WO2020178924A1 - Vapor deposition device and display apparatus manufacturing method - Google Patents
Vapor deposition device and display apparatus manufacturing method Download PDFInfo
- Publication number
- WO2020178924A1 WO2020178924A1 PCT/JP2019/008213 JP2019008213W WO2020178924A1 WO 2020178924 A1 WO2020178924 A1 WO 2020178924A1 JP 2019008213 W JP2019008213 W JP 2019008213W WO 2020178924 A1 WO2020178924 A1 WO 2020178924A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vapor deposition
- housing
- top plate
- coating layer
- vibration
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
Definitions
- the present invention relates to a method for manufacturing a vapor deposition device and a display device.
- Patent Document 1 discloses that in an organic EL display device, a red light emitting layer and a green light emitting layer are formed by a vapor deposition method using a mixed material containing a low molecular material and a high molecular material as a plurality of types of vapor deposition materials. Has been done. Further, Patent Document 2 discloses a vapor deposition apparatus for co-evaporating a mixed material containing a plurality of types of vapor deposition materials.
- JP 2012-028764 International Publication No. 2012/10533 Pamphlet
- the mixing ratio of the vapor deposition materials varies while the vapor deposition process is repeated. It was also found that the ratio of each vapor deposition material in the vapor deposition film after vapor deposition may be different from the ratio of each vapor deposition material in the mixed material introduced into the vapor deposition source before vapor deposition.
- the present invention has been made in view of the above problems, and an object thereof is to prevent the mixing ratio of each vapor deposition material from varying during repeated vapor deposition processing in co-evaporation of a plurality of vapor deposition materials.
- An object of the present invention is to provide a method for manufacturing a vapor deposition device and a display device.
- a vapor deposition device has an opening on an upper side, a housing in which a mixture of a plurality of kinds of evaporation materials is accommodated, and the opening of the housing. Attached in an airtight manner, and a top plate provided with a plurality of nozzles for ejecting vapor deposition particles obtained by vaporizing the plurality of types of vapor deposition materials, and a vapor deposition source having, and the inner surface of the casing and the top plate.
- a coating layer containing a siloxane group is formed on at least a part of at least one of the inner surfaces.
- a method for manufacturing a display device includes a housing having an opening on an upper side and containing a mixture of a plurality of kinds of evaporation materials; A top plate, which is attached to the opening in an airtight manner and has a plurality of nozzles for ejecting vapor deposition particles obtained by vaporizing the plurality of types of vapor deposition materials, and a vapor deposition source having: A vapor deposition apparatus in which a coating layer containing a siloxane group is formed on at least a part of at least one of the inner surfaces of the top plate, the vapor deposition material accommodating step of accommodating the plurality of types of vapor deposition materials in the housing, and A temperature raising step of raising the temperature of the housing to a temperature higher than the vaporization temperature of each of the plurality of types of vapor deposition materials, a vapor deposition substrate loading step of loading the vapor deposition substrate into the vapor deposition apparatus, and the vapor deposition
- a vapor deposition device and a method for manufacturing a display device capable of suppressing a change in a mixing ratio of vapor deposition materials during repeated vapor deposition processing in co-evaporation of a plurality of types of vapor deposition materials. can do.
- FIG. 3 is a partial perspective view showing a schematic configuration of a main part of the vapor deposition device according to the first embodiment.
- FIG. 2 is a partial cross-sectional view showing a schematic configuration of a main part of the vapor deposition device shown in FIG. 1.
- (A) is a plan view showing a schematic configuration of an upper surface of a top plate according to the first embodiment
- (b) is a cross-sectional view schematically showing the housing and the top plate according to the first embodiment.
- FIG. 3 is a diagram showing an example of vibration of the vibration device according to the first embodiment.
- FIG. 6 is a diagram showing another example of vibration of the vibrating device according to the first embodiment. It is a flowchart which shows the formation process of the coating layer shown in FIG. FIG.
- FIG. 4 is a cross-sectional view showing a part of the process of forming the coating layer shown in FIG. 2.
- FIG. 6 is a cross-sectional view showing another part of the process of forming the coating layer shown in FIG. 2. It is a flowchart which shows the formation process of the vapor deposition film shown in FIG. (A) is a top view which shows the schematic structure of the upper surface of the top plate used in Example 3, and FIG. (b) simplifies and shows the housing and top plate of the vapor deposition source used in Example 3. It is a sectional view. 6 is another plan view showing the schematic configuration of the top surface of the top plate according to Embodiment 1.
- FIG. 5 is a partial cross-sectional view showing a schematic configuration of a main part of the vapor deposition device according to Embodiment 2.
- FIG. 5 is a partial cross-sectional view showing a schematic configuration of a main part of the vapor deposition device according to Embodiment 2.
- FIG. 5 is a partial cross-sectional
- FIG. 1 is a partial perspective view showing a schematic configuration of a main part of a vapor deposition device 3 according to this embodiment.
- FIG. 2 is a partial cross-sectional view showing a schematic configuration of a main part of the vapor deposition device 3 shown in FIG. 2 shows a vertical cross section of the vapor deposition device 3 in which the vapor deposition source 1, the deposition preventive plate 6, and the tube portion 7 are extracted from the vapor deposition device 3. Further, for convenience of illustration, the thickness of the coating layer 41 is exaggerated in FIG. For convenience of illustration, in FIG.
- the housing 4, the top plate 5, and the deposition preventive plate 6 are shown separated from each other, but the housing 4, the top plate 5, and the deposition protection plate 6 are actually airtight. It is in close contact. Further, in FIGS. 1 and 2, the number of nozzles is omitted for convenience of illustration.
- the vapor deposition device 3 includes a vapor deposition source 1 that ejects vapor deposition particles, and a vapor deposition rate detecting crystal resonator 2 that detects the vapor deposition rate of the vapor deposition particles.
- the vapor deposition apparatus forms (deposits) a vapor deposition film 61 on a substrate 52, which is a film formation substrate, as a vapor deposition film 61 by simultaneously vapor depositing (co-evaporating) a plurality of types of vapor deposition materials.
- the vapor deposition source 1 has an opening 4K (upper side opening) on the upper side, a housing 4 in which the vapor deposition material is housed, a top plate 5 that covers the opening 4K, and a vibrating device 11. ing.
- the housing 4 may be a crucible or a vapor deposition boat.
- the top plate 5 is airtightly attached to the opening 4K of the housing 4.
- the top plate 5 is provided with a plurality of nozzles that eject (discharge) the vapor deposition material housed in the housing 4 as vapor deposition particles.
- the housing 4 contains a mixture of a plurality of types of vapor deposition materials (mixed material) as the vapor deposition material. Specifically, the housing 4 contains a mixture of a plurality of types of vapor deposition materials having different characteristics as the vapor deposition material.
- the vaporized materials having different characteristics have different skeleton structures and different molecular weights, densities, vaporization temperatures (sublimation temperature when the vaporized material is a liquid material, evaporation temperature when the vaporized material is a liquid material), and the like.
- the housing 4 accommodates a premix type vapor deposition material including the first vapor deposition material 71 and the second vapor deposition material 72 having a molecular weight larger than that of the first vapor deposition material 71.
- a premix type vapor deposition material include a mixture of two kinds of organic materials for OLED (organic light emitting diode) used as a host material in the green light emitting layer and the red light emitting layer.
- the vapor deposition source 1 vaporizes a vapor deposition material containing a first vapor deposition material 71 and a second vapor deposition material 72 (specifically, a mixture of the first vapor deposition material 71 and the second vapor deposition material 72) from the plurality of nozzles. Eject as particles. As a result, the vapor deposition source 1 simultaneously attaches the first vapor deposition material 71 and the second vapor deposition material 72 to the substrate 52. Thus, the vapor deposition film 61 (co-evaporation film) containing the first vapor deposition material 71 and the second vapor deposition material 72 as constituent components is formed.
- an FMM Fe Metal Mask
- a vapor deposition mask (not shown).
- the vapor-deposited particles ejected from the plurality of nozzles are formed on the substrate 52 as a thin-film deposition film 61 having a predetermined pattern through a mask opening of a thin-film deposition mask (not shown).
- the vapor deposition source 1 includes a first nozzle 5S and a second nozzle 5N as the plurality of nozzles.
- the first nozzle 5S is a nozzle arranged near the crystal unit 2.
- the second nozzle 5N is a nozzle arranged at a position farther from the crystal unit 2 than the first nozzle 5S.
- the first nozzle 5S is, for example, formed so as to be inclined toward the crystal oscillator 2. Since the first nozzle 5S is formed so as to be inclined toward the crystal oscillator 2, the vapor-deposited particles can be more reliably adhered to the crystal oscillator 2. However, the orientation of the first nozzle 5S is not limited to this.
- FIG. 3A is a plan view showing a schematic configuration of the top surface of the top plate 5, and FIG. 3B is a sectional view showing the housing 4 and the top plate 5 in a simplified manner.
- 3(a) and 3(b) for convenience of illustration, the first nozzle 5S is not shown, and the number of holes 5K is omitted.
- the total area of the holes 5K of the first nozzle 5S and the second nozzle 5N on the upper surface of the top plate 5, which is the area of the upper opening hole of the vapor deposition source 1, is 1/20 to 1/8 of the area of the upper surface of the top plate 5. It is desirable that it is within the range of. If the area ratio of the upper openings is less than 1/20, vapor deposition may take too long. Further, if the area ratio of the upper opening holes is larger than 1/8, when the vapor deposition source 1 is vibrated, the vapor deposition material which is not vaporized particles may fly out from the holes 5K as it is.
- the holes 5K having an area ratio of 50% or more and 80% or less on the top surface of the top plate 5 are closer to the center of the top plate 5 in a plan view (specifically, It is desirable that the top plate 5 is located within a distance of 1/2 from the center point C on the upper surface of the top plate 5 to the outer edge of the top plate 5.
- the holes 5K may be provided so as to straddle the above line, but for simplicity, the holes 5K having an area ratio of 50% or more and 80% or less are, for example, 50% of the total area of the holes 5K. Above, the number of holes 5K corresponding to an area of 80% or less is shown.
- the area ratio of the holes 5K existing in the above region is set to 100%, for example, the film thickness change of the formed vapor deposition film 61 becomes remarkable. If the area ratio of the holes 5K existing in the above region is 50% or more and 80%, such a problem does not occur. Therefore, by setting the holes 5K as described above, the first vapor deposition material 71 and the second vapor deposition material 72 are not uniformly distributed (mixed) on the peripheral side of the vapor deposition source 1 due to a rapid temperature rise. It is possible to prevent the vapor deposition from proceeding as it is.
- the inner surface of the housing 4 and the inner surface of the top plate 5 (in other words, the surface on which the coating layer 41 is formed) have low reactivity with the vapor deposition material housed in the housing 4 and are made of a material to which the vapor deposition material does not adhere. It is preferably formed of a base material.
- the inner surface of the housing 4 and the inner surface of the top plate 5 are at least one metal selected from the group consisting of, for example, molybdenum (Mo), tungsten (W), tantalum (Ta), and niobium (Nb).
- it is preferably formed of an alloy thereof or at least one ceramic material (inorganic insulating material) selected from the group consisting of silicon oxide (SiOx), silicon nitride (SiNx), and aluminum nitride (AlN).
- ceramic material inorganic insulating material selected from the group consisting of silicon oxide (SiOx), silicon nitride (SiNx), and aluminum nitride (AlN).
- the inventors of the present invention have found that the deposition material adheres to the inside of the deposition source (specifically, the inner surface of the casing or the inner surface of the top plate). We have come to the conclusion that it is the largest factor in the fluctuation of the ratio.
- the inner surface of the vapor deposition source is oxidized by oxygen in the air under high temperature treatment, and then hydrated by moisture (steam) in the air, or reacted with carbon dioxide in the air to be carboxylated.
- at least one of a hydroxyl group and a carboxyl group is formed on the inner surface of the vapor deposition source.
- the vapor deposition material contained in the vapor deposition source chemically reacts with at least one of the hydroxyl group and the carboxyl group and chemically bonds with the inner surface of the vapor deposition source to form an adhered substance. This deposit is difficult to remove.
- the vapor deposition material having a large molecular weight moves below the housing and above the housing.
- the distribution of the vapor deposition material is biased in the housing because there are many vapor deposition materials with small molecular weights. Therefore, the ratio of each vapor deposition material attached to the inner surface of the vapor deposition source is not constant. Further, when the vapor deposition process is repeated, the vaporized vapor deposition material adheres and sticks to the inner surface of the vapor deposition source.
- the amount of the vapor deposition material sticking to the inner surface of the deposition source is uneven, and the amount of each vapor deposition material adhering to the vapor deposition source due to the difference in the vaporization temperature of each vapor deposition material There is a difference in.
- the coating layer 41 is made of a material including a siloxane-based compound, and includes a siloxane (—Si—O—Si—) group (siloxane unit), and is a structural unit derived from the siloxane-based compound. have. Therefore, the coating layer 41 contains a siloxane group. Therefore, the coating layer 41 containing a siloxane group is formed on at least a part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5.
- the coating layer 41 can be formed by chemically reacting a siloxane compound with the above-mentioned base material, and is introduced into at least a part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5 by a chemical modification method. To be done.
- the inner surface of the top plate 5 is an inner surface of the first nozzle 5S and the second nozzle 5N provided on the top plate 5 (specifically, the inner surface of these nozzles defining the holes 5K of these nozzles). May include.
- the coating region coated with the coating layer 41 (the surface on which the coating layer 41 is formed) includes the corner 4b formed by the side surface 4a and the bottom surface 4c on the inner surface of the housing 4.
- the covering region defines the holes 5K on the inner surface of the top plate 5, the inner surfaces of the first nozzles 5S and the second nozzles 5N, and the lower surface 5b around the holes 5K. including.
- the coating region covered with the coating layer 41 is provided on at least a part of the inner surfaces (that is, the surfaces of the inner walls) of the housing 4 and the top plate 5 is taken as an example. It is shown in the figure. However, the present embodiment is not limited to this, and the bottom surface of the housing 4 or the side surface of the housing 4 may be used as at least a part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5. Alternatively, the covering region may be provided on any of the inner surfaces of the first nozzle 5S and the second nozzle 5N of the top plate 5.
- Siloxane compound is a general term for silicic acid organic compounds having a skeleton of a siloxane unit in which silicon (Si), which is an inorganic component, and —O— groups having polarity are alternately bonded.
- the vapor deposition material is, for example, an organic material for OLED as described above, a ⁇ -conjugated organic material having a low polarity is used as the vapor deposition material.
- Si which is an inorganic component in siloxane, does not adsorb organic materials (organic compounds).
- the —O— group in the siloxane also has a large electronegativity and polarity due to the influence of unpaired electrons, and is not compatible with the organic material for OLED.
- the siloxane-based compound is not particularly limited, but is, for example, at least one compound selected from the group consisting of a compound represented by the following structural formula (1) and a compound represented by the following structural formula (2).
- R1 and R2 each independently represent an alkyl group or an alkylene group having 2 to 6 carbon atoms, and n is an integer of 1 to 24 (desirably, 4 to 18).
- R3 and R4 each independently represent an alkyl group or an alkylene group having 2 to 6 carbon atoms, and m is an integer of 1 to 24 (preferably 4 to 18). Indicates.
- the siloxane compound preferably has an epoxy group like the compound represented by the structural formula (1) or (2).
- the epoxy group has high reactivity with the base material forming the inner surface of the housing 4 and the inner surface of the top plate 5, and the surface of the base material can be chemically modified.
- the inner surface of the housing 4 and the inner surface of the top plate 5 are oxygen (O 2 ), carbon dioxide (CO 2 ), water vapor (H 2 O), and By reacting with at least one gas of hydrocarbons, at least a part of the surface thereof is oxidized, hydroxylated or carboxylated.
- the surface of the base material is reacted with, for example, carbon dioxide or hydrocarbon in the air under high temperature heat treatment (for example, about 200° C. or lower) to bond carbon molecules to at least a part of the surface of the base material. ..
- the surface of the base material reacts with carbon dioxide under the high-temperature heat treatment, for example, a carboxyl group is formed on at least a part of the surface of the base material.
- the surface of the base material forms an oxide film by being oxidized by oxygen or carbon dioxide in the air, for example. This oxide film reacts with moisture (water vapor) in the air, or, as will be described later, at least a part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5 (that is, coated with the coating layer 41).
- the surface of the substrate on at least part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5 is formed on at least a part of at least one of the inner surfaces of the top plate 5 on which the coating layer 41 is formed).
- At least a part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5, which is the surface on which the coating layer 41 is formed, is immersed in weakly basic water. At least a hydroxyl group among the above-mentioned hydroxyl group and carboxyl group is formed on the formation surface of the coating layer 41.
- the hydroxyl group or the carboxyl group reacts with, for example, an epoxy group in the siloxane-based compound, and the surface of the base material is siloxane-crosslinked with the siloxane-based compound.
- the coating layer 41 having a siloxane group on the surface.
- the base material is W (tungsten)
- the surface of W reacts with at least one gas of O 2 , CO 2 , H 2 O, and hydrocarbons to generate, for example, WC. (OH) or WCOOH. Therefore, for example, when WC(OH) is bonded to the epoxy group of the siloxane compound represented by the structural formula (1) or (2), —CH(OH)CH 2 OCW is formed, and the surface of the substrate is A component having a siloxane unit (siloxane bond) bonded to the epoxy group in the siloxane compound represented by the structural formula (1) or (2) via —CH(OH)CH 2 OC— A coating layer 41 including (structural unit) is formed.
- the base material when the base material is AlN, AlN becomes Al(OH) 3 when contacted with water, for example.
- Al(OH) 3 when Al(OH) 3 is bonded to the epoxy group of the siloxane compound represented by the structural formula (1) or (2), —CH(OH)CH 2 OAl(OH) 2 is formed.
- —(CH(OH)CH 2 O) 3 Al is formed.
- the epoxy group in the siloxane compound represented by the structural formula (1) or (2) is bonded to the surface of the base material via —(CH(OH)CH 2 O) 3 —.
- a coating layer 41 containing a component (structural unit) having a siloxane unit (siloxane bond) is formed.
- the ceramic material made of AlN include “Shapal (registered trademark)” manufactured by Tokuyama Corporation, but the present embodiment is not limited to this.
- the vapor deposition source 1 includes deposition preventive plates 6 and 8 for preventing the vapor deposition particles from flying to the film formation unnecessary region, and an angle limiting plate 9 for limiting the flight angle of the vapor deposition particles. ⁇ 10 and more are provided.
- the deposition-preventing plates 6 and 8 are provided on each end of the housing 4 in the direction orthogonal to the scanning direction of the vapor deposition source 1 (in other words, the arrangement direction of the first nozzle 5S and the second nozzle 5N). ..
- the angle limiting plates 9 and 10 are provided on each end of the housing 4 in the scanning direction of the vapor deposition source 1 (in other words, the direction orthogonal to the arrangement direction of the first nozzles 5S and the second nozzles 5N). ..
- the deposition-inhibiting plate 6 of the deposition-inhibiting plates 6 and 8 adjacent to the crystal oscillator 2 is provided between the first nozzle 5S and the crystal oscillator 2, and is connected to the crystal oscillator 2 through the first nozzle 5S.
- a tube portion 7 having a first conduction opening 7K capable of inducing vapor-deposited particles is provided.
- the first nozzle 5S side of the tube portion 7 is connected to the deposition preventing plate 6.
- the adhesive plate 6 is provided with a second conduction opening 6K that communicates with the first conduction opening 7K of the pipe portion 7.
- the inner surfaces of the pipe portion 7 and the protective plate 6 are each coated with the coating layer 41.
- the inner surfaces of the tube portion 7 and the deposition preventing plate 6 are the inner surface of the tube portion 7 defining the first conduction opening 7K, the inner surface of the deposition preventing plate 6 defining the second conduction opening 6K, and , The surface of the deposition-inhibiting plate 6 on the side of the first nozzle 5S.
- the vibrating device 11 is a vibration-type stirring device that vibrates the housing 4 (that is, the vapor deposition source 1) to cause the vapor deposition material in the housing 4 to flow and stir.
- the vibrating device 11 is a kinetic energy supply device (vapor deposition material flowing device) that applies kinetic energy to the vapor deposition material in the housing 4 to flow (move) the vapor deposition material.
- the vibrating device 11 applies kinetic energy to the vapor-deposited material in the housing 4 to cause the vapor-deposited material to flow (exercise).
- the vibration device 11 applies, for example, at least one of horizontal vibration, vertical vibration, and tilt vibration to the vapor deposition source 1, so that the vapor deposition material in the housing 4 has horizontal vibration, vertical vibration, and At least one vibration of tilt vibration is applied.
- the lateral vibration means vibration that moves the vapor deposition source 1 or the vapor deposition material in the horizontal direction.
- the vertical vibration means a vibration that moves the vapor deposition source 1 or the vapor deposition material in a direction perpendicular to the horizontal direction.
- the tilt vibration indicates a vibration that tilts the vapor deposition source 1 with respect to the horizontal direction. It is desirable that the vertical vibration can move the vapor deposition source 1 by a distance of 1/10 or more of the vertical length of the vapor deposition source 1 (that is, the length between the upper end and the lower end of the vapor deposition source 1). Further, it is desirable that the tilt vibration can tilt the vapor deposition source 1 in the horizontal direction within a range of, for example, ⁇ 45 °.
- the vibration conditions such as the type and combination of vibrations, the number of vibrations of each vibration per unit time, and the vibration time of each vibration are not particularly limited, and the first vapor deposition material 71 and the second vapor deposition material 72 are sufficiently uniform. It may be set appropriately so that it is mixed.
- the vibration device 11 applies the above vibration to the vapor deposition source 1 together with the deposition preventive plate 6.
- the configuration of the vibration device 11 is not particularly limited as long as it can apply at least one vibration of lateral vibration, vertical vibration, and tilt vibration to the vapor deposition source 1.
- the vibration exciter 11 includes, for example, a drive unit including a motor (XY ⁇ drive motor) such as a stepping motor (pulse motor), rollers, gears, an XYZ stage, etc., and a drive control unit such as a motor drive control unit.
- the vapor deposition source 1 may be moved by driving the drive unit by the drive control unit.
- a reciprocating motion in the lateral direction may be performed by a moving mechanism including a linear guide and a ball screw or a moving mechanism including a piston.
- the tilt vibration may be performed.
- the vibration device 11 may be a shaker, a vibration device using an electromagnet or the like, or a vibration device using ultrasonic waves.
- FIGS. 4 and 5 are diagrams showing an example of vibration of the vibration device 11.
- the vibration device 11 only needs to be able to apply at least one of lateral vibration, vertical vibration, and tilt vibration to the vapor deposition source 1, but as shown in FIGS. More preferably, at least one of tilt vibration and lateral vibration and vertical vibration can be applied to the vapor deposition source 1.
- vertical vibration is performed after tilt vibration, or, as shown in FIG. 5, vertical vibration is performed after horizontal vibration, so that the first vapor deposition material 71 and the second vapor deposition material 72 are more effectively separated from each other. It can be mixed efficiently and uniformly.
- the lateral vibration, the vertical vibration, and the tilt vibration may be performed by repeating at least two types of vibration in a fixed order or simultaneously.
- a case where at least a hydroxyl group is formed on the surface of the base material on a part of the inner surface of the housing 4 by step S3 will be described as an example.
- a carboxyl group or a hydroxyl group is formed on the surface where the coating layer 41 is formed, and in step S3, at least one of the carboxyl group and the hydroxyl group may be formed.
- the surface of the base material on a part of the inner surface of the housing 4 is formed with the weakly basic water shown in FIG. As described above, it may be reacted with carbon dioxide, for example, before immersing in 22 or without the step of immersing in weakly basic water 22 shown in FIG. 7.
- FIG. 6 is a flow chart showing a forming process of the coating layer 41 shown in FIG. 7 and 8 are cross-sectional views each showing a part of the process of forming the coating layer 41 shown in FIG.
- Step S1 is a step of cleaning the surface of the housing 4. Therefore, instead of cleaning with an organic solvent, the housing 4 may be cleaned by adopting another method such as burning off contaminants by ignition at 50 to 350 ° C. If the surface of the housing 4 is clean, step S1 may be omitted.
- organic solvent for example, acetone, ethanol, isopropyl alcohol or the like can be used.
- Step S1 is a step of cleaning the surface of the housing 4. Therefore, instead of cleaning with an organic solvent, the housing 4 may be cleaned by adopting another method such as burning off contaminants by ignition at 50 to 350 ° C. If the surface of the housing 4 is clean, step S1 may be omitted.
- Step S2 is a step for preventing the formation of the hydroxyl group and the coating layer 41 in the non-covered area. Therefore, step S2 may be omitted when the prevention is performed by another method or when the coating layer 41 is formed on the entire inner surface of the housing 4. Further, it is not necessary to seal all of the non-coated area, and a part of the non-coated area which is soaked in at least one of the weakly basic water and the solution 24 containing the siloxane compound used in step S5 described later is used. , It is enough if it is sealed.
- the sealing material 20 is a material that does not chemically react with the weakly basic water 22 and the solution 24 in the uncoated region. Further, the sealing material 20 is a material capable of shielding the uncoated region from the weakly basic water 22 and the solution 24.
- the sealing material 20 for example, an acrylic sealing material or a methacrylic sealing material may be used.
- the solvent for dissolving the siloxane compound used in the solution 24 for example, acetone, ethanol, NMP (N-methyl-2-pyrrolidone) and the like are used.
- step S3 by pouring weakly basic (about pH 8 to 9) water 22 into the housing 4 and allowing it to stand overnight (12 hours or more), the coating layer on the inner surface of the housing 4 is removed. At least a hydroxyl group is formed in the coating region forming 41 (step S3).
- the weakly basic water 22 is, for example, an aqueous potassium hydrogen carbonate solution having a concentration of 10 ⁇ 4 mol/L. Even if step S3 is not performed, the surface of the housing 4 is somewhat hydroxylated by the moisture in the air. Therefore, step S3 can be omitted. However, performing step S3 can increase the density of hydroxyl groups in the coating region.
- step S3 it is preferable to perform step S3 in order to increase the density of the coating layer 41 formed in step S5.
- weakly basic water 22 neutral water or a strongly basic aqueous solution such as an aqueous potassium hydroxide solution may be used.
- neutral water when neutral water is used, the reaction rate of forming a hydroxyl group is slow.
- a strongly basic aqueous solution when a strongly basic aqueous solution is used, side reactions other than the formation of hydroxyl groups are likely to occur. For this reason, it is preferable to use weakly basic water 22.
- step S4 the water 22 is discharged from the inside of the housing 4 to completely dry the housing 4 (step S4).
- step S3 is omitted
- step S4 is also omitted.
- the above solution 24 is poured into the housing 4 and left to stand for about 10 hours while keeping the temperature at 30 ° C. or higher.
- the coating layer 41 is formed on the covered area of the inner surface of the housing 4 (step S5). Then, the solution 24 is discharged from the housing 4.
- step S6 is also omitted. Note that step 6 may be performed after step 7 described below or after step S8.
- step S7 the housing 4 is washed with an organic solvent (step S7), and the housing 4 is completely dried (step S8).
- step S7 at least the surface of the coating layer 41 is cleaned, preferably in addition, the uncoated area after the sealing material 20 is peeled off.
- the same organic solvent as the organic solvent in step S1 can be used as the organic solvent in step S7.
- the coating layer 41 may be formed only on the side surface 4a or may be formed only on the bottom surface 4c. Further, it may be formed only on a part of at least one of the side surface 4a and the bottom surface 4c. Further, the top plate 5, the tube portion 7, and the adhesion-preventing plate 6 can also be formed with the coating layer 41 in a desired coating region by the same method as described above.
- the coating layer 41 formed on at least a part of the inner surface of any one or more of the housing 4, the top plate 5, the adhesion-preventing plate 6, and the tube portion 7 is included in the technical scope of the present invention. .. Further, a method for manufacturing a vapor deposition apparatus including the above-mentioned forming step of the coating layer 41 or a forming step obtained by modifying the coating layer 41 is included in the technical scope of the present invention.
- the coating layer 41 Since the coating layer 41 is firmly bonded to the housing 4 by a siloxane bond, the coating layer 41 is difficult to peel off from the housing 4. Therefore, the risk that the peeled coating layer 41 contaminates the vapor deposition material is low. Further, the coating layer 41 formed on the inner surfaces of the top plate 5, the adhesive plate 6, and the pipe portion 7 is also difficult to peel off.
- a process of forming the vapor deposition film 61 will be described below with reference to FIGS. 1, 2, 4, 5, and 9. Note that, in the following, the case where the vapor deposition material is a mixed material of the first vapor deposition material 71 and the second vapor deposition material 72 will be described as an example, but the mixed material includes three or more types of vapor deposition materials. You may stay.
- FIG. 9 is a flow chart showing a process of forming the vapor deposition film 61 shown in FIG.
- a mixed material containing a first vapor deposition material 71 and a second vapor deposition material 72 in a predetermined content ratio is prepared (step S11).
- the mixed material is supplied into the housing 4 of the vapor deposition source 1 and housed in the housing 4 (step S12, vapor deposition material storage step).
- step S13 Deposited material stirring process
- the housing 4 is heated to a temperature higher than the vaporization temperature (sublimation temperature or evaporation temperature) of the first vaporized material 71 and the second vaporized material 72, respectively, to raise the temperature of the mixed material (step S14, rise). Warming process).
- the first thin-film deposition material 71 and the second thin-film deposition material 72 are vaporized (sublimation when the vapor deposition material is a liquid material, evaporation when the vapor deposition material is a liquid material), respectively, and are shown in FIGS. 1 and 2.
- the vapor deposition particles are caused to fly from the first nozzle 5S and the second nozzle 5N.
- step S15 deposition target substrate loading step
- the first vapor deposition material 71 and the second vapor deposition material 72 are co-evaporated on the substrate 52 to form a film at the same time (step S16, co-deposition). Deposition process). As a result, a co-deposited film of the first vapor deposition material 71 and the second vapor deposition material 72 is formed on the substrate 52 as the vapor deposition film 61 having a predetermined pattern.
- step S17 step of carrying out the substrate to be vapor-deposited.
- step S15 to S17 are repeated until, for example, a predetermined number of substrates 52 are vapor-deposited or the mixed material contained in the housing 4 becomes a predetermined amount or less.
- the process returns to step S11, and the mixed material remaining in the housing 4 is the housing. 4 is mixed with the newly supplied mixed material.
- step S13 may be performed at least between steps S12 and S14, but if necessary, after the substrate 52 after vapor deposition is carried out in step S17, the substrate in step S15 is then carried out.
- step S13 may be performed at the same time as the vapor deposition process of step S16.
- At least a part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5 is covered with the coating layer 41 containing the siloxane-based compound that does not interact with the organic material. It is possible to prevent the vapor-deposited material from adhering to the region (covered region) covered with the coating layer 41 on the inner surface of the housing 4 and the inner surface of the top plate 5. This can prevent a change in the mixing ratio of the first vapor deposition material 71 and the second vapor deposition material 72 due to the deposition of the vapor deposition material on the inner surface of the housing 4 or the inner surface of the top plate 5, and can be used for film formation. It is possible to reduce the amount of vapor deposition material that is not retained. In addition, cleaning is facilitated, and it is possible to prevent a decrease in vapor deposition rate and a decrease in vapor deposition rate detection accuracy.
- the vapor deposition source 1 is vibrated to cause the vapor deposition material to flow in the housing 4, so that the first vapor deposition material 71 and the second vapor deposition material 72 in the housing 4 are formed.
- the first evaporation material 71 and the second evaporation material 72 in the mixed material of the first evaporation material 71 and the second evaporation material 72 introduced into the housing 4 can be kept uniform.
- the mixing ratio of the first vapor deposition material 71 and the second vapor deposition material 72 and the content ratio of the first vapor deposition material 71 and the second vapor deposition material 72 forming the vapor deposition film 61 formed on the substrate 52.
- the first vapor deposition material 71 and the second vapor deposition material 72 are not unevenly distributed in the vapor deposition film 61, and the vapor deposition film 61 can be uniformly mixed.
- the vapor deposition may be performed by ejecting vapor deposition particles from the vapor deposition source 1 toward the substrate 52 with the vapor deposition device 3 and the substrate 52 fixed, and a vapor deposition mask (not shown) fixed to the substrate 52. Good. Further, the vapor deposition is performed by ejecting vapor deposition particles from the vapor deposition source 1 toward the substrate 52 while moving or rotating at least one of the vapor deposition device 3 and the substrate 52 with a vapor deposition mask (not shown) fixed to the substrate 52. May be done.
- a vapor deposition mask having a smaller area than the substrate 52 is used as the vapor deposition mask, and the substrate 52, the vapor deposition mask, and the vapor deposition apparatus 3 are in a state where the relative positions of the vapor deposition mask and the vapor deposition source 1 of the vapor deposition apparatus 3 are fixed.
- the vapor deposition apparatus 3 is suitably used for manufacturing an organic EL (electroluminescence) display device using, for example, an OLED.
- a method of manufacturing a display device (for example, an organic EL display device) according to this embodiment includes the above-described vapor deposition film manufacturing method (in other words, steps S11 to S17). Further, the manufacturing method of the display device according to the present embodiment can be traced back to a step of manufacturing the vapor deposition device 3 including a step of forming the coating layer 41 as a step of preparing the vapor deposition device 3 (in other words, the vapor deposition device 3). 3), or as maintenance of the vapor deposition source 1, the step of forming the coating layer 41 on the vapor deposition source 1 is included.
- the step of forming the coating layer 41 made of a material containing a siloxane-based compound is included.
- the coating layer forming step may be performed before step S12, may be performed before step S11, and may be performed in parallel with step S11 or after step S11. ..
- the method of manufacturing the organic EL display device includes, for example, a step of forming a first electrode (not shown) on the substrate 52, and an organic layer including at least a light emitting layer on the first electrode.
- a step of forming the second electrode on the organic layer and a step of forming the second electrode on the organic layer are included, and at least the light emitting layer is formed by the vapor deposition film manufacturing method.
- Example 1 First, as a mixture of a plurality of types of vapor deposition materials (organic compounds), Alq 3 (tris (8-quinolinolate) aluminum) represented by the following structural formula (3) and FL-3 (represented by the following structural formula (4)). Three kinds of mixed materials of spiro-(di-(phenyl)-di-(di-3-methylphenyl)amine) were adjusted by changing the content ratio (mixing ratio) of each material.
- Alq 3 is an electron transporting vapor deposition material, and its molecular weight is 459.
- FL-3 is a hole transporting vapor deposition material, and its molecular weight is 862. Therefore, the molecular weight ratio of both is Alq 3 :FL-3 ⁇ 1.0:1.9. Further, the content ratio (Alq 3 :FL-3) of Alq 3 and FL-3 in the above-mentioned mixed material is (30:70), (50:50), (70: 30) three conditions.
- the above three types of mixed materials having different weight ratios were housed in the housing 4 of the vapor deposition device 3 shown in FIG. 1 having the top plate 5 shown in FIGS. 1 and 3A and 3B.
- the vapor deposition source 1 of the vapor deposition apparatus 3 as shown in FIG. 2, the inner surface of the housing 4 and the inner surface of the top plate 5 are made of AlN, and the inner surface of the housing 4 and the first nozzle 5S are formed.
- An vapor deposition source in which the inner surface of the top plate 5 including the inner surface of the second nozzle 5N was chemically modified (coated) with the siloxane compound represented by the structural formula (1) was used.
- the vapor deposition source 1 was subjected to tilt vibration at 1 Hz for 5 minutes and then vertical vibration at 1 Hz for 5 minutes by the vibration exciter 11.
- the tilt vibration and the vertical vibration were alternately repeated three times each.
- it was heated to 250 ° C. in a vacuum, and the mixed material was deposited on the substrate 52 so as to have a film thickness of 25 nm to form a thin-film deposition film.
- the ratio of organic compounds in the vapor deposited film was measured by liquid chromatography. As a result, as shown in Table 1, even though the molecular weight ratios of the two kinds of organic materials differ by 1.5 times or more, the content ratio of Alq 3 and FL-3 in the mixed material before vapor deposition, There was no difference in the content ratio of Alq 3 and FL-3 in the subsequent vapor deposition film.
- Example 1 Vapor deposition having the same structure as in Example 1 except that the coating layer 41 was not formed on the inner surface of the housing 4 and the inner surface of the top plate 5 and that the vibration source 11 did not vibrate the vapor deposition source 1. The same operation as in Example 1 was performed using the apparatus 3. As a result, a vapor deposition film for comparison was formed on the substrate 52.
- the content ratio of the organic compound in the vapor deposited film was measured by the same method as in Example 1. As a result, as shown in Table 2, when the content ratio of Alq 3 having a relatively small molecular weight in the mixed material before vapor deposition is high, the content ratio of Alq 3 in the vapor deposition film after vapor deposition is considerably high. The uneven distribution of each material was confirmed.
- Example 2 First, as a mixture of a plurality of kinds of vapor deposition materials (organic compounds), Alq 3 represented by the structural formula (3) and M-MTDATA(4,4′,4′′-) represented by the structural formula (5) below. Three kinds of mixed materials of tris[phenyl(m-tolyl)amino]triphenylamine) were adjusted by changing the content ratio (mixing ratio) of each material.
- Alq 3 is an electron transporting vapor deposition material, and its molecular weight is 459.
- M-MTDATA is a hole transporting vapor deposition material, and its molecular weight is 788. Therefore, the molecular weight ratio of the two is Alq 3 :M-MTDATA ⁇ 1.0:1.7.
- the content ratio of Alq 3 and M-MTDATA (Alq 3 : M-MTDATA) in the mixed material is 3 of (30:70), (50:50), and (70:30) in weight ratio. It was a condition.
- the above three types of mixed materials having different weight ratios were housed in the housing 4 of the vapor deposition device 3 shown in FIG. 1 having the top plate 5 shown in FIGS. 3(a) and 3(b).
- the inner surface of the housing 4 and the inner surface of the top plate 5 are made of AlN, and the inner surface of the housing 4 and the first nozzle 5S are formed.
- An vapor deposition source in which the inner surface of the top plate 5 including the inner surface of the second nozzle 5N was chemically modified (coated) with the siloxane compound represented by the structural formula (1) was used.
- the vapor deposition source 1 was subjected to lateral vibration at 1 Hz for 10 minutes by the vibrating device 11, and then subjected to vertical vibration at 1 Hz for 10 minutes.
- the lateral vibration and the vertical vibration were alternately repeated three times each.
- the film was heated to 200° C. in a vacuum, and the mixed material was vapor-deposited on the substrate 52 so as to have a film thickness of 25 nm, thereby forming a vapor deposition film.
- the content ratio of the organic compound in the vapor deposited film was measured by the same method as in Example 1. As a result, as shown in Table 3, the content ratio of Alq 3 and M-MTDATA in the mixed material before vapor deposition and the vapor deposition were 2 There was no difference in the content ratio of Alq 3 and M-MTDATA in the subsequent vapor deposition film. It was also confirmed that the same effect can be obtained when lateral vibration is performed instead of tilt vibration.
- Example 3 By performing the same operation as in Example 1 by using the vapor deposition device 3 having the same structure as in Example 1 except that the coating layer 41 was not formed on the inner surface of the housing 4 and the inner surface of the top plate 5. A vapor deposition film was formed on the substrate 52.
- the ratio of the organic compound in the vapor deposited film was measured by the same method as in Example 1.
- the Alq 3 and FL-3 in the deposited film after deposition slightly There was a change in.
- Example 4 10A is a plan view showing a schematic configuration of the upper surface of the top plate 5 used in Example 3, and FIG. 10B is a housing 4 of the vapor deposition source 1 used in Example 3.
- FIG. 3 is a sectional view showing the top plate 5 in a simplified manner.
- the number of holes 5K is omitted for convenience of illustration. Further, for convenience of illustration, although the number of holes 5K is different between FIG. 10A and FIG. 10B, it goes without saying that the number of holes 5K is actually the same.
- the inner surface of the housing 4 and the inner surface of the top plate 5 are made of AlN, and the inner surface of the housing 4 and the first nozzle 5S and An evaporation source was used in which the inner surface of the top plate 5 including the inner surface of the second nozzle 5N was chemically modified (coated) with the siloxane compound represented by the structural formula (1).
- Example 2 the vapor deposition source 1 was subjected to lateral vibration under the same conditions as in Example 2 by the vibrating device 11, and then vertical vibration was applied under the same conditions as in Example 2. The lateral vibration and the vertical vibration were alternately repeated three times each, as in Example 2. Then, as in Example 1, a vapor-deposited film was formed by heating to 250 ° C. in a vacuum and depositing the mixed material on the substrate 52 so as to have a film thickness of 25 nm.
- the ratio of the organic compound in the vapor deposited film was measured by the same method as in Example 1.
- the content ratio of Alq 3 having a relatively small molecular weight is as high as 70%
- the content ratio of Alq 3 in the vapor deposition film after vapor deposition is Alq 3 in the mixed material before vapor deposition. It was slightly higher than the content ratio of 3 . Therefore, it was confirmed that it is also important that the location of the hole 5K is near the center of the top plate 5 in plan view.
- FIG. 11 is another plan view showing a schematic configuration of the top surface of the top plate 5.
- the shape of the top plate 5 is not particularly limited, and for example, as shown in FIG. 11, it may be formed in a circular shape in a plan view. Also in this case, like the top plate 5 shown in FIG. 3A, the total area of the holes 5K of the first nozzles 5S and the second nozzles 5N on the top surface of the top plate 5 is 1 of the area of the top surface of the top plate 5. It is desirable to be in the range of /20 to 1/8.
- the holes 5K having an area ratio of 50% or more and 80% or less are within a range of a distance of 1/2 from the center point C of the top surface of the top plate 5 to the outer edge of the top plate 5 ( It is desirable to be located in the area surrounded by the line connecting the points P).
- FIG. 12 is a partial cross-sectional view showing a schematic configuration of a main part of the vapor deposition device 3 according to this embodiment. Note that, in FIG. 12, for convenience of illustration, the same components as those shown in FIG. 2 are illustrated in the same method as in FIG. 2. Further, in the present embodiment, differences from the first embodiment will be described, and members having the same functions as the members described in the first embodiment will be designated by the same reference numerals and the description thereof will not be repeated.
- the vapor deposition device 3 according to the present embodiment is provided with a rotary stirring device 81 instead of the vibration device 11 as the stirring device (kinetic energy supply device). It has the same configuration as the vapor deposition device 3 according to the first embodiment.
- the stirring device 81 directly stirs the vapor deposition material in the housing 4 to give kinetic energy to the vapor deposition material in the housing 4 to cause the vapor deposition material to flow (exercise).
- the stirrer 81 includes, for example, a magnetic stirrer 82 and a stirrer 83 using a magnet.
- the magnetic stirrer 82 is arranged outside the housing 4.
- the stirring bar 83 is arranged in the housing 4.
- the stirring device 81 uses a magnetic stirrer 82 to rotate the stirrer 83 using magnetic force to stir and flow the vapor-deposited material in the housing 4.
- the stirring device 81 is illustrated as an example in which the magnetic stirrer 82 and the stirrer 83 are provided, but the stirring device 81 includes, for example, a stirring rod and a stirring rod. It may be a stirrer (mechanical stirrer) having a rotating motor. Further, instead of the stirring rod, for example, a screw type stirring blade or a plurality of pedal-shaped stirring blades may be provided in the vapor deposition source 1.
- the stirring conditions such as the rotation speed and the stirring time are not particularly limited and may be appropriately set so that the first vapor deposition material 71 and the second vapor deposition material 72 are mixed sufficiently uniformly.
- the vapor deposition material is agitated and made to flow in the housing 4, so that the distribution of the first vapor deposition material 71 and the second vapor deposition material 72 in the housing 4 is made uniform.
- the mixing ratio with the material 72 can be made substantially equal.
- the first vapor deposition material 71 and the second vapor deposition material 72 are not unevenly distributed in the vapor deposition film, and a uniformly mixed vapor deposition film can be formed.
- Vapor Deposition Source 2 Quartz Resonator 3 Vapor Deposition Device 4 Housing 4a Side 4c Bottom 4K Open 5 Top 5S First Nozzle (Nozzle) 5N Nozzle 2 (Nozzle) 6.8 Anti-adhesion plate 6K Second conduction opening 7 Pipe section 7K First conduction opening 11 Vibration device (stirring device, kinetic energy supply device) 24 Solution containing siloxane-based compound 41 Coating layer 52 Substrate (deposited substrate) 61 Vapor Deposition Film 71 First Vapor Deposition Material 72 Second Vapor Deposition Material 81 Stirrer (Kinetic Energy Supply Device) 82 Magnetic stirrer 83 Stirrer
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Physical Vapour Deposition (AREA)
Abstract
This vapor deposition device (3) is provided with a vapor deposition source (1) having: a case (4) that has an opening (4K) and in which a mixture of a first vapor deposition material (71) and a second vapor deposition material (72) is housed; and a top plate (5) that is attached to the opening in an airtight manner and that is provided with a first nozzle (5S) and second nozzles (5N). A coating layer (41) containing a siloxane group is at least partially formed on the inner surface of the case and/or the inner surface of the top plate.
Description
本発明は、蒸着装置および表示装置の製造方法に関する。
The present invention relates to a method for manufacturing a vapor deposition device and a display device.
特許文献1には、有機EL表示装置において、赤色発光層および緑色発光層を、複数種類の蒸着材料として低分子材料と高分子材料とを含む混合材料を用いた蒸着法により形成することが開示されている。また、特許文献2には、複数種類の蒸着材料を含む混合材料を共蒸着するための蒸着装置が開示されている。
Patent Document 1 discloses that in an organic EL display device, a red light emitting layer and a green light emitting layer are formed by a vapor deposition method using a mixed material containing a low molecular material and a high molecular material as a plurality of types of vapor deposition materials. Has been done. Further, Patent Document 2 discloses a vapor deposition apparatus for co-evaporating a mixed material containing a plurality of types of vapor deposition materials.
しかしながら、本願発明者らは、このように複数種類の蒸着材料を含むプリミックスタイプの混合材料を用いて蒸着処理を行うと、蒸着処理を繰り返すうちに、各蒸着材料の混合比率が変動することがあるとともに、蒸着後の蒸着膜中の各蒸着材料の比率が、蒸着前に蒸着源内に導入した混合材料中の各蒸着材料の比率と異なる場合があることを見出した。
However, when the vapor deposition process is performed by using the premix type mixed material containing a plurality of types of vapor deposition materials as described above, the mixing ratio of the vapor deposition materials varies while the vapor deposition process is repeated. It was also found that the ratio of each vapor deposition material in the vapor deposition film after vapor deposition may be different from the ratio of each vapor deposition material in the mixed material introduced into the vapor deposition source before vapor deposition.
本発明は、上記問題点に鑑みなされたものであり、その目的は、複数種類の蒸着材料の共蒸着において蒸着処理を繰り返すうちに各蒸着材料の混合比率が変動することを抑制することができる蒸着装置および表示装置の製造方法を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to prevent the mixing ratio of each vapor deposition material from varying during repeated vapor deposition processing in co-evaporation of a plurality of vapor deposition materials. An object of the present invention is to provide a method for manufacturing a vapor deposition device and a display device.
上記の課題を解決するために、本発明の一態様に係る蒸着装置は、上部側に開口を有し、複数種類の蒸着材料の混合物が収容される筐体と、上記筐体の上記開口に気密に取り付けられるとともに、上記複数種類の蒸着材料を気化してなる蒸着粒子を吐出する複数のノズルが設けられた天板と、を有する蒸着源を備え、上記筐体の内面および上記天板の内面のうち少なくとも一方の少なくとも一部に、シロキサン基を含むコーティング層が形成されている。
In order to solve the above problems, a vapor deposition device according to one embodiment of the present invention has an opening on an upper side, a housing in which a mixture of a plurality of kinds of evaporation materials is accommodated, and the opening of the housing. Attached in an airtight manner, and a top plate provided with a plurality of nozzles for ejecting vapor deposition particles obtained by vaporizing the plurality of types of vapor deposition materials, and a vapor deposition source having, and the inner surface of the casing and the top plate. A coating layer containing a siloxane group is formed on at least a part of at least one of the inner surfaces.
上記の課題を解決するために、本発明の一態様に係る表示装置の製造方法は、上部側に開口を有し、複数種類の蒸着材料の混合物が収容される筐体と、上記筐体の上記開口に気密に取り付けられるとともに、上記複数種類の蒸着材料を気化してなる蒸着粒子を吐出する複数のノズルが設けられた天板と、を有する蒸着源を備え、上記筐体の内面および上記天板の内面のうち少なくとも一方の少なくとも一部に、シロキサン基を含むコーティング層が形成されている蒸着装置における、上記筐体内に、上記複数種類の蒸着材料を収容する蒸着材料収容工程と、上記複数種類の蒸着材料のそれぞれの気化温度よりも高い温度に上記筐体を昇温する昇温工程と、被蒸着基板を上記蒸着装置に搬入する被蒸着基板搬入工程と、上記被蒸着基板に上記複数種類の蒸着材料を共蒸着する共蒸着工程と、上記被蒸着基板を上記蒸着装置から搬出する被蒸着基板搬出工程と、を含む。
In order to solve the above problems, a method for manufacturing a display device according to one embodiment of the present invention includes a housing having an opening on an upper side and containing a mixture of a plurality of kinds of evaporation materials; A top plate, which is attached to the opening in an airtight manner and has a plurality of nozzles for ejecting vapor deposition particles obtained by vaporizing the plurality of types of vapor deposition materials, and a vapor deposition source having: A vapor deposition apparatus in which a coating layer containing a siloxane group is formed on at least a part of at least one of the inner surfaces of the top plate, the vapor deposition material accommodating step of accommodating the plurality of types of vapor deposition materials in the housing, and A temperature raising step of raising the temperature of the housing to a temperature higher than the vaporization temperature of each of the plurality of types of vapor deposition materials, a vapor deposition substrate loading step of loading the vapor deposition substrate into the vapor deposition apparatus, and the vapor deposition substrate to the vapor deposition substrate described above. It includes a co-deposited step of co-depositing a plurality of types of vapor-deposited materials and a step of carrying out the vapor-deposited substrate from the vapor deposition apparatus.
本発明の一態様によれば、複数種類の蒸着材料の共蒸着において蒸着処理を繰り返すうちに各蒸着材料の混合比率が変動することを抑制することができる蒸着装置および表示装置の製造方法を提供することができる。
According to one embodiment of the present invention, there is provided a vapor deposition device and a method for manufacturing a display device capable of suppressing a change in a mixing ratio of vapor deposition materials during repeated vapor deposition processing in co-evaporation of a plurality of types of vapor deposition materials. can do.
〔実施形態1〕
図1は、本実施形態に係る蒸着装置3の要部の概略構成を示す部分透視図である。図2は、図1に示す蒸着装置3の要部の概略構成を示す部分断面図である。なお、図2では、蒸着装置3の断面として、該蒸着装置3から蒸着源1と防着板6と管部7とを抽出した、蒸着装置3の縦断面を示している。また、図示の便宜上、図2では、コーティング層41の厚みを誇張して図示している。図示の便宜上、図2では、筐体4と天板5と防着板6とを互いに離間させて図示しているが、これら筐体4と天板5と防着板6とは実際は気密に密着している。また、図1および図2では、図示の便宜上、ノズルの数を省略している。 [Embodiment 1]
FIG. 1 is a partial perspective view showing a schematic configuration of a main part of avapor deposition device 3 according to this embodiment. FIG. 2 is a partial cross-sectional view showing a schematic configuration of a main part of the vapor deposition device 3 shown in FIG. 2 shows a vertical cross section of the vapor deposition device 3 in which the vapor deposition source 1, the deposition preventive plate 6, and the tube portion 7 are extracted from the vapor deposition device 3. Further, for convenience of illustration, the thickness of the coating layer 41 is exaggerated in FIG. For convenience of illustration, in FIG. 2, the housing 4, the top plate 5, and the deposition preventive plate 6 are shown separated from each other, but the housing 4, the top plate 5, and the deposition protection plate 6 are actually airtight. It is in close contact. Further, in FIGS. 1 and 2, the number of nozzles is omitted for convenience of illustration.
図1は、本実施形態に係る蒸着装置3の要部の概略構成を示す部分透視図である。図2は、図1に示す蒸着装置3の要部の概略構成を示す部分断面図である。なお、図2では、蒸着装置3の断面として、該蒸着装置3から蒸着源1と防着板6と管部7とを抽出した、蒸着装置3の縦断面を示している。また、図示の便宜上、図2では、コーティング層41の厚みを誇張して図示している。図示の便宜上、図2では、筐体4と天板5と防着板6とを互いに離間させて図示しているが、これら筐体4と天板5と防着板6とは実際は気密に密着している。また、図1および図2では、図示の便宜上、ノズルの数を省略している。 [Embodiment 1]
FIG. 1 is a partial perspective view showing a schematic configuration of a main part of a
図1に示すように、蒸着装置3は、蒸着粒子を射出する蒸着源1と、上記蒸着粒子の蒸着レートを検出する蒸着レート検出用の水晶振動子2と、を備え、被蒸着基板(被成膜基板)である基板52に対して、蒸着膜61として、複数種類の蒸着材料を同時に蒸着(共蒸着)してなる共蒸着膜を形成(成膜)する蒸着装置である。
As shown in FIG. 1, the vapor deposition device 3 includes a vapor deposition source 1 that ejects vapor deposition particles, and a vapor deposition rate detecting crystal resonator 2 that detects the vapor deposition rate of the vapor deposition particles. The vapor deposition apparatus forms (deposits) a vapor deposition film 61 on a substrate 52, which is a film formation substrate, as a vapor deposition film 61 by simultaneously vapor depositing (co-evaporating) a plurality of types of vapor deposition materials.
蒸着源1は、上部側に開口4K(上部側開口)を有し、内部に蒸着材料が収容される筐体4と、上記開口4Kを覆う天板5と、加振装置11と、を備えている。筐体4は、坩堝であってもよく、蒸着ボートであってもよい。天板5は、筐体4の開口4Kに気密に取り付けられる。天板5には、筐体4に収容された蒸着材料を蒸着粒子として射出(吐出)する複数のノズルが設けられている。
The vapor deposition source 1 has an opening 4K (upper side opening) on the upper side, a housing 4 in which the vapor deposition material is housed, a top plate 5 that covers the opening 4K, and a vibrating device 11. ing. The housing 4 may be a crucible or a vapor deposition boat. The top plate 5 is airtightly attached to the opening 4K of the housing 4. The top plate 5 is provided with a plurality of nozzles that eject (discharge) the vapor deposition material housed in the housing 4 as vapor deposition particles.
筐体4には、蒸着材料として、複数種類の蒸着材料の混合物(混合材料)が収容される。具体的には、筐体4には、蒸着材料として、特性が異なる複数種類の蒸着材料の混合物が収容される。特性が異なる蒸着材料は、その骨格構造が異なり、分子量、密度、気化温度(蒸着材料が液体材料である場合は昇華温度、蒸着材料が液体材料である場合は蒸発温度)等が異なる。このため、筐体4には、第1蒸着材料71と、第1蒸着材料71よりも分子量が大きい第2蒸着材料72と、を含むプリミックスタイプの蒸着材料が収容される。このようなプリミックスタイプの蒸着材料としては、例えば、緑色発光層および赤色発光層におけるホスト材料に使用される、2種類のOLED(有機発光ダイオード)用有機材料の混合物が挙げられる。
The housing 4 contains a mixture of a plurality of types of vapor deposition materials (mixed material) as the vapor deposition material. Specifically, the housing 4 contains a mixture of a plurality of types of vapor deposition materials having different characteristics as the vapor deposition material. The vaporized materials having different characteristics have different skeleton structures and different molecular weights, densities, vaporization temperatures (sublimation temperature when the vaporized material is a liquid material, evaporation temperature when the vaporized material is a liquid material), and the like. Therefore, the housing 4 accommodates a premix type vapor deposition material including the first vapor deposition material 71 and the second vapor deposition material 72 having a molecular weight larger than that of the first vapor deposition material 71. Examples of such a premix type vapor deposition material include a mixture of two kinds of organic materials for OLED (organic light emitting diode) used as a host material in the green light emitting layer and the red light emitting layer.
蒸着源1は、上記複数のノズルから第1蒸着材料71と第2蒸着材料72とを含む蒸着材料(具体的には、第1蒸着材料71と第2蒸着材料72との混合物)を、蒸着粒子として射出する。これにより、蒸着源1は、基板52に、第1蒸着材料71と第2蒸着材料72とを同時に付着させる。これにより、これら第1蒸着材料71および第2蒸着材料72を構成成分として含む蒸着膜61(共蒸着膜)を形成する。
The vapor deposition source 1 vaporizes a vapor deposition material containing a first vapor deposition material 71 and a second vapor deposition material 72 (specifically, a mixture of the first vapor deposition material 71 and the second vapor deposition material 72) from the plurality of nozzles. Eject as particles. As a result, the vapor deposition source 1 simultaneously attaches the first vapor deposition material 71 and the second vapor deposition material 72 to the substrate 52. Thus, the vapor deposition film 61 (co-evaporation film) containing the first vapor deposition material 71 and the second vapor deposition material 72 as constituent components is formed.
なお、上記蒸着膜61を備えたデバイスとして、カラー表示を行う表示デバイスを製造するためには、発光色が異なる発光層を、画素毎に塗り分ける必要がある。このとき、高精細化を行うためには、図示していない蒸着マスクとして、高精度なマスク開口が設けられたFMM(Fine Metal Mask;ファインメタルマスク)が使用される。上記複数のノズルから射出された蒸着粒子は、図示していない蒸着マスクのマスク開口を介して、基板52に、所定のパターンの蒸着膜61として成膜される。
In addition, in order to manufacture a display device that performs color display as a device provided with the vapor-deposited film 61, it is necessary to separately paint light emitting layers having different emission colors for each pixel. At this time, in order to achieve high definition, an FMM (Fine Metal Mask) provided with a highly accurate mask opening is used as a vapor deposition mask (not shown). The vapor-deposited particles ejected from the plurality of nozzles are formed on the substrate 52 as a thin-film deposition film 61 having a predetermined pattern through a mask opening of a thin-film deposition mask (not shown).
蒸着源1は、上記複数のノズルとして、第1ノズル5Sと第2ノズル5Nとを備えている。第1ノズル5Sは、水晶振動子2の近傍に配置されたノズルである。第2ノズル5Nは、水晶振動子2から第1ノズル5Sよりも離れた位置に配置されたノズルである。第1ノズル5Sは、例えば、水晶振動子2に向けて傾けて形成されている。このように第1ノズル5Sが水晶振動子2に向けて傾けて形成されていることで、水晶振動子2に、より確実に蒸着粒子を付着させることができる。但し、第1ノズル5Sの向きは、これに限定されるものではない。
The vapor deposition source 1 includes a first nozzle 5S and a second nozzle 5N as the plurality of nozzles. The first nozzle 5S is a nozzle arranged near the crystal unit 2. The second nozzle 5N is a nozzle arranged at a position farther from the crystal unit 2 than the first nozzle 5S. The first nozzle 5S is, for example, formed so as to be inclined toward the crystal oscillator 2. Since the first nozzle 5S is formed so as to be inclined toward the crystal oscillator 2, the vapor-deposited particles can be more reliably adhered to the crystal oscillator 2. However, the orientation of the first nozzle 5S is not limited to this.
図3の(a)は、天板5の上面の概略構成を示す平面図であり、図3の(b)は、筐体4および天板5を簡略化して示す断面図である。なお、図3の(a)および図3の(b)では、図示の便宜上、それぞれ第1ノズル5Sの図示を省略しているとともに、それぞれ孔5Kの数を省略している。
3A is a plan view showing a schematic configuration of the top surface of the top plate 5, and FIG. 3B is a sectional view showing the housing 4 and the top plate 5 in a simplified manner. 3(a) and 3(b), for convenience of illustration, the first nozzle 5S is not shown, and the number of holes 5K is omitted.
蒸着源1の上部開口孔の面積である、天板5の上面における第1ノズル5Sおよび第2ノズル5Nの孔5Kの総面積は、天板5の上面の面積の1/20~1/8の範囲内であることが望ましい。上記上部開口孔の面積比率が1/20よりも小さいと、蒸着に時間がかかり過ぎてしまうおそれがある。また、上記上部開口孔の面積比率が1/8よりも大きいと、蒸着源1を振動させたときに、孔5Kから、蒸着粒子化されていない蒸着材料がそのまま飛び出すおそれがある。
The total area of the holes 5K of the first nozzle 5S and the second nozzle 5N on the upper surface of the top plate 5, which is the area of the upper opening hole of the vapor deposition source 1, is 1/20 to 1/8 of the area of the upper surface of the top plate 5. It is desirable that it is within the range of. If the area ratio of the upper openings is less than 1/20, vapor deposition may take too long. Further, if the area ratio of the upper opening holes is larger than 1/8, when the vapor deposition source 1 is vibrated, the vapor deposition material which is not vaporized particles may fly out from the holes 5K as it is.
また、蒸着源1を加熱すると、蒸着源1の中心側よりも外縁側(つまり、周縁側)で先に温度が上昇する。このため、図3の(a)に示すように、天板5の上面において、面積比で50%以上、80%以下の孔5Kが、平面視で天板5の中心寄り(具体的には、天板5の上面の中心点Cから天板5の外縁までの1/2の距離の範囲内)に位置していることが望ましい。言い換えれば、天板5の上面における、該天板5の上面の中心点Cと天板5の外縁との間の距離の1/2の距離にある点P同士を結ぶ線で囲まれた領域内の孔5Kの面積の合計が、該天板5の上面における孔5Kの総面積のうち50%以上、80%以下の面積を占めていることが望ましい。なお、孔5Kは、上記線を跨いで設けられていてもよいが、簡易には、面積比で50%以上、80%以下の孔5Kとは、例えば、孔5Kの総面積のうち50%以上、80%以下の面積に相当する数の孔5Kを示す。上記領域内に存在する孔5Kの面積比率を例えば100%にしてしまうと、形成される蒸着膜61の膜厚変化が顕著になる。上記領域内に存在する孔5Kの面積比率が50%以上、80%であれば、そのような問題が生じることはない。したがって、孔5Kを上述したように設定することで、蒸着源1の周縁側で、急激な温度上昇により第1蒸着材料71と第2蒸着材料72とが均一に分布(混合)できていない状況のまま蒸着が進行することを防止することができる。
Also, when the evaporation source 1 is heated, the temperature rises earlier on the outer edge side (that is, the peripheral edge side) than on the center side of the evaporation source 1. Therefore, as shown in FIG. 3A, the holes 5K having an area ratio of 50% or more and 80% or less on the top surface of the top plate 5 are closer to the center of the top plate 5 in a plan view (specifically, It is desirable that the top plate 5 is located within a distance of 1/2 from the center point C on the upper surface of the top plate 5 to the outer edge of the top plate 5. In other words, a region surrounded by a line connecting the points P on the upper surface of the top plate 5 at a distance ½ of the distance between the center point C of the top plate 5 and the outer edge of the top plate 5. It is desirable that the total area of the holes 5K in the inside occupies 50% or more and 80% or less of the total area of the holes 5K on the upper surface of the top plate 5. The holes 5K may be provided so as to straddle the above line, but for simplicity, the holes 5K having an area ratio of 50% or more and 80% or less are, for example, 50% of the total area of the holes 5K. Above, the number of holes 5K corresponding to an area of 80% or less is shown. When the area ratio of the holes 5K existing in the above region is set to 100%, for example, the film thickness change of the formed vapor deposition film 61 becomes remarkable. If the area ratio of the holes 5K existing in the above region is 50% or more and 80%, such a problem does not occur. Therefore, by setting the holes 5K as described above, the first vapor deposition material 71 and the second vapor deposition material 72 are not uniformly distributed (mixed) on the peripheral side of the vapor deposition source 1 due to a rapid temperature rise. It is possible to prevent the vapor deposition from proceeding as it is.
筐体4の内面および天板5の内面(言い換えれば、コーティング層41の被形成面)は、筐体4内に収容される蒸着材料との反応性が低く、該蒸着材料が付着しない材質の基材で形成されていることが好ましい。具体的には、筐体4の内面および天板5の内面は、例えば、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、およびニオブ(Nb)からなる群より選ばれる少なくとも一種の金属またはその合金、あるいは、シリコン酸化物(SiOx)、シリコン窒化物(SiNx)、窒化アルミニウム(AlN)からなる群より選ばれる少なくとも一種のセラミック材料(無機絶縁材料)で形成されていることが望ましい。
The inner surface of the housing 4 and the inner surface of the top plate 5 (in other words, the surface on which the coating layer 41 is formed) have low reactivity with the vapor deposition material housed in the housing 4 and are made of a material to which the vapor deposition material does not adhere. It is preferably formed of a base material. Specifically, the inner surface of the housing 4 and the inner surface of the top plate 5 are at least one metal selected from the group consisting of, for example, molybdenum (Mo), tungsten (W), tantalum (Ta), and niobium (Nb). Alternatively, it is preferably formed of an alloy thereof or at least one ceramic material (inorganic insulating material) selected from the group consisting of silicon oxide (SiOx), silicon nitride (SiNx), and aluminum nitride (AlN).
本願発明者らは、前記問題点を解決すべく鋭意検討した結果、蒸着源内(具体的には、筐体の内面または天板の内面)に蒸着材料が付着することが、各蒸着材料の混合比率が変動する最大の要因であるとの結論に至った。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have found that the deposition material adheres to the inside of the deposition source (specifically, the inner surface of the casing or the inner surface of the top plate). We have come to the conclusion that it is the largest factor in the fluctuation of the ratio.
すなわち、蒸着源の内面は、高温処理下で、空気中の酸素によって酸化された後、空気中の水分(水蒸気)等によって水酸化されたり、空気中の二酸化炭素と反応してカルボキシル化されたりすることで、蒸着源の内面には、水酸基およびカルボキシル基のうち少なくとも一方が形成される。蒸着源内に収容された蒸着材料は、この水酸基およびカルボキシル基のうち少なくとも一方と化学反応し、蒸着源の内面と化学結合することによって、付着物を形成する。この付着物は除去困難である。
That is, the inner surface of the vapor deposition source is oxidized by oxygen in the air under high temperature treatment, and then hydrated by moisture (steam) in the air, or reacted with carbon dioxide in the air to be carboxylated. By doing so, at least one of a hydroxyl group and a carboxyl group is formed on the inner surface of the vapor deposition source. The vapor deposition material contained in the vapor deposition source chemically reacts with at least one of the hydroxyl group and the carboxyl group and chemically bonds with the inner surface of the vapor deposition source to form an adhered substance. This deposit is difficult to remove.
特に、複数種類の蒸着材料の混合物を、坩堝あるいは蒸着ボート等の筐体内に収容して一定時間放置すると、例えば、分子量の大きい蒸着材料が筐体の下方に移動し、筐体の上方には、分子量の小さい蒸着材料が多く存在する等、筐体内で、蒸着材料の分布に偏りが生じる。このため、蒸着源の内面に付着する各蒸着材料の比率は一定ではない。また、蒸着処理を繰り返すと、蒸着源の内面に、気化した蒸着材料が付着してこびり付く。蒸着源内での蒸着材料の偏在により、蒸着源の内面にこびり付く蒸着材料の量には偏りがあるとともに、各蒸着材料の気化温度の違いによっても、蒸着源内に付着する各蒸着材料の量には差が生じる。
In particular, when a mixture of a plurality of types of vapor deposition materials is housed in a housing such as a pit or a vapor deposition boat and left for a certain period of time, for example, the vapor deposition material having a large molecular weight moves below the housing and above the housing. The distribution of the vapor deposition material is biased in the housing because there are many vapor deposition materials with small molecular weights. Therefore, the ratio of each vapor deposition material attached to the inner surface of the vapor deposition source is not constant. Further, when the vapor deposition process is repeated, the vaporized vapor deposition material adheres and sticks to the inner surface of the vapor deposition source. Due to the uneven distribution of the vapor deposition material in the vapor deposition source, the amount of the vapor deposition material sticking to the inner surface of the deposition source is uneven, and the amount of each vapor deposition material adhering to the vapor deposition source due to the difference in the vaporization temperature of each vapor deposition material There is a difference in.
そして、このように蒸着源内の蒸着材料の分布に偏りが生じた状態のまま蒸着源を加熱し、蒸着膜を形成させると、各蒸着材料の混合膜が形成されるのではなく、極端にはそれぞれの蒸着材料からなる膜が二層形成される状態となったり、もしくは、一方の蒸着材料の比率が、他方の蒸着材料の比率よりも極端に高くなったりする。この場合、発光層(EML)中でのホールと電子との再結合が起こり難くなり、発光素子の量子効率の低下、駆動電圧上昇、発光素子の寿命低下等の問題が生じる。
Then, when the vapor deposition source is heated and the vapor deposition film is formed with the distribution of the vapor deposition material in the vapor deposition source biased in this way, a mixed film of the vapor deposition materials is not formed, but extremely. Two layers of respective vapor deposition materials are formed, or the ratio of one vapor deposition material becomes extremely higher than that of the other vapor deposition material. In this case, recombination of holes and electrons in the light emitting layer (EML) becomes difficult to occur, and problems such as a decrease in quantum efficiency of the light emitting element, an increase in driving voltage, and a decrease in life of the light emitting element occur.
このため、本実施形態において、複数種類の蒸着材料の共蒸着において蒸着処理を繰り返すうちに各蒸着材料の混合比率が変動することを抑制するためには、蒸着源1内への蒸着材料の付着を抑制することが重要である。
Therefore, in the present embodiment, in order to prevent the mixing ratio of each vapor deposition material from changing while the vapor deposition process is repeated in the co-evaporation of a plurality of types of vapor deposition materials, in order to prevent the vapor deposition material from adhering to the vapor deposition source 1. It is important to suppress.
本実施形態において、筐体4の内面および天板5の内面のうち少なくとも一方の少なくとも一部は、シロキサン系化合物を材料(コーティング材料)に用いたコーティング層41で被覆されている。具体的には、本実施形態に係るコーティング層41は、シロキサン系化合物を含む材料からなり、シロキサン(-Si-O-Si-)基(シロキサン単位)を含む、シロキサン系化合物に由来する構造単位を有している。このため、コーティング層41は、シロキサン基を含んでいる。したがって、筐体4の内面および天板5の内面のうち少なくとも一方の少なくとも一部には、シロキサン基を含むコーティング層41が形成されている。コーティング層41は、シロキサン系化合物が、上記基材と化学反応することによって形成可能であり、筐体4の内面および天板5の内面のうち少なくとも一方の少なくとも一部に、化学修飾法により導入される。
In the present embodiment, at least a part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5 is covered with a coating layer 41 using a siloxane compound as a material (coating material). Specifically, the coating layer 41 according to the present embodiment is made of a material including a siloxane-based compound, and includes a siloxane (—Si—O—Si—) group (siloxane unit), and is a structural unit derived from the siloxane-based compound. have. Therefore, the coating layer 41 contains a siloxane group. Therefore, the coating layer 41 containing a siloxane group is formed on at least a part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5. The coating layer 41 can be formed by chemically reacting a siloxane compound with the above-mentioned base material, and is introduced into at least a part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5 by a chemical modification method. To be done.
なお、上記天板5の内面は、天板5に設けられた第1ノズル5Sおよび第2ノズル5Nの内面(具体的には、これらノズルの孔5Kを規定する、これらノズルの内側の表面)を含み得る。図2に示す例では、コーティング層41で被覆された被覆領域(コーティング層41の被形成面)は、筐体4の内面における側面4aと底面4cとが成す角部4bを含む。また、図2に示す例では、上記被覆領域は、天板5の内面のうち、孔5Kを規定する、第1ノズル5Sおよび第2ノズル5Nの内面と、孔5Kの周囲の下面5bと、を含む。
The inner surface of the top plate 5 is an inner surface of the first nozzle 5S and the second nozzle 5N provided on the top plate 5 (specifically, the inner surface of these nozzles defining the holes 5K of these nozzles). May include. In the example shown in FIG. 2, the coating region coated with the coating layer 41 (the surface on which the coating layer 41 is formed) includes the corner 4b formed by the side surface 4a and the bottom surface 4c on the inner surface of the housing 4. In addition, in the example shown in FIG. 2, the covering region defines the holes 5K on the inner surface of the top plate 5, the inner surfaces of the first nozzles 5S and the second nozzles 5N, and the lower surface 5b around the holes 5K. including.
なお、図2では、筐体4および天板5のそれぞれの内面(すなわち、内壁の表面)の少なくとも一部に、コーティング層41で被覆される被覆領域が設けられている場合を例に挙げて図示している。しかしながら、本実施形態は、これに限定されるものではなく、筐体4の内面および天板5の内面のうち少なくとも一方の少なくとも一部として、筐体4の底面、あるいは、筐体4の側面、あるいは、天板5の第1ノズル5Sおよび第2ノズル5Nの内面、の何れかに上記被覆領域が設けられていてもよい。
In addition, in FIG. 2, the case where the coating region covered with the coating layer 41 is provided on at least a part of the inner surfaces (that is, the surfaces of the inner walls) of the housing 4 and the top plate 5 is taken as an example. It is shown in the figure. However, the present embodiment is not limited to this, and the bottom surface of the housing 4 or the side surface of the housing 4 may be used as at least a part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5. Alternatively, the covering region may be provided on any of the inner surfaces of the first nozzle 5S and the second nozzle 5N of the top plate 5.
シロキサン系化合物とは、無機系成分であるシリコン(Si)と極性を有する-O-基とが交互に結合したシロキサン単位を分子骨格に有する珪酸有機化合物の総称である。
“Siloxane compound” is a general term for silicic acid organic compounds having a skeleton of a siloxane unit in which silicon (Si), which is an inorganic component, and —O— groups having polarity are alternately bonded.
上記蒸着材料が、前述したように例えばOLED用有機材料である場合、上記蒸着材料には、極性が低いπ共役系の有機材料が用いられる。シロキサン中の無機成分であるSiは有機材料(有機化合物)を吸着させない。また、シロキサン中の-O-基も不対電子の影響で電気陰性度が大きく、極性があり、OLED用有機材料との相溶性が無い。
When the vapor deposition material is, for example, an organic material for OLED as described above, a π-conjugated organic material having a low polarity is used as the vapor deposition material. Si, which is an inorganic component in siloxane, does not adsorb organic materials (organic compounds). Further, the —O— group in the siloxane also has a large electronegativity and polarity due to the influence of unpaired electrons, and is not compatible with the organic material for OLED.
上記シロキサン系化合物としては、特に限定されるものではないが、例えば、下記構造式(1)で示される化合物および下記構造式(2)で示される化合物からなる群より選ばれる少なくとも1種の化合物が挙げられる。なお、下記構造式(1)中、R1およびR2は、それぞれ独立して、炭素数2~6のアルキル基もしくはアルキレン基を示し、nは、1~24(望ましくは例えば4~18)の整数を示す。また、下記構造式(2)中、R3およびR4は、それぞれ独立して、炭素数2~6のアルキル基もしくはアルキレン基を示し、mは、1~24(望ましくは例えば4~18)の整数を示す。
The siloxane-based compound is not particularly limited, but is, for example, at least one compound selected from the group consisting of a compound represented by the following structural formula (1) and a compound represented by the following structural formula (2). Is mentioned. In the structural formula (1) below, R1 and R2 each independently represent an alkyl group or an alkylene group having 2 to 6 carbon atoms, and n is an integer of 1 to 24 (desirably, 4 to 18). Indicates. In the structural formula (2), R3 and R4 each independently represent an alkyl group or an alkylene group having 2 to 6 carbon atoms, and m is an integer of 1 to 24 (preferably 4 to 18). Indicates.
筐体4の内面および天板5の内面(具体的には、これら内面を構成する基材の表面)は、酸素(O2)、二酸化炭素(CO2)、水蒸気(H2O)、および炭化水素のうち少なくとも一種の気体と反応することで、その表面の少なくとも一部が、酸化、水酸化、またはカルボキシル化される。上記基材の表面は、高温加熱処理下(例えば200℃以下程度)で、例えば空気中の二酸化炭素あるいは炭化水素と反応することで、上記基材の表面の少なくとも一部にカーボン分子が結合する。一例として、上記基材の表面が上記高温加熱処理下で二酸化炭素と反応することで、上記基材の表面の少なくとも一部には、例えば、カルボキシル基が形成される。また、上記基材の表面は、例えば空気中の酸素あるいは二酸化炭素によって酸化されることで酸化被膜を形成する。この酸化被膜が空気中の水分(水蒸気)と反応するか、もしくは、後述するように、筐体4の内面および天板5の内面のうち少なくとも一方の少なくとも一部(つまり、コーティング層41で被覆する被覆領域)を弱塩基性の水に浸すことによって、該筐体4の内面および天板5の内面のうち少なくとも一方の少なくとも一部における基材の表面(言い換えれば、筐体4の内面および天板5の内面のうち少なくとも一方の少なくとも一部におけるコーティング層41の被形成面)に、水酸基が形成される。
The inner surface of the housing 4 and the inner surface of the top plate 5 (specifically, the surface of the base material forming these inner surfaces) are oxygen (O 2 ), carbon dioxide (CO 2 ), water vapor (H 2 O), and By reacting with at least one gas of hydrocarbons, at least a part of the surface thereof is oxidized, hydroxylated or carboxylated. The surface of the base material is reacted with, for example, carbon dioxide or hydrocarbon in the air under high temperature heat treatment (for example, about 200° C. or lower) to bond carbon molecules to at least a part of the surface of the base material. .. As an example, when the surface of the base material reacts with carbon dioxide under the high-temperature heat treatment, for example, a carboxyl group is formed on at least a part of the surface of the base material. The surface of the base material forms an oxide film by being oxidized by oxygen or carbon dioxide in the air, for example. This oxide film reacts with moisture (water vapor) in the air, or, as will be described later, at least a part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5 (that is, coated with the coating layer 41). The surface of the substrate on at least part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5 (in other words, the inner surface of the housing 4 and A hydroxyl group is formed on at least a part of at least one of the inner surfaces of the top plate 5 on which the coating layer 41 is formed).
本実施形態では、後述するように、コーティング層41の被形成面である、筐体4の内面および天板5の内面のうち少なくとも一方の少なくとも一部を、弱塩基性の水に浸すことによって、コーティング層41の被形成面に、上述した水酸基およびカルボキシル基のうち、少なくとも水酸基を形成する。上記基材とシロキサン系化合物とが接触すれば、上記水酸基もしくはカルボキシル基と上記シロキサン系化合物における例えばエポキシ基とが反応して、上記基材の表面が、上記シロキサン系化合物によりシロキサン架橋される。これにより、筐体4の内面および天板5の内面のうち少なくとも一方の少なくとも一部が、表面にシロキサン基を有するコーティング層41で被覆される。
In the present embodiment, as will be described later, at least a part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5, which is the surface on which the coating layer 41 is formed, is immersed in weakly basic water. At least a hydroxyl group among the above-mentioned hydroxyl group and carboxyl group is formed on the formation surface of the coating layer 41. When the base material comes into contact with the siloxane-based compound, the hydroxyl group or the carboxyl group reacts with, for example, an epoxy group in the siloxane-based compound, and the surface of the base material is siloxane-crosslinked with the siloxane-based compound. As a result, at least a part of the inner surface of the housing 4 and the inner surface of the top plate 5 is coated with the coating layer 41 having a siloxane group on the surface.
前述したように例えば上記基材がW(タングステン)である場合、Wの表面は、O2、CO2、H2O、および炭化水素のうち少なくとも一種の気体と反応することで、例えば、WC(OH)もしくはWCOOHとなっている。このため、例えばWC(OH)が上記構造式(1)または(2)で示されるシロキサン系化合物のエポキシ基と結合すれば、-CH(OH)CH2OCWが形成され、上記基材の表面に、-CH(OH)CH2OC-を介して、上記構造式(1)または(2)で示されるシロキサン系化合物における、上記エポキシ基に結合しているシロキサン単位(シロキサン結合)を有する成分(構造単位)を含むコーティング層41が形成される。
As described above, for example, when the base material is W (tungsten), the surface of W reacts with at least one gas of O 2 , CO 2 , H 2 O, and hydrocarbons to generate, for example, WC. (OH) or WCOOH. Therefore, for example, when WC(OH) is bonded to the epoxy group of the siloxane compound represented by the structural formula (1) or (2), —CH(OH)CH 2 OCW is formed, and the surface of the substrate is A component having a siloxane unit (siloxane bond) bonded to the epoxy group in the siloxane compound represented by the structural formula (1) or (2) via —CH(OH)CH 2 OC— A coating layer 41 including (structural unit) is formed.
あるいは、前述したように例えば上記基材が例えばAlNである場合、AlNは、例えば水に接触させると、Al(OH)3となる。次いでAl(OH)3が上記構造式(1)または(2)で示されるシロキサン系化合物のエポキシ基と結合すれば、-CH(OH)CH2OAl(OH)2が形成される。そして、さらに反応が進むと、-(CH(OH)CH2O)3Alが形成される。この結果、上記基材の表面に、-(CH(OH)CH2O)3-を介して、上記構造式(1)または(2)で示されるシロキサン系化合物における、上記エポキシ基に結合しているシロキサン単位(シロキサン結合)を有する成分(構造単位)を含むコーティング層41が形成される。なお、上記AlNからなるセラミック材料としては、例えば、株式会社トクヤマ製の「シェイパル(登録商標)」等が挙げられるが、本実施形態は、これに限定されるものではない。
Alternatively, as described above, for example, when the base material is AlN, AlN becomes Al(OH) 3 when contacted with water, for example. Next, when Al(OH) 3 is bonded to the epoxy group of the siloxane compound represented by the structural formula (1) or (2), —CH(OH)CH 2 OAl(OH) 2 is formed. Then, as the reaction proceeds further, —(CH(OH)CH 2 O) 3 Al is formed. As a result, the epoxy group in the siloxane compound represented by the structural formula (1) or (2) is bonded to the surface of the base material via —(CH(OH)CH 2 O) 3 —. A coating layer 41 containing a component (structural unit) having a siloxane unit (siloxane bond) is formed. Examples of the ceramic material made of AlN include “Shapal (registered trademark)” manufactured by Tokuyama Corporation, but the present embodiment is not limited to this.
また、蒸着源1は、図1および図2に示すように、成膜不要領域への蒸着粒子の飛翔を防止する防着板6・8と、蒸着粒子の飛翔角度を制限する角度制限板9・10と、をさらに備えている。防着板6・8は、筐体4における、蒸着源1の走査方向に直交する方向(言い換えれば、第1ノズル5Sおよび第2ノズル5Nの配列方向)の各端部にそれぞれ設けられている。角度制限板9・10は、筐体4における、蒸着源1の走査方向(言い換えれば、第1ノズル5Sおよび第2ノズル5Nの配列方向に直交する方向)の各端部にそれぞれ設けられている。
Further, as shown in FIGS. 1 and 2, the vapor deposition source 1 includes deposition preventive plates 6 and 8 for preventing the vapor deposition particles from flying to the film formation unnecessary region, and an angle limiting plate 9 for limiting the flight angle of the vapor deposition particles.・ 10 and more are provided. The deposition-preventing plates 6 and 8 are provided on each end of the housing 4 in the direction orthogonal to the scanning direction of the vapor deposition source 1 (in other words, the arrangement direction of the first nozzle 5S and the second nozzle 5N). .. The angle limiting plates 9 and 10 are provided on each end of the housing 4 in the scanning direction of the vapor deposition source 1 (in other words, the direction orthogonal to the arrangement direction of the first nozzles 5S and the second nozzles 5N). ..
防着板6・8のうち水晶振動子2に隣接する防着板6には、第1ノズル5Sと水晶振動子2との間に設けられ、かつ、第1ノズル5Sから水晶振動子2に蒸着粒子を誘導可能な第1導通開口7Kを有する管部7が備えられている。管部7の第1ノズル5S側は、防着板6に接続されている。防着板6には、管部7の第1導通開口7Kと連通する第2導通開口6Kが設けられている。管部7および防着板6のそれぞれの内面は、上記コーティング層41で被覆されている。なお、管部7および防着板6のそれぞれの内面は、第1導通開口7Kを規定する管部7の内側の表面、第2導通開口6Kを規定する防着板6の内側の表面、および、防着板6の第1ノズル5S側の表面を含む。
The deposition-inhibiting plate 6 of the deposition-inhibiting plates 6 and 8 adjacent to the crystal oscillator 2 is provided between the first nozzle 5S and the crystal oscillator 2, and is connected to the crystal oscillator 2 through the first nozzle 5S. A tube portion 7 having a first conduction opening 7K capable of inducing vapor-deposited particles is provided. The first nozzle 5S side of the tube portion 7 is connected to the deposition preventing plate 6. The adhesive plate 6 is provided with a second conduction opening 6K that communicates with the first conduction opening 7K of the pipe portion 7. The inner surfaces of the pipe portion 7 and the protective plate 6 are each coated with the coating layer 41. The inner surfaces of the tube portion 7 and the deposition preventing plate 6 are the inner surface of the tube portion 7 defining the first conduction opening 7K, the inner surface of the deposition preventing plate 6 defining the second conduction opening 6K, and , The surface of the deposition-inhibiting plate 6 on the side of the first nozzle 5S.
加振装置11は、筐体4(つまり、蒸着源1)に振動を与えて筐体4内の蒸着材料を流動させて撹拌する振動型の撹拌装置である。言い換えれば、加振装置11は、筐体4内の蒸着材料に運動エネルギーを与えて該蒸着材料を流動(運動)させる運動エネルギー供給装置(蒸着材料流動装置)である。加振装置11は、筐体4に振動を加えることで、筐体4内の蒸着材料に運動エネルギーを与えて該蒸着材料を流動(運動)させる。
The vibrating device 11 is a vibration-type stirring device that vibrates the housing 4 (that is, the vapor deposition source 1) to cause the vapor deposition material in the housing 4 to flow and stir. In other words, the vibrating device 11 is a kinetic energy supply device (vapor deposition material flowing device) that applies kinetic energy to the vapor deposition material in the housing 4 to flow (move) the vapor deposition material. By applying vibration to the housing 4, the vibrating device 11 applies kinetic energy to the vapor-deposited material in the housing 4 to cause the vapor-deposited material to flow (exercise).
加振装置11は、蒸着源1に対して、例えば、横振動、上下振動、および傾き振動の少なくとも一つの振動を加えることで、筐体4内の蒸着材料に、横振動、上下振動、および傾き振動の少なくとも一つの振動を加える。
The vibration device 11 applies, for example, at least one of horizontal vibration, vertical vibration, and tilt vibration to the vapor deposition source 1, so that the vapor deposition material in the housing 4 has horizontal vibration, vertical vibration, and At least one vibration of tilt vibration is applied.
なお、ここで、横振動とは、蒸着源1あるいは上記蒸着材料を、水平方向に動かす振動を示す。また、上下振動とは、蒸着源1あるいは上記蒸着材料を、水平方向に対して垂直な方向に動かす振動を示す。傾き振動は、蒸着源1を、水平方向に対して傾ける振動を示す。なお、上下振動は、蒸着源1を、該蒸着源1の上下長(すなわち、蒸着源1の上端と下端との間の長さ)の1/10以上の距離動かすことができることが望ましい。また、傾き振動は、蒸着源1を、水平方向に対し、例えば、±45°の範囲内で傾けることができることが望ましい。
Here, the lateral vibration means vibration that moves the vapor deposition source 1 or the vapor deposition material in the horizontal direction. The vertical vibration means a vibration that moves the vapor deposition source 1 or the vapor deposition material in a direction perpendicular to the horizontal direction. The tilt vibration indicates a vibration that tilts the vapor deposition source 1 with respect to the horizontal direction. It is desirable that the vertical vibration can move the vapor deposition source 1 by a distance of 1/10 or more of the vertical length of the vapor deposition source 1 (that is, the length between the upper end and the lower end of the vapor deposition source 1). Further, it is desirable that the tilt vibration can tilt the vapor deposition source 1 in the horizontal direction within a range of, for example, ± 45 °.
振動の種類およびその組み合わせ、各振動の単位時間毎の振動回数、各振動の振動時間、等の振動条件は、特に限定されず、第1蒸着材料71と第2蒸着材料72とが十分均一に混合されるように適宜設定すればよい。
The vibration conditions such as the type and combination of vibrations, the number of vibrations of each vibration per unit time, and the vibration time of each vibration are not particularly limited, and the first vapor deposition material 71 and the second vapor deposition material 72 are sufficiently uniform. It may be set appropriately so that it is mixed.
なお、筐体4と天板5と防着板6とは気密に密着していることから、加振装置11は、防着板6ごと蒸着源1に上記振動を加える。
Since the housing 4, the top plate 5, and the deposition preventive plate 6 are airtightly adhered to each other, the vibration device 11 applies the above vibration to the vapor deposition source 1 together with the deposition preventive plate 6.
加振装置11は、蒸着源1に対して、横振動、上下振動、および傾き振動の少なくとも一つの振動を加えることができれば、その構成は特に限定されない。加振装置11は、例えば、ステッピングモータ(パルスモータ)等のモータ(XYθ駆動モータ)、コロ、ギヤ、XYZステージ等で構成される駆動部と、モータ駆動制御部等の駆動制御部とを備え、駆動制御部により駆動部を駆動させることで蒸着源1を動かすことができるようになっていてもよい。また、例えば、リニアガイドとボールネジとを備えた移動機構、あるいは、ピストンを備えた移動機構により、横方向の往復運動を行うことができるようになっていてもよいし、アクチュエータにより、上下振動あるいは傾き振動を行うことができるようになっていてもよい。また、加振装置11は、振とう機であってもよく、電磁石等を用いた加振装置、あるいは、超音波を用いた加振装置であってもよい。
The configuration of the vibration device 11 is not particularly limited as long as it can apply at least one vibration of lateral vibration, vertical vibration, and tilt vibration to the vapor deposition source 1. The vibration exciter 11 includes, for example, a drive unit including a motor (XYθ drive motor) such as a stepping motor (pulse motor), rollers, gears, an XYZ stage, etc., and a drive control unit such as a motor drive control unit. The vapor deposition source 1 may be moved by driving the drive unit by the drive control unit. In addition, for example, a reciprocating motion in the lateral direction may be performed by a moving mechanism including a linear guide and a ball screw or a moving mechanism including a piston. The tilt vibration may be performed. Further, the vibration device 11 may be a shaker, a vibration device using an electromagnet or the like, or a vibration device using ultrasonic waves.
図4および図5は、加振装置11の振動の一例を示す図である。上述したように、加振装置11は、蒸着源1に対して、横振動、上下振動、および傾き振動のうち少なくとも一つの振動を加えることができればよいが、図4および図5に示すように、蒸着源1に、傾き振動および横振動のうち少なくとも一方の振動と、上下振動と、をそれぞれ加えることができるものであることがより望ましい。例えば、図4に示すように、傾き振動後に上下振動を行う、あるいは、図5に示すように、横振動後に上下振動を行うことで、第1蒸着材料71と第2蒸着材料72とをより効率良く、均一に混合させることができる。なお、横振動、上下振動、および傾き振動は、その少なくとも2種類の振動を一定の順番で繰り返し行ってもよく、同時に行ってもよい。
4 and 5 are diagrams showing an example of vibration of the vibration device 11. As described above, the vibration device 11 only needs to be able to apply at least one of lateral vibration, vertical vibration, and tilt vibration to the vapor deposition source 1, but as shown in FIGS. More preferably, at least one of tilt vibration and lateral vibration and vertical vibration can be applied to the vapor deposition source 1. For example, as shown in FIG. 4, vertical vibration is performed after tilt vibration, or, as shown in FIG. 5, vertical vibration is performed after horizontal vibration, so that the first vapor deposition material 71 and the second vapor deposition material 72 are more effectively separated from each other. It can be mixed efficiently and uniformly. Note that the lateral vibration, the vertical vibration, and the tilt vibration may be performed by repeating at least two types of vibration in a fixed order or simultaneously.
<コーティング層41の形成工程>
次に、コーティング層41の形成工程を、図6~図8を参照して以下に説明する。 <Process of formingcoating layer 41>
Next, the process of forming thecoating layer 41 will be described below with reference to FIGS. 6 to 8.
次に、コーティング層41の形成工程を、図6~図8を参照して以下に説明する。 <Process of forming
Next, the process of forming the
なお、以下では、筐体4の内面の一部における基材の表面に、ステップS3により少なくとも水酸基を形成する場合を例に挙げて説明する。但し、前述したように、コーティング層41の被形成面には、カルボキシル基または水酸基が形成されていればよく、ステップS3では、カルボキシル基および水酸基の少なくとも一方が形成されていればよい。ステップS3で筐体4の内面の一部における基材の表面にカルボキシル基を形成する場合には、筐体4の内面の一部における基材の表面を、図7に示す弱塩基性の水22に浸す前に、あるいは、図7に示す弱塩基性の水22に浸す工程無しに、前述したように、例えば二酸化炭素と反応させればよい。
In the following, a case where at least a hydroxyl group is formed on the surface of the base material on a part of the inner surface of the housing 4 by step S3 will be described as an example. However, as described above, it is sufficient that a carboxyl group or a hydroxyl group is formed on the surface where the coating layer 41 is formed, and in step S3, at least one of the carboxyl group and the hydroxyl group may be formed. In the case where a carboxyl group is formed on the surface of the base material on a part of the inner surface of the housing 4 in step S3, the surface of the base material on a part of the inner surface of the housing 4 is formed with the weakly basic water shown in FIG. As described above, it may be reacted with carbon dioxide, for example, before immersing in 22 or without the step of immersing in weakly basic water 22 shown in FIG. 7.
図6は、図2に示したコーティング層41の形成工程を示すフロー図である。図7および図8は各々、図2に示したコーティング層41の形成工程の一部を示す断面図である。
FIG. 6 is a flow chart showing a forming process of the coating layer 41 shown in FIG. 7 and 8 are cross-sectional views each showing a part of the process of forming the coating layer 41 shown in FIG.
図6に示すように、まず、筐体4の表面を有機溶剤で洗浄する(ステップS1)。上記有機溶媒には、例えば、アセトン、エタノール、イソプロピルアルコール等を用いることができる。ステップS1は、筐体4の表面を清浄にする工程である。このため、有機溶剤での洗浄の代わりに、例えば50~350℃の強熱によって汚染物質を焼き切る等の他の手法を採用して筐体4を洗浄してもよい。また、筐体4の表面が清浄であれば、ステップS1を省略してよい。
First, as shown in FIG. 6, the surface of the housing 4 is washed with an organic solvent (step S1). As the organic solvent, for example, acetone, ethanol, isopropyl alcohol or the like can be used. Step S1 is a step of cleaning the surface of the housing 4. Therefore, instead of cleaning with an organic solvent, the housing 4 may be cleaned by adopting another method such as burning off contaminants by ignition at 50 to 350 ° C. If the surface of the housing 4 is clean, step S1 may be omitted.
次いで、図7に示すように、筐体4の表面のうちコーティング層41で被覆しない非被覆領域を、シール材20でシールする(ステップS2)。ステップS2は、非被覆領域に水酸基およびコーティング層41を形成することを防止するための工程である。したがって、他の方法で防止する場合、および、筐体4の内面の全体にコーティング層41を形成する場合は、ステップS2を省略してよい。また、非被覆領域の全てをシールする必要は無く、非被覆領域のうちの、弱塩基性の水および後述するステップS5に用いる、前記シロキサン系化合物を含む溶液24のうち少なくとも一方に浸る部分が、シールされれば足りる。
Next, as shown in FIG. 7, the uncoated region of the surface of the housing 4 that is not covered with the coating layer 41 is sealed with the sealing material 20 (step S2). Step S2 is a step for preventing the formation of the hydroxyl group and the coating layer 41 in the non-covered area. Therefore, step S2 may be omitted when the prevention is performed by another method or when the coating layer 41 is formed on the entire inner surface of the housing 4. Further, it is not necessary to seal all of the non-coated area, and a part of the non-coated area which is soaked in at least one of the weakly basic water and the solution 24 containing the siloxane compound used in step S5 described later is used. , It is enough if it is sealed.
シール材20は、非被覆領域を弱塩基性の水22、および上記溶液24と化学反応しない材料である。さらに、シール材20は、非被覆領域を弱塩基性の水22および上記溶液24から遮蔽可能な材料である。シール材20は、例えば、アクリル系シール材もしくはメタアクリル系シール材を用いてよい。また、溶液24に用いられる、前記シロキサン系化合物を溶解させる溶媒には、例えば、アセトン、エタノール、NMP(N-メチル-2-ピロリドン)等が用いられる。
The sealing material 20 is a material that does not chemically react with the weakly basic water 22 and the solution 24 in the uncoated region. Further, the sealing material 20 is a material capable of shielding the uncoated region from the weakly basic water 22 and the solution 24. As the sealing material 20, for example, an acrylic sealing material or a methacrylic sealing material may be used. Further, as the solvent for dissolving the siloxane compound used in the solution 24, for example, acetone, ethanol, NMP (N-methyl-2-pyrrolidone) and the like are used.
その後、図7に示すように、筐体4内に弱塩基性(約pH8~9)の水22を注いで一晩(12時間以上)放置することによって、筐体4の内面のうちコーティング層41を形成する被覆領域に、少なくとも水酸基を形成する(ステップS3)。弱塩基性の水22は、例えば、濃度10-4mol/Lの炭酸水素カリウム水溶液である。なお、ステップS3を行わなくても、筐体4の表面は、空気中の水分によって幾分か水酸化されている。このため、ステップS3は省略可能である。しかしながら、ステップS3を行った方が、被覆領域中の水酸基の密度を高くできる。このため、後のステップS5で形成されるコーティング層41の密度を高めるために、ステップS3を行うことが好ましい。また、弱塩基性の水22の代わりに、中性の水、または水酸化カリウム水溶液等の強塩基性の水溶液を用いてもよい。しかしながら、中性の水を用いた場合、水酸基を形成する反応速度が遅い。また、強塩基性の水溶液を用いた場合、水酸基を形成する以外の副反応が起こりやすい。このため、弱塩基性の水22を用いることが好ましい。
Then, as shown in FIG. 7, by pouring weakly basic (about pH 8 to 9) water 22 into the housing 4 and allowing it to stand overnight (12 hours or more), the coating layer on the inner surface of the housing 4 is removed. At least a hydroxyl group is formed in the coating region forming 41 (step S3). The weakly basic water 22 is, for example, an aqueous potassium hydrogen carbonate solution having a concentration of 10 −4 mol/L. Even if step S3 is not performed, the surface of the housing 4 is somewhat hydroxylated by the moisture in the air. Therefore, step S3 can be omitted. However, performing step S3 can increase the density of hydroxyl groups in the coating region. Therefore, it is preferable to perform step S3 in order to increase the density of the coating layer 41 formed in step S5. Instead of the weakly basic water 22, neutral water or a strongly basic aqueous solution such as an aqueous potassium hydroxide solution may be used. However, when neutral water is used, the reaction rate of forming a hydroxyl group is slow. Moreover, when a strongly basic aqueous solution is used, side reactions other than the formation of hydroxyl groups are likely to occur. For this reason, it is preferable to use weakly basic water 22.
次いで、水22を筐体4内から排出し、筐体4を完全に乾燥させる(ステップS4)。ステップS3が省略される場合、ステップS4も共に省略される。
Next, the water 22 is discharged from the inside of the housing 4 to completely dry the housing 4 (step S4). When step S3 is omitted, step S4 is also omitted.
次いで、図8に示すように筐体4内に上記溶液24を注いで、30℃以上に保温しながら、約10時間放置する。これによって、筐体4の内面のうちの被覆領域に、コーティング層41を形成する(ステップS5)。その後、上記溶液24を筐体4内から排出する。
Next, as shown in FIG. 8, the above solution 24 is poured into the housing 4 and left to stand for about 10 hours while keeping the temperature at 30 ° C. or higher. As a result, the coating layer 41 is formed on the covered area of the inner surface of the housing 4 (step S5). Then, the solution 24 is discharged from the housing 4.
次いで、シール材20を除去する(ステップS6)。ステップS2が省略される場合、ステップS6も共に省略される。なお、ステップ6は、後述するステップ7の後、またはステップS8の後に行ってもよい。
Next, the sealing material 20 is removed (step S6). When step S2 is omitted, step S6 is also omitted. Note that step 6 may be performed after step 7 described below or after step S8.
次いで、筐体4を、有機溶剤で洗浄し(ステップS7)、筐体4を完全に乾燥させる(ステップS8)。ステップS7で、少なくとも、コーティング層41の表面を洗浄し、好ましくは、加えて、シール材20を剥離した後の非被覆領域も洗浄する。なお、ステップS7の有機溶剤には、ステップS1の有機溶剤と同じ有機溶剤を用いることができる。
Next, the housing 4 is washed with an organic solvent (step S7), and the housing 4 is completely dried (step S8). In step S7, at least the surface of the coating layer 41 is cleaned, preferably in addition, the uncoated area after the sealing material 20 is peeled off. The same organic solvent as the organic solvent in step S1 can be used as the organic solvent in step S7.
以上の工程によって、筐体4の内面のうち、所望の被覆領域にコーティング層41を形成することが可能である。なお、コーティング層41は、側面4aにのみ形成されていてもよく、底面4cにのみ形成されていてもよい。また、側面4aおよび底面4cの少なくとも一方の一部にのみ形成されていてもよい。また、天板5、管部7、防着板6も、上述した方法と同様の方法で、所望の被覆領域にコーティング層41を形成することが可能である。コーティング層41を、筐体4、天板5、防着板6および管部7のうちの何れか1つ以上の内面の少なくとも一部に形成したものは、本発明の技術的範囲に含まれる。また、上述のコーティング層41の形成工程またはそれを変形した形成工程を含む蒸着装置の製造方法は、本発明の技術的範囲に含まれる。
By the above steps, it is possible to form the coating layer 41 in a desired coating region on the inner surface of the housing 4. The coating layer 41 may be formed only on the side surface 4a or may be formed only on the bottom surface 4c. Further, it may be formed only on a part of at least one of the side surface 4a and the bottom surface 4c. Further, the top plate 5, the tube portion 7, and the adhesion-preventing plate 6 can also be formed with the coating layer 41 in a desired coating region by the same method as described above. The coating layer 41 formed on at least a part of the inner surface of any one or more of the housing 4, the top plate 5, the adhesion-preventing plate 6, and the tube portion 7 is included in the technical scope of the present invention. .. Further, a method for manufacturing a vapor deposition apparatus including the above-mentioned forming step of the coating layer 41 or a forming step obtained by modifying the coating layer 41 is included in the technical scope of the present invention.
上記コーティング層41は、シロキサン結合によって強固に筐体4に結合しているため、コーティング層41は筐体4から剥離し難い。このため、剥離したコーティング層41が蒸着材料を汚染する危険が低い。また、天板5、防着板6、および管部7の内面に形成されたコーティング層41も同様に剥離し難い。
Since the coating layer 41 is firmly bonded to the housing 4 by a siloxane bond, the coating layer 41 is difficult to peel off from the housing 4. Therefore, the risk that the peeled coating layer 41 contaminates the vapor deposition material is low. Further, the coating layer 41 formed on the inner surfaces of the top plate 5, the adhesive plate 6, and the pipe portion 7 is also difficult to peel off.
<蒸着膜61の形成工程>
次に、蒸着膜製造方法として、蒸着膜61の形成工程を、図1、図2、図4、図5、および図9を参照して以下に説明する。なお、以下では、蒸着材料が、第1蒸着材料71と第2蒸着材料72との混合材料である場合を例に挙げて説明するが、上記混合材料は、3種類以上の蒸着材料を含んでいてもよい。 <Formation process ofvapor deposition film 61>
Next, as a vapor deposition film manufacturing method, a process of forming thevapor deposition film 61 will be described below with reference to FIGS. 1, 2, 4, 5, and 9. Note that, in the following, the case where the vapor deposition material is a mixed material of the first vapor deposition material 71 and the second vapor deposition material 72 will be described as an example, but the mixed material includes three or more types of vapor deposition materials. You may stay.
次に、蒸着膜製造方法として、蒸着膜61の形成工程を、図1、図2、図4、図5、および図9を参照して以下に説明する。なお、以下では、蒸着材料が、第1蒸着材料71と第2蒸着材料72との混合材料である場合を例に挙げて説明するが、上記混合材料は、3種類以上の蒸着材料を含んでいてもよい。 <Formation process of
Next, as a vapor deposition film manufacturing method, a process of forming the
図9は、図1に示した蒸着膜61の形成工程を示すフロー図である。
FIG. 9 is a flow chart showing a process of forming the vapor deposition film 61 shown in FIG.
図9に示すように、まず、蒸着材料として、第1蒸着材料71と第2蒸着材料72とを所定の含有比率で含む混合材料を準備する(ステップS11)。次いで、上記混合材料を、蒸着源1における筐体4内に供給して該筐体4内に収容する(ステップS12、蒸着材料収容工程)。
As shown in FIG. 9, first, as a vapor deposition material, a mixed material containing a first vapor deposition material 71 and a second vapor deposition material 72 in a predetermined content ratio is prepared (step S11). Next, the mixed material is supplied into the housing 4 of the vapor deposition source 1 and housed in the housing 4 (step S12, vapor deposition material storage step).
次に、加振装置11により図4または図5に示すように蒸着源1を振動させることにより、筐体4内に収容した混合材料を筐体4内で流動させて撹拌する(ステップS13、蒸着材料撹拌工程)。これにより、第1蒸着材料71と第2蒸着材料72とを均一に混合させる。
Next, by vibrating the vapor deposition source 1 by the vibrating device 11 as shown in FIG. 4 or FIG. 5, the mixed material accommodated in the housing 4 is made to flow and stirred in the housing 4 (step S13, Deposited material stirring process). As a result, the first vapor deposition material 71 and the second vapor deposition material 72 are uniformly mixed.
次いで、上記混合材料を、第1蒸着材料71および第2蒸着材料72のそれぞれの気化温度(昇華温度または蒸発温度)よりも高い温度に筐体4を加熱して昇温する(ステップS14、昇温工程)。これにより、第1蒸着材料71および第2蒸着材料72をそれぞれ気化(蒸着材料が液体材料である場合は昇華、蒸着材料が液体材料である場合は蒸発)させて、図1および図2に示す第1ノズル5Sおよび第2ノズル5Nから蒸着粒子を飛翔させる。
Next, the housing 4 is heated to a temperature higher than the vaporization temperature (sublimation temperature or evaporation temperature) of the first vaporized material 71 and the second vaporized material 72, respectively, to raise the temperature of the mixed material (step S14, rise). Warming process). As a result, the first thin-film deposition material 71 and the second thin-film deposition material 72 are vaporized (sublimation when the vapor deposition material is a liquid material, evaporation when the vapor deposition material is a liquid material), respectively, and are shown in FIGS. 1 and 2. The vapor deposition particles are caused to fly from the first nozzle 5S and the second nozzle 5N.
次いで、基板52を上記蒸着装置3内に搬入する(ステップS15、被蒸着基板搬入工程)。
Next, the substrate 52 is loaded into the vapor deposition apparatus 3 (step S15, deposition target substrate loading step).
続いて、水晶振動子2に付着した蒸着粒子により蒸着レートをモニタリングしながら、基板52に、第1蒸着材料71と第2蒸着材料72とを共蒸着させて同時に成膜する(ステップS16、共蒸着工程)。これにより、基板52に、所定のパターンの蒸着膜61として、第1蒸着材料71と第2蒸着材料72との共蒸着膜を成膜する。
Subsequently, while monitoring the vapor deposition rate by the vapor deposition particles attached to the crystal oscillator 2, the first vapor deposition material 71 and the second vapor deposition material 72 are co-evaporated on the substrate 52 to form a film at the same time (step S16, co-deposition). Deposition process). As a result, a co-deposited film of the first vapor deposition material 71 and the second vapor deposition material 72 is formed on the substrate 52 as the vapor deposition film 61 having a predetermined pattern.
その後、上記共蒸着が成膜された、蒸着後の基板52を、蒸着装置3から搬出する(ステップS17、被蒸着基板搬出工程)。
After that, the vapor-deposited substrate 52 on which the co-evaporation is deposited is carried out from the vapor deposition apparatus 3 (step S17, step of carrying out the substrate to be vapor-deposited).
なお、ステップS15~ステップS17は、例えば、所定枚数の基板52への蒸着が行われるか、もしくは、筐体4内に収容した混合材料が所定量以下になるまで、繰り返される。所定枚数の基板52への蒸着が行われるか、もしくは、筐体4内に収容した混合材料が所定量以下になれば、ステップS11に戻り、筐体4内に残存した混合材料は、筐体4内に新たに供給された混合材料と混合される。なお、ステップS13は、少なくとも、ステップS12とステップS14との間で行われればよいが、必要に応じて、ステップS17で蒸着後の基板52の搬出が行われた後、次にステップS15の基板52の搬入が行われるまでの間に行われてもよく、ステップS15~ステップS17の間の所望のタイミングで行われてもよい。撹拌装置(本実施形態では加振装置11)の種類にもよるが、例えば、ステップS13は、ステップS16の蒸着処理と同時に行われてもよい。
The steps S15 to S17 are repeated until, for example, a predetermined number of substrates 52 are vapor-deposited or the mixed material contained in the housing 4 becomes a predetermined amount or less. When the vapor deposition is performed on a predetermined number of substrates 52 or the amount of the mixed material contained in the housing 4 becomes less than the predetermined amount, the process returns to step S11, and the mixed material remaining in the housing 4 is the housing. 4 is mixed with the newly supplied mixed material. Note that step S13 may be performed at least between steps S12 and S14, but if necessary, after the substrate 52 after vapor deposition is carried out in step S17, the substrate in step S15 is then carried out. It may be performed before the carry-in of 52 is performed, or may be performed at a desired timing between steps S15 and S17. Depending on the type of the stirring device (vibration device 11 in this embodiment), for example, step S13 may be performed at the same time as the vapor deposition process of step S16.
本実施形態によれば、筐体4の内面および天板5の内面のうち少なくとも一方の少なくとも一部が、有機材料と相互作用しないシロキサン系化合物を含んだコーティング層41で被覆されていることで、筐体4の内面および天板5の内面における、上記コーティング層41で被覆された領域(被覆領域)への蒸着材料の付着を防止することができる。これにより、筐体4の内面または天板5の内面への蒸着材料の付着による第1蒸着材料71と第2蒸着材料72との混合比率の変化を防止することができるとともに、成膜に利用されない蒸着材料の量を低減することができる。また、清掃が容易になるとともに、蒸着レートの低下並びに蒸着レートの検出精度の低下を防止することができる。
According to the present embodiment, at least a part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5 is covered with the coating layer 41 containing the siloxane-based compound that does not interact with the organic material. It is possible to prevent the vapor-deposited material from adhering to the region (covered region) covered with the coating layer 41 on the inner surface of the housing 4 and the inner surface of the top plate 5. This can prevent a change in the mixing ratio of the first vapor deposition material 71 and the second vapor deposition material 72 due to the deposition of the vapor deposition material on the inner surface of the housing 4 or the inner surface of the top plate 5, and can be used for film formation. It is possible to reduce the amount of vapor deposition material that is not retained. In addition, cleaning is facilitated, and it is possible to prevent a decrease in vapor deposition rate and a decrease in vapor deposition rate detection accuracy.
また、本実施形態によれば、上述したように蒸着源1を振動させて筐体4内で蒸着材料を流動させることで、筐体4内の第1蒸着材料71と第2蒸着材料72との分布を均一に保持することができ、筐体4内に導入した第1蒸着材料71と第2蒸着材料72との混合材料中の第1蒸着材料71と第2蒸着材料72との含有比率(言い換えれば、第1蒸着材料71と第2蒸着材料72との混合比率)と、基板52に形成された蒸着膜61を構成する第1蒸着材料71と第2蒸着材料72との含有比率と、がほぼ等しくなる。また、蒸着膜61内で第1蒸着材料71および第2蒸着材料72が偏在せず、均一に混合された蒸着膜61を形成することができる。
Further, according to the present embodiment, as described above, the vapor deposition source 1 is vibrated to cause the vapor deposition material to flow in the housing 4, so that the first vapor deposition material 71 and the second vapor deposition material 72 in the housing 4 are formed. Of the first evaporation material 71 and the second evaporation material 72 in the mixed material of the first evaporation material 71 and the second evaporation material 72 introduced into the housing 4 can be kept uniform. (In other words, the mixing ratio of the first vapor deposition material 71 and the second vapor deposition material 72) and the content ratio of the first vapor deposition material 71 and the second vapor deposition material 72 forming the vapor deposition film 61 formed on the substrate 52. , Are almost equal. Further, the first vapor deposition material 71 and the second vapor deposition material 72 are not unevenly distributed in the vapor deposition film 61, and the vapor deposition film 61 can be uniformly mixed.
なお、上記蒸着は、蒸着装置3および基板52をそれぞれ固定し、図示しない蒸着マスクを基板52に固定した状態で、蒸着源1から基板52に向かって蒸着粒子を射出することにより行われてもよい。また、上記蒸着は、図示しない蒸着マスクを基板52に固定した状態で、蒸着装置3および基板52の少なくとも一方を移動もしくは回転させながら蒸着源1から基板52に向かって蒸着粒子を射出することにより行われてもよい。勿論、蒸着マスクとして基板52よりも面積が小さい蒸着マスクを使用し、蒸着マスクと蒸着装置3の蒸着源1との相対的な位置を固定した状態で、基板52と、蒸着マスクおよび蒸着装置3を相対移動させることにより、スキャン蒸着あるいはステップ蒸着を行っても構わない。
The vapor deposition may be performed by ejecting vapor deposition particles from the vapor deposition source 1 toward the substrate 52 with the vapor deposition device 3 and the substrate 52 fixed, and a vapor deposition mask (not shown) fixed to the substrate 52. Good. Further, the vapor deposition is performed by ejecting vapor deposition particles from the vapor deposition source 1 toward the substrate 52 while moving or rotating at least one of the vapor deposition device 3 and the substrate 52 with a vapor deposition mask (not shown) fixed to the substrate 52. May be done. Of course, a vapor deposition mask having a smaller area than the substrate 52 is used as the vapor deposition mask, and the substrate 52, the vapor deposition mask, and the vapor deposition apparatus 3 are in a state where the relative positions of the vapor deposition mask and the vapor deposition source 1 of the vapor deposition apparatus 3 are fixed. You may perform scan vapor deposition or step vapor deposition by relatively moving.
上記蒸着装置3は、例えば、OLEDを用いた有機EL(エレクトロルミネッセンス)表示装置の製造に好適に用いられる。本実施形態に係る表示装置(例えば有機EL表示装置)の製造方法は、上記蒸着膜製造方法(言い換えれば、上記ステップS11~S17)を含む。また、本実施形態に係る表示装置の製造方法は、遡れば、蒸着装置3を準備する工程として、コーティング層41を形成する工程を含む、上記蒸着装置3を製造する工程(言い換えれば、蒸着装置3の製造方法)、あるいは、上記蒸着源1のメンテナンスとして上記蒸着源1に上記コーティング層41を形成する工程を含む。したがって、本実施形態に係る表示装置の製造方法は、少なくとも上記ステップS12よりも前に、ステップS1~S8で示した、筐体4の内面および天板5の内面のうち少なくとも一方の少なくとも一部に、シロキサン系化合物を含む材料からなるコーティング層41を形成する工程(コーティング層形成工程)を含む。なお、コーティング層形成工程は、上記ステップS12よりも前に行われればよく、上記ステップS11よりも前に行われてもよく、ステップS11と並行してあるいはステップS11の後で行われてもよい。また、本実施形態に係る有機EL表示装置の製造方法は、例えば、基板52上に第1電極(図示せず)を形成する工程と、上記第1電極上に、少なくとも発光層を含む有機層を形成する工程と、上記有機層上に第2電極を形成する工程と、を含み、上記蒸着膜製造方法により、少なくとも上記発光層を形成する。
The vapor deposition apparatus 3 is suitably used for manufacturing an organic EL (electroluminescence) display device using, for example, an OLED. A method of manufacturing a display device (for example, an organic EL display device) according to this embodiment includes the above-described vapor deposition film manufacturing method (in other words, steps S11 to S17). Further, the manufacturing method of the display device according to the present embodiment can be traced back to a step of manufacturing the vapor deposition device 3 including a step of forming the coating layer 41 as a step of preparing the vapor deposition device 3 (in other words, the vapor deposition device 3). 3), or as maintenance of the vapor deposition source 1, the step of forming the coating layer 41 on the vapor deposition source 1 is included. Therefore, at least a part of at least one of the inner surface of the housing 4 and the inner surface of the top plate 5 shown in steps S1 to S8 before at least step S12 is used in the method for manufacturing the display device according to the present embodiment. In addition, the step of forming the coating layer 41 made of a material containing a siloxane-based compound (coating layer forming step) is included. The coating layer forming step may be performed before step S12, may be performed before step S11, and may be performed in parallel with step S11 or after step S11. .. In addition, the method of manufacturing the organic EL display device according to the present embodiment includes, for example, a step of forming a first electrode (not shown) on the substrate 52, and an organic layer including at least a light emitting layer on the first electrode. A step of forming the second electrode on the organic layer and a step of forming the second electrode on the organic layer are included, and at least the light emitting layer is formed by the vapor deposition film manufacturing method.
次に、本実施形態に係る蒸着装置3の効果について、実施例および比較例を挙げて以下に説明する。但し、以下の実施例はあくまで一例であって、本実施形態は、以下の実施例のみに制限されるわけではない。
Next, the effects of the vapor deposition device 3 according to this embodiment will be described below with reference to examples and comparative examples. However, the following examples are merely examples, and the present embodiment is not limited to the following examples.
〔実施例1〕
まず、複数種類の蒸着材料(有機化合物)の混合物として、下記構造式(3)で示されるAlq3(トリス(8-キノリノレート)アルミニウム)と、下記構造式(4)で示されるFL-3(スピロ-(ジ-(フェニル)-ジ-(ジ-3-メチルフェニル)アミン)と、の混合材料を、各材料の含有比率(混合比率)を変えて3種類調整した。 [Example 1]
First, as a mixture of a plurality of types of vapor deposition materials (organic compounds), Alq 3 (tris (8-quinolinolate) aluminum) represented by the following structural formula (3) and FL-3 (represented by the following structural formula (4)). Three kinds of mixed materials of spiro-(di-(phenyl)-di-(di-3-methylphenyl)amine) were adjusted by changing the content ratio (mixing ratio) of each material.
まず、複数種類の蒸着材料(有機化合物)の混合物として、下記構造式(3)で示されるAlq3(トリス(8-キノリノレート)アルミニウム)と、下記構造式(4)で示されるFL-3(スピロ-(ジ-(フェニル)-ジ-(ジ-3-メチルフェニル)アミン)と、の混合材料を、各材料の含有比率(混合比率)を変えて3種類調整した。 [Example 1]
First, as a mixture of a plurality of types of vapor deposition materials (organic compounds), Alq 3 (tris (8-quinolinolate) aluminum) represented by the following structural formula (3) and FL-3 (represented by the following structural formula (4)). Three kinds of mixed materials of spiro-(di-(phenyl)-di-(di-3-methylphenyl)amine) were adjusted by changing the content ratio (mixing ratio) of each material.
次いで、重量比率が異なる上記3種類の混合材料を、図1および図3の(a)・(b)に示す天板5を有する、図1に示す蒸着装置3の筐体4に収容した。なお、上記蒸着装置3の蒸着源1には、図2に示すように、筐体4の内面および天板5の内面をAlNで形成するとともに、筐体4の内面、並びに、第1ノズル5Sおよび第2ノズル5Nの内面を含む天板5の内面を、前記構造式(1)で示されるシロキサン系化合物で化学修飾(コーティング)した蒸着源を使用した。
Next, the above three types of mixed materials having different weight ratios were housed in the housing 4 of the vapor deposition device 3 shown in FIG. 1 having the top plate 5 shown in FIGS. 1 and 3A and 3B. In the vapor deposition source 1 of the vapor deposition apparatus 3, as shown in FIG. 2, the inner surface of the housing 4 and the inner surface of the top plate 5 are made of AlN, and the inner surface of the housing 4 and the first nozzle 5S are formed. An vapor deposition source in which the inner surface of the top plate 5 including the inner surface of the second nozzle 5N was chemically modified (coated) with the siloxane compound represented by the structural formula (1) was used.
次いで、図4に示すように、蒸着源1に、加振装置11により、1Hzで5分間、傾き振動を加えた後、1Hzで5分間、上下振動を加えた。この傾き振動と、上下振動とを、交互にそれぞれ3回ずつ繰り返した。その後、真空中で250℃に加熱して、膜厚25nmになるように基板52に上記混合材料を蒸着することにより、蒸着膜を形成した。
Next, as shown in FIG. 4, the vapor deposition source 1 was subjected to tilt vibration at 1 Hz for 5 minutes and then vertical vibration at 1 Hz for 5 minutes by the vibration exciter 11. The tilt vibration and the vertical vibration were alternately repeated three times each. Then, it was heated to 250 ° C. in a vacuum, and the mixed material was deposited on the substrate 52 so as to have a film thickness of 25 nm to form a thin-film deposition film.
蒸着後、蒸着膜中の有機化合物の比率を液体クロマトグラフィーで測定した。この結果、2種類の有機材料の分子量比が1.5倍以上異なるにも拘らず、表1に示すように、蒸着前の混合材料中におけるAlq3とFL-3との含有比率と、蒸着後の蒸着膜中のAlq3とFL-3との含有比率に違いはなかった。
After vapor deposition, the ratio of organic compounds in the vapor deposited film was measured by liquid chromatography. As a result, as shown in Table 1, even though the molecular weight ratios of the two kinds of organic materials differ by 1.5 times or more, the content ratio of Alq 3 and FL-3 in the mixed material before vapor deposition, There was no difference in the content ratio of Alq 3 and FL-3 in the subsequent vapor deposition film.
筐体4の内面および天板5の内面にコーティング層41を形成せず、かつ、加振装置11により蒸着源1に振動を加えなかったことを除けば、実施例1と同じ構造を有する蒸着装置3を用いて、実施例1と同じ操作を行った。これにより、基板52に、比較用の蒸着膜を形成した。
Vapor deposition having the same structure as in Example 1 except that the
蒸着後、実施例1と同じ方法で、蒸着膜中の有機化合物の含有比率を測定した。この結果、表2に示すように、蒸着前の混合材料中における、相対的に分子量が小さいAlq3の含有比率が高い場合、蒸着後の蒸着膜中における、上記Alq3の含有比率がかなり高く、各材料の偏在が確認された。
After vapor deposition, the content ratio of the organic compound in the vapor deposited film was measured by the same method as in Example 1. As a result, as shown in Table 2, when the content ratio of Alq 3 having a relatively small molecular weight in the mixed material before vapor deposition is high, the content ratio of Alq 3 in the vapor deposition film after vapor deposition is considerably high. The uneven distribution of each material was confirmed.
まず、複数種類の蒸着材料(有機化合物)の混合物として、前記構造式(3)で示されるAlq3と、下記構造式(5)で示されるM-MTDATA(4,4’,4’’-トリス[フェニル(m-トリル)アミノ]トリフェニルアミン)と、の混合材料を、各材料の含有比率(混合比率)を変えて3種類調整した。
First, as a mixture of a plurality of kinds of vapor deposition materials (organic compounds), Alq 3 represented by the structural formula (3) and M-MTDATA(4,4′,4″-) represented by the structural formula (5) below. Three kinds of mixed materials of tris[phenyl(m-tolyl)amino]triphenylamine) were adjusted by changing the content ratio (mixing ratio) of each material.
次いで、重量比率が異なる上記3種類の混合材料を、図3の(a)・(b)に示す天板5を有する、図1に示す蒸着装置3の筐体4に収容した。なお、上記蒸着装置3の蒸着源1には、図2に示すように、筐体4の内面および天板5の内面をAlNで形成するとともに、筐体4の内面、並びに、第1ノズル5Sおよび第2ノズル5Nの内面を含む天板5の内面を、前記構造式(1)で示されるシロキサン系化合物で化学修飾(コーティング)した蒸着源を使用した。
Next, the above three types of mixed materials having different weight ratios were housed in the housing 4 of the vapor deposition device 3 shown in FIG. 1 having the top plate 5 shown in FIGS. 3(a) and 3(b). In the vapor deposition source 1 of the vapor deposition apparatus 3, as shown in FIG. 2, the inner surface of the housing 4 and the inner surface of the top plate 5 are made of AlN, and the inner surface of the housing 4 and the first nozzle 5S are formed. An vapor deposition source in which the inner surface of the top plate 5 including the inner surface of the second nozzle 5N was chemically modified (coated) with the siloxane compound represented by the structural formula (1) was used.
次いで、図4に示すように、蒸着源1に、加振装置11により、1Hzで10分間、横振動を加えた後、1Hzで10分間、上下振動を加えた。この横振動と、上下振動とを、交互にそれぞれ3回ずつ繰り返した。その後、真空中で200℃に加熱して、膜厚25nmになるように基板52に上記混合材料を蒸着することにより、蒸着膜を形成した。
Next, as shown in FIG. 4, the vapor deposition source 1 was subjected to lateral vibration at 1 Hz for 10 minutes by the vibrating device 11, and then subjected to vertical vibration at 1 Hz for 10 minutes. The lateral vibration and the vertical vibration were alternately repeated three times each. After that, the film was heated to 200° C. in a vacuum, and the mixed material was vapor-deposited on the substrate 52 so as to have a film thickness of 25 nm, thereby forming a vapor deposition film.
蒸着後、実施例1と同じ方法で、蒸着膜中の有機化合物の含有比率を測定した。この結果、2種類の有機材料の分子量比が1.5倍以上異なるにも拘らず、表3に示すように、蒸着前の混合材料中におけるAlq3とM-MTDATAとの含有比率と、蒸着後の蒸着膜中のAlq3とM-MTDATAとの含有比率に違いはなかった。また、傾き振動に代えて横振動を行った場合にも同様の効果が得られることが確認できた。
After vapor deposition, the content ratio of the organic compound in the vapor deposited film was measured by the same method as in Example 1. As a result, as shown in Table 3, the content ratio of Alq 3 and M-MTDATA in the mixed material before vapor deposition and the vapor deposition were 2 There was no difference in the content ratio of Alq 3 and M-MTDATA in the subsequent vapor deposition film. It was also confirmed that the same effect can be obtained when lateral vibration is performed instead of tilt vibration.
筐体4の内面および天板5の内面にコーティング層41を形成しなかったことを除けば、実施例1と同じ構造を有する蒸着装置3を用いて、実施例1と同じ操作を行うことにより、基板52に蒸着膜を形成した。
By performing the same operation as in Example 1 by using the
蒸着後、実施例1と同じ方法で、蒸着膜中の有機化合物の比率を測定した。この結果、表4に示すように、蒸着前の混合材料中におけるAlq3とFL-3との含有比率と、蒸着後の蒸着膜中のAlq3とFL-3との含有比率とに、僅かに変化が見られた。これは、筐体4の内面および天板5の内面にコーティング層41を形成しなかったことで、蒸着源1内に蒸着材料が付着(特に、相対的に分子量が小さいAlq3が、相対的に分子量が大きいFL-3よりも多く付着)し、それにより、得られた蒸着膜中のAlq3とFL-3との含有比率が僅かに変化したためであると考えられる。しかしながら、比較例1と比較すれば、その変化量は僅かであり、蒸着前の混合材料中における、分子量が小さいAlq3の含有比率が高い場合でも、各材料の偏在が抑制されていた。
After the vapor deposition, the ratio of the organic compound in the vapor deposited film was measured by the same method as in Example 1. As a result, as shown in Table 4, in the content ratio of the content ratio of Alq 3 and FL-3 in the mixed material prior to the deposition, the Alq 3 and FL-3 in the deposited film after deposition, slightly There was a change in. This is because the coating layer 41 was not formed on the inner surface of the housing 4 and the inner surface of the top plate 5, so that the vapor deposition material adhered inside the vapor deposition source 1 (in particular, Alq 3 having a relatively small molecular weight was It is considered that this is because the amount of Alq 3 and FL-3 contained in the obtained vapor deposited film slightly changed due to the deposition of a larger amount of FL-3 than that of FL-3). However, compared with Comparative Example 1, the amount of change was small, and even if the content ratio of Alq 3 having a small molecular weight in the mixed material before vapor deposition was high, uneven distribution of each material was suppressed.
図10の(a)は、実施例3で用いた天板5の上面の概略構成を示す平面図であり、図10の(b)は、実施例3で用いた蒸着源1の筐体4および天板5を簡略化して示す断面図である。なお、図10の(a)および図10の(b)では、図示の便宜上、それぞれ孔5Kの数を省略している。また、図示の便宜上、図10の(a)と図10の(b)とで孔5Kの数が異なっているが、実際には、孔5Kの数の数が同じであることは言うまでもない。
10A is a plan view showing a schematic configuration of the upper surface of the
本実施例では、実施例1と同様に調整した、重量比率が異なる3種類の混合材料を、図1および図3の(a)・(b)に示す天板5に代えて、図10の(a)・(b)に示す、孔5Kが互いに均等間隔で設けられた天板5を有する以外は、実施例1と同じ蒸着装置3の筐体4に収容した。なお、上記蒸着装置3の蒸着源1には、実施例1と同じく、筐体4の内面および天板5の内面をAlNで形成するとともに、筐体4の内面、並びに、第1ノズル5Sおよび第2ノズル5Nの内面を含む天板5の内面を、前記構造式(1)で示されるシロキサン系化合物で化学修飾(コーティング)した蒸着源を使用した。
In this example, the three types of mixed materials having different weight ratios, which were prepared in the same manner as in Example 1, were replaced with the top plate 5 shown in FIGS. It was housed in the same casing 4 of the vapor deposition device 3 as in Example 1 except that the holes 5K shown in (a) and (b) had top plates 5 provided at equal intervals. In the vapor deposition source 1 of the vapor deposition apparatus 3, as in the first embodiment, the inner surface of the housing 4 and the inner surface of the top plate 5 are made of AlN, and the inner surface of the housing 4 and the first nozzle 5S and An evaporation source was used in which the inner surface of the top plate 5 including the inner surface of the second nozzle 5N was chemically modified (coated) with the siloxane compound represented by the structural formula (1).
次いで、上記蒸着源1に、加振装置11により、実施例2と同じ条件で横振動を加えた後、実施例2と同じ条件で上下振動を加えた。この横振動と、上下振動とを、実施例2と同じく、交互にそれぞれ3回ずつ繰り返した。その後、実施例1と同じく、真空中で250℃に加熱して、膜厚25nmになるように基板52に上記混合材料を蒸着することにより、蒸着膜を形成した。
Next, the vapor deposition source 1 was subjected to lateral vibration under the same conditions as in Example 2 by the vibrating device 11, and then vertical vibration was applied under the same conditions as in Example 2. The lateral vibration and the vertical vibration were alternately repeated three times each, as in Example 2. Then, as in Example 1, a vapor-deposited film was formed by heating to 250 ° C. in a vacuum and depositing the mixed material on the substrate 52 so as to have a film thickness of 25 nm.
蒸着後、実施例1と同じ方法で、蒸着膜中の有機化合物の比率を測定した。この結果、表5に示すように、相対的に分子量が小さいAlq3の含有比率が70%と高い場合に、蒸着後の蒸着膜中のAlq3の含有比率が蒸着前の混合材料中におけるAlq3の含有比率よりも僅かに高くなった。従って孔5Kの配置場所が、平面視で、天板5の中心寄りであることも重要であることが確認された。
After the vapor deposition, the ratio of the organic compound in the vapor deposited film was measured by the same method as in Example 1. As a result, as shown in Table 5, when the content ratio of Alq 3 having a relatively small molecular weight is as high as 70%, the content ratio of Alq 3 in the vapor deposition film after vapor deposition is Alq 3 in the mixed material before vapor deposition. It was slightly higher than the content ratio of 3 . Therefore, it was confirmed that it is also important that the location of the hole 5K is near the center of the top plate 5 in plan view.
図11は、天板5の上面の概略構成を示す他の平面図である。天板5の形状は特に限定されるものではなく、例えば、図11に示すように、平面視で円形状に形成されていてもよい。この場合にも、図3の(a)に示す天板5同様、天板5の上面における第1ノズル5Sおよび第2ノズル5Nの孔5Kの総面積は、天板5の上面の面積の1/20~1/8の範囲内であることが望ましい。また、天板5の上面において、面積比で50%以上、80%以下の孔5Kが、天板5の上面の中心点Cから天板5の外縁までの1/2の距離の範囲内(点P同士を結ぶ線で囲まれた領域内)に位置していることが望ましい。
FIG. 11 is another plan view showing a schematic configuration of the top surface of the
〔実施形態2〕
図12は、本実施形態に係る蒸着装置3の要部の概略構成を示す部分断面図である。なお、図12では、図示の便宜上、図2に示す構成要素と同じ構成要素については、図2と同じ方法で図示している。また、本実施形態では、実施形態1との相違点について説明するものとし、実施形態1で説明した部材と同じ機能を有する部材については同じ符号を付記し、その説明を繰り返さない。 [Embodiment 2]
FIG. 12 is a partial cross-sectional view showing a schematic configuration of a main part of thevapor deposition device 3 according to this embodiment. Note that, in FIG. 12, for convenience of illustration, the same components as those shown in FIG. 2 are illustrated in the same method as in FIG. 2. Further, in the present embodiment, differences from the first embodiment will be described, and members having the same functions as the members described in the first embodiment will be designated by the same reference numerals and the description thereof will not be repeated.
図12は、本実施形態に係る蒸着装置3の要部の概略構成を示す部分断面図である。なお、図12では、図示の便宜上、図2に示す構成要素と同じ構成要素については、図2と同じ方法で図示している。また、本実施形態では、実施形態1との相違点について説明するものとし、実施形態1で説明した部材と同じ機能を有する部材については同じ符号を付記し、その説明を繰り返さない。 [Embodiment 2]
FIG. 12 is a partial cross-sectional view showing a schematic configuration of a main part of the
図12に示すように、本実施形態に係る蒸着装置3は、撹拌装置(運動エネルギー供給装置)として、加振装置11に代えて、回転式の撹拌装置81を備えている点を除けば、実施形態1に係る蒸着装置3と同じ構成を有している。撹拌装置81は、筐体4内の蒸着材料を直接撹拌することで、筐体4内の蒸着材料に運動エネルギーを与えて該蒸着材料を流動(運動)させる。
As shown in FIG. 12, the vapor deposition device 3 according to the present embodiment is provided with a rotary stirring device 81 instead of the vibration device 11 as the stirring device (kinetic energy supply device). It has the same configuration as the vapor deposition device 3 according to the first embodiment. The stirring device 81 directly stirs the vapor deposition material in the housing 4 to give kinetic energy to the vapor deposition material in the housing 4 to cause the vapor deposition material to flow (exercise).
撹拌装置81は、例えば、マグネチックスターラ82と、磁石を用いた撹拌子83と、を備えている。マグネチックスターラ82は、筐体4の外側に配置される。撹拌子83は、筐体4内に配置される。撹拌装置81は、マグネチックスターラ82により、磁力を利用して撹拌子83を回転させることで、筐体4内で蒸着材料を攪拌し、流動させる。
The stirrer 81 includes, for example, a magnetic stirrer 82 and a stirrer 83 using a magnet. The magnetic stirrer 82 is arranged outside the housing 4. The stirring bar 83 is arranged in the housing 4. The stirring device 81 uses a magnetic stirrer 82 to rotate the stirrer 83 using magnetic force to stir and flow the vapor-deposited material in the housing 4.
なお、図12では、撹拌装置81が、マグネチックスターラ82および撹拌子83を備えている場合を例に挙げて図示したが、上記撹拌装置81としては、例えば、撹拌棒と、該撹拌棒を回転させるモータとを備えたスターラ(メカニカルスターラ)であっても構わない。また、撹拌棒に代えて、例えばスクリュー式の撹拌翼あるいはペダル状の複数の撹拌翼が蒸着源1内に設けられていても構わない。
Note that, in FIG. 12, the stirring device 81 is illustrated as an example in which the magnetic stirrer 82 and the stirrer 83 are provided, but the stirring device 81 includes, for example, a stirring rod and a stirring rod. It may be a stirrer (mechanical stirrer) having a rotating motor. Further, instead of the stirring rod, for example, a screw type stirring blade or a plurality of pedal-shaped stirring blades may be provided in the vapor deposition source 1.
なお、本実施形態でも、回転数および撹拌時間等の撹拌条件は、特に限定されず、第1蒸着材料71と第2蒸着材料72とが十分均一に混合されるように適宜設定すればよい。
Note that, also in the present embodiment, the stirring conditions such as the rotation speed and the stirring time are not particularly limited and may be appropriately set so that the first vapor deposition material 71 and the second vapor deposition material 72 are mixed sufficiently uniformly.
何れにしても、本実施形態によれば、筐体4内で蒸着材料を攪拌し、流動させることで、筐体4内の第1蒸着材料71と第2蒸着材料72との分布を均一に保持することができ、筐体4内に導入した第1蒸着材料71と第2蒸着材料72との混合比率と、基板52に形成された蒸着膜を構成する第1蒸着材料71と第2蒸着材料72との混合比率と、をほぼ等しくすることができる。また、蒸着膜内で第1蒸着材料71および第2蒸着材料72が偏在せず、均一に混合された蒸着膜を形成することができる。
In any case, according to the present embodiment, the vapor deposition material is agitated and made to flow in the housing 4, so that the distribution of the first vapor deposition material 71 and the second vapor deposition material 72 in the housing 4 is made uniform. The mixing ratio of the first vapor deposition material 71 and the second vapor deposition material 72 that can be held and introduced into the housing 4, and the first vapor deposition material 71 and the second vapor deposition that form the vapor deposition film formed on the substrate 52. The mixing ratio with the material 72 can be made substantially equal. Further, the first vapor deposition material 71 and the second vapor deposition material 72 are not unevenly distributed in the vapor deposition film, and a uniformly mixed vapor deposition film can be formed.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention. Further, new technical features can be formed by combining the technical means disclosed in each embodiment.
1 蒸着源
2 水晶振動子
3 蒸着装置
4 筐体
4a 側面
4c 底面
4K 開口
5 天板
5S 第1ノズル(ノズル)
5N 第2ノズル(ノズル)
6・8 防着板
6K 第2導通開口
7 管部
7K 第1導通開口
11 加振装置(撹拌装置、運動エネルギー供給装置)
24 シロキサン系化合物を含む溶液
41 コーティング層
52 基板(被蒸着基板)
61 蒸着膜
71 第1蒸着材料
72 第2蒸着材料
81 撹拌装置(運動エネルギー供給装置)
82 マグネチックスターラ
83 撹拌子 1Vapor Deposition Source 2 Quartz Resonator 3 Vapor Deposition Device 4 Housing 4a Side 4c Bottom 4K Open 5 Top 5S First Nozzle (Nozzle)
5N Nozzle 2 (Nozzle)
6.8Anti-adhesion plate 6K Second conduction opening 7 Pipe section 7K First conduction opening 11 Vibration device (stirring device, kinetic energy supply device)
24 Solution containing siloxane-basedcompound 41 Coating layer 52 Substrate (deposited substrate)
61Vapor Deposition Film 71 First Vapor Deposition Material 72 Second Vapor Deposition Material 81 Stirrer (Kinetic Energy Supply Device)
82Magnetic stirrer 83 Stirrer
2 水晶振動子
3 蒸着装置
4 筐体
4a 側面
4c 底面
4K 開口
5 天板
5S 第1ノズル(ノズル)
5N 第2ノズル(ノズル)
6・8 防着板
6K 第2導通開口
7 管部
7K 第1導通開口
11 加振装置(撹拌装置、運動エネルギー供給装置)
24 シロキサン系化合物を含む溶液
41 コーティング層
52 基板(被蒸着基板)
61 蒸着膜
71 第1蒸着材料
72 第2蒸着材料
81 撹拌装置(運動エネルギー供給装置)
82 マグネチックスターラ
83 撹拌子 1
5N Nozzle 2 (Nozzle)
6.8
24 Solution containing siloxane-based
61
82
Claims (26)
- 上部側に開口を有し、複数種類の蒸着材料の混合物が収容される筐体と、上記筐体の上記開口に気密に取り付けられるとともに、上記複数種類の蒸着材料を気化してなる蒸着粒子を吐出する複数のノズルが設けられた天板と、を有する蒸着源を備え、
上記筐体の内面および上記天板の内面のうち少なくとも一方の少なくとも一部に、シロキサン基を含むコーティング層が形成されていることを特徴とする蒸着装置。 A casing having an opening on the upper side and containing a mixture of a plurality of types of vapor deposition materials, and vapor deposition particles formed by vaporizing the plurality of types of vapor deposition materials while being airtightly attached to the openings of the casing. A top plate provided with a plurality of nozzles for discharging, and a vapor deposition source having
A vapor deposition apparatus, wherein a coating layer containing a siloxane group is formed on at least a part of at least one of the inner surface of the housing and the inner surface of the top plate. - 上記筐体の内面および上記天板の内面のうち少なくとも一方の少なくとも一部が、上記筐体の底面を含むことを特徴とする請求項1に記載の蒸着装置。 The vapor deposition apparatus according to claim 1, wherein at least a part of at least one of the inner surface of the housing and the inner surface of the top plate includes a bottom surface of the housing.
- 上記筐体の内面および上記天板の内面のうち少なくとも一方の少なくとも一部が、上記筐体の側面を含むことを特徴とする請求項1または2に記載の蒸着装置。 The vapor deposition apparatus according to claim 1 or 2, wherein at least a part of at least one of the inner surface of the housing and the inner surface of the top plate includes a side surface of the housing.
- 上記筐体の内面および上記天板の内面のうち少なくとも一方の少なくとも一部が、上記天板に設けられた上記複数のノズルの内面を含むことを特徴とする請求項1~3の何れか1項に記載の蒸着装置。 At least a part of at least one of the inner surface of the housing and the inner surface of the top plate includes the inner surface of the plurality of nozzles provided on the top plate. The vapor deposition apparatus according to the section.
- 蒸着レート検出用の水晶振動子と、
上記複数のノズルのうちの一部のノズルである第1ノズルと上記水晶振動子との間に設けられ、かつ、上記第1ノズルから上記水晶振動子に上記蒸着粒子を誘導可能な導通開口を有する管部と、
成膜不要領域への上記蒸着粒子の飛翔防止用の防着板と、を備え、
上記管部の上記第1ノズル側は、上記防着板に接続されており、
上記管部の内面および上記防着板の内面は、上記コーティング層で被覆されていることを特徴とする請求項1~4の何れか1項に記載の蒸着装置。 Crystal oscillator for vapor deposition rate detection,
A conduction opening that is provided between a first nozzle, which is a part of the plurality of nozzles, and the crystal oscillator, and that is capable of guiding the vapor deposition particles from the first nozzle to the crystal oscillator. And a pipe part having
An anti-adhesion plate for preventing the vapor deposition particles from flying to a film formation unnecessary region,
The first nozzle side of the pipe portion is connected to the deposition preventing plate,
The vapor deposition apparatus according to any one of claims 1 to 4, wherein the inner surface of the tube portion and the inner surface of the deposition preventive plate are covered with the coating layer. - 上記コーティング層の材料が、エポキシ基を有するシロキサン系化合物を含むことを特徴とする請求項1~5の何れか1項に記載の蒸着装置。 The vapor deposition apparatus according to any one of claims 1 to 5, wherein the material of the coating layer contains a siloxane compound having an epoxy group.
- 上記シロキサン系化合物が、構造式(1)
で示される化合物および構造式(2)
で示される化合物からなる群より選ばれる少なくとも1種の化合物であることを特徴とする請求項6に記載の蒸着装置。 The siloxane compound has the structural formula (1)
And a structural formula (2)
7. The vapor deposition apparatus according to claim 6, which is at least one compound selected from the group consisting of compounds represented by: - 上記筐体の内面および上記天板の内面のうち少なくとも一方の少なくとも一部と上記エポキシ基とが化学結合しており、
上記コーティング層は、表面にシロキサン基を有していることを特徴とする請求項6または7に記載の蒸着装置。 At least a part of at least one of the inner surface of the housing and the inner surface of the top plate is chemically bonded to the epoxy group,
The said coating layer has a siloxane group on the surface, The vapor deposition apparatus of Claim 6 or 7 characterized by the above-mentioned. - 上記筐体の内面および上記天板の内面のうち少なくとも一方の少なくとも一部は、モリブデン、タングステン、タンタル、およびニオブからなる群より選ばれる少なくとも一種の金属またはその合金で形成されていることを特徴とする請求項1~8の何れか1項に記載の蒸着装置。 At least a part of at least one of the inner surface of the housing and the inner surface of the top plate is formed of at least one metal selected from the group consisting of molybdenum, tungsten, tantalum, and niobium, or an alloy thereof. The vapor deposition device according to any one of claims 1 to 8.
- 上記筐体の内面および上記天板の内面のうち少なくとも一方の少なくとも一部は、シリコン酸化物、シリコン窒化物、窒化アルミニウムからなる群より選ばれる少なくとも一種のセラミック材料で形成されていることを特徴とする請求項1~8の何れか1項に記載の蒸着装置。 At least a part of at least one of the inner surface of the housing and the inner surface of the top plate is formed of at least one ceramic material selected from the group consisting of silicon oxide, silicon nitride, and aluminum nitride. The vapor deposition device according to any one of claims 1 to 8.
- 上記複数種類の蒸着材料の混合物は、第1蒸着材料と、第1蒸着材料よりも分子量が大きい第2蒸着材料と、を含む複数種類の蒸着材料の混合物であることを特徴とする請求項1~10の何れか1項に記載の蒸着装置。 The mixture of a plurality of types of vapor deposition materials is a mixture of a plurality of types of vapor deposition materials including a first vapor deposition material and a second vapor deposition material having a larger molecular weight than the first vapor deposition material. 11. The vapor deposition device according to any one of 10 to 10.
- 上記複数種類の蒸着材料の混合物が、構造式(3)
- 上記筐体内の上記複数種類の蒸着材料に運動エネルギーを与えて上記複数種類の蒸着材料を流動させる運動エネルギー供給装置をさらに備えていることを特徴とする請求項1~12の何れか1項に記載の蒸着装置。 13. The kinetic energy supply device for applying kinetic energy to the plurality of types of vapor deposition materials in the housing to flow the plurality of types of vapor deposition materials, according to any one of claims 1 to 12. The vapor deposition apparatus described.
- 上記運動エネルギー供給装置は、上記筐体内の上記複数種類の蒸着材料を流動させて撹拌する撹拌装置であることを特徴とする請求項13に記載の蒸着装置。 The vapor deposition device according to claim 13, wherein the kinetic energy supply device is a stirring device that fluidizes and agitates the plurality of types of vapor deposition materials in the housing.
- 上記運動エネルギー供給装置は、上記蒸着源に振動を与えて上記筐体内の蒸着材料を流動させて撹拌する振動型の撹拌装置であることを特徴とする請求項13または14に記載の蒸着装置。 The vapor deposition apparatus according to claim 13 or 14, wherein the kinetic energy supply apparatus is a vibration type agitation apparatus that agitates the vapor deposition material in the housing by vibrating the vapor deposition source.
- 上記運動エネルギー供給装置は、上記蒸着源に対して、上記蒸着源を水平方向に動かす横振動、上記蒸着源を水平方向に対して垂直な方向に動かす上下振動、および、上記蒸着源を水平方向に対して傾ける傾き振動の少なくとも一つの振動を付加することを特徴とする請求項15に記載の蒸着装置。 The kinetic energy supply device includes a lateral vibration that moves the vapor deposition source in a horizontal direction with respect to the vapor deposition source, a vertical vibration that moves the vapor deposition source in a direction perpendicular to the horizontal direction, and a horizontal vibration that moves the vapor deposition source in a horizontal direction. 16. The vapor deposition apparatus according to claim 15, wherein at least one vibration of tilt vibration that is inclined with respect to is added.
- 上記運動エネルギー供給装置は、上記筐体内の上記複数種類の蒸着材料を直接撹拌して流動させる撹拌装置であることを特徴とする請求項13に記載の蒸着装置。 The vapor deposition apparatus according to claim 13, wherein the kinetic energy supply apparatus is a stirring apparatus that directly stirs and flows the plurality of types of vapor deposition materials in the housing.
- 上記運動エネルギー供給装置は、上記筐体内に配置された撹拌子を備えていることを特徴とする請求項17に記載の蒸着装置。 The vapor deposition apparatus according to claim 17, wherein the kinetic energy supply device includes a stirrer arranged in the housing.
- 上部側に開口を有し、複数種類の蒸着材料の混合物が収容される筐体と、上記筐体の上記開口に気密に取り付けられるとともに、上記複数種類の蒸着材料を気化してなる蒸着粒子を吐出する複数のノズルが設けられた天板と、を有する蒸着源を備え、上記筐体の内面および上記天板の内面のうち少なくとも一方の少なくとも一部に、シロキサン基を含むコーティング層が形成されている蒸着装置における、上記筐体内に、上記複数種類の蒸着材料を収容する蒸着材料収容工程と、
上記複数種類の蒸着材料のそれぞれの気化温度よりも高い温度に上記筐体を昇温する昇温工程と、
被蒸着基板を上記蒸着装置に搬入する被蒸着基板搬入工程と、
上記被蒸着基板に上記複数種類の蒸着材料を共蒸着する共蒸着工程と、
上記被蒸着基板を上記蒸着装置から搬出する被蒸着基板搬出工程と、を含むことを特徴とする表示装置の製造方法。 A casing having an opening on the upper side and containing a mixture of a plurality of types of vapor deposition materials, and vapor deposition particles formed by vaporizing the plurality of types of vapor deposition materials while being airtightly attached to the openings of the casing. A top plate provided with a plurality of nozzles for discharging, and a coating layer containing a siloxane group is formed on at least a part of at least one of the inner surface of the housing and the inner surface of the top plate. In the vapor deposition apparatus which is, in the housing, a vapor deposition material accommodation step of accommodating the plurality of types of vapor deposition materials,
A temperature raising step of raising the temperature of the casing to a temperature higher than the vaporization temperature of each of the plurality of types of vapor deposition materials,
A vapor deposition substrate loading step of loading the vapor deposition substrate into the vapor deposition apparatus,
A co-deposition step of co-depositing the plurality of types of deposition materials on the deposition target substrate,
And a step of unloading the vapor deposition substrate from the vapor deposition apparatus, the method for manufacturing a display device. - 上記蒸着材料収容工程後、上記昇温工程の前に、上記筐体内に収容された上記複数種類の蒸着材料を流動させて撹拌する撹拌工程をさらに備えていることを特徴とする請求項19に記載の表示装置の製造方法。 The method according to claim 19, further comprising a stirring step of flowing and stirring the plurality of kinds of vapor deposition materials accommodated in the housing after the vapor deposition material accommodation step and before the temperature raising step. The method of manufacturing the display device described.
- 上記撹拌工程では、上記蒸着源に対して、上記蒸着源を水平方向に動かす横振動、上記蒸着源を水平方向に対して垂直な方向に動かす上下振動、および、上記蒸着源を水平方向に対して傾ける傾き振動の少なくとも一つの振動を付加することを特徴とする請求項20に記載の表示装置の製造方法。 In the stirring step, with respect to the vapor deposition source, a horizontal vibration that moves the vapor deposition source in a horizontal direction, a vertical vibration that moves the vapor deposition source in a direction perpendicular to the horizontal direction, and the vapor deposition source with respect to the horizontal direction. The method of manufacturing a display device according to claim 20, wherein at least one vibration of tilting vibration is added.
- 上記撹拌工程では、上記筐体内に収容された上記複数種類の蒸着材料を、上記筐体内に配置された撹拌子で撹拌することを特徴とする請求項20に記載の表示装置の製造方法。 The method for manufacturing a display device according to claim 20, wherein, in the stirring step, the plurality of kinds of vapor deposition materials accommodated in the housing are stirred by a stirrer arranged in the housing.
- 上記蒸着材料収容工程の前に、
上記筐体の内面および上記天板の内面のうち少なくとも一方の少なくとも一部を弱塩基性の水に浸すことによって、上記筐体の内面および上記天板の内面のうち少なくとも一方の少なくとも一部に水酸基およびカルボキシル基のうち少なくとも水酸基を形成する工程と、
上記筐体の内面および上記天板の内面のうち少なくとも一方の少なくとも一部を乾燥する工程と、
上記筐体の内面および上記天板の内面のうち少なくとも一方の少なくとも一部を、シロキサン系化合物を含む溶液に浸すことによって、上記筐体の内面および上記天板の内面のうち少なくとも一方の少なくとも一部に、シロキサン基を含むコーティング層を形成する工程と、
上記コーティング層の表面を洗浄した後、乾燥する工程と、をさらに含むことを特徴とする請求項19~22の何れか1項に記載の表示装置の製造方法。 Before the vapor deposition material accommodation step,
By immersing at least a part of at least one of the inner surface of the housing and the inner surface of the top plate in weakly basic water, at least a part of at least one of the inner surface of the housing and the inner surface of the top plate. A step of forming at least a hydroxyl group out of a hydroxyl group and a carboxyl group,
A step of drying at least a part of at least one of the inner surface of the housing and the inner surface of the top plate;
By immersing at least a part of at least one of the inner surface of the housing and the inner surface of the top plate in a solution containing a siloxane compound, at least one of at least one of the inner surface of the housing and the inner surface of the top plate. A step of forming a coating layer containing a siloxane group,
The method for manufacturing a display device according to any one of claims 19 to 22, further comprising a step of cleaning the surface of the coating layer and then drying the surface. - 上記シロキサン系化合物が上記水酸基と化学反応することによって上記コーティング層が形成されることを特徴とする請求項23に記載の表示装置の製造方法。 The method for manufacturing a display device according to claim 23, wherein the coating layer is formed by the chemical reaction of the siloxane compound with the hydroxyl group.
- 上記コーティング層の表面を洗浄した後、乾燥する工程では、有機溶剤を用いて上記コーティング層の表面を洗浄することを特徴とする請求項23または24に記載の表示装置の製造方法。 25. The method for manufacturing a display device according to claim 23, wherein in the step of cleaning the surface of the coating layer and then drying the surface, the surface of the coating layer is cleaned using an organic solvent.
- 上記有機溶剤にはアセトンが含まれることを特徴とする請求項25に記載の表示装置の製造方法。 The display device manufacturing method according to claim 25, wherein the organic solvent contains acetone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/008213 WO2020178924A1 (en) | 2019-03-01 | 2019-03-01 | Vapor deposition device and display apparatus manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/008213 WO2020178924A1 (en) | 2019-03-01 | 2019-03-01 | Vapor deposition device and display apparatus manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020178924A1 true WO2020178924A1 (en) | 2020-09-10 |
Family
ID=72338452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/008213 WO2020178924A1 (en) | 2019-03-01 | 2019-03-01 | Vapor deposition device and display apparatus manufacturing method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020178924A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013245372A (en) * | 2012-05-25 | 2013-12-09 | Semiconductor Energy Lab Co Ltd | Method for manufacturing crucible for vapor deposition |
JP2015168880A (en) * | 2014-03-11 | 2015-09-28 | 株式会社半導体エネルギー研究所 | crucible and vapor deposition apparatus |
-
2019
- 2019-03-01 WO PCT/JP2019/008213 patent/WO2020178924A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013245372A (en) * | 2012-05-25 | 2013-12-09 | Semiconductor Energy Lab Co Ltd | Method for manufacturing crucible for vapor deposition |
JP2015168880A (en) * | 2014-03-11 | 2015-09-28 | 株式会社半導体エネルギー研究所 | crucible and vapor deposition apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101348672B1 (en) | A method for vaporizing particulate materials and condensing them onto a surface to form a layer | |
US8900366B2 (en) | Apparatus for depositing a multilayer coating on discrete sheets | |
JP4677644B2 (en) | Equipment for depositing multilayer coatings on individual sheets | |
US7288286B2 (en) | Delivering organic powder to a vaporization zone | |
JP5054020B2 (en) | Deposition system using sealed refill containers | |
US20060062918A1 (en) | Delivering organic powder to a vaporization zone | |
JP4886694B2 (en) | Supply of particulate material to the vaporization zone | |
JP2014102878A (en) | Ink for functional layer formation, ink container, discharge device, formation method of functional layer, manufacturing method of organic el element, light-emitting device, electronic apparatus | |
JP2005015869A (en) | Manufacturing apparatus | |
JP2010086956A (en) | Apparatus and method for manufacturing organic el device, and apparatus and method for forming film | |
KR101196334B1 (en) | Apparatus for delivering particulate material to a vaporization zone | |
JP4726123B2 (en) | Application system | |
WO2020178924A1 (en) | Vapor deposition device and display apparatus manufacturing method | |
JP5265583B2 (en) | Vapor deposition equipment | |
JP2004306191A (en) | Table device, film deposition device, optical element, semiconductor device and electronic equipment | |
JP3900125B2 (en) | Method for manufacturing organic electroluminescence device | |
JP2007506249A (en) | Homogeneous mixture of organic materials | |
KR100709265B1 (en) | Apparatus and method for sputtering organic matter | |
CN110268091A (en) | The manufacturing device of film build method, film formation device, the manufacturing method of element structure and element structure | |
JP2008115418A (en) | Film deposition apparatus and method for cleaning the same | |
JP2003317951A (en) | Vapor deposition device and method of organic thin film | |
JP2022107969A (en) | Deposition apparatus, deposition method, and production method of electronic device | |
JP2008111171A (en) | Film-forming apparatus and its cleaning method | |
JP2005353502A (en) | Manufacturing method of organic electroluminescent element | |
JP2007169728A (en) | Raw material feeder, and vapor deposition apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19918409 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19918409 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |