WO2020173291A1 - 电池模组及电池包 - Google Patents

电池模组及电池包 Download PDF

Info

Publication number
WO2020173291A1
WO2020173291A1 PCT/CN2020/074570 CN2020074570W WO2020173291A1 WO 2020173291 A1 WO2020173291 A1 WO 2020173291A1 CN 2020074570 W CN2020074570 W CN 2020074570W WO 2020173291 A1 WO2020173291 A1 WO 2020173291A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
binding member
battery module
pole piece
Prior art date
Application number
PCT/CN2020/074570
Other languages
English (en)
French (fr)
Inventor
陈兴地
侯跃攀
游凯杰
周灵刚
王鹏
彭亚楠
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20763967.5A priority Critical patent/EP3796420B1/en
Publication of WO2020173291A1 publication Critical patent/WO2020173291A1/zh
Priority to US17/129,629 priority patent/US20210111458A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of energy storage components, in particular to a battery module, and also to a battery pack. Background technique
  • a battery module usually includes a plurality of battery cells, and each battery cell includes an electrode assembly and a casing.
  • the electrode assembly is housed in the casing.
  • the battery unit expands and bulges outward.
  • a certain amount of gas is generated due to charging and discharging inside the casing, which also causes the expansion of the battery cell.
  • This application provides a battery module and a battery pack to solve the problems in the prior art and reduce the expansion of the battery module.
  • a first aspect of the present application provides a battery module including a binding member and a plurality of battery cell assemblies arranged in a horizontal direction, the battery cell assembly including an upper battery cell and a lower battery cell stacked in a vertical direction;
  • the upper battery cell and the lower battery cell are butted with each other and form a butt joint; the binding member covers the butting position, the binding member is located between two adjacent battery cell assemblies, and the binding The component is fixed with the battery unit assembly.
  • the upper battery cell and the lower battery cell both include an electrode assembly and a battery case, the electrode assembly is accommodated in the battery case, and the electrode assembly includes a first pole piece, a second pole piece, and A diaphragm arranged between the first pole piece and the second pole piece; the electrode assembly has a wound structure and is flat; the outer surface of the electrode assembly includes two flat surfaces, The flat surfaces face each other along the vertical direction; or, the electrode assembly is a laminated structure, and the first pole piece, the diaphragm, and the second pole piece are along the vertical direction To stack.
  • the battery housing includes two first surfaces and two second surfaces, and the area of the first surface is larger than the area of the second surface;
  • the two second surfaces face each other in the horizontal direction, and the two first surfaces face each other in the vertical direction.
  • one said second surface of said upper battery cell and one said second surface of said lower battery cell are respectively bonded and fixed to one side surface of said binding member by an adhesive.
  • the two side surfaces of the binding member are respectively fixed to two adjacent battery cell assemblies.
  • the adhesive is a structural glue.
  • the binding member completely covers a second surface of the upper battery cell and a second surface of the lower battery cell.
  • the binding member is a metal plate.
  • the battery module further includes a pair of end plates, and the pair of end plates are respectively adhesively fixed to the battery cell assemblies located at two ends in the horizontal direction.
  • the second aspect of the present application also provides a battery pack, including a lower box body and an upper box cover, the lower box body and the upper box cover are connected to form an accommodation cavity, and the battery pack further includes the aforementioned battery mold Group, the battery module is accommodated in the accommodating cavity.
  • the battery module includes a binding member and a plurality of battery cell assemblies arranged in a horizontal direction, and the battery cell assembly includes an upper battery cell and a lower battery cell stacked in a vertical direction.
  • the battery unit and the lower battery unit are butted to each other and form a butt joint.
  • Figure 1 is an exploded view of the structure of the battery pack provided by an embodiment of the application
  • Fig. 2 is an exploded view of the structure of the battery cell in the battery pack provided by the embodiment of the application
  • Fig. 3a is a structural cross-sectional view of the electrode assembly with a wound structure inside the battery cell
  • Fig. 3b is the electrode assembly with a wound structure inside the battery cell
  • Figure 4 is a schematic structural diagram of an electrode assembly with a laminated structure inside a battery cell
  • Figure 5 is an exploded view of a battery module provided by an embodiment of the application;
  • FIG. 6 is a schematic structural diagram of a battery module provided by an embodiment of the application.
  • FIG. 7 is an effect comparison diagram of the battery module provided by the embodiment of the application.
  • the direction indicated by arrow A is the length direction
  • the direction indicated by arrow B is the width direction
  • the direction indicated by arrow C is the vertical direction.
  • the horizontal direction is a direction parallel to the horizontal plane, and may be the aforementioned longitudinal direction or the aforementioned width direction.
  • the horizontal direction includes not only the direction absolutely parallel to the horizontal plane, but also the direction roughly parallel to the horizontal plane conventionally recognized in engineering.
  • the vertical direction is the direction perpendicular to the horizontal plane.
  • the vertical direction includes not only the direction absolutely perpendicular to the horizontal plane, but also the direction generally perpendicular to the horizontal plane generally recognized in engineering.
  • the terminology such as “upper”, “lower”, “top” and “bottom” described in this application are all understood relative to the vertical direction.
  • the battery pack provided by the embodiment of the present application includes a battery module 1, a lower box body 2 and an upper box cover 3.
  • the lower box body 2 and the upper box cover 3 are connected to form a receiving cavity 4.
  • Each battery module 1 is located in the containing cavity 4.
  • multiple battery modules 1 may be arranged side by side along the length direction of the battery pack, and multiple battery modules 1 may also be arranged side by side along the width direction of the battery pack.
  • the battery module 1 has a plurality of battery cells 11, and the plurality of battery cells 11 in the battery module 1 can be enclosed by a cable tie 16 (the cable tie is shown in FIG. 5).
  • the battery unit 11 includes a battery casing 111 and an electrode assembly 113.
  • the battery casing 111 may be made of metal materials such as aluminum, aluminum alloy or nickel-plated steel, and the battery casing 111 may have a rectangular parallelepiped shape or other shapes.
  • the battery housing 111 has a rectangular parallelepiped shape.
  • the battery case 111 has an opening 111 a, and the electrode assembly 113 is accommodated in the battery case 111.
  • the opening 111a of the battery case 111 is covered with a cover 116.
  • Two electrode terminals 112 are provided on the cover 116, two The two electrode terminals 112 are respectively a first electrode terminal and a second electrode terminal.
  • the first electrode terminal may be a positive electrode terminal, and the second electrode terminal is a negative electrode terminal. In other embodiments, the first electrode terminal may also be a negative electrode terminal, and the second electrode terminal is a positive electrode terminal.
  • the cover plate 116 may be made of metal materials such as aluminum or aluminum alloy, and the size of the cover plate 116 is adapted to the size of the opening 111 a of the battery housing 111.
  • the electrode terminal 112 can be fixed to the cover 116 by welding or by rivets.
  • An adapter plate 115 is provided between the cover plate 116 and the electrode assembly 113, and the tab 114 of the electrode assembly 113 is electrically connected to the electrode terminal 112 on the cover plate 116 through the adapter plate 115. In this embodiment, there are two adapter plates 115, namely, a positive electrode adapter plate and a negative electrode adapter plate.
  • two electrode assemblies 113 are provided in the battery casing 111, and the two electrode assemblies 113 are stacked in a vertical direction (the direction indicated by the arrow C).
  • one electrode assembly 113 may also be provided in the battery housing 111, or more than three electrode assemblies 113 may be provided in the battery housing 111.
  • the plurality of electrode assemblies 113 are stacked in the vertical direction (the direction indicated by the arrow C).
  • the electrode assembly 113 includes a first pole piece 113a, a second pole piece 113b, and a diaphragm 113c disposed between the first pole piece 113a and the second pole piece 113b.
  • the first pole piece 113a may be a positive pole piece
  • the second pole piece 113b is a negative pole piece.
  • the first pole piece 113a can also be a negative pole piece
  • the second pole piece 113b is a positive pole piece.
  • the diaphragm 113c is an insulator between the first pole piece 113a and the second pole piece 113b.
  • the active material of the positive plate can be coated on the coating area of the positive plate, and the active material of the negative plate can be coated on the coating area of the negative plate.
  • the uncoated area extending from the coated area of the positive plate serves as the positive electrode tab; the uncoated area extending from the coated area of the negative plate serves as the negative electrode tab.
  • the positive electrode tab is electrically connected to the positive electrode terminal on the cover plate 116 through the positive electrode adapter piece, and the negative electrode tab is electrically connected to the negative electrode terminal on the cover plate 116 through the negative electrode adapter piece.
  • the electrode assembly 113 has a winding structure.
  • the first pole piece 113a, the diaphragm 113c, and the second pole piece 113b are all belt-shaped structures.
  • the first pole piece 113a, the diaphragm 113c, and the second pole piece 113b are sequentially stacked and wound two times to form the electrode assembly 113.
  • the electrode assembly 113 has a flat shape as a whole. When the electrode assembly 113 is manufactured, the electrode assembly 113 can be wound into a hollow cylindrical structure first, and then flattened into a flat shape after the winding.
  • 3b is a schematic diagram of the outline of the electrode assembly 113, the outer surface of the electrode assembly 113 includes two flat surfaces 113d, the two flat surfaces 113d face each other in the vertical direction (the direction indicated by the arrow C).
  • the battery casing 111 is approximately a rectangular parallelepiped shape
  • the flat surface 113d is approximately parallel to the outer surface of the battery casing 111 with the largest area.
  • the flat surface 113d may be a relatively flat surface, and is not required to be a pure plane.
  • the two flat surfaces 113d are opposite to the narrow surfaces 113e on both sides of the electrode assembly 113, and the area of the flat surfaces 113d is larger than the narrow surface 113e of the electrode assembly 113.
  • the electrode assembly 113 may also be a laminated structure, that is, the electrode assembly 113 has a plurality of first pole pieces 113a and a plurality of second pole pieces 113b, and the diaphragm 113c is arranged on Between the first pole piece 113a and the second pole piece 113b.
  • the first pole piece 113a, the diaphragm 113c, and the second pole piece 113b are stacked in sequence. Among them, the first pole piece 113a, the diaphragm 113c, and the second pole piece 113b are stacked in the vertical direction (the direction indicated by the arrow C).
  • the electrode assembly 113 will inevitably expand in the thickness direction of the pole piece during the charging and discharging process (in the electrode assembly 113 of the wound structure, the expansion force in the direction perpendicular to the flat surface 113d is the largest; in the laminated structure In the electrode assembly 113, the expansion force is the largest along the stacking direction of the first pole piece 113a and the second pole piece 113b), which will cause the battery casing 111 of the battery unit 11 to expand in the vertical direction.
  • the embodiment of the present application provides In the battery module 1, a restraining member 12 is provided to restrict the above-mentioned expansion and deformation.
  • the battery module 1 provided by the embodiment of the present application includes a binding member 12 and a plurality of battery cell assemblies 11a arranged in a horizontal direction, and the battery cell assembly 11a includes upper battery cells stacked in a vertical direction 117 and the lower battery unit 118.
  • the battery cell 11 located above is the upper battery cell 117
  • the battery cell 11 located below is the lower battery cell 118.
  • the battery cells 11 are connected in series or in parallel through the bus bar 14, and then lead out to the outside through the lead-out terminal 13.
  • the upper battery cell 117 and the lower battery cell 118 are connected to each other and form a joint 119.
  • the binding member 12 extends in the vertical direction and covers the above-mentioned butting location 119.
  • the binding member 12 is located between two adjacent battery cell assemblies 11a, and the binding member 12 is fixed to the battery cell assembly 11a.
  • the battery cell 11 When the battery cell 11 expands in the vertical direction, due to the action of the restraint member 12, the upper battery cell 117 is restrained by the lower battery cell 118 and the restraint member 12, and the lower battery cell 118 is jointly restrained by the upper battery cell 117 and the restraint member 12. Therefore, the battery cell 11 will not undergo major expansion and deformation at the position of the docking location 119. As shown in FIG. 6, at the location of the docking location 119, the upper battery cell 117 and the lower battery cell 118 do not undergo major expansion and deformation. . As shown in FIG. 7, it can be seen that if the binding member 12 is not provided, severe expansion and deformation will occur at the junction 119 of the upper battery cell 117 and the lower battery cell 118.
  • the battery housing 111 of the battery unit 11 is substantially a rectangular parallelepiped structure, and the battery housing 111 includes two first surfaces 111b and two second surfaces 111c.
  • the two second surfaces 111c in each battery cell 11 face each other in the horizontal direction (for example, the length direction indicated by arrow A), and the two first surfaces 111b in each battery cell 11 face each other in the vertical direction (arrow C) facing each other.
  • the transition between the first surface 111b and the second surface 111c can be at right angles, and similarly, the transition between the first surface 111b and the second surface 111c can also be through an arc curved surface or a curved surface with multiple bendings.
  • the area of the first surface 111b is larger than the area of the second surface 111c.
  • the generated gas exerts a force on the battery casing 111, thereby intensifying the outward expansion of the battery casing 111. Since the area of the first surface 111b of this embodiment is larger than the area of the second surface 111c, and the two first surfaces 111b of the battery cell 11 face each other in the vertical direction, the generated gas exerts the greatest effect on the battery case 111. The direction of force is also toward the vertical direction. Compared with the existing technology, the horizontal expansion force of the battery module 1 is further reduced.
  • a second surface 111c of the upper battery cell 117 and a second surface 111c of the lower battery cell 118 are respectively adhered and fixed to a side surface of the binding member 12 by an adhesive.
  • the upper battery cell 117 and the lower battery cell 118 are fixed and restrained by a restraining member 12 at the same time.
  • the two side surfaces of the binding member 12 are respectively fixed to two adjacent battery cell assemblies 11a
  • the above-mentioned adhesive may be a structural glue
  • the binding member 12 is fixedly connected to the battery cell assembly 11a by the structural glue.
  • the fixing is achieved by arranging the structural glue, which limits the expansion and deformation of the battery unit 11 and further ensures the anti-expansion and deformation effect.
  • the two side surfaces of the binding member 12 are respectively fixed to two adjacent battery cell assemblies 11a, so that the restraining forces on the battery cells 11 on both sides can be balanced, and the expansion and deformation resistance can be more uniform.
  • one battery cell assembly 11a includes two layers of battery cells 11. In other embodiments, one battery cell assembly 11a may also include three or more layers of battery cells 11.
  • the binding member 12 may be an integral piece that connects multiple layers of electricity.
  • the cell unit 11 is covered and fixed, and it may also be a multiple split structure, and the multiple split structures cover the butt joint 119 of two adjacent layers of battery cells 11.
  • the binding member 12 may only cover the position of the above-mentioned docking location 119.
  • the binding member 12 completely covers the opposite surface between the battery cell assemblies 11a, that is, the binding member 12 covers one of the upper battery cells 117.
  • the second surface 111c and a second surface 111c of the lower battery cell 118 are completely covered.
  • the restraining member 12 completely covers the side surfaces of the upper battery cell 117 and the lower battery cell 118, since the binding area between the restraining member 12 and the battery cell 11 is larger, the restraining member 12 has greater tensile force and prevents expansion and deformation. better result.
  • the binding member 12 may be a metal plate, and the thickness thereof can meet the set strength. That is, during the charging and discharging process of the battery module 1, the expansion force of the battery unit 11 will not break the metal plate.
  • the binding member 12 is an aluminum plate, which can not only meet the strength requirement, but also ensure the lightweight of the battery module 1.
  • the binding member 12 is a rectangular plate. In this way, when the battery module 1 is installed in the accommodating cavity between the lower case 2 and the upper case cover 3, the binding member 12 will not interfere with the lower case 2 and the upper case cover 3.
  • the battery module 1 provided in the embodiment of the present application further includes a pair of end plates 15 fixed on the two ends of the plurality of battery cells 11 in the horizontal direction, respectively.
  • the end plates 15 are respectively dry-connected and fixed to the battery cell assemblies 11a located at the two ends of the horizontal direction, thereby further restricting the expansion of the battery module 1 in the horizontal direction.
  • the cable tie 16 is wound on the outside of the end plate 15 to connect the end plate 15 and the battery Module 1 is fixed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种电池模组(1)及电池包。该电池模组(1)包括束缚件(12)以及沿水平方向排列的多个电池单元组件(11a),电池单元组件(11a)包括沿竖直方向堆叠的上层电池单元(117)和下层电池单元(118);上层电池单元(117)和下层电池单元(118)之间相互对接且形成对接处(119);束缚件(12)覆盖对接处(119),束缚件(12)位于相邻两个电池单元组件(11a)之间,束缚件(12)与电池单元组件(11a)固定。电池模组(1)及电池包中,电池模组(1)包括束缚件(12)以及多个电池单元组件(11a),电池单元组件(11a)包括沿竖直方向堆叠的上层电池单元(117)和下层电池单元(118),在上、下层电池单元(117、118)之间形成对接处(119)。通过设置束缚件(12)覆盖上述对接处(119),并与电池单元组件(11a)固定,限制了上层电池单元(117)和下层电池单元(118)在对接缝位置的膨胀。

Description

电池模组及电池包
技术领域
本申请涉及储能元件领域, 尤其涉及一种电池模组, 还涉及一种电池 包。 背景技术
电池模组通常包括多个电池单元, 每个电池单元均包括电极组件和壳 体, 电极组件容置在壳体中, 随着充放电过程, 电池单元会发生膨胀而向 外鼓起。 另外, 由于壳体内部充放电会产生一定量的气体, 这些气体也会 引起电池单元的膨胀。
因此, 有必要对电池模组进行改进以克服上述技术问题。 实用新型内容
本申请提供了一种电池模组及电池包, 以解决现有技术中的问题, 减 少电池模组的膨胀。
本申请的第一方面提供了一种电池模组, 包括束縛件以及沿水平方向 排列的多个电池单元组件, 所述电池单元组件包括沿竖直方向堆叠的上层 电池单元和下层电池单元;
所述上层电池单元和所述下层电池单元之间相互对接且形成对接处; 所述束縛件覆盖所述对接处, 所述束縛件位于相邻两个所述电池单元 组件之间, 所述束縛件与所述电池单元组件固定。
优选地, 所述上层电池单元和所述下层电池单元均包括电极组件和电 池壳体, 所述电极组件容纳于所述电池壳体内, 所述电极组件包括第一极 片、 第二极片以及设置于所述第一极片和所述第二极片之间的隔膜; 所述电极组件为卷绕式结构且为扁平状, 所述电极组件的外表面包括 两个扁平面, 两个所述扁平面沿所述竖直方向相互面对; 或, 所述电极组 件为叠片式结构, 所述第一极片、 所述隔膜和所述第二极片沿所述竖直方 向层叠。
优选地, 所述电池壳体包括两个第一表面和两个第二表面, 所述第一 表面的面积大于所述第二表面的面积;
所述两个第二表面沿所述水平方向相互面对, 所述两个第一表面沿所 述竖直方向相互面对。
优选地, 所述上层电池单元的一个所述第二表面和所述下层电池单元 的一个所述第二表面分别通过胶粘剂粘接固定于所述束縛件的一个侧面。
优选地, 所述束縛件的两个侧面分别与相邻两个所述电池单元组件固 定。
优选地, 所述胶粘剂为结构胶。
优选地, 所述束縛件将所述上层电池单元的一个所述第二表面和所述 下层电池单元的一个所述第二表面完全覆盖。
优选地, 所述束縛件为金属板。
优选地, 所述电池模组还包括一对端板, 所述一对端板分别与位于水 平方向的两端的电池单元组件粘接固定。
本申请的第二方面还提供一种电池包, 包括下箱体和上箱盖, 所述下 箱体和所述上箱盖连接且形成容置腔, 所述电池包还包括前述的电池模 组, 所述电池模组容纳于所述容置腔中。
本申请提供的技术方案可以达到以下有益效果:
本申请所提供的电池模组及电池包中, 电池模组包括束縛件以及沿水 平方向排列的多个电池单元组件, 电池单元组件包括沿竖直方向堆叠的上 层电池单元和下层电池单元, 上层电池单元和下层电池单元之间相互对接 且形成对接处。 通过设置束縛件沿竖直方向延伸覆盖在上述对接处, 束縛 件与电池单元组件固定, 限制了上层电池单元和下层电池单元在对接处位 置的膨胀, 与现有技术相比, 提高了电池的产品质量。
应当理解的是, 以上的一般描述和后文的细节描述仅是示例性的, 并 不能限制本申请。 附图说明
图 1为本申请实施例所提供的电池包的结构爆炸图; 图 2为本申请实施例所提供的电池包中电池单元的结构爆炸图; 图 3a为电池单元内部卷绕式结构的电极组件的结构剖视图; 图 3b为电池单元内部卷绕式结构的电极组件的外形轮廓示意图; 图 4为电池单元内部叠片式结构的电极组件的结构示意图; 图 5为本申请实施例所提供的电池模组的爆炸图;
图 6为本申请实施例所提供的电池模组的结构示意图;
图 7为本申请实施例所提供的电池模组的效果比对图。
附图标记:
1-电池模组;
11-电池单元;
111 -电池壳体;
I l ia-开口;
111b-第一表面;
111c-第二表面;
112 -电极端子;
113 -电极组件;
113a-第一极片;
113b-第二极片;
113c-隔膜;
113d-扁平面;
113e-窄面;
114 -极耳;
115 -转接片;
116 -盖板;
117 -上层电池单元;
118 -下层电池单元;
119 -对接处;
11a-电池单元组件;
12 -束縛件;
13 -引出端子; 14 -汇流条;
15 -端板;
16 -扎带;
2 -下箱体;
3 -上箱盖;
4 -容置腔。
此处的附图被并入说明书中并构成本说明书的一部分, 示出了符合本 申请的实施例, 并与说明书一起用于解释本申请的原理。 具体实施方式
下面通过具体的实施例并结合附图对本申请做进一步的详细描述。 在本申请的描述中, 所有附图中箭头 A所指方向为长度方向, 箭头 B 所指方向为宽度方向, 箭头 C所指方向为竖直方向。 水平方向为平行于水 平面的方向, 既可以是上述长度方向也可以是上述宽度方向。 另外, 水平 方向不仅包括绝对平行于水平面的方向, 也包括了工程上常规认知的大致 平行于水平面的方向。 竖直方向为垂直于水平面的方向, 竖直方向不仅包 括绝对垂直于水平面的方向, 也包括了工程上常规认知的大致垂直于水平 面的方向。 此外, 本申请描述的 “上” 、 “下” 、 “顶” 、 “底” 等方位 词均是相对于竖直方向来进行理解的。
如图 1所示, 本申请实施例提供的电池包包括电池模组 1、 下箱体 2 和上箱盖 3, 其中, 下箱体 2和上箱盖 3连接且形成容置腔 4, 多个电池 模组 1位于容置腔 4内。 其中, 多个电池模组 1可以沿电池包的长度方向 并排设置, 多个电池模组 1也可以沿电池包的宽度方向并排设置。 电池模 组 1具有多个电池单元 11, 并且电池模组 1 中的多个电池单元 11可通过 扎带 16 (扎带见图 5所示) 包围在一起。
如图 2所示, 电池单元 11包括电池壳体 111和电极组件 113, 电池壳 体 111可由铝、 铝合金或镀镍钢等金属材料制成, 电池壳体 111可具有长 方体形状或其他形状, 本实施例中, 电池壳体 111为长方体状。 电池壳体 111具有开口 111a, 电极组件 113容纳于电池壳体 111 内。 电池壳体 111 的开口 111a上覆盖有盖板 116。 盖板 116上设置有两个电极端子 112, 两 个电极端子 112分别为第一电极端子和第二电极端子。 其中, 第一电极端 子可以为正电极端子, 第二电极端子为负电极端子。 在其他的实施例中, 第一电极端子还可以为负电极端子, 而第二电极端子为正电极端子。 盖板 116可以由铝、 铝合金等金属材料制成, 盖板 116的尺寸与电池壳体 111 的开口 111a的尺寸相适配。 电极端子 112可通过焊接或通过铆钉等方式 固定于盖板 116上。 在盖板 116与电极组件 113之间设置有转接片 115, 电极组件 113的极耳 114通过转接片 115与盖板 116上的电极端子 112电 连接。 本实施例中, 转接片 115有两个, 即分别为正极转接片和负极转接 片。
图 2中, 电池壳体 111 内设置有两个电极组件 113 ,两个电极组件 113 沿竖直方向 (箭头 C所指的方向) 堆叠。 当然, 在其他实施例中, 在电池 壳体 111 内也可设置有一个电极组件 113, 或者在电池壳体 111 内设置有 三个以上的电极组件 113。 多个电极组件 113沿竖直方向 (箭头 C所指的 方向) 堆叠。
如图 3a和图 3b所示, 电极组件 113 包括第一极片 113a、 第二极片 113b以及设置于第一极片 113a和第二极片 113b之间的隔膜 113c。 其中, 第一极片 113a可以为正极片, 第二极片 113b为负极片。 在其他的实施例 中, 第一极片 113a还可以为负极片, 而第二极片 113b为正极片。 其中, 隔膜 113c是介于第一极片 113a和第二极片 113b之间的绝緣体。 正极片 的活性物质可被涂覆在正极片的涂覆区上, 负极片的活性物质可被涂覆到 负极片的涂覆区上。 由正极片的涂覆区延伸出的未涂覆区则作为正极极 耳; 由负极片的涂覆区延伸出的未涂覆区则作为负极极耳。 正极极耳通过 正极转接片电连接于盖板 116上的正电极端子, 负极极耳通过负极转接片 电连接于盖板 116上的负电极端子。
如图 3a所示, 一种实现方式是, 电极组件 113为卷绕式结构。 其中, 第一极片 113a、 隔膜 113c以及第二极片 113b均为带状结构, 将第一极片 113a、 隔膜 113c以及第二极片 113b依次层叠并卷绕两圈以上形成电极组 件 113, 电极组件 113整体呈扁平状。 在电极组件 113制作时, 电极组件 113可先卷绕成中空的圆柱形结构, 卷绕之后再压平为扁平状。 图 3b为电 极组件 113 的外形轮廓示意图, 电极组件 113 的外表面包括两个扁平面 113d, 两个扁平面 113d沿竖直方向 (箭头 C所指的方向) 相互面对。 其 中, 电池壳体 111大致为长方体状, 扁平面 113d大致平行于电池壳体 111 的面积最大的外表面。 扁平面 113d 可以是相对平整的表面, 并不要求是 纯平面。 两个扁平面 113d是相对电极组件 113两侧的窄面 113e而百的, 并且扁平面 113d的面积大于电极组件 113的窄面 113e。
如图 4所示,另一种实现方式是, 电极组件 113还可以为叠片式结构, 即电极组件 113中具有多个第一极片 113a以及多个第二极片 113b, 隔膜 113c设置在第一极片 113a和第二极片 113b之间。 第一极片 113a、 隔膜 113c、 第二极片 113b依次层叠设置。 其中, 第一极片 113a、 隔膜 113c和 第二极片 113b沿竖直方向层叠 (箭头 C所指的方向) 。
由于电极组件 113在充放电过程中不可避免的会沿极片的厚度方向发 生膨胀 (在卷绕式结构的电极组件 113 中, 沿垂直于扁平面 113d的方向 膨胀力最大; 在叠片式结构的电极组件 113 中, 沿第一极片 113a和第二 极片 113b的堆叠方向膨胀力最大) , 因此会导致电池单元 11的电池壳体 111在竖直方向发生膨胀, 本申请实施例提供的电池模组 1 中, 设置束縛 件 12来对上述膨胀变形进行限制。
如图 5和图 6所示, 本申请实施例提供的电池模组 1 包括束縛件 12 以及沿水平方向排列的多个电池单元组件 11a, 电池单元组件 11a包括沿 竖直方向堆叠的上层电池单元 117和下层电池单元 118。 在一个电池单元 组件 11a中, 位于上方的电池单元 11为上层电池单元 117, 位于下方的电 池单元 11为下层电池单元 118。各电池单元 11通过汇流条 14串联或并联, 再通过引出端子 13引出至外部。
上层电池单元 117 和下层电池单元 118 之间相互对接且形成对接处 119。束縛件 12沿竖直方向延伸且覆盖上述对接处 119, 束縛件 12位于相 邻两个电池单元组件 11a之间, 束縛件 12与电池单元组件 11a固定。
当电池单元 11沿竖直方向上膨胀时, 由于束縛件 12的作用, 上层电 池单元 117被下层电池单元 118和束縛件 12共同限制, 而下层电池单元 118被上层电池单元 117和束縛件 12共同限制,所以在对接处 119的位置 处电池单元 11不会发生大的膨胀变形, 参照图 6所示, 在对接处 119的 位置, 上层电池单元 117和下层电池单元 118均没有发生大的膨胀变形。 而如图 7所示, 可以看出, 如果没有设置束縛件 12, 那么在上层电池 单元 117和下层电池单元 118的对接处 119, 则会发生严重的膨胀变形。
优选地, 如图 2至图 4所示, 电池单元 11的电池壳体 111 大致为长 方体结构, 电池壳体 111包括两个第一表面 111b和两个第二表面 111c。 每个电池单元 11 中的两个第二表面 111c沿水平方向 (例如, 箭头 A所指 的长度方向) 相互面对, 每个电池单元 11中的两个第一表面 111b沿竖直 方向 (箭头 C所指的方向) 相互面对。 其中, 第一表面 111b和第二表面 111c之间可通过直角过渡, 同样地, 第一表面 111b和第二表面 111c之间 也可通过圆弧曲面或多次折弯的曲面过渡。 优选地, 第一表面 111b 的面 积大于第二表面 11 lc的面积。
由于电池单元 11在充放电过程中还会在电池壳体 111内部产生气体, 产生的气体会对电池壳体 111施加作用力, 从而加剧电池壳体 111向外膨 胀。 由于本实施例的第一表面 111b的面积大于第二表面 111c的面积, 并 且电池单元 11中的两个第一表面 111b沿竖直方向相互面对, 因此产生的 气体对电池壳体 111施加最大作用力的方向也是朝向竖直方向。 相比于现 有技术, 进一步减少了电池模组 1的沿水平方向的膨胀力。
优选地,上层电池单元 117的一个第二表面 111c和下层电池单元 118 的一个第二表面 11 lc分别通过胶粘剂粘接固定于束縛件 12的一个侧面。 由此, 通过一个束縛件 12 同时将上层电池单元 117和下层电池单元 118 固定束縛。
优选地, 束縛件 12的两个侧面分别与相邻两个电池单元组件 11a固 定, 上述胶粘剂可以是结构胶, 束縛件 12通过结构胶与电池单元组件 11a 固定连接。 通过设置结构胶来实现固定, 对电池单元 11 膨胀变形的限制 力更大, 进一步保证了防膨胀变形效果。
优选的是, 束縛件 12 的两个侧面分别与相邻两个电池单元组件 11a 固定, 这样能使得两侧的电池单元 11 受到的限制力均衡, 防膨胀变形量 更加均匀。
本申请中, 一个电池单元组件 11a包括两层电池单元 11, 在其他的实 施例中, 一个电池单元组件 11a也可以包括三层或更多层的电池单元 11。 当电池单元 11为三层或更多层时, 束縛件 12可以是一个整体件将多层电 池单元 11 覆盖固定, 也可以是多个分体结构, 多个分体结构将相邻两层 电池单元 11的对接处 119覆盖。束縛件 12可以仅仅覆盖在上述对接处 119 的位置, 优选的是, 本实施例中, 束縛件 12将电池单元组件 11a之间相 对的面完全覆盖, 即束縛件 12将上层电池单元 117的一个第二表面 111c 和下层电池单元 118的一个第二表面 111c完全覆盖。 当束縛件 12将上层 电池单元 117和下层电池单元 118的侧面完全覆盖时, 由于束縛件 12与 电池单元 11之间的结合面积更大, 束縛件 12抗拉扯的作用力更大, 防膨 胀变形效果更好。
束縛件 12 可以是金属板, 其厚度满足设定的强度即可, 即在电池模 组 1 充放电过程中, 电池单元 11 发生膨胀的力不会将金属板拉断。 优选 的是, 束縛件 12 为铝板, 在满足强度需求的同时, 还能保证电池模组 1 的轻量化。
为了与电池单元 11的形状和结构匹配, 本实施例中, 束縛件 12为矩 形板。 这样, 在将电池模组 1装入下箱体 2与上箱盖 3之间的容置腔时, 束縛件 12不会与下箱体 2和上箱盖 3之间发生干涉。
进一步地, 为了避免电池模组 1在水平方向的膨胀, 本申请实施例提 供的电池模组 1还包括一对端板 15, 分别固定在多个电池单元 11的水平 方向的两端。 端板 15分别与位于水平方向的两端的电池单元组件 11a枯 接固定, 由此进一步限制电池模组 1在水平方向的膨胀, 扎带 16缠绕在 端板 15的外侧, 将端板 15与电池模组 1 固定。
以上所述仅为本申请的优选实施例而已, 并不用于限制本申请, 对于 本领域的技术人员来说, 本申请可以有各种更改和变化。 凡在本申请的精 神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本申请 的保护范围之内。

Claims

权 利 要 求 书
1、 一种电池模组, 包括束縛件以及沿水平方向排列的多个电池单元 组件, 所述电池单元组件包括沿竖直方向堆叠的上层电池单元和下层电池 单元;
所述上层电池单元和所述下层电池单元之间相互对接且形成对接处; 所述束縛件覆盖所述对接处, 所述束縛件位于相邻两个所述电池单元 组件之间, 所述束縛件与所述电池单元组件固定。
2、 根据权利要求 1 所述的电池模组, 其特征在于, 所述上层电池单 元和所述下层电池单元均包括电极组件和电池壳体, 所述电极组件容纳于 所述电池壳体内, 所述电极组件包括第一极片、 第二极片以及设置于所述 第一极片和所述第二极片之间的隔膜;
所述电极组件为卷绕式结构且为扁平状, 所述电极组件的外表面包括 两个扁平面, 两个所述扁平面沿所述竖直方向相互面对; 或, 所述电极组 件为叠片式结构, 所述第一极片、 所述隔膜和所述第二极片沿所述竖直方 向层叠。
3、 根据权利要求 2所述的电池模组, 其特征在于, 所述电池壳体包 括两个第一表面和两个第二表面, 所述第一表面的面积大于所述第二表面 的面积;
所述两个第二表面沿所述水平方向相互面对, 所述两个第一表面沿所 述竖直方向相互面对。
4、 根据权利要求 3所述的电池模组, 其特征在于,
所述上层电池单元的一个所述第二表面和所述下层电池单元的一个 所述第二表面分别通过胶粘剂粘接固定于所述束縛件的一个侧面。
5、 根据权利要求 4所述的电池模组, 其特征在于, 所述束縛件的两 个侧面分别与相邻两个所述电池单元组件固定。
6、 根据权利要求 4或 5所述的电池模组, 其特征在于, 所述胶粘剂 为结构胶。
7、 根据权利要求 4-6 中任一项所述的电池模组, 其特征在于, 所述 束縛件将所述上层电池单元的一个所述第二表面和所述下层电池单元的 一个所述第二表面完全覆盖。
8、 根据权利要求 1-7 中任一项所述的电池模组, 其特征在于, 所述 束縛件为金属板。
9、 根据权利要求 1-8 中任一项所述的电池模组, 其特征在于, 所述 电池模组还包括一对端板, 所述一对端板分别与位于水平方向的两端的电 池单元组件粘接固定。
10、 一种电池包, 包括下箱体和上箱盖, 所述下箱体和所述上箱盖连 接且形成容置腔,所述电池包还包括权利要求 1-9任一项所述的电池模组, 所述电池模组容纳于所述容置腔中。
PCT/CN2020/074570 2019-02-27 2020-02-09 电池模组及电池包 WO2020173291A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20763967.5A EP3796420B1 (en) 2019-02-27 2020-02-09 Battery module and battery pack
US17/129,629 US20210111458A1 (en) 2019-02-27 2020-12-21 Battery module and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920244527.7U CN209344217U (zh) 2019-02-27 2019-02-27 电池模组及电池包
CN201920244527.7 2019-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/129,629 Continuation US20210111458A1 (en) 2019-02-27 2020-12-21 Battery module and battery pack

Publications (1)

Publication Number Publication Date
WO2020173291A1 true WO2020173291A1 (zh) 2020-09-03

Family

ID=67762622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074570 WO2020173291A1 (zh) 2019-02-27 2020-02-09 电池模组及电池包

Country Status (4)

Country Link
US (1) US20210111458A1 (zh)
EP (1) EP3796420B1 (zh)
CN (1) CN209344217U (zh)
WO (1) WO2020173291A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384336A (zh) 2018-12-30 2020-07-07 宁德时代新能源科技股份有限公司 一种电池模块、电池包及车辆
CN209344217U (zh) * 2019-02-27 2019-09-03 宁德时代新能源科技股份有限公司 电池模组及电池包
KR20230106125A (ko) * 2021-12-29 2023-07-12 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 전지, 전기 장치, 전지의 제조 방법 및 제조 설비

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101809781A (zh) * 2007-09-27 2010-08-18 株式会社东芝 电池组
CN206541873U (zh) * 2017-03-21 2017-10-03 宁德时代新能源科技股份有限公司 电池模组
US20180108888A1 (en) * 2016-10-19 2018-04-19 Contemporary Amperex Technology Co., Limited Battery module
CN207517830U (zh) * 2017-12-13 2018-06-19 东莞市胜邦通讯配件科技有限公司 一种散热性能好的大容量聚合物锂电池
CN208507758U (zh) * 2018-06-06 2019-02-15 中航锂电(洛阳)有限公司 电池模组及其缓冲垫
CN209344217U (zh) * 2019-02-27 2019-09-03 宁德时代新能源科技股份有限公司 电池模组及电池包

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132786A1 (en) * 2014-03-06 2015-09-11 Unicell Llc Battery cells and arrangements
KR20170054031A (ko) * 2015-11-09 2017-05-17 삼성에스디아이 주식회사 배터리 팩
KR102317506B1 (ko) * 2017-04-10 2021-10-26 삼성에스디아이 주식회사 배터리 팩
WO2019123930A1 (ja) * 2017-12-18 2019-06-27 日立オートモティブシステムズ株式会社 電池モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101809781A (zh) * 2007-09-27 2010-08-18 株式会社东芝 电池组
US20180108888A1 (en) * 2016-10-19 2018-04-19 Contemporary Amperex Technology Co., Limited Battery module
CN206541873U (zh) * 2017-03-21 2017-10-03 宁德时代新能源科技股份有限公司 电池模组
CN207517830U (zh) * 2017-12-13 2018-06-19 东莞市胜邦通讯配件科技有限公司 一种散热性能好的大容量聚合物锂电池
CN208507758U (zh) * 2018-06-06 2019-02-15 中航锂电(洛阳)有限公司 电池模组及其缓冲垫
CN209344217U (zh) * 2019-02-27 2019-09-03 宁德时代新能源科技股份有限公司 电池模组及电池包

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3796420A4 *

Also Published As

Publication number Publication date
EP3796420B1 (en) 2022-10-12
CN209344217U (zh) 2019-09-03
EP3796420A1 (en) 2021-03-24
US20210111458A1 (en) 2021-04-15
EP3796420A4 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP7330227B2 (ja) フレキシブル電池
WO2020173291A1 (zh) 电池模组及电池包
JP6053227B2 (ja) 単一電極端子結合部を有する電池組合体
JP5345114B2 (ja) 二次電池
JP5058646B2 (ja) 二つ以上のユニットセルを備えた高容量電池セル
US9496537B2 (en) High-output, large-capacity battery pack
KR101789066B1 (ko) 복합 구조의 전극 조립체 및 상기 전극 조립체를 갖는 리튬이온 이차전지
WO2020238660A1 (zh) 电池单元及其制造方法、电池模组
EP2634831B1 (en) Pouch type secondary battery
JP7047220B2 (ja) 二次電池及びバスバーを含むバッテリーモジュール
WO2020140334A1 (zh) 一种电池单体组件、电池模块及电池包
JP2011155015A (ja) タブ−リード結合部の電極間抵抗差を最小化した電極組立体及びこれを有する電気化学セル
WO2020140745A1 (zh) 一种电池包及装置
JP2023502115A (ja) 二次電池、電池モジュール及び電池を電源として用いた装置
EP3972011A1 (en) Secondary battery
JP5633032B2 (ja) 二次電池
WO2024060403A1 (zh) 电池单体、电池、用电装置以及焊接设备
KR20130138110A (ko) 이차 전지 팩
JP2013004222A (ja) 角形電池及びその製造方法
JP6731157B2 (ja) 角型二次電池
CN217641482U (zh) 一种双芯包方形锂离子电池结构
KR20180122074A (ko) 최외곽 전극 및 내부 전극 상에 확장형 금속을 이용한 보강 구조를 갖는 플렉서블 전극 조립체
KR20180122073A (ko) 최외곽 전극 상에 확장형 금속을 이용한 보강 구조를 갖는 플렉서블 전극 조립체
KR102466867B1 (ko) 파우치형 전지모듈
WO2024114131A1 (zh) 电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020763967

Country of ref document: EP

Effective date: 20201216

NENP Non-entry into the national phase

Ref country code: DE