WO2020174935A1 - 移動情報算出装置、および、移動情報算出方法 - Google Patents

移動情報算出装置、および、移動情報算出方法 Download PDF

Info

Publication number
WO2020174935A1
WO2020174935A1 PCT/JP2020/001819 JP2020001819W WO2020174935A1 WO 2020174935 A1 WO2020174935 A1 WO 2020174935A1 JP 2020001819 W JP2020001819 W JP 2020001819W WO 2020174935 A1 WO2020174935 A1 WO 2020174935A1
Authority
WO
WIPO (PCT)
Prior art keywords
movement information
information calculation
clock signal
unit
calculation device
Prior art date
Application number
PCT/JP2020/001819
Other languages
English (en)
French (fr)
Inventor
達也 園部
中村 拓
戸田 裕行
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to CN202080016117.2A priority Critical patent/CN113474680A/zh
Priority to JP2021501723A priority patent/JP7291775B2/ja
Priority to EP20762278.8A priority patent/EP3933443A4/en
Publication of WO2020174935A1 publication Critical patent/WO2020174935A1/ja
Priority to US17/410,923 priority patent/US11953610B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • G01C21/188Compensation of inertial measurements, e.g. for temperature effects for accumulated errors, e.g. by coupling inertial systems with absolute positioning systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/52Determining velocity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial

Definitions

  • the present invention uses multiple antennas.
  • the present invention relates to a movement information calculation device and a movement information calculation method for receiving movement signals and calculating movement information such as speed.
  • Patent Document 1 describes a position/orientation estimation device.
  • the position/orientation estimation apparatus of Patent Document 1 includes a plurality of antennas mounted on a moving body.
  • the position/orientation estimation device of Patent Document 1 receives with multiple antennas. 3 Positioning is performed using 3 signals.
  • Patent Document 1 Japanese Patent Laid-Open No. 2007_27150
  • the estimation accuracy changes according to the number of ⁇ 33 signals that can be received by each of the plurality of antennas. That is, you are receiving 3 3 If there is an antenna with a small number of signals, this effect will affect the estimation accuracy.
  • an object of the present invention is to provide a movement information calculation device that can calculate movement information with high accuracy without being affected by the number of ⁇ 33 signals that can be received by each of a plurality of antennas. ..
  • the movement information calculation device of the present invention includes a plurality of antennas, a clock generation unit, and a plurality of
  • a receiver and a calculator are provided. Multiple antennas each receive a ⁇ 33 signal.
  • the clock generator generates a clock signal. plural 3 3
  • the receiver is connected to each of the multiple antennas. Multiple ⁇ ⁇ 02020/174935 2 ( ⁇ 171?2020/001819
  • the N 33 receiver receives the ⁇ 33 observed value using the ⁇ 33 signal and the clock signal.
  • the calculation unit is provided by each of the multiple 3 3 reception units. 3 3 Uses the observed values to calculate movement information including the velocity of the moving body.
  • the clock signal is a clock signal common to a plurality of ⁇ 33 receiving units. Because of this, multiple 3 3 Received by multiple receivers (multiple antennas). 3 3 All received by the receiver 3 Mobile signals can be calculated using 3 signals.
  • the movement information can be calculated with high accuracy without being affected by the number of 3 33 signals that can be received by each of the plurality of antennas.
  • FIG. 1 is a block diagram showing a configuration of a movement information calculation device according to a first embodiment.
  • FIG. 2 A functional block diagram of an arithmetic unit according to the first embodiment.
  • FIG. 3 is a diagram for explaining the concept of estimation accuracy of movement information according to the present application.
  • FIG. 4 A flow chart showing an example of the movement information calculation method.
  • FIG. 5 A block diagram showing a configuration of a movement information calculation device according to a second embodiment.
  • FIG. 6 is a functional block diagram of a calculation unit according to the second embodiment.
  • FIG. 7 is a block diagram showing a configuration of a movement information calculation device according to a third embodiment.
  • FIG. 1 is a block diagram showing the configuration of the movement information calculation device according to the first embodiment.
  • the mobile information calculation device 10 includes an antenna 21, an antenna 22, a clock generator 30, a GNSS receiver 41, a ⁇ 33 receiver 42, and a 1//1 U 50 And an arithmetic unit 60.
  • the “plurality of antennas” of the present invention is composed of the antenna 21 and the antenna 22.
  • the “plurality of GNSS receivers” of the present invention is configured by the GNSS receiver 41 and the GNSS receiver 42.
  • GNSS is an abbreviation for G l o b a l N a v i g a t i o n S a t e I I i t e S y s y t e m, and includes G PS (G l o b a l P o s i t i o n i n g S y s t e m) and the like.
  • the antenna 21 and the antenna 22 are installed in the moving body 90 (see Fig. 3), which is the target of calculation of movement information such as speed.
  • the moving body 90 is, for example, a ship.
  • Antenna 21 and antenna 22 are located in an open sky environment. The installation position of the antenna 21 and the installation position of the antenna 22 are different.
  • the antenna 21 is connected to the GNSSS receiver 41, and the antenna 22 is connected to the GNSS receiver 42.
  • the antenna 21 receives the GNSS signal from the positioning satellite and outputs it to the GNSS receiving unit 41.
  • the antenna 22 receives the GNSS signal from the positioning satellite and outputs it to the GNSS receiving unit 42.
  • the positioning satellite from which the GNSS signal is received by the antenna 21 and the positioning satellite from which the GNSS signal is received by the antenna 22 may be the same or different.
  • the clock generation unit 30, the GNSS reception unit 41, and the GNSS reception unit 42 are realized by a predetermined electronic circuit.
  • the clock generation unit 30 generates a clock signal and outputs it to the GNSS reception unit 41 and the GNSS reception unit 42.
  • the clock signal is a signal that serves as a reference for the processing of the GNSS receiver 41 and the processing of the GNSSS receiver 42.
  • the GNSS receiving unit 41 includes a DLL circuit for the code phase and a PLL circuit for the carrier phase. Does the GNSS receiver 41 have a 0 !_ 1_ circuit? 1_ 1_ circuit captures and tracks the GNSS signal received by antenna 21. ⁇ 02020/174935 4 ((171?2020/001819
  • the 33 receiver unit 41 uses the clock signal to Timing control between circuit and !_!_ circuit, and 33 Calculate the observed value based on the clock signal.
  • the observed values include the code phase and carrier wave phase for each positioning signal.
  • the receiver 41 is The observed value is output to the calculation unit 60.
  • the receiving unit 42 includes a mouth !_ !_ circuit for the code phase and a !_ !_ circuit for the carrier wave phase.
  • the receiving unit 42 includes a mouth !_ !_ circuit for the code phase and a !_ !_ circuit for the carrier wave phase.
  • the receiving unit 42 Calculate the observed values.
  • the 33 receiver unit 42 uses the clock signal to Timing control between circuit and !_!_ circuit, and 33 Calculate the observed value based on the clock signal.
  • 33 The observed values include the code phase and carrier wave phase for each positioning signal.
  • the receiving unit 42 The observed value is output to the calculation unit 60.
  • 1/11/11150 is an inertial sensor including, for example, a triaxial acceleration sensor and an angular velocity sensor.
  • Scholar 50 is installed in the moving body. ⁇ 1 ⁇ /111
  • the 50 measures acceleration or angular velocity, and the measured value (sensor output value) is calculated.
  • FIG. 2 is a functional block diagram of an arithmetic unit according to the first embodiment.
  • Arithmetic unit 6 is a functional block diagram of an arithmetic unit according to the first embodiment.
  • the data calculation unit 6 1 1, the I IV! II data calculation unit 6 12 and the integrated calculation unit 62 are provided.
  • the calculation unit 60 is, for example, a processor for each process of the 33 data calculation unit 61 1, the I IV! II data calculation unit 6 12 and the integrated calculation unit 62. ⁇ 02020/174935 5 (: 17 2020/001819
  • ⁇ 3 3 data calculation unit 6 1 1 is input with ⁇ 33 observation values from ⁇ 33 receiving unit 41 and ⁇ 33 observation values from ⁇ 33 receiving unit 4 2. It ⁇ N 3 3 Data calculation unit 6 1 Using the code phase of the calculated value, the pseudo distance and the line-of-sight direction vector connecting each antenna and each positioning satellite are calculated. The time based on the above clock signal is also used in the calculation of the pseudo distance.
  • 3 3 Using the integrated value of the carrier phase of the calculated value, 3 3 Estimate speed. At this time, the data calculation unit 6 1 1 uses the clock drift error estimated by the integrated calculation unit 6 2 to calculate 3 3 Estimate the speed. 3 3 Data calculator 6 1 1 Estimated The speed is output to the integrated calculation unit 62.
  • I IV! II data operation unit 6 1 2 has a The measured value from 50 is input.
  • the I IV! II data calculation unit 6 1 2 calculates the IV! II acceleration and the IV! II angular velocity from the measured values. At this time, the IV!II data calculation unit 6 1 2 calculates the IV!II acceleration and I IV!II angular velocity using the acceleration bias and angular velocity bias estimated by the integrated calculation unit 6 2. To do.
  • the I IV! II data calculation unit 6 1 2 calculates the velocity 1 ⁇ /11 1 using the integrated value of the I IV! II acceleration and the I IV! II angular velocity.
  • the data calculation unit 6 1 2 outputs the calculated 1/111 speed to the integrated calculation unit 6 2.
  • the integrated calculation unit 62 is realized by, for example, an extended Kalman filter method.
  • the integrated computing unit 62 is Set the observation vector of the extended force Leman filter including 3 3 velocity and I IV! II velocity.
  • the integrated computing unit 62 outputs the integrated speed output by the movement information calculation device 10, the clock drift error of the clock signal, Set the extended Kalman filter state vector including the acceleration bias error of 50.
  • the integrated arithmetic unit 62 is an extension having these observation vectors and state vectors. ⁇ 02020/174935 6 ⁇ (: 171?2020/001819
  • the Kalman filter is performed to estimate the integration speed and various errors.
  • the integrated arithmetic unit 62 includes the clock drift error included in the state vector. 3 3 Estimate error for observations, 3 Feedback to the data calculation unit 6 1 1. 3 3 Data calculation unit 6 1 1 uses the fed back estimation error to estimate ⁇ 33 3 velocity, etc. The integrated calculation unit 62 is used to calculate the acceleration bias error, angular velocity bias error, etc. included in the state vector. The estimated error regarding the observed value (measured value) is fed back to the IV! II data operation unit 6 1 2. Scholar The data calculation unit 6 1 2 uses the fed back estimated error to calculate Calculate speed, etc.
  • the clock drift error is estimated with high accuracy. This makes the speed estimated using the clock drift error highly accurate.
  • FIG. 3 is a diagram for explaining the concept of estimation accuracy of movement information according to the present application.
  • the antenna 21 can receive ⁇ 33 signals of the positioning satellites 3 and 1, and ⁇ 33 signals of the positioning satellites 38 and 2, and ⁇ 33 signals of the positioning satellites 3 and 3 and the positioning satellites 3 3 3 Signal and could not be received.
  • Antenna 2 2 is a positioning satellite Signals and positioning satellites 3 ⁇ 3 3 signals can be received, and positioning satellites 3 1 ⁇ 3 3 signals and positioning satellites 3
  • the arithmetic unit 60 3 3 The clock drift error of the clock signal of the receiver 4 1 is estimated from the ⁇ 33 observed value of the ⁇ 33 signal of the positioning satellites 3 and 1 and the ⁇ 33 signal of the positioning satellites 3 and 2.
  • the computing unit 60 calculates the clock drift error of the clock signal of the 3 3 receiving unit 4 2 as the ⁇ 3 3 signal of the positioning satellites 3-8 3 and the positioning satellite 3-4 4 3 3 signals. Estimate by measurement.
  • 3 3 Receiver 4 1 3 3 The clock signal is common to the receiver 4 2.
  • the clock drift error is equal to the total of the four ⁇ 3 3 signals received by the ⁇ 3 3 receiver 41 and the two ⁇ 33 signals received by the ⁇ 3 3 receiver 4 2.
  • It is estimated by ⁇ 33 observations of 33 signal. Therefore, in the present invention, the estimation accuracy of the clock drift error is four ⁇ 33 signals.
  • the accuracy of estimating the clock drift error is improved. Then, by improving the estimation of the clock drift error, the estimation accuracy of the integrated speed included in the same state vector improves. In addition, the accuracy of estimating the integrated speed is improved, so that the accuracy of estimating the position and attitude angle is also improved.
  • the moving state including speed is estimated and calculated with high accuracy without being affected by the signal receiving state.
  • the number of clock drift errors included in the state vector is one. Therefore, the state vector of the extended Kalman filter is configured more than the case where the clock drift error is estimated for each of the 3 3 receivers. The unknown number decreases. Therefore, the processing load on the arithmetic unit 60 is reduced. This improves, for example, the estimation accuracy of the moving state and the estimation speed.
  • each processing described above may be programmed and then executed by an arithmetic processing device such as C p u.
  • the program is stored in the storage unit, and the arithmetic processing unit reads out and executes the program stored in the storage unit.
  • the detailed description of each process is as described above, and will be omitted.
  • FIG. 4 is a flow chart showing an example of the movement information calculation method.
  • the arithmetic processing unit generates a common clock signal (S11).
  • the processing unit calculates the G N S S observation value from the received G N S S signal using the common clock signal (S 1 2).
  • the processing unit acquires the I M U observation value, which is the measurement value of M U.
  • the arithmetic processing unit estimates the integration speed by using the various observed values calculated or acquired (S 13 ). At this time, the arithmetic processing unit estimates the clock drift error together with the integrated speed, and uses it for the pre-processing correction of the integrated speed estimation calculation.
  • FIG. 5 is a block diagram showing the configuration of the movement information calculation device according to the second embodiment.
  • the movement information calculation device 1 O A according to the second embodiment is
  • the number of antennas and GNSS receivers is changed and a camera 70 is added to the movement information calculation device 10 according to the first embodiment.
  • the difference is that the processing has been changed.
  • the other configurations and processes of the movement information calculation device 10A are the same as those of the movement information calculation device 10A, and description of similar portions will be omitted.
  • the mobile information calculation device 1 OA includes an antenna 21 and an antenna. ⁇ 02020/174935 9 ⁇ (: 171?2020/001819
  • ⁇ 33 receiver 41 It includes a receiving unit 42, a receiving unit 43, a 33 receiving unit 44, I 1 ⁇ /11150, a computing unit 60, and a camera 70.
  • the installation position of the antenna 21, the installation position of the antenna 22, the installation position of the antenna 23, and the installation position of the antenna 24 are different. At this time, the antenna 21, the antenna 22, the antenna 23, and the antenna 24 are installed so that all the antennas are not aligned in a straight line at the same time.
  • Antenna 21 is connected to N33 receiver 41 and antenna 22 is connected to ⁇ 33 receiver 42.
  • Antenna 23 is connected to 33 receiver 43, and antenna 24 is
  • the clock generation unit 30 generates a clock signal, and Output to the receiver 44.
  • the receiving unit 41 is an antenna. Using,
  • ⁇ 33 Calculates the observed value and outputs it to the calculation unit 60.
  • Receiver 42 received by antenna 22 With 33 signals, 33 Calculates the observed value and outputs it to the computing unit 608.
  • the receiving unit 43 calculates the observed value received by the antenna 23 and outputs it to the computing unit 60. Received at Na 24 The observed value is calculated using the signal and output to the calculation unit 60.
  • the measured value is output to the calculation unit 60.
  • the camera 70 acquires the behavior of the moving body 90 and the surrounding situation by a moving image.
  • the camera 70 outputs the moving image to the calculation unit 60.
  • FIG. 6 is a functional block diagram of a calculation unit according to the second embodiment. Arithmetic unit 6
  • ⁇ 33 data calculation unit 6 11 has: ⁇ 33 observed value from 33 receiving unit 41, ⁇ 33 observed value from 33 receiving unit 42, From receiver 43 ⁇ 02020/174935 10 box (: 17 2020/001819 The velocity and attitude angle are estimated using the observed values and output to the integrated computing unit 62.
  • the data calculation unit 6 1 2 Using these measured values, the 1//11 velocity and IV! II attitude angle are calculated and output to the integrated computing unit 62.
  • the visual data calculation unit 6 13 extracts a plurality of feature points from the moving image and sets a reference point.
  • the visual data calculation unit 6 13 generates spatial information including the positions of a plurality of feature points with respect to the position of the reference point, the movement amount, and the scale, and outputs the spatial information to the integrated calculation unit 6 2.
  • the scale is represented by the ratio between the distance between the feature point and the reference point obtained from the moving image and the distance between the feature point and the reference point obtained from the ⁇ 33 velocity.
  • the integrated calculation unit 6 2 has: ⁇ 33 3 speed and ⁇ 33 3 attitude angle from the data calculation unit 6 1 1, I IV! II, I IV! II from the data calculation unit 6 1 2 Set the observation vector of the extended Kalman filter, including the velocity and I IV! attitude angle, and the spatial information from the visual data calculation unit 6 13.
  • the integrated calculation unit 62 includes the integrated speed output as the movement information calculation device 10, the clock signal error of the clock signal, the acceleration bias error of I IV! II 50, the angular velocity bias error, and the scale error of the spatial information. Then, set the state vector of the extended Kalman filter.
  • the integrated computing unit 62 estimates the integrated speed and various errors by executing the extended Kalman filter having these observation vectors and state vectors. Further, the integrated calculation unit 62 corrects the spatial information using the scale error.
  • the movement information calculation device 10 can calculate the speed of the moving body 90 with high accuracy, and can also provide highly accurate distance and position with respect to visual information. And at this time, the clock drift error is received by the four antennas.
  • the clock drift error is estimated with high accuracy because it is estimated based on all 3 signals.
  • the speed of the moving body 90 is calculated with high accuracy, and the distance and position given to the visual information are also highly accurate. ⁇ 02020/174935 11 11 (:171?2020/001819
  • the visual information and Signal observations and I When the speed and the like are estimated and calculated by integrating with the observation values of, the processing load on the integrated calculation unit 62 becomes very high. Therefore, by reducing the estimated clock drift error, the processing load on the integrated computing unit 62 is reduced, and the speed of various types of processing such as visual information generation can be further increased while accurately estimating and calculating the speed. It will be possible.
  • FIG. 7 is a block diagram showing the configuration of the movement information calculation device according to the third embodiment.
  • the movement information calculation device 10 As shown in FIG. 7, the movement information calculation device 10 according to the third embodiment is
  • the number of antennas and the number of receiving units are changed in the movement information calculation device 10 according to the first embodiment.
  • the difference is that 50 is omitted, and the processing of the computing unit 60 is changed due to these changes and additions.
  • the other configuration and processing of the movement information calculation device 10 are the same as those of the movement information calculation device 10, and the description of the similar portions will be omitted.
  • the mobile information calculation device 1 0 As shown in FIG. 7, the mobile information calculation device 1 0
  • the installation position of 3 is different. At this time, the antenna 21, the antenna 22, and the antenna 23 are installed so that all the antennas are not aligned in a straight line at the same time.
  • Antenna 21 is connected to 33 receiver 41, and antenna 22 is connected to receiver 42.
  • Antenna 23 Connect to the receiver 43.
  • the clock generation unit 30 generates a clock signal
  • the receiving unit 41 is an antenna. Using,
  • ⁇ 33 Calculates the observed value and outputs it to the computing unit 60.
  • Receiver 42 received by antenna 22 With 33 signals, 33 Calculates the observed value and outputs it to the computing unit 60.
  • the receiver 43 receives the signal with the antenna 23. 33 Calculates the observed value and outputs it to the computing unit 60.
  • the arithmetic unit 60 In the data calculation section 6 1 1, Receiver 4 1 Observed value, ⁇ 33 Observed value from the receiver 42, and ⁇ 33 Observed value from the receiver 43 are input.
  • the arithmetic unit 60M is realized by, for example, an extended Kalman filter MMI.
  • the calculation unit 60 Set the observation vector of the extended Kalman filter including 33 velocities.
  • the computing unit 60 sets the state vector of the extended Kalman filter including the integrated speed output as the movement information calculation unit 10 and the clock drift error of the clock signal.
  • Mitsumi can estimate and calculate the integrated speed with high accuracy.
  • All processes described herein may be embodied in software code modules executed by a computing system including one or more computers or processors and may be fully automated.
  • the code module may be stored on any type of non-transitory computer readable medium or other computer storage device. Some or all of the methods may be embodied in dedicated computer hardware.
  • any particular action, event, or function of any of the algorithms described herein can be performed in a different sequence, added, merged, or completely excluded. This is possible (eg, not all described acts or events are required for the algorithm to run). Further, in certain embodiments, the actions or events may be performed in parallel, rather than serially, for example, through multithreaded processing, interrupt processing, or multiple processor or processor cores, or on other parallel architectures. Can be executed. Further, different tasks or processes may be different machines and/or computing machines that may work together. ⁇ 02020/174935 14 ⁇ (: 171?2020/001819
  • the various exemplary logic blocks and modules described in connection with the embodiments disclosed herein may be implemented or executed by a machine such as a processor.
  • the processor may be a microprocessor, but in the alternative, the processor may be a controller, a microcontroller, a state machine, or a combination thereof.
  • the processor can include electrical circuitry configured to process computer-executable instructions.
  • the processor is an application-specific integrated circuit (8310, field programmable gate array 08) or other programmable circuit that performs logical operations without processing the executable instructions. Including device.
  • a processor may also be a combination of computing devices, such as a combination of digital signal processors (digital signal processors) and microprocessors, multiple microprocessors, It may be implemented as one or more microprocessors combined with a core, or any other such configuration. Although described primarily herein in terms of digital technology, a processor may also include primarily analog components. For example, some or all of the signal processing algorithms described in this document can be implemented by an analog circuit or a mixed analog and digital circuit.
  • a computing environment includes, but is not limited to, a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a device controller, or a computer system based on a computational engine within the device, but is not limited to any type of computer. A system can be included.
  • conditional languages such as “capable,””capable,””possible,” or “possible” refer to particular embodiments for the particular features, elements and/or steps. It is to be understood in the sense of the context generally used to convey the inclusion, but not the other embodiments. Thus, such conditional terms are generally required for embodiments in which one or more of its features, elements and/or steps is required. ⁇ 02020/174935 15 ⁇ (: 171?2020/001819
  • a disjunctive language such as the phrase "at least one of X, ⁇ , and" means that the item, term, etc. is X, ⁇ , or, or their It is understood in the context commonly used to indicate that it can be any combination (eg, X, O, ). Therefore, such a disjunctive language generally requires each of at least one of X, at least one of X, or at least one of X for which a particular embodiment is present. Does not mean.
  • a number like "one” should generally be construed to include one or more of the listed items.
  • phrases such as "one device configured to” are intended to include one or more of the listed devices.
  • Such one or more listed devices may also be collectively configured to perform the recited citations.
  • a processor configured to perform 8 and below means a first processor configured to perform 8 and a second processor configured to perform 8 and Can be included.
  • a specific number listing of the introduced examples is explicitly listed, one of ordinary skill in the art will typically appreciate that at least the number listed (eg, other modifications).
  • the term “horizontal” as used herein, regardless of its orientation, is parallel to the plane or surface of the floor of the area where the described system is used. It is defined as the plane or plane in which the described method is implemented.
  • the term “floor” can be replaced with the terms “ground” or “water surface”.
  • the term “vertical/vertical” refers to the direction vertical/vertical to the defined horizontal line. Terms such as “upper”, “lower”, “lower”, “upper”, “side”, “higher”, “lower”, “upward”, “beyond”, and “below” are defined with respect to the horizontal plane. ing.
  • connection As used herein, the terms “attach,” “connect,” “pair,” and other related terms, unless otherwise noted, are removable, moveable, fixed, It should be construed as including an adjustable and/or removable connection or coupling. Connections/linkages include direct connections and/or connections having an intermediate structure between the two described components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

【課題】複数のアンテナのそれぞれで受信できているGNSS信号の数に影響されず、移動情報を高精度に算出する。 【解決手段】移動情報算出装置10は、複数のアンテナ21、22、クロック生成部30、複数のGNSS受信部41、42、および、演算部60を備える。複数のアンテナ21、22は、それぞれにGNSS信号を受信する。クロック生成部30は、クロック信号を生成する。複数のGNSS受信部41、42は、複数のアンテナ21、22のそれぞれに接続する。複数のGNSS受信部41、42は、クロック生成部30からのクロック信号を共有し、共有のクロック信号とGNSS信号とを用いて、それぞれにGNSS観測値を算出する。演算部60は、複数のGNSS受信部41、42のそれぞれからのGNSS観測値を用いて、移動体の速度を含む移動情報を算出する。

Description

\¥02020/174935 1 卩(:17 2020/001819
明 細 書
発明の名称 : 移動情報算出装置、 および、 移動情報算出方法 技術分野
[0001 ] 本発明は、 複数のアンテナで
Figure imgf000003_0001
3 3信号を受信して、 速度等の移動情報 を算出する移動情報算出装置および移動情報算出方法に関する。
背景技術
[0002] 特許文献 1は、 位置 ·姿勢推定装置を記載している。 特許文献 1の位置 · 姿勢推定装置は、 移動体上に搭載された複数のアンテナを備える。 特許文献 1の位置 ·姿勢推定装置は、 複数のアンテナで受信した
Figure imgf000003_0002
3 3信号を用い て、 測位を実行する。
先行技術文献
特許文献
[0003] 特許文献 1 :特開 2 0 0 7 _ 2 7 1 5 0 0号公報
発明の概要
発明が解決しようとする課題
[0004] しかしながら、 特許文献 1 に記載の構成では、 複数のアンテナのそれぞれ で受信できている◦ 3 3信号の数に応じて、 推定精度は、 変化する。 すな わち、 受信できている
Figure imgf000003_0003
3 3信号の数が少ないアンテナがあると、 この影 響を受け、 推定精度は、 低下してしまう。
[0005] したがって、 本発明の目的は、 複数のアンテナのそれぞれで受信できてい る◦ 3 3信号の数に影響されず、 移動情報を高精度に算出できる移動情報 算出装置を提供することにある。
課題を解決するための手段
[0006] この発明の移動情報算出装置は、 複数のアンテナ、 クロック生成部、 複数
3 3受信部、 および、 演算部を備える。 複数のアンテナは、 それぞれ に◦ 3 3信号を受信する。 クロック生成部は、 クロック信号を生成する。 複数の
Figure imgf000003_0004
3 3受信部は、 複数のアンテナのそれぞれに接続する。 複数の◦ \¥02020/174935 2 卩(:171?2020/001819
N 3 3受信部は、 ◦ 3 3信号とクロック信号とを用いて◦ 3 3観測値を 算出する。 演算部は、 複数の 3 3受信部のそれぞれからの
Figure imgf000004_0001
3 3観測 値を用いて、 移動体の速度を含む移動情報を算出する。
[0007] この構成では、 複数の
Figure imgf000004_0002
3 3受信部が利用するクロック信号は、 同じで ある。 すなわち、 クロック信号は、 複数の◦ 3 3受信部に共通のクロック 信号である。 このため、 複数の
Figure imgf000004_0003
3 3受信部 (複数のアンテナ) が受信す る◦ 3 3信号の送信元の測位衛星の組合せや数が異なっていても、 演算部 は、 複数の
Figure imgf000004_0004
3 3受信部が受信した全ての
Figure imgf000004_0005
3 3信号を用いて、 移動情 報を算出できる。
発明の効果
[0008] この発明によれば、 複数のアンテナのそれぞれで受信できている◦ 3 3 信号の数に影響されず、 移動情報を高精度に算出できる。
図面の簡単な説明
[0009] [図 1]第 1の実施形態に係る移動情報算出装置の構成を示すブロック図である
[図 2]第 1の実施形態に係る演算部の機能ブロック図である。
[図 3]本願の移動情報の推定精度の概念を説明するための図である。
[図 4]移動情報算出方法の一例を示すフローチヤートである。
[図 5]第 2の実施形態に係る移動情報算出装置の構成を示すブロック図である
[図 6]第 2の実施形態に係る演算部の機能ブロック図である。
[図 7]第 3の実施形態に係る移動情報算出装置の構成を示すブロック図である
発明を実施するための形態
[0010] (第 1の実施形態)
第 1の実施形態に係る移動情報算出装置、 および、 移動情報算出方法につ いて、 図を参照して説明する。 図 1は、 第 1の実施形態に係る移動情報算出 装置の構成を示すブロック図である。 [0011] 図 1 に示すように、 移動情報算出装置 1 0は、 アンテナ 2 1、 アンテナ 2 2、 クロック生成部 30、 GNSS受信部 4 1、 〇 33受信部42、 丨 1\/1 U 50、 および、 演算部 60を備える。 本願発明の 「複数のアンテナ」 は、 アンテナ 2 1およびアンテナ 22によって構成される。 本願発明の 「複数の GNSS受信部」 は、 G N S S受信部 4 1および G N S S受信部 42によっ て構成される。
[0012] GNSSとは、 G l o b a l N a v i g a t i o n S a t e I I i t e S y s y t e mの略語であり、 G PS (G l o b a l P o s i t i o n i n g S y s t e m) 等を含む。
[0013] アンテナ 2 1およびアンテナ 22は、 速度等の移動情報の算出対象である 移動体 90 (図 3参照) に、 設置されている。 移動体 90は、 例えば、 船舶 である。 アンテナ 2 1およびアンテナ 22は、 オープンスカイの環境に配置 されている。 アンテナ 2 1の設置位置とアンテナ 22の設置位置とは、 異な る。 アンテナ 2 1は、 G N S S受信部 4 1 に接続し、 アンテナ 22は、 GN SS受信部 42に接続する。
[0014] アンテナ 2 1は、 測位衛星からの GNSS信号を受信して、 GNSS受信 部 4 1 に出力する。 アンテナ 22は、 測位衛星からの GNSS信号を受信し て、 GNSS受信部 42に出力する。 アンテナ 2 1が受信する GNSS信号 の送信元の測位衛星と、 アンテナ 22が受信する GNSS信号の送信元の測 位衛星とは、 同じであってもよく、 異なっていてもよい。
[0015] クロック生成部 30、 GNSS受信部 4 1、 および、 GNSS受信部 42 は、 所定の電子回路によって実現される。
[0016] クロック生成部 30は、 クロック信号を生成して、 GNSS受信部 4 1お よび GNSS受信部 42に出力する。 クロック信号は、 GNSS受信部 4 1 の処理、 および、 G N S S受信部 42の処理の基準となる信号である。
[0017] GNSS受信部 4 1は、 コード位相に対する D L L回路と、 搬送波位相に 対する P L L回路とを備える。 GNSS受信部 4 1は、 0 !_ 1_回路と? 1_ 1_ 回路とによって、 アンテナ 2 1で受信した GNSS信号を、 捕捉、 追尾する \¥02020/174935 4 卩(:171?2020/001819
Figure imgf000006_0001
33観測値を算出する。 この際 、 〇 33受信部 4 1は、 クロック信号を用いて、
Figure imgf000006_0002
回路と !_ !_回路 とのタイミング制御、 および、
Figure imgf000006_0003
33観測値の算出を、 クロック信号を基 準にして実行する。
Figure imgf000006_0004
33観測値は、 測位信号毎のコード位相および搬送 波位相を含む。
Figure imgf000006_0005
受信部 4 1は、
Figure imgf000006_0006
観測値を、 演算部 60に出 力する。
[0018] 受信部 42は、 コード位相に対する口 !_ !_回路と、 搬送波位相に 対する !_ !_回路とを備える。
Figure imgf000006_0007
受信部 42は、
Figure imgf000006_0008
回路とによって、 アンテナ 22で受信した
Figure imgf000006_0009
33信号を、 捕捉、 追尾する 。 〇 33受信部42は、 追尾結果から
Figure imgf000006_0010
観測値を算出する。 この際 、 〇 33受信部 42は、 クロック信号を用いて、
Figure imgf000006_0011
回路と !_ !_回路 とのタイミング制御、 および、
Figure imgf000006_0012
33観測値の算出を、 クロック信号を基 準にして実行する。
Figure imgf000006_0013
33観測値は、 測位信号毎のコード位相および搬送 波位相を含む。
Figure imgf000006_0014
受信部 42は、
Figure imgf000006_0015
観測値を、 演算部 60に出 力する。
[0019] このように、 移動情報算出装置 1 0では、 〇 33受信部 4 1 によって算 出される◦ 33観測値と、
Figure imgf000006_0016
受信部 42によって算出される
Figure imgf000006_0017
3観測値とは、 同じクロック信号 (共通 (共有) のクロック信号) に基づい ている。
[0020] 丨 1\/11150は、 例えば、 三軸の加速度センサおよび角速度センサ等を備え る慣性センサである。 丨
Figure imgf000006_0018
50は、 前記移動体に設置されている。 丨 1\/111
50は、 加速度または角速度を計測し、 計測値 (センサ出力値) を、 演算部
60に出力する。 この際、 丨 1\/11150は、 所定の時間間隔で計測を行い、 計 測値を出力する。
[0021] 図 2は、 第 1の実施形態に係る演算部の機能ブロック図である。 演算部 6
0は、
Figure imgf000006_0019
データ演算部 6 1 1、 I IV! IIデータ演算部 6 1 2、 および、 統合演算部 62を備える。 演算部 60は、 例えば、 〇 33データ演算部 6 1 1、 I IV! IIデータ演算部 6 1 2、 および、 統合演算部 62の各処理のプロ \¥02020/174935 5 卩(:17 2020/001819
グラムと、 当該プログラムを実行する 0 II等の演算装置によって実現され る。
[0022] ◦ 3 3データ演算部 6 1 1 には、 ◦ 3 3受信部 4 1からの◦ 3 3観 測値、 および、 ◦ 3 3受信部 4 2からの◦ 3 3観測値が入力される。 ◦ N 3 3データ演算部 6 1
Figure imgf000007_0001
演算値のコード位相を用いて、 擬 似距離、 各アンテナと各測位衛星とを結ぶ視線方向ベクトルを算出する。 こ の擬似距離の算出の際にも、 上述のクロック信号に基づいた時刻が用いられ る。
[0023] 3 3データ演算部 6 1 1は、 これらの算出データとともに、 各〇 3
3演算値の搬送波位相の積算値を用いて、
Figure imgf000007_0002
3 3速度を推定する。 この際 、 データ演算部 6 1 1は、 統合演算部 6 2によって推定されたクロ ックドリフト誤差を用いて、
Figure imgf000007_0003
3 3速度の推定を行う。
Figure imgf000007_0004
3 3データ演 算部 6 1 1は、 推定した
Figure imgf000007_0005
速度を、 統合演算部 6 2に出力する。
[0024] I IV! IIデータ演算部 6 1 2には、 丨
Figure imgf000007_0006
5 0からの計測値が入力される。
I IV! IIデータ演算部 6 1 2は、 計測値から、 丨 IV! II加速度および丨 IV! II角速 度を算出する。 この際、 丨 IV! IIデータ演算部 6 1 2は、 統合演算部 6 2によ って推定された加速度バイアスおよび角速度バイアスを用いて、 丨 IV! II加速 度および I IV! II角速度を算出する。
[0025] I IV! IIデータ演算部 6 1 2は、 I IV! II加速度の積算値および I IV! II角速度 を用いて、 丨 1\/1 11速度を算出する。
Figure imgf000007_0007
データ演算部 6 1 2は、 算出した 丨 1\/1 11速度を、 統合演算部 6 2に出力する。
[0026] 統合演算部 6 2は、 例えば、 拡張カルマンフィルタ巳 によって実現さ れる。 統合演算部 6 2は、
Figure imgf000007_0008
3 3速度および I IV! II速度を含んで、 拡張力 ルマンフィルタの観測ベクトルを設定する。 また、 統合演算部 6 2は、 移動 情報算出装置 1 0として出力する統合速度、 クロック信号のクロックドリフ 卜誤差、 丨
Figure imgf000007_0009
5 0の加速度バイアス誤差を含んで、 拡張カルマンフィルタ の状態べクトルを設定する。
[0027] 統合演算部 6 2は、 これらの観測べクトルと状態べクトルとを有する拡張 \¥02020/174935 6 卩(:171?2020/001819
カルマンフィルタを実行することによって、 統合速度および各種の誤差を推 定する。 統合演算部 6 2は、 状態ベクトルに含まれるクロックドリフト誤差 を含む
Figure imgf000008_0001
3 3観測値に関する推定誤差を、
Figure imgf000008_0002
3データ演算部 6 1 1 に フィードバックする。
Figure imgf000008_0003
3 3データ演算部 6 1 1は、 フィードバックされ た推定誤差を用いて、 ◦ 3 3速度等の推定を行う。 統合演算部 6 2は、 状 態べクトルに含まれる加速度バイアス誤差、 角速度バイアス誤差等の丨
Figure imgf000008_0004
観測値 (計測値) に関する推定誤差を、 丨 IV! IIデータ演算部 6 1 2にフィー ドバックする。 丨
Figure imgf000008_0005
データ演算部 6 1 2は、 フィードバックされた推定誤 差を用いて、
Figure imgf000008_0006
速度等の算出を行う。
[0028] このような構成において、 クロック信号が複数の
Figure imgf000008_0007
3 3受信部 (本実施 形態では◦ 3 3受信部 4 1および◦ 3 3受信部 4 2) に共通である。 こ れにより、 演算部は、
Figure imgf000008_0008
3 3受信部毎にクロックドリフト誤差を推定せず 、 複数の◦ 3 3受信部によって得られた全ての観測値を用いて、 クロック ドリフト誤差を推定できる。 したがって、 クロックドリフト誤差の推定に用 いる異なる◦ 3 3信号の個数は、 多くなる。
[0029] このため、 クロックドリフト誤差は、 高精度に推定される。 これにより、 クロックドリフト誤差を用いて推定される速度は、 高精度になる。
[0030] 図 3は、 本願の移動情報の推定精度の概念を説明するための図である。 図
3の場合、 アンテナ 2 1は、 測位衛星 3 丁 1の◦ 3 3信号と測位衛星 3 八丁 2の◦ 3 3信号とを受信でき、 測位衛星 3 丁 3の◦ 3 3信号と測 位衛星 3
Figure imgf000008_0009
3 3信号とを受信できていない。 アンテナ 2 2は、 測 位衛星
Figure imgf000008_0010
信号と測位衛星 3 丁 4の◦ 3 3信号とを受信 でき、 測位衛星 3 丁 1の◦ 3 3信号と測位衛星
Figure imgf000008_0011
とを受信できていない。 これは、 例えば、 移動体 9 0の位置によって、 ◦ 3 3信号の受信状態が変化する場合に生じる。 より具体的には、 このような 状態は、 移動体 9 0が船舶であり、 移動体 9 0が着岸する際に、 ガントリー クレーン等によってアンテナによる◦ 3 3信号の受信が遮蔽される場合等 によって、 生じる可能性がある。 \¥02020/174935 7 卩(:171?2020/001819
[0031 ] ここで、 アンテナ 2 1 に接続する 3 3受信部 4 1のクロック信号と、 アンテナ 2 2に接続する 3 3受信部 4 1のクロック信号とは、 異なると する。 この場合、 演算部 6 0は、
Figure imgf000009_0001
3 3受信部 4 1のクロック信号のクロ ックドリフト誤差を、 測位衛星 3 丁 1の◦ 3 3信号と測位衛星 3 丁 2 の◦ 3 3信号との◦ 3 3観測値によって推定する。 また、 演算部 6 0は 、 3 3受信部 4 2のクロック信号のクロックドリフト誤差を、 測位衛星 3八丁 3の◦ 3 3信号と測位衛星 3 丁 4の◦ 3 3信号との◦ 3 3観 測値によって推定する。
[0032] このように、 ◦ 3 3受信部毎にクロック信号を個別にすると、 各クロッ ク信号のクロックドリフト誤差は、 それぞれ 2個の◦ 3 3信号の◦ 3 3 観測値によって推定される。 したがって、 クロックドリフト誤差の推定精度 は、 2個の◦ 3 3信号分になってしまう。
[0033] 一方、 本願発明では、
Figure imgf000009_0002
3 3受信部 4 1
Figure imgf000009_0003
3 3受信部 4 2とでクロ ック信号が共通である。 この場合、 クロックドリフト誤差は、 〇 3 3受信 部 4 1で受信した 2個の〇 3 3信号と〇 3 3受信部 4 2で受信した 2個 の◦ 3 3信号とを合わせた 4個の◦ 3 3信号の◦ 3 3観測値によって 推定される。 したがって、 本願発明では、 クロックドリフト誤差の推定精度 は、 4個の◦ 3 3信号分になる。
[0034] これにより、 本願発明の構成および処理を用いることによって、 クロック ドリフト誤差の推定精度は、 向上する。 そして、 クロックドリフト誤差の推 定の向上によって、 同じ状態ベクトルに含まれる統合速度の推定精度は、 向 上する。 また、 統合速度の推定精度が向上することによって、 位置や姿勢角 の推定精度も向上する。
[0035] これにより、 複数のアンテナの
Figure imgf000009_0004
信号の受信状態に影響されること なく、 速度を含む移動状態は、 高精度に推定、 算出される。
[0036] また、 この構成および処理では、 状態ベクトルに含まれるクロックドリフ 卜誤差は、 1個である。 したがって、 3 3受信部毎にクロックドリフト 誤差を推定する場合よりも、 拡張カルマンフィルタの状態べクトルを構成す る未知数は減少する。 したがって、 演算部 6 0の処理負荷は軽減する。 これ により、 例えば、 移動状態の推定精度とともに推定速度は、 向上する。
[0037] (移動状態算出方法の説明)
上述の構成は、 移動状態を算出するための各種処理を、 複数の機能部に分 けて実現した。 しかしながら、 上述の各処理は、 プログラム化した上で、 C p u等の演算処理装置によって実行してもよい。 この場合、 プログラムは、 記憶部に記憶され、 演算処理装置は、 記憶部に記憶されたプログラムを読み 出して、 実行する。 なお、 各処理の具体的な説明は、 上述の通りであり、 省 略する。
[0038] 図 4は、 移動情報算出方法の一例を示すフローチヤートである。 演算処理 装置は、 共通クロック信号を生成する (S 1 1) 。 演算処理装置は、 共通ク ロック信号を用いて、 受信した G N S S信号から G N S S観測値を算出する (S 1 2) 。 また、 演算処理装置は、 丨 M Uの計測値である I M U観測値を 取得する。
[0039] 演算処理装置は、 算出または取得した各種の観測値を用いて、 統合速度を 推定する (S 1 3) 。 この際、 演算処理装置は、 統合速度とともに、 クロッ クドリフト誤差を推定し、 統合速度の推定演算の前処理時の補正に用いる。
[0040] (第 2の実施形態)
第 2の実施形態に係る移動情報算出装置について、 図を参照して説明する 。 図 5は、 第 2の実施形態に係る移動情報算出装置の構成を示すブロック図 である。
[0041 ] 図 5に示すように、 第 2の実施形態に係る移動情報算出装置 1 O Aは、 第
1の実施形態に係る移動情報算出装置 1 〇に対して、 アンテナおよび G N S S受信部の個数が変更され、 カメラ 7 0が追加された点、 これらの変更およ び追加による演算部 6 0 Aの処理が変更された点で異なる。 移動情報算出装 置 1 0 Aの他の構成および処理は、 移動情報算出装置 1 0と同様であり、 同 様の箇所の説明は省略する。
[0042] 図 5に示すように、 移動情報算出装置 1 OAは、 アンテナ 2 1、 アンテナ \¥02020/174935 9 卩(:171?2020/001819
22、 アンテナ 23、 アンテナ 24、 クロック生成部 30、 〇 33受信部 4 1、
Figure imgf000011_0001
受信部 42、 受信部 43、 〇 33受信部 44、 I 1\/11150、 演算部 60 、 および、 カメラ 70を備える。
[0043] アンテナ 2 1の設置位置、 アンテナ 22の設置位置、 アンテナ 23の設置 位置、 および、 アンテナ 24の設置位置は、 異なる。 この際、 アンテナ 2 1 、 アンテナ 22、 アンテナ 23、 および、 アンテナ 24は、 全てのアンテナ が同時に一直線上に並ばないように、 設置されている。 アンテナ 2 1は、 ◦ N33受信部 4 1 に接続し、 アンテナ 22は、 〇 33受信部 42に接続す る。 アンテナ 23は、 ◦ 33受信部 43に接続し、 アンテナ 24は、
Figure imgf000011_0002
33受信部 44に接続する。
[0044] クロック生成部 30は、 クロック信号を生成して、 〇 33受信部 4 1、
Figure imgf000011_0003
受信部 44に 出力する。
[0045] 受信部 4 1は、 アンテナ
Figure imgf000011_0004
を用いて、
〇 33観測値を算出し、 演算部 60 に出力する。 〇 33受信部 42は 、 アンテナ 22で受信した
Figure imgf000011_0005
33信号を用いて、
Figure imgf000011_0006
33観測値を算出し 、 演算部 60八に出力する。 〇 33受信部 43は、 アンテナ 23で受信し 観測値を算出し、 演算部 60 に出力す
Figure imgf000011_0007
ナ 24で受信
Figure imgf000011_0008
信号を用いて 、 観測値を算出し、 演算部 60 に出力する。
[0046]
Figure imgf000011_0009
計測値を演算部 60 に出力する。
[0047] カメラ 70は、 移動体 90の挙動と周辺の状況を、 動画像によって取得す る。 カメラ 70は、 動画像を、 演算部 60 に出力する。
[0048] 図 6は、 第 2の実施形態に係る演算部の機能ブロック図である。 演算部 6
0八は、
Figure imgf000011_0010
3データ演算部 6 1 1、 I IV! IIデータ演算部 6 1 2、 視覚デ —夕演算部 6 1 3、 および、 統合演算部 62を備える。
[0049] ◦ 33データ演算部 6 1 1は、 ◦ 33受信部 4 1からの◦ 33観測 値、 ◦ 33受信部 42からの◦ 33観測値、
Figure imgf000011_0011
受信部 43からの \¥02020/174935 10 卩(:17 2020/001819
Figure imgf000012_0001
観測値を用い て、 速度および 姿勢角を推定し、 統合演算部 6 2に出力す る。
[0050] データ演算部 6 1 2は、
Figure imgf000012_0002
らの計測値を用いて、 丨 1\/1 11 速度および丨 IV! II姿勢角を算出し、 統合演算部 6 2に出力する。
[0051 ] 視覚データ演算部 6 1 3は、 動画像から複数の特徴点を抽出するとともに 基準点を設定する。 視覚データ演算部 6 1 3は、 基準点の位置に対する複数 の特徴点の位置、 移動量、 および、 スケールを含む空間情報を生成し、 統合 演算部 6 2に出力する。 スケールとは、 動画像から得られる特徴点と基準点 との距離と、 ◦ 3 3速度から得られる特徴点と基準点との距離との比によ って表される。
[0052] 統合演算部 6 2は、 ◦ 3 3データ演算部 6 1 1からの◦ 3 3速度およ び◦ 3 3姿勢角、 I IV! IIデータ演算部 6 1 2からの I IV! II速度および I IV! リ姿勢角、 および、 視覚データ演算部 6 1 3からの空間情報を含んで、 拡張 カルマンフィルタの観測ベクトルを設定する。 統合演算部 6 2は、 移動情報 算出装置 1 〇として出力する統合速度、 クロック信号のクロックドリフト誤 差、 I IV! II 5 0の加速度バイアス誤差、 角速度バイアス誤差、 空間情報のス ケール誤差を含んで、 拡張カルマンフィルタの状態べクトルを設定する。
[0053] 統合演算部 6 2は、 これらの観測べクトルと状態べクトルとを有する拡張 カルマンフィルタを実行することによって、 統合速度および各種の誤差を推 定する。 また、 統合演算部 6 2は、 スケール誤差を用いて空間情報を補正す る。
[0054] この構成では、 移動情報算出装置 1 〇 は、 移動体 9 0の速度を高精度に 算出できるとともに、 視覚情報に対する高精度な距離、 位置を与えることが できる。 そして、 この際、 クロックドリフト誤差は、 4個のアンテナで受信
3 3信号の全てに基づいて推定されるので、 クロックドリフト誤差 は高精度に推定される。 これにより、 移動体 9 0の速度は、 高精度に算出さ れ、 視覚情報に与えられる距離および位置も高精度になる。 \¥02020/174935 11 卩(:171?2020/001819
[0055] また、 〇 33受信部が 4個であっても、 推定するクロックドリフト誤差 は、 1個である。 したがって、 推定演算は高速になり、 高精度になる。
[0056] 特に、 このように、 視覚情報と
Figure imgf000013_0001
信号による観測値と I
Figure imgf000013_0002
の観測 値とを統合して、 速度等を推定算出する場合、 統合演算部 62での処理負荷 は、 非常に高くなる。 したがって、 推定するクロックドリフト誤差が減るこ とによって、 統合演算部 62での処理負荷は軽減し、 速度を高精度に推定算 出しながら、 視覚情報の生成等の各種の処理の更なる高速化が可能になる。
[0057] (第 3の実施形態)
第 3の実施形態に係る移動情報算出装置について、 図を参照して説明する 。 図 7は、 第 3の実施形態に係る移動情報算出装置の構成を示すブロック図 である。
[0058] 図 7に示すように、 第 3の実施形態に係る移動情報算出装置 1 〇巳は、 第
1の実施形態に係る移動情報算出装置 1 〇に対して、 アンテナおよび〇 3 3受信部の個数が変更され、 丨
Figure imgf000013_0003
50が省略された点、 これらの変更およ び追加による演算部 60巳の処理が変更された点で異なる。 移動情報算出装 置 1 0巳の他の構成および処理は、 移動情報算出装置 1 0と同様であり、 同 様の箇所の説明は省略する。
[0059] 図 7に示すように、 移動情報算出装置 1 〇巳は、 アンテナ 2 1、 アンテナ
22、 アンテナ 23、 クロック生成部 30、
Figure imgf000013_0005
受信部 4 1、
Figure imgf000013_0004
受信部 42、
Figure imgf000013_0006
受信部 43、 および、 演算部 60巳を備える。
[0060] アンテナ 2 1の設置位置、 アンテナ 22の設置位置、 および、 アンテナ 2
3の設置位置は、 異なる。 この際、 アンテナ 2 1、 アンテナ 22、 および、 アンテナ 23は、 全てのアンテナが同時に一直線上に並ばないように、 設置 されている。 アンテナ 2 1は、 ◦ 33受信部 4 1 に接続し、 アンテナ 22 は、 受信部 42に接続する。 アンテナ 23は、
Figure imgf000013_0007
受信部 43 に接続する。
[0061] クロック生成部 30は、 クロック信号を生成して、 〇 33受信部 4 1、
◦ N33受信部 42、 および、 受信部 43に出力する。 \¥02020/174935 12 卩(:171?2020/001819
[0062] 受信部 4 1は、 アンテナ
Figure imgf000014_0001
を用いて、
〇 33観測値を算出し、 演算部 60巳に出力する。 〇 33受信部 42は 、 アンテナ 22で受信した
Figure imgf000014_0002
33信号を用いて、
Figure imgf000014_0003
33観測値を算出し 、 演算部 60巳に出力する。 〇 33受信部 43は、 アンテナ 23で受信し
Figure imgf000014_0004
33観測値を算出し、 演算部 60巳に出力す る。
[0063] 演算部 60巳には、
Figure imgf000014_0005
データ演算部 6 1 1 に、
Figure imgf000014_0006
受信部 4 1
Figure imgf000014_0007
観測値、 ◦ 33受信部 42からの◦ 33観測値、 および 、 ◦ 33受信部 43からの◦ 33観測値が、 入力される。
[0064] 演算部 60巳は、 例えば、 拡張カルマンフィルタ巳 によって実現され る。 演算部 60巳は、
Figure imgf000014_0008
33速度を含んで、 拡張カルマンフィルタの観測 ベクトルを設定する。 また、 演算部 60巳は、 移動情報算出装置 1 〇巳とし て出力する統合速度、 クロック信号のクロックドリフト誤差を含んで、 拡張 カルマンフィルタの状態べクトルを設定する。
[0065] そして、 このように、 丨
Figure imgf000014_0009
50を用いない場合でも、 移動情報算出装置
1 〇巳は、 移動情報算出装置 1 0と同様に、 高精度に統合速度を推定算出で きる。
[0066] なお、 上述の各実施形態の構成は、 適宜組合せることが可能であり、 組合 せに応じた作用効果を得られる。
符号の説明
[0067] 1 0、 1 0 、 1 0巳 :移動情報算出装置
2 1、 22、 23、 24 : アンテナ
30 : クロック生成部
4 1、 42、 43、
Figure imgf000014_0010
受信部
50 : 丨 IV! II
60、 60八、 60巳 :演算部
62 :統合演算部
70 :カメラ \¥02020/174935 13 卩(:171?2020/001819
9 0 :移動体
6 1 1
Figure imgf000015_0001
データ演算部
6 1 2 : 1 |\/| IIデータ演算部
6 1 3 :視覚データ演算部
3八丁 1、 3八丁 2、 3八丁3、 3八丁4 :測位衛星
用語
[0068] 必ずしも全ての目的または効果 ·利点が、 本明細書中に記載される任意の 特定の実施形態に則って達成され得るわけではない。 従って、 例えば当業者 であれば、 特定の実施形態は、 本明細書中で教示または示唆されるような他 の目的または効果 ·利点を必ずしも達成することなく、 本明細書中で教示さ れるような 1つまたは複数の効果 ·利点を達成または最適化するように動作す るように構成され得ることを想到するであろう。
[0069] 本明細書中に記載される全ての処理は、 1つまたは複数のコンビュータまた はプロセッサを含むコンピューティングシステムによって実行されるソフト ウェアコードモジュールにより具現化され、 完全に自動化され得る。 コード モジュールは、 任意のタイプの非一時的なコンピュータ可読媒体または他の コンピュータ記憶装置に記憶することができる。 一部または全ての方法は、 専用のコンビュータハードウェアで具現化され得る。
[0070] 本明細書中に記載されるもの以外でも、 多くの他の変形例があることは、 本開示から明らかである。 例えば、 実施形態に応じて、 本明細書中に記載さ れるアルゴリズムのいずれかの特定の動作、 イベント、 または機能は、 異な るシーケンスで実行することができ、 追加、 併合、 または完全に除外するこ とができる (例えば、 記述された全ての行為または事象がアルゴリズムの実 行に必要というわけではない)。 さらに、 特定の実施形態では、 動作またはイ ベントは、 例えば、 マルチスレッ ド処理、 割り込み処理、 または複数のプロ セッサまたはプロセッサコアを介して、 または他の並列アーキテクチャ上で 、 逐次ではなく、 並列に実行することができる。 さらに、 異なるタスクまた はプロセスは、 一緒に機能し得る異なるマシンおよび/またはコンピューティ \¥02020/174935 14 卩(:171?2020/001819
ングシステムによっても実行され得る。
[0071 ] 本明細書中に開示された実施形態に関連して説明された様々な例示的論理 ブロックおよびモジュールは、 プロセッサなどのマシンによって実施または 実行することができる。 プロセッサは、 マイクロプロセッサであってもよい が、 代替的に、 プロセッサは、 コントローラ、 マイクロコントローラ、 また はステートマシン、 またはそれらの組み合わせなどであってもよい。 プロセ ッサは、 コンピュータ実行可能命令を処理するように構成された電気回路を 含むことができる。 別の実施形態では、 プロセッサは、 特定用途向け集積回 路(八31〇、 フィールドプログラマブルゲートアレイ 〇八)、 またはコンピュ —夕実行可能命令を処理することなく論理演算を実行する他のプログラマブ ルデバイスを含む。 プロセッサはまた、 コンピューティングデバイスの組み 合わせ、 例えば、 デジタル信号プロセッサ(デジタル信号処理装置)とマイク ロプロセッサの組み合わせ、 複数のマイクロプロセッサ、
Figure imgf000016_0001
コアと組み合わ せた 1つ以上のマイクロプロセッサ、 または任意の他のそのような構成として 実装することができる。 本明細書中では、 主にデジタル技術に関して説明す るが、 プロセッサは、 主にアナログ素子を含むこともできる。 例えば、 本明 細書中に記載される信号処理アルゴリズムの一部または全部は、 アナログ回 路またはアナログとデジタルの混合回路により実装することができる。 コン ピューティング環境は、 マイクロプロセッサ、 メインフレームコンビュータ 、 デジタル信号プロセッサ、 ポータブルコンピューティングデバイス、 デバ イスコントローラ、 または装置内の計算エンジンに基づくコンピュータシス テムを含むが、 これらに限定されない任意のタイプのコンピュータシステム を含むことができる。
[0072] 特に明記しない限り、 「できる」 「できた」 「だろう」 または 「可能性が ある」 などの条件付き言語は、 特定の実施形態が特定の特徴、 要素および/ま たはステップを含むが、 他の実施形態は含まないことを伝達するために一般 に使用される文脈内での意味で理解される。 従って、 このような条件付き言 語は、 一般に、 特徴、 要素および/またはステップが 1つ以上の実施形態に必 \¥02020/174935 15 卩(:171?2020/001819
要とされる任意の方法であること、 または 1つ以上の実施形態が、 これらの特 徴、 要素および/またはステップが任意の特定の実施形態に含まれるか、 また は実行されるかどうかを決定するための論理を必然的に含むことを意味する という訳ではない。
[0073] 語句 「X、 丫、 åの少なくとも 1つ」 のような選言的言語は、 特に別段の記載 がない限り、 項目、 用語等が X, 丫, å、 のいずれか、 又はそれらの任意の組 み合わせであり得ることを示すために一般的に使用されている文脈で理解さ れる(例: X、 丫、 å)。 従って、 このような選言的言語は、 一般的には、 特定の 実施形態がそれぞれ存在する Xの少なくとも 1つ、 丫の少なくとも 1つ、 または å の少なくとも 1つ、 の各々を必要とすることを意味するものではない。
[0074] 本明細書中に記載されかつ/または添付の図面に示されたフロー図における 任意のプロセス記述、 要素またはブロックは、 プロセスにおける特定の論理 機能または要素を実装するための 1つ以上の実行可能命令を含む、 潜在的にモ ジュール、 セグメント、 またはコードの一部を表すものとして理解されるべ きである。 代替の実施形態は、 本明細書中に記載された実施形態の範囲内に 含まれ、 ここでは、 要素または機能は、 当業者に理解されるように、 関連す る機能性に応じて、 実質的に同時にまたは逆の順序で、 図示または説明され たものから削除、 順不同で実行され得る。
[0075] 特に明示されていない限り、 「一つ」 のような数詞は、 一般的に、 1つ以上 の記述された項目を含むと解釈されるべきである。 従って、 「〜するように 設定された一つのデバイス」 などの語句は、 1つ以上の列挙されたデバイスを 含むことを意図している。 このような 1つまたは複数の列挙されたデ/《イスは 、 記載された引用を実行するように集合的に構成することもできる。 例えば 、 「以下の 8および を実行するように構成されたプロセッサ」 は、 八を実 行するように構成された第 1のプロセッサと、 8および を実行するように構成 された第 2のプロセッサとを含むことができる。 加えて、 導入された実施例の 具体的な数の列挙が明示的に列挙されたとしても、 当業者は、 このような列 挙が典型的には少なくとも列挙された数(例えば、 他の修飾語を用いない 「2 \¥02020/174935 16 卩(:171?2020/001819
つの列挙と」 の単なる列挙は、 通常、 少なくとも 2つの列挙、 または 2つ以上 の列挙を意味する)を意味すると解釈されるべきである。
[0076] 一般に、 本明細書中で使用される用語は、 一般に、 「非限定」 用語(例えば 、 「〜を含む」 という用語は 「それだけでなく、 少なくとも〜を含む」 と解 釈すべきであり、 「〜を持つ」 という用語は 「少なくとも〜を持っている」 と解釈すべきであり、 「含む」 という用語は 「以下を含むが、 これらに限定 されない。 」 などと解釈すべきである。 ) を意図していると、 当業者には判 断される。
[0077] 説明の目的のために、 本明細書中で使用される 「水平」 という用語は、 そ の方向に関係なく、 説明されるシステムが使用される領域の床の平面または 表面に平行な平面、 または説明される方法が実施される平面として定義され る。 「床」 という用語は、 「地面」 または 「水面」 という用語と置き換える ことができる。 「垂直/鉛直」 という用語は、 定義された水平線に垂直/鉛直 な方向を指します。 「上側」 「下側」 「下」 「上」 「側面」 「より高く」 「 より低く」 「上の方に」 「〜を越えて」 「下の」 などの用語は水平面に対し て定義されている。
[0078] 本明細書中で使用される用語の 「付着する」 、 「接続する」 、 「対になる 」 及び他の関連用語は、 別段の注記がない限り、 取り外し可能、 移動可能、 固定、 調節可能、 及び/または、 取り外し可能な接続または連結を含むと解釈 されるべきである。 接続/連結は、 直接接続及び/または説明した 2つの構成要 素間の中間構造を有する接続を含む。
[0079] 特に明示されていない限り、 本明細書中で使用される、 「およそ」 、 「約 」 、 および 「実質的に」 のような用語が先行する数は、 列挙された数を含み 、 また、 さらに所望の機能を実行するか、 または所望の結果を達成する、 記 載された量に近い量を表す。 例えば、 「およそ」 、 「約」 及び 「実質的に」 とは、 特に明示されていない限り、 記載された数値の 10%未満の値をいう。 本 明細書中で使用されているように、 「およそ」 、 「約」 、 および 「実質的に 」 などの用語が先行して開示されている実施形態の特徴は、 さらに所望の機 \¥02020/174935 17 卩(:171?2020/001819
能を実行するか、 またはその特徴について所望の結果を達成するいくつかの 可変性を有する特徴を表す。
[0080] 上述した実施形態には、 多くの変形例および修正例を加えることができ、 それらの要素は、 他の許容可能な例の中にあるものとして理解されるべきで ある。 そのような全ての修正および変形は、 本開示の範囲内に含まれること を意図し、 以下の請求の範囲によって保護される。

Claims

\¥02020/174935 18 卩(:171?2020/001819 請求の範囲
[請求項 1 ] それぞれに◦ 3 3信号を受信する複数のアンテナと、
クロック信号を生成するクロック生成部と、
前記複数のアンテナのそれぞれに接続し、 前記クロック生成部から の前記クロック信号を共有し、 前記共有のクロック信号と前記◦ 3 3信号とを用いて、 それぞれに◦ 3 3観測値を算出する複数の◦ 3 3受信部と、
前記複数の◦ 3 3受信部のそれぞれからの前記◦ 3 3観測値を 用いて、 移動体の速度を含む移動情報を算出する演算部と、
を備える、 移動情報算出装置。
[請求項 2] 請求項 1 に記載の移動情報算出装置であって、
前記演算部は、
前記クロック信号のクロックドリフトを含む誤差の推定を行い、 推 定した誤差を前記移動情報の算出に用いる、
移動情報算出装置。
[請求項 3] 請求項 1 または請求項 2に記載の移動情報算出装置であって、 加速度または角速度を計測する慣性センサを備え、
前記演算部は、
前記慣性センサから出力されるセンサ出力値をさらに用いて、 前記 移動情報を算出する、
移動情報算出装置。
[請求項 4] 請求項 1乃至請求項 3のいずれかに記載の移動情報算出装置であっ て、
動画像を取得するカメラを備え、
前記演算部は、
前記動画像から前記移動体の位置または移動量を含む視覚情報を算 出し、 該視覚情報を前記移動情報によって補正する、 移動情報算出装置。 \¥02020/174935 19 卩(:171?2020/001819
[請求項 5] 複数の◦ 3 3受信部に共通のクロック信号を生成し、
前記複数のアンテナで受信した◦ 3 3信号と前記共通のクロック 信号とを用いて前記複数の◦ 3 3受信部においてそれぞれに◦ 3 3観測値を算出し、
前記複数の◦ 3 3受信部のそれぞれからの前記◦ 3 3観測値を 用いて、 移動体の速度を含む移動情報を算出する、 移動情報算出方法。
[請求項 6] 請求項 5に記載の移動情報算出方法であって、
前記移動体の移動情報の算出時に前記共通のクロック信号のクロッ クドリフトを含む誤差の推定を行い、 推定した誤差を前記移動情報の 算出にフイードバックする、
移動情報算出方法。
[請求項· 7] 請求項 5または請求項 6に記載の移動情報算出方法であって、 加速度または角速度を含むセンサ出力値を取得し、
前記センサ出力値をさらに用いて、 前記移動情報を算出する、 移動情報算出方法。
[請求項 8] 請求項 5乃至請求項 7のいずれかに記載の移動情報算出方法であっ て、
動画像を取得し、
前記動画像から前記移動体の位置または移動量を含む視覚情報を算 出し、 該視覚情報を前記移動情報によって補正する、 移動情報算出方法。
PCT/JP2020/001819 2019-02-25 2020-01-21 移動情報算出装置、および、移動情報算出方法 WO2020174935A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080016117.2A CN113474680A (zh) 2019-02-25 2020-01-21 移动信息计算装置以及移动信息计算方法
JP2021501723A JP7291775B2 (ja) 2019-02-25 2020-01-21 移動情報算出装置、および、移動情報算出方法
EP20762278.8A EP3933443A4 (en) 2019-02-25 2020-01-21 MOTIONAL INFORMATION CALCULATION DEVICE AND MOTIONAL INFORMATION CALCULATION METHOD
US17/410,923 US11953610B2 (en) 2019-02-25 2021-08-24 Device and method for calculating movement information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019031574 2019-02-25
JP2019-031574 2019-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/410,923 Continuation US11953610B2 (en) 2019-02-25 2021-08-24 Device and method for calculating movement information

Publications (1)

Publication Number Publication Date
WO2020174935A1 true WO2020174935A1 (ja) 2020-09-03

Family

ID=72238434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001819 WO2020174935A1 (ja) 2019-02-25 2020-01-21 移動情報算出装置、および、移動情報算出方法

Country Status (5)

Country Link
US (1) US11953610B2 (ja)
EP (1) EP3933443A4 (ja)
JP (1) JP7291775B2 (ja)
CN (1) CN113474680A (ja)
WO (1) WO2020174935A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021020048A1 (ja) * 2019-08-01 2021-02-04

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122816A (ja) * 1990-09-14 1992-04-23 Tokimec Inc ジャイロ装置
JPH09178508A (ja) * 1995-08-07 1997-07-11 Litton Syst Inc 可動プラットホーム上の2つのアンテナとともに用いるための装置、および移動体の機首方位を決定する方法、ならびにその方法を行なう装置
US20050004748A1 (en) * 2001-02-28 2005-01-06 Enpoint, Llc. Attitude measurement using a single GPS receiver with two closely-spaced antennas
JP2006522920A (ja) * 2003-03-31 2006-10-05 ロケイタ コーポレイション クラスタ化測位信号を使用するマルチパス低減用システムおよび方法
JP2007271500A (ja) 2006-03-31 2007-10-18 Japan Aerospace Exploration Agency 位置・姿勢推定装置
US20150219767A1 (en) * 2014-02-03 2015-08-06 Board Of Regents, The University Of Texas System System and method for using global navigation satellite system (gnss) navigation and visual navigation to recover absolute position and attitude without any prior association of visual features with known coordinates
JP2016540187A (ja) * 2013-09-27 2016-12-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated 外部ハイブリッドフォトマッピング

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6671587B2 (en) * 2002-02-05 2003-12-30 Ford Motor Company Vehicle dynamics measuring apparatus and method using multiple GPS antennas
US8138970B2 (en) * 2003-03-20 2012-03-20 Hemisphere Gps Llc GNSS-based tracking of fixed or slow-moving structures
US7027918B2 (en) * 2003-04-07 2006-04-11 Novariant, Inc. Satellite navigation system using multiple antennas
US7292186B2 (en) * 2003-04-23 2007-11-06 Csi Wireless Inc. Method and system for synchronizing multiple tracking devices for a geo-location system
JP2006189320A (ja) * 2005-01-06 2006-07-20 Mitsubishi Electric Corp 測位演算機、測位装置および測位演算方法
JP5460148B2 (ja) * 2009-07-06 2014-04-02 株式会社豊田中央研究所 測位装置及びプログラム
US8346466B2 (en) * 2009-11-11 2013-01-01 Northrop Grumman Guidance & Electronics Systems and methods for determining heading
WO2017137987A1 (en) * 2016-02-11 2017-08-17 Ruf Amit A system and methods thereof using gnss signals and reflections thereof to alert of potential collision between moving objects

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122816A (ja) * 1990-09-14 1992-04-23 Tokimec Inc ジャイロ装置
JPH09178508A (ja) * 1995-08-07 1997-07-11 Litton Syst Inc 可動プラットホーム上の2つのアンテナとともに用いるための装置、および移動体の機首方位を決定する方法、ならびにその方法を行なう装置
US20050004748A1 (en) * 2001-02-28 2005-01-06 Enpoint, Llc. Attitude measurement using a single GPS receiver with two closely-spaced antennas
JP2006522920A (ja) * 2003-03-31 2006-10-05 ロケイタ コーポレイション クラスタ化測位信号を使用するマルチパス低減用システムおよび方法
JP2007271500A (ja) 2006-03-31 2007-10-18 Japan Aerospace Exploration Agency 位置・姿勢推定装置
JP2016540187A (ja) * 2013-09-27 2016-12-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated 外部ハイブリッドフォトマッピング
US20150219767A1 (en) * 2014-02-03 2015-08-06 Board Of Regents, The University Of Texas System System and method for using global navigation satellite system (gnss) navigation and visual navigation to recover absolute position and attitude without any prior association of visual features with known coordinates

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BEN AFIA, AMANI ET AL.: "A Low-cost GNSS/IMU/Visual monoSLAM/WSS Integration Based on Kalman Filtering for Navigation in Urban Environments", PROCEEDINGS OF THE 28TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2015, 18 September 2015 (2015-09-18), pages 618 - 628, XP056011031 *
See also references of EP3933443A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021020048A1 (ja) * 2019-08-01 2021-02-04
JP7449938B2 (ja) 2019-08-01 2024-03-14 古野電気株式会社 姿勢計測装置、姿勢計測方法、および、姿勢計測プログラム

Also Published As

Publication number Publication date
JP7291775B2 (ja) 2023-06-15
CN113474680A (zh) 2021-10-01
US11953610B2 (en) 2024-04-09
JPWO2020174935A1 (ja) 2021-12-23
US20210382186A1 (en) 2021-12-09
EP3933443A1 (en) 2022-01-05
EP3933443A4 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
US9714841B2 (en) Satellite navigation/dead-reckoning navigation integrated positioning device
JP4775478B2 (ja) 位置算出方法及び位置算出装置
US11333501B2 (en) Navigation device, method of generating navigation support information, and navigation support information generating program
US9423486B2 (en) Position calculating method and position calculating device
CN114258372B (zh) 船舶信息显示系统、船舶信息显示方法、图像生成装置以及程序
KR20180041212A (ko) 다수의 epoch gnss 반송파-위상 정수 결정
EP2972683B1 (en) Dynamically calibrating magnetic sensors
WO2020174935A1 (ja) 移動情報算出装置、および、移動情報算出方法
WO2018198641A1 (ja) 測位装置、測位システム、測位方法、および、測位プログラム
Liu et al. Performance evaluation of real-time MEMS INS/GPS integration with ZUPT/ZIHR/NHC for land navigation
JP6923739B2 (ja) 航法装置、vslam補正方法、空間情報推定方法、vslam補正プログラム、および、空間情報推定プログラム
JP5348093B2 (ja) 位置算出方法及び位置算出装置
US20220221593A1 (en) Attitude measuring device, attitude measuring method and attitude measurement program
US11268814B2 (en) Movement information calculating device, movement information calculating method and movement information calculating program
WO2020059383A1 (ja) 航法装置、航法支援情報の生成方法、および、航法支援情報の生成プログラム
JP2012225769A (ja) 位置測位システム
US20240069210A1 (en) Positioning device, positioning method, and positioning program
US11255675B2 (en) Course estimating device, method of estimating course, and course estimating program
US20230243981A1 (en) Positioning device, positioning method, and computer-readable recording medium
WO2021044777A1 (ja) 相対位置計測装置、相対位置計測方法、および、相対位置計測プログラム
US20230228572A1 (en) Ship navigation assistance device, ship navigation assistance method, and ship navigation assistance program
WO2019107212A1 (ja) 動揺観測装置、動揺観測方法、および、動揺観測プログラム
JP2012159913A (ja) 信号処理を行うための方法及びコンピューターシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501723

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020762278

Country of ref document: EP

Effective date: 20210927