WO2020177467A1 - 智能电瓶线夹、一体式启动电源装置及启动打火方法 - Google Patents

智能电瓶线夹、一体式启动电源装置及启动打火方法 Download PDF

Info

Publication number
WO2020177467A1
WO2020177467A1 PCT/CN2019/130116 CN2019130116W WO2020177467A1 WO 2020177467 A1 WO2020177467 A1 WO 2020177467A1 CN 2019130116 W CN2019130116 W CN 2019130116W WO 2020177467 A1 WO2020177467 A1 WO 2020177467A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging circuit
battery
car
preset
bypass
Prior art date
Application number
PCT/CN2019/130116
Other languages
English (en)
French (fr)
Inventor
廖跃飞
黄瑞光
Original Assignee
广东电将军能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东电将军能源有限公司 filed Critical 广东电将军能源有限公司
Publication of WO2020177467A1 publication Critical patent/WO2020177467A1/zh
Priority to US17/467,480 priority Critical patent/US20220069574A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/122Provisions for temporary connection of DC sources of essentially the same voltage, e.g. jumpstart cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/0207Wire harnesses
    • B60R16/0215Protecting, fastening and routing means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/28Clamped connections, spring connections
    • H01R4/48Clamped connections, spring connections utilising a spring, clip, or other resilient member
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02J7/0026
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging

Definitions

  • the invention belongs to the technical field of automobiles, and in particular relates to a smart battery clamp for emergency starting of automobiles, an integrated starting power supply device and an automobile starting method.
  • the ignition of the car can be completed by using the electric energy stored in the car battery itself under normal conditions, but if the energy storage of the car battery is aging or other reasons are insufficient, an additional starting power supply is needed to start the ignition.
  • a smart battery cable clamp (hereinafter referred to as the "clamp") is required to connect the starting power supply to the car battery.
  • the current car smart emergency starting clamp mainly has the following working methods:
  • the starting power supply can provide electricity for ignition of the car.
  • the car battery voltage is very low (for example, the battery voltage is less than 0.2V)
  • the wire clamp cannot be turned on. At this time, even if the starting power supply has electricity, it cannot supply power to the car battery, and the car cannot start ignition.
  • the wire clamp detects the existence of the car battery, the wire clamp is turned on, the starting power supply and the car battery have been connected for 30s (or other short time), the operator can start the car normally within this time. However, if the clamp is turned on for 30s or longer, if the car battery capacity is relatively large, a large current will be generated during the turn-on time, which will consume the power of the starting power supply, resulting in a reduction in the number of ignitions of the starting power supply. Will accelerate the aging of the battery.
  • the wire clamp cannot detect the presence of the car battery, but the operator knows that the wire clamp has been connected to the battery.
  • the operator can use a button (or switch) to force the wire clip to conduct and ignite the car. In this way, by pressing the button, the clamp is forced to turn on.
  • the clamp is forced to turn on.
  • it increases the complexity of the operation and requires manual operation. If the manual judgment is wrong-for example, when the battery is short-circuited, the clamp is forced to turn on at this time. It may cause the wire clip to overheat and burn or the battery to become extremely hot, causing a fire.
  • increased material costs expensive.
  • the technical problem to be solved by the present invention is how to recognize the car battery and start the ignition when the battery power of the car is low, so as to effectively avoid false triggering of a short circuit.
  • a smart battery clamp for emergency start of a car includes an input terminal for connecting with a starting power source and for holding a car battery.
  • the clamping end on the electrode further includes a charging part connected between the input end and the clamping end, and the charging part is used to pass the electric energy of the starting power source received by the input end through the clamping end Charge the car battery;
  • the charging part includes:
  • the main charging circuit connected between the input end and the clamping end, is used to charge the car battery in the form of a large current when the control is turned on;
  • the bypass charging circuit is connected between the input end and the clamping end, and is used to precharge the car battery when the control is turned on;
  • the controller is used to first control the bypass charging circuit to be connected to pre-charge the car battery, and when it is detected that the output voltage of the bypass charging circuit meets the preset load condition compared with the input voltage, The main charging circuit is controlled to be connected to charge the car battery so that the car can start ignition.
  • an embodiment of the present invention also provides an integrated starting power supply device, which is characterized by comprising a starting power supply and a smart battery cord clamp; the smart battery cord clamp is the smart battery cord clamp described in the first aspect;
  • the start-up power supply includes a battery part, a temperature sampling module, and an MCU.
  • the temperature sampling module is used to detect the temperature of the battery part and report it to the MCU. When the temperature of the battery part is too high, the MCU reports The smart battery clamp sends out an indication signal to stop working.
  • the embodiment of the present invention also provides an emergency starting method for a car, which is applied to a smart battery clamp for emergency start of a car;
  • the smart battery clamp includes an input terminal for connecting with a starting power source and a clamp for clamping
  • the clamping end on the electrode of the car battery further includes a charging part connected between the input end and the clamping end, and the charging part is used to pass the electric energy of the starting power source received by the input end through the
  • the clamping end charges the car battery;
  • the car ignition method includes the following steps:
  • the main charging circuit When it is detected that the output voltage of the bypass charging circuit is compared with the input voltage to meet the preset load condition, the main charging circuit is controlled to be turned on to charge the car battery in the form of a large current, so that the car can start ignition.
  • Each of the above-mentioned embodiments is provided with a bypass charging circuit.
  • the car battery can be precharged through the bypass charging circuit to identify whether it is a real battery or load.
  • the main charging circuit will be controlled to charge the car battery, which can effectively avoid false triggering of short circuits.
  • FIG. 1 is a schematic structural diagram of a smart battery cord clamp provided by a first embodiment of the present invention
  • Figure 2 is an external view of the smart battery cord clamp provided by the first embodiment of the present invention.
  • FIG. 3 is a circuit structure diagram of the charging part of the smart battery cord clamp provided by the second embodiment of the present invention.
  • Fig. 4 is a schematic diagram of ports of the MCU in Fig. 3;
  • FIG. 5 is a circuit structure diagram of the charging part of the smart battery cord clamp provided by the third embodiment of the present invention.
  • FIG. 6 is a structural diagram of an integrated starting power supply with a built-in smart battery clamp provided by the fifth embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for starting ignition of a car according to a sixth embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for starting ignition of a car provided by a seventh embodiment of the present invention.
  • Fig. 9 is a flowchart of a method for starting ignition of a car according to an eighth embodiment of the present invention.
  • Each embodiment of the present invention is provided with a bypass charging circuit.
  • the car battery When the power of the car battery is very low, the car battery is pre-charged through the bypass charging circuit first, and then the car battery is pre-charged to meet the preset loading conditions. Control the main charging circuit to charge the car battery.
  • FIG. 1 shows the structural principle of the smart battery cord clamp provided by the first embodiment of the present invention, and the smart battery cord clamp can be used for emergency start of a car.
  • the smart battery clamp 2 is connected between the starting power supply 1 and the car battery 3.
  • the starting power supply 1 connects the car battery through the smart battery clamp 2 3 Perform charging to start ignition of the car.
  • the smart battery clamp 2 has an input terminal Vin and a clamping terminal.
  • the input terminal Vin is connected to the starting power supply 1.
  • the clamping terminal needs to be clamped on the electrode of the car battery 3.
  • the clamping terminal also serves as a smart battery clamp 2 voltage output terminal Vout.
  • the smart battery clamp 2 also includes a charging part connected between the input terminal Vin and the clamping terminal, and the charging part is used to charge the car battery 3 through the clamping terminal with the electric energy of the starting power source 1 received by the input terminal Vin. , Together with the input terminal Vin and the clamping terminal form a charging circuit.
  • FIG. 2 shows the appearance of the smart battery clamp.
  • the two input terminals Vin+ and Vin- are connected to the positive and negative poles of the starting power supply 1, and the two clamping terminals Vout+ and Vout- are respectively clamped in the car On the positive and negative poles of the battery 3.
  • the above-mentioned charging unit includes: a main charging circuit 21, a bypass charging circuit 22 and a controller 23.
  • the main charging circuit 21 is electrically connected between the input terminal Vin and the clamping terminal, and is used to charge the car battery 3 when it is controlled to be turned on.
  • the bypass charging circuit 22 is electrically connected between the input terminal Vin and the clamping terminal, and is used to precharge the car battery 3 when it is controlled to be turned on.
  • the controller 23 is used to first control the bypass charging circuit 22 to switch on to pre-charge the car battery 3, and then control when the output voltage of the bypass charging circuit 22 is compared with the input voltage to meet the preset loading conditions
  • the main charging circuit 21 is turned on to charge the car battery 3 so that the car can start ignition.
  • the preset loading conditions are related to the relative relationship between the output voltage and the input voltage of the bypass charging circuit 22, and when the relative relationship between the output voltage and the input voltage of the bypass charging circuit 22 conforms to the preset
  • the load condition it can be considered that the output of the smart battery clamp 2 is loaded, and the main charging circuit 21 can be controlled to be connected to judge the ignition. Otherwise, the output of the smart battery clamp 2 is considered to be unloaded and not performed Fire judgment.
  • the output voltage of the smart battery clamp 2 can be set to be lower than the input voltage by more than a certain magnitude, for example, by more than 0.3V.
  • the bypass charging circuit 22 can be controlled to pre-charge the car battery 3 to identify whether it is a real battery or load, and then control the main circuit charging when the pre-charged reaches the preset load condition.
  • the circuit 21 charges the car battery 3, which can effectively avoid the false triggering of a short circuit.
  • the second embodiment of the present invention provides a circuit structure of the above-mentioned charging part.
  • Bat+ represents the positive electrode 11 of the starting power source 1
  • Bat- represents the negative electrode 12 of the starting power source 1
  • Vout+ and Vout- represent two clamping ends clamped on the positive and negative electrodes of the car battery 3, respectively.
  • the main charging circuit 21 of the charging part is a circuit mainly used for high current, which is convenient to start the car.
  • the main charging circuit 21 includes a main circuit switch 211.
  • the main circuit switch 211 When the main circuit switch 211 is controlled to be turned on, the A loop is formed between the power supply 1 and the car battery 3 to realize charging.
  • the main circuit switch 211 When the main circuit switch 211 is controlled to be turned off, the power supply 1 is activated to stop charging the car battery 3 through the main circuit charging circuit 21.
  • the main circuit switch 211 may be implemented based on a relay, or may be based on multiple parallel switches (such as parallel MOS transistors) or other switches suitable for large currents.
  • the bypass charging circuit 22 of the charging unit includes a bypass module 221.
  • the bypass module 221 is implemented based on a bypass switch.
  • the switch can be a MOS tube with opposite body diode conduction directions, or a signal relay or optocoupler.
  • a loop is formed between the starter power supply 1 and the car battery 3 to achieve pre-charging.
  • the bypass switch is controlled to be turned off, the starter power supply 1 stops charging through the bypass charging circuit 22
  • the car battery 3 is pre-charged.
  • the bypass module 221 may also include a current-limiting resistor and/or a diode to prevent the circuit flowing through the bypass from being too large or the current being reversed.
  • the controller 23 is implemented based on the MCU 231.
  • it can be an MCU whose model is HR7P169B or HR7P153 or HT66F0175 or HT66F0172.
  • Figure 4 shows some of the ports of the MCU 231.
  • Port 1 and port 10 are respectively the GND terminal and the power input terminal VCC. , Used to supply power to MCU 231.
  • MCU 231 can give a status prompt;
  • port 2 is the output voltage sampling terminal, used to sample the output voltage of the clamping terminal of smart battery clamp 2;
  • port 3 is the input voltage sampling terminal , Used to sample the input voltage at the connection between the smart battery clamp 2 and the starting power supply 1;
  • port 4 is the current sampling terminal, which can sample the current flowing from the starting power supply 1 to the smart battery clamp 2 or the smart battery cable Clamp 2 reverses the current of starter power supply 1. By sampling the reverse current, it prevents starter power supply 1 from being reversed and protects starter power supply 1.
  • Port 5 is the clamp temperature sampling terminal;
  • port 6 is the bypass drive signal terminal SW, used It outputs a drive signal to the bypass module 221 to control the bypass module 221 to turn on;
  • port 7 is the main drive signal terminal Relay, used to output a drive signal to the main switch 211 to control the main switch 211 to turn on;
  • port 8 is The sound alarm signal output terminal is used to give sound prompt information to remind the user to pay attention to the current state, and connect to a sounding device such as a buzzer;
  • port 9 is a photoelectric alarm signal output terminal, which can be connected to LED light display or LED digital tube display , LED lights can be one or more, and can be different colors of LED lights, LED digital tubes can also use different colors, display values or characters, in order to prompt different working status, for example, the current bypass charging circuit 22
  • the charging state is also the charging state of the main charging circuit 21, the temperature state of the smart battery clamp 2, and so on.
  • the charging unit further includes an auxiliary power supply module 24, which is connected to the positive electrode 11, the negative electrode 12 of the starting power supply 1, the GND terminal (port 1) and the VCC terminal (port 1) of the MCU 231, and To take power from the starting power supply 1 and convert it to the MCU 231 adapts the voltage to supply power for MCU 231.
  • the charging unit also includes an output voltage sampling module 25, which is connected to the output terminal of the main charging circuit 21 and the output voltage sampling terminal (port 2) of the MCU 231 to sample the output voltage of the main charging circuit 21.
  • the MCU 231 According to the sampling results, the charging process of the main charging circuit 21 is controlled accordingly.
  • the charging unit also includes a battery voltage sampling module 26, which is connected to the positive electrode 11 and negative electrode 12 of the starting power supply 1, and the input voltage sampling terminal (port 3) of the MCU 231, to sample the voltage of the starting power supply 1, and the MCU 231 according to the sampling results
  • the pre-charging process of the bypass charging circuit 22 and the charging process of the main charging circuit 21 are controlled accordingly.
  • the charging unit also includes a current sampling module 27, which is connected to the clamping end Vout- of the smart battery clamp 2, the negative electrode 12 of the starting power supply 1, and the current sampling end (port 3) of the MCU 231, which can sample the flow of the starting power supply 1 to the smart
  • the current in the direction of the battery clamp 2 can also be sampled from the current of the smart battery clamp 2 reverse charging start power supply 1.
  • the MCU 231 can control the main charging circuit 21 or the bypass charging circuit 22 to disconnect in time, To protect the starting power 1.
  • the charging part also includes a temperature sampling module 28, which can be attached to the smart battery clamp 2 and connected to the clamp temperature sampling end (port 5) of the MCU 231.
  • a temperature sampling module 28 can be attached to the smart battery clamp 2 and connected to the clamp temperature sampling end (port 5) of the MCU 231.
  • the MCU 231 can control the main charging circuit 21 or the bypass charging circuit 22 to disconnect in time for over-temperature protection, and can also give an audible and visual alarm through ports 8 and 9.
  • the charging unit also includes a display/alarm module 29, which is connected to port 8 and port 9 of the MCU 231, which can be specifically a buzzer, LED lights/LED digital tubes, etc., for sound and light alarms under the control of the MCU 231.
  • the charging part also includes a polarity reversal detection module 20, which is connected to the two clamping ends Vout+ and Vout- of the smart battery clamp 2, and MCU The reverse connection signal identification terminal of 231 is connected.
  • the MCU 231 can give an optical alarm through the port 8 and the port 9.
  • the polarity reversal detection module 20 includes an optocoupler inside. The detection principle is through the positive and negative poles of the primary diode of the optocoupler, which is normally connected to the negative pole of the car battery 3.
  • the optocoupler primary diode is connected to the battery positive and the negative electrode is connected to the car battery 3 negative electrode, it will trigger the optocoupler to conduct, and the reverse connection signal of the car battery 3 will be transmitted to the MCU 231 through the optocoupler.
  • the bypass charging circuit 22 in this embodiment includes at least two sub-bypass charging circuits with different resistances, wherein each sub-bypass charging circuit is connected in parallel to the input end of the smart battery clamp 2 and Between the clamping ends.
  • multiple bypass modules may be provided on the basis of the second embodiment. Two bypass modules are shown as an example in FIG. 5.
  • the process of the controller 23 controlling the pre-charging of the bypass charging circuit 22 is as follows: the controller 23 cyclically controls the bypass charging circuits to be turned on during the bypass charging cycle to pre-charge the car battery.
  • the controller 23 controls the charging process of the main charging circuit 21 as follows: when the controller 23 detects that the output voltage of the sub-bypass charging circuit meets the preset load condition compared with the input voltage, the controller 23 controls the main charging circuit 21 to connect. To charge the car battery so that the car can start and fire.
  • one way corresponds to a large load with high output voltage (referring to a car battery with a smaller resistance), and the other way corresponds to a small load with a low output voltage (referring to a car battery with a larger resistance) ).
  • a large load small resistance
  • the main function is to expand the load range, and the load from 4 ohm to 2K ohm can be identified.
  • the third embodiment is different from the second embodiment in that a unidirectional diode D can be directly used to replace the polarity reversal detection module 20 in the second embodiment, and the anode of the diode D is connected to each Bypass module, the cathode is connected to the clamping terminal Vout+.
  • the fourth embodiment of the present invention also provides a smart battery clamp for emergency starting of automobiles.
  • this embodiment is mainly applicable to the situation of insufficient energy storage caused by the aging of the car battery 3 or other reasons.
  • the energy storage capacity of the car battery 3 may be various, and some may have acceptable energy storage capacity. Some may only save a small amount of power.
  • the controller is different for different car batteries 3 Charging method.
  • the main charging circuit 21 is further controlled to charge the car battery 3, and the charging method is related to the voltage value of the car battery 3 after precharging.
  • This embodiment is mainly divided into two charging methods. Two voltage intervals are set as the criterion for selecting the charging method. Among them, the preset first voltage interval is relatively low, for example, it can be set between 0.5V-9V, and the preset The second voltage interval is relatively high, for example, it can be set to be higher than 9V.
  • the charging method corresponding to the first voltage interval is "pulse charging", which is suitable for a one-button start car : in each main circuit charging cycle and the number of times the car battery is charged does not exceed the number of charging times threshold, the controller 23 will detect if The voltage to the clamping end is in the preset first voltage interval after pre-charging, then the main charging circuit 21 is controlled to be turned on once every preset time interval, and it will remain turned on for the first time period after each turn on State to charge the car battery 3.
  • the charging times threshold can be set to 7 in each main charging circuit 21 charging cycle.
  • the number of charging times is up to 7 times, and the main charging circuit 21 is controlled to be connected to charge the car battery 3 for 4 seconds every 0.35s until the battery voltage rises above 9V, and the entire cycle lasts for 30s.
  • the "pulse charging” method can meet the normal ignition demand of the car when the voltage of the car battery 3 is too low, and it also effectively solves the problem that the battery of the starting power supply 1 is consumed too quickly and emptied due to the long turn-on time of the main charging circuit 21 The problem, it can effectively deal with the situation that the car battery has been completely damaged, even if the car battery 3 is not connected, it can be directly connected to the positive and negative poles of the starter motor.
  • the charging method corresponding to the second voltage range is "drop detection charging", which is suitable for both one-key-start cars and keys-start cars : if the controller 23 detects that the voltage at the clamping end is at a preset value after precharging The second voltage interval, and then the drop amplitude within the preset drop detection time exceeds the preset first drop threshold, then the main charging circuit 21 is controlled to be turned on and remains turned on for the second time to charge the car battery 3 to charge.
  • the clamping terminal voltage is higher than 9V, only when it detects that the drop amplitude within the preset drop detection time exceeds the preset first drop threshold, it is considered that the clamping terminal voltage has an ignition action.
  • the main charging circuit 21 It is necessary to control the main charging circuit 21 to be turned on, so that the starting power supply 1 can charge the car battery 3 to supplement power.
  • the preset drop detection duration can be set to 100ms
  • the preset first drop threshold is 0.75V
  • the second duration is 3s.
  • bypass charging circuit 22 is turned on, and the maximum resistance R of the bypass charging circuit 22 is generally only 0.51A loss, which will not have a big impact on the battery power of the starting power supply 1.
  • This way of detecting the car's ignition behavior by detecting the drop of the battery voltage 3 can greatly reduce the power loss of the starting power supply 1, and extend the number of ignitions and battery life.
  • the car owner may start the ignition at any time during each main circuit charging cycle. If there is a fire at the last moment, it is possible that the main circuit charging circuit 21 is suddenly disconnected, causing the start to fail.
  • the main circuit switch 211 of the main circuit charging circuit 21 is implemented by a relay, the relay may also encounter a large current at the moment the car starts. Disconnect, there is a risk of relay sticking. In order to eliminate this risk, it is necessary to appropriately extend the on-time of the main charging circuit 21 when the ignition action is detected at the last moment.
  • the controller 23 detects that the voltage drop at the input terminal exceeds the preset second drop threshold and the voltage at the input terminal is lower than the preset lower limit, it controls the main circuit
  • the charging circuit 21 continues to be in the on state for the subsequent preset extended time period.
  • the controller 23 needs to control the main charging circuit 21 in Continue to keep the connected state within the extended 3s.
  • the controller 23 detects whether the output voltage of the bypass charging circuit 22 compared with the input voltage meets the preset loading condition by the following method: after detecting that the voltage of the clamping terminal is continuously lower than the voltage of the input terminal for the third period of time
  • the preset amplitude is considered to meet the preset loading conditions.
  • the third duration can be set to 0.3s
  • the preset amplitude can be set to 0.3V.
  • the smart battery clamp 2 may accidentally fall off.
  • the controller 23 controls the main charging circuit 21 to turn on to charge the car battery 3, if it detects that the voltage at the clamping end is at the fourth
  • the main charging circuit 21 is controlled to be disconnected to avoid unnecessary discharge of the starting power source 1.
  • the fourth time period can be set to 1s, and the preset increase threshold can be set to 0.3V.
  • the controller 23 will control the bypass charging circuit 22 to be turned off during most of the time when the main charging circuit 21 is turned on.
  • the main circuit switch 211 in the main circuit charging circuit 21 may be slow to turn on (for example, when the main circuit switch 211 is implemented by a relay), if the bypass charging circuit 22 is immediately disconnected, this may happen.
  • the main circuit switch 211 has not been completely turned on, in order to ensure that the controller 23 can always detect the output voltage, it is necessary to set the main circuit charging circuit 21 and the bypass charging circuit 22 to have an overlapping turn-on time.
  • the charging circuit 21 is disconnected, in order to prevent the main charging circuit 21 from disconnecting before the bypass charging circuit 22 is connected, it is necessary to control the bypass charging circuit 22 to be connected in advance, that is, the main charging circuit 21 and the bypass charging circuit 22 There is a time for common on and off to pass.
  • the controller 23 controls the bypass charging circuit 22 to be turned off after the main charging circuit 21 is turned on and the first preset delay period has elapsed. After the charging circuit 21 is disconnected and the second preset delay period has elapsed, the bypass charging circuit 22 is controlled to be disconnected, and the bypass charging circuit 22 is controlled to remain in the ON state for the rest of the time.
  • the fifth embodiment of the present invention also provides an integrated starting power supply device with a built-in smart battery clip.
  • the integrated starting power supply device 6 includes a starting power supply 61 and The smart battery cable clamp 62, wherein the starting power supply 61 in this embodiment is the same as the starting power supply 1 in the above embodiments, and the smart battery cable clamp 62 in this embodiment is the same as the smart battery cable clamp 2 in the above embodiments
  • the starting power supply 61 includes a battery part and the MCU 1, and a switch component 611 is also connected to the MCU 1, and the switch component 611 can be designed in the form of a button.
  • the starting power supply 61 realizes electrical signal communication with the controller MCU 2 of the smart battery clamp 62 through its own MCU1.
  • the smart battery clamp 62 When the car needs to be fired, the smart battery clamp 62 is activated by controlling the switch assembly 611 to open (for example, pressing a button), and when the clamp is not required, the switch assembly 611 is closed (for example, pressing the button again).
  • the smart battery cable clamp 62 stops working to prevent the smart battery cable clamp 62 from being turned on by mistake.
  • the MCU 1 sends a start/stop signal to the smart battery cable
  • the controller MCU 2 of the clamp 62, and the smart battery clamp 62 controlled start/stop operation.
  • a temperature sampling module 612 is provided on the battery part of the starting power supply 61.
  • the temperature sampling module 612 can be attached to the battery part and connected to the MCU 1 for detecting the temperature of the battery part.
  • MCU 1 sends a stop instruction signal to the controller MCU 2 of the smart battery clamp 62 to make the smart battery clamp 62 actively stop working and avoid starting the power supply 61 Due to the occurrence of explosions caused by excessively high discharge temperature, disconnect the starting power source 61 from the car battery in time.
  • the sixth embodiment of the present invention provides a method for starting ignition of a car, which is applied to a smart battery clamp for emergency start of a car.
  • the smart battery clamp includes an input terminal for connecting with a starting power source and is used to clamp the car battery.
  • the clamping end on the electrode also includes a charging part connected between the input end and the clamping end, and the charging part is used for charging the car battery through the clamping end with the electric energy of the starting power received by the input end.
  • the smart battery clip has the structure shown in FIG. 1, and the charging part has the structure shown in FIG. 3.
  • the method for starting ignition of a car includes the following steps:
  • Step S701 controlling the bypass charging circuit to be connected to pre-charge the car battery.
  • the purpose of pre-charging is to detect whether the load (ie, car battery) connected to the clamping end is true and effective, and to avoid false triggering of a short circuit.
  • Step S702 When it is detected that the output voltage of the bypass charging circuit meets the preset load condition compared with the input voltage, the main charging circuit is controlled to be turned on to charge the car battery, so that the car can start ignition.
  • the preset load condition is related to the relative relationship between the output voltage and the input voltage of the bypass charging circuit 22.
  • the relative relationship between the output voltage and the input voltage of the bypass charging circuit 22 conforms to the preset band Under the load condition, it can be considered that the output of the smart battery clamp 2 is loaded, and the main charging circuit 21 can be controlled to be connected for ignition judgment. Otherwise, the output of the smart battery clamp 2 is considered to be unloaded and no ignition judgment is performed.
  • the output voltage of the smart battery clamp 2 can be set to be lower than the input voltage by more than a certain magnitude, for example, by more than 0.3V.
  • the bypass charging circuit 22 can be controlled to pre-charge the car battery 3 to identify whether it is a real battery or load. When the pre-charged reaches the preset load condition, the main circuit charging is controlled. The circuit 21 charges the car battery 3, which can effectively avoid the false triggering of a short circuit.
  • the seventh embodiment of the present invention provides a method for starting ignition of an automobile, as shown in FIG. 8, wherein the bypass charging circuit includes at least two sub-bypass charging circuits with different resistances.
  • Each sub-bypass charging circuit is connected in parallel between the input end and the clamping end, please refer to FIG. 5.
  • Step S701 is specifically: Step S701', cyclically controlling each sub-bypass charging circuit to be connected in the bypass charging cycle to pre-charge the car battery.
  • Step S702 is specifically: Step S702', when it is detected that the output voltage of the sub-bypass charging circuit is compared with the input voltage to meet the preset load condition, then the main charging circuit is controlled to be turned on to charge the car battery , So that the car can start ignition.
  • one way corresponds to a large load with high output voltage (referring to a car battery with a smaller resistance), and the other way corresponds to a small load with a low output voltage (referring to a car battery with a larger resistance) ).
  • a large load small resistance
  • the main function is to expand the load range, and the load from 4 ohm to 2K ohm can be identified.
  • step S702 includes:
  • step S7021 in each main loop charging cycle and the number of times of charging the car battery does not exceed the number of charging times threshold, if it is detected that the voltage of the clamping terminal is in the preset first voltage interval, the control will be performed every preset time interval.
  • the main charging circuit is connected once, and is kept in the connected state for the first time period after each connection to charge the car battery.
  • This step is "pulse charging", which is suitable for a one-button start car. For example, if the voltage of the clamping terminal is between 0.5V and 9V, the voltage of the car battery is considered too low.
  • the threshold of the number of charging times can be set in each main circuit
  • the threshold of the number of charging times in the charging cycle of the charging circuit is 7, and the number of charging times of the car battery is up to 7 times.
  • the main charging circuit is controlled every 0.35s to charge the car battery 3 for 4s, until the battery voltage rises above 9V, the whole cycle is maintained 30s.
  • the "pulse charging” method can meet the normal ignition requirements of the car when the car battery voltage is too low, and it also effectively solves the problem of the battery power consumption of the starting power source being too fast and emptying due to the long connection time of the main charging circuit. It can effectively deal with the situation that the car battery has been completely damaged, even if the car battery 3 is not connected, it can be directly connected to the positive and negative electrodes of the starting motor.
  • Step S7022 if it is detected that the voltage of the clamping terminal is in the preset second voltage interval, and then the drop amplitude within the preset drop detection time exceeds the preset first drop threshold, control the main circuit charging circuit to connect And keep the connected state for the second time period to charge the car battery.
  • This step is “drop detection charging”, which is suitable for both one-key-start cars and keys-start cars. If it is detected that the voltage of the clamping end is in the preset second voltage range after precharging, and then it is preset If the drop amplitude exceeds the preset first drop threshold during the drop detection time period, the main charging circuit is controlled to be turned on and remains turned on for the second time period to charge the car battery.
  • the clamping terminal voltage is higher than 9V, only when it detects that the drop amplitude within the preset drop detection time exceeds the preset first drop threshold, it is considered that the clamping terminal voltage has an ignition action.
  • the preset drop detection duration can be set to 100ms
  • the preset first drop threshold is 0.75V
  • the second duration is 3s.
  • bypass charging circuit 22 is turned on, and the maximum resistance R of the bypass charging circuit 22 is generally only 0.51A loss, which will not have a big impact on the battery power of the starting power supply 1.
  • This way of detecting the car's ignition behavior by detecting the drop of the battery voltage 3 can greatly reduce the power loss of the starting power supply 1, and extend the number of ignitions and battery life.
  • step S7023 may also be included. In the last reserved time length of each main circuit charging cycle, if it is detected that the voltage drop of the clamping terminal exceeds the preset second drop threshold, the main circuit charging circuit is controlled to be The subsequent preset extension time will continue to be connected.
  • the controller 23 needs to control the main charging circuit 21 in Continue to keep the connected state within the extended 3s.
  • step S702 it is also possible to detect whether the output voltage of the bypass charging circuit compared with the input voltage meets the preset load condition by the following method: it is detected that the voltage of the clamping terminal is continuously lower than the voltage of the input terminal for the third period of time
  • the preset amplitude is considered to meet the preset loading conditions.
  • the third duration can be set to 0.3s
  • the preset amplitude can be set to 0.3V.
  • Step S702 may also include: when controlling the main charging circuit to connect to charge the car battery, if it is detected that the voltage at the clamping end is at the fourth When the increase within the time period exceeds the preset increase threshold, the main charging circuit 21 is controlled to be disconnected to avoid unnecessary discharge of the starting power source 1.
  • the fourth time period can be set to 1s, and the preset increase threshold can be set to 0.3V.
  • step S701 and step S702 when switching between steps S701 and S702, the bypass charging circuit is controlled to be disconnected after the main charging circuit is controlled to be turned on and the first preset delay time has elapsed. After the second preset delay time, the bypass charging circuit is controlled to be disconnected, and the bypass charging circuit is controlled to remain connected for the rest of the time.
  • the specific principle is as described in the fourth embodiment and will not be repeated.
  • the embodiments of the present invention first precharge the car battery through the bypass charging circuit to identify whether it is a real battery or load, and then control the main circuit when it is precharged to meet the preset load conditions
  • the charging circuit charges the car battery, which can effectively avoid false triggering of short circuits.
  • the forced conduction button is cancelled, unnecessary operation procedures are reduced, and damage caused by the short circuit of the wire clip is avoided in advance.
  • the pulse charging method can effectively prevent the starting power supply from emptying, and effectively deal with the situation that the car battery has been completely damaged, even without the battery, directly connected to the positive and negative poles of the starting motor.
  • the relay's delayed disconnection function when the car starts can effectively reduce the disconnection current stress of the main circuit switch (relay or other switches) in the main circuit charging circuit, and can effectively extend the service life of the relay.
  • the invention can be applied to intelligent battery clamps matching with automobile emergency starting power supplies, automobile emergency starting power supplies, and automobile intelligent wiring clamps.
  • the smart battery clamps can also be combined with the starting power source for integrated use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明适用于汽车技术领域,提供了一种用于汽车应急启动的智能电瓶线夹、一体式启动电源装置及汽车启动方法。该智能电瓶线夹包括输入端、夹持端和充电部;该充电部包括主路充电回路、旁路充电回路和控制器,控制器用于先控制旁路充电回路接通对汽车电瓶进行预充电,并在检测到旁路充电回路的输出电压与输入电压相比满足预置的带载条件时,再控制主路充电回路接通对汽车电瓶进行充电,以便汽车进行启动打火。本发明对于汽车电瓶的电量很低的情况,可以先通过旁路充电回路对汽车电瓶进行预充电,以识别其是否是真实的电瓶或负载,当预充电至满足预置的带载条件时再控制主路充电回路对汽车电瓶进行充电,从而可以有效避免误触发短路的情况。

Description

智能电瓶线夹、一体式启动电源装置及启动打火方法 技术领域
本发明属于汽车技术领域,尤其涉及一种用于汽车应急启动的智能电瓶线夹、一体式启动电源装置及汽车启动方法。
背景技术
汽车的启动打火在正常情况下使用汽车电瓶本身所储存的电能即可完成,但是如果汽车电瓶老化或其他原因导致的储能不足,则需要借助额外的启动电源才能进行启动打火。
借助额外的启动电源对汽车进行启动打火时,需要使用智能电瓶线夹(下文简称为“线夹”)将启动电源与汽车电瓶进行连接。当前的汽车智能应急启动线夹主要存在以下几种工作方式:
1、线夹夹上汽车电瓶后,当检测到汽车电瓶的端电压有跌落(下降)时,说明汽车启动打火,会连接电池3s钟,以使得启动电源与汽车电瓶的正负极连通,启动电源可以提供电力给汽车打火用。但是,当汽车电瓶电压很低时(如电瓶电压小于0.2V),通过检测电瓶电压,识别不到电瓶的存在,更识别不到电瓶电压的跌落,线夹无法导通。此时,即使启动电源有电,也不能给汽车电瓶供电,汽车无法启动打火。
2、当线夹检测到汽车电瓶存在,线夹导通,启动电源和汽车电瓶一直接通30s(或其他时间短),操作人员在这个时间内可以正常启动汽车。但是,若线夹导通30s或更长时间,如果汽车电瓶容量比较大,在接通的时间里会产生很大的电流,把启动电源的电量耗光,导致启动电源点火次数减少,同时也会加快电池的老化。
3、由于某种原因(比如汽车电瓶已经彻底不能存储电量,完全报废,电瓶电压1V以下)导致线夹检测不到汽车电瓶的存在,但是操作人员清楚线夹已经连接上电瓶。操作人员可以通过一个按钮(或开关),使线夹强制导通,给汽车点火。这种方式通过按键强制导通线夹,首先是增加了操作的复杂度,需要人工操作,如果人工判断失误——比如电瓶短路时,此时强制导通线夹,相当于启动电源短路,会导致线夹过热烧糊或电池严重发热,引发火灾。其次,增加了物料成本。价格昂贵。
技术问题
本发明所要解决的技术问题为如何在汽车电瓶电量很低时识别出汽车电瓶并进行启动打火,有效避免误触发短路的情况。
技术解决方案
为解决上述技术问题,第一方面,本发明实施例是这样实现的,一种用于汽车应急启动的智能电瓶线夹,包括用于与启动电源连接的输入端、用于夹持在汽车电瓶电极上的夹持端,还包括连接于所述输入端与所述夹持端之间的充电部,所述充电部用于将所述输入端接收的启动电源的电能通过所述夹持端对汽车电瓶进行充电;
所述充电部包括:
主路充电回路,连接于所述输入端与所述夹持端之间,用于在被控接通时以大电流的形式对汽车电瓶进行充电;
旁路充电回路,连接于所述输入端与所述夹持端之间,用于在被控接通时对汽车电瓶进行预充电;
控制器,用于先控制所述旁路充电回路接通对汽车电瓶进行预充电,并在检测到所述旁路充电回路的输出电压与输入电压相比满足预置的带载条件时,再控制所述主路充电回路接通对汽车电瓶进行充电,以便汽车进行启动打火。
第二方面,本发明实施例还提供了一种一体式启动电源装置,其特征在于,包括启动电源和智能电瓶线夹;所述智能电瓶线夹为第一方面所述的智能电瓶线夹;所述启动电源包括电池部分、温度采样模块和MCU,所述温度采样模块用于检测所述电池部分的温度并上报给所述MCU,所述MCU在所述电池部分的温度过高时向所述智能电瓶线夹发出停止工作的指示信号。
第三方面,本发明实施例还提供了一种汽车应急启动方法,应用于汽车应急启动的智能电瓶线夹;所述智能电瓶线夹包括用于与启动电源连接的输入端、用于夹持在汽车电瓶电极上的夹持端,还包括连接于所述输入端与所述夹持端之间的充电部,所述充电部用于将所述输入端接收的启动电源的电能通过所述夹持端对汽车电瓶进行充电;所述汽车启动打火方法包括下述步骤:
控制旁路充电回路接通对汽车电瓶进行预充电;
在检测到旁路充电回路的输出电压与输入电压相比满足预置的带载条件时,控制主路充电回路接通以大电流的形式对汽车电瓶进行充电,以便汽车进行启动打火。
有益效果
上述各方面实施例中均设置有旁路充电回路,对于汽车电瓶的电量很低的情况,可以先通过旁路充电回路对汽车电瓶进行预充电,以识别其是否是真实的电瓶或负载,当预充电至满足预置的带载条件时再控制主路充电回路对汽车电瓶进行充电,从而可以有效避免误触发短路的情况。
附图说明
图1是本发明第一实施例提供的智能电瓶线夹的结构原理图;
图2是本发明第一实施例提供的智能电瓶线夹的外形图;
图3是本发明第二实施例提供的智能电瓶线夹的充电部的电路结构图;
图4是图3中MCU的端口示意图;
图5是本发明第三实施例提供的智能电瓶线夹的充电部的电路结构图;
图6是本发明第五实施例提供的内置有智能电瓶线夹的一体式启动电源的结构图;
图7是本发明第六实施例提供的汽车启动打火方法的流程图;
图8是本发明第七实施例提供的汽车启动打火方法的流程图;
图9是本发明第八实施例提供的汽车启动打火方法的流程图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的各实施例中均设置有旁路充电回路,当汽车电瓶的电量很低时,先通过旁路充电回路对汽车电瓶进行预充电,当预充电至满足预置的带载条件时再控制主路充电回路对汽车电瓶进行充电。
基于上述原理,图1示出了本发明第一实施例提供的智能电瓶线夹的结构原理,此智能电瓶线夹可用于汽车应急启动。参照图1,该智能电瓶线夹2连接于启动电源1和汽车电瓶3之间,当汽车电瓶3老化或其他原因导致的储能不足时,启动电源1通过该智能电瓶线夹2对汽车电瓶3进行充电,以进行汽车的启动打火。
智能电瓶线夹2具有输入端Vin和夹持端,输入端Vin与启动电源1连接,在使用时夹持端需夹持在汽车电瓶3的电极上,夹持端同时还作为智能电瓶线夹2的电压输出端Vout。另外,智能电瓶线夹2还包括连接于输入端Vin与夹持端之间的充电部, 此充电部用于将输入端Vin接收的启动电源1的电能通过夹持端对汽车电瓶3进行充电,与输入端Vin和夹持端共同构成充电回路。
图2示出了智能电瓶线夹的外形图,在使用时,两个输入端Vin+和Vin-分别与启动电源1的正极和负极连接,两个夹持端Vout+和Vout-分别夹持在汽车电瓶3的正极和负极上。
上述充电部包括:主路充电回路21、旁路充电回路22和控制器23。
主路充电回路21电连接于输入端Vin与夹持端之间,用于在被控接通时对汽车电瓶3进行充电。旁路充电回路22电连接于输入端Vin与夹持端之间,用于在被控接通时对汽车电瓶3进行预充电。
控制器23用于先控制旁路充电回路22接通对汽车电瓶3进行预充电,并在检测到旁路充电回路22的输出电压与输入电压相比满足预置的带载条件时,再控制主路充电回路21接通对汽车电瓶3进行充电,以便汽车进行启动打火。
本实施例中,预置的带载条件同旁路充电回路22的输出电压与输入电压之间的相对关系有关,当旁路充电回路22的输出电压与输入电压之间的相对关系符合该预置的带载条件时,可以认为智能电瓶线夹2输出带载,可以控制主路充电回路21接通以进行打火判断,否则,则认为智能电瓶线夹2的输出无带载,不进行打火判断。具体地,可以设置智能电瓶线夹2的输出电压比输入电压低一定的幅度以上,例如低0.3V以上。
第一实施例中,可以先控制旁路充电回路22对汽车电瓶3进行预充电,以识别其是否是真实的电瓶或负载,当预充电至满足预置的带载条件时再控制主路充电回路21对汽车电瓶3进行充电,从而可以有效避免误触发短路的情况。
与第一实施例相结合,本发明第二实施例提供了上述充电部的一种电路结构。如图3所示,Bat+表示启动电源1的正极11,Bat-表示启动电源1的负极12,Vout+和Vout-分别表示夹持在汽车电瓶3的正极和负极上的两个夹持端。
该充电部的主路充电回路21为主要用于大电流的回路,便于启动汽车,如图3所示,主路充电回路21包括主路开关211,当主路开关211被控制接通时,启动电源1与汽车电瓶3之间形成回路,实现充电,当主路开关211被控制断开时,启动电源1停止通过主路充电回路21对汽车电瓶3充电。主路开关211可以基于继电器实现,也可以基于多个并联开关(例如并联MOS管)或其他适用于大电流的开关。
该充电部的旁路充电回路22包括一旁路模块221,类似地,旁路模块221基于一旁路开关实现,该开关可以是体二极管导通方向对立的MOS管,也可以是信号继电器、光耦等,当该旁路开关被控制接通时,启动电源1与汽车电瓶3之间形成回路,实现预充电,当旁路开关被控制断开时,启动电源1停止通过旁路充电回路22对汽车电瓶3预充电。另外,旁路模块221还可以包括限流电阻和/或二极管,防止旁路流过的电路过大或电流反充。
控制器23基于MCU 231实现,例如可以是型号为HR7P169B或HR7P153或HT66F0175或HT66F0172的MCU,图4示出了MCU 231的部分端口,其中:端口1和端口10分别为GND端和电源输入端VCC,用于为MCU 231供电,可以从智能电瓶线夹2与启动电源1的连接处取电,也可以从智能电瓶线夹2与汽车电瓶3连接的夹持端取电,只要其中一端有电,智能电瓶线夹2可以工作,MCU 231便可给出状态提示;端口2为输出电压采样端,用于对智能电瓶线夹2的夹持端的输出电压进行采样;端口3为输入电压采样端,用于对智能电瓶线夹2与启动电源1的连接处的输入电压进行采样;端口4为电流采样端,可以采样启动电源1流向智能电瓶线夹2方向的电流,也可以采样智能电瓶线夹2反充启动电源1的电流,通过采样反向的电流,防止启动电源1被反充,保护启动电源1;端口5为线夹温度采样端;端口6为旁路驱动信号端SW,用于向旁路模块221输出驱动信号以控制旁路模块221接通;端口7为主路驱动信号端Relay,用于向主路开关211输出驱动信号以控制主路开关211接通;端口8为声音报警信号输出端,用于给出声音提示信息,提示用户注意当前的状态,连接蜂鸣器之类的发声设备;端口9为光电报警信号输出端,可以接LED灯显示或LED数码管显示,其中LED灯可以一个或多个,并且可以是不同颜色的LED灯,LED数码管也可以使用不同颜色,显示数值或字符,以便提示不同的工作状态,例如当前是旁路充电回路22的预充电状态还是主路充电回路21的充电状态,智能电瓶线夹2的温度状态等等。
进一步地,如图3所示,该充电部还包括有辅助电源模块24,与启动电源1的正极11、负极12、MCU 231的GND端(端口1)和VCC端(端口1)连接,用于从启动电源1处取电并转换成与MCU 231适配的电压,为MCU 231供电。
该充电部还包括有输出电压采样模块25,与主路充电回路21的输出端、MCU 231的输出电压采样端端(端口2)连接,对主路充电回路21的输出电压进行采样,MCU 231根据采样结果对主路充电回路21的充电过程进行相应的控制。
该充电部还包括有电池电压采样模块26,与启动电源1的正极11、负极12、MCU 231的输入电压采样端(端口3)连接,对启动电源1的电压进行采样,MCU 231根据采样结果对旁路充电回路22的预充电过程和主路充电回路21的充电过程进行相应的控制。
该充电部还包括有电流采样模块27,与智能电瓶线夹2的夹持端Vout-、启动电源1的负极12、MCU 231的电流采样端(端口3)连接,可以采样启动电源1流向智能电瓶线夹2方向的电流,也可以采样智能电瓶线夹2反充启动电源1的电流,当有反充情况时,MCU 231可以及时控制主路充电回路21或旁路充电回路22断开,以保护启动电源1。
该充电部还包括有温度采样模块28,可贴附在智能电瓶线夹2上并与MCU 231的线夹温度采样端(端口5)连接,当检测到智能电瓶线夹2的温度过高时,MCU 231可以及时控制主路充电回路21或旁路充电回路22断开,进行过温保护,也可以通过端口8和端口9进行声光报警。
该充电部还包括有显示/告警模块29,与MCU 231的端口8和端口9连接,具体可以是蜂鸣器和LED灯/LED数码管等,用于MCU 231的控制下进行声光报警。
该充电部还包括有极性反接检测模块20,与智能电瓶线夹2的两个夹持端Vout+和Vout-、MCU 231的反接信号识别端连接,当接收到极性反接检测模块20的反接提示时,MCU 231可以通过端口8和端口9给出光电告警。极性反接检测模块20内部包括一光耦,检测原理是通过光耦的原边二极管正负极,正常是连到汽车电瓶3的负正极。如果汽车电瓶3反接,光耦原边二极管正连到电瓶正,负极连到汽车电瓶3负极,就会触发光耦导通,将汽车电瓶3的反接信号通过光耦传递给MCU 231。
考虑到不同的汽车电瓶3的电阻值可能不同,使用固定电阻值的旁路模块可能会不能准确识别出汽车电瓶,因此与第一、第二实施例相结合,本发明第三实施例提供了上述充电部的又一种电路结构。如图5所示,本实施例中的旁路充电回路22包括至少两个具有不同阻值的子旁路充电回路,其中,各子旁路充电回路并联于智能电瓶线夹2的输入端与夹持端之间。具体地,可在第二实施例的基础上设置多个旁路模块,图5中以两个旁路模块为例示出。
相应地,控制器23控制旁路充电回路22预充电的过程为:控制器23在旁路充电周期内循环控制各子旁路充电回路接通对汽车电瓶进行预充电。
控制器23控制主路充电回路21充电的过程为:控制器23在检测到有子旁路充电回路的输出电压与输入电压相比满足预置的带载条件时再控制主路充电回路21接通对汽车电瓶进行充电,以便汽车进行启动打火。
采用图5所示的双旁路结构,一路对应的是可以带输出电压高的大负载(指电阻较小的汽车电瓶),一路对应带输出电压低的小负载(指电阻较大的汽车电瓶)。当接的是大负载(电阻小)时,可以识别(不会误识别成短路),接小负载(电阻大),也不会误认为开路。主要功能是扩大带载的范围,从4欧到2K欧的负载都可以识别。
进一步地,第三实施例与第二实施例不同之处在于,还可以直接采用单向导通的二极管D来替换第二实施例中的极性反接检测模块20,该二极管D的阳极连接各旁路模块,阴极连接夹持端Vout+。
与上述各实施例相结合,本发明第四实施例还提供了一种用于汽车应急启动的智能电瓶线夹。如上文所述,本实施例主要适用于汽车电瓶3老化或其他原因导致的储能不足的情况,实际应用中汽车电瓶3的储能能力可能多种多样,有的可能储能能力尚可,有的可能只能储蓄很少的电量,另外,还需要兼顾启动电源1本身的电量不至于损耗过大或消耗过快,因此,第四实施例中,控制器针对不同的汽车电瓶3有不同的充电方式。
在通过旁路充电回路22对汽车电瓶3预充电时,当检测到旁路充电回路22的输出电压与输入电压相比满足预置的带载条件时(如第一实施例所述的输出电压比输入电压低0.5V以上),再进一步控制主路充电回路21对汽车电瓶3进行充电,且充电方式与汽车电瓶3在预充电之后的电压值相关。本实施例主要分为两种充电方式,设置两种电压区间作为选取充电方式的判断标准,其中,预设的第一电压区间较低,例如可以设置为0.5V-9V之间,预设的第二电压区间较高,例如可以设置为高于9V。
对应于第一电压区间的充电方式为“脉冲式充电”,适合于一键启动的汽车:在每个主回路充电周期且对汽车电瓶的充电次数未超过充电次数阈值时,控制器23若检测到夹持端的电压在预充电之后处于预设的第一电压区间,则每隔预置的时间间隔控制主路充电回路21接通一次,且每次接通后在第一时长内保持接通状态以对汽车电瓶3进行充电。
例如,夹持端的电压在0.5V~9V之间,则认为汽车电瓶3的电压太低,充电次数阈值可以设置在每个主路充电回路21充电周期中充电次数阈值为7,汽车电瓶3的充电次数最多为7次,每隔0.35s控制主路充电回路21接通给汽车电瓶3充电4s,直到电瓶电压升到9V以上,整个循环维持30s。
“脉冲式充电”方式可以满足汽车电瓶3电压过低时汽车的正常点火需求,也有效解决了由于主路充电回路21接通时间过长而导致启动电源1的电池电量消耗过快而放空的问题,可以有效应对汽车电瓶已经彻底损坏的情况,甚至不接汽车电瓶3,直接接到启动电机的正负极都可以。
对应于第二电压区间的充电方式为“跌落检测式充电”,对于一键启动的汽车和拧钥匙启动的汽车均适合:控制器23若检测到夹持端的电压在预充电之后处于预设的第二电压区间,并随后在预置的跌落检测时长内的跌落幅度超过预置的第一跌落阈值,则控制主路充电回路21接通并在第二时长内保持接通状态以对汽车电瓶3进行充电。
例如,夹持端电压高于9V,只有检测到预置的跌落检测时长内的跌落幅度超过预置的第一跌落阈值时认为夹持端电压有打火动作,为保证打火能顺利进行,需要控制主路充电回路21接通,以便由启动电源1为汽车电瓶3充电补充电量。例如,可以设置预置的跌落检测时长为100ms,预置的第一跌落阈值为0.75V,第二时长为3s。
除此之外只有旁路充电回路22接通,旁路充电回路22的电阻R最大一般也只有0.51A的损耗,不会对启动电源1的电池电量有大的影响。
这种通过检测电瓶电压3跌落的方式来侦测汽车打火的行为,可以大大降低启动电源1的电量损耗,延长点火次数和电池寿命。
进一步地,可以设置旁路充电回路22和主路充电回路21的工作时间总共为30s,之后智能电瓶线夹2进入休眠,只有uA级的电流,更进一步降低损耗。
进一步地,考虑到在启动打火时需要对汽车电瓶3进行充电以保证打火能正常完成,而在每个主回路充电周期的任何时刻车主都有可能进行启动打火,一旦在充电周期的最后时刻打火则有可能主路充电回路21突然被控制断开,导致启动失败,另外,如果主路充电回路21的主路开关211选用继电器实现,继电器在汽车启动瞬间遇到大电流也可能断开,出现继电器粘死的风险。为了消除这种风险,需要在最后时刻检测到打火动作时适当的延长主路充电回路21的接通时间。
因此,在每个主回路充电周期的最后预留时长内,控制器23若检测到输入端的电压的跌落幅度超过预置的第二跌落阈值且输入端的电压低于预置的下限,则控制主路充电回路21在后续的预置延长时长内继续保持接通状态。
例如,可以设置每个主路充电回路21充电周期的最后预留时长为1.5s,预置的第二跌落阈值为1V,下限值为12V,预置的延长时长为3s。在这最后1.5s内,如果检测到输入端有电压跌落,幅值超1V,并且输入端电压低于一定值12V,认为汽车有启动点火动作,则控制器23需要控制主路充电回路21在延长的3s内继续保持接通状态。
进一步地,控制器23通过如下方式检测旁路充电回路22的输出电压与输入电压相比是否满足预置的带载条件:在检测到夹持端的电压在第三时长内持续比输入端电压低预置的幅度时认为满足预置的带载条件。其中,第三时长可以设置为0.3s,预置的幅度可以设置为0.3V,在检测到夹持端电压连续0.3s低于输入端电压时,则认为当前满足预置的带载条件,可以进一步检测夹持端的电压在预充电之后是处于预设的第一电压区间还是第二电压区间,以控制主路充电回路21按照对应的方式对汽车电瓶3进行充电。
进一步地,在充电过程中,可能存在智能电瓶线夹2意外脱落的情况,控制器23在控制主路充电回路21接通以对汽车电瓶3充电时,若检测到夹持端的电压在第四时长内的涨幅超过预置的涨幅阈值,则控制所述主路充电回路21断开,以避免启动电源1的无谓放电,其中,第四时长可以设置为1s,预置的涨幅阈值可以设置为0.3V。
进一步地,本实施例中,考虑到负载比较小时,如果主路充电回路21和旁路充电回路22同时保持接通,旁路充电回路22的电阻会发热严重,导致充电回路22的电阻失效概率增大,因此,出于对旁路充电回路22的保护,在主路充电回路21接通的大部分时间里,控制器23会控制旁路充电回路22断开。
但是,优选地,考虑到主路充电回路21中的主路开关211的接通动作可能慢(例如主路开关211选用继电器实现时),如果立即把旁路充电回路22断开,则可能此时主路开关211尚未完全接通,为了保证控制器23能一直检测到输出电压,需要设置主路充电回路21和旁路充电回路22切换的时候会有重叠接通的时间,同理,主路充电回路21断开时,为避免主路充电回路21在旁路充电回路22接通之前断开,需要提前控制旁路充电回路22接通,即,主路充电回路21和旁路充电回路22有一个共同通、断的时间来过度。因此,在主路充电回路21的充电周期,控制器23在控制主路充电回路21接通并经过第一预置延迟时长之后再控制旁路充电回路22断开,控制器23在控制主路充电回路21断开并经过第二预置延迟时长之后再控制旁路充电回路22断开,其余时间控制旁路充电回路22保持接通状态。
与上述各实施例相结合,本发明第五实施例还提供了一种内置有智能电瓶线夹的一体式启动电源装置,如图6所示,该一体式启动电源装置6包括启动电源61和智能电瓶线夹62,其中,本实施例中的启动电源61和上述各实施例中的启动电源1相同,本实施例中的智能电瓶线夹62和上述各实施例中的智能电瓶线夹2相同,启动电源61包括电池部分和MCU 1,MCU1上还连接开关组件611,开关组件611可以设计为按钮的形式。启动电源61通过自身的MCU1与智能电瓶线夹62的控制器MCU 2实现电信号通信。
当需要汽车打火时,通过控制开关组件611的开启(例如按压按钮)来激活智能电瓶线夹62工作,当不需要线夹工作时,通过控制开关组件611的关闭(例如再次按压按钮)使智能电瓶线夹62停止工作,防止智能电瓶线夹62误动作导通,具体地,当用户控制开关组件611开启/关闭时,MCU 1发送开始(start)/停止(stop)信号给智能电瓶线夹62的控制器MCU 2,智能电瓶线夹62受控开始/停止工作。
进一步地,启动电源61的电池部分上设有温度采样模块612,此温度采样模块612可贴附在电池部分上并与MCU 1连接,用于检测电池部分的温度。当温度采样模块612检测到电池部分的温度过高时,MCU 1向智能电瓶线夹62的控制器MCU 2发送停止(stop)的指示信号,使智能电瓶线夹62主动停止工作,避免启动电源61因放电温度过高导致爆炸等情况的发生,及时断开启动电源61与汽车电瓶的连接。
本发明第六实施例提供了一种汽车启动打火方法,应用于汽车应急启动的智能电瓶线夹,该智能电瓶线夹包括用于与启动电源连接的输入端、用于夹持在汽车电瓶电极上的夹持端,还包括连接于输入端与夹持端之间的充电部,充电部用于将输入端接收的启动电源的电能通过夹持端对汽车电瓶进行充电。其中,智能电瓶线夹具有如图1所示的结构,充电部具有图3所示的结构。如图7所示,该汽车启动打火方法包括下述步骤:
步骤S701,控制旁路充电回路接通对汽车电瓶进行预充电。
预充电的目的是检测夹持端所连接的负载(即汽车电瓶)是否真实有效,避免误触发短路的情况。
步骤S702,在检测到旁路充电回路的输出电压与输入电压相比满足预置的带载条件时,控制主路充电回路接通对汽车电瓶进行充电,以便汽车进行启动打火。
其中,预置的带载条件同旁路充电回路22的输出电压与输入电压之间的相对关系有关,当旁路充电回路22的输出电压与输入电压之间的相对关系符合该预置的带载条件时,可以认为智能电瓶线夹2输出带载,可以控制主路充电回路21接通以进行打火判断,否则,则认为智能电瓶线夹2的输出无带载,不进行打火判断。具体地,可以设置智能电瓶线夹2的输出电压比输入电压低一定的幅度以上,例如低0.3V以上。
第六实施例中,可以先控制旁路充电回路22对汽车电瓶3进行预充电,以识别其是否是真实的电瓶或负载,当预充电至满足预置的带载条件时再控制主路充电回路21对汽车电瓶3进行充电,从而可以有效避免误触发短路的情况。
与第六实施例相结合,本发明第七实施例提供了一种汽车启动打火方法,如图8所示,其中,旁路充电回路包括至少两个具有不同阻值的子旁路充电回路,各子旁路充电回路并联于所述输入端与所述夹持端之间,可参考图5。步骤S701具体为:步骤S701′,在旁路充电周期内循环控制各子旁路充电回路接通对汽车电瓶进行预充电。
步骤S702具体为:步骤S702′,在检测到有子旁路充电回路的输出电压与输入电压相比满足预置的带载条件时,再控制所述主路充电回路接通对汽车电瓶进行充电,以便汽车进行启动打火。
采用图5所示的双旁路结构,一路对应的是可以带输出电压高的大负载(指电阻较小的汽车电瓶),一路对应带输出电压低的小负载(指电阻较大的汽车电瓶)。当接的是大负载(电阻小)时,可以识别(不会误识别成短路),接小负载(电阻大),也不会误认为开路。主要功能是扩大带载的范围,从4欧到2K欧的负载都可以识别。
与上述第六、第七实施例相结合,本发明第八实施例提供了一种汽车启动打火方法,如图9所示,步骤S702包括:
步骤S7021,在每个主回路充电周期且对汽车电瓶的充电次数未超过充电次数阈值时,若检测到夹持端的电压处于预设的第一电压区间,则每隔预置的时间间隔控制所述主路充电回路接通一次,且每次接通后在第一时长内保持接通状态以对汽车电瓶进行充电。
本步骤为“脉冲式充电”,适合于一键启动的汽车,例如,夹持端的电压在0.5V~9V之间,则认为汽车电瓶的电压太低,充电次数阈值可以设置在每个主路充电回路充电周期中充电次数阈值为7,汽车电瓶的充电次数最多为7次,每隔0.35s控制主路充电回路接通给汽车电瓶3充电4s,直到电瓶电压升到9V以上,整个循环维持30s。
“脉冲式充电”方式可以满足汽车电瓶电压过低时汽车的正常点火需求,也有效解决了由于主路充电回路接通时间过长而导致启动电源的电池电量消耗过快而放空的问题,可以有效应对汽车电瓶已经彻底损坏的情况,甚至不接汽车电瓶3,直接接到启动电机的正负极都可以。
步骤S7022,若检测到夹持端的电压处于预设的第二电压区间,并随后在预置的跌落检测时长内的跌落幅度超过预置的第一跌落阈值,则控制所述主路充电回路接通并在第二时长内保持接通状态以对汽车电瓶进行充电。
本步骤为“跌落检测式充电”,对于一键启动的汽车和拧钥匙启动的汽车均适合,若检测到夹持端的电压在预充电之后处于预设的第二电压区间,并随后在预置的跌落检测时长内的跌落幅度超过预置的第一跌落阈值,则控制主路充电回路接通并在第二时长内保持接通状态以对汽车电瓶进行充电。
例如,夹持端电压高于9V,只有检测到预置的跌落检测时长内的跌落幅度超过预置的第一跌落阈值时认为夹持端电压有打火动作,为保证打火能顺利进行,需要控制主路充电回路接通,以便由启动电源为汽车电瓶充电补充电量。例如,可以设置预置的跌落检测时长为100ms,预置的第一跌落阈值为0.75V,第二时长为3s。
除此之外只有旁路充电回路22接通,旁路充电回路22的电阻R最大一般也只有0.51A的损耗,不会对启动电源1的电池电量有大的影响。
这种通过检测电瓶电压3跌落的方式来侦测汽车打火的行为,可以大大降低启动电源1的电量损耗,延长点火次数和电池寿命。
进一步地,考虑到在启动打火时需要对汽车电瓶进行充电以保证打火能正常完成,而在每个主回路充电周期的任何时刻车主都有可能进行启动打火,一旦在充电周期的最后时刻打火则有可能主路充电回路突然被控制断开,导致启动失败,另外,如果主路充电回路的主路开关选用继电器实现,继电器在汽车启动瞬间遇到大电流也可能断开,出现继电器粘死的风险。为了消除这种风险,需要在最后时刻检测到打火动作时适当的延长主路充电回路的接通时间。因此,还可以包括步骤S7023,在每个主回路充电周期的最后预留时长内,若检测到夹持端的电压的跌落幅度超过预置的第二跌落阈值,则控制所述主路充电回路在后续的预置延长时长内继续保持接通状态。
例如,可以设置每个主路充电回路21充电周期的最后预留时长为1.5s,预置的第二跌落阈值为1V,下限值为12V,预置的延长时长为3s。在这最后1.5s内,如果检测到输入端有电压跌落,幅值超1V,并且输入端电压低于一定值12V,认为汽车有启动点火动作,则控制器23需要控制主路充电回路21在延长的3s内继续保持接通状态。
另外,步骤S702中还可以通过如下方式检测旁路充电回路的输出电压与输入电压相比是否满足预置的带载条件:在检测到夹持端的电压在第三时长内持续比输入端电压低预置的幅度时认为满足预置的带载条件。其中,第三时长可以设置为0.3s,预置的幅度可以设置为0.3V,在检测到夹持端电压连续0.3s低于输入端电压时,则认为当前满足预置的带载条件,可以进一步检测夹持端的电压在预充电之后是处于预设的第一电压区间还是第二电压区间,以控制主路充电回路按照对应的方式对汽车电瓶进行充电。
进一步地,在充电过程中,可能存在智能电瓶线夹意外脱落的情况,步骤S702还可以包括:在控制主路充电回路接通以对汽车电瓶充电时,若检测到夹持端的电压在第四时长内的涨幅超过预置的涨幅阈值,则控制所述主路充电回路21断开,以避免启动电源1的无谓放电,其中,第四时长可以设置为1s,预置的涨幅阈值可以设置为0.3V。
进一步地,在执行步骤S701和步骤S702互相切换时,在控制主路充电回路接通并经过第一预置延迟时长之后再控制旁路充电回路断开,在控制主路充电回路断开并经过第二预置延迟时长之后再控制旁路充电回路断开,其余时间控制旁路充电回路保持接通状态。具体原理如第四实施例所述,不再赘述。
综上所述,本发明各实施例先通过旁路充电回路对汽车电瓶进行预充电,以识别其是否是真实的电瓶或负载,当预充电至满足预置的带载条件时再控制主路充电回路对汽车电瓶进行充电,从而可以有效避免误触发短路的情况。同时取消了强制导通按钮,减少了不必要的操作流程,提前避免线夹短路造成的伤害。另外,采用脉充式充电方式,可以有效防止启动电源电放空,有效应对汽车电瓶已经彻底损坏的情况,甚至不接电瓶,直接接到启动电机正负极都可以。并且,汽车启动时继电器延时断开功能,可以有效降低主路充电回路中的主路开关(继电器或其他开关)的断开电流应力,可以有效延长继电器的使用寿命。
本发明可应用于汽车应急启动电源配套的智能电瓶线夹、汽车应急启动电源、汽车用智能线夹,智能电瓶线夹也可以和启动电源组合成一体使用。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护区间之内。

Claims (10)

  1. 一种用于汽车应急启动的智能电瓶线夹,其特征在于,包括用于与启动电源连接的输入端、用于夹持在汽车电瓶电极上的夹持端,还包括连接于所述输入端与所述夹持端之间的充电部,所述充电部用于将所述输入端接收的启动电源的电能通过所述夹持端对汽车电瓶进行充电;
    所述充电部包括:
    主路充电回路,连接于所述输入端与所述夹持端之间,用于在被控接通时以大电流的形式对汽车电瓶进行充电;
    旁路充电回路,连接于所述输入端与所述夹持端之间,用于在被控接通时对汽车电瓶进行预充电;
    控制器,用于先控制所述旁路充电回路接通对汽车电瓶进行预充电,并在检测到所述旁路充电回路的输出电压与输入电压相比满足预置的带载条件时,再控制所述主路充电回路接通对汽车电瓶进行充电,以便汽车进行启动打火。
  2. 如权利要求1所述的用于汽车应急启动的智能电瓶线夹,其特征在于,所述旁路充电回路包括至少两个具有不同阻值的子旁路充电回路,其中,各子旁路充电回路并联于所述输入端与所述夹持端之间;
    所述控制器先控制所述旁路充电回路接通对汽车电瓶进行预充电,具体为:所述控制器在旁路充电周期内循环控制各子旁路充电回路接通对汽车电瓶进行预充电;
    所述控制器在检测到所述旁路充电回路的输出电压与输入电压相比满足预置的带载条件时,再控制所述主路充电回路接通对汽车电瓶进行充电,具体为:所述控制器在检测到有子旁路充电回路的输出电压与输入电压相比满足预置的带载条件时,再控制所述主路充电回路接通对汽车电瓶进行充电,以便汽车进行启动打火。
  3. 如权利要求1或2所述的用于汽车应急启动的智能电瓶线夹,其特征在于,所述控制器通过如下方式控制所述主路充电回路接通对汽车电瓶进行充电:
    在每个主回路充电周期且对汽车电瓶的充电次数未超过充电次数阈值时,所述控制器若检测到夹持端的电压在预充电之后处于预设的第一电压区间,则每隔预置的时间间隔控制所述主路充电回路接通一次,且每次接通后在第一时长内保持接通状态以对汽车电瓶进行充电;
    所述控制器若检测到夹持端的电压在预充电之后处于预设的第二电压区间,并随后在预置的跌落检测时长内的跌落幅度超过预置的第一跌落阈值,则控制所述主路充电回路接通并在第二时长内保持接通状态以对汽车电瓶进行充电;
    在每个主回路充电周期的最后预留时长内,所述控制器若检测到输入端的电压的跌落幅度超过预置的第二跌落阈值且输入端的电压低于预置的下限值,则控制所述主路充电回路在后续的预置延长时长内继续保持接通状态。
  4. 如权利要求1或2所述的用于汽车应急启动的智能电瓶线夹,其特征在于,所述控制器通过如下方式检测所述旁路充电回路的输出电压与输入电压相比是否满足预置的带载条件:在检测到夹持端的电压在第三时长内持续比输入端电压低预置的幅度时认为满足预置的带载条件;
    所述控制器在控制所述主路充电回路接通以对汽车电瓶充电时,若检测到夹持端的电压在第四时长内的涨幅超过预置的涨幅阈值,则控制所述主路充电回路断开。
  5. 如权利要求1或2所述的用于汽车应急启动的智能电瓶线夹,其特征在于,在所述主路充电回路的充电周期,所述控制器在控制所述主路充电回路接通并经过第一预置延迟时长之后再控制所述旁路充电回路断开,所述控制器在控制所述主路充电回路断开并经过第二预置延迟时长之后再控制所述旁路充电回路断开,其余时间控制所述旁路充电回路保持接通状态。
  6. 一种一体式启动电源装置,其特征在于,包括启动电源和智能电瓶线夹;所述智能电瓶线夹为权利要求1至5任一项所述的智能电瓶线夹;
    所述启动电源包括电池部分、温度采样模块和MCU,所述温度采样模块用于检测所述电池部分的温度并上报给所述MCU,所述MCU在所述电池部分的温度过高时向所述智能电瓶线夹发出停止工作的指示信号。
  7. 一种汽车启动打火方法,应用于汽车应急启动的智能电瓶线夹;其特征在于,所述智能电瓶线夹包括用于与启动电源连接的输入端、用于夹持在汽车电瓶电极上的夹持端,还包括连接于所述输入端与所述夹持端之间的充电部,所述充电部用于将所述输入端接收的启动电源的电能通过所述夹持端对汽车电瓶进行充电;所述汽车启动打火方法包括下述步骤:
    控制旁路充电回路接通对汽车电瓶进行预充电;
    在检测到旁路充电回路的输出电压与输入电压相比满足预置的带载条件时,控制主路充电回路接通对汽车电瓶以大电流的形式进行充电,以便汽车进行启动打火。
  8. 如权利要求7所述的汽车启动打火方法,其特征在于,所述旁路充电回路包括至少两个具有不同阻值的子旁路充电回路,其中,各子旁路充电回路并联于所述输入端与所述夹持端之间;
    所述控制旁路充电回路对汽车电瓶进行预充电,包括:在旁路充电周期内循环控制各子旁路充电回路接通对汽车电瓶进行预充电;
    所述在检测到旁路充电回路的输出电压与输入电压相比满足预置的带载条件时,控制主路充电回路接通对汽车电瓶进行充电,包括:在检测到有子旁路充电回路的输出电压与输入电压相比满足预置的带载条件时,再控制所述主路充电回路接通对汽车电瓶进行充电,以便汽车进行启动打火。
  9. 如权利要求7或8所述的汽车启动打火方法,其特征在于,所述控制主路充电回路接通对汽车电瓶进行充电,包括:
    在每个主回路充电周期且对汽车电瓶的充电次数未超过充电次数阈值时,若检测到夹持端的电压处于预设的第一电压区间,则每隔预置的时间间隔控制所述主路充电回路接通一次,且每次接通后在第一时长内保持接通状态以对汽车电瓶进行充电;
    若检测到夹持端的电压处于预设的第二电压区间,并随后在预置的跌落检测时长内的跌落幅度超过预置的第一跌落阈值,则控制所述主路充电回路接通并在第二时长内保持接通状态以对汽车电瓶进行充电。
  10. 如权利要求9所述的汽车启动打火方法,其特征在于,所述汽车启动打火方法还包括下述步骤:
    在每个主回路充电周期的最后预留时长内,若检测到夹持端的电压的跌落幅度超过预置的第二跌落阈值,则控制所述主路充电回路在后续的预置延长时长内继续保持接通状态。
PCT/CN2019/130116 2019-03-07 2019-12-30 智能电瓶线夹、一体式启动电源装置及启动打火方法 WO2020177467A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/467,480 US20220069574A1 (en) 2019-03-07 2021-09-07 Jumper cable integrated starting power supply device, and starting and igniting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910173476.8A CN110011371B (zh) 2019-03-07 2019-03-07 智能电瓶线夹、一体式启动电源装置及启动打火方法
CN201910173476.8 2019-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/467,480 Continuation US20220069574A1 (en) 2019-03-07 2021-09-07 Jumper cable integrated starting power supply device, and starting and igniting method

Publications (1)

Publication Number Publication Date
WO2020177467A1 true WO2020177467A1 (zh) 2020-09-10

Family

ID=67166624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130116 WO2020177467A1 (zh) 2019-03-07 2019-12-30 智能电瓶线夹、一体式启动电源装置及启动打火方法

Country Status (3)

Country Link
US (1) US20220069574A1 (zh)
CN (1) CN110011371B (zh)
WO (1) WO2020177467A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11277014B1 (en) 2020-11-19 2022-03-15 Shenzhen Carku Technology Co., Limited Smart connection device, start-up power supply, and battery clamp
EP4002623A1 (en) * 2020-11-19 2022-05-25 Shenzhen Carku Technology Co., Limited Smart connection device, jump starter, and battery clamp
EP4250515A4 (en) * 2020-11-19 2024-05-22 Shenzhen Carku Tech Co Limited INTELLIGENT CONNECTOR, STARTING POWER AND BATTERY TERMINAL

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011371B (zh) * 2019-03-07 2023-10-13 深圳市电将军科技有限公司 智能电瓶线夹、一体式启动电源装置及启动打火方法
CA3164049A1 (en) * 2019-12-09 2021-06-17 The Noco Company Jump starting device with a jump start current sharing system, and a jump start current sharing method
JP7229208B2 (ja) * 2020-08-06 2023-02-27 プライムプラネットエナジー&ソリューションズ株式会社 充電システム
CN114189000A (zh) * 2020-09-14 2022-03-15 深圳市华思旭科技有限公司 智能控制系统、应急启动电源和智能电瓶夹
JP7434454B2 (ja) * 2021-08-11 2024-02-20 広東電将軍能源有限公司 車両用携帯型予備始動装置および予備始動工具
WO2023082054A1 (zh) * 2021-11-09 2023-05-19 深圳市华思旭科技有限公司 电路结构及其控制方法、智能设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204559193U (zh) * 2015-04-30 2015-08-12 郭威龙 汽车应急启动电源智能安全电瓶夹
US20150306965A1 (en) * 2014-04-24 2015-10-29 Munther Bader Hand-powered jump starter for a vehicle
CN106505690A (zh) * 2016-12-26 2017-03-15 苏州绿恺动力电子科技有限公司 一种汽车应急启动电源安全管理系统
CN208508515U (zh) * 2018-08-01 2019-02-15 深圳市新驰客科技有限公司 一种汽车应急启动电源智能夹
CN109910797A (zh) * 2019-03-07 2019-06-21 深圳市电将军科技有限公司 一键启动汽车的应急用智能电瓶线夹及汽车启动打火方法
CN110011371A (zh) * 2019-03-07 2019-07-12 深圳市电将军科技有限公司 智能电瓶线夹、一体式启动电源装置及启动打火方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060145655A1 (en) * 2005-01-03 2006-07-06 Dhc Specialty Corp. Car battery jumper cable apparatus
JP2008232989A (ja) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd 蓄電装置
CN103321814B (zh) * 2013-06-09 2015-09-09 深圳市民展科技开发有限公司 汽车应急点火设备
CN105128688B (zh) * 2015-09-06 2017-09-22 重庆长安汽车股份有限公司 一种电动汽车启动控制方法及控制系统
US10148105B2 (en) * 2016-06-30 2018-12-04 Shenzhen Carku Technology Co, Ltd. Battery clamp
CN205829249U (zh) * 2016-07-28 2016-12-21 郭威龙 12v/24v智能汽车应急启动电源
CN107800180A (zh) * 2017-12-07 2018-03-13 河南省桓立机电科技有限公司 一种车用启动装置、应急启动电源和车用启动电源
CN109149687A (zh) * 2018-08-21 2019-01-04 上海广为美线电源电器有限公司 启动汽车的自动控制型变频充电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150306965A1 (en) * 2014-04-24 2015-10-29 Munther Bader Hand-powered jump starter for a vehicle
CN204559193U (zh) * 2015-04-30 2015-08-12 郭威龙 汽车应急启动电源智能安全电瓶夹
CN106505690A (zh) * 2016-12-26 2017-03-15 苏州绿恺动力电子科技有限公司 一种汽车应急启动电源安全管理系统
CN208508515U (zh) * 2018-08-01 2019-02-15 深圳市新驰客科技有限公司 一种汽车应急启动电源智能夹
CN109910797A (zh) * 2019-03-07 2019-06-21 深圳市电将军科技有限公司 一键启动汽车的应急用智能电瓶线夹及汽车启动打火方法
CN110011371A (zh) * 2019-03-07 2019-07-12 深圳市电将军科技有限公司 智能电瓶线夹、一体式启动电源装置及启动打火方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11277014B1 (en) 2020-11-19 2022-03-15 Shenzhen Carku Technology Co., Limited Smart connection device, start-up power supply, and battery clamp
EP4002623A1 (en) * 2020-11-19 2022-05-25 Shenzhen Carku Technology Co., Limited Smart connection device, jump starter, and battery clamp
EP4002639A1 (en) * 2020-11-19 2022-05-25 Shenzhen Carku Technology Co., Limited Smart connection device, start-up power supply, and battery clamp
US11979045B2 (en) 2020-11-19 2024-05-07 Shenzhen Carku Technology Co., Limited Smart connection device, jump starter, and battery clamp
EP4250515A4 (en) * 2020-11-19 2024-05-22 Shenzhen Carku Tech Co Limited INTELLIGENT CONNECTOR, STARTING POWER AND BATTERY TERMINAL

Also Published As

Publication number Publication date
CN110011371B (zh) 2023-10-13
US20220069574A1 (en) 2022-03-03
CN110011371A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
WO2020177467A1 (zh) 智能电瓶线夹、一体式启动电源装置及启动打火方法
CN109910797B (zh) 一键启动汽车的应急用智能电瓶线夹及汽车启动打火方法
CN210273514U (zh) 用于汽车应急启动的智能电瓶线夹及一体式启动电源装置
US11652359B2 (en) Charging device
CN101272060B (zh) 二次电池的充电装置
CN205753523U (zh) 一种储能电池组充放电控制及检测装置
CN104300606A (zh) 一种多串电池保护系统
CN112158106B (zh) 一种双电池系统电动汽车的充电控制电路及其控制方法
CN206471860U (zh) 一种汽车应急启动电源安全管理系统
CN114189000A (zh) 智能控制系统、应急启动电源和智能电瓶夹
CN216699814U (zh) 一种开关管驱动电路、预充电路和电池储能系统
WO2023077359A1 (zh) 控制系统、应急启动电源和电瓶夹
CN106786895B (zh) 一种汽车应急启动电源的电瓶夹安全管理系统
JP2002281609A (ja) 複合2次電池回路および回生制御システム
CN206313507U (zh) 汽车应急启动电源
CN210670645U (zh) 一种太阳能路灯用控制系统
CN204068214U (zh) 电瓶连接线极性智能识别保护装置
JP2012130174A (ja) 充電システム
CN220585979U (zh) 管理系统、电源设备和车辆
CN114320703B (zh) 车辆辅助点火装置及车辆点火设备
CN110636673A (zh) 一种太阳能路灯用控制系统
US11901729B2 (en) Charging device and emergency start method
CN218603362U (zh) 一种脉冲点火系统的耗能电路
CN104022491A (zh) 电瓶连接线极性智能识别保护装置
CN214099687U (zh) 多重保护电池组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917731

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19917731

Country of ref document: EP

Kind code of ref document: A1