylene glycol dibutyl ether, acetic acid Esters such as methyl, ethyl acetate, ethyl lactate, N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, γ-butyrolactone, dimethylsulfoxide, tetramethylurea, hexamethylphosphotriamide , M-cresol, tetrahydrofuran and the like. Among them, from the viewpoint of availability and storage stability of the composition, ethylene glycol, diethylene glycol, 2-methyl-2,4-pentanediol, propanediol, butanediol, ethylene glycol monobutyl ether, propylene glycol monopropyl ether, propylene. Glycol monobutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, N-methyl -2-Pyrrolidone, N,N-dimethylformamide and tetrahydrofuran are preferably used.
<防眩性被膜形成用塗布液及び防眩性被膜>
 本発明の防眩性被膜形成用塗布液は、上記式(I)で示される第1の金属アルコキシドを、上記式(II)で示される金属塩及び上記式(II)中のMの蓚酸塩から選ばれる少なくとも1種の金属塩の存在下、有機溶媒中で加水分解・縮合し、その後適宜溶媒を添加することで得られる。溶媒群(A)及び(B)の溶媒は、上記加水分解・縮合時及び又はその後の溶媒添加工程において添加される。またこの際、その他の溶媒も、必要に応じ適宜添加されても良い。
 金属アルコキシドの金属原子(M)と金属塩の金属原子(M)の含有比率は、モル比換算で、0.01≦M/(M+M)≦0.7の関係を満たすことが好ましい。この値が0.01より小さいと、得られる被膜の機械的強度が充分でないため好ましくない。一方、0.7を越えると、ガラス基板などの基材に対する金属酸化物層の密着性が低下する。さらに、450℃以下の低温で焼成した場合、得られる金属酸化物層の耐薬品性が低下する傾向にもある。なお、コーティング組成物に含まれる金属アルコキシドの金属原子が複数種の場合、上記金属原子(M)は、複数種の金属原子の合計を意味し、またコーティング組成物に含まれる金属塩の金属原子が複数種の場合、上記金属原子(M)は、複数種の金属原子の合計を意味する。
<Applying liquid for forming anti-glare film and anti-glare film>
The coating solution for forming an antiglare coating of the present invention comprises a first metal alkoxide represented by the above formula (I), a metal salt represented by the above formula (II), and oxalic acid represented by M 2 in the above formula (II). It is obtained by hydrolyzing and condensing in an organic solvent in the presence of at least one metal salt selected from salts, and then adding an appropriate solvent. The solvents of the solvent groups (A) and (B) are added during the above hydrolysis / condensation and / or in the solvent addition step thereafter. At this time, other solvents may be added as needed.
The content ratio of the metal alkoxide of the metal atom (M 1) and a metal atom of the metal salt (M 2) in molar ratio terms, satisfy the relationship of 0.01 ≦ M 2 / (M 1 + M 2) ≦ 0.7 Is preferable. If this value is less than 0.01, the mechanical strength of the obtained coating is not sufficient, which is not preferable. On the other hand, if it exceeds 0.7, the adhesion of the metal oxide layer to a substrate such as a glass substrate is lowered. In addition, when fired at a low temperature of 450° C. or lower, the chemical resistance of the obtained metal oxide layer tends to decrease. When the metal atom of the metal alkoxide contained in the coating composition is a plurality of kinds, the metal atom (M 1 ) means the sum of the metal atoms of a plurality of kinds, and the metal of the metal salt contained in the coating composition. When there are plural kinds of atoms, the metal atom (M 2 ) means the sum of plural kinds of metal atoms.
 防眩性被膜形成用塗布液中の固形分濃度については、金属アルコキシドと金属塩を金属酸化物として換算した場合、固形分としては0.5~20質量%の範囲であることが好ましい。固形分が20質量%を越えると、コーティング組成物の貯蔵安定性が悪くなるうえ、防眩性被膜の膜厚制御が困難になる。一方、固形分が0.5質量%以下では、得られる防眩性被膜の厚みが薄くなり、所定の膜厚を得るために多数回の塗布が必要となる。 The solid content concentration in the coating liquid for forming an antiglare film is preferably in the range of 0.5 to 20% by mass when the metal alkoxide and the metal salt are converted into metal oxides. When the solid content exceeds 20% by mass, the storage stability of the coating composition deteriorates and it becomes difficult to control the film thickness of the antiglare coating. On the other hand, when the solid content is 0.5% by mass or less, the thickness of the obtained antiglare coating becomes small, and a large number of coatings are required to obtain a predetermined thickness.
 防眩性被膜形成用塗布液は、上記式(I)で示される第1の金属アルコキシド(例えば、シリコンアルコキシド、またはチタンアルコキシド)を上記式(II)で示される金属塩及び上記式(II)中のMの蓚酸塩から選ばれる少なくとも1種の金属塩(例えば、アルミニウム塩)の存在下に有機溶媒中で加水分解・縮合して得られるものである。シリコンアルコキシド、チタンアルコキシド、または、シリコンアルコキシドおよびチタンアルコキシドの加水分解に用いられる水の量は、シリコンアルコキシド、チタンアルコキシド、または、シリコンアルコキシドおよびチタンアルコキシドの総モル数に対して、モル比換算で0.5~24にすることが好ましい。より好ましくは0.5~20である。モル比(水の量(モル)/(金属アルコキシドの総モル数))が0.5以下の場合には、金属アルコキシドの加水分解が不十分となって、成膜性を低下させたり、得られる防眩性被膜の強度を低下させたりするので好ましくない。また、モル比が24より多い場合は、重縮合が進行し続けるため、貯蔵安定性を低下させるので好ましくない。その他の金属アルコキシドを用いる場合でも同様である。 The coating solution for forming an antiglare film is obtained by adding the first metal alkoxide (for example, silicon alkoxide or titanium alkoxide) represented by the formula (I) to the metal salt represented by the formula (II) and the formula (II). It is obtained by hydrolysis and condensation in an organic solvent in the presence of at least one metal salt (for example, an aluminum salt) selected from the M 2 alkoxides in the alkoxide. The amount of water used for the hydrolysis of silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide is 0 in terms of molar ratio with respect to the total number of moles of silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide. It is preferably from 0.5 to 24. It is more preferably 0.5 to 20. When the molar ratio (amount of water (mol) / (total number of moles of metal alkoxide)) is 0.5 or less, the hydrolysis of the metal alkoxide becomes insufficient, and the film forming property is lowered or obtained. It is not preferable because it reduces the strength of the antiglare coating. On the other hand, if the molar ratio is more than 24, polycondensation continues to proceed and storage stability decreases, which is not preferable. The same applies when other metal alkoxides are used.
 尚、他の金属アルコキシドを用いた場合にも、水の添加量について、同様の条件を選択することが好ましい。 Even when other metal alkoxides are used, it is preferable to select similar conditions for the amount of water added.
 防眩性被膜形成用塗布液を調製する際の加水分解過程において、共存する金属塩(例えば、アルミニウム塩)が含水塩の場合には、その含水分が反応に関与するため、加水分解に用いる水の量に対して金属塩(例えば、アルミニウム塩)の含水分を考慮する必要がある。 When the coexisting metal salt (for example, aluminum salt) is a hydrous salt in the hydrolysis process when preparing the coating liquid for forming an antiglare film, it is used for hydrolysis because its water content participates in the reaction. It is necessary to consider the water content of the metal salt (for example, aluminum salt) with respect to the amount of water.
 防眩性被膜形成用塗布液は、金属アルコキシドを加水分解・縮合させて製造されるものであり、金属アルコキシドの組成を選択することにより、得られる防眩性被膜の屈折率を所定の範囲内で調整することが可能である。例えば、金属アルコキシドとして、シリコンアルコキシドとチタンアルコキシドを選択した場合、その混合比率を調整することにより、後述する所定の範囲内で、具体的には1.45~2.1の範囲内で、得られる防眩性被膜の屈折率を調整することが可能である。本発明の防眩性被膜を具備する積層体の反射防止の観点から、本発明の防眩性被膜の屈折率は1.48~1.8が好ましい。 The coating solution for forming an antiglare film is produced by hydrolyzing and condensing a metal alkoxide. By selecting the composition of the metal alkoxide, the refractive index of the resulting antiglare film is within a predetermined range. It is possible to adjust with. For example, when silicon alkoxide and titanium alkoxide are selected as the metal alkoxide, by adjusting the mixing ratio thereof, it can be obtained within a predetermined range described later, specifically within the range of 1.45 to 2.1. It is possible to adjust the refractive index of the antiglare coating. From the viewpoint of antireflection of the laminate provided with the antiglare coating of the present invention, the refractive index of the antiglare coating of the present invention is preferably 1.48 to 1.8.
 換言すると、防眩性被膜形成用塗布液を塗布し焼成した後の防眩性被膜に要求される屈折率が決められると、その屈折率にしたがって、シリコンアルコキシドとチタンアルコキシドの組成モル比を決めることが可能である。この組成モル比は任意であるが、例えば、シリコンアルコキシドのみを加水分解することによって得られる防眩性被膜形成用塗布液からの防眩性被膜の屈折率は、1.45程度の値である。そして、チタンアルコキシドのみを加水分解して得られるコーティング組成物からの金属酸化物層の屈折率は、2.1程度の値である。したがって、防眩性被膜の屈折率を1.45~2.1までの間で設定したい場合、その範囲内の屈折率値に合わせてシリコンアルコキシドとチタンアルコキシドを所定の割合で用いてコーティング組成物を製造することが可能である。 In other words, when the refractive index required for the antiglare coating after coating and baking the coating liquid for forming the antiglare coating is determined, the composition molar ratio of silicon alkoxide and titanium alkoxide is determined according to the refractive index. It is possible. This composition molar ratio is arbitrary, but for example, the refractive index of the antiglare coating from the coating liquid for forming an antiglare coating obtained by hydrolyzing only silicon alkoxide is a value of about 1.45. .. And the refractive index of the metal oxide layer from the coating composition obtained by hydrolyzing only the titanium alkoxide is a value of about 2.1. Therefore, when it is desired to set the refractive index of the antiglare coating between 1.45 and 2.1, the coating composition uses a predetermined ratio of silicon alkoxide and titanium alkoxide according to the refractive index value within that range. It is possible to manufacture.
 また、他の金属アルコキシドを用いることによっても、得られる防眩性被膜の屈折率の調整は可能である。 Also, the refractive index of the obtained antiglare coating can be adjusted by using other metal alkoxide.
 さらに、防眩性被膜の屈折率については、組成条件以外に、成膜条件を選択することで調整することも可能である。こうすることで、防眩性被膜の所望の屈折率値を実現することが可能である。 Furthermore, the refractive index of the antiglare film can be adjusted by selecting film forming conditions in addition to the composition conditions. By doing so, it is possible to realize a desired refractive index value of the antiglare coating.
 すなわち、防眩性被膜形成用塗布液の塗膜を焼成して防眩性被膜を製造する場合、その焼成温度にしたがって、防眩性被膜の屈折率は変動する。この場合、焼成温度が高くするほど、防眩性被膜の屈折率を高くすることができる。したがって、焼成温度を適度な値に選択することで、得られる防眩性被膜の屈折率の調整が可能である。そして、基材などの耐熱性を考慮した場合、焼成温度は100℃~300℃の範囲が好ましく、150℃~250℃の範囲内とすることがより好ましい。 That is, when the coating film of the coating liquid for forming the antiglare film is fired to produce the antiglare film, the refractive index of the antiglare film fluctuates according to the firing temperature. In this case, the higher the firing temperature, the higher the refractive index of the antiglare coating. Therefore, the refractive index of the obtained antiglare coating can be adjusted by selecting the firing temperature to an appropriate value. When the heat resistance of the base material or the like is taken into consideration, the firing temperature is preferably in the range of 100 ° C. to 300 ° C., more preferably in the range of 150 ° C. to 250 ° C.
 また、防眩性被膜形成用塗布液がチタンアルコキシドを含む場合、焼成前に塗膜に紫外線(UV)を照射すると、得られる防眩性被膜の屈折率が変動する。具体的には、紫外線照射量を多くするほど、防眩性被膜の屈折率を高くすることができる。したがって、所望の屈折率を実現するため紫外線照射の有無を選択することが可能である。防眩性被膜において、組成等の条件選択により所望の屈折率が実現できる場合は、紫外線照射は行わなくてもよい。そして、紫外線照射を行う場合は、その照射量を選択することで、防眩性被膜の屈折率を調整することが可能である。防眩性被膜において、所望の屈折率を得るために紫外線照射が必要な場合は、例えば、高圧水銀ランプを使用することができる。そして、高圧水銀ランプを使用した場合、365nm換算で全光照射1000mJ/cm以上の照射量が好ましく、3000mJ/cm~10000mJ/cmの照射量がより好ましい。また、UV光源としては特に指定はなく、別のUV光源を使用することもできる。別の光源を用いる場合は、上記高圧水銀ランプを使用した場合と同量の積算光量が照射されればよい。 Further, when the coating liquid for forming an antiglare film contains titanium alkoxide, if the coating film is irradiated with ultraviolet rays (UV) before firing, the refractive index of the obtained antiglare film fluctuates. Specifically, the higher the amount of ultraviolet irradiation, the higher the refractive index of the antiglare coating. Therefore, it is possible to select whether or not to irradiate the ultraviolet rays in order to realize a desired refractive index. In the antiglare coating, if a desired refractive index can be achieved by selecting conditions such as composition, ultraviolet irradiation may not be performed. Then, when ultraviolet irradiation is performed, the refractive index of the antiglare coating can be adjusted by selecting the irradiation amount. If the antiglare coating requires UV irradiation to obtain the desired refractive index, for example, a high pressure mercury lamp can be used. Then, using a high-pressure mercury lamp, total light irradiation 1000 mJ / cm 2 or more dose is preferably at 365nm terms, the dose of 3000mJ / cm 2 ~ 10000mJ / cm 2 is more preferable. The UV light source is not particularly specified, and another UV light source can be used. When another light source is used, the same amount of integrated light as in the case of using the high pressure mercury lamp may be applied.
 しかしながら、特に防眩性被膜形成用塗布液にチタンアルコキシド成分を含む場合には、室温保存下で徐々に粘度が上昇するという性質を有する。実用上大きな問題となる懸念は無いものの、防眩性被膜の厚みを精密に制御する場合には、温度などに対する慎重な管理が必要となる。尚、こうした粘度の上昇は、コーティング組成物中のチタンアルコキシドの組成比率が多くなるにしたがって顕著となる。これは、チタンアルコキシドがシリコンアルコキシドなどに対して加水分解速度が大きく、縮合反応が速いためと考えられる。 However, particularly when the coating liquid for forming an antiglare film contains a titanium alkoxide component, it has the property of gradually increasing the viscosity when stored at room temperature. Although there is no concern that it will be a serious problem in practical use, careful control of temperature and the like is required when the thickness of the antiglare coating is precisely controlled. Incidentally, such an increase in viscosity becomes more remarkable as the composition ratio of titanium alkoxide in the coating composition increases. It is considered that this is because titanium alkoxide has a higher hydrolysis rate than silicon alkoxide and the condensation reaction is fast.
 防眩性被膜形成用塗布液がチタンアルコキシド成分を含む場合において、粘度変化を少なくするためには、例えば金属塩とアルコールなどの溶媒下で混合した後、シリコンアルコキシド、チタンアルコキシドを加水分解させる方法が挙げられる。この方法ではその後、グルコールもしくはその誘導体を混合させることで、縮合物の安定性が向上し、粘度変化が少ない防眩性被膜形成用塗布液が得られる。 When the coating solution for forming an antiglare coating contains a titanium alkoxide component, in order to reduce the change in viscosity, for example, a method of hydrolyzing a silicon alkoxide and a titanium alkoxide after mixing in a solvent such as a metal salt and an alcohol. Is mentioned. In this method, after that, by mixing glucol or a derivative thereof, the stability of the condensate is improved, and a coating liquid for forming an antiglare film having a small change in viscosity can be obtained.
 以上説明した防眩性被膜形成用塗布液は、塗布の際、微細な液滴にし、基材に着液させることにより、防眩性を有する金属酸化物被膜を得ることができる。塗布手法としては、スプレー塗布、ミスト塗布、インクジェット塗布などが挙げられ、その中でもスプレー塗布、インクジェット塗布が好ましい。 The coating liquid for forming an antiglare film described above can be obtained as a metal oxide film having antiglare properties by forming fine droplets and landing the liquid on a substrate at the time of coating. Examples of the coating method include spray coating, mist coating, and inkjet coating, and among them, spray coating and inkjet coating are preferable.
<積層体>
 本発明の積層体は、防眩性被膜形成用塗布液をガラス基板を始めとする種々の基板上に塗布・焼成し、防眩性被膜を形成させることで得られる。この防眩性被膜上には、積層体に求められる機能に対応し、反射防止膜等の種々の機能性膜を成膜することが可能である。
 ここで、反射防止膜とは反射率低減の効果をもたらし、光の映り込みによる眩しさを低減するほか、画像表示装置に使用した場合には、画像表示装置からの光の透過率を向上でき、画像表示装置の視認性を向上できる膜のことである。
 反射防止膜の構成としては光の反射を抑制できる構成であれば特に限定されず、例えば、上記防眩性被膜よりも屈折率が低い膜(以下、低屈折率膜ともいう)が挙げられる。
 低屈折率膜を構成する材料としては、含フッ素有機基が結合したケイ素原子を有するポリシロキサンが挙げられる。
 反射防止膜を形成する方法としては、上記防眩性被膜上またはその他機能膜上に形成された密着層の表面に、スピンコート法、ディップコート法、キャスト法、スリットコート法、スプレーコート法、静電噴霧堆積法(ESD法)等により塗布した後必要に応じて加熱処理する方法、または密着層の表面に化学的気相蒸着法(CVD法)、スパッタリング法やPLD法のような物理的気相蒸着法(PLD法)等が挙げられる。
 更に本発明の積層体は、前記防眩性被膜上又は反射防止膜上に更に防汚膜を積層してもよい。防汚膜とは表面への有機物、無機物の付着を抑制する膜、または、表面に有機物、無機物が付着した場合においても、ふき取り等のクリーニングにより付着物が容易に除去できる効果をもたらす膜のことである。
 防汚膜の厚さは、特に限定されないが、防汚膜が含フッ素有機ケイ素化合物被膜からなる場合、膜厚で2~20nmであることが好ましく、2~15nmであることがより好ましく、2~10nmであることがさらに好ましい。膜厚が2nm以上であれば、防汚層によって均一に覆われた状態となり、耐擦り性の観点で実用に耐えるものとなる。また、膜厚が20nm以下であれば、防汚膜が形成された状態での防眩性被膜基板のヘイズ値等の光学特性が良好である。
<Laminate>
The laminate of the present invention can be obtained by applying and firing a coating liquid for forming an antiglare film on various substrates including a glass substrate to form an antiglare film. Various functional films such as an antireflection film can be formed on the antiglare film in accordance with the function required of the laminate.
Here, the antireflection film brings about the effect of reducing the reflectance, reduces the glare due to the reflection of light, and when used in the image display device, can improve the transmittance of the light from the image display device. , A film that can improve the visibility of an image display device.
The structure of the antireflection film is not particularly limited as long as it can suppress the reflection of light, and examples thereof include a film having a refractive index lower than that of the antiglare film (hereinafter, also referred to as a low refractive index film).
Examples of the material constituting the low refractive index film include polysiloxane having a silicon atom to which a fluorine-containing organic group is bonded.
As a method of forming an antireflection film, on the surface of the adhesion layer formed on the antiglare coating or other functional film, spin coating method, dip coating method, casting method, slit coating method, spray coating method, A method of applying by an electrostatic spray deposition method (ESD method) and then heat-treating as necessary, or a physical vapor deposition method (CVD method), a sputtering method, a PLD method, or the like on the surface of an adhesive layer. A vapor deposition method (PLD method) and the like can be mentioned.
Further, in the laminated body of the present invention, an antifouling film may be further laminated on the antiglare film or the antireflection film. An antifouling film is a film that suppresses the adhesion of organic and inorganic substances to the surface, or a film that, even when organic and inorganic substances adhere to the surface, brings the effect of easily removing the adhered substances by cleaning such as wiping Is.
The thickness of the antifouling film is not particularly limited, but when the antifouling film is composed of a fluorine-containing organosilicon compound film, the film thickness is preferably 2 to 20 nm, more preferably 2 to 15 nm. More preferably, it is ˜10 nm. When the film thickness is 2 nm or more, the film is uniformly covered by the antifouling layer, and can withstand practical use from the viewpoint of abrasion resistance. When the film thickness is 20 nm or less, the optical properties such as the haze value of the antiglare film substrate with the antifouling film formed thereon are good.
  防眩性被膜基板は、ヘイズの面内の標準偏差が1~40%であり、1~30%であることがより好ましい。この範囲であれば、使用者側から防眩性被膜付基板を視認した際に、均質な防眩膜処理がされているように視認でき、美観性に優れる。また、防眩膜の凹凸によるタッチ感も損なわない。 The in-plane standard deviation of haze of the antiglare coated substrate is 1 to 40%, and more preferably 1 to 30%. Within this range, when the substrate with the antiglare film is visually recognized from the user side, it can be visually recognized as if the uniform antiglare film treatment is applied, and the aesthetic appearance is excellent. Further, the touch feeling due to the unevenness of the antiglare film is not impaired.
<用途>
  本発明の防眩性被膜基板の用途としては、特に限定されない。具体例としては、車両用透明部品(ヘッドライトカバー、サイドミラー、フロント透明基板、サイド透明基板、リア透明基板、インスツルメントパネル表面等。)、メータ、建築窓、ショーウインドウ、ディスプレイ(ノート型パソコン、モニタ、LCD、PDP、ELD、CRT、PDA等)、LCDカラーフィルタ、タッチパネル用基板、ピックアップレンズ、光学レンズ、眼鏡レンズ、カメラ部品、ビデオ部品、CCD用カバー基板、光ファイバ端面、プロジェクタ部品、複写機部品、太陽電池用透明基板(カバーガラス等。)、携帯電話窓、バックライトユニット部品(導光板、冷陰極管等。)、バックライトユニット部品液晶輝度向上フィルム(プリズム、半透過フィルム等。)、液晶輝度向上フィルム、有機EL発光素子部品、無機EL発光素子部品、蛍光体発光素子部品、光学フィルタ、光学部品の端面、照明ランプ、照明器具のカバー、増幅レーザ光源、反射防止フィルム、偏光フィルム、農業用フィルム等が挙げられる。
<Use>
The application of the antiglare coating substrate of the present invention is not particularly limited. Specific examples include transparent parts for vehicles (headlight covers, side mirrors, front transparent substrates, side transparent substrates, rear transparent substrates, instrument panel surfaces, etc.), meters, architectural windows, show windows, displays (notebook type). Personal computer, monitor, LCD, PDP, ELD, CRT, PDA, etc.), LCD color filter, touch panel substrate, pickup lens, optical lens, spectacle lens, camera component, video component, CCD cover substrate, optical fiber end face, projector component , Copier parts, transparent substrate for solar cells (cover glass, etc.), mobile phone windows, backlight unit parts (light guide plate, cold cathode tube, etc.), backlight unit parts LCD brightness improvement film (prism, transflective film, etc.) Etc.), liquid crystal brightness enhancement film, organic EL light emitting device parts, inorganic EL light emitting device parts, phosphor light emitting device parts, optical filters, end faces of optical parts, illumination lamps, lighting equipment covers, amplified laser light sources, antireflection films. , Polarizing films, agricultural films and the like.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、これらに限定されるものではない。
以下で用いる略語は下記の通りである。
TEOS:テトラエトキシシラン
F13:トリデカフルオロオクチルトリメトキシシラン
UPS:γ-ウレイドプロピルトリエトキシシラン
MPMS:3-メタクリロキシプロピルトリメトキシシラン
TTE:テトラエトキシチタン
TIPT:テトライソプロポキシチタン
AN:硝酸アルミニウム九水和物
MeOH:メタノール
EtOH:エタノール
IPA:イソプロパノール
BCS:ブチルセロソルブ
PGME:プロピレングリコールモノメチルエーテル
PGMEA:プロピレングリコールモノメチルエーテルアセテート
PG:プロピレングリコール
HG:2-メチル-2,4-ペンタンジオール
Hereinafter, the present invention will be described in more detail with reference to Examples, but the invention is not limited thereto.
The abbreviations used below are as follows.
TEOS: Tetraethoxysilane F13: Tridecafluorooctyltrimethoxysilane UPS: γ-ureidopropyltriethoxysilane MPMS: 3-methacryloxypropyltrimethoxysilane TTE: Tetraethoxytitanium TIPT: Tetraisopropoxytitanium AN: Aluminum Nine Water Japanese MeOH: Methanol EtOH: Ethanol IPA: Isopropanol BCS: Butyl cellosolve PGME: Propylene glycol monomethyl ether PGMEA: Propylene glycol monomethyl ether acetate PG: Propylene glycol HG: 2-Methyl-2,4-pentanediol
<合成例1>
 200mL容量のフラスコ中に、AN(2.9g)、水(2.7g)、EtOH(50.3g)を加えて撹拌し、AN溶液を得た。そのAN溶液に、TEOS(23.1g)を加え、室温で30分撹拌した。その後、TTE(8.4g)、EtOH(12.6g)を加え、さらに室温で30分撹拌し、溶液K1を得た。
<Synthesis example 1>
AN (2.9 g), water (2.7 g) and EtOH (50.3 g) were added to a flask having a capacity of 200 mL and stirred to obtain an AN solution. TEOS (23.1 g) was added to the AN solution, and the mixture was stirred at room temperature for 30 minutes. Then, TTE (8.4g) and EtOH (12.6g) were added, and also it stirred at room temperature for 30 minutes, and the solution K1 was obtained.
<合成例2>
 200mL容量のフラスコ中に、AN(2.9g)、水(2.6g)、EtOH(50.6g)を加えて撹拌し、AN溶液を得た。そのAN溶液に、TEOS(21.2g)を加え、室温で30分撹拌した。その後、TTE(10.0g)、EtOH(12.7g)を加え、さらに室温で30分撹拌し、溶液K2を得た。
<Synthesis example 2>
AN (2.9 g), water (2.6 g) and EtOH (50.6 g) were added to a flask having a capacity of 200 mL and stirred to obtain an AN solution. TEOS (21.2 g) was added to the AN solution, and the mixture was stirred at room temperature for 30 minutes. Then, TTE (10.0g) and EtOH (12.7g) were added, and also it stirred at room temperature for 30 minutes, and the solution K2 was obtained.
<合成例3>
 200mL容量のフラスコ中に、AN(2.8g)、水(2.6g)、EtOH(51.2g)を加えて撹拌し、AN溶液を得た。そのAN溶液に、TEOS(17.7g)を加え、室温で30分撹拌した。その後、TTE(12.9g)、EtOH(12.8g)を加え、さらに室温で30分撹拌し、溶液K3を得た。
<Synthesis example 3>
AN (2.8 g), water (2.6 g) and EtOH (51.2 g) were added to a flask having a capacity of 200 mL and stirred to obtain an AN solution. TEOS (17.7 g) was added to the AN solution, and the mixture was stirred at room temperature for 30 minutes. Then, TTE (12.9g) and EtOH (12.8g) were added, and also it stirred at room temperature for 30 minutes, and the solution K3 was obtained.
<合成例4>
 200mL容量のフラスコ中に、AN(2.9g)、水(2.7g)、EtOH(24.3g)、IPA(24.3g)を加えて撹拌し、AN溶液を得た。そのAN溶液に、TEOS23.1gを加え、室温で30分撹拌した。その後、TIPT(10.5g)、EtOH(6.1g)、IPA(6.1g)を加え、さらに室温で30分撹拌し、溶液K4を得た。
<Synthesis example 4>
AN (2.9 g), water (2.7 g), EtOH (24.3 g) and IPA (24.3 g) were added to a 200 mL volumetric flask and stirred to obtain an AN solution. 23.1 g of TEOS was added to the AN solution, and the mixture was stirred at room temperature for 30 minutes. Then, TIPT (10.5 g), EtOH (6.1 g) and IPA (6.1 g) were added, and the mixture was further stirred at room temperature for 30 minutes to obtain a solution K4.
<合成例5>
 還流管を備え付けた200mL四つ口フラスコに、TEOS(34.7g)、MeOH(33.0g)を加え、撹拌し、そこにMeOH(16.4g)、水(15.0g)、60%硝酸水溶液(0.9g)を加え、10℃の氷浴中で30分撹拌した。その後、3時間還流し、室温まで放冷し、溶液K5を得た。
<Synthesis example 5>
To a 200 mL four-necked flask equipped with a reflux tube, TEOS (34.7 g) and MeOH (33.0 g) were added and stirred, and MeOH (16.4 g), water (15.0 g), and 60% nitric acid were added thereto. An aqueous solution (0.9 g) was added, and the mixture was stirred in an ice bath at 10 ° C. for 30 minutes. Then, the mixture was refluxed for 3 hours and allowed to cool to room temperature to obtain solution K5.
<合成例6>
 還流管を備え付けた200mL四つ口フラスコに、TEOS(29.0g)、F13(10.5g)、MeOH(27.9g)を加え、撹拌し、そこにMeOH(14.0g)、水(15.0g)、蓚酸(0.8g)を加え、10℃の氷浴中で30分撹拌した。その後、65℃で2時間撹拌し、その後、UPS(1.4g)、MeOH(1.4g)を加え、さらに65℃で2時間反応させた。その後、室温まで放冷し、溶液K6を得た。
<Synthesis example 6>
To a 200 mL four-necked flask equipped with a reflux tube, TEOS (29.0 g), F13 (10.5 g) and MeOH (27.9 g) were added and stirred, and MeOH (14.0 g) and water (15 g) were added thereto. .0 g) and oxalic acid (0.8 g) were added, and the mixture was stirred in an ice bath at 10 ° C. for 30 minutes. Then, it stirred at 65 degreeC for 2 hours, Then, UPS (1.4g) and MeOH (1.4g) were added, and also it was made to react at 65 degreeC for 2 hours. Then, it stood to cool to room temperature and obtained the solution K6.
<合成例7>
 200mL容量のフラスコ中に、AN(2.8g)、水(2.5g)、EtOH(51.0g)を加えて撹拌し、AN溶液を得た。そのAN溶液に、TEOS(15.9g)、MPMS(2.1g)を加え、室温で30分撹拌した。その後、TTE(12.9g)、EtOH(12.8g)を加え、さらに室温で30分撹拌し、溶液K7を得た。
<Synthesis example 7>
AN (2.8 g), water (2.5 g) and EtOH (51.0 g) were added to a flask having a capacity of 200 mL and stirred to obtain an AN solution. TEOS (15.9 g) and MPMS (2.1 g) were added to the AN solution, and the mixture was stirred at room temperature for 30 minutes. Then, TTE (12.9g) and EtOH (12.8g) were added, and also it stirred at room temperature for 30 minutes, and the solution K7 was obtained.
<合成例8>
 200mL容量のフラスコ中に、AN(2.8g)、水(2.5g)、EtOH(38.3g)を加えて撹拌し、AN溶液を得た。そのAN溶液に、TEOS(16.8g)を加え、室温で30分撹拌した。その後、TTE(12.9g)、EtOH(12.8g)を加え、さらに室温で30分撹拌した。その後、UPS(1.1g)、EtOH(12.8g)を加え、室温で30分撹拌した。溶液K8を得た。
<Synthesis example 8>
AN (2.8 g), water (2.5 g) and EtOH (38.3 g) were added to a flask having a capacity of 200 mL and stirred to obtain an AN solution. TEOS (16.8 g) was added to the AN solution, and the mixture was stirred at room temperature for 30 minutes. Then, TTE (12.9 g) and EtOH (12.8 g) were added, and the mixture was further stirred at room temperature for 30 minutes. Then, UPS (1.1 g) and EtOH (12.8 g) were added, and the mixture was stirred at room temperature for 30 minutes. A solution K8 was obtained.
<調製例1>
 K1溶液60gに、PGME(10g)、EtOH(30g)を加え、溶液KL1を得た。
<Preparation Example 1>
PGME (10 g) and EtOH (30 g) were added to 60 g of the K1 solution to obtain a solution KL1.
<調製例2~7>
 K2~K5、およびK7~K8溶液(60g)に、PGME(30g)、EtOH(10g)を加え、それぞれ溶液KL2~KL5、KL7~KL8を得た。
<Preparation Examples 2 to 7>
PGME (30 g) and EtOH (10 g) were added to the K2-K5 and K7-K8 solutions (60 g) to obtain solutions KL2-KL5 and KL7-KL8, respectively.
<調製例8>
 K1溶液(60g)に、EtOH(40g)を加え、溶液KM1を得た。
<Preparation Example 8>
EtOH (40 g) was added to the K1 solution (60 g) to obtain a solution KM1.
<調製例9>
 K1溶液(60g)に、HG(10g)、BCS(10g)、IPA(20g)を加え、溶液KM2を得た。
<Preparation Example 9>
HG (10g), BCS (10g), and IPA (20g) were added to the K1 solution (60g), and the solution KM2 was obtained.
<調製例10>
 K5溶液(60g)に、PGMEA(30g)、MeOH(10g)を加え、溶液KM3を得た。
<Preparation Example 10>
PGMEA (30 g) and MeOH (10 g) were added to the K5 solution (60 g) to obtain a solution KM3.
<調製例11>
 K6溶液(20g)に、PG(5g)、MeOH(75g)を加え、溶液KL6を得た。
<Preparation Example 11>
PG (5 g) and MeOH (75 g) were added to the K6 solution (20 g) to obtain a solution KL6.
[スプレー塗布]
 スプレー塗布を下記に示す装置、条件で行った。
 装置名:アピロス社製スプレーコーターAPI-240-3D
<塗布条件I>
ノズル高さ:100mm、Y軸ピッチ:5mm、Air圧力:560kPa、薬液流量2cc/min、ノズル速度:170mm/sec
<塗布条件II>
ノズル高さ:100mm、Y軸ピッチ:5mm、Air圧力:560kPa、薬液流量2cc/min、ノズル速度:250mm/sec
<塗布条件III>
ノズル高さ:100mm、Y軸ピッチ:7mm、Air圧力:560kPa、薬液流量4.9cc/min、ノズル速度:400mm/sec
[Spray application]
Spray coating was performed with the equipment and conditions shown below.
Device name: Spray coater API-240-3D manufactured by Apirosu
<Application condition I>
Nozzle height: 100 mm, Y-axis pitch: 5 mm, Air pressure: 560 kPa, chemical flow rate 2 cc / min, nozzle speed: 170 mm / sec
<Application condition II>
Nozzle height: 100 mm, Y-axis pitch: 5 mm, Air pressure: 560 kPa, chemical liquid flow rate 2 cc/min, nozzle speed: 250 mm/sec
<Coating conditions III>
Nozzle height: 100 mm, Y-axis pitch: 7 mm, Air pressure: 560 kPa, chemical flow rate 4.9 cc / min, nozzle speed: 400 mm / sec
[焼成条件]
 ホットプレート上にて温度70℃で3分乾燥し、熱風循環式オーブンにて200℃で30分焼成した。
[Baking conditions]
It was dried on a hot plate at a temperature of 70 ° C. for 3 minutes and baked in a hot air circulation oven at 200 ° C. for 30 minutes.
[吐出安定性]
 目詰まりなく吐出できた場合〇、塗布最中に目詰まりが起こった場合×とした。
[Discharge stability]
When it was possible to discharge without clogging, it was evaluated as 〇, and when clogging occurred during application, it was evaluated as ×.
[HAZE、全光線透過率]
 基板にソーダライムガラスを用い、スプレー塗布で塗布条件IもしくはIIにて製膜した。得られた被膜付き基板をスガ試験機(株)社製ヘイズメーターHZ-V3にてHAZEおよび全光線透過率を測定した。
[Haze, total light transmittance]
Soda lime glass was used as a substrate, and a film was formed by spray coating under coating conditions I or II. The obtained coated substrate was measured for HAZE and total light transmittance with a haze meter HZ-V3 manufactured by Suga Test Instruments Co., Ltd.
[表面観察]
 基板にソーダライムガラスを用い、スプレー塗布で塗布条件IもしくはIIにて製膜した。得られた被膜付き基板をブルカージャパン(株)社製3次元白色干渉顕微鏡 Contour GTにて観察した。
[Surface observation]
Soda lime glass was used as a substrate, and a film was formed by spray coating under coating conditions I or II. The obtained coated substrate was observed with a three-dimensional white interference microscope Contour GT manufactured by Bruker Japan Co., Ltd.
[屈折率]
 基板にシリコン基板(100)を用い、スピンコートにて焼成後の膜厚が100nmとなるように溶液KL2~KL5、KL7~KL8およびKM2を製膜し、ホットプレート上にて温度70℃で3分乾燥し、熱風循環式オーブンにて200℃で30分焼成した。得られた被膜付き基板を用いて、エリプソメーター(溝尻光学工業所社製、DVA-FLVW)で波長633nmにおける屈折率を測定した。
[Refractive index]
Using a silicon substrate (100) as a substrate, solutions KL2 to KL5, KL7 to KL8, and KM2 were formed into films by spin coating so that the film thickness after baking was 100 nm. It was dried for minutes and baked in a hot air circulation oven at 200 ° C. for 30 minutes. Using the obtained coated substrate, the refractive index at a wavelength of 633 nm was measured with an ellipsometer (DVA-FLVW, manufactured by Mizojiri Optical Co., Ltd.).
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1に示されるように、実施例1~7、および11~12では、吐出安定性が保たれている。また、HAZE値が上昇しており、干渉顕微鏡画像からも表面に凹凸形状が観察された。以上のことから防眩性被膜が形成できたことが示唆される。
 比較例1では溶媒(A)成分が含まれていないため、吐出安定性が乏しく、ノズルに目詰まりが発生し、成膜が困難であった。また、比較例2については、150℃以上の溶媒を含んでいるため、HAZEが上昇せず、かつ干渉顕微鏡画像でも表面は平坦であることが観察され、防眩性は発現しなかった。
As shown in Table 1, in Examples 1 to 7 and 11 to 12, discharge stability is maintained. In addition, the HAZE value increased, and an uneven shape was observed on the surface from the interference contrast microscope image. From the above, it is suggested that the antiglare film could be formed.
In Comparative Example 1, since the solvent (A) component was not contained, ejection stability was poor, nozzle clogging occurred, and film formation was difficult. Further, in Comparative Example 2, since it contained a solvent of 150 ° C. or higher, HAZE did not increase, and it was observed that the surface was flat even in the interference contrast microscope image, and antiglare was not exhibited.
[LR製膜]
 KL2~KL4およびKM3をガラス基板上に、スプレー塗布で塗布条件IIにて製膜し、防眩性被膜付き基板を作製した。
 また、KM3を用いて屈折率測定を行ったところ、屈折率は1.43であった。加えて、KM3を用いて製膜した基板のHAZEは10であった。
[LR film formation]
KL2 to KL4 and KM3 were formed on a glass substrate by spray coating under coating conditions II to prepare a substrate with an antiglare coating.
Moreover, when the refractive index was measured using KM3, the refractive index was 1.43. In addition, the HAZE of the substrate formed with KM3 was 10.
 上記防眩性被膜付き基板上に反射防止層としてKL6をスプレー塗布で塗布条件IIIにて製膜した。 KL6 was spray-coated as an antireflection layer on the above-mentioned substrate with an antiglare coating under coating conditions III.
[反射率]
 作製した基板を用いて、(株)島津製作所社製紫外可視近赤外分光光度計UV-3600にて、光の入射角5°での波長380nmから800nmの範囲での反射率を測定し、得られた分校反射率曲線から、JISR 3106に従って、平均視感反射率を求めた。
[Reflectance]
Using the manufactured substrate, the reflectance in the wavelength range of 380 nm to 800 nm at an incident angle of 5° was measured with an ultraviolet-visible near-infrared spectrophotometer UV-3600 manufactured by Shimadzu Corporation. From the obtained branch school reflectance curve, the average visual reflectance was calculated according to JIS R 3106.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例8~10については、反射防止層を設けることにより、表面反射が抑制されていた。比較例3については、防眩性は発現できるものの、屈折率が低いことから、反射防止層を設けても反射抑制の効果がほとんど発現しなかった。 In Examples 8 to 10, surface reflection was suppressed by providing an antireflection layer. In Comparative Example 3, although antiglare property could be exhibited, the refractive index was low, so that the effect of suppressing reflection was hardly exhibited even if the antireflection layer was provided.
 本発明の防眩性被膜形成用塗布液を用いることにより、防眩性(アンチグレア機能)に優れるとともに、ガラス基板上に形成可能であり、高屈折率を有する防眩性被膜防眩性被膜及びそれを具備する積層体の提供が可能となる。これにより、テレビ、パーソナルコンピュータ、スマートフォン等の各種デバイスが具備する画像表示装置(液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイ等)の表示品位の向上に貢献することが出来る。
 
By using the coating liquid for forming an antiglare film of the present invention, while being excellent in antiglare property (antiglare function), it can be formed on a glass substrate and has a high refractive index. It is possible to provide a laminate including the same. This can contribute to improving the display quality of image display devices (liquid crystal displays, organic EL displays, plasma displays, etc.) provided in various devices such as televisions, personal computers, and smartphones.

Claims (13)

  1. 下記の成分を含有する防眩性被膜形成用塗布液。
    成分(A):下記式(I)で示される第1の金属アルコキシド、その加水分解物、もしくはその部分縮合物。
    (ORn-m         (I)
    (式中、Mは、珪素(Si)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ホウ素(B)、アルミニウム(Al)、マグネシウム(Mg)、スズ(Sn)および亜鉛(Zn)よりなる群から選択された少なくとも1種以上の金属を表す。Rは、水素原子またはフッ素原子で置換されてもよく、且つ、ハロゲン原子、ビニル基、グリシドキシ基、メルカプト基、メタクリロキシ基、アクリロキシ基、イオシアネート基、アミノ基またはウレイド基で置換されていてもよく、且つ、ヘテロ原子を有していてもよい炭素数1~20の炭化水素基を表す。Rは、炭素数1~5のアルキル基を表し、nは、Mの価数2~5を表す。mは、Mの価数が2の場合0または1、Mの価数が3の場合0~2のいずれかであり、Mの価数が4の場合0~3のいずれかであり、Mの価数が5の場合0~4のいずれかである。)
    成分(B):下記式(II)で示される金属塩及び下記式(II)中のMの蓚酸塩から選ばれる少なくとも1種を含有する金属塩。
    (X)           (II)
    (式中、Mは、アルミニウム(Al)、インジウム(In)、亜鉛(Zn)、ジルコニウム(Zr)、ビスマス(Bi)、ランタン(La)、タンタル(Ta)、イットリウム(Y)およびセリウム(Ce)よりなる群から選択された少なくとも1種の金属を表し、Xは、塩素、硝酸、硫酸、酢酸、スルファミン酸、スルホン酸、アセト酢酸、アセチルアセトナートまたはこれらの塩基性塩を表し、kは、Mの価数を表す。)
    溶媒群(A):沸点160℃未満のグリコールエーテルおよびその誘導体、もしくはケトン類から選ばれる少なくとも1種。
    溶媒群(B):沸点120℃以下のアルコール類から選ばれる少なくとも1種。
    A coating liquid for forming an antiglare film containing the following components.
    Component (A): A first metal alkoxide represented by the following formula (I), a hydrolyzate thereof, or a partial condensate thereof.
    R 1 m M 1 (OR 2 ) nm (I)
    (In the formula, M 1 is silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg), tin (Sn) and zinc ( Zn) represents at least one metal selected from the group consisting of: R 1 may be substituted with a hydrogen atom or a fluorine atom, and is a halogen atom, a vinyl group, a glycidoxy group, a mercapto group or a methacryloxy group. Represents a hydrocarbon group having 1 to 20 carbon atoms, which may be substituted with an acryloxy group, an isocyanate group, an amino group or an ureido group and may have a hetero atom, and R 2 represents the number of carbon atoms. represents an alkyl group of 1 ~ 5, n is .m representing the valence number of 2 to 5 M 1 is 0 when the case valence of M 1 is 2 0 or 1, the valence of M 1 is 3 ~ If the valence of M 1 is 4, it is either 0 to 3, and if the valence of M 1 is 5, it is 0 to 4.)
    Component (B): a metal salt containing at least one selected from oxalates M 2 of a metal salt and the following formula (II) in the following formula (II).
    M 2 (X) k (II)
    (In the formula, M 2 is aluminum (Al), indium (In), zinc (Zn), zirconium (Zr), bismuth (Bi), lanthanum (La), tantalum (Ta), yttrium (Y) and cerium ( Ce) represents at least one metal selected from the group consisting of, X represents chlorine, nitric acid, sulfuric acid, acetic acid, sulfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate or a basic salt thereof, and k Represents the valence of M 2. )
    Solvent group (A): At least one selected from glycol ethers having a boiling point of less than 160 ° C. and derivatives thereof, or ketones.
    Solvent group (B): At least one selected from alcohols having a boiling point of 120 ° C. or lower.
  2. 溶媒群(A)が、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテルなどのグリコールエーテル類及びその誘導体、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類から選ばれる少なくとも1種である、請求項1に記載の防眩性被膜形成用塗布液。 Solvent group (A) is ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl Selected from glycol ethers and their derivatives such as ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol dimethyl ether, propylene glycol diethyl ether, and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone. The coating liquid for forming an antiglare film according to claim 1, which is at least one type.
  3. 溶媒群(B)が、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノールから選ばれる少なくとも1種である、請求項1に記載の防眩性被膜形成用塗布液。 The solvent group (B) is at least one selected from methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol and 2-methyl-2-propanol. The coating liquid for forming an antiglare film according to claim 1.
  4. 溶媒群(A)の含有量が、溶媒全体の5~70質量%である、請求項1に記載の防眩性被膜形成用塗布液。 The coating liquid for forming an antiglare film according to claim 1, wherein the content of the solvent group (A) is 5 to 70% by mass of the whole solvent.
  5. 前記式[1]のMが、珪素、チタン、ジルコニウム、アルミニウム、スズである、請求項1に記載の防眩性被膜形成用塗布液。 The coating liquid for forming an antiglare film according to claim 1, wherein M 1 of the formula [1] is silicon, titanium, zirconium, aluminum, or tin.
  6. 請求項1の成分(A)が、シリコンアルコキシド、チタンアルコキシド、ジルコニウムアルコキシドの部分縮合物である、請求項1に記載の防眩性被膜形成用塗布液。 The coating liquid for forming an antiglare film according to claim 1, wherein the component (A) of claim 1 is a partial condensate of silicon alkoxide, titanium alkoxide, and zirconium alkoxide.
  7. 前記式[2]のMが、アルミニウム、インジウム、セリウムである、請求項1に記載の防眩性被膜形成用塗布液。 The coating liquid for forming an antiglare film according to claim 1, wherein M 2 of the formula [2] is aluminum, indium, or cerium.
  8. 請求項1から請求項6のいずれか1項に記載の防眩性被膜形成用塗布液を、スプレー塗布によって基板に塗布する、防眩性被膜の製造方法。 A method for producing an antiglare coating, wherein the coating liquid for forming an antiglare coating according to any one of claims 1 to 6 is applied to a substrate by spray coating.
  9. 請求項1から請求項7のいずれか1項に記載の防眩性被膜形成用塗布液から得られる、防眩性被膜。 An antiglare coating film obtained from the coating liquid for forming an antiglare coating film according to any one of claims 1 to 7.
  10. 屈折率が1.48~1.8である、請求項9に記載の防眩性被膜。 The antiglare coating according to claim 9, which has a refractive index of 1.48 to 1.8.
  11. 請求項9または請求項10に記載の防眩性被膜を具備する積層体。 A laminate comprising the antiglare coating according to claim 9 or 10.
  12. 前記積層体のヘイズの面内の標準偏差が1~40%である、請求項11に記載の積層体。 The laminate according to claim 11, wherein the standard deviation of the haze of the laminate is 1 to 40%.
  13. 請求項9または請求項10に記載の防眩性被膜上に、反射防止膜を積層させた積層体。
     
    A laminate in which an antireflection film is laminated on the antiglare coating according to claim 9.
PCT/JP2020/008270 2019-03-01 2020-02-28 Anti-glare coating film formation coating liquid, anti-glare coating film, and laminate including anti-glare coating film WO2020179657A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080018097.2A CN113518802A (en) 2019-03-01 2020-02-28 Coating liquid for forming antiglare film, and laminate having antiglare film
JP2021504042A JPWO2020179657A1 (en) 2019-03-01 2020-02-28
KR1020217030229A KR20210132679A (en) 2019-03-01 2020-02-28 Coating liquid for forming an anti-glare film, an anti-glare film, and a laminate having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-037371 2019-03-01
JP2019037371 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020179657A1 true WO2020179657A1 (en) 2020-09-10

Family

ID=72338626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008270 WO2020179657A1 (en) 2019-03-01 2020-02-28 Anti-glare coating film formation coating liquid, anti-glare coating film, and laminate including anti-glare coating film

Country Status (5)

Country Link
JP (1) JPWO2020179657A1 (en)
KR (1) KR20210132679A (en)
CN (1) CN113518802A (en)
TW (1) TWI752426B (en)
WO (1) WO2020179657A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105398A (en) * 2000-09-29 2002-04-10 Hoya Corp Method for producing coating composition for lens of spectacles
JP2003337204A (en) * 2002-05-22 2003-11-28 Nippon Paper Industries Co Ltd Method of manufacturing antidazzle film and method of manufacturing antidazzle antireflection film
JP2010085579A (en) * 2008-09-30 2010-04-15 Toray Ind Inc Method for manufacturing antireflective optical article and siloxane resin composition
WO2014203951A1 (en) * 2013-06-19 2014-12-24 日産化学工業株式会社 Composition for forming metal oxide film, and metal oxide film
US20160041307A1 (en) * 2014-08-08 2016-02-11 Ppg Industries Ohio, Inc. Method of forming an anti-glare coating on a substrate
WO2016175245A1 (en) * 2015-04-30 2016-11-03 日産化学工業株式会社 Coating composition and optical member

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522505B2 (en) * 1998-12-28 2010-08-11 日揮触媒化成株式会社 Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
WO2008105117A1 (en) * 2007-02-26 2008-09-04 Konica Minolta Opto, Inc. Anti-dazzling film, anti-dazzling anti-refleciton film, polarizing plate using the anti-dazzling film and anti-reflection film, and display device
US20090029179A1 (en) * 2007-05-14 2009-01-29 Fujifilm Corporation Two-liquid composition, hydrophilic composition and hydrophilic member
WO2009075201A1 (en) * 2007-12-11 2009-06-18 Konica Minolta Opto, Inc. Anti-glare film, polarizing plate and liquid crystal display device
WO2010095325A1 (en) * 2009-02-17 2010-08-26 コニカミノルタオプト株式会社 Low reflection member, anti-reflection film, polarizing plate, and image display device
JP5277273B2 (en) * 2011-03-14 2013-08-28 富士フイルム株式会社 Manufacturing method of optical film
WO2013065696A1 (en) * 2011-10-31 2013-05-10 日産化学工業株式会社 Method for producing coating solution for metal oxide coating, coating solution for metal oxide coating, and metal oxide coating
WO2014119453A1 (en) 2013-01-30 2014-08-07 旭硝子株式会社 Transparent base having stain-proof film attached thereto
JP6799283B2 (en) 2016-10-12 2020-12-16 日産化学株式会社 Anti-glare hard coat laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105398A (en) * 2000-09-29 2002-04-10 Hoya Corp Method for producing coating composition for lens of spectacles
JP2003337204A (en) * 2002-05-22 2003-11-28 Nippon Paper Industries Co Ltd Method of manufacturing antidazzle film and method of manufacturing antidazzle antireflection film
JP2010085579A (en) * 2008-09-30 2010-04-15 Toray Ind Inc Method for manufacturing antireflective optical article and siloxane resin composition
WO2014203951A1 (en) * 2013-06-19 2014-12-24 日産化学工業株式会社 Composition for forming metal oxide film, and metal oxide film
US20160041307A1 (en) * 2014-08-08 2016-02-11 Ppg Industries Ohio, Inc. Method of forming an anti-glare coating on a substrate
WO2016175245A1 (en) * 2015-04-30 2016-11-03 日産化学工業株式会社 Coating composition and optical member

Also Published As

Publication number Publication date
TWI752426B (en) 2022-01-11
JPWO2020179657A1 (en) 2020-09-10
CN113518802A (en) 2021-10-19
KR20210132679A (en) 2021-11-04
TW202101033A (en) 2021-01-01

Similar Documents

Publication Publication Date Title
US10948633B2 (en) Translucent structure, method for manufacturing same, and article
CN107918167B (en) Substrate with antiglare film, liquid composition for forming antiglare film, and method for producing substrate with antiglare film
JP7010324B2 (en) Hypokeimenon with anti-glare film
WO2016021560A1 (en) Translucent structure, method for producing same, and product
CN105319616A (en) Anti-dazzle film substrate and article
KR102094049B1 (en) Method for producing coating solution for metal oxide coating, coating solution for metal oxide coating, and metal oxide coating
US20170291392A1 (en) Article having low reflection film
TW201920993A (en) Multi-layer antireflective coated articles
TW201606356A (en) Anti-glare-layer substrate and article
JP2005243319A (en) Lighting device
TW201700615A (en) Low refractive index film-forming liquid composition
WO2020179657A1 (en) Anti-glare coating film formation coating liquid, anti-glare coating film, and laminate including anti-glare coating film
JP2013107995A (en) Coating composition and antireflection film using the same
KR102190719B1 (en) Coating solution for metal oxide film and metal oxide film
EP4183754A1 (en) Glass substrate with silica film
JP2000335940A (en) Low-reflecting glass article
US20050019528A1 (en) Method of forming projecting film
JP2006058728A (en) Antireflection member
JP2005202379A (en) Antireflection member
WO2021095770A1 (en) Antiglare layer-provided substrate, image display apparatus, and antiglare layer-provided substrate manufacturing method
JP2011028185A (en) Hydrophilic low reflection member
KR20100015446A (en) Coating solution for forming antireflective coating film comprising polysiloxane modified with mercapto group
JP2010215746A (en) Coating material composition, method for manufacturing antireflection film, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504042

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217030229

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20766733

Country of ref document: EP

Kind code of ref document: A1