WO2020179237A1 - 微小粒子測定装置、微小粒子分取装置、微小粒子測定システム及び微小粒子分取システム - Google Patents

微小粒子測定装置、微小粒子分取装置、微小粒子測定システム及び微小粒子分取システム Download PDF

Info

Publication number
WO2020179237A1
WO2020179237A1 PCT/JP2020/001207 JP2020001207W WO2020179237A1 WO 2020179237 A1 WO2020179237 A1 WO 2020179237A1 JP 2020001207 W JP2020001207 W JP 2020001207W WO 2020179237 A1 WO2020179237 A1 WO 2020179237A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation light
fine particles
fine particle
microparticles
objective lens
Prior art date
Application number
PCT/JP2020/001207
Other languages
English (en)
French (fr)
Inventor
岡本 好喜
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US17/433,740 priority Critical patent/US20220146403A1/en
Publication of WO2020179237A1 publication Critical patent/WO2020179237A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • G02B13/143Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation for use with ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G01N15/149
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0288Sorting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0294Particle shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1493Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1497Particle shape

Definitions

  • the present technology relates to a fine particle measuring device. More specifically, the present invention relates to a microparticle measuring device, a microparticle sorting device, a microparticle measuring system, and a microparticle sorting system for detecting optical information from microparticles flowing in a flow channel.
  • flow cytometry detects fluorescence and scattered light emitted from each fine particle by pouring the fine particles to be analyzed into a fluid in an aligned state and irradiating the fine particles with laser light or the like. This is an analysis method for performing analysis and sorting of fine particles by doing.
  • microparticles represented by flow cytometry many optical methods are used in which the microparticles to be analyzed are irradiated with light such as a laser to detect fluorescence or scattered light emitted from the microparticles. .. Then, based on the detected optical information, a histogram is extracted by an analysis computer and software, and analysis is performed.
  • Patent Document 1 includes a flow cell for forming a sample stream and an imaging system for capturing an image of particles contained in the sample stream in the flow cell to acquire a particle image, and the imaging system is a flow cell.
  • the imaging system is a flow cell.
  • the number of fluorescence (number of colors) that can be handled by the device is increasing day by day.
  • fluorescence in the ultraviolet region specifically, a wavelength of 300 nm.
  • excitation at ⁇ 400 nm and fluorescence in the infrared region (specifically, excitation at wavelengths of 700 nm to 800 nm) are also required, and the excitation light source is spreading from the ultraviolet region to the infrared region.
  • the excitation light irradiation objective lens used to irradiate the flow (stream) through which the sample flows with these excitation lights is mainly made of glass, and in order to correspond to the above-mentioned wide band wavelengths. It is very difficult to correct chromatic aberration.
  • the optical glass used for the lens has a sharp decrease in transmittance on the short wavelength side from around 400 nm, so that the optical glass that can handle excitation light with a wavelength shorter than 400 nm is considerably limited. Therefore, it is difficult to correct chromatic aberration. Therefore, for example, there is a problem that an objective lens for irradiating excitation light corresponding to a wide band wavelength such as a wavelength of 300 nm to 800 nm cannot be easily manufactured.
  • the main purpose of this technology is to provide a fine particle measurement technology that can handle excitation light in a wide wavelength range.
  • a plurality of objective lenses for irradiating excitation light used for irradiating fine particles flowing in the flow path with excitation light are provided. At least one of the excitation light irradiation objective lenses is used for detecting scattered light emitted from the microparticles by the excitation light irradiated to the microparticles through another excitation light irradiation objective lens, the microparticles A measuring device is provided.
  • the fine particle measuring device at least two or more of the objective lenses for irradiating excitation light among the plurality of objective lenses for irradiating excitation light may be arranged so as to be substantially opposed to each other with the flow path interposed therebetween. it can.
  • the plurality of objective lenses for irradiating excitation light can be used for irradiating excitation light in different wavelength ranges.
  • the fine particle measuring device according to the present technology may include the excitation light irradiation objective lens for visible region light and the excitation light irradiation objective lens for ultraviolet region light.
  • the objective lens for irradiating excitation light for ultraviolet region light can also be used for detecting scattered light in the visible region emitted from the fine particles. At this time, the scattered light in the visible region emitted from the fine particles is specifically forward scattered light or side scattered light.
  • a plurality of excitation light irradiation objective lenses used for irradiation of excitation light to the microparticles flowing in the flow path
  • a light detection unit for detecting fluorescence emitted from the microparticles Based on the detected optical information, a sorting unit for sorting the fine particles, Equipped with At least one of the excitation light irradiation objective lenses is used for detecting scattered light emitted from the microparticles by the excitation light irradiated to the microparticles through another excitation light irradiation objective lens, the microparticles Provide a preparative device.
  • the microparticle sorting apparatus according to the present technology may include a plurality of the photodetection units.
  • a plurality of objective lenses for irradiating excitation light used for irradiating fine particles flowing in the flow path with excitation light are further used.
  • a light detection unit for detecting fluorescence emitted from the microparticles, Equipped with The at least one excitation light irradiation objective lens is used for detecting scattered light emitted from the fine particles by the excitation light irradiated to the fine particles through another excitation light irradiation objective lens.
  • Measuring device An analysis device for analyzing the optical information detected by the photodetector, To provide a fine particle measurement system having the above.
  • a plurality of objective lenses for irradiating excitation light used for irradiating fine particles flowing in the flow path with excitation light
  • a light detection unit for detecting fluorescence emitted from the microparticles Based on the detected optical information, a sorting unit for sorting the fine particles, Equipped with At least one of the excitation light irradiation objective lenses is used for detecting scattered light emitted from the microparticles by the excitation light irradiated to the microparticles through another excitation light irradiation objective lens, the microparticles Sorting device and An analysis device for analyzing the optical information detected by the photodetector, To provide a fine particle sorting system having the above.
  • microparticles shall broadly include bio-related microparticles such as cells, microorganisms, liposomes, or synthetic particles such as latex particles, gel particles, and industrial particles.
  • Bio-related microparticles include chromosomes, liposomes, mitochondria, organelles (organelles), etc. that make up various cells.
  • the cells include animal cells (such as blood cells) and plant cells.
  • Microorganisms include bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, and fungi such as yeast.
  • the bio-related microparticles can also include bio-related macromolecules such as nucleic acids, proteins, and complexes thereof.
  • the industrial particles may be, for example, an organic or inorganic polymer material, a metal or the like.
  • the organic polymer material includes polystyrene, styrene/divinylbenzene, polymethylmethacrylate and the like.
  • Inorganic polymer materials include glass, silica, magnetic materials and the like.
  • Metals include gold colloid and aluminum.
  • the shape of these fine particles is generally spherical, but may be non-spherical, and the size and mass are not particularly limited.
  • FIG. 5 is a schematic conceptual diagram schematically showing an example different from FIGS. 5 and 6 in the arrangement relationship between the objective lens L used in the fine particle measuring device 1 and the fine particle sorting device 2 according to the present technology and the flow path P.
  • .. 6 is a schematic conceptual diagram schematically showing an example different from FIGS. 5 to 7 in the arrangement relationship between the objective lens L used in the fine particle measuring device 1 and the fine particle sorting device 2 according to the present technology and the flow path P.
  • Fine particle measuring device 1, fine particle sorting device 2 (1) Flow path P (2) Light irradiation unit 11 (3) Photodetector 12 (4) Objective lens L (5) Sorting section 13 (6) Analysis unit 14 (7) Storage unit 15 (8) Display unit 16 2.
  • Microparticle measurement system 3 Microparticle sorting system 4
  • the microparticle measurement apparatus 1 according to the present technology includes at least a plurality of excitation light irradiation objective lenses L1.
  • the fine particle preparative device 2 according to the present technology includes at least a plurality of objective lenses L1 for irradiating excitation light, a photodetection unit 12, and a preparative unit 13.
  • the microparticle measuring device 1 and the microparticle sorting device 2 according to the present technology include an objective lens L2 for fluorescence detection, a flow path P, a light irradiation unit 11, an analysis unit 14, a storage unit 15, and a display, if necessary.
  • a unit 16 and the like can be provided. Hereinafter, the details of each unit will be described in time series of measurement.
  • FIG. 1 is a schematic conceptual diagram schematically showing the overall structure of the first embodiment of the fine particle measuring device 1 according to the present technology
  • FIG. 2 is the first embodiment of the fine particle sorting device 2 according to the present technology
  • FIG. 3 is a schematic conceptual diagram schematically showing the overall structure of the form
  • FIG. 3 is a schematic conceptual diagram schematically showing the overall structure of the second embodiment of the fine particle sorting device 2 according to the present technology
  • FIGS. 5 to 8 schematically show the overall structure of the fine particle measuring device 1 and the fine particle sorting device 2 according to the present technology
  • the fine particle measuring device 1 and the fine particle sorting device according to the present technology are schematically shown.
  • Objective lenses L such as a plurality of objective lenses L1 for irradiating excitation light and objective lenses L2 for detecting fluorescence, which are indispensable for 2, are not shown.
  • the objective lens L such as the objective lens L1 for exciting light irradiation and the objective lens L2 for fluorescence detection
  • FIGS. 5 to 8 an example of the arrangement relationship between the objective lens L of FIGS. 5 to 8 and the flow path P is schematically shown. It is shown in the conceptual diagram.
  • the fine particle measuring device 1 is a device that detects optical information emitted from fine particles flowing through the flow path P.
  • the fine particle sorting device 2 according to the present technology is a device that detects optical information emitted from the fine particles flowing through the flow path P and sorts the fine particles based on the detection result.
  • the flow path P may be provided in advance in the fine particle measuring device 1, but it is also possible to use a commercially available flow path P, a disposable chip provided with the flow path P, or the like.
  • the form of the flow path P is not particularly limited and can be freely designed.
  • two-dimensional or three-dimensional plastic or glass such as the fine particle measuring device 1 according to the first embodiment shown in FIGS. 1, 3 and 4 and the fine particle sorting device 2 according to the second and third embodiments.
  • Is not limited to the flow path P formed in the substrate T, such as the flow path used in a conventional flow cytometer or the like, such as the microparticle sorting apparatus 2 according to the first embodiment shown in FIG. P can also be used for the fine particle measuring device 1 and the fine particle sorting device 2 according to the present technology.
  • the flow path width, flow path depth, and flow path cross-sectional shape of the flow path P are not particularly limited as long as they can form a laminar flow, and can be freely designed.
  • a microchannel having a channel width of 1 mm or less can also be used in the fine particle measuring device 1 according to the present technology.
  • a micro flow channel having a flow channel width of about 10 ⁇ m or more and about 1 mm or less can be preferably used by the fine particle measuring device 1 and the fine particle sorting device 2 according to the present technology.
  • the fine particles that pass through the flow path P can be labeled with one or more dyes such as fluorescent dyes.
  • fluorescent dyes include CascadeBlue, Pacific Blue, Fluorescein isothiocyanate (FITC), Phycoerythrin (PE), Propidium iodide (PI), Texas red (TR), Peridinin chlorophyll protein (PerCP). ), Allophycocyanin (APC), 4′,6-Diamidino-2-phenylindole (DAPI), Cy3, Cy5, Cy7, Brilliant Violet (BV421) and the like.
  • the fine particle measuring device 1 and the fine particle sorting device 2 according to the present technology may be provided with a light irradiation unit 11.
  • the light irradiation unit 11 irradiates the fine particles flowing through the flow path P with light.
  • the light irradiation unit 11 is not indispensable, and the fine particles passing through the flow path P are irradiated with light by using an external light irradiation device or the like. It is also possible to do.
  • the type of light emitted from the light irradiation unit 11 is not particularly limited, but in order to reliably generate fluorescence or scattered light from fine particles, light having a constant light direction, wavelength, and light intensity is desirable.
  • a laser, LED, etc. can be mentioned as an example.
  • the type is not particularly limited, but it may be an argon ion (Ar) laser, a helium-neon (He-Ne) laser, a die (dye) laser, a krypton (Cr) laser, a semiconductor laser, or a semiconductor laser.
  • Ar argon ion
  • He-Ne helium-neon
  • Cr krypton
  • One type or two or more types of solid-state lasers and the like combined with wavelength conversion optical elements can be freely used in combination.
  • the fine particle measuring device 1 and the fine particle sorting device 2 may employ a so-called multi-spot. That is, light irradiation may be performed on a plurality of positions of the flow path P.
  • a multi-spot When the multi-spot is adopted, a plurality of light irradiation units 11 may be provided, or the light from one light irradiation unit 11 is separated by the light control unit such as a spectroscope, and the flow path P It is also possible to perform light irradiation to a plurality of positions.
  • Photodetector 12 detects the optical information emitted from the fine particles flowing in the flow path P.
  • the photodetector 12 is not essential, and it is also possible to detect optical information emitted from the microparticles passing through the flow path P by using an external photodetector or the like. It is possible.
  • the photodetection unit 12 that can be used in the microparticle measurement device 1 and the microparticle sorting device 2 according to the present technology is not particularly limited in its specific photodetection method as long as it can detect an optical signal from the microparticles.
  • the photodetection method used in a known photodetector can be freely selected and adopted.
  • the photodetector 12 of the microparticle measuring device 1 and the microparticle sorting device 2 according to the present technology may be provided with a plurality of photodetection channels.
  • FIG. 5 is a schematic conceptual diagram schematically showing an example of the arrangement relationship between the objective lens L used in the fine particle measuring device 1 and the fine particle sorting device 2 according to the present technology and the flow path P.
  • the fine particle measuring device 1 and the fine particle sorting device 2 according to the present technology are provided with a plurality of objective lenses L1a and L1b for irradiating excitation light and an objective lens L2 for fluorescence detection.
  • the plurality of objective lenses L1a and L1b for irradiating the excitation light are used for irradiating the fine particles with the excitation light.
  • the fluorescence detecting objective lens L2 is used for detecting the fluorescence emitted from the fine particles.
  • a plurality of objective lenses L1a and L1b for irradiating excitation light are used to irradiate the fine particles flowing in the flow path P with the excitation light.
  • One of the features is that it can be done.
  • the excitation light irradiation objective lenses L1a and L1b for irradiation of excitation light in different wavelength ranges it is possible to support multicolor analysis using a plurality of dyes.
  • the objective lens L1a for irradiating excitation light is used for visible region light
  • the objective lens L1b for irradiating excitation light is used for ultraviolet region light, for example, for excitation light on the long wavelength side and for short wavelength side. It is easy to correct the chromatic aberration of each lens by dividing the excitation light into the excitation light and the excitation light.
  • the chromatic aberration of a lens is corrected by using a plurality of lenses made of optical glass having different refractive indexes, but according to this technology, the number of lenses used for chromatic aberration correction is reduced. Therefore, it is possible to contribute to downsizing of the device and also to improve the transmittance of the excitation light, and it is possible to exert the effect of enabling more accurate measurement and sorting.
  • the excitation light irradiation objective lens L1a and the excitation light irradiation objective lens L1b can be arranged at positions substantially opposite to each other with the channel P in between. “Positions substantially facing each other with the flow path P in between” means that the optical axis A1a of the excitation light irradiation objective lens L1a and the optical axis A1b of the excitation light irradiation objective lens L1b are as shown in FIG. In addition, it is not limited to being coaxial with the flow path P in between, and it may be within a range that does not affect the irradiation of the fine particles with excitation light using the objective lenses L1a and L1b and the detection of the fluorescence emitted from the fine particles.
  • the optical axis A1a of the excitation light irradiation objective lens L1a and the optical axis A1b of the excitation light irradiation objective lens L1b may be arranged so as to intersect at a predetermined angle. .. More specifically, the optical axes A1a and A1b of the excitation light irradiation objective lenses L1a and L1b have an angle of +30 to -30, more preferably +10 to -10 with respect to the perpendicular line N at the irradiation position of the flow path P. Can be arranged in the range.
  • the excitation light irradiation objective lens L1a and the excitation light irradiation objective lens L1b are used to detect scattered light emitted from the fine particles by the excitation light irradiated to the fine particles through each other's lenses.
  • the optical axis A1a of the excitation light irradiation objective lens L1a and the optical axis A1b of the excitation light irradiation objective lens L1b are shown in the width direction, the depth direction, and the depth direction of the flow path P. It is also possible to dispose them in a shifted position in either direction of the flow direction.
  • the optical axes A1a and A1b of the excitation light irradiation objective lenses L1a and L1b and the optical axis A2 of the fluorescence detection objective lens L2 are coaxial. It can be arranged so as not to become. Since the optical axes A1a and A1b of the excitation light irradiation objective lenses L1a and L1b and the optical axis A2 of the fluorescence detection objective lens L2 are not coaxial with each other, it is possible to separate the excitation light and the fluorescence. Noise caused by light can be reduced from being detected by the fluorescence detection objective lens L2. As a result, the detection accuracy can be improved.
  • the objective lens L1 for irradiating excitation light is not limited to two as in the examples shown in FIGS. 5 and 6, three as in the example shown in FIG. 7, four as shown in FIG. 8, or not shown. It is also possible to provide five or more. As the number of objective lenses L1 for exciting light irradiation is increased, chromatic aberration of each lens can be corrected more easily, and more accurate measurement and sorting can be performed.
  • each excitation light irradiation objective lens is also used for detecting scattered light emitted from fine particles.
  • a photodetector or the like is arranged on the opposite side of the objective lens for irradiating the excitation light to detect the forward scattered light as a reference.
  • the excitation light irradiation objective lens L1a for visible region light and the excitation light irradiation objective lens L1b for ultraviolet region light are arranged at positions substantially opposite to each other with the flow path P interposed therebetween.
  • the excitation light irradiation objective lens L1b for ultraviolet region light can be used for detecting scattered light in the visible region emitted from fine particles by irradiating the visible region light with the excitation light irradiation objective lens L1a. desirable. By doing so, it is possible to easily irradiate the ultraviolet region light without adding the number of lenses and without adopting a complicated optical system. As a result, further effects such as downsizing of the apparatus and improvement of the degree of freedom in designing correction of excitation light for ultraviolet region light can be obtained.
  • the objective lens L1a and the excitation light irradiation objective lens L1b for the ultraviolet region light are arranged at positions substantially opposite to each other with the channel P in between, and the excitation light irradiation objective lens L1b for the ultraviolet region light is set to the fine particles.
  • the objective lens L1a for irradiating excitation light for visible region light can also be used for detecting scattered light in the ultraviolet region emitted from fine particles.
  • the fluorescence detection objective lens L2 is used for detecting each side scattered light
  • the excitation light irradiation objective lenses L1a and L1b are used for detecting each forward scattered light.
  • the excitation light irradiation objective lenses L1a and L1b are used for detecting the laterally scattered light.
  • the fine particle sorting apparatus 2 includes a sorting unit 13 that sorts the fine particles.
  • fine particles are sorted based on the data analyzed by the analysis unit 14, which will be described later, from the values detected by the light detection unit 12.
  • the sorting unit 13 can sort the fine particles downstream of the flow path P based on the analysis result of the size, morphology, internal structure, etc. of the fine particles derived from the analysis data.
  • a vibrating element 13a or the like that vibrates at a predetermined frequency is used to vibrate the entire or part of the flow path P.
  • a droplet is generated from the ejection port of the flow path P.
  • the vibrating element 13a to be used is not particularly limited, and a known one can be freely selected and used.
  • a piezoelectric vibrating element or the like can be cited.
  • the size of the droplet is adjusted by adjusting the amount of liquid fed to the flow path P, the diameter of the discharge port, the frequency of the vibrating element, etc., and the droplet containing a fixed amount of fine particles is generated. You can
  • a positive or negative charge is charged based on the analysis results of the size, morphology, internal structure, etc. of the fine particles analyzed based on the data analyzed by the analysis unit 14 (reference numerals in FIGS. 2 and 3). 13b). Then, the path of the charged droplet is changed in a desired direction by the counter electrode 13c to which the voltage is applied, and the charged droplet is separated.
  • three branch flow paths of the preparative flow path P3 and the two waste flow paths P4 are provided downstream of the flow path P formed on the substrate T.
  • the fine particles to be sorted that are determined to satisfy the predetermined optical characteristics are taken into the sorting flow path P3, and the fine particles to be non-sorted that are determined not to satisfy the predetermined optical characteristics are taken into the sorting flow path. It can be sorted by allowing it to flow in one of the two waste flow paths P4 without being taken into P3.
  • the fine particles to be sorted can be taken into the sorting flow path P3 by using a known method.
  • a vibrating element 13a such as a piezo element creates a negative pressure in the sorting flow path P3. This can be done by generating and using this negative pressure to suck the sample liquid and the sheath liquid containing the fine particles to be sorted into the sorting flow path P3.
  • a fluid stream gas or liquid
  • fine particles to be sorted can be introduced into the sorting flow path P3. It is also possible to take in.
  • the sample liquid storage section B1 is divided into the sample liquid flow path P1
  • the sheath liquid storage section B2 is divided into the sheath liquid flow path P2
  • the sheath liquid storage section B2 is divided into the preparative flow path P3.
  • the liquid collection reservoir B3 and the waste liquid reservoir B4 are connected to the waste flow path P4 so that the liquid collection reservoir B3 is connected to the waste flow path P4.
  • the fine particles to be sorted are cells or the like for use in a cell preparation or the like, in order to maintain a sterilized environment and prevent contamination, as in the third embodiment (isolated from the external environment).
  • the fine particle measuring device 1 and the fine particle sorting device 2 according to the present technology may further include an analysis unit 14 as necessary.
  • the analysis unit 14 is connected to the light detection unit 12, and analyzes the optical information detected by the light detection unit 12 from the fine particles.
  • the analysis unit 14 calculates the feature amount of each fine particle from, for example, the optical information of the light received from the light detection unit 12. Specifically, the feature amount indicating the size, morphology, internal structure, etc. of the fine particles is calculated from the detected values of the received fluorescence and scattered light.
  • the analysis unit 14 is not indispensable for the fine particle measuring device 1 and the fine particle sorting device 2 according to the present technology, and uses an external analysis device or the like based on the optical information detected by the photodetector 12. It is also possible to use it to analyze the state of fine particles.
  • the analysis unit 14 may be executed by a personal computer or a CPU, and is stored as a program in a hardware resource including a recording medium (for example, non-volatile memory (USB memory), HDD, CD, etc.). It can also be made to function by a personal computer or a CPU. Further, the analysis unit 14 may be connected to each unit of the fine particle measuring device 1 and the fine particle sorting device 2 via a network.
  • Storage unit 15 The fine particle measuring device 1 and the fine particle sorting device 2 according to the present technology may be provided with a storage unit 15 for storing various information.
  • the storage unit 15 can store all items related to measurement, such as values detected by each photodetection unit 12 and analysis data generated by the analysis unit 14.
  • the storage unit 15 is not essential, and an external storage device may be connected.
  • the storage unit 15 for example, a hard disk or the like can be used.
  • Display unit 16 The fine particle measuring device 1 and the fine particle sorting device 2 according to the present technology may be provided with a display unit 16 for displaying various information.
  • the display unit 16 can display all items related to measurement, such as values detected by each of the light detection units 12 and analysis data generated by the analysis unit 14.
  • the display unit 16 is not essential, and an external display device may be connected.
  • the display unit 16 for example, a display or a printer can be used.
  • FIG. 11 is a schematic conceptual diagram schematically showing a first embodiment of the fine particle measurement system 3 according to the present technology
  • FIG. 12 is a schematic conceptual diagram showing the first embodiment of the fine particle sorting system 4 according to the present technology. It is a schematic conceptual diagram which shows.
  • the microparticle measurement system 3 according to the present technology includes at least a microparticle measurement device 31 and an analysis device 32.
  • the fine particle sorting system 4 according to the present technology includes at least a fine particle sorting device 41 and an analysis device 42.
  • the fine particle measurement system 3 and the fine particle sorting system 4 according to the present technology may be provided with storage devices 33, 43, display devices 34, 44 and the like, if necessary.
  • the fine particle measuring system 3 and the fine particle sorting system 4 include a fine particle measuring device 31, a fine particle sorting device 41, an analyzer 32 or 42, a storage device 33 or 43, and a display device 34 or. 44 and can be a system in which they are connected via a network.
  • the fine particle measuring device 31, the fine particle sorting device 41, the analysis devices 32, 42, the storage devices 33, 43, and the display devices 34, 44 are the same as the details of the fine particle measuring device 1, the fine particle sorting device 2, the analysis unit 14, the storage unit 15, and the display unit 16 according to the present technology, respectively, and thus the description thereof is omitted here.
  • the following configurations can also be adopted.
  • (1) Equipped with a plurality of excitation light irradiation objective lens used for irradiation of excitation light to the microparticles flowing in the channel, At least one of the excitation light irradiation objective lenses is used for detecting scattered light emitted from the microparticles by the excitation light irradiated to the microparticles through another excitation light irradiation objective lens, the microparticles measuring device.
  • the fine particle measuring apparatus according to (1) or (2), wherein the plurality of objective lenses for irradiating excitation light are used for irradiating excitation light in different wavelength ranges.
  • the fine particle measurement device according to any one of (1) to (3), comprising: the excitation light irradiation objective lens for visible region light; and the excitation light irradiation objective lens for ultraviolet region light.
  • the fine particle measuring device wherein the excitation light irradiation objective lens for ultraviolet light is also used for detecting scattered light in the visible region emitted from the fine particles.
  • the fine particle measuring apparatus according to (5), wherein the scattered light in the visible region emitted from the fine particles is forward scattered light or side scattered light.
  • the microparticle sorting apparatus according to (7) including a plurality of the photodetection units.

Abstract

広帯域の波長範囲の励起光に対応可能な微小粒子測定技術を提供すること。 本技術では、流路内を流れる微小粒子への励起光の照射に用いられる複数の励起光照射用対物レンズを備え、少なくとも一つの前記励起光照射用対物レンズは、別の前記励起光照射用対物レンズを通して前記微小粒子に照射された励起光によって、前記微小粒子から発せられた散乱光の検出に用いられる、微小粒子測定装置を提供する。

Description

微小粒子測定装置、微小粒子分取装置、微小粒子測定システム及び微小粒子分取システム
 本技術は、微小粒子測定装置に関する。より詳しくは、流路内を流通する微小粒子から光学的情報を検出するための微小粒子測定装置、微小粒子分取装置、微小粒子測定システム及び微小粒子分取システムに関する。
 近年、分析手法の発展に伴い、細胞や微生物等の生体微小粒子、マイクロビーズなどの微小粒子等を流路中に通流させ、通流させる工程において前記微小粒子を個々に測定したり、測定した微小粒子を解析し、分取したりする手法が開発されつつある。
 このような微小粒子の解析又は分取の手法の代表的な一例として、フローサイトメトリーと呼ばれる分析手法の技術改良が急速に進んでいる。フローサイトメトリーとは、解析の対象となる微小粒子を流体中に整列させた状態で流し込み、該微小粒子にレーザー光等を照射することにより、各微小粒子から発せられた蛍光や散乱光を検出することで微小粒子の解析、分取を行う分析手法である。
 フローサイトメトリーなどに代表される微小粒子の解析では、分析対象となる微小粒子にレーザーなどの光を照射し、微小粒子から発せられる蛍光や散乱光を検出する光学的手法が多く用いられている。そして、検出された光学的情報をもとに、解析用コンピューターとソフトウェアでヒストグラムを抽出し、解析が行われる。
 近年の基礎医学及び臨床分野の要請に基づき、複数の色素を使用したマルチカラー分析が可能な装置が望まれている。例えば、特許文献1には、試料流を形成するためのフローセルと、フローセル中の試料流に含まれる粒子を撮像して粒子画像を取得するための撮像系と、を備え、撮像系は、フローセル中の試料流に対して近紫外光を照射する光源と、光源の近紫外光が照射された試料流中の粒子を撮像するカメラと、を有することにより、赤血球等の粒子の輪郭を鮮明に撮像することができる試料分析装置が開示されている。
特開2010-85194号公報
 複数の色素を使用したマルチカラー分析が可能な装置において、より多くの蛍光体を使用するためには、複数の励起光源(例えば、レーザ光源)を備える必要がある。装置が扱える蛍光数(色数)は日々増えており、例えば、フローサイトメーターでは、従来から使用されている波長400nm~700nmで光る蛍光に加えて、紫外領域の蛍光(具体的には波長300nm~400nmでの励起)や赤外領域の蛍光(具体的には波長700nm~800nmでの励起)にも対応する必要があり、励起光源も紫外域から赤外域に広がっている。
 しかしながら、これらの励起光をサンプルが流れるフロー(ストリーム)に照射するために使用される励起光照射用対物レンズは、主にガラスで出来ており、前述のような広帯域の波長に対応するために色収差を補正するのは非常に困難である。
 また、レンズに使用している光学ガラスは、波長400nm付近から短波長側で急激に透過率が低下するため、波長400nmよりも短い波長の励起光を扱える光学ガラスはかなり限定されるといった実情もあり、色収差の補正が困難である。このため、例えば、波長300nm~800nmといった広帯域の波長に対応した励起光照射用対物レンズが容易に作製できないという問題があった。
 そこで、本技術では、広帯域の波長範囲の励起光に対応可能な微小粒子測定技術を提供することを主目的とする。
 即ち、本技術では、まず、流路内を流れる微小粒子への励起光の照射に用いられる複数の励起光照射用対物レンズを備え、
 少なくとも一つの前記励起光照射用対物レンズは、別の前記励起光照射用対物レンズを通して前記微小粒子に照射された励起光によって、前記微小粒子から発せられた散乱光の検出に用いられる、微小粒子測定装置を提供する。
 本技術に係る微小粒子測定装置では、複数の前記励起光照射用対物レンズのうち、少なくとも2以上の前記励起光照射用対物レンズを、流路を挟んで互いに略対向するように配置することができる。
 本技術に係る微小粒子測定装置において、複数の前記励起光照射用対物レンズは、それぞれ異なる波長域の励起光の照射に用いることができる。
 本技術に係る微小粒子測定装置には、可視領域光用の前記励起光照射用対物レンズと、紫外領域光用の前記励起光照射用対物レンズと、を備えることができる。
 この場合、紫外領域光用の前記励起光照射用対物レンズは、前記微小粒子から発せられる可視領域の散乱光の検出にも用いることができる。
 このとき、前記微小粒子から発せられる可視領域の散乱光は、具体的には、前方散乱光又は側方散乱光である。
 本技術では、次に、流路内を流れる微小粒子への励起光の照射に用いられる複数の励起光照射用対物レンズと、
 前記微小粒子から発せられる蛍光を検出する光検出部と、
 検出された光学的情報に基づいて、前記微小粒子を分取する分取部と、
 を備え、
 少なくとも一つの前記励起光照射用対物レンズは、別の前記励起光照射用対物レンズを通して前記微小粒子に照射された励起光によって、前記微小粒子から発せられた散乱光の検出に用いられる、微小粒子分取装置を提供する。
 本技術に係る微小粒子分取装置には、前記光検出部を複数備えることができる。
 本技術では、更に、流路内を流れる微小粒子への励起光の照射に用いられる複数の励起光照射用対物レンズと、
 前記微小粒子から発せられる蛍光を検出する光検出部と、
 を備え、
 少なくとも一つの前記励起光照射用対物レンズは、別の前記励起光照射用対物レンズを通して前記微小粒子に照射された励起光によって、前記微小粒子から発せられた散乱光の検出に用いられる、微小粒子測定装置と、
 前記光検出部において検出された光学的情報を解析する解析装置と、
 を有する、微小粒子測定システムを提供する。
 本技術では、加えて、流路内を流れる微小粒子への励起光の照射に用いられる複数の励起光照射用対物レンズと、
 前記微小粒子から発せられる蛍光を検出する光検出部と、
 検出された光学的情報に基づいて、前記微小粒子を分取する分取部と、
 を備え、
 少なくとも一つの前記励起光照射用対物レンズは、別の前記励起光照射用対物レンズを通して前記微小粒子に照射された励起光によって、前記微小粒子から発せられた散乱光の検出に用いられる、微小粒子分取装置と、
 前記光検出部において検出された光学的情報を解析する解析装置と、
 を有する、微小粒子分取システムを提供する。
 本技術において、「微小粒子」には、細胞や微生物、リポソームなどの生体関連微小粒子、あるいはラテックス粒子やゲル粒子、工業用粒子などの合成粒子などが広く含まれるものとする。
 生体関連微小粒子には、各種細胞を構成する染色体、リポソーム、ミトコンドリア、オルガネラ(細胞小器官)などが含まれる。細胞には、動物細胞(血球系細胞など)および植物細胞が含まれる。微生物には、大腸菌などの細菌類、タバコモザイクウイルスなどのウイルス類、イースト菌などの菌類などが含まれる。さらに、生体関連微小粒子には、核酸やタンパク質、これらの複合体などの生体関連高分子も包含され得るものとする。
 また、工業用粒子は、例えば有機もしくは無機高分子材料、金属などであってもよい。有機高分子材料には、ポリスチレン、スチレン・ジビニルベンゼン、ポリメチルメタクリレートなどが含まれる。無機高分子材料には、ガラス、シリカ、磁性体材料などが含まれる。金属には、金コロイド、アルミなどが含まれる。これら微小粒子の形状は、一般には球形であるのが普通であるが、非球形であってもよく、また大きさや質量なども特に限定されない。
本技術に係る微小粒子測定装置1の第1実施形態を模式的に示す模式概念図である。 本技術に係る微小粒子分取装置2の第1実施形態を模式的に示す模式概念図である。 本技術に係る微小粒子分取装置2の第2実施形態を模式的に示す模式概念図である。 本技術に係る微小粒子分取装置2の第3実施形態を模式的に示す模式概念図である。 本技術に係る微小粒子測定装置1及び微小粒子分取装置2に用いる対物レンズLと、流路Pとの配置関係の一例を模式的に示す模式概念図である。 本技術に係る微小粒子測定装置1及び微小粒子分取装置2に用いる対物レンズLと、流路Pとの配置関係の図5とは異なる一例を模式的に示す模式概念図である。 本技術に係る微小粒子測定装置1及び微小粒子分取装置2に用いる対物レンズLと、流路Pとの配置関係の図5及び図6とは異なる一例を模式的に示す模式概念図である。 本技術に係る微小粒子測定装置1及び微小粒子分取装置2に用いる対物レンズLと、流路Pとの配置関係の図5~7とは異なる一例を模式的に示す模式概念図である。 本技術に係る微小粒子測定装置1及び微小粒子分取装置2を用いて、散乱光を検出する方法の一例を模式的に示す模式概念図である。 本技術に係る微小粒子測定装置1及び微小粒子分取装置2を用いて、散乱光を検出する方法の一例を模式的に示す模式概念図である。 本技術に係る微小粒子測定システム3の第1実施形態を模式的に示す模式概念図である。 本技術に係る微小粒子分取システム4の第1実施形態を模式的に示す模式概念図である。
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。
 1.微小粒子測定装置1、微小粒子分取装置2
 (1)流路P
 (2)光照射部11
 (3)光検出部12
 (4)対物レンズL
 (5)分取部13
 (6)解析部14
 (7)記憶部15
 (8)表示部16
 2.微小粒子測定システム3、微小粒子分取システム4
 <1.微小粒子測定装置1、微小粒子分取装置2>
 本技術に係る微小粒子測定装置1は、複数の励起光照射用対物レンズL1を少なくとも備える。本技術に係る微小粒子分取装置2は、複数の励起光照射用対物レンズL1と、光検出部12と、分取部13と、を少なくとも備える。また、本技術に係る微小粒子測定装置1及び微小粒子分取装置2は、必要に応じて、蛍光検出用対物レンズL2、流路P、光照射部11、解析部14、記憶部15、表示部16等を備えることができる。以下、各部の詳細について、測定の時系列に沿って説明する。
 図1は、本技術に係る微小粒子測定装置1の第1実施形態の全体構造を模式的に示す模式概念図であり、図2は、本技術に係る微小粒子分取装置2の第1実施形態の全体構造を模式的に示す模式概念図であり、図3は、本技術に係る微小粒子分取装置2の第2実施形態の全体構造を模式的に示す模式概念図であり、図4は、本技術に係る微小粒子分取装置2の第3実施形態の全体構造を模式的に示す模式概念図である。なお、図1~4は、本技術に係る微小粒子測定装置1及び微小粒子分取装置2の全体構造を模式的に示しており、本技術に係る微小粒子測定装置1及び微小粒子分取装置2に必須の複数の励起光照射用対物レンズL1及び蛍光検出用対物レンズL2等の対物レンズLは図示していない。励起光照射用対物レンズL1及び蛍光検出用対物レンズL2等の等の対物レンズLについては、図5~図8の対物レンズLと、流路Pとの配置関係の一例を模式的に示す模式概念図に示す。
 (1)流路P
 本技術に係る微小粒子測定装置1は、流路P内を通流する微小粒子から発せられる光学的情報を検出する装置である。また、本技術に係る微小粒子分取装置2は、流路P内を通流する微小粒子から発せられる光学的情報を検出し、検出結果に基づいて微小粒子を分取する装置である。流路Pは、微小粒子測定装置1に予め備えていてもよいが、市販の流路Pや流路Pが設けられた使い捨てのチップなどを用いることも可能である。
 流路Pの形態も特に限定されず、自由に設計することができる。例えば、図1、3及び4に示す第1実施形態に係る微小粒子測定装置1や、第2及び第3実施形態に係る微小粒子分取装置2のような2次元又は3次元のプラスチックやガラス等の基板T内に形成した流路Pに限らず、図2に示す第1実施形態に係る微小粒子分取装置2のように、従来のフローサイトメーター等で用いられているような流路Pも、本技術に係る微小粒子測定装置1及び微小粒子分取装置2に用いることができる。
 また、前記流路Pの流路幅、流路深さ、流路断面形状も、層流を形成し得る形態であれば特に限定されず、自由に設計することができる。例えば、流路幅1mm以下のマイクロ流路も、本技術に係る微小粒子測定装置1に用いることが可能である。特に、流路幅10μm以上1mm以下程度のマイクロ流路は、本技術に係る微小粒子測定装置1及び微小粒子分取装置2により好適に用いることができる。
 流路Pを通流させる微小粒子は、1種又は2種以上の蛍光色素等の色素で標識することができる。この場合、本技術で使用可能な蛍光色素としては、例えば、Cascade Blue、Pacific Blue、Fluorescein isothiocyanate(FITC)、Phycoerythrin(PE)、Propidium iodide(PI)、Texas red(TR)、Peridinin chlorophyll protein(PerCP)、Allophycocyanin(APC)、4’,6-Diamidino-2-phenylindole(DAPI)、Cy3、Cy5、Cy7、Brilliant Violet(BV421)等が挙げられる。
 (2)光照射部11
 本技術に係る微小粒子測定装置1及び微小粒子分取装置2には、光照射部11を備えることができる。光照射部11では、前記流路Pを通流する微小粒子への光の照射が行われる。本技術に係る微小粒子測定装置1及び微小粒子分取装置2において、光照射部11は必須ではなく、外部の光照射装置等を用いて流路Pを通流する微小粒子への光照射を行うことも可能である。
 光照射部11から照射される光の種類は特に限定されないが、微小粒子から蛍光や散乱光を確実に発生させるためには、光方向、波長、光強度が一定の光が望ましい。一例としては、レーザー、LED等を挙げることができる。レーザーを用いる場合、その種類も特に限定されないが、アルゴンイオン(Ar)レーザー、ヘリウム-ネオン(He-Ne)レーザー、ダイ(dye)レーザー、クリプトン(Cr)レーザー、半導体レーザー、または、半導体レーザーと波長変換光学素子を組み合わせた固体レーザー等を、1種又は2種以上、自由に組み合わせて用いることができる。
 本技術に係る微小粒子測定装置1及び微小粒子分取装置2は、所謂、マルチスポットを採用してもよい。即ち、流路Pの複数の位置に対して光照射を行ってもよい。マルチスポットを採用する場合は、光照射部11を複数備えてもよいし、分光器等の光制御部を介することで、一つの光照射部11からの光を分光して、流路Pの複数の位置に対する光照射を行うことも可能である。
 (3)光検出部12
 光検出部12では、流路P内を流通する微小粒子から発せられる光学的情報の検出が行われる。本技術に係る微小粒子測定装置1において、光検出部12は必須ではなく、外部の光検出装置等を用いて流路Pを通流する微小粒子から発せられる光学的情報の検出を行うことも可能である。
 本技術に係る微小粒子測定装置1及び微小粒子分取装置2に用いることができる光検出部12は、微小粒子からの光信号の検出ができれば、その具体的な光検出方法は特に限定されず、公知の光検出器に用いられている光検出方法を自由に選択して採用することができる。例えば、蛍光測定器、散乱光測定器、透過光測定器、反射光測定器、回折光測定器、紫外分光測定器、赤外分光測定器、ラマン分光測定器、FRET測定器、FISH測定器その他各種スペクトラム測定器、PMTやフォトダイオード等の受光素子を一次元に配列したPMTアレイ又はフォトダイオードアレイ、或いはCCD又はCMOS等の2次元受光素子などの独立した検出チャネルが複数並べられたもの、等に用いられている光検出方法を1種又は2種以上自由に組み合わせて採用することができる。
 また、本技術に係る微小粒子測定装置1及び微小粒子分取装置2の光検出部12には、複数の光検出チャネルが設けられていてもよい。
 (4)対物レンズL
 図5は、本技術に係る微小粒子測定装置1及び微小粒子分取装置2に用いる対物レンズLと、流路Pとの配置関係の一例を模式的に示す模式概念図である。本技術に係る微小粒子測定装置1及び微小粒子分取装置2には、複数の励起光照射用対物レンズL1a、L1bと、蛍光検出用対物レンズL2と、を備える。複数の励起光照射用対物レンズL1a、L1bは、微小粒子への励起光の照射に用いられる。蛍光検出用対物レンズL2は、微小粒子から発せられる蛍光の検出に用いられる。
 本技術に係る微小粒子測定装置1及び微小粒子分取装置2では、複数の励起光照射用対物レンズL1a、L1bが、流路P内を流れるに流れた微小粒子への励起光の照射に用いられることを特徴の一つとする。例えば、励起光照射用対物レンズL1a、L1bを、それぞれ異なる波長域の励起光の照射に用いることにより、複数の色素を使用したマルチカラー分析にも対応することが可能となる。
 より具体的には、例えば、励起光照射用対物レンズL1aを可視領域光用とし、励起光照射用対物レンズL1bを紫外領域光用とする等、長波長側の励起光用と、短波長側の励起光用と、に分けることで、それぞれのレンズの色収差補正が容易になる。通常、屈折率の異なる光学ガラスから作られた複数枚のレンズを用いることで、レンズの色収差補正を行うことが多いが、本技術によれば、色収差補正のために使用するレンズの枚数を削減することができるため、装置の小型化に貢献すると共に、励起光の透過率も向上し、より精度の高い測定や分取が可能となるという効果も発揮することができる。
 励起光照射用対物レンズL1aと、励起光照射用対物レンズL1bとは、流路Pを挟んで互いに略対向する位置に配置することができる。「流路Pを挟んで互いに略対向する位置」とは、励起光照射用対物レンズL1aの光軸A1aと、励起光照射用対物レンズL1bの光軸A1bとが、図5に示す例のように、流路Pを挟んで同軸上にあることに限らず、各対物レンズL1a、L1bを用いた微小粒子への励起光照射と、微小粒子から発せられる蛍光の検出に影響のない範囲であれば、図6に示す例のように、励起光照射用対物レンズL1aの光軸A1aと、励起光照射用対物レンズL1bの光軸A1bとが、所定の角度で交わるように配置してもよい。より具体的には、励起光照射用対物レンズL1a、L1bの光軸A1a、A1bが、流路Pの照射位置における垂線Nに対して、+30~-30、より好ましくは+10~-10の角度となる範囲に配置することができる。
 また、励起光照射用対物レンズL1aと、励起光照射用対物レンズL1bとは、互いのレンズを通して前記微小粒子に照射された励起光によって、前記微小粒子から発せられた散乱光の検出に用いることができる範囲であれば、励起光照射用対物レンズL1aの光軸A1aと、励起光照射用対物レンズL1bの光軸A1bとを、図示しないが、流路Pの幅方向、深さ方向、及び通流方向のいずれかの方向に、ずらした位置に配置することも可能である。
 本技術に係る微小粒子測定装置1及び微小粒子分取装置2では、励起光照射用対物レンズL1a、L1bの光軸A1a、A1bと、蛍光検出用対物レンズL2の光軸A2と、が同軸にならないように配置することもできる。励起光照射用対物レンズL1a、L1bの光軸A1a、A1bと、蛍光検出用対物レンズL2の光軸A2と、が同軸上にないことで、励起光と蛍光とを分離することができ、励起光に起因するノイズが、蛍光検出用対物レンズL2によって検出されるのを低減することができる。その結果、検出精度を向上させることが可能となる。
 励起光照射用対物レンズL1は、図5及び図6に示す例のように、2つに限らず、図7に示す例のように3つや、図8に示すように4つ、或いは図示しないが5つ以上、備えることも可能である。励起光照射用対物レンズL1の枚数を増やすに従い、それぞれのレンズの色収差補正が更に容易になり、更に精度の高い測定や分取が可能となる。
 また、各励起光照射用対物レンズの一部又は全部は、微小粒子から発せられる散乱光の検出にも用いられる。通常のフローサイトメーターでは、検出精度を向上させるために、励起光照射用対物レンズの対向側にフォトディテクタ等を配置して、基準となる前方散乱光を検出することが行われているが、例えば、図9に示すように、可視領域光用の励起光照射用対物レンズL1aと、紫外領域光用の励起光照射用対物レンズL1bとを、流路Pを挟んで略対向する位置に配置し、紫外領域光用の励起光照射用対物レンズL1bを、励起光照射用対物レンズL1aを用いて可視領域光が照射されることにより微小粒子から発せられる可視領域の散乱光の検出に用いることが望ましい。このようにすることで、レンズの数を追加することなく、また、複雑な光学系を採用することなく、容易に紫外領域光を照射することができる。その結果、装置の小型化や、紫外領域光用の励起光の添削の設計自由度の向上といった更なる効果を得ることができる。
 また、最近では、検出精度を更に向上させるために、より短波長領域の散乱光を検出する技術も開発されつつあるため、例えば、図10に示すように、可視領域光用の励起光照射用対物レンズL1aと、紫外領域光用の励起光照射用対物レンズL1bとを、流路Pを挟んで略対向する位置に配置し、紫外領域光用の励起光照射用対物レンズL1bを、微小粒子から発せられる可視領域の散乱光の検出に用いると共に、可視領域光用の励起光照射用対物レンズL1aを、微小粒子から発せられる紫外領域の散乱光の検出に用いることもできる。
 なお、図9及び10では、蛍光検出用対物レンズL2を各側方散乱光の検出に、各励起光照射用対物レンズL1a及びL1bを各前方散乱光の検出に用いているが、各励起光照射用対物レンズL1a及びL1bの配置を変更することで(図示せず)、各励起光照射用対物レンズL1a及びL1bを、各側方散乱光の検出に用いることも可能である。
 (5)分取部13
 本技術に係る微小粒子分取装置2には、微小粒子の分取を行う分取部13を備える。分取部13では、前記光検出部12により検出された値から後述する解析部14によって解析されたデータに基づいて、微小粒子の分取が行われる。例えば、分取部13では、解析データから導き出された微小粒子の大きさ、形態、内部構造等の解析結果に基づいて、流路Pの下流において、微小粒子の分取を行うことができる。
 より具体的には、図2及び3に示す第1及び2実施形態のように、例えば、所定の振動数で振動する振動素子13aなどを用いて、流路Pの全体若しくは一部に振動を加えることで、流路Pの吐出口から液滴を発生させる。なお、この場合、用いる振動素子13aは特に限定されず、公知のものを自由に選択して用いることができる。一例としては、ピエゾ振動素子などを挙げることができる。また、流路Pへの送液量、吐出口の径、振動素子の振動数などを調整することにより、液滴の大きさを調整し、微小粒子を一定量ずつ含む液滴を発生させることができる。
 次に、解析部14によって解析されたデータに基づいて解析された微小粒子の大きさ、形態、内部構造等の解析結果に基づいて、プラスまたはマイナスの電荷を荷電する(図2及び3中符号13b参照)。そして、荷電された液滴は、電圧が印加された対向電極13cによって、その進路が所望の方向へ変更され、分取される。
 また、図4に示す第3実施形態のように、基板Tに形成された流路Pの下流に、分取流路P3、及び、2本の廃棄流路P4の3つの分岐流路を設け、所定の光学特性を満たすと判定された分取対象の微小粒子を分取流路P3に取り込み、所定の光学特性を満たさないと判定された非分取対象の微小粒子は、分取流路P3内に取り込まれることなく、2本の廃棄流路P4のいずれか一方に流れるようにすることで分取することができる。
 分取対象の微小粒子の分取流路P3内への取り込みは、公知の方法を用いて行うことができるが、例えば、ピエゾ素子等の振動素子13aによって分取流路P3内に負圧を発生させ、この負圧を利用して分取対象の微小粒子を含むサンプル液及びシース液を分取流路P3内に吸い込むことによって行うことができる。また、図示しないが、バルブ電磁力、または流体ストリーム(気体または液体)等を用いて、層流方向の制御または変化を行うことで、分取対象の微小粒子の分取流路P3内への取り込みを行うことも可能である。
 第3実施形態では、図4の模式概念図に示すように、サンプル液流路P1にサンプル液貯留部B1を、シース液流路P2にシース液貯留部B2を、分取流路P3に分取液貯留部B3を、廃棄流路P4に廃液貯留部B4を、それぞれ連通させて接続することで、完全閉鎖型の分取装置とすることができる。例えば、分取対象の微小粒子が、細胞製剤等に使用するための細胞等である場合は、滅菌環境を維持し、コンタミネーションを防止するため、第3実施形態のような(外部環境と隔離し)完全閉鎖型になるように設計することが好ましい。
 (6)解析部14
 本技術に係る微小粒子測定装置1及び微小粒子分取装置2は、必要に応じて、解析部14を更に備えていてもよい。解析部14は、光検出部12と接続され、光検出部12で微小粒子から検出した光学的情報を解析する。
 解析部14では、例えば、光検出部12より受け取った光の光学的情報から、各微小粒子の特徴量を算出する。具体的には、受光した蛍光や散乱光の検出値より微小粒子の大きさ、形態、内部構造等を示す特徴量を算出する。
 なお、解析部14は、本技術に係る微小粒子測定装置1及び微小粒子分取装置2においては必須ではなく、光検出部12よって検出された光学的情報に基づいて、外部の解析装置等を用いて微小粒子の状態等を解析することも可能である。例えば、解析部14は、パーソナルコンピュータや、CPUにて実施してもよく、記録媒体(例えば、不揮発性メモリ(USBメモリ)、HDD、CDなど)等を備えるハードウェア資源にプログラムとして格納し、パーソナルコンピュータやCPUによって機能させることも可能である。また、解析部14は微小粒子測定装置1及び微小粒子分取装置2の各部とネットワークを介して接続されていてもよい。
 (7)記憶部15
 本技術に係る微小粒子測定装置1及び微小粒子分取装置2には、各種情報を記憶する記憶部15を備えることができる。記憶部15には、前記各光検出部12で検出された値、前記解析部14にて生成された解析データ等、測定に関わるあらゆる事項を記憶することが可能である。
 本技術に係る微小粒子測定装置1及び微小粒子分取装置2において、記憶部15は必須ではなく、外部の記憶装置を接続してもよい。記憶部15としては、例えば、ハードディスクなどを用いることができる。
 (8)表示部16
 本技術に係る微小粒子測定装置1及び微小粒子分取装置2には、各種情報を表示する表示部16を備えることができる。表示部16では、前記各光検出部12で検出された値、前記解析部14にて生成された解析データ等、測定に関わるあらゆる事項を表示することができる。
 本技術に係る微小粒子測定装置1及び微小粒子分取装置2において、表示部16は必須ではなく、外部の表示装置を接続してもよい。表示部16としては、例えば、ディスプレイやプリンタなどを用いることができる。
 <2.微小粒子測定システム3、微小粒子分取システム4>
 図11は、本技術に係る微小粒子測定システム3の第1実施形態を模式的に示す模式概念図であり、図12は、本技術に係る微小粒子分取システム4の第1実施形態を模式的に示す模式概念図である。本技術に係る微小粒子測定システム3は、微小粒子測定装置31と、解析装置32と、を少なくとも備える。また、本技術に係る微小粒子分取システム4は、微小粒子分取装置41と、解析装置42と、を少なくとも備える。また、本技術に係る微小粒子測定システム3及び微小粒子分取システム4は、必要に応じて、記憶装置33、43、表示装置34、44等を備えることができる。
 本技術に係る微小粒子測定システム3及び微小粒子分取システム4は、微小粒子測定装置31又は微小粒子分取装置41と、解析装置32又は42と、記憶装置33又は43と、表示装置34又は44と、をそれぞれ、ネットワークを介して接続したシステムとすることができる。
 なお、本技術に係る微小粒子測定システム3及び微小粒子分取システム4における、微小粒子測定装置31、微小粒子分取装置41、解析装置32、42、記憶装置33、43、表示装置34、44は、それぞれ前述した本技術に係る微小粒子測定装置1、微小粒子分取装置2、解析部14、記憶部15、表示部16の詳細と同一であるため、ここでは説明を割愛する。
 なお、本技術では、以下の構成を取ることもできる。
(1)
 流路内を流れる微小粒子への励起光の照射に用いられる複数の励起光照射用対物レンズを備え、
 少なくとも一つの前記励起光照射用対物レンズは、別の前記励起光照射用対物レンズを通して前記微小粒子に照射された励起光によって、前記微小粒子から発せられた散乱光の検出に用いられる、微小粒子測定装置。
(2)
 複数の前記励起光照射用対物レンズのうち、少なくとも2以上の前記励起光照射用対物レンズが、流路を挟んで互いに略対向する、(1)に記載の微小粒子測定装置。
(3)
 複数の前記励起光照射用対物レンズは、それぞれ異なる波長域の励起光の照射に用いられる、(1)又は(2)に記載の微小粒子測定装置。
(4)
 可視領域光用の前記励起光照射用対物レンズと、紫外領域光用の前記励起光照射用対物レンズと、を備える、(1)から(3)のいずれかに記載の微小粒子測定装置。
(5)
 紫外領域光用の前記励起光照射用対物レンズは、前記微小粒子から発せられる可視領域の散乱光の検出にも用いられる、(4)に記載の微小粒子測定装置。
(6)
 前記微小粒子から発せられる可視領域の散乱光は、前方散乱光又は側方散乱光である、(5)に記載の微小粒子測定装置。
(7)
 流路内を流れる微小粒子への励起光の照射に用いられる複数の励起光照射用対物レンズと、
 前記微小粒子から発せられる蛍光を検出する光検出部と、
 検出された光学的情報に基づいて、前記微小粒子を分取する分取部と、
 を備え、
 少なくとも一つの前記励起光照射用対物レンズは、別の前記励起光照射用対物レンズを通して前記微小粒子に照射された励起光によって、前記微小粒子から発せられた散乱光の検出に用いられる、微小粒子分取装置。
(8)
 前記光検出部を複数備える、(7)に記載の微小粒子分取装置。
(9)
 流路内を流れる微小粒子への励起光の照射に用いられる複数の励起光照射用対物レンズと、
 前記微小粒子から発せられる蛍光を検出する光検出部と、
 を備え、
 少なくとも一つの前記励起光照射用対物レンズは、別の前記励起光照射用対物レンズを通して前記微小粒子に照射された励起光によって、前記微小粒子から発せられた散乱光の検出に用いられる、微小粒子測定装置と、
 前記光検出部において検出された光学的情報を解析する解析装置と、
 を有する、微小粒子測定システム。
(10)
 流路内を流れる微小粒子への励起光の照射に用いられる複数の励起光照射用対物レンズと、
 前記微小粒子から発せられる蛍光を検出する光検出部と、
 検出された光学的情報に基づいて、前記微小粒子を分取する分取部と、
 を備え、
 少なくとも一つの前記励起光照射用対物レンズは、別の前記励起光照射用対物レンズを通して前記微小粒子に照射された励起光によって、前記微小粒子から発せられた散乱光の検出に用いられる、微小粒子分取装置と、
 前記光検出部において検出された光学的情報を解析する解析装置と、
 を有する、微小粒子分取システム。
1、31 微小粒子測定装置
2、41 微小粒子分取装置
P 流路
11 光照射部
12 光検出部
L 対物レンズ
13 分取部
14 解析部
15 記憶部
16 表示部
3 微小粒子測定システム
4 微小粒子分取システム
32、42 解析装置
33、43 記憶装置
34、44 表示装置

Claims (10)

  1.  流路内を流れる微小粒子への励起光の照射に用いられる複数の励起光照射用対物レンズを備え、
     少なくとも一つの前記励起光照射用対物レンズは、別の前記励起光照射用対物レンズを通して前記微小粒子に照射された励起光によって、前記微小粒子から発せられた散乱光の検出に用いられる、微小粒子測定装置。
  2.  複数の前記励起光照射用対物レンズのうち、少なくとも2以上の前記励起光照射用対物レンズが、流路を挟んで互いに略対向する、請求項1記載の微小粒子測定装置。
  3.  複数の前記励起光照射用対物レンズは、それぞれ異なる波長域の励起光の照射に用いられる、請求項1記載の微小粒子測定装置。
  4.  可視領域光用の前記励起光照射用対物レンズと、紫外領域光用の前記励起光照射用対物レンズと、を備える、請求項1記載の微小粒子測定装置。
  5.  紫外領域光用の前記励起光照射用対物レンズは、前記微小粒子から発せられる可視領域の散乱光の検出にも用いられる、請求項4記載の微小粒子測定装置。
  6.  前記微小粒子から発せられる可視領域の散乱光は、前方散乱光又は側方散乱光である、請求項5記載の微小粒子測定装置。
  7.  流路内を流れる微小粒子への励起光の照射に用いられる複数の励起光照射用対物レンズと、
     前記微小粒子から発せられる蛍光を検出する光検出部と、
     検出された光学的情報に基づいて、前記微小粒子を分取する分取部と、
     を備え、
     少なくとも一つの前記励起光照射用対物レンズは、別の前記励起光照射用対物レンズを通して前記微小粒子に照射された励起光によって、前記微小粒子から発せられた散乱光の検出に用いられる、微小粒子分取装置。
  8.  前記光検出部を複数備える、請求項7記載の微小粒子分取装置。
  9.  流路内を流れる微小粒子への励起光の照射に用いられる複数の励起光照射用対物レンズと、
     前記微小粒子から発せられる蛍光を検出する光検出部と、
     を備え、
     少なくとも一つの前記励起光照射用対物レンズは、別の前記励起光照射用対物レンズを通して前記微小粒子に照射された励起光によって、前記微小粒子から発せられた散乱光の検出に用いられる、微小粒子測定装置と、
     前記光検出部において検出された光学的情報を解析する解析装置と、
     を有する、微小粒子測定システム。
  10.  流路内を流れる微小粒子への励起光の照射に用いられる複数の励起光照射用対物レンズと、
     前記微小粒子から発せられる蛍光を検出する光検出部と、
     検出された光学的情報に基づいて、前記微小粒子を分取する分取部と、
     を備え、
     少なくとも一つの前記励起光照射用対物レンズは、別の前記励起光照射用対物レンズを通して前記微小粒子に照射された励起光によって、前記微小粒子から発せられた散乱光の検出に用いられる、微小粒子分取装置と、
     前記光検出部において検出された光学的情報を解析する解析装置と、
     を有する、微小粒子分取システム。
PCT/JP2020/001207 2019-03-06 2020-01-16 微小粒子測定装置、微小粒子分取装置、微小粒子測定システム及び微小粒子分取システム WO2020179237A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/433,740 US20220146403A1 (en) 2019-03-06 2020-01-16 Microparticle measurement device, microparticle sorting device, microparticle measurement system, and microparticle sorting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019040421A JP2020143991A (ja) 2019-03-06 2019-03-06 微小粒子測定装置、微小粒子分取装置、微小粒子測定システム及び微小粒子分取システム
JP2019-040421 2019-03-06

Publications (1)

Publication Number Publication Date
WO2020179237A1 true WO2020179237A1 (ja) 2020-09-10

Family

ID=72337515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001207 WO2020179237A1 (ja) 2019-03-06 2020-01-16 微小粒子測定装置、微小粒子分取装置、微小粒子測定システム及び微小粒子分取システム

Country Status (3)

Country Link
US (1) US20220146403A1 (ja)
JP (1) JP2020143991A (ja)
WO (1) WO2020179237A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235691A (ja) * 1993-02-10 1994-08-23 Toa Medical Electronics Co Ltd イメージングフローサイトメータ
JP2001183296A (ja) * 1999-12-24 2001-07-06 Olympus Optical Co Ltd 光量測定装置
JP2007046947A (ja) * 2005-08-08 2007-02-22 Bay Bioscience Kk フローサイトメータおよびフローサイトメトリ方法
JP2007315761A (ja) * 2006-05-23 2007-12-06 Konica Minolta Sensing Inc 反射特性測定装置
JP2015503736A (ja) * 2011-12-29 2015-02-02 ダンマークス テクニスク ユニバーシテット 電磁放射を用いて微小物体を分類するためのシステム
JP2016012114A (ja) * 2014-06-02 2016-01-21 オリンパス株式会社 照明装置、これを有する顕微鏡装置及び顕微鏡観察方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA115521C2 (uk) * 2008-06-30 2017-11-27 Мікробікс Байосистемз Інк. Метод і пристосування для сортування клітин
WO2012023816A2 (ko) * 2010-08-18 2012-02-23 주식회사 나노엔텍 멀티 형광영상 관측용 형광현미경, 이를 이용한 형광영상의 관찰방법 및 멀티 형광영상 관측 시스템
US8907312B2 (en) * 2010-08-20 2014-12-09 Bio-Rad Laboratories, Inc. Cytometry system with solid numerical-aperture-increasing lens
US20120238032A1 (en) * 2011-03-18 2012-09-20 International Business Machines Corporation Lab on a chip
JP2014006108A (ja) * 2012-06-22 2014-01-16 Azbil Corp 光学式粒子検出装置及び粒子の検出方法
US10598594B2 (en) * 2015-12-22 2020-03-24 University Of Maryland Cell classification based on mechanical signature of nucleus
JP6999129B2 (ja) * 2017-09-06 2022-01-18 浜松ホトニクス株式会社 細胞観察システムおよび細胞観察方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235691A (ja) * 1993-02-10 1994-08-23 Toa Medical Electronics Co Ltd イメージングフローサイトメータ
JP2001183296A (ja) * 1999-12-24 2001-07-06 Olympus Optical Co Ltd 光量測定装置
JP2007046947A (ja) * 2005-08-08 2007-02-22 Bay Bioscience Kk フローサイトメータおよびフローサイトメトリ方法
JP2007315761A (ja) * 2006-05-23 2007-12-06 Konica Minolta Sensing Inc 反射特性測定装置
JP2015503736A (ja) * 2011-12-29 2015-02-02 ダンマークス テクニスク ユニバーシテット 電磁放射を用いて微小物体を分類するためのシステム
JP2016012114A (ja) * 2014-06-02 2016-01-21 オリンパス株式会社 照明装置、これを有する顕微鏡装置及び顕微鏡観察方法

Also Published As

Publication number Publication date
JP2020143991A (ja) 2020-09-10
US20220146403A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
JP4600573B2 (ja) 光学的測定装置、並びに光検出器の波長校正方法及び光学的測定方法
WO2020149042A1 (ja) 微小粒子分取装置、微小粒子分取システム、液滴分取装置、及び液滴制御装置、並びに、液滴制御用プログラム
US11530975B2 (en) Control device, microparticle sorting device and microparticle sorting system using control device, and control method
JP6954406B2 (ja) 粒子測定システム及び粒子測定方法
WO2021070847A1 (en) Particle detection apparatus, information processing apparatus, information processing method, and particle detection method
US20240125690A1 (en) Microparticle measuring apparatus and microparticle measuring method
JP6860015B2 (ja) 微小粒子測定装置及び微小粒子測定方法
WO2017018057A1 (ja) 微小粒子測定装置、情報処理装置及び情報処理方法
WO2020179237A1 (ja) 微小粒子測定装置、微小粒子分取装置、微小粒子測定システム及び微小粒子分取システム
US20230375459A1 (en) Particle detection device, particle detection system, and particle detection method
US11686662B2 (en) Microparticle sorting device and method for sorting microparticles
WO2021131415A1 (ja) 情報処理装置、粒子測定装置、粒子測定システム、粒子分取装置、粒子分取システム、情報処理方法、及び情報処理プログラム
WO2023243422A1 (ja) 粒子分取システム、粒子分取方法、及び粒子分取プログラム
WO2023189819A1 (ja) 粒子分取システム、及び粒子分取方法
CN114616454A (zh) 光学测量设备和信息处理系统
US20200319081A1 (en) Microparticle measurement device and cleaning method for microparticle measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766894

Country of ref document: EP

Kind code of ref document: A1