WO2020175603A1 - 治療方法および治療システム - Google Patents

治療方法および治療システム Download PDF

Info

Publication number
WO2020175603A1
WO2020175603A1 PCT/JP2020/007932 JP2020007932W WO2020175603A1 WO 2020175603 A1 WO2020175603 A1 WO 2020175603A1 JP 2020007932 W JP2020007932 W JP 2020007932W WO 2020175603 A1 WO2020175603 A1 WO 2020175603A1
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
infrared rays
antibody
optical fiber
photosensitizer
Prior art date
Application number
PCT/JP2020/007932
Other languages
English (en)
French (fr)
Inventor
大津恵子
鬼村祐治
山本圭一郎
甲斐美穂
石塚隆伸
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2020175603A1 publication Critical patent/WO2020175603A1/ja
Priority to US17/411,404 priority Critical patent/US20210379395A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00087Tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/233Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the nose, i.e. nasoscopes, e.g. testing of patency of Eustachian tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/24Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/31Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the rectum, e.g. proctoscopes, sigmoidoscopes, colonoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0271Thermal or temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N5/0603Apparatus for use inside the body for treatment of body cavities
    • A61N2005/0604Lungs and/or airways
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N5/0603Apparatus for use inside the body for treatment of body cavities
    • A61N2005/0609Stomach and/or esophagus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N2005/0612Apparatus for use inside the body using probes penetrating tissue; interstitial probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0626Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/063Radiation therapy using light comprising light transmitting means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0632Constructional aspects of the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N5/0603Apparatus for use inside the body for treatment of body cavities

Definitions

  • the present invention relates to a therapeutic method and a therapeutic system for killing tumor cells.
  • an antibody-photosensitizer which is an antibody that specifically binds only to a unique antigen on the surface of cancer cells and a photosensitizer that pairs with the antibody, is used as a drug.
  • wave length 700 Hydrophilic phthalocyanine (a substance that reacts to near infrared rays in the vicinity
  • the method of treatment using an antibody photosensitizer which is a combination of an antibody and an antibody, kills non-target cells such as normal cells by irradiating the photosensitizer accumulated in the tumor with near infrared rays.
  • the target cells can be specifically killed without doing so. Therefore, by using this method, it is expected to obtain high therapeutic effects while reducing side effects.
  • Patent Document 1 discloses a method in which a long device including an optical fiber is transvascularly inserted into the vicinity of a tumor, and light is irradiated from the inside of the blood vessel.
  • Patent Document 1 US Patent Application Publication No. 2 0 1 8-0 1 1 3 2 4 6
  • the present invention has been made to solve the above-mentioned problems, and provides a therapeutic method and a therapeutic system capable of effectively irradiating an antibody_photosensitive substance bound to a tumor cell with a near infrared ray. With the goal.
  • One embodiment of the therapeutic method according to the present invention that achieves the above object is a therapeutic method in which near-infrared rays are radiated to an antibody-photosensitizer bound to a tumor cell membrane in tumor cells.
  • a single photosensitizer is administered intravenously, a transcutaneous ultrasound image is acquired and confirmed, and a hollow outer needle is percutaneously punctured at or near the tumor.
  • the treatment method configured as described above can puncture the outer needle and the inner needle to a desired position with high accuracy and easily while confirming the ultrasonic image. Therefore, the position of the inner needle with respect to the tumor can be maintained well, and near-infrared rays can be directed to the tumor by the optical fiber arranged in the inner needle. Therefore, the present treatment method can effectively irradiate the antibody-photosensitizer bound to the tumor cell membrane with near-infrared rays from inside or near the tumor.
  • Another aspect of the therapeutic method according to the present invention for achieving the above object is a therapeutic method of irradiating near-infrared rays to an antibody-photosensitizing substance bound to a tumor cell membrane in tumor cells, While percutaneously acquiring and confirming an ultrasonic image, a step of transcutaneously puncturing a tumor or its vicinity with a hollow outer needle and multiple sharp inner needle tips are provided. ⁇ 0 2020/175603 3 ⁇ (: 170? 2020 /007932
  • the present treatment method can effectively irradiate the antibody-photosensitizer bound to the tumor cell membrane with near-infrared rays from inside or near the tumor.
  • the antibody-photosensitizer since the antibody-photosensitizer is locally administered, the antibody_photosensitizer can be bound to the tumor cell membrane in a short time with a high probability.
  • the antibody photosensitizer can be administered only to a necessary place, so that the burden on the living body can be reduced.
  • irradiation of near-infrared rays to the antibody photosensitizer may be monitored. This makes it possible to proceed with the procedure while confirming that the tumor cells are killed by the temperature rise of the antibody single-photosensitizer that receives near-infrared rays and the temperature rises.
  • the temperature of a tumor cell having a tumor cell membrane to which the antibody-photosensitizer is bound or the vicinity thereof may be monitored by the optical fiber that irradiates near infrared rays.
  • the optical fiber that irradiates near infrared rays it is possible to proceed with the procedure while confirming that the tumor cells are killed by the temperature rise of the antibody single-photosensitizer that has been irradiated with the near infrared rays.
  • the temperature at a remote position can be effectively monitored without contact.
  • the optical fiber that emits near infrared rays is used for monitoring, there is no need to squeeze another device for temperature measurement into the catheter, which facilitates the procedure.
  • a contact type temperature sensor is inserted into the outer needle, ⁇ 0 2020/175603 4 ⁇ (: 170? 2020 /007932
  • the temperature sensor may monitor the temperature of a tumor cell having a tumor cell membrane bound with the antibody-photosensitizer or in the vicinity thereof. As a result, it is possible to proceed with the procedure while confirming that the tumor cells are killed by the temperature rise of the antibody single photosensitizer irradiated with the near infrared rays.
  • a hardness measuring device having a probe capable of transmitting and receiving ultrasonic waves is inserted into the outer needle, and the hardness measuring device measures the tumor cell membrane to which the antibody-photosensitive substance is bound.
  • the hardness of the tumor mass that it has may be monitored. This allows the procedure to proceed while confirming that the tumor cells will die.
  • a hardness measurement device that uses ultrasonic waves, the hardness at distant positions can be effectively monitored without contact.
  • the treatment method may include a step of, after the step of irradiating the near infrared ray from the optical fiber, a step of identifying a site irradiated with the near infrared ray.
  • a therapeutic device that achieves the above object is a therapeutic system capable of irradiating near-infrared rays to an antibody-photosensitizing substance bound to a tumor cell membrane in a tumor cell,
  • An ultrasonic diagnostic device a hollow outer needle; an inner needle that can be inserted into the outer needle and has a plurality of sharp inner needle tips;
  • the treatment system configured as described above makes it possible to puncture an outer needle and an inner needle to a desired position with high accuracy and easily while confirming an ultrasonic image. Therefore, the position of the inner needle with respect to the tumor is well maintained, and the near-infrared rays can be directed toward the tumor by the optical fiber placed on the inner needle. Therefore, the present method of treatment uses an antibody-photosensitizer bound to the tumor cell membrane, which is used inside or inside the tumor. ⁇ 0 2020/175 60 5 5 (: 170? 2020 /007932
  • Near-infrared rays can be effectively emitted from the vicinity, and the effect of killing tumor cells can be enhanced.
  • FIG. 1 is a plan view showing a treatment system used in a treatment method according to a first embodiment.
  • FIG. 2 is a schematic view showing a state inside the body when a liver cancer is treated by the treatment method according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing a treatment system for treating liver cancer. The case of irradiation is shown.
  • Fig. 4 is a cross-sectional view showing a treatment system for treating liver cancer using a balloon catheter, in which () is a case where near infrared rays are radiated in the distal direction, and (M) is a near infrared line orthogonal to the optical fiber. It shows the case of irradiating in the direction.
  • FIG. 5 is a plan view showing a treatment system used in the treatment method according to the third embodiment.
  • FIG. 6 is a plan view showing a modification of the treatment system, in which () shows a modification of the long tube, and (B) shows another modification of the long tube.
  • FIG. 7 is a schematic view showing the state of the inside of the body when treating gastric cancer by the treatment method according to the third embodiment.
  • FIG. 8 is a cross-sectional view showing a treatment system for treating gastric cancer.
  • Fig. 9 is a cross-sectional view showing a modified example of treating a gastric cancer using a long tube. (8) shows a state in which an outer needle has punctured a tumor, and (M) shows an inner needle punctured in a tumor. Indicates the status.
  • FIG. 10 is a plan view showing a treatment system used in the treatment method according to the fifth embodiment.
  • FIG. 11 Internal state when treating breast cancer by the treatment method according to the fifth embodiment ⁇ 0 2020/175 60 3 6 (: 17 2020 /007932
  • FIG. 1 A first figure.
  • FIG. 12 is a cross-sectional view showing the treatment of breast cancer using the treatment system, (8) shows a state where the outer needle punctures the tumor, and (M) shows a state where the inner needle punctures the tumor.
  • the treatment method according to the first embodiment is a photo-immunotherapy that kills target cells by transvascularly irradiating the antibody _ photosensitizer bound to the cell membrane of the target cells with near infrared rays. ..
  • Target cells are tumor cells such as cancer cells.
  • an antibody that specifically binds only to a unique antigen on the surface of tumor cells and a photosensitizer that pairs with the antibody are combined use.
  • the antibody is not particularly limited, but is, for example, panitumbab, trastuzumab, 1-1 to 1" 5 9 1 or the like.
  • the photosensitizer is, for example, hydrophilic phthalocyanine, which is a substance (I 8700) that reacts to near infrared rays having a wavelength of about 700 n, but is not limited thereto. It is said that tumor cells can be killed by receiving near-infrared light with a wavelength of about 660 to 740, absorbing light, causing a chemical change and generating heat.
  • the ligand of the functional group that ensures water solubility is cleaved, causing a structural change from water solubility to water repellency.
  • Cancer cells can be killed by receiving near-infrared light with a wavelength of ⁇ 740n.
  • the treatment method according to the first embodiment is suitable for cancer treatment of an organ in which it is difficult to irradiate near-infrared rays from the body surface because the treatment method is far from the body surface.
  • the treatment method according to the first embodiment can be suitably used, for example, for treatment of liver cancer, lung cancer and the like.
  • the antibody _ photosensitizer bound to the target cells is transvascularly irradiated with near-infrared light, so that the blood vessels can be inserted into the blood vessel as shown in Fig. 1.
  • the treatment system 10 will be described.
  • the treatment system 10 includes a guide wire 20, a catheter 30, a light irradiation device 40 that can be inserted into the catheter 30 and a measurement device 50 that can be inserted into the catheter 30. ing.
  • the guide wire 20 is a long wire for guiding the catheter 30 to a target position in the living body.
  • the catheter 30 is, for example, a microcatheter, and has a lumen 31 that penetrates from the distal end to the proximal end.
  • Microcatheters are fine catheters that can be inserted into the peripheral blood vessels of the organ to be treated.
  • the diameter of the microcatheter is 0.5 to 1.0 It is a degree.
  • the catheter 30 may be a catheter 30 thicker than a microcatheter, depending on the place to be treated.
  • the catheter 30 may be a balloon catheter 30 having an expandable balloon 32 at its tip as shown in FIG.
  • the balloon catheter 30 has a second lumen 33 for supplying inflation fluid to the balloon 32.
  • the light irradiation device 40 includes an optical fiber 41 and a light output unit 42 that supplies near infrared rays to the optical fiber _ 4 1.
  • the light output unit 42 can output near infrared light having an arbitrary wavelength to the optical fiber 41 at an arbitrary dose.
  • the light output section 42 is, for example, 6600 to 7440n. In the wavelength, for example, 1-5 0 " ⁇ - performed as can be irradiated with light, the output to the optical fiber _ 4 1 2 dose.
  • the optical fiber 41 that outputs near infrared light is composed of one fiber. ⁇ 0 2020/175 60 3 8 (: 170? 2020 /007932
  • the optical fiber _ 4 1 is preferably attachable to and detachable from the optical output section 42, but is not limited to this.
  • An irradiation unit 4 3 that irradiates light is provided at the tip of the optical fiber _ 4 1.
  • a position confirmation marker 4 4 is provided at the tip of the optical fiber _ 41.
  • the irradiation unit 43 irradiates the light entering from the proximal end side of the optical fiber _ 41 to the outside.
  • the irradiation unit 43 can be configured by, for example, a part where the core is exposed, a lens, a diffuser, a mirror, or the like.
  • the irradiation unit 43 is appropriately designed so as to be able to irradiate near infrared rays in a predetermined direction at a predetermined irradiation angle by using a region where the core is exposed, a lens, a diffuser, a mirror, or the like.
  • the structure of the irradiation unit 43 is not limited as long as it can radiate light to the outside.
  • the irradiation unit 43 irradiates near-infrared rays in the front end direction at a predetermined irradiation angle, as shown in FIG. 3 (8), for example.
  • the irradiation direction (direction in which the center of the irradiation angle is located) is not particularly limited.
  • the irradiation unit 43 may irradiate near-infrared rays in a direction substantially orthogonal to the optical fiber _ 41 as shown in FIG.
  • the position confirmation marker 44 is a part for the operator to confirm the position in the body.
  • the position confirmation marker 44 is formed of, for example, a radiopaque material.
  • the X-ray opaque material is, for example, a metal material such as a metal such as gold, platinum, or tungsten or an alloy containing these. This allows the operator to confirm the position of the position confirmation marker 44 under X-ray contrast outside the body.
  • the position confirmation marker 44 does not have to be an X-ray contrasting marker as long as the operator can confirm the position in the body.
  • the measuring device 50 is a device that monitors in real time whether or not a tumor having target cells can be irradiated with near infrared rays.
  • the measuring device 50 is, for example, a temperature measuring device that can measure the temperature of a tumor ⁇ 3 in a non-contact or contact manner.
  • the measuring device 50 is, for example, located at the measuring optical fiber _ 51, the optical measuring unit 52 receiving the light detected by the measuring optical fiber _ 51, and the tip of the measuring optical fiber _ 51. Measuring marker 5 ⁇ 0 2020/175603 9 ⁇ (: 170? 2020 /007932
  • the optical fiber for measurement _ 5 1 receives infrared rays emitted by an object whose temperature has risen at its tip and transmits it to the optical measuring section 52.
  • the optical measuring unit 52 can detect the temperature of the object in a non-contact manner from the measured infrared ray dose and the like.
  • the measurement optical fiber _ 5 1 may be the same as the optical fiber _ 4 1 of the light irradiation device 40. That is, the temperature of the tumor ⁇ may be measured using the optical fiber _ 4 1 of the light irradiation device 40.
  • the measuring device 50 is not limited to the temperature measuring device using the optical fiber 41 as long as it can monitor that the near-infrared rays are radiated to the tumor cells to which the antibody single-photosensitizer is bound.
  • a contact type temperature measuring device using a thermocouple or a hardness measuring device 50 using ultrasonic waves may be used.
  • the measuring device 50 is provided with an ultrasonic probe at the tip of a long tubular body that can be inserted into the catheter 30.
  • the hardness measuring device 50 transmits an ultrasonic wave to the outside by the probe and receives a reflected wave of the ultrasonic wave to calculate a tomographic image of the tissue.
  • the hardness measuring device 50 can detect a change in hardness of a tumor ⁇ 3 containing dead tumor cells (hardness of a tumor tissue mass having a tumor cell membrane) from a change in brightness of a tomographic image.
  • the measuring device 50 may be a sensor capable of detecting an elastic change in a tumor ⁇ 3 containing dead tumor cells and a change in blood flow.
  • the antibody photosensitizer is intravenously administered. About 12 to 3 after intravenous administration
  • the operator inserts the guide wire 20 into the blood vessel, for example, from the femoral artery, the brachial artery, the radial artery, etc., as shown in FIG.
  • the proximal end of the guide wire 20 is kneaded into the lumen 31 of the catheter 30 and the catheter 30 is kneaded into the blood vessel along the guide wire 20.
  • the catheter 30 is inserted into the hepatic artery, which is the main artery (for example, the feeding artery) of the liver where the tumor ⁇ 3 is formed, preceded by the guide wire 20.
  • the operator removes the guide wire 20 from the catheter 30.
  • the main lung ⁇ 0 2020/175603 10 10 (: 170? 2020 /007932
  • the artery is a bronchial artery.
  • the operator inserts the optical fiber 41 into the lumen 31 from the proximal side of the catheter 30.
  • the tip of the optical fiber 41 projects from the catheter 30 to the tip side, as shown in Fig. 3 (8).
  • the operator confirms the position of the position confirmation marker 44 of the optical fiber 41 under the X-ray contrast and reaches the target position.
  • the target position is a position close to the tumor ⁇ 3 and capable of irradiating the tumor ⁇ 3 with near infrared rays.
  • the operator inserts the measurement optical fiber _ 5 1 into the lumen 31 from the proximal end side of the catheter 30.
  • the tip of the measurement optical fiber _ 5 1 projects from the catheter 30 to the tip side.
  • the operator reaches the target position while confirming the position of the measurement marker 53 of the measurement optical fiber _ 51 under X-ray imaging.
  • the target position is close to the tumor ⁇ 3 with cancer cells and the temperature of the tumor ⁇ 3 can be measured. It is preferable that the measurement optical fiber _ 5 1 is arranged at a position that does not hinder the irradiation of near infrared rays from the optical fiber _ 4 1.
  • the operator supplies physiological saline to the lumen 31 from the proximal end side of the catheter 30.
  • the surgeon connects the connector to the hub located at the proximal end of the catheter 30 and supplies physiological saline from a port different from the port from which the guide wire 20 is led out. ..
  • the physiological saline flows into the hepatic artery through the gap in the lumen 3 1 in which the optical fiber _ 4 1 and the measurement optical fiber _ 5 1 are inserted.
  • physiological saline is infused (flushed) from the catheter 30 into the hepatic artery.
  • the blood in the hepatic artery where the optical fiber 41 and the measurement optical fiber _ 5 1 are located is washed away, and the hepatic artery is temporarily filled with physiological saline.
  • Saline is injected into the artery through the lumen 31 of the catheter 30 and the optical fiber 40.
  • physiological saline can be injected into the hepatic artery using the force catheter 30 in which the optical fiber _ 40 is inserted without using any other device.
  • the balloon 32 After crushing, the balloon 32 may be expanded. As a result, the blood flow in the hepatic artery is blocked and the hepatic artery is temporarily filled with physiological saline. Therefore, the hepatic artery can be more reliably filled with physiological saline.
  • the operator may inflate the balloon 32 without flushing the saline solution.
  • the operator After filling the hepatic artery with physiological saline or blocking the blood flow in the hepatic artery, the operator uses the optical fiber _ 4 1 or the measurement optical fiber _ 5 1 to clean the inside of the hepatic artery. You may observe. This allows the operator to accurately confirm that the hepatic artery is filled with saline and/or the blood flow in the hepatic artery is blocked. The observation of blood in the hepatic artery by the optical fiber 41 or the measurement optical fiber 51 may not be performed.
  • the temperature of the tumor ⁇ 3 was measured by the measurement optical fiber _ 51 while irradiating the near infrared rays from the optical fiber 41. To do. Irradiation with near-infrared rays is started 12 to 36 hours after intravenous administration. By continuing the temperature measurement of the tumor ⁇ 3, it is possible to monitor that the near-infrared rays are radiated to the tumor cells bound with the antibody-photosensitizer.
  • the hepatic artery is filled with physiological saline and/or the blood flow in the hepatic artery is blocked, irradiation of near infrared rays and temperature measurement are less likely to affect blood. Therefore, near infrared rays can effectively reach the antibody_photosensitizer bound to the tumor cell membrane. Therefore, near-infrared irradiation and temperature measurement can be effectively performed.
  • the near-infrared ray is emitted from the optical fiber _ 41
  • the near-infrared ray is directly emitted from the optical fiber _ 41 to the living tissue. That is, near-infrared rays are not indirectly radiated from the inside of the balloon through the balloon, for example. Therefore, near-infrared rays can be effectively irradiated to the tumor cells to which the antibody single-photosensitizer is bound.
  • the irradiation direction of the near-infrared ray from the optical fiber _ 4 1 is the tip direction of the optical fiber _ 4 1.
  • the irradiation direction of the near infrared rays may be a direction orthogonal to the axial direction of the optical fiber _ 4 1.
  • the person can appropriately select the optical fiber _ 4 1 to be used according to the position of the tumor 0 with respect to the blood vessel into which the optical fiber _ 4 1 is inserted.
  • the operator continues to irradiate the near-infrared rays while confirming that the tumor cells are killed by the irradiation of the near-infrared rays by the temperature of the monitoring device 50 (temperature of 3).
  • the optical fiber _ 4 1 during irradiation of may be operated by hand to adjust the irradiation direction and position.
  • irradiation of near infrared rays is performed. Stop and stop monitoring by the measuring device 50.
  • a temperature threshold value that is a condition for stopping irradiation may be set in advance so that it is easy to determine that the tumor cells have been sufficiently killed.
  • the operator can easily determine whether to stop the irradiation of near infrared rays.
  • the threshold may be set in the optical measurement unit 52.
  • the optical measurement unit 52 can notify the operator via a monitor, a speaker, or the like when the measured temperature of the tumor ⁇ 3 exceeds the threshold value.
  • the condition for stopping the irradiation of near-infrared rays may be not the temperature of the tumor ⁇ exceeding the threshold but the size (volume or area) of the tumor ⁇ exceeding the threshold.
  • the light measuring unit 52 may be preset with the irradiation time of the near infrared rays.
  • the operator identifies the position of the tumor ⁇ 3 irradiated with near-infrared rays and records it in the record.
  • the location of the tumor ⁇ 3 should be recorded as electronic data so as to correspond to the location information of the previously acquired ⁇ 3 images of the patient and 1 ⁇ /
  • the procedure after this can be smoothly advanced, and post-operative follow-up can be effectively performed.
  • the monitoring of near-infrared irradiation is performed by replacing the measurement optical fiber _ 51 with an optical fiber _ 41 for near-infrared irradiation, a temperature measurement device using a thermocouple, and ultrasonic sound. ⁇ 0 2020/175603 13 13 (: 170? 2020 /007932
  • the operator removes the catheter 30 from the skin together with the optical fiber _ 4 1 and the measuring device 50.
  • the therapeutic method according to the first embodiment is a therapeutic method in which near-infrared rays are radiated to an antibody-photosensitizer bound to a tumor cell membrane in a tumor cell.
  • near-infrared rays can be irradiated toward the antibody-photosensitizer bound to the tumor cells by the optical fiber _ 41 that is inserted into the blood vessel. Therefore, in the present treatment method, near-infrared rays can be effectively irradiated to the antibody-sensitized substance bound to the tumor cell membrane transvascularly, and the effect of killing tumor cells can be enhanced.
  • the treatment system 10 used in the first embodiment is a treatment system 10 capable of irradiating near-infrared rays to an antibody-photosensitizing substance bound to a tumor cell membrane in tumor cells.
  • a measuring device 50 for monitoring irradiation of infrared rays is a measuring device 50 for monitoring irradiation of infrared rays.
  • the therapeutic system 10 configured as described above can irradiate antibody-photosensitizer with near infrared rays transvascularly by the optical fiber 41 that has been inserted into the blood vessel. ⁇ 0 2020/175603 14 ⁇ (: 170? 2020 /007932
  • near-infrared rays can be effectively irradiated to the antibody single-photosensitizer bound to the tumor cell membrane, and the effect of killing tumor cells can be enhanced. Further, the operator can proceed with the procedure while confirming with the measuring device 50 that the antibody single-photosensitizer receives near-infrared rays and the temperature rises to kill the tumor cells.
  • the treatment method according to the second embodiment is applied to cancer treatment of organs that can be reached transvascularly.
  • the treatment method according to the second embodiment can be suitably used, for example, in the treatment of liver cancer, lung cancer, and the like.
  • the treatment method according to the second embodiment differs from the first embodiment in that the antibody single-photosensitizer is not intravenously administered but is locally administered to the feeding blood vessels of the organ where the tumor ⁇ 3 is formed. ..
  • the treatment system is the same as the treatment system 10 used in the treatment method according to the first embodiment.
  • the operator does not intravenously administer the antibody single photosensitizer, for example, from the femoral artery, brachial artery, radial artery, or the like,
  • the antibody-photosensitizer is locally administered into the hepatic artery via the lumen 31 from the proximal side of 30.
  • the antibody-photosensitizer is locally administered to the bronchial artery, which is the feeding artery of the lung to be treated.
  • the operator After local administration of the antibody-sensitizer to the hepatic artery, the operator waits until the antibody-sensitizer binds to the target cell membrane.
  • the time required for the antibody-photosensitizer to bind to the target cell membrane is higher than that of the intravenous administration. It is considered to be very short, for example, about 5 to 10 minutes.
  • the operator inserts the optical fiber _ 4 1 into the lumen 3 1 from the proximal end side of the catheter 30. Since the procedure after this is the same as the treatment method according to the first embodiment, the description thereof will be omitted.
  • Irradiation with near infrared light is started about 5 to 10 minutes after the local administration of the antibody single-photosensitizer. Irradiation of near infrared ⁇ 0 2020/175603 15 15 (: 170? 2020 /007932
  • the treatment method according to the second embodiment is a treatment method of irradiating near-infrared rays to an antibody single photosensitizer bound to a tumor cell membrane in tumor cells.
  • near-infrared rays can be radiated toward the antibody-photosensitizer bound to the tumor cells by the optical fiber _ 41 that has been inserted into the blood vessel. Therefore, in the present treatment method, near-infrared rays can be effectively irradiated to the antibody-sensitized substance bound to the tumor cell membrane transvascularly, and the effect of killing tumor cells can be enhanced. Further, in the present therapeutic method, since the antibody-photosensitizer is locally administered, the antibody-photosensitizer can be bound to the tumor cell membrane in a short time with a high probability. Further, the antibody-photosensitizer can be administered only to a necessary place, so that the burden on the living body can be reduced.
  • the treatment method according to the third embodiment is applied to cancer treatment of an organ that can be reached from the mouth, nose, or anus using an endoscope.
  • the treatment method according to the third embodiment can be suitably used for treatment of, for example, Lung cancer, lung cancer, gastric cancer, duodenal cancer, esophageal cancer, colon cancer and the like.
  • the treatment system 60 includes an endoscope 70, a long tube 80 that can be inserted into the endoscope 70, a light irradiation device 40 that can be inserted into the long tube 80, and a long tube. It is equipped with a measuring device 50 that can be inserted into a scale 80.
  • the endoscope 70 can be inserted through the mouth, nose, or anus, and a camera 7 1 capable of acquiring an image and an ultrasonic imaging device 7 2 are arranged at the tip portion thereof.
  • the endoscope 70 can acquire an image in real time by the camera 7 1.
  • the endoscope 70 can acquire an ultrasonic image in real time by the ultrasonic image device 72.
  • the endoscope 70 can acquire at least one of a camera image and an ultrasonic image.
  • the long tube 80 has a sharp needle tip 81 formed at the tip.
  • the long tube 80 is hollow and is formed with a lumen 82 that penetrates from the needle at the distal end to the proximal end.
  • the measuring device 50 is a temperature measuring device using an optical fiber for radiating near-infrared rays, and a measuring optical fiber _ 5 1 different from the optical fiber _ 4 1 Is a temperature measuring device that uses a thermocouple, a temperature measuring device that uses a thermocouple, or a hardness measuring device that uses ultrasonic waves.
  • the measuring device 50 according to the second embodiment can contact the tumor ⁇ 3 and measure the temperature. Therefore, as the measuring device 50, a temperature measuring device using a thermocouple can also be preferably used. Further, the measuring device 50 may be a sensor capable of detecting elastic change of tumor ⁇ 3 having dead tumor cells and change of blood flow.
  • the antibody photosensitizer is intravenously administered. About 12 to 3 after intravenous administration
  • the operator inserts the endoscope 70 through the mouth or nose and makes the endoscope 70 reach the vicinity of gastric cancer as shown in FIG.
  • the operator inserts the long tube 80 into the proximal end portion of the endoscope 70, and projects the long tube 80 from the distal end portion of the endoscope 70.
  • the operator contacts the tumor ⁇ 3 with the needle tip 81 of the long tube 80 while checking the camera image and/or ultrasonic image of the endoscope 70. ⁇ 0 2020/175603 17 17 (: 170? 2020 /007932
  • the long tube 80 may be kneaded into the mouth, nose, or anus together with the endoscope 70 in a state where the long tube 80 is placed in advance.
  • the surgeon uses the optical fiber _ 4 from the proximal end side of the lumen 82 of the long tube 80.
  • Insert 1 and measuring device 50 The tip part of the optical fiber _ 4 1 and the measuring device 50 is projected from the tip 8 1 to the tip side inside the hole formed in the tumor 0 by the tip 8 1.
  • the optical fiber _ 41 and the measuring device 50 do not have to protrude from the needle tip 81. Further, the optical fiber _ 41 and/or the measuring device 50 may be inserted into the endoscope 70 while being arranged in the long tube 80 in advance.
  • the operator measures the temperature or hardness of the tumor ⁇ 3 with the measuring device 50 while irradiating the near infrared ray from the optical fiber _ 41.
  • the operator measures the temperature or hardness of the tumor ⁇ 3 with the measuring device 50 while irradiating the near infrared ray from the optical fiber _ 41.
  • the irradiation direction of the near infrared rays from the optical fiber _ 41 is appropriately selected.
  • the irradiation direction of the near-infrared rays may be the tip direction of the optical fiber _ 41, the direction orthogonal to the axial direction of the optical fiber _ 41, or the omnidirectional direction.
  • the operator can appropriately select the optical fiber to be used according to the tumor.
  • the operator continues to irradiate the near infrared rays while confirming the death of the tumor cells due to the irradiation of the near infrared rays by monitoring with the measuring device 50.
  • the surgeon can adjust the irradiation direction by operating the optical fiber _ 41 while irradiating the near infrared rays.
  • the operator may bring the needle tip 81 of the long tube 80 into contact with the tumor 0 without puncturing the tumor 0.
  • the long tube 80 can fix the position with respect to the tumor ⁇ even if it only contacts the tumor ⁇ . Therefore, the sharp tip 8 1 may not be formed at the tip of the long tube 80.
  • the long tube 80 contacts the tumor 3, it is preferable to bite into it even if it does not puncture. If the long tube 80 does not puncture the tumor ⁇ 3, the tumor ⁇ 3 Is scattered to other parts ⁇ 0 2020/175603 18 18 (: 170? 2020 /007932
  • the operator determines that the near-infrared ray irradiation is performed when it is determined that the tumor cells have been sufficiently killed, when it is determined that further irradiation is not desirable, or when a predetermined time has elapsed. Stop and stop monitoring by the measuring device 50. After this, the operator identifies the location of the tumor ⁇ 3 irradiated with near infrared light and records it. Next, the operator collects the long tube 80 and the optical fiber _ 4 1 into the endoscope 70.
  • the tip of the long tube 80 may have a light transmitting portion formed of a transparent material capable of transmitting near infrared rays.
  • the optical fiber 41 does not have to protrude from the needle tip 81.
  • the optical fiber 41 is capable of irradiating the tumor (3) with near-infrared rays from the inside of the long tube 80 through the long tube 80.
  • the measuring device 50 also transmits the near infrared ray through the transparent long tube 80. Therefore, the temperature or hardness of the tumor ⁇ 3 can be measured without contact.It is preferable that the light transmitting portion is provided only on the tip side of the long tube 80. , It is possible to prevent the irradiation of near-infrared rays to places other than tumor ⁇ 3.
  • the long tube 80 at least one slit 8 3 may be formed on the needle tip 8 1 as in another modification shown in FIG. 6( ).
  • the number and shape of the slits 83 are not particularly limited.
  • the optical fiber _ 4 1 does not have to protrude from the needle tip 8 1.
  • the optical fiber 41 can irradiate near-infrared rays from the inside of the long tube 80 to the tumor (3) through the slit 83.
  • the measuring device 50 can also contact the tumor (3) through the slit 83 without contact.
  • the temperature or hardness of the tumor ⁇ 3 can be measured with the slit 83. It is preferable that the slit 83 is provided only on the tip side of the long tube 80. With this configuration, the tumor ⁇ 3 It is possible to prevent near infrared rays from being radiated to places other than 3.
  • the long tube 80 has a hollow outer needle 8 4 having an outer needle tip 8 5 at the tip and an outer needle 8 4 as in another modified example shown in FIG. 6 (Mimi). It may have an inner needle 86 that can be inserted into the inside.
  • the inner needle 86 has a plurality of hollow branch needles 87 with its tip portion expanding in the tip direction.
  • the plurality of branch needles 87 are preferably fixed in a bundle except for the widened tip.
  • the branch needle 8 7 is ⁇ 0 2020/175603 19 ⁇ (: 170? 2020/007932
  • the number of branch needles 87 is not particularly limited, but is preferably two or more.
  • a sharp inner needle point 8 8 is formed at the tip of each branch needle 87.
  • the long tube 80 has a plurality of branch needles 87, it is preferable that a plurality of optical fibers _ 41 be provided in each branch needle 8 7 so that they can be inserted.
  • the operator stores the inner needle 86 in the outer needle 84 as shown in Fig. 9 (eight). Puncture the tumor ⁇ with the outer needle 84. After this, the operator can project the inner needle 8 6 from the outer needle 8 4 as shown in FIG. 9 (Mimi). As a result, the inner needle 86 spreads inside the tumor (3. After that, the optical fiber _ 41 is inserted into each branch needle 87, and near-infrared rays are irradiated from each branch needle 87. Therefore, the near-infrared rays can be efficiently irradiated to the entire tumor ⁇ 3 by the plurality of optical fibers 41.
  • the optical fibers 41 may be fixedly arranged on each branch needle 87.
  • the treatment method according to the third embodiment is a treatment method in which near-infrared rays are irradiated to an antibody-photosensitizer bound to a tumor cell membrane in a tumor cell.
  • Intravenous administration of photosensitizer and scooping the endoscope 70 through the mouth, nose or anus to reach the tumor ⁇ 3 accessible from the mouth, nose or anus Confirm the step and the step of projecting the tubular long tube 80 having the lumen 82 formed from the endoscope 70, and the camera image and/or the ultrasonic image obtained by the endoscope 70.
  • the treatment method configured as described above can be performed by checking the long tube 80 while checking the camera image and/or the ultrasonic image of the endoscope 70 inserted through the mouth, nose or anus. It can be brought into contact with the tumor ⁇ accurately and easily. For this reason, the position of the long tube 80 with respect to the tumor ⁇ is well maintained, and the optical fiber inserted into the long tube 80 is kept. ⁇ 0 2020/175603 20 20 (: 170? 2020 /007932
  • Iver 41 allows near-infrared radiation to target tumors ⁇ 3. Therefore, the present therapeutic method can effectively irradiate near-infrared rays from inside or near the tumor ⁇ 3 to the antibody single photosensitizer bound to the tumor cell membrane, and enhance the effect of killing tumor cells.
  • the treatment system 60 used in the third embodiment is a treatment system 10 capable of irradiating near-infrared rays to an antibody-photosensitizer bound to a tumor cell membrane in tumor cells.
  • an endoscope 70 equipped with a camera 7 1 and/or an ultrasonic imaging device 7 2, and a tubular elongated body that can be inserted into the endoscope 70 and has a lumen 82 formed therein.
  • An optical fiber _ 4 1 that can radiate near-infrared rays that can be inserted into the tube 80 and the lumen 82, and that can be inserted into the lumens 8 2 that can irradiate near-infrared rays.
  • a measuring device 50 for monitoring irradiation of infrared rays.
  • the treatment system 60 configured as described above confirms the camera image and/or the ultrasonic image of the endoscope 70 while checking the long tube 80 passing through the endoscope 70. It enables highly accurate and easy access to tumors ⁇ 3. Therefore, the position of the long tube 80 with respect to the tumor (3) is properly maintained, and near-infrared rays are irradiated toward the tumor ⁇ 3 by the optical fiber 41 that is inserted into the long tube 80. Therefore, the antibody_photosensitizer bound to the tumor cell membrane can be effectively irradiated with near-infrared rays from inside or near the tumor ⁇ 3. It is possible to proceed with the procedure while confirming with the measuring device 50 that the temperature rises and the tumor cells die.
  • the treatment method according to the fourth embodiment is applied to cancer treatment of an organ that can be reached from the mouth, nose, or anus, similarly to the treatment method according to the third embodiment.
  • the treatment method according to the fourth embodiment can be suitably used, for example, for the treatment of stem cancer, lung cancer, stomach cancer, duodenum cancer, esophageal cancer, colon cancer, and the like.
  • the treatment method according to the fourth embodiment is different from the third embodiment in that the antibody single-photosensitizer is not intravenously administered but is locally administered in or near the tumor ⁇ 3.
  • the treatment system ⁇ 0 2020/175603 21 21 (: 170? 2020 /007932
  • the operator inserts the endoscope 70 through the mouth, nose or anus without intravenously administering the antibody single photosensitizer, and the endoscope 70 To reach the vicinity of tumor ⁇ 3.
  • the operator inserts the long tube 80 into the proximal end portion of the endoscope 70, and projects the long tube 80 from the distal end portion of the endoscope 70.
  • the operator punctures the tumor (3) with the needle tip 8 1 of the long tube 80 while checking the camera image and/or ultrasonic image of the endoscope 70. 80 positions are fixed for tumors ⁇ 3.
  • the operator locally administers the antibody-photosensitizer into the tumor (3 into the tumor via the lumen 82 from the proximal side of the long tube 80. After local administration of the sensitizer, the operator waits until the antibody-photosensitizer binds to the target cell membrane.
  • the time required for the photosensitizer to bind to the target cell membrane is significantly shorter than that for intravenous administration, and is considered to be, for example, about 5 to 10 minutes.
  • the surgeon uses the optical fiber _ 4 from the proximal end side of the lumen 82 of the long tube 80.
  • Insert 1 and measuring device 50 Next, while irradiating the near infrared rays from the optical fiber _ 41, the measuring device 50 monitors that the near infrared rays are radiated to the tumor cells to which the antibody-photosensitizer is bound. Irradiation with near infrared light is started about 5 to 10 minutes after the local administration of the antibody-photosensitizer. The irradiation of near infrared rays may not be started after about 5 to 10 minutes. The procedure after this is the same as the treatment method according to the third embodiment, and therefore the description thereof is omitted.
  • the treatment method according to the fourth embodiment is a treatment method in which near-infrared rays are radiated to the antibody-sensitized substance bound to the tumor cell membrane in the tumor cells. Or scooping the endoscope 70 through the anus and bringing it into the vicinity of the tumor cells that can be reached from the mouth, nose or anus, and from the endoscope 70 to the lumen 82. And a sharp needle tip 81 is formed at the end. ⁇ 0 2020/175603 22 ⁇ (: 170? 2020 /007932
  • the treatment method configured as described above is performed by confirming the camera image and/or the ultrasonic image of the endoscope 70 inserted through the mouth, nose or anus, and The tumor can be punctured accurately and easily. Therefore, it is possible to irradiate near-infrared rays toward the tumor ⁇ 3 by the optical fiber 41 that is inserted into the long tube 80 while keeping the position of the long tube 80 with respect to the tumor ⁇ well. .. Therefore, this treatment method can effectively irradiate near-infrared rays to the antibody-sensitized substance bound to the tumor cell membrane from inside or near the tumor ⁇ 3 and enhance the effect of killing tumor cells. be able to.
  • the antibody-photosensitizer since the antibody-photosensitizer is locally administered, the antibody-photosensitizer can be bound to the tumor cell membrane in a short time with a high probability.
  • the antibody single-photosensitizer can be administered only to a necessary place, so that the burden on the living body can be reduced.
  • the treatment method according to the fifth embodiment is applied to cancer treatment of a transcutaneously accessible organ.
  • the treatment method according to the fifth embodiment can be preferably used for treatment of breast cancer, liver cancer, skin cancer, head and neck cancer, and the like.
  • transcutaneous puncture is performed to enter the body.
  • the treatment system 90 includes a long tube 80 with an outer needle 84 and an inner needle 86, a light irradiation device 40 that can be inserted into the long tube 80, and a measurement that can be inserted into the long tube 80.
  • the apparatus 50 and the ultrasonic diagnostic apparatus 100 are provided. ⁇ 0 2020/175 60 23 23 (: 170? 2020 /007932
  • the long tube 80 is the long tube shown in FIG. 6 (Mimi) as a modification of the third embodiment.
  • the ultrasonic diagnostic apparatus 100 is a known apparatus capable of acquiring an ultrasonic image.
  • the ultrasonic diagnostic apparatus 100 has a probe 110 which transmits and receives ultrasonic waves.
  • the light irradiation device 40 is provided with a plurality of optical fibers _ 4 1 corresponding to the number of the branch needles 8 7 of the inner needles 8 6.
  • Each optical fiber 41 can be inserted into a branch needle 87. Alternatively, the optical fiber 41 may be fixed inside the branch needle 87.
  • the treatment method according to the fifth embodiment will be described by taking the case of treating breast cancer as an example.
  • the present description does not limit the organ to be treated.
  • the operator intravenously administers the antibody single photosensitizer.
  • About intravenous administration is the operator intravenously administers the antibody single photosensitizer.
  • the operator brings the probe 110 of the ultrasonic diagnostic apparatus 100 into contact with the skin, as shown in FIG.
  • the operator puts the outer needle 8 4 that accommodates the inner needle 8 6 in which the inner needle tip 8 8 is elastically deformed, Tumor ⁇ 3 is punctured from the skin located near tumor ⁇ 3.
  • the outer needle 84 may be punctured near tumor ⁇ instead of tumor ⁇ .
  • the inner needle 8 6 is projected from the outer needle 8 4 to the tip side as shown in Fig. 12 (Mitsumi). Spreads in the vicinity of it, which fixes the position of the inner needle 86 to the tumor ⁇ 3.
  • all the branch needles 87 are punctured in the tumor ⁇ , and all the branch needles 87 may be punctured in the vicinity of the tumor ⁇ , not the tumor ⁇ .
  • each optical fiber _ 4 1 inserts the optical fiber _ 4 1 into each branch needle 87.
  • the irradiation part 4 3 of each optical fiber _ 4 1 projects from the branch needle 87. This allows the operator to irradiate near-infrared rays from the optical fiber _ 4 1 inserted into each branch needle 87. Therefore, multiple optical fibers _ 4 1 can efficiently irradiate near-infrared rays to the entire tumor ⁇ 3.
  • the optical fiber 41 does not have to protrude from the branch needle 87.
  • optical fiber _ 4 1 and/or measuring device 5 ⁇ 0 2020/175 60 3 24 (: 170? 2020 /007932
  • 0 may be placed in advance on the branch needle 87 before puncturing.
  • the tip portion of the branch needle 87 may have a light transmitting portion formed of a transparent material that transmits near infrared rays.
  • the optical fiber 41 does not have to protrude from the branch needle 87.
  • the optical fiber 41 is capable of irradiating the tumor (3) with near-infrared rays from the inside of the branch needle 87 through the branch needle 87 and irradiating the tumor (3.
  • the light transmission part is only on the tip side of the branch needle 87. It is preferable that the irradiation is performed in a location other than the tumor ⁇ 3 by configuring in this way.
  • the branch needle 87 may have a slit.
  • the optical fiber _ 4 1 does not have to protrude from the branch needle 87.
  • the optical fiber 41 can irradiate the tumor ⁇ 3 through the slit with near infrared rays from the inside of the branch needle 87.
  • the slit is preferably provided only on the tip side of the branch needle 87. With this configuration, it is possible to prevent near-infrared radiation from irradiating a place other than the tumor ⁇ 3.
  • the operator inserts the measuring device 50 from the proximal end side of the lumen 82 of the outer needle 84 of the long tube 80.
  • the tip of the measuring device 50 projects from the outer needle 84 to the tip side inside the hole formed in the tumor ⁇ by the outer needle 84.
  • the operator measures the temperature or hardness of the tumor ⁇ 3 with the measuring device 50 while irradiating the near infrared rays from the plurality of optical fibers _ 41.
  • the measurement of tumor ⁇ 3 it is possible to monitor in real time that near infrared rays are radiated to the target cells to which the antibody_photosensitizer is bound. Irradiation with near infrared rays is started 12 to 36 hours after intravenous administration.
  • the irradiation direction of near-infrared rays from the optical fiber — 41 is appropriately selected.
  • the irradiation direction of the near-infrared rays may be the tip direction of the optical fiber _ 41, the direction orthogonal to the axial direction of the optical fiber _ 41, or the omnidirectional direction.
  • the operator pulls the inner needle 86 to the proximal side and stores it in the outer needle 84.
  • the branch needle 87 is accommodated in the outer needle 84 while being linearly deformed.
  • the operator identifies the location of the tumor ⁇ 3 irradiated with near infrared light and records it.
  • the operator removes the outer needle 84 from the skin together with the inner needle 86, the optical fiber _ 41 and the measuring device 50.
  • the near infrared irradiation may be monitored by the optical fiber _ 4 1 for near infrared irradiation. Since a plurality of optical fibers _ 4 1 are provided, the temperature can be measured by each optical fiber 4 1. Therefore, according to the temperature measured by each optical fiber 41, the irradiation of the near infrared ray from each optical fiber _ 41 can be controlled separately.
  • the measuring device 50 may be a temperature measuring device using a thermocouple or a hardness measuring device using ultrasonic waves.
  • the irradiation of near infrared rays may be monitored by a sensor placed outside the body or a sensor inserted inside the body cavity.
  • the therapeutic method according to the fifth embodiment is a therapeutic method in which near-infrared rays are radiated to an antibody-sensitized substance bound to a tumor cell membrane in a tumor cell.
  • the present treatment method uses the antibody-photosensitizer bound to the tumor cell membrane as a tumor ⁇ 3 ⁇ 0 2020/175 603 26 ⁇ (: 170? 2020 /007932
  • Near-infrared rays can be effectively irradiated from the part or the vicinity, and the effect of killing tumor cells can be enhanced.
  • the therapeutic system 90 used in the fifth embodiment is a therapeutic system 90 capable of irradiating near-infrared rays to an antibody single photosensitizer bound to a tumor cell membrane in tumor cells.
  • the optical fiber 41 which can be placed in 6 and can emit near infrared rays
  • the optical needle which can be placed in the outer needle 8 4 or the inner needle 8 6 and which monitors the irradiation of the near infrared ray to the portion to be irradiated with the near infrared ray
  • the treatment system 90 configured as described above enables the outer needle 84 and the inner needle 86 to be punctured to a desired position with high accuracy and easily while confirming an ultrasonic image. Therefore, the position of the inner needle 86 with respect to the tumor ⁇ 3 is well maintained, and near-infrared rays can be irradiated toward the tumor ⁇ 3 by the optical fiber _ 4 1 arranged in the inner needle 86. Therefore, the present therapeutic method can effectively irradiate the antibody-sensitized substance bound to the tumor cell membrane with near-infrared rays from inside or near the tumor ⁇ 3, and enhance the effect of killing tumor cells. it can. Further, the procedure can be carried out while confirming by the measuring device 50 that the antibody single photosensitizer receives near infrared rays and the temperature rises, and the tumor cells die.
  • the treatment method according to the sixth embodiment is applied to cancer treatment of a transcutaneously reachable organ, like the treatment method according to the fifth embodiment.
  • the treatment method according to the sixth embodiment can be suitably used for treatment of, for example, breast cancer, liver cancer, skin cancer, head and neck cancer, and the like.
  • the treatment method according to the sixth embodiment does not administer the antibody single-photosensitizer intravenously, but rather administers the tumor (into or near the tumor 3 locally by the branch needle 87 of the long tube 80, Different from the fifth embodiment Note that the treatment apparatus is the same as the apparatus used in the treatment method according to the fifth embodiment.
  • the operator does not intravenously administer the antibody single photosensitizer and confirms the ultrasonic image while checking the outer needle 84 of the long tube 80, tumor ⁇ 2020/175603 27 27 (: 170? 2020/007932
  • the operator can project the inner needle 8 6 from the outer needle 8 4 after puncturing the outer needle 8 4.
  • the inner needle 86 spreads inside the tumor ⁇ or in the vicinity thereof, which fixes the position of the inner needle 86 with respect to the tumor (3).
  • the surgeon locally administers the antibody-photosensitizer to the tumor (into or near the tumor 3 through the inner needle 86 from the proximal side of the inner needle 86).
  • the operator waits until the antibody-photosensitizer binds to the target cell membrane.
  • the time required for the antibody single-photosensitizer to bind to the target cell membrane is significantly shorter than that for intravenous administration, and is considered to be, for example, about 5 to 10 minutes.
  • the operator inserts the optical fiber _ 4 1 into each branch needle 87. Since the procedure after this is the same as the treatment method according to the fifth embodiment, the description thereof will be omitted. Irradiation with near infrared light is started about 5 to 10 minutes after the local administration of antibody_photosensitizer. The irradiation of the near infrared ray does not have to start after about 5 to 10 minutes.
  • the therapeutic method according to the sixth embodiment is a therapeutic method in which near-infrared rays are radiated to an antibody-sensitized substance bound to a tumor cell membrane in tumor cells, which is transdermal.
  • the step of percutaneously puncturing the hollow outer needle 8 4 into or near the tumor ⁇ and the inner needle 8 6 with multiple sharp inner needle tips 8 8 To project the inner needle tip 8 8 into the tumor (3 or its vicinity, and to administer the antibody photosensitizer to the tumor ⁇ or its vicinity via the inner needle 8 6 And irradiating near-infrared rays from the optical fiber _ 4 1 inserted into the inner needle 86 toward the antibody single-photosensitizer bound to the tumor cell membrane.
  • the outer needle 8 4 and the inner needle 8 6 can be accurately and easily punctured to a desired position while confirming an ultrasonic image. Therefore, the position of the inner needle 86 with respect to the tumor can be properly maintained, and near-infrared rays can be irradiated toward the tumor ⁇ 3 by the optical fiber 41 arranged in the inner needle 86. Therefore, ⁇ 02020/175603 28 ⁇ (: 170? 2020 /007932
  • This treatment method can effectively irradiate the antibody single-photosensitizer bound to the tumor cell membrane with near-infrared rays from inside or near the tumor ⁇ 3, and enhance the effect of killing tumor cells. Moreover, since the antibody-photosensitizer is locally administered, the antibody-photosensitizer can be bound to the tumor cell membrane in a short time with a high probability. In addition, since the antibody photosensitizer can be administered only where it is needed, the burden on the organism can be reduced.

Abstract

腫瘍細胞に結合された抗体-光感受性物質に近赤外線を効果的に照射できる治療方法および治療システムを提供する。 腫瘍細胞中の腫瘍細胞膜に結合させた抗体-光感受性物質に対して近赤外線を照射する治療方法であって、抗体-光感受性物質を静脈投与するステップと、経皮的に超音波画像を取得して確認しつつ、中空の外針(84)を経皮的に腫瘍(C)またはその近傍に穿刺するステップと、複数の鋭利な内針先(88)を有する内針(86)を外針(84)から突出させて、内針先(88)を腫瘍(C)またはその近傍に穿刺するステップと、静脈投与から12~36時間経過後に、腫瘍細胞膜に結合させた抗体-光感受性物質へ向けて、内針(86)に挿入された光ファイバー(41)から近赤外線を照射するステップと、を有する。

Description

\¥0 2020/175603 1 卩(:17 2020 /007932 明 細 書
発明の名称 : 治療方法および治療システム
技術分野
[0001 ] 本発明は、 腫瘍細胞を死滅させるための治療方法および治療システムに関 する。
背景技術
[0002] がん細胞などの腫瘍細胞を死滅させるための治療方法として、 光感受性物 質を用いた方法が知られている。 この治療方法では、 がん細胞の表面にある 特有の抗原のみに特異的に結合する抗体と、 その抗体と対になる光感受性物 質とを結合させた抗体一光感受性物質を、 薬剤として使用する。 例えば、 波 長 7 0 0
Figure imgf000003_0001
付近の近赤外線に反応する物質である親水性フタロシアニン (
I 7 0 0) と抗体を結合した抗体一光感受性物質を用いた治療方法は、 腫 瘍に集積した光感受性物質に対して近赤外線を照射することで、 正常細胞な どの非標的細胞を死滅させずに、 標的細胞を特異的に死滅させることができ る。 このため、 この方法を用いることで、 副作用を軽減しながら高い治療効 果を得ることが期待される。
[0003] 一方で、 光感受性物質の高い治療効果を得るためには、 腫瘍細胞膜に結合 した抗体一光感受性物質に対して、 確実に近赤外線を照射することが必要で ある。 しかしながら、 近赤外線の組織内への深達度は短い。 このため、 非侵 襲的に体表面から光を届けることは困難である。 したがって、 侵襲性を抑え ながら確実に光を腫瘍に届ける手段が望まれる。 例えば特許文献 1 には、 光 ファイバーを備える長尺なデバイスを、 経血管的に腫瘍の近くへ揷入し、 血 管内から光を照射する方法が開示されている。
先行技術文献
特許文献
[0004] 特許文献 1 :米国特許出願公開第 2 0 1 8 - 0 1 1 3 2 4 6号明細書
発明の概要 \¥0 2020/175603 2 卩(:17 2020 /007932 発明が解決しようとする課題
[0005] 特許文献 1 に開示される方法のように、 経血管的に光を照射する場合であ っても、 腫瘍が形成される器官によっては、 光を腫瘍に届けることが困難な 場合がある。
[0006] 本発明は、 上述した課題を解決するためになされたものであり、 腫瘍細胞 に結合された抗体 _光感受性物質に近赤外線を効果的に照射できる治療方法 および治療システムを提供することを目的とする。
課題を解決するための手段
[0007] 上記目的を達成する本発明に係る治療方法の一態様は、 腫瘍細胞中の腫瘍 細胞膜に結合させた抗体一光感受性物質に対して近赤外線を照射する治療方 法であって、 抗体一光感受性物質を静脈投与するステップと、 経皮的に超音 波画像を取得して確認しつつ、 中空の外針を経皮的に腫瘍またはその近傍に 穿刺するステップと、 複数の鋭利な内針先を有する内針を前記外針から突出 させて、 前記内針先を前記腫瘍またはその近傍に穿刺するステップと、 前記 静脈投与から 1 2〜 3 6時間経過後に、 前記腫瘍細胞膜に結合させた前記抗 体 _光感受性物質へ向けて、 前記内針に揷入された光ファイバーから近赤外 線を照射するステップと、 を有することを特徴とする。
発明の効果
[0008] 上記のように構成した治療方法は、 超音波画像を確認しつつ、 外針および 内針を望ましい位置へ高精度かつ容易に穿刺できる。 このため、 腫瘍に対す る内針の位置を良好に保持して、 内針に配置される光ファイバーにより、 近 赤外線を腫瘍へ向けて照射できる。 したがって、 本治療方法は、 腫瘍細胞膜 に結合させた抗体一光感受性物質に、 腫瘍の内部または近傍から近赤外線を 効果的に照射できる。
[0009] 上記目的を達成する本発明に係る治療方法の他の態様は、 腫瘍細胞中の腫 瘍細胞膜に結合させた抗体一光感受性物質に対して近赤外線を照射する治療 方法であって、 経皮的に超音波画像を取得して確認しつつ、 中空の外針を経 皮的に腫瘍またはその近傍に穿刺するステップと、 複数の鋭利な内針先を有 \¥0 2020/175603 3 卩(:170? 2020 /007932
する内針を前記外針から突出させて、 前記内針先を前記腫瘍またはその近傍 に穿刺するステップと、 前記内針を介して抗体一光感受性物質を前記腫瘍ま たはその近傍へ投与するステップと、 前記腫瘍細胞膜に結合させた前記抗体 _光感受性物質へ向けて、 前記内針に揷入された光ファイバーから近赤外線 を照射するステップと、 を有することを特徴とする。
[0010] 上記のように構成した治療方法は、 超音波画像を確認しつつ、 外針および 内針を望ましい位置へ高精度かつ容易に穿刺できる。 このため、 腫瘍に対す る内針の位置を良好に保持して、 内針に配置される光ファイバーにより、 近 赤外線を腫瘍へ向けて照射できる。 したがって、 本治療方法は、 腫瘍細胞膜 に結合させた抗体一光感受性物質に、 腫瘍の内部または近傍から近赤外線を 効果的に照射できる。 また、 抗体一光感受性物質を局所投与するため、 抗体 _光感受性物質を短時間かつ高い確率で腫瘍細胞膜に結合させることができ る。 また、 抗体一光感受性物質を、 必要な場所にのみ投与できるため、 生体 への負担を低減できる。
[001 1 ] 前記光ファイバーから近赤外線を照射するステップにおいて、 前記抗体一 光感受性物質への近赤外線の照射をモニタリングしてもよい。 これにより、 抗体一光感受性物質が近赤外線を受けて温度上昇することで腫瘍細胞が死滅 されることを確認しつつ、 手技を進めることができる。
[0012] 前記モニタリングにおいて、 近赤外線を照射する前記光ファイバーにより 、 前記抗体一光感受性物質が結合された腫瘍細胞膜を有する腫瘍細胞または その近傍の温度をモニタリングしてもよい。 これにより、 近赤外線の照射を 受けた抗体一光感受性物質の温度上昇によって腫瘍細胞が死滅することを確 認しつつ、 手技を進めることができる。 また、 温度の測定に光ファイバーも 用いることで、 離れた位置の温度を非接触で効果的にモニタリングできる。 また、 近赤外線を照射する光ファイバーを利用してモニタリングするため、 温度計測用の他のデバイスをカテーテルに揷入する必要がなく、 手技が容易 となる。
[0013] 前記モニタリングにおいて、 接触型の温度センサを前記外針に挿入し、 当 \¥0 2020/175603 4 卩(:170? 2020 /007932
該温度センサにより、 前記抗体一光感受性物質が結合された腫瘍細胞膜を有 する腫瘍細胞またはその近傍の温度をモニタリングしてもよい。 これにより 、 近赤外線の照射を受けた抗体一光感受性物質の温度上昇によって腫瘍細胞 が死滅することを確認しつつ、 手技を進めることができる。
[0014] 前記モニタリングにおいて、 超音波を送受信できる探触子を有する硬さ測 定装置を前記外針に挿入し、 当該硬さ測定装置により、 前記抗体一光感受性 物質が結合された腫瘍細胞膜を有する腫瘍組織塊の硬さをモニタリングして もよい。 これにより、 腫瘍細胞が死滅することを確認しつつ、 手技を進める ことができる。 また、 超音波を利用する硬さ測定装置を用いることで、 離れ た位置の硬さを非接触で効果的にモニタリングできる。
[0015] 前記治療方法は、 前記光ファイバーから近赤外線を照射するステップの後 、 近赤外線を照射された部位を特定するステップを有してもよい。 これによ り、 近赤外線の照射を完了した部位を特定して、 この後の手技を円滑に進め たり、 術後の経過観察を効果的に行うことができる。 例えば、 複数の場所で 近赤外線の照射を行う場合等には、 近赤外線の照射が完了した部位を正確に 把握できるため、 有効である。
[0016] 上記目的を達成する本発明に係る治療装置は、 腫瘍細胞中の腫瘍細胞膜に 結合させた抗体一光感受性物質に対して近赤外線を照射することが可能な治 療システムであって、 超音波診断装置と、 中空の外針と、 前記外針に揷入可 能であって、 複数の鋭利な内針先を有する内針と、 前記内針に配置可能であ って、 近赤外線を照射可能な光ファイバーと、 前記外針または内針に配置可 能であって、 近赤外線を照射される部位への近赤外線の照射をモニタリング する測定装置と、 を有することを特徴とする。
[0017] 上記のように構成した治療システムは、 超音波画像を確認しつつ、 外針お よび内針を望ましい位置へ高精度かつ容易に穿刺することを可能とする。 こ のため、 腫瘍に対する内針の位置を良好に保持して、 内針に配置される光フ ァイパーにより、 近赤外線を腫瘍へ向けて照射できる。 したがって、 本治療 方法は、 腫瘍細胞膜に結合させた抗体一光感受性物質に、 腫瘍の内部または \¥0 2020/175603 5 卩(:170? 2020 /007932
近傍から近赤外線を効果的に照射でき、 腫瘍細胞を死滅させる効果を高める ことができる。 また、 抗体一光感受性物質が近赤外線を受けて温度上昇し、 腫瘍細胞が死滅することを測定装置により確認しつつ、 手技を進めることが できる。
図面の簡単な説明
[0018] [図 1]第 1実施形態に係る治療方法に用いられる治療システムを示す平面図で ある。
[図 2]第 1実施形態に係る治療方法により肝がんを治療する際の体内の状態を 示す概略図である。
[図 3]肝がんを治療する際の治療システムを示す断面図であり、 (八) は近赤 外線を先端方向へ照射する場合、 (巳) は近赤外線を光ファイバーと直交す る方向へ照射する場合を示す。
[図 4]バルーンカテーテルを用いて肝がんを治療する際の治療システムを示す 断面図であり、 ( ) は近赤外線を先端方向へ照射する場合、 (巳) は近赤 外線を光ファイバーと直交する方向へ照射する場合を示す。
[図 5]第 3実施形態に係る治療方法に用いられる治療システムを示す平面図で ある。
[図 6]治療システムの変形例を示す平面図であり、 ( ) は長尺管の変形例、 (B) は長尺管の他の変形例を示す。
[図 7]第 3実施形態に係る治療方法により胃がんを治療する際の体内の状態を 示す概略図である。
[図 8]胃がんを治療する際の治療システムを示す断面図である。
[図 9]変形例である長尺管を用いて胃がんを治療する際を示す断面図であり、 (八) は外針を腫瘍に穿刺した状態、 (巳) は内針を腫瘍に穿刺した状態を 示す。
[図 10]第 5実施形態に係る治療方法に用いられる治療システムを示す平面図 である。
[図 1 1]第 5実施形態に係る治療方法により乳がんを治療する際の体内の状態 \¥0 2020/175603 6 卩(:17 2020 /007932
を示す概略図である。
[図 12]治療システムを用いて乳がんを治療する際を示す断面図であり、 (八 ) は外針を腫瘍に穿刺した状態、 (巳) は内針を腫瘍に穿刺した状態を示す 発明を実施するための形態
[0019] 以下、 図面を参照して、 本発明の実施の形態を説明する。 なお、 図面の寸 法は、 説明の都合上、 誇張されて実際の寸法とは異なる場合がある。 また、 本明細書及び図面において、 実質的に同一の機能構成を有する構成要素につ いては、 同一の符号を付することにより重複説明を省略する。 本明細書にお いて、 デバイスの生体管腔に挿入する側を 「先端側」 、 操作する手元側を 「 基端側」 と称することとする。
[0020] <第 1実施形態>
[0021 ] 第 1実施形態に係る治療方法は、 標的細胞の細胞膜に結合させた抗体 _光 感受性物質に、 経血管的に近赤外線を照射して、 標的細胞を死滅させる光免 疫療法である。 標的細胞は、 がん細胞等の腫瘍細胞である。 この治療方法で は、 腫瘍細胞の表面にある特有の抗原のみに特異的に結合する抗体と、 その 抗体と対になる光感受性物質とを結合させた抗体一光感受性物質を、 薬剤と して使用する。 抗体は、 特に限定されないが、 例えば、 パニツムバブ、 トラ スツズマブ、 1~1リ」 5 9 1等である。 光感受性物質は、 例えば、 約 7 0 0 n の波長の近赤外線に反応する物質 ( I 8 7 0 0) である親水性フタロシア ニンであるが、 これに限定されない。
Figure imgf000008_0001
約 6 6 0〜 7 4 0门〇1 の波長の近赤外線を受けると光を吸収し、 化学変化を生じて発熱することで 、 腫瘍細胞を死滅させることができると言われている。 また、 他の説によれ ば、 細胞膜に付いた
Figure imgf000008_0002
約 6 6 0〜 7 4 0 n の波長の近赤外線 を受けると、 水溶性を担保している官能基のリガンドが切れ、 水溶性から疎 水性へ構造変化を生じる。 この構造変化によって膜たんぱく質が引き抜かれ 、 細胞膜に穴が開いて細胞内に水が入り込むことで、 がん細胞を破裂させて 死滅させることができる。 いずれの説においても、 丨
Figure imgf000008_0003
7 0 0は、 約 6 6 0 \¥0 2020/175603 7 卩(:170? 2020 /007932
〜 7 4 0 n の波長の近赤外線を受けることで、 がん細胞を死滅させること ができる。 第 1実施形態に係る治療方法は、 例えば、 体表面から離れている ために、 体表面から近赤外線を照射することが困難な器官のがん治療に好適 である。 第 1実施形態に係る治療方法は、 例えば、 肝臓がん、 肺がん等の治 療に好適に使用できる。
[0022] 第 1実施形態に係る治療方法では、 標的細胞に結合された抗体 _光感受性 物質に、 経血管的に近赤外線を照射するために、 図 1 に示すように、 血管に 揷入可能な治療システム 1 〇を使用する。 まず、 治療システム 1 0について 説明する。
[0023] 治療システム 1 0は、 ガイ ドワイヤ 2 0と、 カテーテル 3 0と、 カテーテ ル 3 0に挿入可能な光照射装置 4 0と、 カテーテル 3 0に挿入可能な測定装 置 5 0とを備えている。
[0024] ガイ ドワイヤ 2 0は、 カテーテル 3 0を生体内の目的の位置まで誘導する ための長尺なワイヤである。 カテーテル 3 0は、 例えばマイクロカテーテル であり、 先端から基端へ貫通するルーメン 3 1 を有している。 マイクロカテ —テルは、 治療対象となる器官の末梢血管内に揷入可能な細いカテーテルで ある。 マイクロカテーテルの直径は、 0 . 5〜 1 . 0
Figure imgf000009_0001
程度である。 なお 、 カテーテル 3 0は、 治療する場所によっては、 マイクロカテーテルよりも 太いカテーテル 3 0であってもよい。 また、 カテーテル 3 0は、 図 4に示す ように、 先端部に拡張可能なバルーン 3 2を備えるバルーンカテーテル 3 0 であってもよい。 バルーンカテーテル 3 0は、 バルーン 3 2へ拡張用の流体 を供給するための第 2ルーメン 3 3を有している。
[0025] 光照射装置 4 0は、 図 1、 3 (八) に示すように、 光ファイバー4 1 と、 光ファイバ _ 4 1へ近赤外線を供給する光出力部 4 2とを備えている。 光出 力部 4 2は、 光ファイバー4 1へ、 任意の波長の近赤外線を任意の線量で出 力できる。 光出力部 4 2は、 例えば 6 6 0〜 7 4 0 n
Figure imgf000009_0002
の波長で、 例えば 1 〜 5 0」 〇 - 2の線量で光を照射できるように、 光ファイバ _ 4 1へ出力を 行う。 近赤外線を出力する光ファイバー4 1は、 1本のファイバーで構成さ \¥0 2020/175603 8 卩(:170? 2020 /007932
れても、 バンドルされた複数本のファイバーで構成されてもよい。 光ファイ バ _ 4 1は、 光出力部 4 2に対して着脱可能であることが好ましいが、 これ に限定されない。 光ファイバ _ 4 1の先端には、 光を照射する照射部 4 3が 設けられる。 また、 光ファイバ _ 4 1の先端部には、 位置確認マーカー 4 4 が設けられる。
[0026] 照射部 4 3は、 光ファイバ _ 4 1の基端側から入った光を、 外部へ照射す る。 照射部 4 3は、 例えば、 コアが露出した部位、 レンズ、 ディフューザー 、 またはミラー等により構成され得る。 照射部 4 3は、 コアが露出した部位 、 レンズ、 ディフューザー、 またはミラー等を用いて、 所定の方向へ所定の 照射角度で近赤外線を照射できるように、 適宜設計される。 なお、 照射部 4 3は、 光を外部へ照射できるのであれば、 その構造は限定されない。 照射部 4 3は、 例えば、 図 3 (八) に示すように、 近赤外線を所定の照射角度で先 端方向へ照射する。 なお、 照射方向 (照射角度の中心が位置する方向) は、 特に限定されない。 例えば、 照射部 4 3は、 図 3 (巳) に示すように、 光フ ァイバ _ 4 1 と略直交する方向へ、 近赤外線を照射してもよい。
[0027] 位置確認マーカー 4 4は、 体内の位置を術者が確認するための部位である 。 位置確認マーカー 4 4は、 例えば X線不透過性の材料により形成される。
X線不透過性の材料は、 例えば、 金、 白金、 タングステン等の金属またはこ れらを含む合金等のような金属材料である。 これにより、 術者は、 体外にお ける X線造影下で、 位置確認マーカー 4 4の位置を確認できる。 なお、 位置 確認マーカー 4 4は、 術者が体内における位置を確認できるのであれば、 X 線造影性のマーカーでなくてもよい。
[0028] 測定装置 5 0は、 図 1、 3 ( ) に示すように、 標的細胞を有する腫瘍〇 に対して、 近赤外線を照射できていることをリアルタイムでモニタリングす る装置である。 測定装置 5 0は、 例えば、 腫瘍<3の温度を非接触で、 または 接触して計測できる温度測定装置である。 測定装置 5 0は、 例えば、 測定用 光ファイバ _ 5 1 と、 測定用光ファイバ _ 5 1で検出した光を受け取る光計 測部 5 2と、 測定用光ファイバ _ 5 1の先端部に位置する測定用マーカー 5 \¥0 2020/175603 9 卩(:170? 2020 /007932
3とを備えている。 測定用光ファイバ _ 5 1は、 先端部で、 温度が上昇した 物体が放射する赤外線を受けて、 光計測部 5 2へ伝達する。 光計測部 5 2は 、 計測された赤外線の線量等から、 物体の温度を非接触で検出できる。
[0029] なお、 測定用光ファイバ _ 5 1は、 光照射装置 4 0の光ファイバ _ 4 1 と 共通してもよい。 すなわち、 光照射装置 4 0の光ファイバ _ 4 1 を利用して 、 腫瘍〇の温度を計測してもよい。
[0030] 測定装置 5 0は、 近赤外線が、 抗体一光感受性物質が結合された腫瘍細胞 に照射されていることをモニタリングできるのであれば、 光ファイバー4 1 を利用した温度測定装置に限定されず、 例えば、 熱電対を用いた接触式の温 度測定装置や、 超音波を利用した硬さ測定装置 5 0であってもよい。 測定装 置 5 0は、 超音波を利用した硬さ測定装置 5 0である場合、 カテーテル 3 0 に挿入可能な長尺な管体の先端部に、 超音波探触子を備える。 硬さ測定装置 5 0は、 探触子により超音波を外部へ送信するとともに、 超音波の反射波を 受信して、 組織の断層画像を算出する。 硬さ測定装置 5 0は、 断層画像の輝 度の変化から、 死滅した腫瘍細胞を含む腫瘍<3の硬さ (腫瘍細胞膜を有する 腫瘍組織塊の硬さ) の変化を検出できる。 または、 測定装置 5 0は、 死滅し た腫瘍細胞を含む腫瘍<3の弾性変化や、 血流の変化を検出できるセンサであ ってもよい。
[0031 ] 次に、 第 1実施形態に係る治療方法を、 肝臓がんを治療する場合を例とし て説明する。 なお、 本説明は、 治療する器官を限定するものではない。
[0032] 始めに、 抗体一光感受性物質を、 静脈投与する。 静脈投与から約 1 2〜 3
6時間経過後に、 術者は、 図 2に示すように、 例えば大腿動脈、 上腕動脈、 橈骨動脈等から、 ガイ ドワイヤ 2 0を血管内に挿入する。 次に、 ガイ ドワイ ヤ 2 0の基端をカテーテル 3 0のルーメン 3 1 に揷入し、 ガイ ドワイヤ 2 0 に沿って、 カテーテル 3 0を血管内に揷入する。 次に、 ガイ ドワイヤ 2 0を 先行させつつ、 カテーテル 3 0を、 腫瘍<3が形成された肝臓の主要動脈 (例 えば、 栄養動脈) である肝動脈に揷入する。 この後、 術者は、 カテーテル 3 0からガイ ドワイヤ 2 0を抜去する。 なお、 肺がんの治療の場合、 肺の主要 \¥0 2020/175603 10 卩(:170? 2020 /007932
動脈は、 気管支動脈である。
[0033] 次に、 術者は、 カテーテル 3 0の基端側から、 ルーメン 3 1 に光ファイバ — 4 1 を揷入する。 光ファイバー4 1の先端部は、 図 3 (八) に示すように 、 カテーテル 3 0から先端側へ突出する。 次に、 術者は、 光ファイバー4 1 の位置確認マーカー 4 4の位置を、 X線造影下で確認しつつ、 目的の位置へ 到達させる。 目的の位置とは、 腫瘍<3に近く、 かつ腫瘍<3へ近赤外線を照射 可能な位置である。
[0034] 次に、 術者は、 カテーテル 3 0の基端側から、 ルーメン 3 1 に測定用光フ ァイバ _ 5 1 を揷入する。 測定用光ファイバ _ 5 1の先端部は、 カテーテル 3 0から先端側へ突出する。 次に、 術者は、 測定用光ファイバ _ 5 1の測定 用マーカー 5 3の位置を、 X線造影下で確認しつつ、 目的の位置へ到達させ る。 目的の位置とは、 がん細胞のある腫瘍<3に近く、 かつ腫瘍<3の温度を測 定可能な位置である。 測定用光ファイバ _ 5 1は、 光ファイバ _ 4 1からの 近赤外線の照射を阻害しない位置に配置されることが好ましい。
[0035] 次に、 術者は、 カテーテル 3 0の基端側から、 ルーメン 3 1 に生理食塩水 を供給する。 このとき、 例えば、 術者は、 カテーテル 3 0の基端部に位置す るハブに丫コネクタを接続して、 ガイ ドワイヤ 2 0が導出されるポートとは 異なるポートから、 生理食塩水を供給する。 生理食塩水は、 光ファイバ _ 4 1および測定用光ファイバ _ 5 1 を揷入されているルーメン 3 1内の隙間を 通り、 肝動脈へ流入する。 これにより、 生理食塩水が、 カテーテル 3 0から 肝動脈へ注入 (フラッシュ) される。 このため、 光ファイバー4 1および測 定用光ファイバ _ 5 1が位置する肝動脈内の血液が押し流され、 肝動脈内が 生理食塩水で一時的に満たされた状態となる。 生理食塩水は、 カテーテル 3 0のルーメン 3 1 と光ファイバー 4 0の間を通つて動脈内へ注入される。 こ れにより、 他のデバイスを用いずに、 光ファイバ _ 4 0が揷入されている力 テーテル 3 0を利用して、 生理食塩水を肝動脈内へ注入できる。
[0036] 図 4 (八) に示すように、 カテーテル 3 0がバルーン 3 2を有する場合に は、 生理食塩水をフラッシュする前、 フラッシュしている際、 またはフラッ \¥0 2020/175603 1 1 卩(:170? 2020 /007932
シュした後に、 バルーン 3 2を拡張させてもよい。 これにより、 肝動脈の血 流が遮断されるとともに、 肝動脈内が生理食塩水で一時的に満たされる。 こ のため、 肝動脈内をより確実に生理食塩水で満たすことができる。 なお、 術 者は、 生理食塩水をフラッシュすることなく、 バルーン 3 2を拡張させても よい。
[0037] 肝動脈内を生理食塩水で満たした後、 または肝動脈内の血流を遮断した後 、 術者は、 光ファイバ _ 4 1 または測定用光ファイバ _ 5 1 により、 肝動脈 内を観察してもよい。 これにより、 術者は、 肝動脈内が生理食塩水で満たさ れたこと、 および/または肝動脈内の血流が遮断されたことを正確に確認で きる。 なお、 光ファイバー 4 1 または測定用光ファイバー 5 1 による肝動脈 内の血液の観察は、 行われなくてもよい。
[0038] 次に、 図 3 (八) または図 4 (八) に示すように、 光ファイバー4 1から 近赤外線を照射しつつ、 測定用光ファイバ _ 5 1 により、 腫瘍 <3の温度を測 定する。 近赤外線の照射は、 静脈投与から 1 2〜 3 6時間経過後に開始され る。 腫瘍 <3の温度測定を持続することで、 近赤外線が、 抗体一光感受性物質 が結合された腫瘍細胞に照射されていることをモニタリングできる。 このと き、 肝動脈内が生理食塩水で満たされており、 および/または肝動脈内の血 流が遮断されているため、 近赤外線の照射および温度計測が、 血液に影響さ れ難い。 このため、 腫瘍細胞膜に結合させた抗体 _光感受性物質に、 近赤外 線を効果的に到達させることができる。 したがって、 近赤外線の照射および 温度計測を、 効果的に行うことができる。 光ファイバ _ 4 1から近赤外線を 照射する際には、 近赤外線は、 光ファイバ _ 4 1から生体組織へ直接的に照 射される。 すなわち、 近赤外線は、 例えば、 バルーンの内部からバルーンを 介して間接的に照射されるのではない。 このため、 近赤外線を、 抗体一光感 受性物質が結合された腫瘍細胞へ効果的に照射できる。
[0039] 光ファイバ _ 4 1からの近赤外線の照射方向は、 光ファイバ _ 4 1の先端 方向である。 または図 3 (巳) または図 4 (巳) に示すように、 近赤外線の 照射方向は、 光ファイバ _ 4 1の軸方向と直交する方向であってもよい。 術 \¥0 2020/175603 12 卩(:170? 2020 /007932
者は、 光ファイバ _ 4 1 を揷入する血管に対する腫瘍 0の位置に応じて、 使 用する光ファイバ _ 4 1 を適宜選択できる。
[0040] 術者は、 測定装置 5 0によりモニタリングする腫瘍(3の温度により、 近赤 外線の照射による腫瘍細胞の死滅を確認しつつ、 近赤外線の照射を持続する 。 術者は、 近赤外線の照射中の光ファイバ _ 4 1 を手元で操作して、 照射方 向および位置を調節してもよい。
[0041 ] 術者は、 腫瘍細胞の死滅が十分に行われたと判断する場合や、 これ以上の 照射は望ましくないと判断した場合や、 所定時間が経過した場合に、 近赤外 線の照射を停止し、 測定装置 5 0によるモニタリングを停止する。 腫瘍細胞 の死滅が十分に行われたと判断しやすいように、 照射を停止する条件となる 温度の閾値が、 予め設定されてもよい。 測定される腫瘍<3の温度が閾値を超 える場合に、 術者は、 近赤外線の照射の停止を容易に判断できる。 閾値は、 光計測部 5 2に設定されてもよい。 これにより、 光計測部 5 2は、 測定され る腫瘍<3の温度が閾値を超える場合に、 モニターやスピーカー等を介して、 術者へ通知することができる。 なお、 近赤外線の照射の停止の条件は、 腫瘍 〇の温度が閾値を超えることではなく、 閾値を超えた腫瘍〇の広さ (体積や 面積) であってもよい。 または、 光計測部 5 2は、 近赤外線の照射時間が予 め設定されていてもよい。
[0042] 次に、 術者は、 近赤外線の照射を行った腫瘍<3の位置を特定し、 記録に残 す。 腫瘍<3の位置は、 予め取得されている患者の<3丁画像や1\/| [¾ I画像等の データの位置情報と対応するように、 電子的なデータとして記録されること が望ましい。 これにより、 この後の手技を円滑に進めたり、 術後の経過観察 を効果的に行ったりすることができる。 例えば、 複数の腫瘍〇に対して近赤 外線の照射を行う場合等には、 近赤外線の照射が完了した腫瘍<3を正確に把 握できることで、 全ての腫瘍<3への照射を、 円滑かつ確実に行うことができ る。
[0043] 近赤外線の照射のモニタリングは、 測定用光ファイバ _ 5 1 に替えて、 近 赤外線照射用の光ファイバ _ 4 1や、 熱電対を用いた温度測定装置や、 超音 \¥0 2020/175603 13 卩(:170? 2020 /007932
波を利用した硬さ測定装置により行われてもよい。 また、 近赤外線の照射の モニタリングは、 体外に位置するセンサ、 または体腔内に揷入されたセンサ により行われてもよい。 次に、 術者は、 カテーテル 3 0を、 光ファイバ _ 4 1および測定装置 5 0とともに皮膚から抜去する。
[0044] 以上のように、 第 1実施形態に係る治療方法は、 腫瘍細胞中の腫瘍細胞膜 に結合させた抗体一光感受性物質に対して近赤外線を照射する治療方法であ って、 抗体一光感受性物質を静脈投与するステップと、 腫瘍細胞を有する器 官の主要の動脈にガイ ドワイヤ 2 0を挿入し、 当該ガイ ドワイヤ 2 0に沿っ てカテーテル 3 0を揷入するステップと、 カテーテル 3 0からガイ ドワイヤ
2 0を抜去するステップと、 カテーテル 3 0に光ファイバー 4 1 を挿入し、 光ファイバー 4 1 に配置される位置確認マーカー 4 4により当該光ファイバ 一 4 1の位置を確認しつつ、 光ファイバー 4 1 を目的の位置へ進めるステッ プと、 静脈投与から 1 2〜 3 6時間経過後に、 動脈内の血液の近赤外線への 影響を減少させつつ、 腫瘍細胞膜に結合させた抗体一光感受性物質へ向けて 、 光ファイバ _ 4 1から近赤外線を照射するステップと、 を有する。
[0045] 上記のように構成した治療方法は、 血管に揷入した光ファイバ _ 4 1 によ り、 腫瘍細胞に結合された抗体一光感受性物質へ向けて近赤外線を照射でき る。 このため、 本治療方法は、 経血管的に、 腫瘍細胞膜に結合させた抗体一 光感受性物質へ近赤外線を効果的に照射でき、 腫瘍細胞を死滅させる効果を 高めることができる。
[0046] また、 第 1実施形態において使用される治療システム 1 0は、 腫瘍細胞中 の腫瘍細胞膜に結合させた抗体一光感受性物質に対して近赤外線を照射する ことが可能な治療システム 1 0であって、 ルーメン 3 1 を有するカテーテル
3 0と、 ルーメン 3 1 に揷入可能であって、 近赤外線を照射可能な光ファイ バ _ 4 1 と、 ルーメン 3 1 に揷入可能であって、 近赤外線を照射される部位 への近赤外線の照射をモニタリングする測定装置 5 0と、 を有する。
[0047] 上記のように構成した治療システム 1 0は、 血管に揷入した光ファイバー 4 1 により、 経血管的に近赤外線を抗体一光感受性物質へ向けて照射できる \¥0 2020/175603 14 卩(:170? 2020 /007932
。 このため、 腫瘍細胞膜に結合させた抗体一光感受性物質に近赤外線を効果 的に照射でき、 腫瘍細胞を死滅させる効果を高めることができる。 また、 術 者は、 抗体一光感受性物質が近赤外線を受けて温度上昇し、 腫瘍細胞が死滅 することを測定装置 5 0により確認しつつ、 手技を進めることができる。
[0048] <第 2実施形態>
[0049] 第 2実施形態に係る治療方法は、 第 1実施形態に係る治療方法と同様に、 経血管的に到達可能な器官のがん治療に適用される。 第 2実施形態に係る治 療方法は、 例えば、 肝臓がん、 肺がん等の治療に好適に使用できる。 なお、 第 2実施形態に係る治療方法は、 抗体一光感受性物質を静脈投与するのでは なく、 腫瘍<3が形成される器官の栄養血管へ局所投与する点で、 第 1実施形 態と異なる。 なお、 治療システムは、 第 1実施形態に係る治療方法に用いる 治療システム 1 0と同様である。
[0050] 第 2実施形態に係る治療方法において、 術者は、 抗体一光感受性物質を静 脈投与せずに、 例えば大腿動脈、 上腕動脈、 橈骨動脈等から、 ガイ ドワイヤ
2 0を先行させつつカテーテル 3 0を肝動脈に揷入する。 次に、 術者は、 力 テーテル 3 0からガイ ドワイヤ 2 0を抜去する。 次に、 術者は、 カテーテル
3 0の基端側からルーメン 3 1 を介して肝動脈内へ、 抗体一光感受性物質を 局所投与する。 なお、 肺がんの治療の場合、 治療対象である肺の栄養動脈で ある気管支動脈へ、 抗体一光感受性物質を局所投与する。
[0051 ] 肝動脈へ抗体一光感受性物質を局所投与した後、 術者は、 抗体一光感受性 物質が標的細胞膜に結合するまで、 待機する。 治療対象である腫瘍<3が存在 する器官の栄養動脈に、 抗体一光感受性物質を局所投与した場合、 抗体一光 感受性物質が標的細胞膜に結合するまでの時間は、 静脈投与の場合よりも格 段に短く、 例えば 5〜 1 0分程度と考えられる。
[0052] 次に、 術者は、 カテーテル 3 0の基端側から、 ルーメン 3 1 に光ファイバ _ 4 1 を挿入する。 この後の手技については、 第 1実施形態に係る治療方法 と同様であるため、 説明を省略する。 なお、 近赤外線の照射は、 抗体一光感 受性物質の局所投与から約 5〜 1 0分経過後に開始される。 近赤外線の照射 \¥0 2020/175603 15 卩(:170? 2020 /007932
の開始は、 約 5〜 1 0分経過後でなくてもよい。
[0053] 以上のように、 第 2実施形態に係る治療方法は、 腫瘍細胞中の腫瘍細胞膜 に結合させた抗体一光感受性物質に対して近赤外線を照射する治療方法であ って、 腫瘍細胞を有する器官の主要の動脈にガイ ドワイヤ 2 0を揷入し、 当 該ガイ ドワイヤ 2 0に沿ってカテーテル 3 0を揷入するステップと、 カテー テル 3 0からガイ ドワイヤ 2 0を抜去するステップと、 カテーテル 3 0を介 して抗体一光感受性物質を動脈内へ投与するステップと、 カテーテル 3 0に 光ファイバー 4 1 を挿入し、 光ファイバー 4 1 に配置される位置確認マーカ — 4 4により当該光ファイバー 4 1の位置を確認しつつ、 光ファイバー 4 1 を目的の位置へ進めるステップと、 動脈内の血液の近赤外線への影響を減少 させつつ、 腫瘍細胞膜に結合させた抗体一光感受性物質へ向けて、 光ファイ バ _ 4 1から近赤外線を照射するステップと、 を有する。
[0054] 上記のように構成した治療方法は、 血管に揷入した光ファイバ _ 4 1 によ り、 腫瘍細胞に結合された抗体一光感受性物質へ向けて近赤外線を照射でき る。 このため、 本治療方法は、 経血管的に、 腫瘍細胞膜に結合させた抗体一 光感受性物質へ近赤外線を効果的に照射でき、 腫瘍細胞を死滅させる効果を 高めることができる。 また、 本治療方法は、 抗体一光感受性物質を局所投与 するため、 抗体一光感受性物質を短時間かつ高い確率で腫瘍細胞膜に結合さ せることができる。 また、 抗体一光感受性物質を、 必要な場所にのみ投与で きるため、 生体への負担を低減できる。
[0055] <第 3実施形態>
[0056] 第 3実施形態に係る治療方法は、 口、 鼻または肛門から内視鏡を用いて到 達可能な器官のがん治療に適用される。 第 3実施形態に係る治療方法は、 例 えば、 脖がん、 肺がん、 胃がん、 十二指腸がん、 食道がん、 大腸がん等の治 療に好適に使用できる。
[0057] 第 3実施形態に係る治療方法では、 標的細胞に結合された抗体 _光感受性 物質に近赤外線を照射するために、 図 5に示すように、 口、 鼻または肛門か ら揷入可能な治療システム 6 0を使用する。 まず、 治療システム 6 0につい \¥0 2020/175603 16 卩(:170? 2020 /007932
て説明する。
[0058] 治療システム 6 0は、 内視鏡 7 0と、 内視鏡 7 0に揷入可能な長尺管 8 0 と、 長尺管 8 0に挿入可能な光照射装置 4 0と、 長尺管 8 0に挿入可能な測 定装置 5 0とを備えている。
[0059] 内視鏡 7 0は、 口、 鼻または肛門から揷入可能であり、 先端部に、 画像を 取得可能なカメラ 7 1 と、 超音波画像装置 7 2とが配置されている。
[0060] 内視鏡 7 0は、 カメラ 7 1 により画像をリアルタイムで取得できる。 また 、 内視鏡 7 0は、 超音波画像装置 7 2により、 超音波画像をリアルタイムで 取得できる。 内視鏡 7 0は、 カメラ画像または超音波画像の少なくとも一方 を取得できる。
[0061 ] 長尺管 8 0は、 先端に鋭利な針先 8 1が形成されている。 長尺管 8 0は、 中空であり、 先端の針から基端へ貫通するルーメン 8 2が形成されている。
[0062] 測定装置 5 0は、 第 1実施形態と同様に、 近赤外線を照射する光ファイバ - 4 1 を用いた温度測定装置、 光ファイバ _ 4 1 とは異なる測定用光ファイ バ _ 5 1 を用いた温度測定装置、 熱電対を用いた温度測定装置、 または超音 波を利用した硬さ測定装置である。 第 2実施形態における測定装置 5 0は、 第 1実施形態と異なり、 腫瘍<3に接触して温度を計測できる。 したがって、 測定装置 5 0は、 熱電対を用いた温度測定装置も、 好適に使用できる。 また は、 測定装置 5 0は、 死滅した腫瘍細胞を有する腫瘍<3の弾性変化や、 血流 の変化を検出できるセンサであってもよい。
[0063] 次に、 第 3実施形態に係る治療方法を、 胃がんを治療する場合を例として 説明する。 なお、 本説明は、 治療する器官を限定するものではない。
[0064] 始めに、 抗体一光感受性物質を、 静脈投与する。 静脈投与から約 1 2〜 3
6時間経過後に、 術者は、 図 7に示すように、 口または鼻から内視鏡 7 0を 挿入し、 内視鏡 7 0を、 胃がんの近傍へ到達させる。 次に、 術者は、 内視鏡 7 0の基端部に長尺管 8 0を挿入し、 内視鏡 7 0の先端部から長尺管 8 0を 突出させる。 次に、 術者は、 図 8に示すように、 内視鏡 7 0のカメラ画像お よび/または超音波画像を確認しつつ、 長尺管 8 0の針先 8 1 を腫瘍<3に接 \¥0 2020/175603 17 卩(:170? 2020 /007932
触させて穿刺する。 これにより、 長尺管 8 0の位置が、 腫瘍 <3に対して固定 される。 なお、 長尺管 8 0は、 内視鏡 7 0に予め配置された状態で、 内視鏡 7 0とともに口、 鼻または肛門へ揷入されてもよい。
[0065] 次に、 術者は、 長尺管 8 0のルーメン 8 2の基端側から、 光ファイバ _ 4
1および測定装置 5〇を揷入する。 光ファイバ _ 4 1および測定装置 5 0の 先端部は、 針先 8 1 によって腫瘍 0に形成された穴の内部で、 針先 8 1から 先端側へ突出する。 なお、 光ファイバ _ 4 1および測定装置 5 0は、 針先 8 1から突出しなくてもよい。 また、 光ファイバ _ 4 1および/または測定装 置 5 0は、 長尺管 8 0に予め配置された状態で、 内視鏡 7 0に揷入されても よい。
[0066] 次に、 術者は、 光ファイバ _ 4 1から近赤外線を照射しつつ、 測定装置 5 〇により、 腫瘍 <3の温度または硬さを測定する。 腫瘍 <3の測定を持続するこ とで、 近赤外線が、 抗体一光感受性物質が結合された腫瘍細胞に照射されて いることをリアルタイムでモニタリングできる。 近赤外線の照射は、 静脈投 与から 1 2〜 3 6時間経過後に開始される。
[0067] 光ファイバ _ 4 1からの近赤外線の照射方向は、 適宜選択される。 例えば 、 近赤外線の照射方向は、 光ファイバ _ 4 1の先端方向、 光ファイバ _ 4 1 の軸方向と直交する方向、 または全方位であってもよい。 術者は、 腫瘍〇に 応じて、 使用する光ファーバーを適宜選択できる。
[0068] 術者は、 測定装置 5 0によるモニタリングにより、 近赤外線の照射による 腫瘍細胞の死滅を確認しつつ、 近赤外線の照射を持続する。 術者は、 近赤外 線の照射中の光ファイバ _ 4 1 を手元で操作して、 照射方向を調節できる。
[0069] なお、 術者は、 長尺管 8 0の針先 8 1 を、 腫瘍〇に穿刺せずに、 腫瘍〇に 接触させてもよい。 長尺管 8 0は、 腫瘍〇に接触するのみであっても、 腫瘍 〇に対する位置を固定できる。 したがって、 長尺管 8 0の先端部は、 鋭利な 針先 8 1が形成されなくてもよい。 なお、 長尺管 8 0が腫瘍(3に接触する際 には、 穿刺しない場合であっても、 ある程度食い込むことが好ましい。 長尺 管 8 0が、 腫瘍 <3に穿刺されない場合、 腫瘍 <3が他の部位へ飛散することを \¥0 2020/175603 18 卩(:170? 2020 /007932
抑制できる。
[0070] 術者は、 腫瘍細胞の死滅が十分に行われたと判断する場合や、 これ以上の 照射は望ましくないと判断した場合や、 所定時間が経過した場合に、 近赤外 線の照射を停止し、 測定装置 5 0によるモニタリングを停止する。 この後、 術者は、 近赤外線の照射を行った腫瘍<3の位置を特定し、 記録に残す。 次に 、 術者は、 長尺管 8 0および光ファイバ _ 4 1 を、 内視鏡 7 0に回収する。
[0071 ] 長尺管 8 0の変形例として、 長尺管 8 0の先端部は、 近赤外線を透過可能 な透明な材料により形成される光透過部を有してもよい。 この場合、 光ファ イバー4 1は、 針先 8 1から突出しなくてもよい。 光ファイバー4 1は、 長 尺管 8 0の内部から近赤外線を、 長尺管 8 0を透過して腫瘍(3へ照射できる 。 また、 測定装置 5 0は、 透明な長尺管 8 0を介して、 非接触で腫瘍<3の温 度または硬さを測定できる。 なお、 光透過部は、 長尺管 8 0の先端側の部位 のみに設けられることが好ましい。 このように構成することで、 腫瘍<3以外 の場所に近赤外線を照射することを防止することが可能となる。
[0072] また、 長尺管 8 0は、 図 6 ( ) に示す他の変形例のように、 針先 8 1 に 少なくとも 1つのスリッ ト 8 3が形成されてもよい。 スリッ ト 8 3の数や形 状等は、 特に限定されない。 この場合、 光ファイバ _ 4 1は、 針先 8 1から 突出しなくてもよい。 光ファイバー4 1は、 長尺管 8 0の内部から近赤外線 を、 スリッ ト 8 3を介して腫瘍(3へ照射できる。 また、 測定装置 5 0は、 ス リッ ト 8 3を介して、 非接触で腫瘍<3の温度または硬さを測定できる。 なお 、 スリッ ト 8 3は、 長尺管 8 0の先端側の部分のみに設けられることが好ま しい。 このように構成することで、 腫瘍<3以外の場所に近赤外線を照射する ことを防止することが可能となる。
[0073] また、 長尺管 8 0は、 図 6 (巳) に示すさらに他の変形例のように、 先端 に外針先 8 5を備える中空の外針 8 4と、 外針 8 4の内部に揷入可能な内針 8 6とを有してもよい。 内針 8 6は、 先端部が先端方向へ向かって広がる複 数本の中空の分岐針 8 7を有している。 複数の分岐針 8 7は、 広がっている 先端部以外は、 束となって固定されていることが好ましい。 分岐針 8 7は、 \¥0 2020/175603 19 卩(:170? 2020 /007932
弾性的に変形可能である。 分岐針 8 7の数は、 特に限定されないが、 2本以 上であることが好ましい。 各々の分岐針 8 7の先端には、 鋭利な内針先 8 8 が形成されている。 長尺管 8 0が複数本の分岐針 8 7を有する場合、 光ファ イバ _ 4 1は、 各々の分岐針 8 7に揷入可能に複数本設けられることが好ま しい。
[0074] 長尺管 8 0が、 外針 8 4および内針 8 6を有する場合には、 術者は、 図 9 (八) に示すように、 内針 8 6を外針 8 4に収容した状態で、 外針 8 4を腫 瘍〇に穿刺する。 この後、 術者は、 図 9 (巳) に示すように、 内針 8 6を外 針 8 4から突出させることができる。 これにより、 内針 8 6は腫瘍(3の内部 で広がる。 この後、 各々の分岐針 8 7に光ファイバ _ 4 1 を揷入し、 各々の 分岐針 8 7から、 近赤外線を照射する。 このため、 複数の光ファイバー4 1 によって、 腫瘍<3の全体へ近赤外線を効率よく照射できる。 なお、 各々の分 岐針 8 7には、 光ファイバー4 1が、 固定的に配置されてもよい。
[0075] 以上のように、 第 3実施形態に係る治療方法は、 腫瘍細胞中の腫瘍細胞膜 に結合させた抗体一光感受性物質に対して近赤外線を照射する治療方法であ って、 抗体一光感受性物質を静脈投与するステップと、 口、 鼻または肛門か ら内視鏡 7 0を揷入し、 口、 鼻または肛門から到達可能な腫瘍<3の近傍に内 視鏡 7 0を到達させるステップと、 内視鏡 7 0から、 ルーメン 8 2が形成さ れた管状の長尺管 8 0を突出させるステップと、 内視鏡 7 0により得られる カメラ画像および/または超音波画像を確認しつつ、 長尺管 8 0を腫瘍〇に 接触させるステップと、 長尺管 8 0のルーメン 8 2に揷入された光ファイバ - 4 1 を腫瘍<3の内部または近傍に到達させるステップと、 静脈投与から 1 2〜 3 6時間経過後に、 腫瘍細胞膜に結合させた抗体 _光感受性物質へ向け て、 光ファイバ _ 4 1から近赤外線を照射するステップと、 を有する。
[0076] 上記のように構成した治療方法は、 口、 鼻または肛門から揷入される内視 鏡 7 0のカメラ画像および/または超音波画像を確認しつつ、 長尺管 8 0を 、 高精度かつ容易に腫瘍〇に接触させることができる。 このため、 腫瘍〇に 対する長尺管 8 0の位置を良好に保持して、 長尺管 8 0に揷入される光ファ \¥0 2020/175603 20 卩(:170? 2020 /007932
イバー4 1 により、 近赤外線を腫瘍<3へ向けて照射できる。 したがって、 本 治療方法は、 腫瘍細胞膜に結合させた抗体一光感受性物質に、 腫瘍<3の内部 または近傍から近赤外線を効果的に照射でき、 腫瘍細胞を死滅させる効果を 高めることができる。
[0077] また、 第 3実施形態において使用される治療システム 6 0は、 腫瘍細胞中 の腫瘍細胞膜に結合させた抗体一光感受性物質に対して近赤外線を照射する ことが可能な治療システム 1 0であって、 カメラ 7 1および/または超音波 画像装置 7 2を備える内視鏡 7 0と、 内視鏡 7 0に揷入可能であって、 ルー メン 8 2が形成された管状の長尺管 8 0と、 ルーメン 8 2に揷入可能であっ て、 近赤外線を照射可能な光ファイバ _ 4 1 と、 ルーメン 8 2に揷入可能で あって、 近赤外線を照射される部位への近赤外線の照射をモニタリングする 測定装置 5 0と、 を有する。
[0078] 上記のように構成した治療システム 6 0は、 内視鏡 7 0のカメラ画像およ び/または超音波画像を確認しつつ、 内視鏡 7 0を通る長尺管 8 0を、 高精 度かつ容易に腫瘍<3に接触させることが可能とする。 このため、 腫瘍(3に対 する長尺管 8 0の位置を良好に保持して、 長尺管 8 0に揷入される光ファイ バー4 1 により、 近赤外線を腫瘍<3へ向けて照射できる。 このため、 腫瘍細 胞膜に結合させた抗体 _光感受性物質に、 腫瘍<3の内部または近傍から近赤 外線を効果的に照射できる。 また、 抗体一光感受性物質が近赤外線を受けて 温度上昇し、 腫瘍細胞が死滅することを測定装置 5 0により確認しつつ、 手 技を進めることができる。
[0079] <第 4実施形態>
[0080] 第 4実施形態に係る治療方法は、 第 3実施形態に係る治療方法と同様に、 口、 鼻または肛門から到達可能な器官のがん治療に適用される。 第 4実施形 態に係る治療方法は、 例えば、 脖がん、 肺がん、 胃がん、 十二指腸がん、 食 道がん、 大腸がん等の治療に好適に使用できる。 なお、 第 4実施形態に係る 治療方法は、 抗体一光感受性物質を静脈投与するのではなく、 腫瘍<3内また はその近傍へ局所投与する点で、 第 3実施形態と異なる。 なお、 治療システ \¥0 2020/175603 21 卩(:170? 2020 /007932
ムは、 第 3実施形態に係る治療方法に用いる治療システム 6 0と同様である
[0081 ] 第 4実施形態に係る治療方法においては、 術者は、 抗体一光感受性物質を 静脈投与せずに、 口、 鼻または肛門から内視鏡 7 0を挿入し、 内視鏡 7 0を 、 腫瘍<3の近傍へ到達させる。 次に、 術者は、 内視鏡 7 0の基端部に長尺管 8 0を挿入し、 内視鏡 7 0の先端部から長尺管 8 0を突出させる。 次に、 術 者は、 内視鏡 7 0のカメラ画像および/または超音波画像を確認しつつ、 長 尺管 8 0の針先 8 1 を腫瘍(3に穿刺する。 これにより、 長尺管 8 0の位置が 腫瘍<3に対して固定される。
[0082] 次に、 術者は、 長尺管 8 0の基端側からルーメン 8 2を介して腫瘍(3内へ 、 抗体一光感受性物質を局所投与する。 腫瘍<3内へ抗体一光感受性物質を局 所投与した後、 術者は、 抗体一光感受性物質が標的細胞膜に結合するまで、 待機する。 治療対象である腫瘍<3に抗体一光感受性物質を局所投与した場合 、 抗体一光感受性物質が標的細胞膜に結合するまでの時間は、 静脈投与の場 合よりも格段に短く、 例えば 5〜 1 0分程度と考えられる。
[0083] 次に、 術者は、 長尺管 8 0のルーメン 8 2の基端側から、 光ファイバ _ 4
1および測定装置 5 0を揷入する。 次に、 光ファイバ _ 4 1から近赤外線を 照射しつつ、 測定装置 5 0により、 近赤外線が、 抗体一光感受性物質が結合 された腫瘍細胞に照射されていることをモニタリングする。 近赤外線の照射 は、 抗体一光感受性物質の局所投与から約 5〜 1 0分経過後に開始される。 近赤外線の照射の開始は、 約 5〜 1 0分経過後でなくてもよい。 この後の手 技については、 第 3実施形態に係る治療方法と同様であるため、 説明を省略 する。
[0084] 以上のように、 第 4実施形態に係る治療方法は、 腫瘍細胞中の腫瘍細胞膜 に結合させた抗体一光感受性物質に対して近赤外線を照射する治療方法であ つて、 口、 鼻または肛門から内視鏡 7 0を揷入し、 口、 鼻または肛門から到 達可能な腫瘍細胞の近傍に内視鏡 7 0を到達させるステップと、 内視鏡 7 0 から、 ルーメン 8 2が形成されるとともに端部に鋭利な針先 8 1が形成され \¥0 2020/175603 22 卩(:170? 2020 /007932
た管状の長尺管 8 0を突出させるステップと、 内視鏡 7 0により得られる力 メラ画像および/または超音波画像を確認しつつ、 針先 8 1 を腫瘍<3に穿刺 するステップと、 長尺管 8 0を介して抗体一光感受性物質を腫瘍(3内へ投与 するステップと、 長尺管 8 0のルーメン 8 2に挿入された光ファイバー 4 1 を腫瘍<3の内部または近傍に到達させるステップと、 腫瘍細胞膜に結合させ た抗体一光感受性物質へ向けて、 光ファイバ _ 4 1から近赤外線を照射する ステップと、 を有する。
[0085] 上記のように構成した治療方法は、 口、 鼻または肛門から揷入される内視 鏡 7 0のカメラ画像および/または超音波画像を確認しつつ、 長尺管 8 0を 、 高精度かつ容易に腫瘍〇に穿刺することができる。 このため、 腫瘍〇に対 する長尺管 8 0の位置を良好に保持して、 長尺管 8 0に揷入される光ファイ バー4 1 により、 近赤外線を腫瘍<3へ向けて照射できる。 したがって、 本治 療方法は、 腫瘍細胞膜に結合させた抗体一光感受性物質に、 腫瘍<3の内部ま たは近傍から近赤外線を効果的に照射でき、 腫瘍細胞を死滅させる効果を高 めることができる。 また、 抗体一光感受性物質を局所投与するため、 抗体一 光感受性物質を短時間かつ高い確率で腫瘍細胞膜に結合させることができる 。 また、 抗体一光感受性物質を、 必要な場所にのみ投与できるため、 生体へ の負担を低減できる。
[0086] <第 5実施形態>
[0087] 第 5実施形態に係る治療方法は、 経皮的に到達可能な器官のがん治療に適 用される。 第 5実施形態に係る治療方法は、 例えば、 乳がん、 肝臓がん、 皮 膚がん、 頭頸部がん等の治療に好適に使用できる。
[0088] 第 5実施形態に係る治療方法では、 標的細胞に結合された抗体 _光感受性 物質に近赤外線を照射するために、 図 1 0に示すように、 経皮的に穿刺して 体内に揷入可能な治療システム 9 0を使用する。 治療システム 9 0は、 外針 8 4および内針 8 6を備える長尺管 8 0と、 長尺管 8 0に挿入可能な光照射 装置 4 0と、 長尺管 8 0に挿入可能な測定装置 5 0と、 超音波診断装置 1 0 0とを備えている。 \¥0 2020/175603 23 卩(:170? 2020 /007932
[0089] 長尺管 8 0は、 第 3実施形態の変形例として図 6 (巳) で示された長尺管
8 0であり、 外針 8 4と内針 8 6とを有している。 超音波診断装置 1 0 0は 、 超音波画像を取得可能な公知の装置である。 超音波診断装置 1 0 0は、 超 音波を送受信する探触子 1 〇 1 を有している。 光照射装置 4 0は、 内針 8 6 の分岐針 8 7の数に対応して、 複数の光ファイバ _ 4 1 を備えている。 各々 の光ファイバー4 1は、 分岐針 8 7に揷入可能である。 または、 光ファイバ — 4 1は、 分岐針 8 7の内部に固定されていてもよい。
[0090] 次に、 第 5実施形態に係る治療方法を、 乳がんを治療する場合を例として 説明する。 なお、 本説明は、 治療する器官を限定するものではない。
[0091 ] 始めに、 術者は、 抗体一光感受性物質を、 静脈投与する。 静脈投与から約
1 2〜 3 6時間経過後に、 術者は、 図 1 1 に示すように、 超音波診断装置 1 0 0の探触子 1 0 1 を皮膚に接触させる。 次に、 術者は、 超音波画像を確認 しつつ、 図 1 2 (八) に示すように、 内針先 8 8が弾性的に変形した内針 8 6を収容した外針 8 4を、 腫瘍 <3の近傍に位置する皮膚から腫瘍(3に穿刺す る。 なお、 外針 8 4は、 腫瘍〇ではなく、 腫瘍〇の近傍に穿刺されてもよい 。 術者は、 外針 8 4を腫瘍(3またはその近傍に穿刺した後、 図 1 2 (巳) に 示すように、 内針 8 6を外針 8 4から先端側へ突出させる。 これにより、 内 針 8 6は腫瘍〇またはその近傍の内部で広がる。 これにより、 内針 8 6の位 置が腫瘍 <3に対して固定される。 このとき、 複数の分岐針 8 7の少なくとも 1つが、 腫瘍〇に穿刺されることが好ましく、 より好ましくは、 全ての分岐 針 8 7が、 腫瘍〇に穿刺される。 なお、 全ての分岐針 8 7が、 腫瘍〇ではな く、 腫瘍〇の近傍に穿刺されることもあり得る。
[0092] 次に、 術者は、 各々の分岐針 8 7に光ファイバ _ 4 1 を揷入する。 各々の 光ファイバ _ 4 1の照射部 4 3は、 分岐針 8 7から突出する。 これにより、 術者は、 各々の分岐針 8 7に揷入された光ファイバ _ 4 1から、 近赤外線を 照射できる。 このため、 複数の光ファイバ _ 4 1 によって、 腫瘍 <3の全体へ 近赤外線を効率よく照射できる。 なお、 光ファイバー4 1は、 分岐針 8 7か ら突出しなくてもよい。 また、 光ファイバ _ 4 1および/または測定装置 5 \¥0 2020/175603 24 卩(:170? 2020 /007932
0は、 穿刺する前の分岐針 8 7に、 予め配置されてもよい。
[0093] 分岐針 8 7の先端部は、 近赤外線を透過する透明な材料により形成される 光透過部を有してもよい。 これにより、 光ファイバー4 1は、 分岐針 8 7か ら突出しなくてもよい。 光ファイバー4 1は、 分岐針 8 7の内部から近赤外 線を、 分岐針 8 7を透過して腫瘍(3へ照射できる。 なお、 光透過部は、 分岐 針 8 7の先端側の部位のみに設けられることが好ましい。 このように構成す ることで、 腫瘍 <3以外の場所に近赤外線を照射することを防止することが可 能となる。
[0094] また、 分岐針 8 7は、 スリッ トを有してもよい。 これにより、 光ファイバ _ 4 1は、 分岐針 8 7から突出しなくてもよい。 光ファイバー4 1は、 分岐 針 8 7の内部から近赤外線を、 スリッ トを介して腫瘍 <3へ照射できる。 なお 、 スリッ トは、 分岐針 8 7の先端側の部分のみに設けられることが好ましい 。 このように構成することで、 腫瘍 <3以外の場所に近赤外線を照射すること を防止することが可能となる。
[0095] 次に、 術者は、 長尺管 8 0の外針 8 4のルーメン 8 2の基端側から、 測定 装置 5 0を挿入する。 測定装置 5 0の先端部は、 外針 8 4によって腫瘍〇に 形成された穴の内部で、 外針 8 4から先端側へ突出する。
[0096] 次に、 術者は、 複数の光ファイバ _ 4 1から近赤外線を照射しつつ、 測定 装置 5 0により、 腫瘍 <3の温度または硬さを測定する。 腫瘍 <3の測定を持続 することで、 近赤外線が、 抗体 _光感受性物質が結合された標的細胞に照射 されていることをリアルタイムでモニタリングできる。 近赤外線の照射は、 静脈投与から 1 2〜 3 6時間経過後に開始される。
[0097] 光ファイバ _ 4 1からの近赤外線の照射方向は、 適宜選択される。 例えば 、 近赤外線の照射方向は、 光ファイバ _ 4 1の先端方向、 光ファイバ _ 4 1 の軸方向と直交する方向、 または全方位であってもよい。
[0098] 術者は、 測定装置 5 0によるモニタリングにより、 近赤外線の照射による 腫瘍細胞の死滅を確認しつつ、 近赤外線の照射を持続する。 術者は、 腫瘍細 胞の死滅が十分に行われたと判断する場合や、 これ以上の照射は望ましくな \¥0 2020/175603 25 卩(:170? 2020 /007932
いと判断した場合や、 所定時間が経過した場合に、 近赤外線の照射を停止し 、 測定装置 5 0によるモニタリングを停止する。 次に、 術者は、 内針 8 6を 基端側へ引き、 外針 8 4に収容する。 これにより、 分岐針 8 7が直線状に変 形しつつ、 外針 8 4に収容される。 この後、 術者は、 近赤外線の照射を行っ た腫瘍<3の位置を特定し、 記録に残す。 次に、 術者は、 外針 8 4を、 内針 8 6、 光ファイバ _ 4 1および測定装置 5 0とともに皮膚から抜去する。
[0099] 近赤外線の照射のモニタリングは、 近赤外線照射用の光ファイバ _ 4 1 に より行われてもよい。 光ファイバ _ 4 1は複数設けられるため、 各々の光フ ァイバー4 1 により、 温度を測定できる。 したがって、 各々の光ファイバー 4 1 により計測される温度に従って、 各々の光ファイバ _ 4 1からの近赤外 線の照射を別々に制御することもできる。 測定装置 5 0は、 熱電対を用いた 温度測定装置や、 超音波を利用した硬さ測定装置であってもよい。 また、 近 赤外線の照射のモニタリングは、 体外に配置したセンサ、 または体腔内に揷 入されたセンサにより行われてもよい。
[0100] 以上のように、 第 5実施形態に係る治療方法は、 腫瘍細胞中の腫瘍細胞膜 に結合させた抗体一光感受性物質に対して近赤外線を照射する治療方法であ って、 抗体 _光感受性物質を静脈投与するステップと、 経皮的に超音波画像 を取得して確認しつつ、 中空の外針 8 4を経皮的に腫瘍<3またはその近傍に 穿刺するステップと、 複数の鋭利な内針先 8 8を有する内針 8 6を外針 8 4 から突出させて、 内針先 8 8を腫瘍〇またはその近傍に穿刺するステップと 、 静脈投与から 1 2〜 3 6時間経過後に、 腫瘍細胞膜に結合させた抗体一光 感受性物質へ向けて、 内針 8 6に挿入された光ファイバ _ 4 1から近赤外線 を照射するステップと、 を有する。
[0101 ] 上記のように構成した治療方法は、 超音波画像を確認しつつ、 外針 8 4お よび内針 8 6を望ましい位置へ高精度かつ容易に穿刺できる。 このため、 腫 瘍〇に対する内針 8 6の位置を良好に保持して、 内針 8 6に配置される光フ ァイバー4 1 により、 近赤外線を腫瘍<3へ向けて照射できる。 したがって、 本治療方法は、 腫瘍細胞膜に結合させた抗体一光感受性物質に、 腫瘍<3の内 \¥0 2020/175603 26 卩(:170? 2020 /007932
部または近傍から近赤外線を効果的に照射でき、 腫瘍細胞を死滅させる効果 を高めることができる。
[0102] また、 第 5実施形態において使用される治療システム 9 0は、 腫瘍細胞中 の腫瘍細胞膜に結合させた抗体一光感受性物質に対して近赤外線を照射する ことが可能な治療システム 9 0であって、 超音波診断装置 1 0 0と、 中空の 外針 8 4と、 外針 8 4に挿入可能であって、 複数の内針先 8 8を有する内針 8 6と、 内針 8 6に配置可能であって、 近赤外線を照射可能な光ファイバー 4 1 と、 外針 8 4または内針 8 6に配置可能であって、 近赤外線を照射され る部位への近赤外線の照射をモニタリングする測定装置 5 0と、 を有する。
[0103] 上記のように構成した治療システム 9 0は、 超音波画像を確認しつつ、 外 針 8 4および内針 8 6を望ましい位置へ高精度かつ容易に穿刺することを可 能とする。 このため、 腫瘍<3に対する内針 8 6の位置を良好に保持して、 内 針 8 6に配置される光ファイバ _ 4 1 により、 近赤外線を腫瘍<3へ向けて照 射できる。 したがって、 本治療方法は、 腫瘍細胞膜に結合させた抗体一光感 受性物質に、 腫瘍<3の内部または近傍から近赤外線を効果的に照射でき、 腫 瘍細胞を死滅させる効果を高めることができる。 また、 抗体一光感受性物質 が近赤外線を受けて温度上昇し、 腫瘍細胞が死滅することを測定装置 5 0に より確認しつつ、 手技を進めることができる。
[0104] <第 6実施形態>
[0105] 第 6実施形態に係る治療方法は、 第 5実施形態に係る治療方法と同様に、 経皮的に到達可能な器官のがん治療に適用される。 第 6実施形態に係る治療 方法は、 例えば、 乳がん、 肝臓がん、 皮膚がん、 頭頸部がん等の治療に好適 に使用できる。 なお、 第 6実施形態に係る治療方法は、 抗体一光感受性物質 を静脈投与するのではなく、 長尺管 8 0の分岐針 8 7により腫瘍(3内または その近傍へ局所投与する点で、 第 5実施形態と異なる。 なお、 治療装置は、 第 5実施形態に係る治療方法に用いる装置と同様である。
[0106] 第 6実施形態に係る治療方法においては、 術者は、 抗体一光感受性物質を 静脈投与せずに、 超音波画像を確認しつつ、 長尺管 8 0の外針 8 4を、 腫瘍 \¥0 2020/175603 27 卩(:170? 2020 /007932
〇の近傍に位置する皮膚から腫瘍(3またはその近傍まで穿刺する。 術者は、 外針 8 4を穿刺した後、 内針 8 6を外針 8 4から突出させることができる。 これにより、 内針 8 6は、 腫瘍〇またはその近傍の内部で広がる。 これによ り、 内針 8 6の位置が腫瘍(3に対して固定される。
[0107] 次に、 術者は、 内針 8 6の基端側から内針 8 6の内部を通って腫瘍(3内ま たはその近傍へ、 抗体一光感受性物質を局所投与する。 抗体一光感受性物質 を局所投与した後、 術者は、 抗体一光感受性物質が標的細胞膜に結合するま で、 待機する。 治療対象である腫瘍 <3に抗体一光感受性物質を局所投与した 場合、 抗体一光感受性物質が標的細胞膜に結合するまでの時間は、 静脈投与 の場合よりも格段に短く、 例えば 5〜 1 0分程度と考えられる。
[0108] 次に、 術者は、 各々の分岐針 8 7に光ファイバ _ 4 1 を揷入する。 この後 の手技については、 第 5実施形態に係る治療方法と同様であるため、 説明を 省略する。 近赤外線の照射は、 抗体 _光感受性物質の局所投与から約 5〜 1 〇分経過後に開始される。 近赤外線の照射の開始は、 約 5〜 1 0分経過後で なくてもよい。
[0109] 以上のように、 第 6実施形態に係る治療方法は、 腫瘍細胞中の腫瘍細胞膜 に結合させた抗体一光感受性物質に対して近赤外線を照射する治療方法であ って、 経皮的に超音波画像を取得して確認しつつ、 中空の外針 8 4を経皮的 に腫瘍〇またはその近傍に穿刺するステップと、 複数の鋭利な内針先 8 8を 有する内針 8 6を外針 8 4から突出させて、 内針先 8 8を腫瘍(3またはその 近傍に穿刺するステップと、 内針 8 6を介して抗体一光感受性物質を腫瘍〇 またはその近傍へ投与するステップと、 腫瘍細胞膜に結合させた抗体一光感 受性物質へ向けて、 内針 8 6に揷入された光ファイバ _ 4 1から近赤外線を 照射するステップと、 を有する。
[01 10] 上記のように構成した治療方法は、 超音波画像を確認しつつ、 外針 8 4お よび内針 8 6を望ましい位置へ高精度かつ容易に穿刺できる。 このため、 腫 瘍〇に対する内針 8 6の位置を良好に保持して、 内針 8 6に配置される光フ ァイバー4 1 により、 近赤外線を腫瘍 <3へ向けて照射できる。 したがって、 \¥02020/175603 28 卩(:170? 2020 /007932
本治療方法は、 腫瘍細胞膜に結合させた抗体一光感受性物質に、 腫瘍<3の内 部または近傍から近赤外線を効果的に照射でき、 腫瘍細胞を死滅させる効果 を高めることができる。 また、 抗体一光感受性物質を局所投与するため、 抗 体一光感受性物質を短時間かつ高い確率で腫瘍細胞膜に結合させることがで きる。 また、 抗体一光感受性物質を、 必要な場所にのみ投与できるため、 生 体への負担を低減できる。
[0111] なお、 本発明は、 上述した実施形態のみに限定されるものではなく、 本発 明の技術的思想内において当業者により種々変更が可能である。
[0112] 本出願は、 201 9年2月 28日に出願された日本特許出願 201 9— 0
36324号に基づいており、 それらの開示内容は、 参照され、 全体として 、 組み入れられている。
符号の説明
[0113] 1 0、 60、 90 治療システム
20 ガイ ドワイヤ
30 カテーテル
30 バルーンカテーテル
3 1 ルーメン
32 バルーン
40 光照射装置
4 1 光ファイバー
42 光出力部
43 照射部
44 位置確認マ _力 _
50 測定装置
5 1 測定用光ファイバー
52 光計測部
53 測定用マーカー
70 内視鏡 \¥02020/175603 29 卩(:170? 2020 /007932
7 1 カメラ
72 超音波画像装置
80 長尺管
81 針先
82 ルーメン
83 スリッ ト
84 外針
85 外針先
86 内針
87 分岐針
88 内針先
1 00 超音波診断装置
1 01 探触子
0 腫瘍

Claims

\¥0 2020/175603 30 卩(:170? 2020 /007932 請求の範囲
[請求項 1 ] 腫瘍細胞中の腫瘍細胞膜に結合させた抗体一光感受性物質に対して 近赤外線を照射する治療方法であって、
抗体 _光感受性物質を静脈投与するステップと、 経皮的に超音波画像を取得して確認しつつ、 中空の外針を経皮的に 腫瘍またはその近傍に穿刺するステップと、
複数の鋭利な内針先を有する内針を前記外針から突出させて、 前記 内針先を前記腫瘍またはその近傍に穿刺するステップと、
前記静脈投与から 1 2〜 3 6時間経過後に、 前記腫瘍細胞膜に結合 させた前記抗体一光感受性物質へ向けて、 前記内針に挿入された光フ ァイバーから近赤外線を照射するステップと、 を有することを特徴と する治療方法。
[請求項 2] 腫瘍細胞中の腫瘍細胞膜に結合させた抗体一光感受性物質に対して 近赤外線を照射する治療方法であって、
経皮的に超音波画像を取得して確認しつつ、 中空の外針を経皮的に 腫瘍またはその近傍に穿刺するステップと、
複数の鋭利な内針先を有する内針を前記外針から突出させて、 前記 内針先を前記腫瘍またはその近傍に穿刺するステップと、
前記内針を介して抗体一光感受性物質を前記腫瘍またはその近傍へ 投与するステップと、
前記腫瘍細胞膜に結合させた前記抗体一光感受性物質へ向けて、 前 記内針に挿入された光ファイバーから近赤外線を照射するステップと 、 を有することを特徴とする治療方法。
[請求項 3] 前記光ファイバーから近赤外線を照射するステップにおいて、 前記 抗体一光感受性物質への近赤外線の照射をモニタリングすることを特 徴とする請求項 1 または 2に記載の治療方法。
[請求項 4] 前記モニタリングにおいて、 近赤外線を照射する前記光ファイバー により、 前記抗体一光感受性物質が結合された腫瘍細胞膜を有する腫 \¥0 2020/175603 31 卩(:170? 2020 /007932
瘍細胞またはその近傍の温度をモニタリングすることを特徴とする請 求項 3に記載の治療方法。
[請求項 5] 前記モニタリングにおいて、 接触型の温度センサを前記外針に挿入 し、 当該温度センサにより、 前記抗体一光感受性物質が結合された腫 瘍細胞膜を有する腫瘍細胞またはその近傍の温度をモニタリングする ことを特徴とする請求項 3に記載の治療方法。
[請求項 6] 前記モニタリングにおいて、 超音波を送受信できる探触子を有する 硬さ測定装置を前記外針に挿入し、 当該硬さ測定装置により、 前記抗 体一光感受性物質が結合された腫瘍細胞膜を有する腫瘍組織塊の硬さ をモニタリングすることを特徴とする請求項 3に記載の治療方法。
[請求項 7] 前記光ファイバーから近赤外線を照射するステップの後、 近赤外線 を照射された部位を特定するステップを有することを特徴とする請求 項 1〜 6のいずれか 1項に記載の治療方法。
[請求項 8] 腫瘍細胞中の腫瘍細胞膜に結合させた抗体一光感受性物質に対して 近赤外線を照射することが可能な治療システムであって、
超音波診断装置と、
中空の外針と、
前記外針に揷入可能であって、 複数の鋭利な内針先を有する内針と 前記内針に配置可能であって、 近赤外線を照射可能な光ファイバー と、
前記外針または内針に配置可能であって、 近赤外線を照射される部 位への近赤外線の照射をモニタリングする測定装置と、 を有すること を特徴とする治療システム。
PCT/JP2020/007932 2019-02-28 2020-02-27 治療方法および治療システム WO2020175603A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/411,404 US20210379395A1 (en) 2019-02-28 2021-08-25 Treatment Method and Treatment System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-036324 2019-02-28
JP2019036324A JP2022065216A (ja) 2019-02-28 2019-02-28 治療方法および治療システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/411,404 Continuation US20210379395A1 (en) 2019-02-28 2021-08-25 Treatment Method and Treatment System

Publications (1)

Publication Number Publication Date
WO2020175603A1 true WO2020175603A1 (ja) 2020-09-03

Family

ID=72240110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007932 WO2020175603A1 (ja) 2019-02-28 2020-02-27 治療方法および治療システム

Country Status (3)

Country Link
US (1) US20210379395A1 (ja)
JP (1) JP2022065216A (ja)
WO (1) WO2020175603A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022065215A (ja) * 2019-02-28 2022-04-27 テルモ株式会社 治療方法および治療システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730061B1 (en) * 1997-07-30 2004-05-04 Alfred Cuschieri Multiple hypodermic needle arrangement
US20110213349A1 (en) * 2008-11-07 2011-09-01 Joe Denton Brown Apparatus and method for detecting overheating during laser surgery
US20170246472A1 (en) * 2014-09-08 2017-08-31 James C. Chen Systems, devices, and methods for tissue therapy
JP2018528268A (ja) * 2015-08-18 2018-09-27 アスピリアン セラピューティクス インコーポレイテッド 光免疫療法のための組成物、組み合わせおよび関連方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445608A (en) * 1993-08-16 1995-08-29 James C. Chen Method and apparatus for providing light-activated therapy
US8137333B2 (en) * 2005-10-25 2012-03-20 Voyage Medical, Inc. Delivery of biological compounds to ischemic and/or infarcted tissue
MX2019007095A (es) * 2016-12-16 2019-10-07 Nanospectra Biosciences Inc Dispositivos y el uso de los mismos en metodos para terapia de ablacion.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730061B1 (en) * 1997-07-30 2004-05-04 Alfred Cuschieri Multiple hypodermic needle arrangement
US20110213349A1 (en) * 2008-11-07 2011-09-01 Joe Denton Brown Apparatus and method for detecting overheating during laser surgery
US20170246472A1 (en) * 2014-09-08 2017-08-31 James C. Chen Systems, devices, and methods for tissue therapy
JP2018528268A (ja) * 2015-08-18 2018-09-27 アスピリアン セラピューティクス インコーポレイテッド 光免疫療法のための組成物、組み合わせおよび関連方法

Also Published As

Publication number Publication date
JP2022065216A (ja) 2022-04-27
US20210379395A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
JP6872651B2 (ja) 組織サンプリングおよび癌処置方法および装置
US11583694B2 (en) Treatment method
US6589164B1 (en) Sterility barriers for insertion of non-sterile apparatus into catheters or other medical devices
US6546787B1 (en) Means and method for modeling and treating specific tissue structures
CN103648416B (zh) 用于基准点部署的系统
US20140194776A1 (en) Precision Directed Medical Instruments
JP2008539942A (ja) 光線力学もしくは光熱治療または光線力学診断のための光結合アダプタデバイス、対応するシステムおよび方法
US20070219446A1 (en) System and apparatus for imaging and treating hollow body cavities
CA2312142A1 (en) Injection system for gene delivery
WO2009050667A1 (en) Tumor demarcation using targeted fluorescent probe and photonic needle
CA2863977C (en) Laser ablation system for tissue ablation
WO2020175603A1 (ja) 治療方法および治療システム
WO2004082491A1 (en) Method and device for delivering a substance to tissue layers
CN113490451A (zh) 用于组织分析、位置确定和组织消融的装置、系统和方法
WO2020175602A1 (ja) 治療方法および治療システム
WO2020175601A1 (ja) 治療方法および治療システム
KR102346692B1 (ko) 다중 표적 복막암 형광 진단 및 치료장치
JP5833776B2 (ja) フィデューシャル配備システム
CN115363709A (zh) 一种可调弯的血管内超声引导式穿刺方法
CN205433845U (zh) 穿刺针的术中滑动定位支撑机构
WO2021066012A1 (ja) 照射デバイスおよび治療方法
US20230008437A1 (en) Treatment Method and Treatment System
US20230085299A1 (en) Treatment apparatus and treatment method
KR20230049142A (ko) 화살나무 귀전우와 줄기껍질의 이용한 항당뇨 건강기능식품 조성물
KR20230049141A (ko) 화살나무 귀전우와 줄기껍질의 폴리페놀 유효성분을 함유하는 인지기능개선 건강기능식품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP