WO2020174792A1 - Laminated foamed sheet, and molded body thereof - Google Patents

Laminated foamed sheet, and molded body thereof Download PDF

Info

Publication number
WO2020174792A1
WO2020174792A1 PCT/JP2019/046369 JP2019046369W WO2020174792A1 WO 2020174792 A1 WO2020174792 A1 WO 2020174792A1 JP 2019046369 W JP2019046369 W JP 2019046369W WO 2020174792 A1 WO2020174792 A1 WO 2020174792A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
foamed
mass
foam sheet
Prior art date
Application number
PCT/JP2019/046369
Other languages
French (fr)
Japanese (ja)
Inventor
博章 北出
阿南 伸一
卓正 山岸
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Publication of WO2020174792A1 publication Critical patent/WO2020174792A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/02Internal Trim mouldings ; Internal Ledges; Wall liners for passenger compartments; Roof liners
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent

Definitions

  • the present invention relates to a laminated foam sheet and a molded body thereof.
  • a laminated foam sheet including a foamed layer using a thermoplastic resin as a base resin and a non-foamed layer using a thermoplastic resin as a base resin. Since the laminated foam sheet has excellent heat resistance and light weight, it is used as a raw material for food packaging containers, vehicle floor mats, and the like.
  • Patent Document 1 proposes a foam laminated body having a foam layer and a pressure-sensitive adhesive layer containing a synthetic rubber. Further, Patent Document 2 proposes a laminated foam sheet having a foam layer and a thermoplastic elastomer layer. According to the foam laminates of Patent Documents 1 and 2, grip performance can be realized.
  • Patent Document 1 Japanese Patent Laid-Open No. 20 1 4 _ 1 8 0 8 1 8
  • Patent Document 2 JP 2 0 0 9 _ 1 8 4 1 8 1 Publication
  • the laminated foam sheet is required to have gripping properties, as well as the property of being easily formed into a predetermined shape by heating (thermoformability) and the property of resisting frictional force on the surface (wear resistance).
  • thermalformability the property of being easily formed into a predetermined shape by heating
  • wear resistance the property of resisting frictional force on the surface
  • the present invention has been made in view of the above circumstances.
  • the purpose is to provide.
  • the present invention has the following aspects.
  • the foamed layer has a closed cell ratio of 70% or more and a density of
  • the first non-foamed layer has a maximum load of 10
  • the laminated foamed sheet was cut along the thickness direction, and a photograph of the cut surface was taken with a scanning electron microscope at a magnification of 30 times. In the obtained photograph, the foamed layer and the first non-foamed layer were taken. From the interface of the foam layer, in the thickness direction of the foam layer, measure the major axis and minor axis of the bubbles in the region up to a depth of 15% of the thickness of the foam layer, and calculate the ratio expressed by major axis/minor axis. The number of bubbles () and the number of all bubbles contained in the region are counted as the number of bubbles (/ ⁇ ), and the ratio of the bubbles to the total number of bubbles contained in the region is Calculate the ratio of bubbles ().
  • the thickness of the foam layer is 0.1 to 3.
  • the thickness of the first non-foamed layer is 0.05 to ⁇ .
  • the density is The laminated foam sheet according to any one of [1] to [6].
  • the mass ratio expressed by [content of non-crosslinking olefin-based elastomer]: [content of resin other than non-crosslinking olefin-based elastomer] is from 10:900 to 90:10.
  • the resin other than the non-crosslinked olefin elastomer is at least one resin selected from the group consisting of polyolefin resin, polystyrene resin, and polyester resin, [8] or [ 9] The laminated foam sheet according to [9].
  • the gel fraction of the non-crosslinked olefin elastomer is preferably 3.0% by mass or less, more preferably 1.0% by mass or less, still more preferably 0.5% by mass or less, and 0.3% by mass. It is particularly preferable that the content is not more than mass%, [1] to [11] ⁇ 2020/174792 4 ⁇ (:171?2019/046369
  • the laminated foam sheet according to any one of 1.
  • Density of the foam layer is preferably 90 to 9001 ⁇ 9/3, more preferably 1 00-5001 ⁇ 9/3, Is more preferable, The laminated foam sheet as described in any one of [1]-[12].
  • the proportion of the bubbles (8) is preferably 50 to 75%, more preferably 60 to 70%, further preferably 65 to 70%, and any one of [1] to [13].
  • the ratio of air bubbles (Minami) calculated by the following method is preferably 50 to 75%, more preferably 60 to 70%, further preferably 65 to 70%, as described in [11] Laminated foam sheet.
  • the laminated foam sheet was cut along the thickness direction, and a photograph of the cut surface was taken with a scanning electron microscope at a magnification of 30 times. In the obtained photograph, a foam layer and a second non-foam layer were formed. From the interface of the foam layer, in the thickness direction of the foam layer, measure the major axis and minor axis of the bubbles in the region up to a depth of 15% of the thickness of the foam layer, and calculate the ratio expressed by major axis/minor axis.
  • the bubbles having the ratio of 4.0 or more are defined as bubbles (Mitsumi), and the number of bubbles (Mitsumi) and the number of all the bubbles contained in the region are counted, and the total number of bubbles contained in the region is calculated. Calculate the percentage of air bubbles.
  • the thickness of the foamed layer is 0.1 to 3. Is preferred.
  • the laminated foam sheet according to any one of [1] to [15].
  • the thickness of the first non-foamed layer 2 is 0.05 to 0. Is more preferable, and 0.1 to 0.4 is more preferable, and 0.15 to 0.
  • the ratio of the thickness of the first non-foaming layer 2 to the thickness of the foaming layer 1 is represented by Ding 2 /Ding 1, preferably 0.01 to 1, and 0.05 to 0.
  • Fig. 1 is a cross-sectional view showing an example of a laminated foam sheet of the present invention.
  • FIG. 2 is a schematic view showing an example of an apparatus for manufacturing a foamed sheet.
  • FIG. 3 A cross-sectional photograph of an example of the laminated foam sheet of the present invention.
  • FIG. 4 is a schematic view showing an example of an apparatus for manufacturing a laminated foam sheet of the present invention.
  • FIG. 5 is a schematic view showing an example of a floor mat of a vehicle of the present invention.
  • FIG. 6 is a schematic view showing an example of an undercover of the vehicle of the present invention.
  • FIG. 7 is a schematic view showing an example of a luggage tray of the vehicle of the present invention.
  • FIG. 8 is a schematic view showing another example of the luggage tray of the vehicle of the present invention.
  • the laminated foam sheet of the present invention has a foam layer and a first non-foam layer located on one surface of the foam layer.
  • the laminated foam sheet of the present invention may further have a second non-foamed layer located on the other surface of the foamed layer.
  • the laminated foam sheet shown in Fig. 1 is provided on one side of the foam layer 10 and the foam layer 10
  • the first non-foamed layer 20 and the second non-foamed layer 30 provided on the other surface of the foamed layer 10 are provided.
  • the laminated foam sheet 1 has a three-layer structure.
  • FIG. 1 is illustrated in an enlarged manner in the thickness direction.
  • the foam layer is formed by foaming the resin composition.
  • the resin composition contains a polyolefin resin and a foaming agent.
  • polyolefin-based resin examples include homopolymers of olefin-based monomers such as ethylene and propylene or copolymers thereof, and olefin-based monomers as main components, and olefin-based monomers and vinyl monomers that can be polymerized therewith. And a copolymer thereof.
  • These polyolefin resins may be used alone or in combination of two or more. Among them, polyethylene resin and polypropylene resin are preferable, and polypropylene resin is more preferable.
  • polyethylene-based resin examples include, for example, low-density polyethylene resin (L D PE) in which ethylene is polymerized under high pressure to form long chain branches in the molecule.
  • L D PE low-density polyethylene resin
  • HDPE high-density polyethylene resin
  • LLDPE Linear low-density polyethylene resin
  • High melt tension polypropylene resin is a polypropylene whose tension in the molten state is increased by mixing a high molecular weight component or a component having a branched structure into polypropylene resin or by copolymerizing polypropylene with a long chain branched component. It is a resin.
  • High melt tension polypropylene resin is commercially available, for example, WB 1 30 HMS and WB 1 35 manufactured by Borealis. ⁇ 2020/174792 7 ⁇ (:171?2019/046369
  • melt tension polypropylene resin can be judged not only by the difference in polymer structure but also by the magnitude of its melt tension (melt tension). For example, if the melt tension is 50 or more, it can be judged that it is a high melt tension polypropylene resin.
  • the melt tension of the high melting tension polypropylene resin is, for example, preferably 100 or more and 3001 ⁇ ! or less. When it is at least the above lower limit, the strength of the foamed layer will be more easily increased. When it is at most the above upper limit, thermoformability will be more easily improved.
  • the melt tension of the resin can be measured using the measuring device “CAYPYROgraph 1 ⁇ /10- ⁇ ” manufactured by Toyo Seiki Co., Ltd. as follows. First, in a state where the sample resin is heated to 230 ° ⁇ and melted, the piston drop from the cavity (caliber 2.095 ⁇ 101, length 801 ⁇ 0) of the piston extrusion type plastometer of the above equipment.
  • Melt mass flow rate of polyolefin resin Is Preferably equal to or less than ⁇ , ⁇ . 1 9/1 0_Rei_1 ⁇ 1 ⁇ 5 or more.
  • 1 ⁇ /1 [3 ⁇ 4 is a numerical value representing the fluidity of the thermoplastic resin when melted. 1 ⁇ /1 [In case of 3 ⁇ 4, the resin melted in the cylinder is extruded by the piston under constant temperature and load conditions from the die with the specified bore installed at the bottom of the cylinder per 10 minutes. It is represented by the amount of resin.
  • the melting point of the polyolefin-based resin is preferably 150°° or more and 170°° or less
  • the melting point of the polyolefin-based resin is equal to or higher than the above lower limit value, the strength of the foam layer can be more easily increased.
  • the melting point of the polyolefin resin is not more than the above upper limit, the thermoformability is likely to be improved.
  • the melting point of the polyolefin resin is measured by the method described in "3 ⁇ 7 1 2 1 :1 9 8 7 "Measurement method of plastic transition temperature".
  • the content of the polyolefin-based resin is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass, based on 100% by mass of the resin constituting the foamed layer. ..
  • the resin composition may include other resins.
  • other resins include polystyrene resins and polyester resins.
  • polystyrene resin examples include, for example, homopolymers or copolymers of styrene monomers, copolymers of styrene monomers with other vinyl monomers, or these resins. A mixture etc. are mentioned.
  • the polystyrene resin may be used alone or in combination of two or more.
  • the polystyrene-based resin preferably contains a structural unit based on a styrene-based monomer in an amount of 50% by mass or more, and more preferably 70% by mass or more, based on the total structural units of the polystyrene-based resin. It is more preferable that the content of 80% by mass or more is more preferable.
  • the mass average molecular weight of the polystyrene resin is preferably 200,000 to 400,000, more preferably 240,000 to 400,000.
  • the mass average molecular weight is the value measured by ⁇ ⁇ (gel permeation chromatography), and is ⁇ 2020/174792 9 ⁇ (:171?2019/046369
  • Examples of the homopolymers or copolymers of the above-mentioned styrene-based monomers include styrene, ⁇ _methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, propylpropylstyrene, dimethylstyrene, bromostyrene, etc.
  • Examples thereof include homopolymers or copolymers of the styrene-based monomer. Among these, those having a structural unit based on styrene of 50% by mass or more based on all structural units are preferable, and polystyrene (homopolymer) is more preferable.
  • High impact polystyrene containing a rubber component may be used as the polystyrene resin.
  • Examples of copolymers of styrene-based monomers and other vinyl-based monomers include styrene-(meth)acrylic acid copolymers, styrene-(meth)acrylic acid ester copolymers, styrene-chlorides.
  • (meth)acrylic acid means acrylic acid or methacrylic acid.
  • a structural unit based on a styrene-based monomer is added in an amount of 50% by mass based on all the structural units of the copolymer.
  • the above content is preferable, the one containing 70% by mass or more is more preferable, and the one containing 80% by mass or more is further preferable.
  • styrene-(meth)acrylic acid copolymer As the copolymer of the styrene-based monomer and the other vinyl-based monomer, a styrene-(meth)acrylic acid copolymer and a styrene-butadiene copolymer are preferable.
  • the styrene-(meth)acrylic acid copolymer include a styrene-acrylic acid copolymer and a styrene-methacrylic acid copolymer.
  • the content of the structural unit based on (meth) acrylic acid in the polystyrene resin is ⁇ 2020/174792 10 ⁇ (:171?2019/046369
  • 0.5 to 6.8% by mass is preferable with respect to all the constitutional units constituting the polystyrene resin. It is more preferable that the content is .0 to 5.0% by mass, and! More preferably, it is 0.3 to 3.0 mass %. By setting it within the above numerical range, excellent toughness and heat resistance can be exhibited.
  • the content of the structural unit based on (meth)acrylic acid in the polystyrene resin can be calculated from the charged amount of styrene-(meth)acrylic acid.
  • the content of the butadiene-based structural unit in the polystyrene-based resin is preferably 0.5 to 6.8 mass% with respect to all the structural units constituting the polystyrene-based resin. It is more preferable that the content is .0 to 5.0% by mass, and! More preferably, it is from 0.3 to 3.0% by mass. Within the above numerical range, excellent toughness and heat resistance can be exhibited.
  • the content of the constitutional unit based on butadiene in the polystyrene resin can be calculated from the charged amount of styrene-diene.
  • the content of the styrene-(meth)acrylic acid copolymer is preferably 10% by mass or more based on the total mass of the polystyrene-based resin.
  • the content of the styrene-(meth)acrylic acid copolymer is at least the above lower limit value, it is easy to improve the fusion property.
  • the content of the styrene-(meth)acrylic acid copolymer in the polystyrene resin is not particularly limited, and may be 100% by mass with respect to the total mass of the polystyrene resin.
  • the content of the styrene-butadiene copolymer is preferably 10% by mass or more based on the total mass of the polystyrene resin.
  • the content of the styrene-butadiene copolymer is at least the lower limit value described above, it is easy to increase the fusion property.
  • the content of the styrene-butadiene copolymer in the polystyrene resin is not particularly limited, and the total content of the polystyrene resin is not limited. It may be 100% by mass relative to the mass.
  • polystyrene-based resin examples include a commercially available polystyrene-based resin, a polystyrene-based resin synthesized by a suspension polymerization method, etc., and a polystyrene that is not a recycled raw material. ⁇ 2020/174792 1 1 ⁇ (:171?2019/046369
  • recycled raw materials obtained by recycling used polystyrene foam, polystyrene resin foam moldings (food packaging trays, etc.).
  • the recycled raw material include a recycled raw material obtained by collecting a used polystyrene foam and a polystyrene resin foam molded product and regenerating it by a limonene dissolution method or a heat volume reduction method.
  • polyester-based resin examples include polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polyethylene furanoate resin, polyethylene terephthalate resin, terephthalic acid/ethylene glycol/cyclohexanedimethanol copolymer, And mixtures of these and mixtures of these with other resins.
  • a plant-derived polyethylene terephthalate resin or a polyethylene furanoate resin may be used.
  • the polyester resins may be used alone or in combination of two or more.
  • a (meth)acrylic resin an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, a polyphenylene ether resin, or the like may be contained.
  • the resin composition contains a foaming agent.
  • foaming agent examples include baking soda-citric acid-based foaming agents, ammonium carbonate, sodium bicarbonate, ammonium bicarbonate, ammonium nitrite, calcium azide, sodium azide, sodium borohydride, and other inorganic decomposable foaming agents; azodicarboxylic amine.
  • Azo compounds such as azo, azobissulfolumamide, azobisisobutyronitrile and diazoaminobenzene; 1 ⁇ 1, 1 ⁇ 1'-dinitrosopentanemethylenetetramine, 1 ⁇ ], 1 ⁇ 1'-dimethyl-1 ⁇ 1 ,1 ⁇ 1'-Dinitrosoterephthalamide and other ditroso compounds; benzenesulfonyl hydrazide, 1-toluenesulfonyl hydrazide, ,'-oxybisbenze sulfonylsemicarbazide, _toluenesulfonyl semicarbazide, trihydrazinotriazine, barium azodicarboxylate, etc.
  • Gas blowing agent ⁇ 2020/174792 12 ⁇ (:171?2019/046369
  • examples thereof include air, nitrogen, carbon dioxide, propane, neopentane, methyl ether, fluoromethane dichloride, 1 ⁇ !-butane, and isobutane.
  • the gas means that it is a gas at room temperature (15 ° ⁇ to 25 ° ⁇ ).
  • examples of the volatile blowing agent include ether, petroleum ether, acetone, pentane, hexane, isohexane, heptane, isoheptane, benzene, and toluene.
  • the content of the foaming agent in the resin composition is appropriately determined in consideration of the type of the foaming agent, the specific gravity, etc., and, for example, 0.5 to 20 parts by mass relative to 100 parts by mass of the resin. Parts are preferred, and 0.8 to 5.5 parts by mass are more preferred.
  • the content of the foaming agent in the foam layer is preferably 0.3 to 3.6 mass%, more preferably 0.5 to 3.3 mass%, based on the total mass of the foam layer. ..
  • the resin composition includes a surfactant, a cell regulator, a cross-linking agent, a filler, a flame retardant, a flame retardant aid, and a lubricant (hydrocarbon, fatty acid, fatty acid amide, ester, alcohol, Additives such as metal soap, silicone oil, waxes such as low molecular weight polyethylene), spreading agents (liquid paraffin, polyethylene glycol, polybutene, etc.), colorants, heat stabilizers, UV absorbers, antioxidants, etc. May be done.
  • the cell regulator examples include inorganic powder such as talc and silica; acidic salt of polyvalent carboxylic acid; reaction mixture of polyvalent carboxylic acid and sodium carbonate or sodium bicarbonate.
  • the reaction mixture is preferable because the closed cell ratio is maintained and the thermoformability is easily improved.
  • the cell regulator may be used alone or in combination of two or more.
  • the addition amount of the bubble control agent is preferably 0.01 to 1.0 part by mass with respect to 100 parts by mass of the resin.
  • the closed cell content of the foam layer is 70% or more, preferably 75% or more, and more preferably 80% or more.
  • the upper limit is not particularly limited. For example, 99% or less is preferable. ⁇ 2020/174792 13 ⁇ (:171?2019/046369
  • the closed cell rate of the foam layer is measured by the method described in "3 ⁇ 71 38: 2006 "Rigid foamed plastic-determination of open cell rate and closed cell rate”".
  • the thickness of the foam layer 1 is preferably from 0.1 to 3.0, and from 0.3 to 2. Is more preferable. When the thickness of the foam layer is at least the above lower limit, the shape retention is excellent. When the thickness of the foam layer is not more than the above upper limit, the thermoformability can be further improved.
  • the thickness is a value obtained by measuring the 20 points of the measurement object at equal intervals in the width direction (the horizontal direction) with a macro gauge and calculating the arithmetic mean value thereof.
  • the basis weight of the foam layer is 250 to 700. Is preferred, 400-600
  • the basis weight can be measured by the following method.
  • the density of the foam layer is 50 ⁇ 1 000 / ⁇ ! 3 and 90 ⁇ 900
  • the foamed sheet forming the foamed layer is manufactured according to a conventionally known manufacturing method.
  • a resin composition is prepared, and the resin composition is sealed. ⁇ 2020/174792 14 ⁇ (:171?2019/046369
  • the foamed sheet manufacturing apparatus 200 shown in Fig. 2 is an apparatus for obtaining a foamed sheet by inflation molding, and includes an extruder 200, a foaming agent supply source 208, a circular die 210, and a mandrel.
  • the extruder 20 2 provided with 2 20 and two winding machines 2 4 0 is a so-called tandem type extruder, and the extruder 2 0 2 3 and the extruder 2 0 2 It is configured to be connected in 6.
  • First push out section 2 0 2 3 is provided with a hopper 2 0 4, in an extruder eight 2 0 2 3, blowing agent supply 2 0 8 is connected.
  • the extruder die 210 is connected to the circle die 210, and the mandrel 220 is provided downstream of the circle die 210.
  • the mandrel 220 is equipped with a cutter _2 22.
  • the raw materials charged from the hopper 204 are the resin that constitutes the foamed sheet, and additives that are added as necessary.
  • a resin composition is prepared by mixing a resin melt with a foaming agent.
  • the heating temperature is appropriately determined in consideration of the type of resin and the like within a range in which the resin melts and the additive does not denature.
  • the resin composition is fed to an extruder snake 2 0 2 spoon via a pipe 2 0 6 from the extruder 2 0 2 3, are further mixed, after being cooled to any temperature, Sakiyurada Lee 2 1 0 Supplied to.
  • the temperature of the resin composition when it is extruded from the circular die 210 is 1400-1900 ° , more preferably 1500-1900 ° .
  • the resin composition was extruded from the circular die 210 and the foaming agent foamed. ⁇ 2020/174792 1 5 ⁇ (:171?2019/046369
  • the foamed sheet 1 0 1 3 extruded from the circular die 210 is blown with cooling air 2 11 and then supplied to the mandrel 2 20.
  • the cooling rate of the foamed sheet 1103 can be adjusted by combining the temperature, amount, and blowing position of the cooling air 211.
  • the cylindrical foam sheet 1013 is heated to an arbitrary temperature by the mandrel 220, sized, and cut into two by the cutter 2222 to form the foam sheet 1101.
  • the foamed sheet 1 0 1 is wound around a guide roll 2 4 2 and a guide roll 2 4 4 respectively, and wound up by a winding machine 2 4 0 to form a foamed sheet roll 1 0 2.
  • the foaming factor of the foamed sheet is, for example, 2 to 20 times.
  • the foamed sheet may be manufactured by a method other than inflation molding.
  • the first non-foamed layer is a layer located on one surface of the foamed layer.
  • non-foaming means a state in which the raw material resin is not foamed, and means a case where the foaming multiple is 1.0 times.
  • the first non-foamed layer preferably contains a non-crosslinked olefinic elastomer.
  • non-crosslinked means that the gel fraction is 3.0% by mass or less, more preferably 1.0% by mass or less.
  • the gel fraction is the value measured as follows.
  • the mass 1 of the resin is measured.
  • the resin is then heated to reflux in 80 milliliters of boiling xylene for 3 hours.
  • the residue in xylene was filtered using a 200-mesh wire net, the residue remaining on the wire net was co-washed with new xylene, then dried naturally for 1 day, then to 120 ° ⁇ .
  • After drying for 2 hours with a dryer measure the mass of residue left on the wire net ⁇ /2. Then, calculate the gel fraction of the resin based on the following formula (1).
  • non-crosslinking olefin elastomer examples include homopolymers of propylene, propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene and 4-methyl-1-pentene.
  • a copolymer or the like selected from one or more kinds of reffins is preferable.
  • the content of the non-crosslinked olefin elastomer is preferably 10% by mass or more and more preferably 20% by mass or more with respect to 100% by mass of the resin constituting the first non-foamed layer. Further, the content of the non-crosslinking olefin-based elastomer is preferably 90% by mass or less, and more preferably 80% by mass or less, relative to 100% by mass of the resin constituting the first non-foamed layer. Specifically, the content of the non-crosslinking olefinic elastomer is 100% by mass with respect to 100% by mass of the resin constituting the first non-foaming layer.
  • the first non-foaming layer may contain, as a resin other than the non-crosslinking olefin-based elastomer, the polyolefin-based resin, the polystyrene-based resin, the polyester-based resin and the like described in the above ⁇ foaming layer>.
  • the first non-foamed layer contains a non-crosslinking olefin-based elastomer and a resin other than the non-crosslinking olefin-based elastomer
  • content of non-crosslinking olefin elastomer [non-crosslinking Content of resin other than type olefin-based elastomer] is preferably 10:90 to 90:10, more preferably 20:80 to 80:20, 0:70 to 70:30 is more preferable.
  • the above mass ratio is within the above range, abrasion resistance is likely to be improved.
  • the maximum load required for the first non-foamed layer" 3 ⁇ 7 1 25 is 10 to 50 1 ⁇ 1, preferably 15 to 4 5 1 ⁇ 1, and 20 to 40 1 ⁇ 1 is more preferable, and 20 to 3 5 1 ⁇ 1 is further preferable.
  • the maximum load of the first non-foamed layer is within the above range, it becomes easy to improve wear resistance.
  • the first coefficient of static friction determined by 3 ⁇ 71 25 of the first non-foamed layer is
  • the maximum static friction coefficient of the first non-foamed layer is preferably 5.0 or less, more preferably 4.5 or less. In particular, ⁇ 2020/174792 17 ⁇ (: 171?2019/046369
  • the maximum static friction coefficient of the first non-foamed layer is preferably from 1.0 to 5.0, more preferably from 2.0 to 4.5, even more preferably from 2.5 to 4.0. When the maximum coefficient of static friction of the first non-foamed layer is within the above range, it can be made slippery.
  • the basis weight 3 of the first non-foamed layer is Is preferred, and 130 ⁇ Is more preferable.
  • the handleability is excellent.
  • the basis weight can be measured by the following method.
  • the thickness of the first non-foamed layer 2 is appropriately determined according to the required strength and the like, and is, for example, 0. 05 to 0. Is preferred, and 0.01 to 0.4 is more preferred, and 0.15 to 0.3 Is more preferable. If it is at least the above lower limit value, sufficient strength is likely to be obtained. If it is at most the above upper limit, the molding process will be easy.
  • the ratio of the thickness of the first non-foamed layer to the thickness of the foamed layer is expressed as D 2 /D 1, and is preferably 0.01-1 and more preferably 0.05-5.
  • the hardness of the first non-foaming layer is 3 ⁇ 6 2 5 3-3 and the Duro 8 hardness is 7
  • the Duro 8 hardness of the first non-foamed layer is preferably 30 or more, and more preferably 40 or more. Specifically, the Duro 8 hardness of the first non-foamed layer is preferably from 30 to 70, more preferably from 40 to 70. When the Duro 8 hardness of the first non-foamed layer is within the above range, the grip property is excellent.
  • the elongation percentage at break as determined by "3 [ ⁇ 6 2 5 1 of the first non-foamed layer] is preferably 900% or more, and more preferably 10000 to 1500%. Elongation at break ⁇ 2020/174792 18 ⁇ (:171?2019/046369
  • thermoformability is excellent.
  • An additive may be contained in the first non-foamed layer.
  • the additives include flame retardants, flame retardant aids, lubricants, spreading agents, colorants, antistatic agents, antifogging agents, antiblocking agents, antioxidants, light stabilizers, crystal nucleating agents, surfactants. , Filler, etc.
  • the content thereof is preferably more than 0 parts by mass and 30 parts by mass or less with respect to 100 parts by mass of the resin.
  • the second non-foamed layer is a layer located on the other surface of the foamed layer.
  • the same one as the above-mentioned ⁇ third non-foamed layer> can be used.
  • the second non-foamed layer may include a filler. By including a filler, it is easier to improve the strength.
  • the filler is preferably an inorganic filler, and examples thereof include plate-like mineral particles such as talc, kaolin, calcined kaolin, bentonite, mica group minerals (sericite, muscovite, phlogopite, biotite). Of these, talc is preferred.
  • the content of the filler is preferably from 5 to 50% by mass, more preferably from 10 to 40% by mass, based on the total mass of the second non-foamed layer.
  • the strength is excellent.
  • the average particle size of the filler is preferably 1 to 50, more preferably 3 to 30. When the average particle size of the filler is within the above numerical range, the strength is excellent. In the present specification, the average particle size can be measured by a laser diffraction method.
  • the maximum load required for the second non-foamed layer" 3 ⁇ 71 25 is 10 to 5
  • the maximum static friction coefficient of the second non-foamed layer is preferably 5.0 or less, more preferably 4.5 or less.
  • the maximum static friction coefficient of the second non-foamed layer is preferably 1.0 to 5.0, more preferably 2.0 to 4.5, and even more preferably 2.5 to 4.0.
  • the basis weight of the second non-foamed layer is Is preferred, 1 to 30 ⁇
  • the basis weight can be measured by the following method.
  • the thickness of the second non-foamed layer 3 is appropriately determined according to the required strength and the like. Is preferred, and 0.01 to 0.4 is more preferred, and 0.15 to 0.3 Is more preferable. If it is at least the above lower limit value, sufficient strength is likely to be obtained. If it is at most the above upper limit, the molding process will be easy.
  • the second non-foamed layer has a Duro 8 hardness of 7 determined by 3 ⁇ 6253-3.
  • the Duro 8 hardness of the first non-foamed layer which is determined by "3 [ ⁇ 6253-3", is preferably 30 or more, and more preferably 40 or more.
  • the Duro 8 hardness of the second non-foamed layer is preferably 30 to 70, more preferably 40 to 70.
  • the second elongation of the non-foamed layer is 900 [ ⁇ 625 1 ⁇ 0 2020/174792 20 20 (: 17 2019/046369
  • thermoformability is excellent.
  • the second non-foamed layer may contain an additive.
  • the additives include flame retardants, flame retardant aids, lubricants, spreading agents, colorants, antistatic agents, antifogging agents, antiblocking agents, antioxidants, light stabilizers, crystal nucleating agents, surfactants.
  • the content thereof is preferably more than 0 parts by mass and 30 parts by mass or less with respect to 100 parts by mass of the resin.
  • the proportion of the bubbles (8) is preferably 75% or less, more preferably 70% or less. Specifically, the proportion of the bubbles (8) is preferably from 50 to 75%, more preferably from 60 to 70%, even more preferably from 65 to 70%. When the ratio of the bubbles (8) is within the above range, abrasion resistance is easily improved.
  • the laminated foam sheet was cut along the thickness direction, and a photograph of the cut surface was taken with a scanning electron microscope at a magnification of 30 times.
  • the first Select three or more bubbles located on the non-foaming layer side of, and draw a tangent line to the first non-foaming layer side of the selected bubbles in the direction perpendicular to the thickness direction.
  • the tangent line is the interface between the foam layer and the first non-foam layer.
  • the major axis and minor axis of the bubbles in the region up to a depth of 15% with respect to the thickness of the foam layer, and obtain the ratio of major axis/minor axis.
  • the bubbles with the ratio of 4.0 or more are defined as bubbles ().
  • Voids having a minor axis of 1% or more with respect to the thickness of the foam layer included in the region are regarded as bubbles.
  • the number of all bubbles and the number of bubbles (8) are counted, and the ratio of bubbles () to the total number of bubbles contained in the region is calculated.
  • the maximum value of the bubble diameter in the direction perpendicular to the thickness direction of the foam layer is the major axis
  • the maximum value of the bubble diameter in the thickness direction of the foam layer is the minor axis.
  • a bubble in which at least a part of the bubble is included in the region is regarded as a bubble in the region.
  • the proportion of the bubbles (Mi) is preferably 75% or less, more preferably 70% or less. Specifically, the proportion of the bubbles (Mi) is preferably 50 to 75%, more preferably 60 to 70%, further preferably 65 to 70%.
  • the laminated foam sheet was cut along the thickness direction, and a photograph of the cut surface was taken with a scanning electron microscope at a magnification of 30 times. In the obtained photograph, a foam layer and a second non-foam layer were formed. From the interface of the foam layer, in the thickness direction of the foam layer, measure the major axis and minor axis of the bubbles in the region up to a depth of 15% of the thickness of the foam layer, and calculate the ratio expressed by major axis/minor axis.
  • the bubbles having the ratio of 4.0 or more are defined as bubbles (Mitsu), and the number of bubbles (Mitsu) and the number of all the bubbles included in the region are counted, and the total number of bubbles included in the region is calculated. Calculate the percentage of air bubbles.
  • FIG. 3 a laminated foam sheet 11 having three layers is cut along the thickness direction, and a cut surface is photographed with a scanning electron microscope at a magnification of 30 times.
  • the laminated foam sheet 11 of FIG. 3 has a first non-foamed layer, a foamed layer, and a second non-foamed layer laminated in that order from the bottom.
  • the position of the interface 21 between the foam layer and the first non-foam layer is determined.
  • the “interface” is selected by selecting three or more bubbles located on the first non-foaming layer side among the bubbles in the foaming layer, and selecting the bubbles in the direction perpendicular to the thickness direction.
  • the line 2 2 parallel to the interface 21 is located at a position from the interface 21 in the thickness direction of the foam layer to a depth of 15% with respect to the thickness of the foam layer.
  • Subtract 2 Further, the major axis and minor axis of the bubbles contained in the region from the interface 21 to the line 22 are measured.
  • the major axis and the minor axis of the cell are the cell diameter in the direction perpendicular to the thickness direction of the foam layer. ⁇ 2020/174792 22 ⁇ (:171?2019/046369
  • the maximum value is the major axis, and the maximum value of the bubble diameter in the thickness direction of the foam layer is the minor axis. Then, the ratio of the long diameter/short diameter of the bubbles is calculated, and the bubbles having the ratio of 4.0 or more are defined as bubbles (8).
  • the proportion of bubbles (Mitsumi) can also be calculated in the same manner as for bubbles (8).
  • the thickness of the laminated foam sheet 1 is appropriately determined in consideration of the application and the like.
  • the thickness of the laminated foam sheet is at least the above lower limit, sufficient strength can be easily obtained. If it is at most the above upper limit, the molding process will be easy.
  • the basis weight of the laminated foam sheet is Is preferred, 200 to 5
  • the handleability is excellent.
  • the basis weight can be measured by the following method.
  • the density of the laminated foam sheet is 1 50 Is more preferable. When the density of the laminated foam sheet is within the above numerical range, the handleability is excellent.
  • the method for manufacturing the laminated foam sheet 1 includes, for example, a foam sheet forming step of obtaining a foam sheet and a resin forming the first non-foam layer on one surface of the foam sheet by extrusion extrusion. ⁇ 2020/174792 23 ⁇ (:171?2019/046369
  • the foamed sheet forming step is the same as the method for manufacturing the foamed sheet described above.
  • the first laminating step is a step of fusion-bonding the resin forming the first non-foamed layer to one surface of the foamed sheet by extrusion lamination.
  • the foamed sheet 1 0 1 is fed from the foamed sheet roll 10 2 to form the foamed sheet 1
  • the resin 1 0 3 melted by the first extruder 1 1 1 is supplied to one surface of 0 1 from a die 1 1 0. After that, they are pressure-bonded and fused by a pair of cooling ports 1 1 2.
  • a laminated foam sheet 10 4 including two layers including the foam layer 10 and the first non-foam layer 20 is obtained.
  • the heating temperature in the laminating step is appropriately determined according to the material of each layer and the like.
  • the temperature at which the resin constituting the first non-foamed layer 20 is fused to one surface of the foamed sheet 101 is 200 to 240° O is preferable, and 210 to 240 ° is more preferable.
  • the temperature at the time of fusing is within the above range, it becomes easy to improve the wear resistance of the obtained laminated foam sheet.
  • the second laminating step is a step of fusion-bonding the resin constituting the second non-foamed layer to the other surface of the foamed sheet by extrusion laminating.
  • the laminated foamed sheet 10 2 consisting of two layers obtained in the _th laminating step was spun around the mouth 1 13 and the resin 1 melted by the second extruder 1 15 was applied to the other surface of the foamed sheet.
  • 0 5 is supplied from die 1 1 4. After that, they are pressure-bonded and fused by a pair of cooling ports 1116.
  • the laminated foam sheet 1 is formed of three layers including the foam layer 10, the first non-foam layer 20 and the second non-foam layer 30.
  • the temperature at which the resin forming the second non-foaming layer 30 is fused to the other surface of the foamed sheet 101 is 200 to 240° ⁇ is preferred ⁇ 2020/174792 24 ⁇ (:171?2019/046369
  • 210 to 240 ° is more preferable.
  • the temperature at the time of fusing is within the above range, it becomes easy to improve the wear resistance of the obtained laminated foam sheet.
  • the two laminating steps may be performed in the order of the second laminating step and the first laminating step.
  • the laminated foam sheet of the present invention is not limited to the above production method (extrusion laminating method).
  • the foamed layer and the non-foamed layer may be laminated by coextrusion or a heat laminating method.
  • the molded product of the present invention is obtained by molding a laminated foam sheet.
  • the laminated foam sheet is heated to an arbitrary temperature for secondary foaming, and then the laminated foam sheet is sandwiched between a male mold and a female mold of an arbitrary shape and molded. Is mentioned.
  • the first non-foamed layer is formed so that the surface thereof faces downward in the vertical direction.
  • the molded article of the present invention can be used for a floor mat of a vehicle, a luggage tray, and an under cover of a vehicle.
  • the floor mat of a vehicle is removably placed on the floor of the vehicle. It is used to replenish the dirt caused by dirt and sand brought in by passengers from the outside of the vehicle, and wash it outside the passenger compartment for repeated use.
  • the first non-foamed layer is arranged so that the first non-foamed layer faces downward in the vertical direction when the floor mat is used. As a result, it is possible to prevent the floor mat of the vehicle from being displaced from the predetermined position.
  • FIG. 5 is a schematic diagram showing an example of the floor mat of the vehicle of the present invention.
  • the vehicle floor mat 2 in Fig. 5 has notches so that it can be placed at the foot of the seat in front of the vehicle, and has an uneven structure on the surface to prevent slipping.
  • the notch may be formed according to the shape of the vehicle.
  • the concavo-convex structure may have any shape and may or may not be rough.
  • the undercover of a vehicle covers and protects the lower part of the vehicle body.
  • the first non-foaming layer is ⁇ 2020/174792 25 ⁇ (:171?2019/046369
  • the vehicle can be protected from dirt and the like that jumps from the ground to the vehicle while the vehicle is traveling.
  • FIG. 6 is a schematic diagram showing an example of the undercover of the vehicle of the present invention.
  • the undercover of the vehicle shown in Fig. 6 has a concavo-convex structure to reduce air resistance and improve fuel efficiency.
  • the concavo-convex structure may have any shape and may or may not be present.
  • the luggage tray of a vehicle is a tray for loading items that is installed at the bottom of the vehicle's luggage compartment.
  • the first non-foamed layer it is preferable to arrange the first non-foamed layer so that the first non-foamed layer is a surface that faces downward in the vertical direction when the luggage tray of the vehicle is used. As a result, it is possible to prevent the luggage tray of the vehicle from being displaced in a predetermined position.
  • FIG. 7 is a schematic view showing an example of the luggage tray of the vehicle of the present invention.
  • the luggage tray 4 of the vehicle in FIG. 7 is rectangular in plan view, but may have any shape.
  • FIG. 8 is a schematic view showing another example of the luggage tray of the vehicle of the present invention.
  • the luggage tray 5 of the vehicle shown in FIG. 8 has a notch so that it can be placed in the trunk, and has an uneven structure on the surface to prevent slipping.
  • the notch may be formed according to the shape of the vehicle.
  • the concavo-convex structure may have any shape, and may or may not have one.
  • a polymer component was prepared by mixing the product name " ⁇ 1100” manufactured by Sun Allomer Co., Ltd. at a ratio of 10 parts by mass.
  • a baking soda-citric acid-based foaming agent (Masterbatch manufactured by Dainichiseika Co., Ltd., trade name "FINECELL MASTER ⁇ 410") in which the ratio to the polymer component of 100 mass parts is 0.2 mass part was blended.
  • a tandem extruder was prepared in which a second extruder with a diameter of 115 was connected to the tip of a first extruder with a diameter of 90. The mixture was melt-kneaded at a temperature of about 200 to 210 ° by feeding a first extruder.
  • a foaming agent was press-fitted into the first extruder at a ratio of 1.0 parts by mass to 100 parts by mass of the polymer component. Melted and kneaded. After that, it is cooled to about 1750 ° and supplied to an annular die that is connected to the tip of the second extruder and extruded into a cylindrical shape at an extrusion rate of 1500! ⁇ 9/hour. It was
  • the obtained cylindrical foam was cooled by blowing air on its inner surface. After that, the inner surface was solidified along the cooling mandrel plug, and air was also blown on the outer surface of the plug to cool and solidify. Then, the cylindrical foam was cut in the direction of extrusion and cut open, wound into a continuous sheet as a continuous sheet, with a thickness of 2. To obtain a foam sheet.
  • Non-crosslinking type olefin elastomer resin manufactured by 3 companies, trade name “340M”, gel fraction 0.3 mass% 60 parts by mass, and polypropylene resin (manufactured by San Allomer Co., trade name “ The resin mixture obtained by mixing 40 parts by mass was fed to the third extruder and the fourth extruder. The sheet was extruded from a die attached to the tip of the third extruder, and a sheet in a molten state immediately after extrusion was laminated on one surface of the foamed sheet and fused.
  • the sheet was extruded from a die attached to the tip of the fourth extruder, and the sheet in a molten state immediately after extrusion was laminated on the other surface of the foamed sheet and fused.
  • a laminated foam sheet having non-foamed layers on both sides was obtained.
  • the extrusion conditions of the third extruder and the fourth extruder were the same. In all the die, the temperature of the parts other than both ends is set so that the temperature of both ends in the width direction of the resin flow path becomes 260 ° ⁇ . ⁇ 2020/174792 27 ⁇ (:171?2019/046369
  • the temperature of the sheet in the molten state at the time of fusing was 220°°.
  • Non-cross-linking olefin elastomer resin (“3 companies, trade name “3400 ⁇ ", gel fraction 0.3 mass%) 80 parts by mass, and polypropylene resin (San Allomer Co., trade name "01 00")
  • a laminated foam sheet was obtained in the same manner as in Example 1 except that a resin mixture prepared by mixing 20 parts by mass was used.
  • Non-crosslinking olefin elastomer resin (“ 3 companies, trade name “3400 Mitsumi”, gel fraction 0.3 mass%) 20 parts by mass, and polypropylene resin (San Allomer Co., trade name "01 00")
  • a laminated foam sheet was obtained in the same manner as in Example 1 except that a resin mixture obtained by mixing 80 parts by mass was used, and the temperature of the sheet in a molten state at the time of fusing was changed to 230 ° .
  • Non-crosslinkable olefin elastomer resin (“, manufactured by 3 companies, trade name “3700", gel fraction: 0.2 mass%) 70 parts by mass, and polypropylene resin (manufactured by San Allomer Co., trade name "01 00")
  • a laminated foam sheet was obtained in the same manner as in Example 1 except that a resin mixture obtained by mixing 30 parts by mass was used, and the temperature of the sheet in a molten state at the time of fusing was changed to 225 ° .
  • Non-cross-linking olefin elastomer resin (", manufactured by 3 companies, trade name “3400", gel fraction: 0.3% by mass) 70 parts by mass, and polypropylene resin (manufactured by San Allomer Co., trade name "0300") 30
  • a laminated foam sheet was obtained in the same manner as in Example 1 except that a resin mixture in which parts by weight were mixed was used, and the temperature of the sheet in the molten state at the time of fusing was changed to 2 15° ⁇ . ..
  • Non-cross-linking olefin elastomer resin manufactured by 3 companies, trade name "3400", gel fraction 0.3 mass% 60 parts by mass, polypropylene resin (d ⁇ 2020/174792 28 ⁇ (:171?2019/046369
  • Non-crosslinkable olefin elastomer resin (“, manufactured by 3 companies, trade name “3400", gel fraction 0.3 mass%) 60 parts by mass, and polystyrene resin (Aron Kasei Co., trade name "[3 ⁇ 4_885 (3)) Laminated foaming in the same manner as in Example 1 except that a resin mixture in which 40 parts by mass was mixed was used, and the temperature of the sheet in the molten state at the time of fusing was changed to 235 ° Got the sheet.
  • the thickness was the same as in Example 1 except that the amount of the foaming agent was 0.3 part by mass. To obtain a foam sheet.
  • a laminated foam sheet was obtained in the same manner as in Example 1 except that the obtained foam sheet was used.
  • a foam sheet having a thickness of 2.0111111 and a density of 270 was obtained in the same manner as in Example 1 except that the amount of the foaming agent was 1.5 parts by mass.
  • a laminated foam sheet was obtained in the same manner as in Example 1 except that the mixed resin mixture was used, and the temperature of the sheet in the molten state at the time of fusion bonding was changed to 2 15 °C.
  • Non-crosslinking olefin elastomer resin (“ 3 companies, trade name “340 MIN”, gel fraction 0.3 mass%) 70 parts by mass, and polypropylene resin (San Allomer Co., trade name " 0 1 0 0 ”) 30 parts by mass of a resin mixture was used, the temperature of the sheet in the molten state at the time of fusing was changed to 230 ° ⁇ , and the first non-foaming layer Thickness 0.3 A laminated foam sheet was obtained in the same manner as in Example 1 except that the above was adopted.
  • a thickness of 1% was obtained in the same manner as in Example 1 except that the amount of the foaming agent was 0.8 parts by mass. To obtain a foam sheet.
  • Polyethylene terephthalate resin as a polyester resin (Mita, manufactured by Mitsui Chemicals, Inc.
  • thermoplastic polyester resin composition containing 2 parts by mass and 0.2 parts by mass of pyromellitic dianhydride is supplied to a single-screw extruder with a diameter of 6500 and a 1/0 ratio of 35. Melt at 290 ° ⁇ 2020/174792 30 ⁇ (:171?2019/046369
  • a foaming agent was press-fitted into the single-screw extruder in an amount of 1.0 part by mass with respect to 100 parts by mass of the polymer component. Melted and kneaded. After that, it was cooled to about 220 ° ⁇ , and a cylindrical die was extruded and foamed into a cylindrical shape from a circular die connected to the tip of a single-screw extruder to produce a cylindrical body, and this cylindrical body was gradually expanded in diameter. After supplying it to the cooling mandrel above and cooling the cylindrical body so that the surface temperature becomes 25 ° ⁇ , the cylindrical body is continuously cut in the extrusion direction between the inner and outer peripheral surfaces and cut open. By deploying it, the thickness is 2.
  • a laminated foamed sheet was obtained in the same manner as in Example 1 except that the temperature of the sheet in a molten state at the time of fusing was changed to 235 ° .
  • Extrusion rate is 50 Same as Example 1 except that the thickness is 2.0 111 111, To obtain a foam sheet.
  • a laminated foamed sheet was obtained in the same manner as in Example 1 except that the temperature of the sheet in a molten state at the time of fusion bonding was changed to 230 ° .
  • non-crosslinked olefin elastomer A laminated foam sheet was obtained in the same manner as in Example 1 except that a resin having a trade name of “340,000” and a gel fraction of 0.3% by mass) was used.
  • a laminated foam sheet was obtained in the same manner as in Example 1 except that the foaming agent was press-fitted so as to be 1.1 parts by mass and then cooled to about 185 ° .
  • a laminated foamed sheet was obtained in the same manner as in Example 1 except that the temperature of the sheet in a molten state at the time of fusion bonding was changed to 210 °. ⁇ 2020/174792 31 ⁇ (:171?2019/046369
  • a laminated foam sheet was obtained in the same manner as in Example 1 except that the obtained foam sheet was used.
  • a resin made of polypropylene resin (manufactured by Nippon Polypropylene Corporation, trade name "Min 060") was used, and the sheet in a molten state at the time of fusing A laminated foam sheet was obtained in the same manner as in Example 1 except that the temperature of 2 was changed to 215°.
  • polypropylene resin manufactured by Nippon Polypro Co., Ltd., trade name “Min 060” 100 parts by mass contains talpet 70 (Nitto) which contains 70% by mass of inorganic filler. Same as Example 1, except that a resin mixture containing 43 parts by mass was used, and the temperature of the sheet in the molten state at the time of fusing was changed to 2 25 ° ⁇ . To obtain a laminated foam sheet
  • a foamed sheet was obtained in the same manner as in Example 1. The obtained foamed sheet was directly used for evaluation.
  • a resin made of a company, trade name "1300 1", gel fraction 40% by mass) was used, and the temperature of the sheet in the molten state at the time of fusing was changed to 2 3 5 °
  • a laminated foam sheet was obtained in the same manner as in Example 1 except for the above.
  • a resin made of a cross-linkable olefin-based elastomer, having a trade name of "1703" and a gel fraction of 39.5 mass%) was used as the resin constituting the first non-foamed layer.
  • a laminated foam sheet was obtained in the same manner as in Example 1 except that the temperature of the molten sheet when it was attached was changed to 220°.
  • Styrene elastomer as the resin that constitutes the first non-foamed layer Except that a resin made by the company, trade name "Cha[3 ⁇ 4200") was used, and that the temperature of the molten sheet during fusion was changed to 230 ° ⁇ The same procedure as in Example 1 was performed, but a laminated foam sheet could not be obtained.
  • a laminated foam sheet was obtained in the same manner as in Example 1 except that the temperature of the sheet in the molten state at the time of fusing was changed to 180 ° .
  • the thickness of foam layer the density, the closed cell ratio, the melting point of the resin contained in the foam layer, the thickness of the non-foam layer, the basis weight, the Duro hardness, the elongation at break, and the The melting point of the resin contained in the foam layer, the total thickness of the laminated foam sheet, the basis weight, the density, the maximum coefficient of static friction, the maximum load, the ratio of bubbles (8), and the wear resistance were measured. Further, the thermoformability of the laminated foam sheet was evaluated. The results obtained are shown in Tables!
  • the other surface of the foamed sheet was regarded as the surface of the second non-foamed layer, and the maximum static friction coefficient, the maximum load, and Abrasion resistance was measured.
  • Both ends in the width direction of the foam sheet, the first non-foam layer sheet, the second non-foam layer sheet, or the laminated foam sheet 2 Widthwise, excluding 50 2 1 points at intervals were used as measurement points.
  • dial thickness gauge 1 1 2 manufactured by Teclock Co.
  • the closed cell ratio was measured by the method described in “3 ⁇ 7 1 38: 2006 “Rigid foamed plastic-Method of determining open cell ratio and closed cell ratio””.
  • Duro hardness 8 was measured according to 13 ⁇ 6253-3.
  • the elongation at break was measured according to “3 [ ⁇ 625 1”.
  • the maximum coefficient of static friction was measured according to I 3 ⁇ 71 25.
  • the maximum load was measured according to “3 ⁇ 71 25”.
  • the ratio of bubbles () was calculated by the following method.
  • the laminated foam sheet was cut along the thickness direction, and a photograph of the cut surface was taken with a scanning electron microscope at a magnification of 30 times.
  • the diameter was measured.
  • the ratio expressed by the major axis/minor axis was calculated, and the bubbles having the ratio of 4.0 or more were regarded as bubbles (/ ⁇ ).
  • the number of bubbles () and the number of all bubbles contained in the region were counted, and the ratio of bubbles () to the total number of bubbles contained in the region was calculated.
  • thermoforming For thermoforming, a single-shot molding machine Model 3_500 (manufactured by Wakisaka Engineering Co., Ltd.) was used to obtain a cylindrical foam laminated thermoformed body having a heating temperature of 295° (:, a heating time of 223 and a bore of 1 55 ⁇ ).
  • the abrasion resistance was measured as follows.
  • the product is a laminated foam sheet with a thickness of 6 mm in the center. I used the one with a hole in it.
  • tapered wear test apparatus tapered Inc. 1 ⁇ / 1_Rei 6 ⁇ 503
  • load 5009 the rotational speed of 60 rev / min
  • the appearance after the test carried out at a rotation number of 1 000 rotation was evaluated according to the following evaluation criteria.
  • Foam layer density 50 Comparative Example is less than 4.5 / 3 3 had poor Tsu thermoformability.
  • Comparative Example 4 in which the proportion of bubbles () was less than 50% was inferior in thermoformability and wear resistance.
  • Comparative Example 11 in which the ratio of bubbles () was less than 50% was inferior in thermoformability and abrasion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

This laminated foamed sheet comprises a foamed layer and a first non-foamed layer located on one side of the foamed layer surface. The foamed layer has a closed-cell percentage of at least 70%, and a density of 50-1,000 kg/m3. The maximum load obtained according to JIS K7125 for the first non-foamed layer is 10-50N. The cell (A) percentage is at least 50% in a region from the interface between the foamed layer and the first non-foamed layer to, in the thickness direction of the foamed layer, a depth corresponding to 15% of the thickness of the foamed layer.

Description

\¥0 2020/174792 1 卩(:17 2019/046369 明 細 書 \\0 2020/174792 1 卩 (: 17 2019/046369 Clarification
発明の名称 : 積層発泡シート、 及びその成形体 Title of invention: Laminated foam sheet and molded article thereof
技術分野 Technical field
[0001 ] 本発明は、 積層発泡シート、 及びその成形体に関する。 The present invention relates to a laminated foam sheet and a molded body thereof.
本願は、 2 0 1 9年 2月 2 8日に、 日本に出願された特願 2 0 1 9— 0 3 5 1 1 1号に基づき優先権を主張し、 その内容をここに援用する。 The present application claims priority on the basis of Japanese Patent Application No. 2019-9-035111, filed in Japan on February 28, 2019, the content of which is incorporated herein by reference.
背景技術 Background technology
[0002] 従来、 熱可塑性樹脂を基材樹脂とした発泡層と、 熱可塑性樹脂を基材樹脂 とした非発泡層とを備える積層発泡シートが知られている。 係る積層発泡シ —卜は、 耐熱性、 軽量性に優れるため、 食品包装用容器、 車両のフロアマッ 卜等の原材料として使用されている。 [0002] Conventionally, there is known a laminated foam sheet including a foamed layer using a thermoplastic resin as a base resin and a non-foamed layer using a thermoplastic resin as a base resin. Since the laminated foam sheet has excellent heat resistance and light weight, it is used as a raw material for food packaging containers, vehicle floor mats, and the like.
[0003] 食品包装用容器や車両のフロアマッ ト等には、 設置したときに滑りにくい 性質 (グリップ性) が要求される。 [0003] Food packaging containers, vehicle floor mats, and the like are required to have a property of not slipping when installed (grip property).
特許文献 1は、 発泡層と、 合成ゴムを含有する粘着剤層とを有する発泡積 層体について提案している。 また、 特許文献 2は、 発泡体層と、 熱可塑性エ ラストマー層とを有する積層発泡シートについて提案している。 特許文献 1 、 2の発泡積層体によれば、 グリップ性を実現できる。 Patent Document 1 proposes a foam laminated body having a foam layer and a pressure-sensitive adhesive layer containing a synthetic rubber. Further, Patent Document 2 proposes a laminated foam sheet having a foam layer and a thermoplastic elastomer layer. According to the foam laminates of Patent Documents 1 and 2, grip performance can be realized.
先行技術文献 Prior art documents
特許文献 Patent literature
[0004] 特許文献 1 :特開 2 0 1 4 _ 1 8 0 8 1 8号公報 [0004] Patent Document 1: Japanese Patent Laid-Open No. 20 1 4 _ 1 8 0 8 1 8
特許文献 2 :特開 2 0 0 9 _ 1 8 4 1 8 1号公報 Patent Document 2: JP 2 0 0 9 _ 1 8 4 1 8 1 Publication
発明の概要 Summary of the invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0005] ところで、 積層発泡シートには、 グリップ性が求められるとともに、 加熱 により所定の形状に成形しやすい性質 (熱成形性) 、 及び表面における摩擦 力に抗する性質 (耐摩耗性) が求められる。 特に積層発泡シートの厚みを薄 くすると、 表面層がはがれやすく、 耐摩耗性が低下しやすいという問題があ \¥0 2020/174792 2 卩(:17 2019/046369 [0005] By the way, the laminated foam sheet is required to have gripping properties, as well as the property of being easily formed into a predetermined shape by heating (thermoformability) and the property of resisting frictional force on the surface (wear resistance). To be In particular, when the thickness of the laminated foam sheet is reduced, the surface layer is easily peeled off, and the wear resistance is likely to decrease. \¥0 2020/174792 2 卩 (: 17 2019/046369
る。 It
しかしながら、 特許文献 1、 2では熱成形性、 及び耐摩耗性について検討 されていない。 However, in Patent Documents 1 and 2, thermoformability and wear resistance are not examined.
[0006] 本発明は上記事情に鑑みてなされたものであり、 表面がすべりにく く、 熱 成形性、 薄く した場合であっても耐摩耗性に優れる積層発泡シート、 及びそ の成形体を提供することを目的とする。 [0006] The present invention has been made in view of the above circumstances. The purpose is to provide.
課題を解決するための手段 Means for solving the problem
[0007] 本発明者らは、 鋭意検討した結果、 少なくとも 2層を有する積層発泡シー 卜を用いることにより、 上記課題を解決できることを見出した。 As a result of intensive studies, the present inventors have found that the above problems can be solved by using a laminated foam sheet having at least two layers.
[0008] 本発明は以下の態様を有する。 [0008] The present invention has the following aspects.
[ 1 ] 発泡層と、 前記発泡層の一方の面に位置する第一の非発泡層とを有 し、 [1] A foamed layer and a first non-foamed layer located on one surface of the foamed layer,
前記発泡層は、 独立気泡率が 7 0 %以上であり、 密度が
Figure imgf000004_0001
The foamed layer has a closed cell ratio of 70% or more and a density of
Figure imgf000004_0001
であり、 And
前記第一の非発泡層は、 」 丨 3 < 7 1 2 5で求められる最大荷重が 1 0 The first non-foamed layer has a maximum load of 10
〜 5 0 1\1であり、 ~ 5 0 1\1,
以下の方法で算出される気泡 (八) の割合が 5 0 %以上である、 積層発泡 シート。 A laminated foam sheet in which the proportion of air bubbles (eight) calculated by the following method is 50% or more.
<気泡 ( ) の割合の算出方法> <Calculation method of bubble () ratio>
積層発泡シートを厚さ方向に沿って切断し、 走査電子顕微鏡を用いて、 3 0倍の倍率で切断面の写真撮影を行い、 得られた写真において、 発泡層と第 一の非発泡層との界面から、 発泡層の厚さ方向に、 発泡層の厚みに対して 1 5 %となる深さまでの領域における気泡の長径及び短径を測定し、 長径/短 径で表される比を算出し、 前記比が 4 . 0以上の気泡を気泡 (/\) とし、 気 泡 ( ) の数と、 前記領域に含まれる全ての気泡の数とを数え、 前記領域に 含まれる全気泡数に対する気泡 ( ) の割合を算出する。 The laminated foamed sheet was cut along the thickness direction, and a photograph of the cut surface was taken with a scanning electron microscope at a magnification of 30 times. In the obtained photograph, the foamed layer and the first non-foamed layer were taken. From the interface of the foam layer, in the thickness direction of the foam layer, measure the major axis and minor axis of the bubbles in the region up to a depth of 15% of the thickness of the foam layer, and calculate the ratio expressed by major axis/minor axis. The number of bubbles () and the number of all bubbles contained in the region are counted as the number of bubbles (/\), and the ratio of the bubbles to the total number of bubbles contained in the region is Calculate the ratio of bubbles ().
[2] 前記発泡層の厚みが〇. 1 〜 3 .
Figure imgf000004_0002
である、 [ 1 ] に記載の積 層発泡シート。 20/174792 3 卩(:171?2019/046369
[2] The thickness of the foam layer is 0.1 to 3.
Figure imgf000004_0002
The laminated foam sheet according to [1]. 20/174792 3 卩 (: 171?2019/046369
[3] 前記第一の非発泡層は、 非架橋型オレフィン系エラストマーを含む 、 [1] 又は [2] に記載の積層発泡シート。 [3] The laminated foam sheet according to [1] or [2], wherein the first non-foamed layer contains a non-crosslinked olefin elastomer.
[4] 前記第一の非発泡層の」 丨 3 < 6 2 5 3— 3で求められるデュロ 八硬度が 7 0以下である、 [1] 〜 [3] のいずれか一項に記載の積層発泡 シート。 [4] Laminate according to any one of [1] to [3], wherein the first non-foamed layer has a Duro 8 hardness of 70 or less, which is determined by 3 <6 2 5 3-3. Foam sheet.
[5] 前記第一の非発泡層の」 丨 3 [< 6 2 5 1で求められる破断点伸び 率が 9 0 0 %以上である、 [1] 〜 [4] のいずれか一項に記載の積層発泡 シート。 [5] The first non-foamed layer] [3] [Elongation at break as determined by <6 2 5 1 is 900% or more, [1] to [4] Laminated foam sheet.
[6] 前記第一の非発泡層の厚みが〇. 0 5〜〇.
Figure imgf000005_0001
である、 [1]
[6] The thickness of the first non-foamed layer is 0.05 to 〇.
Figure imgf000005_0001
Is, [1]
〜 [5] のいずれか一項に記載の積層発泡シート。 ~ The laminated foam sheet according to any one of [5].
[7] 密度が
Figure imgf000005_0002
である、 [1] 〜 [6] のいずれ か一項に記載の積層発泡シート。
[7] The density is
Figure imgf000005_0002
The laminated foam sheet according to any one of [1] to [6].
[8] 前記第一の非発泡層が、 非架橋型オレフィン系エラストマーと、 非 架橋型オレフィン系エラストマー以外の樹脂とを含む、 [1] 〜 [7] のい ずれか一項に記載の積層発泡シート。 [8] The laminate according to any one of [1] to [7], wherein the first non-foamed layer contains a non-crosslinked olefin-based elastomer and a resin other than the non-crosslinked olefin-based elastomer. Foam sheet.
[9] [非架橋型オレフィン系エラストマーの含有量] : [非架橋型オレ フィン系エラストマー以外の樹脂の含有量] で表される質量比は、 1 0 : 9 〇〜 9 0 : 1 0が好ましく、 2 0 : 8 0〜 8 0 : 2 0がより好ましく、 3 0 : 7 0〜 7 0 : 3 0がさらに好ましい、 [8] に記載の積層発泡シート。 [9] The mass ratio expressed by [content of non-crosslinking olefin-based elastomer]: [content of resin other than non-crosslinking olefin-based elastomer] is from 10:900 to 90:10. The laminated foam sheet according to [8], wherein 20:80 to 80:20 is more preferable, and 30:70 to 70:30 is further preferable.
[1 0] 前記非架橋型オレフィン系エラストマー以外の樹脂が、 ポリオレ フィン系樹脂、 ポリスチレン系樹脂、 及びポリエステル系樹脂からなる群か ら選択される少なくとも 1種の樹脂である、 [8] 又は [9] に記載の積層 発泡シート。 [10] The resin other than the non-crosslinked olefin elastomer is at least one resin selected from the group consisting of polyolefin resin, polystyrene resin, and polyester resin, [8] or [ 9] The laminated foam sheet according to [9].
[1 1] さらに、 前記発泡層の他方の面に位置する第二の非発泡層を有す る、 [1] 〜 [1 〇] のいずれか一項に記載の積層発泡シート。 [11] The laminated foam sheet according to any one of [1] to [10], further including a second non-foam layer located on the other surface of the foam layer.
[1 2] 前記非架橋型オレフィン系エラストマーのゲル分率は、 3 . 0 質量%以下が好ましく、 1 . 〇質量%以下がより好ましく、 〇. 5質量%以 下がさらに好ましく、 〇. 3質量%以下が特に好ましい、 [1] 〜 [1 1] 〇 2020/174792 4 卩(:171?2019/046369 [12] The gel fraction of the non-crosslinked olefin elastomer is preferably 3.0% by mass or less, more preferably 1.0% by mass or less, still more preferably 0.5% by mass or less, and 0.3% by mass. It is particularly preferable that the content is not more than mass%, [1] to [11] 〇 2020/174792 4 卩 (:171?2019/046369
のいずれか一項に記載の積層発泡シート。 The laminated foam sheet according to any one of 1.
[1 3] 前記発泡層の密度は、 90〜 9001< 9/ 3が好ましく、 1 00 〜 5001< 9/ 3がより好ましく、
Figure imgf000006_0001
がさらに好ま しい、 [1] 〜 [1 2] のいずれか一項に記載の積層発泡シート。
[1 3] Density of the foam layer is preferably 90 to 9001 <9/3, more preferably 1 00-5001 <9/3,
Figure imgf000006_0001
Is more preferable, The laminated foam sheet as described in any one of [1]-[12].
[1 4] 前記気泡 (八) の割合は、 50〜 75%が好ましく、 60〜 70 %がより好ましく、 65〜 70%がさらに好ましい、 [1] 〜 [1 3] のい ずれか一項に記載の積層発泡シート。 [14] The proportion of the bubbles (8) is preferably 50 to 75%, more preferably 60 to 70%, further preferably 65 to 70%, and any one of [1] to [13]. The laminated foam sheet according to.
[1 5] 以下の方法で算出される気泡 (巳) の割合は、 50〜 75%が好 ましく、 60〜 70%がより好ましく、 65〜 70%がさらに好ましい、 [ 1 1] に記載の積層発泡シート。 [15] The ratio of air bubbles (Minami) calculated by the following method is preferably 50 to 75%, more preferably 60 to 70%, further preferably 65 to 70%, as described in [11] Laminated foam sheet.
<気泡 (巳) の割合の算出方法> <Calculation method of the ratio of bubbles (Mitsumi)>
積層発泡シートを厚さ方向に沿って切断し、 走査電子顕微鏡を用いて、 3 0倍の倍率で切断面の写真撮影を行い、 得られた写真において、 発泡層と第 二の非発泡層との界面から、 発泡層の厚さ方向に、 発泡層の厚みに対して 1 5 %となる深さまでの領域における気泡の長径及び短径を測定し、 長径/短 径で表される比を算出し、 前記比が 4. 0以上の気泡を気泡 (巳) とし、 気 泡 (巳) の数と、 前記領域に含まれる全ての気泡の数とを数え、 前記領域に 含まれる全気泡数に対する気泡 (巳) の割合を算出する。 The laminated foam sheet was cut along the thickness direction, and a photograph of the cut surface was taken with a scanning electron microscope at a magnification of 30 times. In the obtained photograph, a foam layer and a second non-foam layer were formed. From the interface of the foam layer, in the thickness direction of the foam layer, measure the major axis and minor axis of the bubbles in the region up to a depth of 15% of the thickness of the foam layer, and calculate the ratio expressed by major axis/minor axis. Then, the bubbles having the ratio of 4.0 or more are defined as bubbles (Mitsumi), and the number of bubbles (Mitsumi) and the number of all the bubbles contained in the region are counted, and the total number of bubbles contained in the region is calculated. Calculate the percentage of air bubbles.
[1 6] 前記発泡層の厚み丁 1は、 〇. 1〜 3.
Figure imgf000006_0002
が好ましく、 〇.
[16] The thickness of the foamed layer is 0.1 to 3.
Figure imgf000006_0002
Is preferred.
3〜 2.
Figure imgf000006_0003
り好ましい、 [1] 〜 [1 5] のいずれか一項に記載の 積層発泡シート。
3 to 2.
Figure imgf000006_0003
More preferably, the laminated foam sheet according to any one of [1] to [15].
[1 7] 前記第一の非発泡層の厚み丁 2は、 〇. 05〜〇.
Figure imgf000006_0004
が好ま しく、 〇. 1〜〇. 4 がより好ましく、 〇. 1 5〜〇.
Figure imgf000006_0005
[17] The thickness of the first non-foamed layer 2 is 0.05 to 0.
Figure imgf000006_0004
Is more preferable, and 0.1 to 0.4 is more preferable, and 0.15 to 0.
Figure imgf000006_0005
好ましい、 [1] 〜 [1 6] のいずれか一項に記載の積層発泡シート。 The laminated foam sheet according to any one of [1] to [16], which is preferable.
[1 8] 前記発泡層の厚み丁 1 に対する前記第一の非発泡層の厚み丁 2の 比は、 丁 2 /丁 1で表して、 〇. 01〜 1が好ましく、 〇. 05〜〇. 5が より好ましい、 [1] 〜 [1 7] のいずれか一項に記載の積層発泡シート。 [18] The ratio of the thickness of the first non-foaming layer 2 to the thickness of the foaming layer 1 is represented by Ding 2 /Ding 1, preferably 0.01 to 1, and 0.05 to 0. The laminated foam sheet according to any one of [1] to [17], wherein 5 is more preferable.
[0009] [1 9] [1] 〜 [1 8] のいずれか一項に記載の積層発泡シートを成形 〇 2020/174792 5 卩(:171?2019/046369 [0009] [1 9] [1] to the laminated foam sheet according to any one of [1 8] 〇 2020/174792 5 卩 (:171?2019/046369
してなる成形体。 A molded body formed by.
[2 0] 車両のフロアマツ トである、 [ 1 9] に記載の成形体。 [20] The molded product according to [19], which is a floor mat of a vehicle.
[2 1 ] 車両のアンダーカバーである、 [ 1 9] に記載の成形体。[2 1] The molded product according to [1 9], which is an undercover of a vehicle.
[2 2] 車両のラゲツジトレイである、 [ 1 9] に記載の成形体。[22] The molded article according to [19], which is a luggage tray for a vehicle.
[2 3] [ 1 ] 〜 [ 1 8] のいずれか一項に記載の積層発泡シートの製造 方法であって、 [2 3] A method for producing a laminated foam sheet according to any one of [1] to [18],
前記発泡層を構成する発泡シートの一方の面に、 前記第一の非発泡層を構 成する樹脂を 2 0 0〜 2 4 0 °〇で融着させる第一の積層工程を含む、 積層発 泡シートの製造方法。 A first laminating step of fusing the resin constituting the first non-foamed layer at 200 to 240° on one surface of the foamed sheet constituting the foamed layer, Foam sheet manufacturing method.
発明の効果 Effect of the invention
[001 0] 本発明によれば、 表面がすべりにく く、 熱成形性、 耐摩耗性に優れる積層 発泡シート、 及びその成形体を提供することができる。 [001 0] According to the present invention, it is possible to provide a laminated foam sheet having a surface that is hard to slip, and excellent in thermoformability and abrasion resistance, and a molded product thereof.
図面の簡単な説明 Brief description of the drawings
[001 1] [図 1]本発明の積層発泡シートの一例を示す断面図である。 [001 1] [Fig. 1] Fig. 1 is a cross-sectional view showing an example of a laminated foam sheet of the present invention.
[図 2]発泡シートの製造装置の一例を示す模式図である。 [Fig. 2] Fig. 2 is a schematic view showing an example of an apparatus for manufacturing a foamed sheet.
[図 3]本発明の積層発泡シートの一例の断面写真である。 [FIG. 3] A cross-sectional photograph of an example of the laminated foam sheet of the present invention.
[図 4]本発明の積層発泡シートの製造装置の一例を示す模式図である。 FIG. 4 is a schematic view showing an example of an apparatus for manufacturing a laminated foam sheet of the present invention.
[図 5]本発明の車両のフロアマツ トの一例を示す模式図である。 FIG. 5 is a schematic view showing an example of a floor mat of a vehicle of the present invention.
[図 6]本発明の車両のアンダーカバーの一例を示す模式図である。 FIG. 6 is a schematic view showing an example of an undercover of the vehicle of the present invention.
[図 7]本発明の車両のラゲツジトレイの一例を示す模式図である。 FIG. 7 is a schematic view showing an example of a luggage tray of the vehicle of the present invention.
[図 8]本発明の車両のラゲツジトレイの他の例を示す模式図である。 FIG. 8 is a schematic view showing another example of the luggage tray of the vehicle of the present invention.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0012] 《積層発泡シート》 [0012] <<Laminated foam sheet>>
本発明の積層発泡シートは、 発泡層と、 発泡層の一方の面に位置する第一 の非発泡層とを有する。 本発明の積層発泡シートは、 さらに、 発泡層の他方 の面に位置する第二の非発泡層を有していてもよい。 The laminated foam sheet of the present invention has a foam layer and a first non-foam layer located on one surface of the foam layer. The laminated foam sheet of the present invention may further have a second non-foamed layer located on the other surface of the foamed layer.
積層発泡シートの一例について、 図 1 を用いて説明する。 An example of the laminated foam sheet will be described with reference to FIG.
図 1 の積層発泡シートは 1、 発泡層 1 〇と、 発泡層 1 0の一方の面に設け られた第一の非発泡層 20と、 発泡層 1 0の他方の面に設けられた第二の非 発泡層 30と、 を備える。 The laminated foam sheet shown in Fig. 1 is provided on one side of the foam layer 10 and the foam layer 10 The first non-foamed layer 20 and the second non-foamed layer 30 provided on the other surface of the foamed layer 10 are provided.
積層発泡シート 1は三層構造である。 The laminated foam sheet 1 has a three-layer structure.
なお、 図 1は、 厚さ方向が拡大され、 図示されている。 Note that FIG. 1 is illustrated in an enlarged manner in the thickness direction.
[0013] <発泡層> [0013] <Foam layer>
発泡層は、 樹脂組成物が発泡されてなる。 樹脂組成物は、 ポリオレフィン 系樹脂と発泡剤とを含有する。 The foam layer is formed by foaming the resin composition. The resin composition contains a polyolefin resin and a foaming agent.
[0014] 前記ポリオレフィン系樹脂としては、 エチレン、 プロピレン等のオレフィ ン系モノマーの単独重合体又はこれらの共重合体や、 オレフィン系モノマー を主成分とし、 オレフィン系モノマーとこれに重合可能なビニルモノマーと の共重合体等が挙げられる。 これらのポリオレフィン系樹脂は、 1種単独で 用いられてもよいし、 2種以上が組み合わされて用いられてもよい。 なかで も、 ポリエチレン系樹脂、 ポリプロピレン系樹脂が好ましく、 ポリプロピレ ン系樹脂がより好ましい。 [0014] Examples of the polyolefin-based resin include homopolymers of olefin-based monomers such as ethylene and propylene or copolymers thereof, and olefin-based monomers as main components, and olefin-based monomers and vinyl monomers that can be polymerized therewith. And a copolymer thereof. These polyolefin resins may be used alone or in combination of two or more. Among them, polyethylene resin and polypropylene resin are preferable, and polypropylene resin is more preferable.
[0015] 前記ポリエチレン系樹脂としては、 例えば、 エチレンを高圧下において重 合させ分子中に長鎖分岐を形成させた低密度ポリエチレン樹脂 (L D P E) [0015] Examples of the polyethylene-based resin include, for example, low-density polyethylene resin (L D PE) in which ethylene is polymerized under high pressure to form long chain branches in the molecule.
、 エチレンをチーグラーナッタ触媒やメタロセン触媒を用いて中低圧下にお いて重合させた密度が 0. 942 g/c m3以上の高密度ポリエチレン樹脂 ( H D P E) 、 前記 H D P Eの重合プロセスにおいて 1 -ブテン、 1 -ヘキセ ン、 1 —オクテン等の オレフィンを少量添加して分子中に短鎖分岐を形 成させた密度が 0. 942 g/c m 3未満の直鎖状低密度ポリエチレン樹脂 ( L L D P E) 等が挙げられる。 A high-density polyethylene resin (HDPE) with a density of 0.942 g/cm 3 or more obtained by polymerizing ethylene using a Ziegler-Natta catalyst or a metallocene catalyst under medium and low pressure, 1-butene in the HDPE polymerization process, Linear low-density polyethylene resin (LLDPE) with a density of less than 0.942 g/cm 3 is formed by adding a small amount of olefins such as 1-hexene and 1-octene to form short-chain branches in the molecule. Can be mentioned.
[0016] 前記ポリプロピレン系樹脂としては、 高溶融張カポリプロピレン (HMS -P P) 樹脂が好ましい。 高溶融張カポリプロピレン樹脂とは高分子量成分 や分岐構造を有する成分をポリプロピレン樹脂中に混合したり、 ポリプロピ レンに長鎖分岐成分を共重合させたりすることで溶融状態での張力を高めた ポリプロピレン樹脂である。 高溶融張カポリプロピレン樹脂は市販されてお り、 例えば、 B o r e a l i s社製の 「WB 1 30 HMS」 、 「WB 1 35 〇 2020/174792 7 卩(:171?2019/046369 [0016] As the polypropylene resin, a high melt tension polypropylene (HMS-PP) resin is preferable. High melt tension polypropylene resin is a polypropylene whose tension in the molten state is increased by mixing a high molecular weight component or a component having a branched structure into polypropylene resin or by copolymerizing polypropylene with a long chain branched component. It is a resin. High melt tension polypropylene resin is commercially available, for example, WB 1 30 HMS and WB 1 35 manufactured by Borealis. 〇 2020/174792 7 卩 (:171?2019/046369
「\^/巳 1 401~11\/13」 ; 巳 336 1 I社製の 「 「〇-干 3 X 81 4」 ; 日本ポリプロ社製の 「 巳 33 1 2」 、 「 巳 5 1 00」 、 「 巳 7200」 、 「 巳 9 1 00」 、 「1\/1 乂8」 、 「1\/1 乂6」 等が挙げ られる。 "\^/Mimi 1 401 ~ 11\/13";"Made in 336 1 I Company""○-dried 3 X 81 4"; Made in Japan Polypro "Mimi 33 1 2", "Min 5 100" , "Minami 7200", "Minami 9100", "1\/1 侂8", "1\/1 乂6", etc.
[0017] 前記ポリプロピレン系樹脂が、 高溶融張カポリプロピレン樹脂であるかど うかは、 高分子構造上の違いのみならず、 通常、 その溶融張力 (メルトテン ション) の大きさによって判断できる。 例えば、 メルトテンションが 5〇 以上であれば、 高溶融張カポリプロピレン樹脂であると判断できる。 Whether or not the polypropylene resin is a high melt tension polypropylene resin can be judged not only by the difference in polymer structure but also by the magnitude of its melt tension (melt tension). For example, if the melt tension is 50 or more, it can be judged that it is a high melt tension polypropylene resin.
高溶融張カポリプロピレン樹脂のメルトテンションは、 例えば、 1 0〇 以上 30〇 1\!以下が好ましい。 上記下限値以上であると、 発泡層の強度をよ り高めやすい。 上記上限値以下であると、 熱成形性をより向上しやすい。 樹脂のメルトテンションの測定は、 (株) 東洋精機製作所製の測定装置 「 キヤピログラフ 1\/10-〇」 を使用して、 以下のようにして測定できる。 まず試料樹脂を、 230°〇に加熱して溶融させた状態で、 上記装置の、 ピ ストン押出式プラストメーターのキヤビラリー (口径 2. 095〇1〇1、 長さ 801〇〇 から、 ピストンの降下速度を 1 001111/111 丨 の一定速度に保ちつ つ紐状に押出す。 次にこの紐状物を、 上記ノズルの下方 35〇
Figure imgf000009_0001
に位置する 張力検出プーリーに通過させた後、 巻き取り口ールを用いて、 初速 5 / I 门よりその巻き取り速度を、
Figure imgf000009_0002
2の加速度でもって増加させ ながら巻き取って行う。 そして紐状物が切れるまで試験を行った際に、 張力 検出プーリーによって検出された破断直前の極大張力をもって、 試料樹脂の メルトテンションとする。
The melt tension of the high melting tension polypropylene resin is, for example, preferably 100 or more and 3001\! or less. When it is at least the above lower limit, the strength of the foamed layer will be more easily increased. When it is at most the above upper limit, thermoformability will be more easily improved. The melt tension of the resin can be measured using the measuring device “CAYPYROgraph 1\/10-〇” manufactured by Toyo Seiki Co., Ltd. as follows. First, in a state where the sample resin is heated to 230 ° 〇 and melted, the piston drop from the cavity (caliber 2.095 ○ 101, length 801 〇 0) of the piston extrusion type plastometer of the above equipment. Keep the speed at a constant speed of 1 001111/111 and extrude into a string shape.
Figure imgf000009_0001
After passing through the tension detection pulley located at, use the take-up port to change the take-up speed from the initial speed of 5 / I
Figure imgf000009_0002
Wind it while increasing it with the acceleration of 2 . Then, when the test is conducted until the string-like object is cut, the maximum tension immediately before breaking detected by the tension detection pulley is taken as the melt tension of the sample resin.
[0018] ポリオレフイン系樹脂のメルトマスフローレート
Figure imgf000009_0003
は、 5. 09 / 1 0〇! 丨 以下が好ましく、 〇. 1 9/1 0〇1 丨 1^以上 5.
Figure imgf000009_0004
[0018] Melt mass flow rate of polyolefin resin
Figure imgf000009_0003
Is, 5.0 9/1 0_Rei! Preferably equal to or less than丨, 〇. 1 9/1 0_Rei_1丨1 ^ 5 or more.
Figure imgf000009_0004
| 1^以下がより好ましく、 〇. 52 / ^ 0 ^ \ 〇以上 4. 02 /} 0 ^ \ 〇 以下がさらに好ましい。 IV! が上記下限値以上であると、 発泡層の独立気 泡率を 70%以上にしやすい。 IV! が上記上限値以下であると、 発泡層の 強度をより高めやすい。 〇 2020/174792 8 卩(:171?2019/046369 |1^ or less is more preferable, and 0.52 / ^ 0 ^ \ 〇 or more and 4.02 /} 0 ^ \ 〇 or less is further preferable. When IV! is at least the above lower limit, it is easy to make the independent bubble ratio of the foam layer 70% or more. When IV! is less than or equal to the above upper limit, the strength of the foam layer can be more easily increased. 〇2020/174792 8 卩(:171?2019/046369
1\/1 [¾は、 熱可塑性樹脂の溶融時の流動性を表す数値である。 1\/1 [¾は、 シリンダ内で溶融した樹脂を、 一定の温度と荷重条件のもとで、 ピストンに よって、 シリンダ底部に設置された規定口径のダイから、 1 0分間あたりに 押し出される樹脂量で表される。 1\/1 [¾ is a numerical value representing the fluidity of the thermoplastic resin when melted. 1\/1 [In case of ¾, the resin melted in the cylinder is extruded by the piston under constant temperature and load conditions from the die with the specified bore installed at the bottom of the cylinder per 10 minutes. It is represented by the amount of resin.
本明細書において、 1\/1 [¾は、 2 3 0。〇、 0 .
Figure imgf000010_0001
における数値で ある。
In this specification, 1\/1 [¾ is 230. 〇, 0.
Figure imgf000010_0001
Is the numerical value in.
[0019] ポリオレフィン系樹脂の融点は、 1 5 0 °〇以上 1 7 0 °〇以下が好ましく、 [0019] The melting point of the polyolefin-based resin is preferably 150°° or more and 170°° or less,
1 5 5 °〇以上 1 6 5 °〇以下がより好ましい。 ポリオレフィン系樹脂の融点が 上記下限値以上であると、 発泡層の強度をより高めやすい。 ポリオレフィン 系樹脂の融点が上記上限値以下であると、 熱成形性をより向上しやすい。 ポリオレフィン系樹脂の融点は、 」 丨 3 < 7 1 2 1 : 1 9 8 7 「プラス チックの転移温度測定方法」 に記載の方法により測定される。 More preferably, it is not less than 155 ° ○ and not more than 165 ° ○. When the melting point of the polyolefin-based resin is equal to or higher than the above lower limit value, the strength of the foam layer can be more easily increased. When the melting point of the polyolefin resin is not more than the above upper limit, the thermoformability is likely to be improved. The melting point of the polyolefin resin is measured by the method described in "3 <7 1 2 1 :1 9 8 7 "Measurement method of plastic transition temperature".
[0020] ポリオレフィン系樹脂の含有量は、 発泡層を構成する樹脂 1 0 0質量%に 対し、 8 0質量%以上が好ましく、 9 0質量%以上がより好ましく、 1 0 0 質量%がさらに好ましい。 [0020] The content of the polyolefin-based resin is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass, based on 100% by mass of the resin constituting the foamed layer. ..
[0021] 樹脂組成物は、 その他の樹脂を含んでいてもよい。 その他の樹脂としては 、 ポリスチレン系樹脂、 ポリエステル系樹脂等が挙げられる。 [0021] The resin composition may include other resins. Examples of other resins include polystyrene resins and polyester resins.
[0022] ポリスチレン系樹脂としては、 例えば、 スチレン系単量体の単独重合体又 は共重合体、 スチレン系単量体と他のビニル系単量体との共重合体、 又はこ れらの混合物等が挙げられる。 ポリスチレン系樹脂は、 1種単独で用いられ てもよいし、 2種以上が組み合わされて用いられてもよい。 [0022] Examples of the polystyrene resin include, for example, homopolymers or copolymers of styrene monomers, copolymers of styrene monomers with other vinyl monomers, or these resins. A mixture etc. are mentioned. The polystyrene resin may be used alone or in combination of two or more.
ポリスチレン系樹脂としては、 スチレン系単量体に基づく構成単位が、 前 記ポリスチレン系樹脂の全構成単位に対して 5 0質量%以上含まれるものが 好ましく、 7 0質量%以上含まれるものがより好ましく、 8 0質量%以上含 まれるものがさらに好ましい。 The polystyrene-based resin preferably contains a structural unit based on a styrene-based monomer in an amount of 50% by mass or more, and more preferably 70% by mass or more, based on the total structural units of the polystyrene-based resin. It is more preferable that the content of 80% by mass or more is more preferable.
また、 ポリスチレン系樹脂の質量平均分子量は、 2 0万〜 4 0万が好まし く、 2 4万〜 4 0万がより好ましい。 前記質量平均分子量は、 〇 〇 (ゲル パーミエーシヨンクロマトグラフィー) により測定した値を、 標準ポリスチ 〇 2020/174792 9 卩(:171?2019/046369 The mass average molecular weight of the polystyrene resin is preferably 200,000 to 400,000, more preferably 240,000 to 400,000. The mass average molecular weight is the value measured by 〇 〇 (gel permeation chromatography), and is 〇 2020/174792 9 卩(:171?2019/046369
レンによる較正曲線に基づき換算した値である。 It is a value converted based on a calibration curve by Ren.
[0023] 上記スチレン系単量体の単独重合体又は共重合体としては、 例えば、 スチ レン、 《_メチルスチレン、 ビニルトルエン、 クロロスチレン、 エチルスチ レン、 丨 ープロピルスチレン、 ジメチルスチレン、 ブロモスチレン等のスチ レン系単量体の単独重合体又は共重合体が挙げられる。 このなかでも、 スチ レンに基づく構成単位を、 全構成単位に対して 5 0質量%以上有するものが 好ましく、 ポリスチレン (単独重合体) がより好ましい。 [0023] Examples of the homopolymers or copolymers of the above-mentioned styrene-based monomers include styrene, <<_methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, propylpropylstyrene, dimethylstyrene, bromostyrene, etc. Examples thereof include homopolymers or copolymers of the styrene-based monomer. Among these, those having a structural unit based on styrene of 50% by mass or more based on all structural units are preferable, and polystyrene (homopolymer) is more preferable.
また、 ポリスチレン系樹脂として、 ゴム成分を含むハイインパクトポリス チレンが用いられてもよい。 High impact polystyrene containing a rubber component may be used as the polystyrene resin.
[0024] スチレン系単量体と他のビニル系単量体との共重合体としては、 例えば、 スチレンー (メタ) アクリル酸共重合体、 スチレンー (メタ) アクリル酸ェ ステル共重合体、 スチレンー塩化ビニル共重合体、 スチレンーブタジェン共 重合体、 スチレンーアクリロニトリル共重合体、 スチレンー無水マレイン酸 共重合体、 スチレンーマレイン酸エステル共重合体、 スチレンーフマル酸ェ ステル共重合体、 スチレンージビニルベンゼン共重合体、 スチレンーアルキ レングリコールジメタクリレート共重合体、 (メタ) アクリル酸ェステルー ブタジェンースチレン共重合体 (例えば IV!巳 3樹脂) 等が挙げられる。 なお、 本明細書において、 (メタ) アクリル酸は、 アクリル酸又はメタク リル酸を意味する。 [0024] Examples of copolymers of styrene-based monomers and other vinyl-based monomers include styrene-(meth)acrylic acid copolymers, styrene-(meth)acrylic acid ester copolymers, styrene-chlorides. Vinyl Copolymer, Styrene-Butadiene Copolymer, Styrene-Acrylonitrile Copolymer, Styrene-Maleic Anhydride Copolymer, Styrene-Maleic Ester Copolymer, Styrene-Fumaric Acid Ester Copolymer, Styrene-Divinylbenzene Copolymer Examples thereof include polymers, styrene-alkylene glycol dimethacrylate copolymers, (meth)ester acrylate butadiene-styrene copolymers (for example, IV!3 resin). In addition, in this specification, (meth)acrylic acid means acrylic acid or methacrylic acid.
[0025] スチレン系単量体と他のビニル系単量体との共重合体としては、 スチレン 系単量体に基づく構成単位を、 前記共重合体の全構成単位に対して 5 0質量 %以上含むものが好ましく、 7 0質量%以上含むものがより好ましく、 8 0 質量%以上含むものがさらに好ましい。 [0025] As a copolymer of a styrene-based monomer and another vinyl-based monomer, a structural unit based on a styrene-based monomer is added in an amount of 50% by mass based on all the structural units of the copolymer. The above content is preferable, the one containing 70% by mass or more is more preferable, and the one containing 80% by mass or more is further preferable.
[0026] スチレン系単量体と他のビニル系単量体との共重合体としては、 スチレン - (メタ) アクリル酸共重合体、 スチレンーブタジェン共重合体が好ましい 。 スチレンー (メタ) アクリル酸共重合体としては、 スチレンーアクリル酸 共重合体、 スチレンーメタクリル酸共重合体が挙げられる。 As the copolymer of the styrene-based monomer and the other vinyl-based monomer, a styrene-(meth)acrylic acid copolymer and a styrene-butadiene copolymer are preferable. Examples of the styrene-(meth)acrylic acid copolymer include a styrene-acrylic acid copolymer and a styrene-methacrylic acid copolymer.
[0027] ポリスチレン系樹脂中の (メタ) アクリル酸に基づく構成単位の含有量は 〇 2020/174792 10 卩(:171?2019/046369 [0027] The content of the structural unit based on (meth) acrylic acid in the polystyrene resin is 〇 2020/174792 10 卩 (:171?2019/046369
、 ポリスチレン系樹脂を構成する全構成単位に対して、 〇. 5〜 6 . 8質量 %が好ましく、 ·! . 〇〜 5 . 0質量%がより好ましく、 ·! . 3〜 3 . 0質量 %がさらに好ましい。 上記数値範囲内とすることにより、 優れた靭性や耐熱 性が発揮されうる。 , 0.5 to 6.8% by mass is preferable with respect to all the constitutional units constituting the polystyrene resin. It is more preferable that the content is .0 to 5.0% by mass, and! More preferably, it is 0.3 to 3.0 mass %. By setting it within the above numerical range, excellent toughness and heat resistance can be exhibited.
ポリスチレン系樹脂中の (メタ) アクリル酸に基づく構成単位の含有量は 、 スチレンー (メタ) アクリル酸の仕込み量から計算により算出できる。 The content of the structural unit based on (meth)acrylic acid in the polystyrene resin can be calculated from the charged amount of styrene-(meth)acrylic acid.
[0028] ポリスチレン系樹脂中のブタジェンに基づく構成単位の含有量は、 ポリス チレン系樹脂を構成する全構成単位に対して、 〇. 5〜 6 . 8質量%が好ま しく、 ·! . 〇〜 5 . 0質量%がより好ましく、 ·! . 3〜 3 . 0質量%がさら に好ましい。 上記数値範囲内とすることにより、 優れた靭性や耐熱性が発揮 されうる。 [0028] The content of the butadiene-based structural unit in the polystyrene-based resin is preferably 0.5 to 6.8 mass% with respect to all the structural units constituting the polystyrene-based resin. It is more preferable that the content is .0 to 5.0% by mass, and! More preferably, it is from 0.3 to 3.0% by mass. Within the above numerical range, excellent toughness and heat resistance can be exhibited.
ポリスチレン系樹脂中のブタジェンに基づく構成単位の含有量は、 スチレ ンーブタジェンの仕込み量から計算により算出できる。 The content of the constitutional unit based on butadiene in the polystyrene resin can be calculated from the charged amount of styrene-diene.
[0029] ポリスチレン系樹脂中、 スチレンー (メタ) アクリル酸共重合体の含有量 は、 ポリスチレン系樹脂の総質量に対して 1 0質量%以上が好ましい。 スチ レンー (メタ) アクリル酸共重合体の含有量が前記下限値以上であると、 融 着性を高めやすい。 [0029] In the polystyrene-based resin, the content of the styrene-(meth)acrylic acid copolymer is preferably 10% by mass or more based on the total mass of the polystyrene-based resin. When the content of the styrene-(meth)acrylic acid copolymer is at least the above lower limit value, it is easy to improve the fusion property.
ポリスチレン系樹脂中のスチレンー (メタ) アクリル酸共重合体の含有量 は、 特に限定されず、 ポリスチレン系樹脂の総質量に対して 1 0 0質量%で もよい。 The content of the styrene-(meth)acrylic acid copolymer in the polystyrene resin is not particularly limited, and may be 100% by mass with respect to the total mass of the polystyrene resin.
[0030] ポリスチレン系樹脂中、 スチレンーブタジェン共重合体の含有量は、 ポリ スチレン系樹脂の総質量に対して 1 〇質量%以上が好ましい。 スチレンーブ タジェン共重合体の含有量が前記下限値以上であると、 融着性を高めやすい ポリスチレン系樹脂中のスチレンーブタジェン共重合体の含有量は、 特に 限定されず、 ポリスチレン系樹脂の総質量に対して 1 0 0質量%でもよい。 [0030] In the polystyrene resin, the content of the styrene-butadiene copolymer is preferably 10% by mass or more based on the total mass of the polystyrene resin. When the content of the styrene-butadiene copolymer is at least the lower limit value described above, it is easy to increase the fusion property. The content of the styrene-butadiene copolymer in the polystyrene resin is not particularly limited, and the total content of the polystyrene resin is not limited. It may be 100% by mass relative to the mass.
[0031 ] ポリスチレン系樹脂としては、 市販のポリスチレン系樹脂、 懸濁重合法等 により合成されたポリスチレン系樹脂、 リサイクル原料でないポリスチレン 〇 2020/174792 1 1 卩(:171?2019/046369 [0031] Examples of the polystyrene-based resin include a commercially available polystyrene-based resin, a polystyrene-based resin synthesized by a suspension polymerization method, etc., and a polystyrene that is not a recycled raw material. 〇 2020/174792 1 1 卩(:171?2019/046369
系樹脂 (バージンポリスチレン) を使用できる他、 使用済みのポリスチレン 系発泡体、 ポリスチレン系樹脂発泡成形体 (食品包装用トレー等) 等を再生 処理して得られたリサイクル原料を使用できる。 前記リサイクル原料として は、 使用済みのポリスチレン系発泡体、 ポリスチレン系樹脂発泡成形体を回 収し、 リモネン溶解方式や加熱減容方式によって再生したリサイクル原料が 挙げられる。 In addition to the use of resin (virgin polystyrene), it is possible to use recycled raw materials obtained by recycling used polystyrene foam, polystyrene resin foam moldings (food packaging trays, etc.). Examples of the recycled raw material include a recycled raw material obtained by collecting a used polystyrene foam and a polystyrene resin foam molded product and regenerating it by a limonene dissolution method or a heat volume reduction method.
[0032] ポリエステル系樹脂としては、 ポリエチレンテレフタレート樹脂、 ポリブ チレンテレフタレート樹脂、 ポリエチレンナフタレート樹脂、 ポリエチレン フラノエート樹脂、 ポリプチレンナフタレート樹脂、 テレフタル酸とエチレ ングリコールとシクロへキサンジメタノールの共重合体、 及びこれらの混合 物並びにこれらと他の樹脂との混合物等が挙げられる。 また、 植物由来のポ リエチレンテレフタレート樹脂、 ポリエチレンフラノエート樹脂が用いられ てもよい。 ポリエステル系樹脂は、 1種単独で用いられてもよいし、 2種以 上が組み合わされて用いられてもよい。 [0032] Examples of the polyester-based resin include polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polyethylene furanoate resin, polyethylene terephthalate resin, terephthalic acid/ethylene glycol/cyclohexanedimethanol copolymer, And mixtures of these and mixtures of these with other resins. In addition, a plant-derived polyethylene terephthalate resin or a polyethylene furanoate resin may be used. The polyester resins may be used alone or in combination of two or more.
[0033] さらに、 (メタ) アクリル系樹脂、 アクリロニトリルースチレン共重合体 、 アクリロニトリルーブタジエンースチレン共重合体、 ポリフエニレンエー テル系樹脂等が含まれていてもよい。 Further, a (meth)acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, a polyphenylene ether resin, or the like may be contained.
[0034] 樹脂組成物は、 発泡剤を含有する。 [0034] The resin composition contains a foaming agent.
発泡剤としては、 例えば、 重曹ークエン酸系発泡剤、 炭酸アンモニウム、 重炭酸ナトリウム、 重炭酸アンモニウム、 亜硝酸アンモニウム、 カルシウム アジド、 ナトリウムアジド、 ホウ水素化ナトリウム等の無機系分解性発泡剤 ; アゾジカルボンアミ ド、 アゾビススルホルムアミ ド、 アゾビスイソプチロ 二トリル、 ジアゾアミノベンゼン等のアゾ化合物; 1\1 , 1\1’ ージニトロソぺ ンタンメチレンテトラミン、 1\] , 1\1’ ージメチルー 1\1 , 1\1’ ージニトロソテ レフタルアミ ド等の二トロソ化合物;ベンゼンスルホニルヒドラジド、 一 トルエンスルホニルヒドラジド、 , ’ 一オキシビスベンゼスルホニルセ ミカルバジド、 _トルエンスルホニルセミカルバジド、 トリヒドラジノ ト リアジン、 バリウムアゾジカルボキシレート等が挙げられる。 気体の発泡剤 〇 2020/174792 12 卩(:171?2019/046369 Examples of the foaming agent include baking soda-citric acid-based foaming agents, ammonium carbonate, sodium bicarbonate, ammonium bicarbonate, ammonium nitrite, calcium azide, sodium azide, sodium borohydride, and other inorganic decomposable foaming agents; azodicarboxylic amine. Azo compounds such as azo, azobissulfolumamide, azobisisobutyronitrile and diazoaminobenzene; 1\1, 1\1'-dinitrosopentanemethylenetetramine, 1\], 1\1'-dimethyl-1\1 ,1\1'-Dinitrosoterephthalamide and other ditroso compounds; benzenesulfonyl hydrazide, 1-toluenesulfonyl hydrazide, ,'-oxybisbenze sulfonylsemicarbazide, _toluenesulfonyl semicarbazide, trihydrazinotriazine, barium azodicarboxylate, etc. To be Gas blowing agent 〇 2020/174792 12 卩 (:171?2019/046369
としては、 空気、 窒素、 炭酸ガス、 プロパン、 ネオペンタン、 メチルエーテ ル、 二塩化フッ化メタン、 1·! -ブタン、 イソブタン等が挙げられる。 なお、 ここで気体とは、 常温 (1 5 °〇~ 2 5 °〇) で気体であることを意味する。 一 方、 揮発性の発泡剤としては、 エーテル、 石油エーテル、 アセトン、 ペンタ ン、 ヘキサン、 イソヘキサン、 ヘプタン、 イソヘプタン、 ベンゼン、 トルエ ン等が挙げられる。 Examples thereof include air, nitrogen, carbon dioxide, propane, neopentane, methyl ether, fluoromethane dichloride, 1·!-butane, and isobutane. Here, the gas means that it is a gas at room temperature (15 ° 〇 to 25 ° 〇). On the other hand, examples of the volatile blowing agent include ether, petroleum ether, acetone, pentane, hexane, isohexane, heptane, isoheptane, benzene, and toluene.
上記発泡剤のうち、
Figure imgf000014_0001
ブタン、 窒素が特に好ましい。
Of the above foaming agents,
Figure imgf000014_0001
Butane and nitrogen are particularly preferred.
[0035] 樹脂組成物中の発泡剤の含有量は、 発泡剤の種類や、 比重等を勘案して適 宜決定され、 例えば、 樹脂 1 〇〇質量部に対して〇. 5〜 2 0質量部が好ま しく、 〇. 8〜 5 . 5質量部がより好ましい。 [0035] The content of the foaming agent in the resin composition is appropriately determined in consideration of the type of the foaming agent, the specific gravity, etc., and, for example, 0.5 to 20 parts by mass relative to 100 parts by mass of the resin. Parts are preferred, and 0.8 to 5.5 parts by mass are more preferred.
発泡層中の発泡剤の含有量 (いわゆる残存ガス量) は、 発泡層の総質量に 対し、 〇. 3〜 3 . 6質量%が好ましく、 〇. 5〜 3 . 3質量%がより好ま しい。 The content of the foaming agent in the foam layer (so-called residual gas amount) is preferably 0.3 to 3.6 mass%, more preferably 0.5 to 3.3 mass%, based on the total mass of the foam layer. ..
[0036] 樹脂組成物は、 界面活性剤、 気泡調整剤、 架橋剤、 充填剤、 難燃剤、 難燃 助剤、 滑剤 (炭化水素、 脂肪酸系、 脂肪酸アミ ド系、 エステル系、 アルコー ル系、 金属石鹸、 シリコーン油、 低分子ポリエチレン等のワックス等) 、 展 着剤 (流動パラフィン、 ポリエチレングリコール、 ポリブテン等) 、 着色剤 、 熱安定化剤、 紫外線吸収剤、 酸化防止剤等の添加剤が添加されてもよい。 [0036] The resin composition includes a surfactant, a cell regulator, a cross-linking agent, a filler, a flame retardant, a flame retardant aid, and a lubricant (hydrocarbon, fatty acid, fatty acid amide, ester, alcohol, Additives such as metal soap, silicone oil, waxes such as low molecular weight polyethylene), spreading agents (liquid paraffin, polyethylene glycol, polybutene, etc.), colorants, heat stabilizers, UV absorbers, antioxidants, etc. May be done.
[0037] 気泡調整剤としては、 例えば、 タルク、 シリカ等の無機粉末;多価カルボ ン酸の酸性塩;多価カルボン酸と炭酸ナトリウム又は重炭酸ナトリウムとの 反応混合物等が挙げられる。 なかでも、 独立気泡率を維持して、 且つ熱成形 性を向上しやすい点から、 反応混合物が好ましい。 Examples of the cell regulator include inorganic powder such as talc and silica; acidic salt of polyvalent carboxylic acid; reaction mixture of polyvalent carboxylic acid and sodium carbonate or sodium bicarbonate. Among them, the reaction mixture is preferable because the closed cell ratio is maintained and the thermoformability is easily improved.
気泡調整剤は、 1種単独で用いられてもよいし、 2種以上が組み合わされ て用いられてもよい。 The cell regulator may be used alone or in combination of two or more.
気泡調整剤の添加量は、 樹脂 1 〇〇質量部に対して〇. 0 1〜 1 . 0質量 部が好ましい。 The addition amount of the bubble control agent is preferably 0.01 to 1.0 part by mass with respect to 100 parts by mass of the resin.
[0038] 発泡層の独立気泡率は、 7 0 %以上であり、 7 5 %以上が好ましく、 8 0 %以上がより好ましい。 上限値は特に限定されず、 例えば、 9 9 %以下が好 〇 2020/174792 13 卩(:171?2019/046369 [0038] The closed cell content of the foam layer is 70% or more, preferably 75% or more, and more preferably 80% or more. The upper limit is not particularly limited. For example, 99% or less is preferable. 〇 2020/174792 13 卩 (:171?2019/046369
ましい。 発泡層の独立気泡率が上記数値範囲内であると、 耐衝撃性に優れ、 かつ、 熱成形性をより向上しやすい。 Good When the closed cell ratio of the foam layer is within the above numerical range, the impact resistance is excellent and the thermoformability is more likely to be improved.
発泡層の独立気泡率は、 」 丨 3 < 7 1 38 : 2006 「硬質発泡プラス チック -連続気泡率及び独立気泡率の求め方」 に記載の方法により測定され る。 The closed cell rate of the foam layer is measured by the method described in "3 <71 38: 2006 "Rigid foamed plastic-determination of open cell rate and closed cell rate"".
[0039] 発泡層の厚み丁 1は、 〇. 1〜 3. 0 が好ましく、 〇. 3〜 2.
Figure imgf000015_0001
がより好ましい。 発泡層の厚みが上記下限値以上であると、 形状保持性に 優れる。 発泡層の厚みが上記上限値以下であると、 熱成形性をより向上でき る。
[0039] The thickness of the foam layer 1 is preferably from 0.1 to 3.0, and from 0.3 to 2.
Figure imgf000015_0001
Is more preferable. When the thickness of the foam layer is at least the above lower limit, the shape retention is excellent. When the thickness of the foam layer is not more than the above upper limit, the thermoformability can be further improved.
本明細書において、 厚みは、 測定対象物の幅方向 (丁〇方向) 等間隔の 2 0箇所をマクロゲージによつて測定し、 その算術平均値により求められた値 である。 In the present specification, the thickness is a value obtained by measuring the 20 points of the measurement object at equal intervals in the width direction (the horizontal direction) with a macro gauge and calculating the arithmetic mean value thereof.
[0040] 発泡層の坪量は、 250〜 700
Figure imgf000015_0002
が好ましく、 400〜 600
Figure imgf000015_0003
[0040] The basis weight of the foam layer is 250 to 700.
Figure imgf000015_0002
Is preferred, 400-600
Figure imgf000015_0003
2がより好ましい。 発泡層の坪量が上記数値範囲内であると、 取扱い性に優 れる。 2 is more preferable. When the basis weight of the foam layer is within the above numerical range, it is easy to handle.
なお坪量は、 以下の方法で測定することができる。 The basis weight can be measured by the following method.
発泡層の幅方向の両端 2
Figure imgf000015_0004
を除き、 幅方向に等間隔に、 1 0001X 1
Both ends of the foam layer in the width direction 2
Figure imgf000015_0004
1 0001X 1 at equal intervals in the width direction
0〇 の切片 1 0個を切り出し、 各切片の質量 (9) を〇. 001 9単位ま で測定する。 各切片の質量 (9) の平均値を 1 2当たりの質量に換算した値 を、 発泡層の坪量 (9/|112) とする。 Cut out 10 pieces of 0 ○ and measure the mass (9) of each piece up to 0.001 9 units. The value obtained by converting the average value in mass per second mass (9) in each section, the basis weight of the foam layer | and (9/11 2).
[0041] 発泡層の密度は、 50〜 1 000 /〇!3であり、 90〜 900
Figure imgf000015_0005
[0041] The density of the foam layer is 50 ~ 1 000 / 〇! 3 and 90 ~ 900
Figure imgf000015_0005
3が好ましく、 1 00〜 500 9/ 3がより好ましく、
Figure imgf000015_0006
3, more preferably 1 00-500 9/3,
Figure imgf000015_0006
9 /〇!3がさらに好ましい。 発泡層の密度が上記数値範囲内であると、 取扱い 性に優れる。 9/○! 3 is even more preferable. When the density of the foam layer is within the above numerical range, the handleability is excellent.
[0042] <発泡シートの製造方法> <Method for producing foamed sheet>
発泡層を形成する発泡シートは、 従来公知の製造方法に準拠して製造され る。 The foamed sheet forming the foamed layer is manufactured according to a conventionally known manufacturing method.
発泡シートの製造方法としては、 樹脂組成物を調製し、 樹脂組成物をシー 〇 2020/174792 14 卩(:171?2019/046369 As a method for producing a foamed sheet, a resin composition is prepared, and the resin composition is sealed. 〇2020/174792 14 卩(:171?2019/046369
卜状に押し出し、 発泡 (一次発泡) する方法が挙げられる (押出発泡法) 。 発泡シートの製造方法の一例について、 図 2を用いて説明する。 図 2の発泡シートの製造装置 2 0 0は、 インフレーシヨン成形により発泡 シートを得る装置であり、 押出機 2 0 2と、 発泡剤供給源 2 0 8と、 サーキ ユラーダイ 2 1 0と、 マンドレル 2 2 0と、 2つの卷取機 2 4 0とを備える 押出機 2 0 2は、 いわゆるタンデム型押出機であり、 押出機 2 0 2 3と 押出機巳 2 0 2匕とが配管 2 0 6で接続された構成とされている。 第一の押 出部 2 0 2 3はホッパー 2 0 4を備え、 押出機八2 0 2 3には、 発泡剤供給 源 2 0 8が接続されている。 A method of extruding into a square shape and foaming (primary foaming) can be mentioned (extrusion foaming method). An example of the method for manufacturing the foamed sheet will be described with reference to FIG. The foamed sheet manufacturing apparatus 200 shown in Fig. 2 is an apparatus for obtaining a foamed sheet by inflation molding, and includes an extruder 200, a foaming agent supply source 208, a circular die 210, and a mandrel. The extruder 20 2 provided with 2 20 and two winding machines 2 4 0 is a so-called tandem type extruder, and the extruder 2 0 2 3 and the extruder 2 0 2 It is configured to be connected in 6. First push out section 2 0 2 3 is provided with a hopper 2 0 4, in an extruder eight 2 0 2 3, blowing agent supply 2 0 8 is connected.
押出機巳 2 0 2匕には、 サーキユラーダイ 2 1 0が接続され、 サーキユラ —ダイ 2 1 0の下流には、 マンドレル 2 2 0が設けられている。 マンドレル 2 2 0は、 カッタ _ 2 2 2を備える。 The extruder die 210 is connected to the circle die 210, and the mandrel 220 is provided downstream of the circle die 210. The mandrel 220 is equipped with a cutter _2 22.
[0043] まず、 樹脂組成物を構成する原料をホッパー 2 0 4から押出機八2 0 2 3 に投入する。 [0043] First, turning on the material constituting the resin composition in an extruder eight 2 0 2 3 from the hopper 2 0 4.
ホッパー 2 0 4から投入される原料は、 発泡シートを構成する樹脂、 及び 必要に応じて配合される添加剤等である。 The raw materials charged from the hopper 204 are the resin that constitutes the foamed sheet, and additives that are added as necessary.
[0044] 押出機 2 0 2 3では、 原料を任意の温度に加熱しながら混合して樹脂溶 融物とし、 発泡剤供給源 2 0 8から発泡剤を押出機 2 0 2 3に供給し、 樹 脂溶融物に発泡剤を混合して樹脂組成物とする。 [0044] In an extruder 2 0 2 3, raw materials are mixed while heating to any temperature a resin dissolved Torubutsu, supplies blowing agent to an extruder 2 0 2 3 blowing agent supply 2 0 8, A resin composition is prepared by mixing a resin melt with a foaming agent.
加熱温度は、 樹脂の種類等を勘案して、 樹脂が溶融しかつ添加剤が変性し ない範囲で適宜決定される。 The heating temperature is appropriately determined in consideration of the type of resin and the like within a range in which the resin melts and the additive does not denature.
[0045] 樹脂組成物は、 押出機 2 0 2 3から配管 2 0 6を経て押出機巳 2 0 2匕 に供給され、 さらに混合され、 任意の温度に冷却された後、 サーキユラーダ イ 2 1 0へ供給される。 サーキユラーダイ 2 1 0から押し出す際の樹脂組成 物の温度は 1 4 0〜 1 9 0 °〇であり、 より好ましくは 1 5 0〜 1 9 0 °〇であ る。 [0045] The resin composition is fed to an extruder snake 2 0 2 spoon via a pipe 2 0 6 from the extruder 2 0 2 3, are further mixed, after being cooled to any temperature, Sakiyurada Lee 2 1 0 Supplied to. The temperature of the resin composition when it is extruded from the circular die 210 is 1400-1900 ° , more preferably 1500-1900 ° .
樹脂組成物は、 サーキュラーダイ 2 1 0から押し出され、 発泡剤が発泡し 〇 2020/174792 1 5 卩(:171?2019/046369 The resin composition was extruded from the circular die 210 and the foaming agent foamed. 〇 2020/174792 1 5 卩 (:171?2019/046369
て円筒状の発泡シート 1 〇 1 3となる。 サーキュラーダイ 2 1 0から押し出 された発泡シート 1 0 1 3は、 冷却空気 2 1 1 を吹き付けられた後、 マンド レル 2 2 0に供給される。 この冷却空気 2 1 1の温度、 量、 吹き付け位置と の組み合わせにより、 発泡シート 1 0 1 3の冷却速度を調節できる。 To form a cylindrical foam sheet 1103. The foamed sheet 1 0 1 3 extruded from the circular die 210 is blown with cooling air 2 11 and then supplied to the mandrel 2 20. The cooling rate of the foamed sheet 1103 can be adjusted by combining the temperature, amount, and blowing position of the cooling air 211.
円筒状の発泡シート 1 0 1 3は、 マンドレル 2 2 0で任意の温度にされ、 サイジングされ、 カッター 2 2 2によって 2枚に切り裂かれて発泡シート 1 0 1 となる。 発泡シート 1 0 1は、 各々ガイ ドロール 2 4 2とガイ ドロール 2 4 4とに掛け回され、 卷取機 2 4 0に巻き取られて発泡シートロール 1 0 2となる。 The cylindrical foam sheet 1013 is heated to an arbitrary temperature by the mandrel 220, sized, and cut into two by the cutter 2222 to form the foam sheet 1101. The foamed sheet 1 0 1 is wound around a guide roll 2 4 2 and a guide roll 2 4 4 respectively, and wound up by a winding machine 2 4 0 to form a foamed sheet roll 1 0 2.
発泡シートの発泡倍数は、 例えば、 2〜 2 0倍とされる。 The foaming factor of the foamed sheet is, for example, 2 to 20 times.
なお、 発泡シートは、 インフレーション成形以外の方法により製造されて もよい。 The foamed sheet may be manufactured by a method other than inflation molding.
[0046] <第一の非発泡層> [First non-foamed layer]
第一の非発泡層は、 発泡層の一方の面に位置する層である。 The first non-foamed layer is a layer located on one surface of the foamed layer.
なお、 本明細書において、 「非発泡」 とは、 原料樹脂を発泡させていない 状態を表し、 発泡倍数が、 1 . 〇倍である場合をいう。 In the present specification, “non-foaming” means a state in which the raw material resin is not foamed, and means a case where the foaming multiple is 1.0 times.
第一の非発泡層は、 非架橋型オレフィン系エラストマーを含むことが好ま しい。 The first non-foamed layer preferably contains a non-crosslinked olefinic elastomer.
本明細書において、 「非架橋」 とは、 ゲル分率が 3 . 0質量%以下、 より 好ましくは 1 . 0質量%以下であることを意味する。 ゲル分率は以下のよう に測定した値である。 In the present specification, “non-crosslinked” means that the gel fraction is 3.0% by mass or less, more preferably 1.0% by mass or less. The gel fraction is the value measured as follows.
[0047] 樹脂の質量 1 を測定する。 次に沸騰キシレン 8 0ミリリッ トル中に樹脂 を 3時間還流加熱する。 次にキシレン中の残渣を 2 0 0メッシュの金網を用 いてろ過し、 金網上に残った残渣を新規キシレンにて共洗いした後、 1 日自 然乾燥させて、 その後 1 2 0 °〇にて 2時間に亙って乾燥機にて乾燥させて、 金網上に残った残渣の質量 \^/ 2を測定する。 続いて、 下記式 (1) に基づい て樹脂のゲル分率を算出する。 [0047] The mass 1 of the resin is measured. The resin is then heated to reflux in 80 milliliters of boiling xylene for 3 hours. Next, the residue in xylene was filtered using a 200-mesh wire net, the residue remaining on the wire net was co-washed with new xylene, then dried naturally for 1 day, then to 120 ° 〇. After drying for 2 hours with a dryer, measure the mass of residue left on the wire net \^/2. Then, calculate the gel fraction of the resin based on the following formula (1).
ゲル分率 (質量%) = 1 0 0 / 1 (1) 〇 2020/174792 16 卩(:171?2019/046369 Gel fraction (mass %) = 100/1 (1) 〇2020/174792 16 卩(:171?2019/046369
[0048] 非架橋型オレフィン系エラストマーとしては、 プロピレンの単独重合体や 、 プロピレンと、 エチレン、 1 —ブテン、 1 —ペンテン、 1 —ヘキセン、 1 —オクテンおよび 4—メチルー 1 —ペンテンからなる群から選ばれる<¾—才 レフィンの 1種以上との共重合体等が好ましい。 [0048] Examples of the non-crosslinking olefin elastomer include homopolymers of propylene, propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene and 4-methyl-1-pentene. A copolymer or the like selected from one or more kinds of reffins is preferable.
[0049] 非架橋型オレフィン系エラストマーの含有量は、 第一の非発泡層を構成す る樹脂 1 〇〇質量%に対し、 1 〇質量%以上が好ましく、 2 0質量%以上が より好ましい。 また、 非架橋型オレフィン系エラストマーの含有量は、 第一 の非発泡層を構成する樹脂 1 〇〇質量%に対し、 9 0質量%以下が好ましく 、 8 0質量%以下がより好ましい。 具体的には、 非架橋型オレフィン系エラ ストマーの含有量は、 第一の非発泡層を構成する樹脂 1 0 0質量%に対し、 [0049] The content of the non-crosslinked olefin elastomer is preferably 10% by mass or more and more preferably 20% by mass or more with respect to 100% by mass of the resin constituting the first non-foamed layer. Further, the content of the non-crosslinking olefin-based elastomer is preferably 90% by mass or less, and more preferably 80% by mass or less, relative to 100% by mass of the resin constituting the first non-foamed layer. Specifically, the content of the non-crosslinking olefinic elastomer is 100% by mass with respect to 100% by mass of the resin constituting the first non-foaming layer.
1 0〜 9 0質量%が好ましく、 2 0〜 8 0質量%がより好ましい。 10 to 90 mass% is preferable, and 20 to 80 mass% is more preferable.
第一の非発泡層は、 非架橋型オレフィン系エラストマー以外の樹脂として 、 前記<発泡層>で述べたポリオレフィン系樹脂、 ポリスチレン系樹脂、 ポ リエステル系樹脂等を含んでいてもよい。 The first non-foaming layer may contain, as a resin other than the non-crosslinking olefin-based elastomer, the polyolefin-based resin, the polystyrene-based resin, the polyester-based resin and the like described in the above <foaming layer>.
[0050] 第一の非発泡層が非架橋型オレフィン系エラストマーと、 非架橋型オレフ ィン系エラストマー以外の樹脂とを含む場合、 [非架橋型オレフィン系エラ ストマーの含有量] : [非架橋型オレフィン系エラストマー以外の樹脂の含 有量] で表される質量比は、 1 0 : 9 0〜 9 0 : 1 0が好ましく、 2 0 : 8 〇〜 8 0 : 2 0がより好ましく、 3 0 : 7 0〜 7 0 : 3 0がさらに好ましい 。 上記質量比が上記範囲内であると、 耐摩耗性を向上しやすくなる。 [0050] When the first non-foamed layer contains a non-crosslinking olefin-based elastomer and a resin other than the non-crosslinking olefin-based elastomer, [content of non-crosslinking olefin elastomer]: [non-crosslinking Content of resin other than type olefin-based elastomer] is preferably 10:90 to 90:10, more preferably 20:80 to 80:20, 0:70 to 70:30 is more preferable. When the above mass ratio is within the above range, abrasion resistance is likely to be improved.
[0051] 第一の非発泡層の」 丨 3 < 7 1 2 5で求められる最大荷重は、 1 0〜 5 〇 1\1であり、 1 5 ~ 4 5 1\1が好ましく、 2 0〜 4 0 1\1がより好ましく、 2 0 〜 3 5 1\1がさらに好ましい。 第一の非発泡層の最大荷重が上記範囲内である と、 耐摩耗性を向上しやすくなる。 [0051] The maximum load required for the first non-foamed layer" 3 <7 1 25 is 10 to 50 1\1, preferably 15 to 4 5 1\1, and 20 to 40 1\1 is more preferable, and 20 to 3 5 1\1 is further preferable. When the maximum load of the first non-foamed layer is within the above range, it becomes easy to improve wear resistance.
[0052] 第一の非発泡層の」 丨 3 < 7 1 2 5で求められる最大静止摩擦係数は、 [0052] The first coefficient of static friction determined by 3 <71 25 of the first non-foamed layer is
1 . 0以上が好ましく、 2 . 0以上がより好ましく、 2 . 5以上がさらに好 ましく、 3 . 0以上が特に好ましい。 また、 第一の非発泡層の最大静止摩擦 係数は、 5 . 0以下が好ましく、 4 . 5以下がより好ましい。 具体的には、 〇 2020/174792 17 卩(:171?2019/046369 It is preferably 1.0 or higher, more preferably 2.0 or higher, even more preferably 2.5 or higher, and particularly preferably 3.0 or higher. The maximum static friction coefficient of the first non-foamed layer is preferably 5.0 or less, more preferably 4.5 or less. In particular, 〇 2020/174792 17 卩(: 171?2019/046369
第一の非発泡層の最大静止摩擦係数は、 1 . 〇〜 5 . 0が好ましく、 2 . 0 ~ 4 . 5がより好ましく、 2 . 5 ~ 4 . 0がさらに好ましい。 第一の非発泡 層の最大静止摩擦係数が上記範囲内であると、 滑りにくいものにすることが できる。 The maximum static friction coefficient of the first non-foamed layer is preferably from 1.0 to 5.0, more preferably from 2.0 to 4.5, even more preferably from 2.5 to 4.0. When the maximum coefficient of static friction of the first non-foamed layer is within the above range, it can be made slippery.
最大静止摩擦係数の測定の相手材は滑り性を明確にするために、 アルミ材 の鏡面仕上げを用いることが好ましい。 It is preferable to use a mirror-finished aluminum material as the mating material for measuring the maximum static friction coefficient in order to clarify the slipperiness.
[0053] 第一の非発泡層の坪量 3は、
Figure imgf000019_0001
が好ましく、 1 3 0〜
Figure imgf000019_0002
がより好ましい。 第一の非発泡層の坪量 3が上記数値範囲内で あると、 取扱い性に優れる。
[0053] The basis weight 3 of the first non-foamed layer is
Figure imgf000019_0001
Is preferred, and 130 ~
Figure imgf000019_0002
Is more preferable. When the basis weight 3 of the first non-foamed layer is within the above numerical range, the handleability is excellent.
なお坪量は、 以下の方法で測定することができる。 The basis weight can be measured by the following method.
第一の非発泡層の幅方向の両端 2
Figure imgf000019_0003
を除き、 幅方向に等間隔に、 1 0
Both ends in the width direction of the first non-foamed layer 2
Figure imgf000019_0003
At equal intervals in the width direction,
〇 1 0〇 の切片 1 0個を切り出し、 各切片の質量 (9) を 0 . 0 0 1 9単位まで測定する。 各切片の質量 (9) の平均値を 1 2当たりの質量に換 算した値を、 第一の非発泡層の坪量 3 ( 9 /〇! 2) とする。 Cut out 10 pieces of ◯100 and measure the mass (9) of each piece up to the unit of 0.0001. The mass value obtained by conversion calculation of 1 2 per an average value of the mass (9) in each section, the basis weight of the first non-foamed layer 3 (9 / 〇! 2).
[0054] 第一の非発泡層の厚み丁 2は、 求められる強度等に応じて適宜決定され、 例えば、 〇. 0 5〜〇.
Figure imgf000019_0004
が好ましく、 〇. 1〜〇. 4 がより好ま しく、 〇. 1 5〜〇. 3
Figure imgf000019_0005
がさらに好ましい。 上記下限値以上であれば、 十分な強度を得られやすい。 上記上限値以下であれば、 成形加工が容易であ る。
[0054] The thickness of the first non-foamed layer 2 is appropriately determined according to the required strength and the like, and is, for example, 0. 05 to 0.
Figure imgf000019_0004
Is preferred, and 0.01 to 0.4 is more preferred, and 0.15 to 0.3
Figure imgf000019_0005
Is more preferable. If it is at least the above lower limit value, sufficient strength is likely to be obtained. If it is at most the above upper limit, the molding process will be easy.
[0055] 発泡層の厚みに対する第一の非発泡層の厚みの比は、 丁 2 /丁 1で表して 、 〇. 0 1〜 1が好ましく、 〇. 0 5〜〇. 5がより好ましい。 [0055] The ratio of the thickness of the first non-foamed layer to the thickness of the foamed layer is expressed as D 2 /D 1, and is preferably 0.01-1 and more preferably 0.05-5.
[0056] 第一の非発泡層の」 丨 3 < 6 2 5 3 - 3で求められるデュロ八硬度は 7 [0056] The hardness of the first non-foaming layer" is 3 <6 2 5 3-3 and the Duro 8 hardness is 7
0以下が好ましい。 また、 第一の非発泡層のデュロ八硬度は 3 0以上が好ま しく、 4 0以上がより好ましい。 具体的には、 第一の非発泡層のデュロ八硬 度は 3 0〜 7 0が好ましく、 4 0〜 7 0がより好ましい。 第一の非発泡層の デュロ八硬度が上記範囲内であると、 グリップ性に優れる。 0 or less is preferable. Further, the Duro 8 hardness of the first non-foamed layer is preferably 30 or more, and more preferably 40 or more. Specifically, the Duro 8 hardness of the first non-foamed layer is preferably from 30 to 70, more preferably from 40 to 70. When the Duro 8 hardness of the first non-foamed layer is within the above range, the grip property is excellent.
[0057] 第一の非発泡層の」 丨 3 [< 6 2 5 1で求められる破断点伸び率は 9 0 0 %以上が好ましく、 1 0 0 0〜 1 5 0 0 %がより好ましい。 破断点伸び率が 〇 2020/174792 18 卩(:171?2019/046369 [0057] The elongation percentage at break as determined by "3 [< 6 2 5 1 of the first non-foamed layer] is preferably 900% or more, and more preferably 10000 to 1500%. Elongation at break 〇 2020/174792 18 卩 (:171?2019/046369
上記範囲内であると、 熱成形性に優れる。 Within the above range, the thermoformability is excellent.
[0058] 第一の非発泡層には、 添加剤が含まれてもよい。 前記添加剤としては、 難 燃剤、 難燃助剤、 滑剤、 展着剤、 着色剤、 帯電防止剤、 防曇剤、 アンチブロ ッキング剤、 酸化防止剤、 光安定剤、 結晶核剤、 界面活性剤、 フイラー等が 挙げられる。 [0058] An additive may be contained in the first non-foamed layer. Examples of the additives include flame retardants, flame retardant aids, lubricants, spreading agents, colorants, antistatic agents, antifogging agents, antiblocking agents, antioxidants, light stabilizers, crystal nucleating agents, surfactants. , Filler, etc.
第一の非発泡層に前記添加剤が含まれる場合、 その含有量は樹脂 1 〇〇質 量部に対して 0質量部超 3 0質量部以下が好ましい。 When the first non-foamed layer contains the additive, the content thereof is preferably more than 0 parts by mass and 30 parts by mass or less with respect to 100 parts by mass of the resin.
[0059] <第二の非発泡層> <Second non-foamed layer>
第二の非発泡層は、 発泡層の他方の面に位置する層である。 The second non-foamed layer is a layer located on the other surface of the foamed layer.
第二の非発泡層としては、 前記<第_の非発泡層>と同様のものを使用で きる。 As the second non-foamed layer, the same one as the above-mentioned <third non-foamed layer> can be used.
第二の非発泡層は、 フイラーを含んでいてもよい。 フイラーを含むことに より、 強度をより向上しやすい。 The second non-foamed layer may include a filler. By including a filler, it is easier to improve the strength.
フイラーとしては、 無機フイラーが好ましく、 例えば、 タルク、 カオリン 、 焼成カオリン、 ベントナイ ト、 雲母族鉱物 (セリサイ ト、 白雲母、 金雲母 、 黒雲母) 、 等の板状の鉱物粒子が挙げられる。 これらのなかでもタルクが 好ましい。 The filler is preferably an inorganic filler, and examples thereof include plate-like mineral particles such as talc, kaolin, calcined kaolin, bentonite, mica group minerals (sericite, muscovite, phlogopite, biotite). Of these, talc is preferred.
フイラーの含有量は、 第二の非発泡層の総質量に対し、 5〜 5 0質量%が 好ましく、 1 〇〜 4 0質量%がより好ましい。 無機フイラーの含有量が上記 数値範囲内であると、 強度に優れる。 The content of the filler is preferably from 5 to 50% by mass, more preferably from 10 to 40% by mass, based on the total mass of the second non-foamed layer. When the content of the inorganic filler is within the above numerical range, the strength is excellent.
フイラーの平均粒子径は、 1〜 5 0 が好ましく、 3〜 3 0 がより 好ましい。 フイラーの平均粒子径が上記数値範囲内であると、 強度に優れる なお、 本明細書において平均粒子径は、 レーザー回折法で測定できる。 The average particle size of the filler is preferably 1 to 50, more preferably 3 to 30. When the average particle size of the filler is within the above numerical range, the strength is excellent. In the present specification, the average particle size can be measured by a laser diffraction method.
[0060] 第二の非発泡層の」 丨 3 < 7 1 2 5で求められる最大荷重は、 1 0〜 5 [0060] The maximum load required for the second non-foamed layer" 3 <71 25 is 10 to 5
0 1\1が好ましく、 1 5〜 4 5 1\1がより好ましく、 2 0〜 4 0 1\1がさらに好ま しく、 2 0〜 3 5 1\1が特に好ましい。 第一の非発泡層の最大荷重が上記範囲 内であると、 耐摩耗性を向上しやすくなる。 〇 2020/174792 19 卩(:171?2019/046369 0 1\1 is preferable, 15 to 4 5 1\1 is more preferable, 20 to 4 0 1\1 is further preferable, and 20 to 3 5 1\1 is particularly preferable. When the maximum load of the first non-foamed layer is within the above range, it becomes easy to improve wear resistance. 〇 2020/174792 19 卩 (: 171?2019/046369
[0061] 第二の非発泡層の」 丨 3 < 7 1 25で求められる最大静止摩擦係数は、 [0061] The maximum coefficient of static friction obtained by the second non-foaming layer"
1. 0以上が好ましく、 2. 0以上がより好ましく、 2. 5以上がさらに好 ましく、 3. 0以上が特に好ましい。 また、 第二の非発泡層の最大静止摩擦 係数は、 5. 0以下が好ましく、 4. 5以下がより好ましい。 具体的には、 第二の非発泡層の最大静止摩擦係数は、 1. 〇〜 5. 0が好ましく、 2. 0 ~4. 5がより好ましく、 2. 5~4. 0がさらに好ましい。 第二の非発泡 層の最大静止摩擦係数が上記範囲内であると、 粘つき感や引っ掛かり感が低 減できる。 It is preferably 1.0 or higher, more preferably 2.0 or higher, even more preferably 2.5 or higher, and particularly preferably 3.0 or higher. Further, the maximum static friction coefficient of the second non-foamed layer is preferably 5.0 or less, more preferably 4.5 or less. Specifically, the maximum static friction coefficient of the second non-foamed layer is preferably 1.0 to 5.0, more preferably 2.0 to 4.5, and even more preferably 2.5 to 4.0. When the maximum coefficient of static friction of the second non-foamed layer is within the above range, the stickiness and the feeling of being caught can be reduced.
[0062] 第二の非発泡層の坪量匕は、
Figure imgf000021_0001
が好ましく、 1 30〜
[0062] The basis weight of the second non-foamed layer is
Figure imgf000021_0001
Is preferred, 1 to 30 ~
3009
Figure imgf000021_0002
2がより好ましい。 第二の非発泡層の坪量匕が上記数値範囲内で あると、 取扱い性に優れる。
3009
Figure imgf000021_0002
2 is more preferable. When the basis weight of the second non-foamed layer is within the above numerical range, the handleability is excellent.
なお坪量は、 以下の方法で測定することができる。 The basis weight can be measured by the following method.
第二の非発泡層の幅方向の両端 2
Figure imgf000021_0003
を除き、 幅方向に等間隔に、 1 0
Both ends in the width direction of the second non-foamed layer 2
Figure imgf000021_0003
At equal intervals in the width direction,
〇 1 0〇 の切片 1 0個を切り出し、 各切片の質量 (9) を 0. 001 9単位まで測定する。 各切片の質量 (9) の平均値を 1 2当たりの質量に換 算した値を、 第二の非発泡層の坪量匕
Figure imgf000021_0004
とする。
Cut out 10 pieces of 〇 100 pieces and measure the mass (9) of each piece up to 0.001 9 units. The mass value obtained by conversion calculation of 1 2 per an average value of the mass (9) in each section, the basis weight of the second non-foamed layer spoon
Figure imgf000021_0004
And
[0063] 第二の非発泡層の厚み丁 3は、 求められる強度等に応じて適宜決定され、 例えば、 〇. 05〜〇.
Figure imgf000021_0005
が好ましく、 〇. 1〜〇. 4 がより好ま しく、 〇. 1 5〜〇. 3
Figure imgf000021_0006
がさらに好ましい。 上記下限値以上であれば、 十分な強度を得られやすい。 上記上限値以下であれば、 成形加工が容易であ る。
[0063] The thickness of the second non-foamed layer 3 is appropriately determined according to the required strength and the like.
Figure imgf000021_0005
Is preferred, and 0.01 to 0.4 is more preferred, and 0.15 to 0.3
Figure imgf000021_0006
Is more preferable. If it is at least the above lower limit value, sufficient strength is likely to be obtained. If it is at most the above upper limit, the molding process will be easy.
[0064] 第二の非発泡層の」 丨 3 < 6253-3で求められるデュロ八硬度は 7 [0064] The second non-foamed layer" has a Duro 8 hardness of 7 determined by 3 <6253-3.
0以下が好ましい。 また、 第一の非発泡層の」 丨 3 [< 6253— 3で求め られるデュロ八硬度は 30以上が好ましく、 40以上がより好ましい。 具体 的には、 第二の非発泡層のデュロ八硬度は 30〜 70が好ましく、 40〜 7 0がより好ましい。 デュロ八硬度が上記範囲内であると、 取り扱い性に優れ る。 0 or less is preferable. Further, the Duro 8 hardness of the first non-foamed layer, which is determined by "3 [< 6253-3", is preferably 30 or more, and more preferably 40 or more. Specifically, the Duro 8 hardness of the second non-foamed layer is preferably 30 to 70, more preferably 40 to 70. When the Duroha hardness is within the above range, the handleability is excellent.
[0065] 第二の非発泡層の」 丨 3 [< 625 1で求められる破断点伸び率は 900 \¥0 2020/174792 20 卩(:17 2019/046369 [0065] The second elongation of the non-foamed layer is 900 [< 625 1 \¥0 2020/174792 20 20 (: 17 2019/046369
%以上が好ましく、 1 0 0 0〜 1 5 0 0 %がより好ましい。 破断点伸び率が 上記範囲内であると、 熱成形性に優れる。 % Or more is preferable, and 100 to 150% is more preferable. When the elongation at break is within the above range, the thermoformability is excellent.
[0066] 第二の非発泡層には、 添加剤が含まれてもよい。 前記添加剤としては、 難 燃剤、 難燃助剤、 滑剤、 展着剤、 着色剤、 帯電防止剤、 防曇剤、 アンチブロ ッキング剤、 酸化防止剤、 光安定剤、 結晶核剤、 界面活性剤等が挙げられる 第二の非発泡層に前記添加剤が含まれる場合、 その含有量は樹脂 1 0 0質 量部に対して 0質量部超 3 0質量部以下が好ましい。 [0066] The second non-foamed layer may contain an additive. Examples of the additives include flame retardants, flame retardant aids, lubricants, spreading agents, colorants, antistatic agents, antifogging agents, antiblocking agents, antioxidants, light stabilizers, crystal nucleating agents, surfactants. When the additive is contained in the second non-foamed layer, the content thereof is preferably more than 0 parts by mass and 30 parts by mass or less with respect to 100 parts by mass of the resin.
[0067] 積層発泡シートにおいて、 以下の方法で算出される気泡 (八) の割合は 5 [0067] In the laminated foam sheet, the ratio of bubbles (eight) calculated by the following method was 5
0 %以上であり、 6 0 %以上が好ましく、 6 5 %以上がより好ましい。 また 、 前記気泡 (八) の割合は、 7 5 %以下が好ましく、 7 0 %以下がより好ま しい。 具体的には、 前記気泡 (八) の割合は、 5 0〜 7 5 %が好ましく、 6 〇〜 7 0 %がより好ましく、 6 5〜 7 0 %がさらに好ましい。 前記気泡 (八 ) の割合が上記範囲内であると、 耐摩耗性を向上しやすくなる。 It is 0% or more, preferably 60% or more, and more preferably 65% or more. The proportion of the bubbles (8) is preferably 75% or less, more preferably 70% or less. Specifically, the proportion of the bubbles (8) is preferably from 50 to 75%, more preferably from 60 to 70%, even more preferably from 65 to 70%. When the ratio of the bubbles (8) is within the above range, abrasion resistance is easily improved.
<気泡 ( ) の割合の算出方法> <Calculation method of bubble () ratio>
積層発泡シートを厚さ方向に沿って切断し、 走査電子顕微鏡を用いて、 3 0倍の倍率で切断面の写真撮影を行い、 得られた写真において、 発泡層の気 泡のうち、 第一の非発泡層側に位置する 3点以上の気泡を選択し、 厚さ方向 に対して垂直方向に、 選択された前記気泡の第一の非発泡層側に接線を引く 。 前記接線を発泡層と第一の非発泡層との界面とする。 前記界面から、 発泡 層の厚さ方向に、 発泡層の厚みに対して 1 5 %となる深さまでの領域におけ る気泡の長径及び短径を測定し、 長径/短径で表される比を算出し、 前記比 が 4 . 0以上の気泡を気泡 ( ) とする。 前記領域に含まれる発泡層の厚み に対して短径が 1 %以上の空洞を気泡とみなす。 全ての気泡の数と気泡 (八 ) の数とを数え、 前記領域に含まれる全気泡数に対する気泡 ( ) の割合を 算出する。 なお、 発泡層の厚さ方向に対して垂直な方向の気泡径の最大値を 長径、 発泡層の厚さ方向の気泡径の最大値を短径とする。 The laminated foam sheet was cut along the thickness direction, and a photograph of the cut surface was taken with a scanning electron microscope at a magnification of 30 times. In the obtained photograph, among the bubbles in the foam layer, the first Select three or more bubbles located on the non-foaming layer side of, and draw a tangent line to the first non-foaming layer side of the selected bubbles in the direction perpendicular to the thickness direction. The tangent line is the interface between the foam layer and the first non-foam layer. From the interface, in the thickness direction of the foam layer, measure the major axis and minor axis of the bubbles in the region up to a depth of 15% with respect to the thickness of the foam layer, and obtain the ratio of major axis/minor axis. Then, the bubbles with the ratio of 4.0 or more are defined as bubbles (). Voids having a minor axis of 1% or more with respect to the thickness of the foam layer included in the region are regarded as bubbles. The number of all bubbles and the number of bubbles (8) are counted, and the ratio of bubbles () to the total number of bubbles contained in the region is calculated. The maximum value of the bubble diameter in the direction perpendicular to the thickness direction of the foam layer is the major axis, and the maximum value of the bubble diameter in the thickness direction of the foam layer is the minor axis.
また、 発泡層の厚さ方向に、 発泡層の厚みに対して 1 5 %となる深さまでの 〇 2020/174792 21 卩(:171?2019/046369 Also, in the thickness direction of the foam layer, up to a depth of 15% with respect to the thickness of the foam layer. 〇2020/174792 21 卩(:171?2019/046369
領域に気泡の少なくとも一部が含まれる気泡を前記領域内の気泡とみなす。 A bubble in which at least a part of the bubble is included in the region is regarded as a bubble in the region.
[0068] 積層発泡シートにおいて、 以下の方法で算出される気泡 (巳) の割合は 5 [0068] In the laminated foam sheet, the ratio of air bubbles (Mi) calculated by the following method was 5
0 %以上が好ましく、 6 0 %以上がより好ましく、 6 5 %以上がさらに好ま しい。 また、 前記気泡 (巳) の割合は、 7 5 %以下が好ましく、 7 0 %以下 がより好ましい。 具体的には、 前記気泡 (巳) の割合は、 5 0〜 7 5 %が好 ましく、 6 0〜 7 0 %がより好ましく、 6 5〜 7 0 %がさらに好ましい。 前 記気泡 (巳) の割合が上記範囲内であると、 耐摩耗性を向上しやすくなる。 <気泡 (巳) の割合の算出方法> 0% or more is preferable, 60% or more is more preferable, and 65% or more is further preferable. In addition, the proportion of the bubbles (Mi) is preferably 75% or less, more preferably 70% or less. Specifically, the proportion of the bubbles (Mi) is preferably 50 to 75%, more preferably 60 to 70%, further preferably 65 to 70%. When the ratio of the bubbles (Mitsumi) is within the above range, the wear resistance is likely to be improved. <Calculation method of the ratio of bubbles (Mitsumi)>
積層発泡シートを厚さ方向に沿って切断し、 走査電子顕微鏡を用いて、 3 0倍の倍率で切断面の写真撮影を行い、 得られた写真において、 発泡層と第 二の非発泡層との界面から、 発泡層の厚さ方向に、 発泡層の厚みに対して 1 5 %となる深さまでの領域における気泡の長径及び短径を測定し、 長径/短 径で表される比を算出し、 前記比が 4 . 0以上の気泡を気泡 (巳) とし、 気 泡 (巳) の数と、 前記領域に含まれる全ての気泡の数とを数え、 前記領域に 含まれる全気泡数に対する気泡 (巳) の割合を算出する。 The laminated foam sheet was cut along the thickness direction, and a photograph of the cut surface was taken with a scanning electron microscope at a magnification of 30 times. In the obtained photograph, a foam layer and a second non-foam layer were formed. From the interface of the foam layer, in the thickness direction of the foam layer, measure the major axis and minor axis of the bubbles in the region up to a depth of 15% of the thickness of the foam layer, and calculate the ratio expressed by major axis/minor axis. Then, the bubbles having the ratio of 4.0 or more are defined as bubbles (Mitsu), and the number of bubbles (Mitsu) and the number of all the bubbles included in the region are counted, and the total number of bubbles included in the region is calculated. Calculate the percentage of air bubbles.
[0069] 気泡 (八) の割合の算出方法について、 図 3を用いて説明する。 A method of calculating the ratio of bubbles (8) will be described with reference to FIG.
図 3は、 3層からなる積層発泡シート 1 1 を厚さ方向に沿って切断し、 走 査電子顕微鏡を用いて、 3 0倍の倍率で切断面を撮影したものである。 図 3 の積層発泡シート 1 1は、 下から、 第一の非発泡層、 発泡層、 及び第二の非 発泡層の順に積層されている。 得られた積層発泡シート 1 1の写真において 、 発泡層と第一の非発泡層との界面 2 1の位置を決める。 ここで、 「界面」 は、 発泡層の気泡のうち、 第一の非発泡層側に位置する 3点以上の気泡を選 択し、 厚さ方向に対して垂直方向に、 選択された前記気泡の第一の非発泡層 側に接線を引き、 前記接線を界面とすることで決定される。 次に、 界面 2 1 と平行な線 2 2であって、 界面 2 1から、 発泡層の厚さ方向に、 発泡層の厚 みに対して 1 5 %となる深さになる位置に線 2 2を引く。 さらに、 界面 2 1 から、 線 2 2までの領域に含まれる気泡の長径及び短径を測定する。 ここで 、 気泡の長径及び短径は、 発泡層の厚さ方向に対して垂直な方向の気泡径の 〇 2020/174792 22 卩(:171?2019/046369 In FIG. 3, a laminated foam sheet 11 having three layers is cut along the thickness direction, and a cut surface is photographed with a scanning electron microscope at a magnification of 30 times. The laminated foam sheet 11 of FIG. 3 has a first non-foamed layer, a foamed layer, and a second non-foamed layer laminated in that order from the bottom. In the photograph of the obtained laminated foam sheet 11, the position of the interface 21 between the foam layer and the first non-foam layer is determined. Here, the “interface” is selected by selecting three or more bubbles located on the first non-foaming layer side among the bubbles in the foaming layer, and selecting the bubbles in the direction perpendicular to the thickness direction. Is determined by drawing a tangent line on the side of the first non-foaming layer of, and using the tangent line as an interface. Next, the line 2 2 parallel to the interface 21 is located at a position from the interface 21 in the thickness direction of the foam layer to a depth of 15% with respect to the thickness of the foam layer. Subtract 2. Further, the major axis and minor axis of the bubbles contained in the region from the interface 21 to the line 22 are measured. Here, the major axis and the minor axis of the cell are the cell diameter in the direction perpendicular to the thickness direction of the foam layer. 〇2020/174792 22 卩(:171?2019/046369
最大値を長径、 発泡層の厚さ方向の気泡径の最大値を短径とする。 続いて、 気泡の長径/短径で表される比を算出し、 前記比が 4. 0以上の気泡を気泡 (八) とする。 気泡 ( ) の数、 及び前記領域に含まれる全気泡数を数える 。 気泡数は、 発泡層の厚みに対して短径が 1 %以上の空洞を気泡とみなし、 発泡層の厚さ方向に、 発泡層の厚みに対して 1 5%となる深さまでの領域に 気泡の少なくとも一部が含まれる気泡を前記領域内の気泡とみなして数える 。 前記領域に含まれる全気泡数に対する気泡 ( ) の割合を算出する。 The maximum value is the major axis, and the maximum value of the bubble diameter in the thickness direction of the foam layer is the minor axis. Then, the ratio of the long diameter/short diameter of the bubbles is calculated, and the bubbles having the ratio of 4.0 or more are defined as bubbles (8). Count the number of bubbles () and the total number of bubbles contained in the region. Regarding the number of bubbles, cavities with a minor axis of 1% or more with respect to the thickness of the foam layer are regarded as bubbles, and bubbles are formed in the thickness direction of the foam layer up to a depth of 15% with respect to the thickness of the foam layer. The bubbles including at least a part of the above are counted as bubbles in the region. The ratio of bubbles () to the total number of bubbles contained in the region is calculated.
気泡 (巳) の割合も、 気泡 (八) と同様の方法で算出することができる。 The proportion of bubbles (Mitsumi) can also be calculated in the same manner as for bubbles (8).
[0070] 積層発泡シート 1の厚み丁は、 用途等を勘案して適宜決定され、 例えば、 [0070] The thickness of the laminated foam sheet 1 is appropriately determined in consideration of the application and the like.
〇. 5~4.
Figure imgf000024_0002
が好ましく、 ·! . 0~3.
Figure imgf000024_0001
より好ましい。 積層 発泡シートの厚みが上記下限値以上であれば、 十分な強度を得られやすい。 上記上限値以下であれば、 成形加工が容易である。
〇-5~4.
Figure imgf000024_0002
Is preferred, and! .0-3.
Figure imgf000024_0001
More preferable. When the thickness of the laminated foam sheet is at least the above lower limit, sufficient strength can be easily obtained. If it is at most the above upper limit, the molding process will be easy.
[0071] 積層発泡シートの坪量は、
Figure imgf000024_0003
が好ましく、 200〜 5
[0071] The basis weight of the laminated foam sheet is
Figure imgf000024_0003
Is preferred, 200 to 5
509/012がより好ましく、 300〜 5009/012がさらに好ましい。 積 層発泡シートの坪量が上記数値範囲内であると、 取扱い性に優れる。 More preferably 509/012, more preferably 300 to 5,009 / 012. When the basis weight of the laminated foam sheet is within the above numerical range, the handleability is excellent.
なお坪量は、 以下の方法で測定することができる。 The basis weight can be measured by the following method.
積層発泡シートの幅方向の両端 2
Figure imgf000024_0004
を除き、 幅方向に等間隔に、 1 0
Both ends of the laminated foam sheet in the width direction 2
Figure imgf000024_0004
At equal intervals in the width direction,
〇 1 0〇 の切片 1 0個を切り出し、 各切片の質量 (9) を 0. 001 9単位まで測定する。 各切片の質量 (9) の平均値を 1 2当たりの質量に換 算した値を、 積層発泡シートの坪量
Figure imgf000024_0005
とする。
Cut out 10 pieces of 〇 100 pieces and measure the mass (9) of each piece up to 0.001 9 units. The mass value obtained by conversion calculation of 1 2 per an average value of the mass (9) in each section, the basis weight of the laminated foam sheet
Figure imgf000024_0005
And
[0072] 積層発泡シートの密度は、
Figure imgf000024_0006
1 50
Figure imgf000024_0007
がさらに好 ましい。 積層発泡シートの密度が上記数値範囲内であると、 取扱い性に優れ る。
[0072] The density of the laminated foam sheet is
Figure imgf000024_0006
1 50
Figure imgf000024_0007
Is more preferable. When the density of the laminated foam sheet is within the above numerical range, the handleability is excellent.
[0073] <積層発泡シートの製造方法> <Method for producing laminated foam sheet>
積層発泡シート 1の製造方法の一例について、 説明する。 An example of a method for manufacturing the laminated foam sheet 1 will be described.
積層発泡シート 1の製造方法は、 例えば、 発泡シートを得る発泡シート形 成工程と、 発泡シートの一方の面に第一の非発泡層を構成する樹脂を押出ラ 〇 2020/174792 23 卩(:171?2019/046369 The method for manufacturing the laminated foam sheet 1 includes, for example, a foam sheet forming step of obtaining a foam sheet and a resin forming the first non-foam layer on one surface of the foam sheet by extrusion extrusion. 〇 2020/174792 23 卩 (:171?2019/046369
ミネートにより融着する第一の積層工程と、 発泡シートの他方の面に第二の 非発泡層を構成する樹脂を押出ラミネートにより融着する第二の積層工程と 、 を備えることが好ましい。 It is preferable to include a first laminating step of fusing with a minate, and a second laminating step of fusing the resin forming the second non-foamed layer to the other surface of the foamed sheet by extrusion laminating.
[0074] 発泡シート形成工程は、 前述の発泡シートの製造方法と同様である。 The foamed sheet forming step is the same as the method for manufacturing the foamed sheet described above.
[0075] 第一の積層工程は、 発泡シートの一方の面に第一の非発泡層を構成する樹 脂を押出ラミネートにより融着する工程である。 [0075] The first laminating step is a step of fusion-bonding the resin forming the first non-foamed layer to one surface of the foamed sheet by extrusion lamination.
以下、 第 _の積層工程、 及び第二の積層工程の _例について、 図 4を用い て説明する。 DETAILED DESCRIPTION _ example of the _ laminating step, and a second lamination step will be described with reference to FIG.
[0076] 発泡シートロール 1 0 2から発泡シート 1 0 1 を繰り出し、 発泡シート 1 [0076] The foamed sheet 1 0 1 is fed from the foamed sheet roll 10 2 to form the foamed sheet 1
0 1の一方の面に第一押出機 1 1 1で溶融された樹脂 1 0 3をダイ 1 1 0よ り供給する。 その後、 一対の冷却口ール 1 1 2で圧着して融着する。 The resin 1 0 3 melted by the first extruder 1 1 1 is supplied to one surface of 0 1 from a die 1 1 0. After that, they are pressure-bonded and fused by a pair of cooling ports 1 1 2.
こうして、 発泡層 1 0と、 第一の非発泡層 2 0とを備える 2層からなる積 層発泡シート 1 0 4となる。 積層工程における加熱温度は、 各層の材質等に 応じて、 適宜決定される。 In this way, a laminated foam sheet 10 4 including two layers including the foam layer 10 and the first non-foam layer 20 is obtained. The heating temperature in the laminating step is appropriately determined according to the material of each layer and the like.
[0077] 第一の積層工程において、 発泡シート 1 0 1の一方の面に、 第一の非発泡 層 2 0を構成する樹脂を融着させる際の温度は、 2 0 0〜 2 4 0 °〇が好まし く、 2 1 〇〜 2 4 0 °〇がより好ましい。 融着させる際の温度が上記範囲内で あると、 得られる積層発泡シートの耐摩耗性を向上しやすくなる。 [0077] In the first laminating step, the temperature at which the resin constituting the first non-foamed layer 20 is fused to one surface of the foamed sheet 101 is 200 to 240° O is preferable, and 210 to 240 ° is more preferable. When the temperature at the time of fusing is within the above range, it becomes easy to improve the wear resistance of the obtained laminated foam sheet.
[0078] 第二の積層工程は、 発泡シートの他方の面に第二の非発泡層を構成する樹 脂を押出ラミネートにより融着する工程である。 [0078] The second laminating step is a step of fusion-bonding the resin constituting the second non-foamed layer to the other surface of the foamed sheet by extrusion laminating.
_の積層工程で得られた 2層からなる積層発泡シート 1 0 4を、 口ール 1 1 3にかけ回し、 発泡シートの他方の面に第二押出機 1 1 5で溶融された 樹脂 1 0 5をダイ 1 1 4より供給する。 その後、 一対の冷却口ール 1 1 6で 圧着されて融着される。 The laminated foamed sheet 10 2 consisting of two layers obtained in the _th laminating step was spun around the mouth 1 13 and the resin 1 melted by the second extruder 1 15 was applied to the other surface of the foamed sheet. 0 5 is supplied from die 1 1 4. After that, they are pressure-bonded and fused by a pair of cooling ports 1116.
こうして、 発泡層 1 〇と、 第一の非発泡層 2 0と、 第二の非発泡層 3 0と を備える 3層からなる積層発泡シート 1 となる。 In this way, the laminated foam sheet 1 is formed of three layers including the foam layer 10, the first non-foam layer 20 and the second non-foam layer 30.
[0079] 第二の積層工程において、 発泡シート 1 0 1の他方の面に、 第二の非発泡 層 3 0を構成する樹脂を融着させる際の温度は、 2 0 0〜 2 4 0 °〇が好まし 〇 2020/174792 24 卩(:171?2019/046369 [0079] In the second laminating step, the temperature at which the resin forming the second non-foaming layer 30 is fused to the other surface of the foamed sheet 101 is 200 to 240° ◯ is preferred 〇 2020/174792 24 卩 (:171?2019/046369
く、 2 1 〇〜 2 4 0 °〇がより好ましい。 融着させる際の温度が上記範囲内で あると、 得られる積層発泡シートの耐摩耗性を向上しやすくなる。 More preferably, 210 to 240 ° is more preferable. When the temperature at the time of fusing is within the above range, it becomes easy to improve the wear resistance of the obtained laminated foam sheet.
[0080] なお、 前記 2つの積層工程は、 第二の積層工程、 第一の積層工程の順に行 つてもよいまた、 本発明の積層発泡シートは上記製造方法 (押出ラミネート 法) に限定されず、 発泡層と非発泡層とを共押出しや熱ラミネート法で積層 してもよい。 The two laminating steps may be performed in the order of the second laminating step and the first laminating step. Further, the laminated foam sheet of the present invention is not limited to the above production method (extrusion laminating method). The foamed layer and the non-foamed layer may be laminated by coextrusion or a heat laminating method.
[0081 ] 《成形体》 [0081] <<Molded body>>
本発明の成形体は、 積層発泡シートを成形することにより得られる。 積層発泡シートを成形する方法としては、 例えば、 積層発泡シートを任意 の温度に加熱して二次発泡させ、 次いで、 積層発泡シートを任意の形状の雄 型と雌型とで挟み込んで成形する方法が挙げられる。 The molded product of the present invention is obtained by molding a laminated foam sheet. As a method for molding the laminated foam sheet, for example, the laminated foam sheet is heated to an arbitrary temperature for secondary foaming, and then the laminated foam sheet is sandwiched between a male mold and a female mold of an arbitrary shape and molded. Is mentioned.
第一の非発泡層が鉛直方向下方に向く面になるように成形することが好ま しい。 It is preferable that the first non-foamed layer is formed so that the surface thereof faces downward in the vertical direction.
[0082] 本発明の成形体は、 車両のフロアマッ ト用、 ラゲッジトレイ用、 車両のア ンダーカバー用として使用できる。 The molded article of the present invention can be used for a floor mat of a vehicle, a luggage tray, and an under cover of a vehicle.
車両のフロアマッ トとは、 車両の床面に着脱可能に配置されるものであり 、 搭乗者が車外から持ち込む土砂等による汚れを補足し、 車室外で洗浄して 繰り返し使用されるものである。 車両のフロアマッ トにおいては、 第一の非 発泡層が前記フロアマッ ト使用時における鉛直方法下方に向く面になるよう に配置することが好ましい。 これにより、 車両のフロアマッ トが所定の位置 からずれるのを防ぐことができる。 The floor mat of a vehicle is removably placed on the floor of the vehicle. It is used to replenish the dirt caused by dirt and sand brought in by passengers from the outside of the vehicle, and wash it outside the passenger compartment for repeated use. In the floor mat of the vehicle, it is preferable that the first non-foamed layer is arranged so that the first non-foamed layer faces downward in the vertical direction when the floor mat is used. As a result, it is possible to prevent the floor mat of the vehicle from being displaced from the predetermined position.
図 5は、 本発明の車両のフロアマッ トの一例を示す模式図である。 図 5の 車両フロアマッ ト 2は、 車両前方の座席の足元に配置できるように切り欠き 部を有し、 滑り止めのために表面に凹凸構造を有する。 切り欠き部は車両の 形状に合わせて形成すればよい。 凹凸構造はどのような形状でもよく、 あつ てもなくてもよい。 FIG. 5 is a schematic diagram showing an example of the floor mat of the vehicle of the present invention. The vehicle floor mat 2 in Fig. 5 has notches so that it can be placed at the foot of the seat in front of the vehicle, and has an uneven structure on the surface to prevent slipping. The notch may be formed according to the shape of the vehicle. The concavo-convex structure may have any shape and may or may not be rough.
車両のアンダーカバーとは、 車体下部を覆い保護するものである。 車両の アンダーカバーにおいては、 第一の非発泡層が前記アンダーカ/ 一使用時に 〇 2020/174792 25 卩(:171?2019/046369 The undercover of a vehicle covers and protects the lower part of the vehicle body. In a vehicle undercover, the first non-foaming layer is 〇 2020/174792 25 卩 (:171?2019/046369
おける鉛直方向下方に向く面になるように配置することが好ましい。 これに より、 車両走行中に地面から車両に跳ね上がる土砂等から車両を保護するこ とができる。 It is preferable to arrange it so that the surface thereof faces downward in the vertical direction. As a result, the vehicle can be protected from dirt and the like that jumps from the ground to the vehicle while the vehicle is traveling.
図 6は、 本発明の車両のアンダーカバーの一例を示す模式図である。 図 6 の車両のアンダーカバーは、 凹凸構造を有することで、 空気抵抗を小さく し て燃費をよくすることができる。 凹凸構造はどのような形状でもよく、 あっ てもなくてもよい。 FIG. 6 is a schematic diagram showing an example of the undercover of the vehicle of the present invention. The undercover of the vehicle shown in Fig. 6 has a concavo-convex structure to reduce air resistance and improve fuel efficiency. The concavo-convex structure may have any shape and may or may not be present.
車両のラゲッジトレイとは、 車両のトランクルーム等の底部に設置する物 入用のトレイである。 車両のラゲッジトレイにおいては、 第一の非発泡層が 前記車両のラゲッジトレイ使用時における鉛直方向下方に向く面になるよう に配置することが好ましい。 これにより、 車両のラゲッジトレイが所定の位 置からずれるのを防ぐことができる。 The luggage tray of a vehicle is a tray for loading items that is installed at the bottom of the vehicle's luggage compartment. In the luggage tray of the vehicle, it is preferable to arrange the first non-foamed layer so that the first non-foamed layer is a surface that faces downward in the vertical direction when the luggage tray of the vehicle is used. As a result, it is possible to prevent the luggage tray of the vehicle from being displaced in a predetermined position.
図 7は、 本発明の車両のラゲッジトレイの一例を示す模式図である。 図 7 の車両のラゲッジトレイ 4は、 平面視で長方形であるが、 どのような形状で あってもよい。 FIG. 7 is a schematic view showing an example of the luggage tray of the vehicle of the present invention. The luggage tray 4 of the vehicle in FIG. 7 is rectangular in plan view, but may have any shape.
図 8は、 本発明の車両のラゲッジトレイの他の例を示す模式図である。 図 8の車両のラゲッジトレイ 5は、 トランク内に配置できるように切り欠き部 を有し、 滑り止めのために表面に凹凸構造を有する。 切り欠き部は車両の形 状に合わせて形成すればよい。 凹凸構造はどのような形状でもよく、 あって もなくてもよい。 FIG. 8 is a schematic view showing another example of the luggage tray of the vehicle of the present invention. The luggage tray 5 of the vehicle shown in FIG. 8 has a notch so that it can be placed in the trunk, and has an uneven structure on the surface to prevent slipping. The notch may be formed according to the shape of the vehicle. The concavo-convex structure may have any shape, and may or may not have one.
実施例 Example
[0083] 以下、 実施例および比較例により本発明をさらに具体的に説明するが、 本 発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[0084] [実施例 1 ] [Example 1]
ポリプロピレン系樹脂として、 3 〇 r & a \ \ 3社製の
Figure imgf000027_0001
As polypropylene-based resin, made of 3 〇 r & a \ \ 3 companies
Figure imgf000027_0001
3」 (メルトテンション: 2 3〇 1\1、 メルトフローレート : ·! . 7 9 / 1 0 分) を 4 0質量部、 ブロックポリプロピレンとして日本ポリプロ社製の商品 名 「巳〇6〇」 を 5 0質量部、 ポリオレフィン系の熱可塑性エラストマー ( 20/174792 26 卩(:171?2019/046369 3” (melt tension: 2 3 0 1\1, melt flow rate: ··· 7 9/10 min) 40 parts by mass, as the block polypropylene, the product name “Mix 0 60” manufactured by Nippon Polypro Co., Ltd. 50 parts by mass, polyolefin-based thermoplastic elastomer ( 20/174792 26 卩 (: 171?2019/046369
丁 〇) としてサンアロマー社製の商品名 「〇一 1 0 0 」 を 1 0質量部の 割合で混合してポリマー成分を調製した。 前記ポリマー成分 1 〇〇質量部に 対する割合が〇. 2質量部となる重曹ークエン酸系発泡剤 (大日精化社製マ スターバッチ、 商品名 「ファインセルマスター 〇4 1 0 」 ) を配合して 混合物を得た。 口径が 9 0 の第 1押し出し機の先端に、 口径 1 1 5 の第 2押し出し機を接続したタンデム押し出し機を準備した。 前記混合物を 、 第 1押し出し機を供給し、 約 2 0 0〜 2 1 0 °◦にて溶融混練した。 続いて 、 第 1押し出し機内に発泡剤としてブタン (ノルマルブタン:イソブタン = 6 5 : 3 5 (質量比) ) をポリマー成分 1 0 0質量部に対して 1 . 0質量部 となるように圧入してさらに溶融混練した。 その後、 約 1 7 5 °〇まで冷却し 、 第 2押し出し機の先端に接続されている環状の環状ダイに供給して、 1 5 〇 !< 9 /時間の押出量で円筒状に押出発泡させた。 As a sample, a polymer component was prepared by mixing the product name "○1100" manufactured by Sun Allomer Co., Ltd. at a ratio of 10 parts by mass. A baking soda-citric acid-based foaming agent (Masterbatch manufactured by Dainichiseika Co., Ltd., trade name "FINECELL MASTER 〇410") in which the ratio to the polymer component of 100 mass parts is 0.2 mass part was blended. To give a mixture. A tandem extruder was prepared in which a second extruder with a diameter of 115 was connected to the tip of a first extruder with a diameter of 90. The mixture was melt-kneaded at a temperature of about 200 to 210 ° by feeding a first extruder. Then, butane (normal butane:isobutane = 65:35 (mass ratio)) as a foaming agent was press-fitted into the first extruder at a ratio of 1.0 parts by mass to 100 parts by mass of the polymer component. Melted and kneaded. After that, it is cooled to about 1750 ° and supplied to an annular die that is connected to the tip of the second extruder and extruded into a cylindrical shape at an extrusion rate of 1500!<9/hour. It was
得られた円筒状発泡体をその内面にエアーを吹き付けて冷却した。 その後 、 冷却マンドレルプラグ上を沿わせて内面を固化させるとともに、 そのブラ グ上で外面にもエアーを吹き付けて冷却固化させた。 続いて、 円筒状発泡体 をその押出方向に切断して切り開き、 連続シートとして口ール状に巻き取り 、 厚み 2 . 〇 〇!、
Figure imgf000028_0001
の発泡シートを得た。
The obtained cylindrical foam was cooled by blowing air on its inner surface. After that, the inner surface was solidified along the cooling mandrel plug, and air was also blown on the outer surface of the plug to cool and solidify. Then, the cylindrical foam was cut in the direction of extrusion and cut open, wound into a continuous sheet as a continuous sheet, with a thickness of 2.
Figure imgf000028_0001
To obtain a foam sheet.
非架橋型オレフィン系エラストマー樹脂 (」 3 社製、 商品名 「3 4 0 0 巳」 、 ゲル分率〇. 3質量%) 6 0質量部、 及びポリプロピレン系樹脂 (サ ンアロマー社製、 商品名 「0 1 0 0 」 ) 4 0質量部を混合した樹脂混合物 を、 第 3押し出し機と第 4押し出し機に供給した。 第 3押し出し機の先端に 取り付けた丁ダイからシートを押出し、 押し出した直後の溶融状態のシート を発泡シートの一方の面に積層し、 融着させた。 続いて、 第 4押し出し機の 先端に取り付けた丁ダイからシートを押出し、 押し出した直後の溶融状態の シートを発泡シートの他方の面に積層し、 融着させた。 これにより、 両面に 非発泡層を有する積層発泡シートを得た。 なお、 第 3押し出し機と第 4押し 出し機の押出条件は同一とした。 丁ダイはいずれも、 その樹脂流路における 幅方向の両端部の温度が 2 6 0 °〇となるように、 両端部以外の部分の温度が 〇 2020/174792 27 卩(:171?2019/046369 Non-crosslinking type olefin elastomer resin () manufactured by 3 companies, trade name “340M”, gel fraction 0.3 mass% 60 parts by mass, and polypropylene resin (manufactured by San Allomer Co., trade name “ The resin mixture obtained by mixing 40 parts by mass was fed to the third extruder and the fourth extruder. The sheet was extruded from a die attached to the tip of the third extruder, and a sheet in a molten state immediately after extrusion was laminated on one surface of the foamed sheet and fused. Subsequently, the sheet was extruded from a die attached to the tip of the fourth extruder, and the sheet in a molten state immediately after extrusion was laminated on the other surface of the foamed sheet and fused. Thus, a laminated foam sheet having non-foamed layers on both sides was obtained. The extrusion conditions of the third extruder and the fourth extruder were the same. In all the die, the temperature of the parts other than both ends is set so that the temperature of both ends in the width direction of the resin flow path becomes 260 ° 〇. 〇 2020/174792 27 卩 (:171?2019/046369
280°〇となるように調整した。 融着させる際の溶融状態のシートの温度は 220°◦であった。 It was adjusted to be 280 ° 〇. The temperature of the sheet in the molten state at the time of fusing was 220°°.
[0085] [実施例 2 ] [0085] [Example 2]
非架橋型オレフィン系エラストマー樹脂 (」 3 社製、 商品名 「3400 巳」 、 ゲル分率〇. 3質量%) 80質量部、 及びポリプロピレン系樹脂 (サ ンアロマー社製、 商品名 「01 00 」 ) 20質量部を混合した樹脂混合物 を使用したこと以外は、 実施例 1 と同様にして積層発泡シートを得た。 Non-cross-linking olefin elastomer resin ("3 companies, trade name "3400 跳", gel fraction 0.3 mass%) 80 parts by mass, and polypropylene resin (San Allomer Co., trade name "01 00") A laminated foam sheet was obtained in the same manner as in Example 1 except that a resin mixture prepared by mixing 20 parts by mass was used.
[0086] [実施例 3] [0086] [Example 3]
非架橋型オレフィン系エラストマー樹脂 (」 3 社製、 商品名 「3400 巳」 、 ゲル分率〇. 3質量%) 20質量部、 及びポリプロピレン系樹脂 (サ ンアロマー社製、 商品名 「01 00 」 ) 80質量部を混合した樹脂混合物 を使用したこと、 及び融着させる際の溶融状態のシートの温度を 230°〇に 変更したこと以外は、 実施例 1 と同様にして積層発泡シートを得た。 Non-crosslinking olefin elastomer resin (" 3 companies, trade name "3400 Mitsumi", gel fraction 0.3 mass%) 20 parts by mass, and polypropylene resin (San Allomer Co., trade name "01 00") A laminated foam sheet was obtained in the same manner as in Example 1 except that a resin mixture obtained by mixing 80 parts by mass was used, and the temperature of the sheet in a molten state at the time of fusing was changed to 230 ° .
[0087] [実施例 4] [0087] [Example 4]
非架橋型オレフィン系エラストマー樹脂 (」 3 社製、 商品名 「3700 巳」 、 ゲル分率〇. 2質量%) 70質量部、 及びポリプロピレン系樹脂 (サ ンアロマー社製、 商品名 「01 00 」 ) 30質量部を混合した樹脂混合物 を使用したこと、 及び融着させる際の溶融状態のシートの温度を 225°〇に 変更したこと以外は、 実施例 1 と同様にして積層発泡シートを得た。 Non-crosslinkable olefin elastomer resin (", manufactured by 3 companies, trade name "3700", gel fraction: 0.2 mass%) 70 parts by mass, and polypropylene resin (manufactured by San Allomer Co., trade name "01 00") A laminated foam sheet was obtained in the same manner as in Example 1 except that a resin mixture obtained by mixing 30 parts by mass was used, and the temperature of the sheet in a molten state at the time of fusing was changed to 225 ° .
[0088] [実施例 5 ] [0088] [Example 5]
非架橋型オレフィン系エラストマー樹脂 (」 3 社製、 商品名 「3400 巳」 、 ゲル分率〇. 3質量%) 70質量部、 及びポリプロピレン系樹脂 (サ ンアロマー社製、 商品名 「0300 」 ) 30質量部を混合した樹脂混合物 を使用したこと、 及び融着させる際の溶融状態のシートの温度を 2 1 5°〇に 変更したこと以外は、 実施例 1 と同様にして積層発泡シートを得た。 Non-cross-linking olefin elastomer resin (", manufactured by 3 companies, trade name "3400", gel fraction: 0.3% by mass) 70 parts by mass, and polypropylene resin (manufactured by San Allomer Co., trade name "0300") 30 A laminated foam sheet was obtained in the same manner as in Example 1 except that a resin mixture in which parts by weight were mixed was used, and the temperature of the sheet in the molten state at the time of fusing was changed to 2 15° 〇. ..
[0089] [実施例 6 ] [0089] [Example 6]
非架橋型オレフィン系エラストマー樹脂 (」 3 社製、 商品名 「3400 巳」 、 ゲル分率〇. 3質量%) 60質量部、 及びポリプロピレン系樹脂 (ダ 〇 2020/174792 28 卩(:171?2019/046369 Non-cross-linking olefin elastomer resin () manufactured by 3 companies, trade name "3400", gel fraction 0.3 mass% 60 parts by mass, polypropylene resin (d 〇2020/174792 28 卩(:171?2019/046369
ウ ケミカル社製、 商品名 「エンゲージ乂1_丁 8677」 ) 40質量部を混 合した樹脂混合物を使用したこと、 及び融着させる際の溶融状態のシートの 温度を 240°〇に変更したこと以外は、 実施例 1 と同様にして積層発泡シー 卜を得た。 (Chemicals, trade name "Engage 1_Choen 8677") A resin mixture containing 40 parts by mass was used, and the temperature of the molten sheet when fusing was changed to 240 ° 〇. A laminated foam sheet was obtained in the same manner as in Example 1 except for the above.
[0090] [実施例 7 ] [0090] [Example 7]
非架橋型オレフィン系エラストマー樹脂 (」 3 社製、 商品名 「3400 巳」 、 ゲル分率〇. 3質量%) 60質量部、 及びポリスチレン系樹脂 (アロ ン化成株式会社製、 商品名 「 [¾_885(3」 ) 40質量部を混合した樹脂 混合物を使用したこと、 及び融着させる際の溶融状態のシートの温度を 23 5°〇に変更したこと以外は、 実施例 1 と同様にして積層発泡シートを得た。 Non-crosslinkable olefin elastomer resin (", manufactured by 3 companies, trade name "3400", gel fraction 0.3 mass%) 60 parts by mass, and polystyrene resin (Aron Kasei Co., trade name "[¾_885 (3)) Laminated foaming in the same manner as in Example 1 except that a resin mixture in which 40 parts by mass was mixed was used, and the temperature of the sheet in the molten state at the time of fusing was changed to 235 ° Got the sheet.
[0091] [実施例 8] [0091] [Example 8]
発泡剤の量を 1. 5質量部としたこと以外は、 実施例 1 と同様にして厚み 3. 0111111、
Figure imgf000030_0001
の発泡シートを得た。
A thickness of 3.0111111, as in Example 1, except that the amount of the foaming agent was 1.5 parts by mass.
Figure imgf000030_0001
To obtain a foam sheet.
得られた発泡シートを用いて、 非架橋型オレフィン系エラストマー樹脂 ( 社製、 商品名 「3400巳」 、 ゲル分率〇. 3質量%) 50質量部、 及びポリプロピレン系樹脂 (サンアロマー社製、 商品名 「01 00 」 ) 5 〇質量部を混合した樹脂混合物を使用したこと、 及び融着させる際の溶融状 態のシートの温度を 2 1 0°〇に変更したこと以外は、 実施例 1 と同様にして 積層発泡シートを得た。 Using the obtained foamed sheet, 50 parts by mass of a non-crosslinked olefinic elastomer resin (manufactured by the company, trade name "3400", gel fraction 0.3% by mass), and polypropylene resin (manufactured by San Allomer Co., Ltd. Name “01 00 ”) Except that a resin mixture in which 50 parts by mass was mixed was used, and the temperature of the sheet in the molten state at the time of fusing was changed to 210° 〇 A laminated foam sheet was obtained in the same manner.
[0092] [実施例 9 ] [0092] [Example 9]
発泡剤の量を〇. 3質量部としたこと以外は、 実施例 1 と同様にして厚み 〇.
Figure imgf000030_0002
の発泡シートを得た。
The thickness was the same as in Example 1 except that the amount of the foaming agent was 0.3 part by mass.
Figure imgf000030_0002
To obtain a foam sheet.
得られた発泡シートを用いたこと以外は、 実施例 1 と同様にして積層発泡 シートを得た。 A laminated foam sheet was obtained in the same manner as in Example 1 except that the obtained foam sheet was used.
[0093] [実施例 1 0] [Example 10]
発泡剤の量を 1. 5質量部としたこと以外は、 実施例 1 と同様にして厚み 2. 0111111、 密度 270 の発泡シートを得た。 A foam sheet having a thickness of 2.0111111 and a density of 270 was obtained in the same manner as in Example 1 except that the amount of the foaming agent was 1.5 parts by mass.
得られた発泡シートを用いて、 非架橋型オレフィン系エラストマー樹脂 ( 〇 2020/174792 29 卩(:171?2019/046369 Using the resulting foamed sheet, a non-crosslinked olefin elastomer resin ( 〇2020/174792 29 卩(:171?2019/046369
社製、 商品名 「3 4 0 0巳」 、 ゲル分率〇. 3質量%) 7 0質量部、 及びポリプロピレン系樹脂 (サンアロマー社製、 商品名 「0 1 0 0 」 ) 3 〇質量部を混合した樹脂混合物を使用したこと、 及び融着させる際の溶融状 態のシートの温度を 2 1 5 °〇に変更したこと以外は、 実施例 1 と同様にして 積層発泡シートを得た。 Manufactured by the company, trade name "340,000", gel fraction 0.3 mass%) 70 parts by mass, and polypropylene resin (manufactured by Sun Allomer Co., trade name "0100") 30 parts by mass. A laminated foam sheet was obtained in the same manner as in Example 1 except that the mixed resin mixture was used, and the temperature of the sheet in the molten state at the time of fusion bonding was changed to 2 15 °C.
[0094] [実施例 1 1 ] [Example 1 1]
非架橋型オレフィン系エラストマー樹脂 (」 3 社製、 商品名 「3 4 0 0 巳」 、 ゲル分率〇. 3質量%) 7 0質量部、 及びポリプロピレン系樹脂 (サ ンアロマー社製、 商品名 「0 1 0 0 」 ) 3 0質量部を混合した樹脂混合物 を使用したこと、 融着させる際の溶融状態のシートの温度を 2 3 0 °〇に変更 したこと、 及び第一の非発泡層の厚みを〇. 3
Figure imgf000031_0001
にしたこと以外は、 実 施例 1 と同様にして積層発泡シートを得た。
Non-crosslinking olefin elastomer resin (" 3 companies, trade name "340 MIN", gel fraction 0.3 mass%) 70 parts by mass, and polypropylene resin (San Allomer Co., trade name " 0 1 0 0 ”) 30 parts by mass of a resin mixture was used, the temperature of the sheet in the molten state at the time of fusing was changed to 230 ° 〇, and the first non-foaming layer Thickness 0.3
Figure imgf000031_0001
A laminated foam sheet was obtained in the same manner as in Example 1 except that the above was adopted.
[0095] [実施例 1 2 ] [0095] [Example 12]
発泡剤の量を〇. 8質量部としたこと以外は、 実施例 1 と同様にして厚み 1 .
Figure imgf000031_0002
の発泡シートを得た。
A thickness of 1% was obtained in the same manner as in Example 1 except that the amount of the foaming agent was 0.8 parts by mass.
Figure imgf000031_0002
To obtain a foam sheet.
得られた発泡シートを用いて、 非架橋型オレフィン系エラストマー樹脂 ( 社製、 商品名 「3 4 0 0巳」 、 ゲル分率〇. 3質量%) 5 0質量部、 及びポリプロピレン系樹脂 (サンアロマー社製、 商品名 「0 1 0 0 」 ) 5 〇質量部を混合した樹脂混合物を使用したこと、 及び融着させる際の溶融状 態のシートの温度を 2 3 0 °〇に変更したこと、 第二押出機を稼動させなかつ たこと以外は、 実施例 1 と同様にして積層発泡シートを得た。 Using the obtained foamed sheet, 50 parts by mass of a non-crosslinked olefin elastomer resin (manufactured by the company, trade name "340M", gel fraction: 0.3% by mass), and a polypropylene resin (Sun Allomer Manufactured by the company, trade name "0100") 5 0 parts by weight of a resin mixture was used, and the temperature of the sheet in the molten state at the time of fusing was changed to 230 ° 〇, A laminated foam sheet was obtained in the same manner as in Example 1 except that the second extruder was not operated.
[0096] [実施例 1 3 ] [0096] [Example 13]
ポリエステル系樹脂として、 ポリエチレンテレフタレート樹脂 ( 巳丁、 三井化学社製 Polyethylene terephthalate resin as a polyester resin (Mita, manufactured by Mitsui Chemicals, Inc.
商品名 「3八 1 3 5」 、 ガラス転移温度丁 9 : 7 9 °〇、 融点: 2 4 7 . 1 °〇、 丨 V値: 0 . 8 6) 1 0 0質量部、 タルク〇. 7 2質量部、 及び、 無水 ピロメリッ ト酸〇. 2質量部を含む熱可塑性ポリエステル系樹脂組成物を口 径が 6 5〇1〇1で且つ1_ / 0比が3 5の単軸押出機に供給して 2 9 0 °〇にて溶 〇 2020/174792 30 卩(:171?2019/046369 Product name "3/8 1 3 5", glass transition temperature 9: 7 9 ° 〇, melting point: 2 4 7.1 ° 〇, V value: 0.86) 100 parts by mass, talc 0. 7 A thermoplastic polyester resin composition containing 2 parts by mass and 0.2 parts by mass of pyromellitic dianhydride is supplied to a single-screw extruder with a diameter of 6500 and a 1/0 ratio of 35. Melt at 290 ° 〇 2020/174792 30 卩(:171?2019/046369
融混練した。 続いて、 単軸押出機内に発泡剤としてブタン (ノルマルブタン :イソブタン = 6 5 : 3 5 (質量比) ) をポリマー成分 1 0 0質量部に対し て 1 . 〇質量部となるように圧入してさらに溶融混練した。 その後、 約 2 2 0 °〇まで冷却し、 単軸押出機の先端に接続されているサーキュラーダイから 円筒状に押出発泡させて円筒状体を製造し、 この円筒状体を徐々に拡径した 上で冷却マンドレルに供給して円筒状体をその表面温度が 2 5 °〇となるよう に冷却した後、 円筒状体をその押出方向に連続的に内外周面間に亙って切断 し切り開いて展開することによって、 厚み 2 . 〇 〇!、
Figure imgf000032_0001
Melted and kneaded. Then, butane (normal butane:isobutane = 65:35 (mass ratio)) as a foaming agent was press-fitted into the single-screw extruder in an amount of 1.0 part by mass with respect to 100 parts by mass of the polymer component. Melted and kneaded. After that, it was cooled to about 220 ° 〇, and a cylindrical die was extruded and foamed into a cylindrical shape from a circular die connected to the tip of a single-screw extruder to produce a cylindrical body, and this cylindrical body was gradually expanded in diameter. After supplying it to the cooling mandrel above and cooling the cylindrical body so that the surface temperature becomes 25 ° 〇, the cylindrical body is continuously cut in the extrusion direction between the inner and outer peripheral surfaces and cut open. By deploying it, the thickness is 2.
Figure imgf000032_0001
の発泡シートを得た。 To obtain a foam sheet.
得られた発泡シートを用いて、 融着させる際の溶融状態のシートの温度を 2 3 5 °〇に変更したこと以外は、 実施例 1 と同様にして積層発泡シートを得 た。 Using the obtained foamed sheet, a laminated foamed sheet was obtained in the same manner as in Example 1 except that the temperature of the sheet in a molten state at the time of fusing was changed to 235 ° .
[0097] [実施例 1 4 ] [Example 14]
押出量を 5 0
Figure imgf000032_0002
9 /時間に変更したこと以外は、 実施例 1 と同様にして厚 み 2 . 0 111 111、
Figure imgf000032_0003
の発泡シートを得た。
Extrusion rate is 50
Figure imgf000032_0002
Same as Example 1 except that the thickness is 2.0 111 111,
Figure imgf000032_0003
To obtain a foam sheet.
得られた発泡シートを用いて、 融着させる際の溶融状態のシートの温度を 2 3 0 °〇に変更したこと以外は、 実施例 1 と同様にして積層発泡シートを得 た。 Using the obtained foamed sheet, a laminated foamed sheet was obtained in the same manner as in Example 1 except that the temperature of the sheet in a molten state at the time of fusion bonding was changed to 230 ° .
[0098] [比較例 1 ] [0098] [Comparative Example 1]
第一の非発泡層を構成する樹脂として、 非架橋型オレフィン系エラストマ
Figure imgf000032_0004
社製、 商品名 「3 4 0 0巳」 、 ゲル分率〇. 3質量%) から なる樹脂を使用したこと以外は、 実施例 1 と同様にして積層発泡シートを得 た。
As the resin that constitutes the first non-foamed layer, non-crosslinked olefin elastomer
Figure imgf000032_0004
A laminated foam sheet was obtained in the same manner as in Example 1 except that a resin having a trade name of “340,000” and a gel fraction of 0.3% by mass) was used.
[0099] [比較例 2 ] [0099] [Comparative Example 2]
発泡剤を 1 . 1質量部となるように圧入したこと、 その後、 約 1 8 5 °〇ま での冷却としたこと以外は、 実施例 1 と同様にして積層発泡シートを得た。 得られた発泡シートを用いて、 融着させる際の溶融状態のシートの温度を 2 1 0 °〇に変更したこと以外は、 実施例 1 と同様にして積層発泡シートを得 〇 2020/174792 31 卩(:171?2019/046369 A laminated foam sheet was obtained in the same manner as in Example 1 except that the foaming agent was press-fitted so as to be 1.1 parts by mass and then cooled to about 185 ° . Using the obtained foamed sheet, a laminated foamed sheet was obtained in the same manner as in Example 1 except that the temperature of the sheet in a molten state at the time of fusion bonding was changed to 210 °. 〇2020/174792 31 卩(:171?2019/046369
た。 It was
[0100] [比較例 3] [0100] [Comparative Example 3]
発泡剤の量を〇. 2質量部となるように圧入したこと以外は、 実施例 1 と 同様にして厚み 3. 〇 〇!、
Figure imgf000033_0001
の発泡シートを得た。
A thickness of 3.00!, similar to Example 1, except that the amount of the foaming agent was press-fitted to be 0.2 parts by mass.
Figure imgf000033_0001
To obtain a foam sheet.
得られた発泡シートを用いたこと以外は、 実施例 1 と同様にして積層発泡 シートを得た。 A laminated foam sheet was obtained in the same manner as in Example 1 except that the obtained foam sheet was used.
[0101] [比較例 4] [0101] [Comparative Example 4]
発泡剤の量を ·! . 5質量部となるように圧入したこと以外は、 実施例 1 と 同様にして厚み 3. 〇 〇!、
Figure imgf000033_0002
の発泡シートを得た。 融着させる際の溶融状態のシートの温度を 1 80°〇に変更したこと以外は 、 実施例 1 と同様にして積層発泡シートを得た。
Amount of foaming agent! .Thickness of 3.000!, in the same manner as in Example 1 except that press-fitting was performed so that the amount became 5 parts by mass.
Figure imgf000033_0002
To obtain a foam sheet. A laminated foam sheet was obtained in the same manner as in Example 1 except that the temperature of the sheet in the molten state at the time of fusing was changed to 180 ° .
[0102] [比較例 5] [0102] [Comparative Example 5]
第一の非発泡層を構成する樹脂として、 ポリプロピレン系樹脂 (日本ポリ プロ社製、 商品名 「巳〇6〇」 ) からなる樹脂を使用したこと、 及び融着さ せる際の溶融状態のシートの温度を 2 1 5°〇に変更したこと以外は、 実施例 1 と同様にして積層発泡シートを得た。 As the resin forming the first non-foamed layer, a resin made of polypropylene resin (manufactured by Nippon Polypropylene Corporation, trade name "Min 060") was used, and the sheet in a molten state at the time of fusing A laminated foam sheet was obtained in the same manner as in Example 1 except that the temperature of 2 was changed to 215°.
[0103] [比較例 6] [0103] [Comparative Example 6]
第一の非発泡層を構成する樹脂として、 ポリプロピレン系樹脂 (日本ポリ プロ社製、 商品名 「巳〇 6〇」 ) 1 00質量部に、 無機フィラー 70質量% を含有するタルペッ ト 70 (日東粉化工業社製) 43質量部を混合した樹 脂混合物を使用したこと、 及び融着させる際の溶融状態のシートの温度を 2 25°〇に変更したこと以外は、 実施例 1 と同様にして積層発泡シートを得た As the resin that constitutes the first non-foamed layer, polypropylene resin (manufactured by Nippon Polypro Co., Ltd., trade name “Min 060”) 100 parts by mass contains talpet 70 (Nitto) which contains 70% by mass of inorganic filler. Same as Example 1, except that a resin mixture containing 43 parts by mass was used, and the temperature of the sheet in the molten state at the time of fusing was changed to 2 25 ° 〇. To obtain a laminated foam sheet
[0104] [比較例 7] [0104] [Comparative Example 7]
実施例 1 と同様にして発泡シートを得た。 得られた発泡シートをそのまま 評価に用いた。 A foamed sheet was obtained in the same manner as in Example 1. The obtained foamed sheet was directly used for evaluation.
[0105] [比較例 8] [0105] [Comparative Example 8]
第一の非発泡層を構成する樹脂として、 架橋型オレフィン系エラストマー 〇 2020/174792 32 卩(:171?2019/046369 As a resin that constitutes the first non-foamed layer, a cross-linking olefin elastomer 〇 2020/174792 32 卩 (:171?2019/046369
社製、 商品名 「1 3 0 1 巳」 、 ゲル分率 4 0質量%) からなる樹脂 を使用したこと、 及び融着させる際の溶融状態のシートの温度を 2 3 5 °〇に 変更したこと以外は、 実施例 1 と同様にして積層発泡シートを得た。 A resin made of a company, trade name "1300 1", gel fraction 40% by mass) was used, and the temperature of the sheet in the molten state at the time of fusing was changed to 2 3 5 ° A laminated foam sheet was obtained in the same manner as in Example 1 except for the above.
[0106] [比較例 9 ] [0106] [Comparative Example 9]
第一の非発泡層を構成する樹脂として、 架橋型オレフィン系エラストマー 社製、 商品名 「1 7 0 3巳」 、 ゲル分率 3 9 . 5質量%) からなる 樹脂を使用したこと、 及び融着させる際の溶融状態のシートの温度を 2 2 0 °〇に変更したこと以外は、 実施例 1 と同様にして積層発泡シートを得た。 As the resin constituting the first non-foamed layer, a resin made of a cross-linkable olefin-based elastomer, having a trade name of "1703" and a gel fraction of 39.5 mass%) was used. A laminated foam sheet was obtained in the same manner as in Example 1 except that the temperature of the molten sheet when it was attached was changed to 220°.
[0107] [比較例 1 0 ] [0107] [Comparative Example 1 0]
第一の非発泡層を構成する樹脂として、 スチレン系エラストマー
Figure imgf000034_0001
社製、 商品名 「丁 [¾ 2 0 0 0」 ) からなる樹脂を使用したこと、 及び融着さ せる際の溶融状態のシートの温度を 2 3 0 °〇に変更したこと以外は、 実施例 1 と同様としたが、 積層発泡シートを得ることが出来なかった。
Styrene elastomer as the resin that constitutes the first non-foamed layer
Figure imgf000034_0001
Except that a resin made by the company, trade name "Cha[¾200") was used, and that the temperature of the molten sheet during fusion was changed to 230 ° 〇 The same procedure as in Example 1 was performed, but a laminated foam sheet could not be obtained.
[0108] [比較例 1 1 ] [0108] [Comparative Example 1 1]
融着させる際の溶融状態のシートの温度を 1 8 0 °〇に変更したこと以外は 、 実施例 1 と同様にして積層発泡シートを得た。 A laminated foam sheet was obtained in the same manner as in Example 1 except that the temperature of the sheet in the molten state at the time of fusing was changed to 180 ° .
[0109] 得られた積層発泡シートについて、 発泡層の厚み、 密度、 独立気泡率、 発 泡層に含まれる樹脂の融点、 非発泡層の厚み、 坪量、 デュロ 硬度、 破断点 伸び率、 非発泡層に含まれる樹脂の融点、 積層発泡シート全体の厚み、 坪量 、 密度、 最大静止摩擦係数、 最大荷重、 気泡 (八) の割合、 耐摩耗性を測定 した。 さらに積層発泡シートの熱成形性について評価した。 得られた結果を 表·!〜 4に示す。 [0109] With respect to the obtained laminated foam sheet, the thickness of foam layer, the density, the closed cell ratio, the melting point of the resin contained in the foam layer, the thickness of the non-foam layer, the basis weight, the Duro hardness, the elongation at break, and the The melting point of the resin contained in the foam layer, the total thickness of the laminated foam sheet, the basis weight, the density, the maximum coefficient of static friction, the maximum load, the ratio of bubbles (8), and the wear resistance were measured. Further, the thermoformability of the laminated foam sheet was evaluated. The results obtained are shown in Tables!
なお、 第二の非発泡層を有しない実施例 1 2の積層発泡シートについては 、 発泡シートの他方の面を第二の非発泡層の表面とみなし、 最大静止摩擦係 数、 最大荷重、 及び耐摩耗性を測定した。 For the laminated foamed sheet of Example 12 having no second non-foamed layer, the other surface of the foamed sheet was regarded as the surface of the second non-foamed layer, and the maximum static friction coefficient, the maximum load, and Abrasion resistance was measured.
また、 第一の非発泡層、 及び第二の非発泡層を有しない比較例 7の発泡シ —卜については、 発泡シートの一方の面を第一の非発泡層の表面とし、 且つ 発泡シートの他方の面を第二の非発泡層の表面とみなし、 最大静止摩擦係数 〇 2020/174792 33 卩(:171?2019/046369 Further, regarding the foam sheet of Comparative Example 7 having neither the first non-foaming layer nor the second non-foaming layer, one surface of the foaming sheet was used as the surface of the first non-foaming layer, and the foaming sheet The other surface of the is considered as the surface of the second non-foamed layer 〇 2020/174792 33 卩 (:171?2019/046369
、 最大荷重、 及び耐摩耗性を測定した。 , Maximum load, and wear resistance were measured.
[0110] <坪量> [0110] <Basis weight>
発泡シート、 第一の非発泡層シート、 第二の非発泡層シート、 又は積層発 泡シートの幅方向の両端 200101を除き、 幅方向に等間隔に、 1 0001X 1 0〇 の切片 1 0個を切り出し、 各切片の質量 (9) を〇. 001 9単位ま で測定した。 各切片の質量 (9) の平均値を 1 2当たりの質量に換算した値 を、 坪量 IV!
Figure imgf000035_0001
とした。
Except for both ends 200101 in the width direction of the foamed sheet, the first non-foamed layer sheet, the second non-foamed layer sheet, or the laminated foamed sheet, 10 pieces of 1 0001X 100 ○ are equally spaced in the width direction. Was cut out and the mass (9) of each section was measured up to 0.001 9 units. A value converted to a mass per 1 2 the average value of the mass (9) in each section, the basis weight IV!
Figure imgf000035_0001
And
[0111] く厚み ñ [0111] Thickness ñ
発泡シート、 第一の非発泡層シート、 第二の非発泡層シート、 又は積層発 泡シートの幅方向の両端 2
Figure imgf000035_0002
を除き、 幅方向 50
Figure imgf000035_0003
間隔で 2 1点を測 定点とした。 この測定点について、 ダイヤルシックネスゲージ
Figure imgf000035_0004
1 1 2 (テクロック社製) を使用し、 厚みを最小単位〇. 〇 1 まで測定した。 この測定値の平均値を厚み丁 (111111) とした。
Both ends in the width direction of the foam sheet, the first non-foam layer sheet, the second non-foam layer sheet, or the laminated foam sheet 2
Figure imgf000035_0002
Widthwise, excluding 50
Figure imgf000035_0003
2 1 points at intervals were used as measurement points. About this measuring point, dial thickness gauge
Figure imgf000035_0004
1 1 2 (manufactured by Teclock Co.) was used to measure the thickness to the minimum unit of 0.01. The average of these measured values was used as the thickness (111111).
[0112] <密度> [0112] <Density>
厚み丁 ( ) と坪量 IV!
Figure imgf000035_0005
とから、 下記 (2) 式により密度 |〇 (
Thickness () and basis weight IV!
Figure imgf000035_0005
Then, the density | 〇 (
1< 9 / 013) を求めた。 I asked for 1 <9/01 3 ).
ø =|\/|/丁 - (2) ø = |\/|/ Ding-(2)
[0113] <独立気泡率> [0113] <Ratio of closed cells>
」 丨 3 < 7 1 38 : 2006 「硬質発泡プラスチック -連続気泡率及び 独立気泡率の求め方」 に記載の方法により、 独立気泡率を測定した。 The closed cell ratio was measured by the method described in “3 <7 1 38: 2006 “Rigid foamed plastic-Method of determining open cell ratio and closed cell ratio””.
[0114] <デュロ 硬度> [0114] <Duro hardness>
」 1 3 <6253-3に従い、 デュロ硬度八を測定した。 Duro hardness 8 was measured according to 13 <6253-3.
[0115] <破断点伸び率> [0115] <Elongation at break>
」 丨 3 [< 625 1 に従い、 破断点伸び率を測定した。 The elongation at break was measured according to “3 [< 625 1”.
[0116] <融点> [0116] <Melting point>
」 丨 3 [< 7 1 2 1 = 1 987 「プラスチックの転移温度測定方法」 に記 載の方法により、 融点を測定した。 The melting point was measured by the method described in “Method of measuring transition temperature of plastic” 3 [< 7 1 2 1 = 1 987].
[0117] <最大静止摩擦係数> 〇 2020/174792 34 卩(:171?2019/046369 [0117] <Maximum coefficient of static friction> 〇 2020/174792 34 卩 (:171?2019/046369
」 I 3 < 7 1 25に従い、 最大静止摩擦係数を測定した。 The maximum coefficient of static friction was measured according to I 3 <71 25.
[0118] <最大荷重> [0118] <Maximum load>
」 丨 3 < 7 1 25に従い、 最大荷重を測定した。 The maximum load was measured according to “3 <71 25”.
[0119] <気泡 (八) の割合> [0119] <Ratio of air bubbles (eight)>
以下の方法で気泡 ( ) の割合を算出した。 The ratio of bubbles () was calculated by the following method.
積層発泡シートを厚さ方向に沿って切断し、 走査電子顕微鏡を用いて、 3 0倍の倍率で切断面の写真撮影を行った。 得られた写真において、 発泡層と 第一の非発泡層との界面から、 発泡層の厚さ方向に、 発泡層の厚みに対して 1 5%となる深さまでの領域における気泡の長径及び短径を測定した。 長径 /短径で表される比を算出し、 前記比が 4. 0以上の気泡を気泡 (/\) とし た。 気泡 ( ) の数と、 前記領域に含まれる全ての気泡の数とを数え、 前記 領域に含まれる全気泡数に対する気泡 ( ) の割合を算出した。 The laminated foam sheet was cut along the thickness direction, and a photograph of the cut surface was taken with a scanning electron microscope at a magnification of 30 times. In the obtained photograph, the major axis and the minor axis of bubbles in the region from the interface between the foamed layer and the first non-foamed layer to the depth of 15% of the thickness of the foamed layer in the thickness direction of the foamed layer. The diameter was measured. The ratio expressed by the major axis/minor axis was calculated, and the bubbles having the ratio of 4.0 or more were regarded as bubbles (/\). The number of bubbles () and the number of all bubbles contained in the region were counted, and the ratio of bubbles () to the total number of bubbles contained in the region was calculated.
[0120] <熱成形性> [0120] <Thermoformability>
熱成形については単発成型機 3_ 500型 (脇坂エンジニアリング製 ) を使用して加熱温度 295°(:、 加熱時間 223で口径 1 55 ¢の円筒型の 発泡積層熱成形体を得た。 For thermoforming, a single-shot molding machine Model 3_500 (manufactured by Wakisaka Engineering Co., Ltd.) was used to obtain a cylindrical foam laminated thermoformed body having a heating temperature of 295° (:, a heating time of 223 and a bore of 1 55 ¢).
このとき、 表面が平滑で、 容器強度が十分で剥がれ等もなく、 熱成形性が良 好である発泡積層熱成形体が得られる最大限の深さを求めた。 At this time, the maximum depth at which a foamed laminated thermoformed body having a smooth surface, sufficient container strength, no peeling, and good thermoformability was obtained was determined.
[0121] <耐摩耗性の測定> [0121] <Measurement of wear resistance>
耐磨耗性の測定は次のように行った。 The abrasion resistance was measured as follows.
測定は」 丨 3
Figure imgf000036_0001
に従い行った。 試験片サイズは直径
Figure imgf000036_0002
The measurement is ”3
Figure imgf000036_0001
I went according to. Specimen size is diameter
Figure imgf000036_0002
、 製品厚さの積層発泡シートとし、 その中央部に直径 6
Figure imgf000036_0003
の穴をあけたも のを使用した。 テーパー摩耗試験装置 (テーパー社製 1\/1〇 6 丨 503) を用い、 磨耗輪 1~1_38を使用し、 荷重 5009、 回転速度 60回転/分、 回転数 1 000回転で行い試験後の外観を以下の評価基準で評価した。
The product is a laminated foam sheet with a thickness of 6 mm in the center.
Figure imgf000036_0003
I used the one with a hole in it. Using tapered wear test apparatus (tapered Inc. 1 \ / 1_Rei 6丨503), using the worn wheel 1 to 1_38, load 5009, the rotational speed of 60 rev / min, the appearance after the test carried out at a rotation number of 1 000 rotation Was evaluated according to the following evaluation criteria.
[評価基準] [Evaluation criteria]
八 :表面絞がわずかに残る程度 Eight: The surface diaphragm remains slightly
巳 :著しい段差が出来る \¥02020/174792 35 卩(:17 2019/046369 Mami: There is a marked step \¥02020/174792 35 卩(: 17 2019/046369
〇 :穴が開く 〇: A hole opens
[0122] [表 1] [0122] [Table 1]
Figure imgf000037_0001
Figure imgf000037_0001
[0123]
Figure imgf000038_0001
[0123]
Figure imgf000038_0001
1 1
Figure imgf000039_0001
Figure imgf000039_0001
〔谢-4 (谢-4
Figure imgf000040_0002
Figure imgf000040_0002
Figure imgf000040_0001
Figure imgf000040_0001
〇 2020/174792 39 卩(:171?2019/046369 〇 2020/174792 39 卩 (:171?2019/046369
において劣っていた。 Was inferior in.
独立気泡率が 7 0 %未満であり、 且つ気泡 ( ) の割合が 5 0 %未満であ る比較例 2は、 熱成形性において劣っていた。 Comparative Example 2 in which the closed cell ratio was less than 70% and the ratio of the cells () was less than 50% was inferior in thermoformability.
発泡層の密度が 5 0
Figure imgf000041_0001
9 / 3未満である比較例 3は、 熱成形性において劣 っていた。
Foam layer density 50
Figure imgf000041_0001
Comparative Example is less than 4.5 / 3 3 had poor Tsu thermoformability.
気泡 ( ) の割合が 5 0 %未満である比較例 4は、 熱成形性、 及び耐摩耗 性において劣っていた。 Comparative Example 4 in which the proportion of bubbles () was less than 50% was inferior in thermoformability and wear resistance.
第一の非発泡層における最大荷重が 1 〇 1\1未満である比較例 5及び 6は、 グリップ性、 及び耐摩耗性において劣っていた。 Comparative Examples 5 and 6 in which the maximum load in the first non-foamed layer was less than 10 1\1 were inferior in grip properties and wear resistance.
第一の非発泡層における最大荷重が 1 〇 1\!未満であり、 且つ気泡 (八) の 割合が 5 0 %未満である比較例 7は、 グリップ性、 耐摩耗性において劣って いた。 Comparative Example 7 in which the maximum load in the first non-foamed layer was less than 10 1\! and the proportion of bubbles (8) was less than 50% was inferior in grip property and wear resistance.
第一の非発泡層における最大荷重が 1 〇 1\1未満である比較例 8及び 9は、 グリップ性、 熱成形性、 及び耐摩耗性において劣っていた。 Comparative Examples 8 and 9 in which the maximum load in the first non-foamed layer was less than 10\1\1 were inferior in grip property, thermoformability, and wear resistance.
比較例 1 0は、 発泡層と非発泡層との間の十分な接着強度が得られず、 測 定可能な積層シートを得ることができなかった。 In Comparative Example 10, sufficient adhesive strength between the foamed layer and the non-foamed layer could not be obtained, and a measurable laminated sheet could not be obtained.
気泡 ( ) の割合が 5 0 %未満である比較例 1 1は、 熱成形性、 及び耐摩 耗性において劣っていた。 Comparative Example 11 in which the ratio of bubbles () was less than 50% was inferior in thermoformability and abrasion resistance.
産業上の利用可能性 Industrial availability
[0127] 本発明によれば、 表面がすべりにくく、 熱成形性、 耐摩耗性に優れる積層 発泡シート、 及びその成形体を提供することができる。 [0127] According to the present invention, it is possible to provide a laminated foam sheet having a non-slip surface, which is excellent in thermoformability and abrasion resistance, and a molded body thereof.
符号の説明 Explanation of symbols
[0128] 1 - -積層発泡シート [0128] 1--Laminated foam sheet
1 0 -発泡層 1 0-foam layer
1 1 -積層発泡シート 1 1-laminated foam sheet
2 0 -第一の非発泡層 20-first non-foamed layer
2 1 · · 発泡層と第一の非発泡層との界面 2 1 ··· Interface between the foam layer and the first non-foam layer
2 2 · · 発泡層と第一の非発泡層との界面から、 発泡層の厚さ方向に、 発 20/174792 40 卩(:171?2019/046369 2 2 ··· From the interface between the foam layer and the first non-foam layer, 20/174792 40 卩 (: 171?2019/046369
泡層の厚みに対して 1 5%となる深さに引いた線 Line drawn to a depth of 15% of the foam layer thickness
30 · · ·第二の非発泡層 30 ···Second non-foamed layer
3 1 · · 発泡層と第二の非発泡層との界面 3 1 ··· Interface between the foam layer and the second non-foam layer
32 · · 発泡層と第二の非発泡層との界面から、 発泡層の厚さ方向に、 発 泡層の厚みに対して 1 5%となる深さに引いた線 32.. A line drawn from the interface between the foam layer and the second non-foam layer in the thickness direction of the foam layer to a depth of 15% of the thickness of the foam layer.
2 車両のフロアマツ ト 2 Vehicle floor mat
3 車両のアンダーカバー 3 Vehicle undercover
4 車両のラゲツジトレイ 4 Vehicle luggage tray
5 車両のラゲツジトレイ 5 Vehicle luggage tray

Claims

\¥0 2020/174792 41 卩(:17 2019/046369 請求の範囲 \¥0 2020/174792 41 卩(: 17 2019/046369 Claims
[請求項 1 ] 発泡層と、 前記発泡層の一方の面に位置する第一の非発泡層とを有 し、 [Claim 1] comprising a foam layer and a first non-foam layer located on one surface of the foam layer,
前記発泡層は、 独立気泡率が 7 0 %以上であり、 密度が 5 0〜 1 0
Figure imgf000043_0001
The foamed layer has a closed cell ratio of 70% or more and a density of 50 to 10
Figure imgf000043_0001
前記第一の非発泡層は、 」 丨 3 < 7 1 2 5で求められる最大荷重 が 1 〇〜 5 0 1\1であり、 The first non-foamed layer has a maximum load of 10 to 5 0 1\1, which is obtained by ``'' 3 <7 1 25.
以下の方法で算出される気泡 (八) の割合が 5 0 %以上である、 積 層発泡シート。 A laminated foam sheet in which the proportion of bubbles (eight) calculated by the following method is 50% or more.
<気泡 ( ) の割合の算出方法 > <Calculation method of bubble () ratio>
積層発泡シートを厚さ方向に沿って切断し、 走査電子顕微鏡を用い て、 3 0倍の倍率で切断面の写真撮影を行い、 得られた写真において 、 発泡層と第一の非発泡層との界面から、 発泡層の厚さ方向に、 発泡 層の厚みに対して 1 5 %となる深さまでの領域における気泡の長径及 び短径を測定し、 長径/短径で表される比を算出し、 前記比が 4 . 0 以上の気泡を気泡 ( ) とし、 気泡 ( ) の数と、 前記領域に含まれ る全ての気泡の数とを数え、 前記領域に含まれる全気泡数に対する気 泡 (八) の割合を算出する。 The laminated foam sheet was cut along the thickness direction, and a photograph of the cut surface was taken at a magnification of 30 times using a scanning electron microscope.In the obtained photograph, the foam layer and the first non-foam layer were From the interface of the foam layer to the depth direction of the foam layer in the thickness direction of the foam layer, measure the major axis and minor axis of the bubbles in the area up to a depth of 15%, and calculate the ratio of major axis/minor axis Calculate the number of bubbles () and the number of all bubbles included in the region, and calculate the number of bubbles in the region as the bubble (). Calculate the percentage of bubbles (eight).
[請求項 2] 前記発泡層の厚みが〇. 1〜 3 .
Figure imgf000043_0002
である、 請求項 1 に記載の 積層発泡シート。
[Claim 2] The thickness of the foam layer is from 0.1 to 3.
Figure imgf000043_0002
The laminated foam sheet according to claim 1, wherein
[請求項 3] 前記第一の非発泡層は、 非架橋型オレフィン系エラストマーを含む [Claim 3] The first non-foamed layer contains a non-crosslinked olefin elastomer
、 請求項 1又は 2に記載の積層発泡シート。 The laminated foam sheet according to claim 1 or 2.
[請求項 4] 前記第一の非発泡層の」 丨 3 < 6 2 5 3— 3で求められるデュロ 八硬度が 7 0以下である、 請求項 1〜 3のいずれか一項に記載の積層 発泡シート。 [Claim 4] The laminate according to any one of claims 1 to 3, wherein the first non-foamed layer has a Duro 8 hardness of 70 or less, which is determined by "3 <6 2 5 3-3". Foam sheet.
[請求項 5] 前記第一の非発泡層の」 丨 3 [< 6 2 5 1で求められる破断点伸び 率が 9 0 0 %以上である、 請求項 1〜 4のいずれか一項に記載の積層 発泡シート。 〇 2020/174792 42 卩(:171?2019/046369 [Claim 5] The elongation percentage at break obtained in the first non-foamed layer" 3 [< 6 2 5 1 is 900% or more, The method according to any one of claims 1 to 4. Laminated foam sheet. 〇 2020/174792 42 卩 (:171?2019/046369
[請求項 6] 前記第一の非発泡層の厚みが〇. 0 5〜〇. 5 111 111である、 請求項 [Claim 6] The thickness of the first non-foamed layer is 0. 05 to 0. 5 111 111.
1〜 5のいずれか一項に記載の積層発泡シート。 The laminated foam sheet according to any one of 1 to 5.
[請求項 7] 密度が 1 0 0〜 2 0 0 0 1< 9 / 01 3である、 請求項 1〜 6のいずれ か一項に記載の積層発泡シート。 [Claim 7] The laminated foam sheet according to any one of Claims 1 to 6, which has a density of 100 to 200 001 <9/013.
[請求項 8] 請求項 1〜 7のいずれか一項に記載の積層発泡シートを成形してな る成形体。 [Claim 8] A molded product obtained by molding the laminated foam sheet according to any one of claims 1 to 7.
[請求項 9] 車両のフロアマッ トである、 請求項 8に記載の成形体。 [Claim 9] The molded product according to claim 8, which is a floor mat of a vehicle.
[請求項' 10] 車両のアンダーカバーである、 請求項 8に記載の成形体。 A [Claim '10' under cover of a vehicle, the molded body according to claim 8.
[請求項 1 1 ] 車両のラゲッジトレイである、 請求項 8に記載の成形体。 [Claim 11] The molded product according to claim 8, which is a luggage tray of a vehicle.
[請求項 12] 請求項 1〜 7のいずれか一項に記載の積層発泡シートの製造方法で あって、 [Claim 12] The method for producing a laminated foam sheet according to any one of claims 1 to 7,
前記発泡層を構成する発泡シートの一方の面に、 前記第一の非発泡 層を構成する樹脂を 2 0 0〜 2 4 0 °〇で融着させる第一の積層工程を 含む、 積層発泡シートの製造方法。 A laminated foam sheet, comprising a first laminating step of fusing the resin constituting the first non-foamed layer at 200 to 240° to one surface of the foamed sheet constituting the foamed layer. Manufacturing method.
PCT/JP2019/046369 2019-02-28 2019-11-27 Laminated foamed sheet, and molded body thereof WO2020174792A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-035111 2019-02-28
JP2019035111A JP7132153B2 (en) 2019-02-28 2019-02-28 LAMINATED FOAM SHEET AND FORMED PRODUCT THEREOF

Publications (1)

Publication Number Publication Date
WO2020174792A1 true WO2020174792A1 (en) 2020-09-03

Family

ID=72238910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046369 WO2020174792A1 (en) 2019-02-28 2019-11-27 Laminated foamed sheet, and molded body thereof

Country Status (2)

Country Link
JP (1) JP7132153B2 (en)
WO (1) WO2020174792A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191181A1 (en) * 2021-03-10 2022-09-15 株式会社カネカ Polypropylene resin composition for extrusion blowing, extrusion-blown particles, and molded foam

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7416401B2 (en) 2019-10-23 2024-01-17 株式会社ウェーブロック・アドバンスト・テクノロジー Skin base material, foamed skin base material, foamed skin material, method for manufacturing a skin base material, method for manufacturing a foamed skin base material, method for manufacturing a foamed skin material, decorated molded product, and method for manufacturing a decorated molded product
JP7324725B2 (en) 2020-02-28 2023-08-10 積水化成品工業株式会社 Laminated foam sheet and molded product thereof
WO2023062664A1 (en) 2021-10-11 2023-04-20 マクセル株式会社 Resin sheet
EP4163079A1 (en) 2021-10-11 2023-04-12 Maxell, Ltd. Resin sheet and resin molding

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130814A (en) * 2004-11-08 2006-05-25 Kaneka Corp Laminated foamed polypropylene resin sheet and its molding
JP2007160904A (en) * 2005-12-16 2007-06-28 Jsp Corp Co-extruded laminated foam body and its molding
JP2012126032A (en) * 2010-12-15 2012-07-05 Denki Kagaku Kogyo Kk Polystyrene based resin laminate foamed sheet
JP2014208418A (en) * 2013-03-29 2014-11-06 積水化成品工業株式会社 Fiber reinforced composite and method for producing the same
JP2016068963A (en) * 2014-09-26 2016-05-09 積水化成品工業株式会社 Tabular partition member
WO2019077944A1 (en) * 2017-10-16 2019-04-25 積水化成品工業株式会社 Laminated foam sheet and formed object thereof
WO2019111930A1 (en) * 2017-12-07 2019-06-13 積水化成品工業株式会社 Layered foamed sheet and molded article thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130814A (en) * 2004-11-08 2006-05-25 Kaneka Corp Laminated foamed polypropylene resin sheet and its molding
JP2007160904A (en) * 2005-12-16 2007-06-28 Jsp Corp Co-extruded laminated foam body and its molding
JP2012126032A (en) * 2010-12-15 2012-07-05 Denki Kagaku Kogyo Kk Polystyrene based resin laminate foamed sheet
JP2014208418A (en) * 2013-03-29 2014-11-06 積水化成品工業株式会社 Fiber reinforced composite and method for producing the same
JP2016068963A (en) * 2014-09-26 2016-05-09 積水化成品工業株式会社 Tabular partition member
WO2019077944A1 (en) * 2017-10-16 2019-04-25 積水化成品工業株式会社 Laminated foam sheet and formed object thereof
WO2019111930A1 (en) * 2017-12-07 2019-06-13 積水化成品工業株式会社 Layered foamed sheet and molded article thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191181A1 (en) * 2021-03-10 2022-09-15 株式会社カネカ Polypropylene resin composition for extrusion blowing, extrusion-blown particles, and molded foam

Also Published As

Publication number Publication date
JP7132153B2 (en) 2022-09-06
JP2020138402A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
WO2020174792A1 (en) Laminated foamed sheet, and molded body thereof
JP6716796B2 (en) Laminated foam sheet and molded article thereof
TWI424018B (en) Polyolefin resin foamed particles
JP7065471B2 (en) Laminated foam sheet and its molded body
JP6373141B2 (en) Laminated foam sheet for thermoforming, method for producing laminated foam sheet for thermoforming, and food or packaging container
JP2019064048A (en) Laminated paper for glass plate
JP3213995U (en) Laminated foam sheet and conveying sheet
JP6262109B2 (en) Resin foam sheet, laminated foam sheet, and foam molded product
JP4979293B2 (en) Thermoplastic resin foam sheet and container made of this foam sheet
JP6502727B2 (en) Multi-layer sheet for thermoforming, method for producing the same, and container for heating
JP3232552U (en) Battery undercover
WO1999014266A1 (en) Resin material for foam molding, foamed sheet obtained therefrom, and process for producing the same
JP7324725B2 (en) Laminated foam sheet and molded product thereof
JP2008120979A (en) Polypropylenic resin foam sheet and formed article comprising the same
JP2014111339A (en) Laminated foamed sheet and foamed molded product
JP6356452B2 (en) Thermoforming sheet, molded body and container
JP2014009277A (en) Polypropylene-based thermoplastic resin composition for foaming molding and foamed molding
JP4990585B2 (en) Polystyrene resin foam sheet
JP2012025908A (en) Automotive interior material
JP7128705B2 (en) Multilayer foam sheet and container
JP2017177785A (en) Laminated sheet for thermal molding and container
JP2023049240A (en) Polystyrene-based resin laminated foam sheet, and polystyrene-based resin laminated foam container
JP2005041209A (en) Propylene resin type foamed sheet and container
JP2001181415A (en) Easily splittable film
JP2020196162A (en) Laminated foamed sheet and its molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917041

Country of ref document: EP

Kind code of ref document: A1