WO2020172927A1 - 弹簧探针 - Google Patents

弹簧探针 Download PDF

Info

Publication number
WO2020172927A1
WO2020172927A1 PCT/CN2019/078765 CN2019078765W WO2020172927A1 WO 2020172927 A1 WO2020172927 A1 WO 2020172927A1 CN 2019078765 W CN2019078765 W CN 2019078765W WO 2020172927 A1 WO2020172927 A1 WO 2020172927A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
flange
needle tube
spring
spring probe
Prior art date
Application number
PCT/CN2019/078765
Other languages
English (en)
French (fr)
Inventor
魏正鹏
Original Assignee
深圳市泰科汉泽精密电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市泰科汉泽精密电子有限公司 filed Critical 深圳市泰科汉泽精密电子有限公司
Priority to KR1020217030639A priority Critical patent/KR102653674B1/ko
Priority to US16/754,142 priority patent/US11719720B2/en
Priority to JP2021550695A priority patent/JP7337183B2/ja
Publication of WO2020172927A1 publication Critical patent/WO2020172927A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/0675Needle-like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2421Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means using coil springs

Definitions

  • the invention relates to the technical field of precision connection, in particular to a spring probe.
  • Spring probe also known as Pogo Pin
  • Spring probe is a spring probe formed by the three basic components of needle, needle tube and spring riveted by precision equipment. The end of the needle is inserted into the needle tube and acts on the spring force. Down, the needle can move axially along the needle tube.
  • the spring probe is a very fine probe, which can be very small in size. It is often used for precision connections in electronic products such as mobile phones, communications, automobiles, medical treatment, and aerospace.
  • the spring probe is connected in the circuit and plays the role of transmitting electrical signals. In order to maintain stability during the transmission of electrical signals, it is required that the needle tube and the needle must always be in electrical contact, otherwise the transmission impedance of electrical signals will increase, which may even cause signal interruption.
  • the tail end of the needle is usually an inclined surface structure.
  • the thrust of the spring on the needle has a component force that deviates from the axial direction of the needle.
  • the needle is in contact with the inner wall of the needle tube, so that electrical signals are mainly transmitted through the needle and the needle tube to ensure the stability and low impedance of the spring probe.
  • the disadvantage of the prior art is that when encountering a relatively large oscillation, the needle and the needle tube are disconnected, which causes signal interruption. With the application of 5G technology, higher requirements are placed on spring probes, which require low impedance and high stability.
  • a spring probe which includes a hollow needle tube, a needle whose tail end is stuck in the needle tube and can move along the axis of the needle tube, and is arranged between the front end of the needle and the inner bottom of the needle tube to align the needle.
  • a spring that exerts a pushing force.
  • the open end ring of the needle tube is provided with a plurality of elastic elastic pieces in the circumferential direction.
  • the inner side of the elastic piece is provided with a first flange to prevent the needle from being separated from the needle tube.
  • the first flange is pressed against the outer wall of the needle, and the outer wall of the tail end of the needle is provided with a second flange. Under the action of the spring, the second flange can be pressed against the first flange.
  • the beneficial effects are: the claw structure is used to restrain the needle, which can prevent the needle from falling out of the needle tube; the claw has elasticity, which makes the needle and the needle tube easy to assemble, and it is easy to realize mechanized assembly; the needle tube and the needle are in close contact, even in the communication equipment. When oscillating or shaking, the elastic force of the elastic sheet always exists, and the first flange and the needle can still maintain close contact, which is especially suitable for high-frequency and high-current communication equipment.
  • the first flange is an interference fit with the outer wall of the needle.
  • the first flange is pressed against the outer wall of the needle to achieve good electrical contact.
  • the inner edge of each section of the first flange perpendicular to the central axis of the needle tube is arc-shaped, and the diameter of the inner edge is smaller than the outer diameter of the outer wall of the needle.
  • the inner diameter of the first flange is smaller than the outer diameter of the outer wall of the needle, so that interference fit between the first flange and the outer wall of the needle can be realized.
  • the first flange is slightly deformed during the pressing process, and hugs the outer wall of the needle.
  • the inner and outer edges of each section of the elastic sheet perpendicular to the central axis of the needle tube are in a convex arc shape.
  • the radial cross-section of the open end is circular, and the open end is formed with a plurality of notches, and the notches divide the open end into a plurality of elastic pieces.
  • the elastic sheet is directly processed and formed on the circular needle tube, and the elastic sheet and the needle tube are an integral structure. The elastic sheet formed in this way is perpendicular to the central axis of the needle tube.
  • the material of the elastic sheet is beryllium copper.
  • Beryllium copper not only has good electrical conductivity, but also has high hardness and excellent elasticity.
  • the number of elastic sheets is not less than four.
  • the elastic sheet is directly formed by opening a gap at the open end of the needle tube, so the elastic sheet is in an arc shape. In order to make the elastic sheet deform radially outward, the width of the elastic sheet cannot be too large, that is, the number of elastic sheets cannot be too small.
  • the rear end of the first flange has a first inclined surface facing the inside of the needle tube
  • the front end of the second flange has a second inclined surface facing the front end of the needle.
  • the angle between the first inclined surface and the central axis of the needle tube is ⁇ , and the range of ⁇ is 35-55°, and the angle between the second inclined surface and the central axis of the needle is ⁇ , and the range of ⁇ is 35-55. °.
  • a third inclined surface facing the tail end of the needle is provided near the front end of the needle, the front end edge of the first flange is provided with a first rounded corner, and the first flange is located between the third inclined surface and the second flange.
  • the first flange abuts on the third inclined surface. Since the front edge of the first flange is provided with a first rounded corner, the first rounded corner can be Slide a small distance upwards on the third inclined surface, so that the third inclined surface slightly enlarges the inner diameter of the first flange.
  • the elastic sheet undergoes a certain elastic deformation, and the elastic force generated by the elastic sheet deformation further makes the first flange Pressing on the third inclined surface makes the electrical contact between the first flange and the third inclined surface or the needle closer.
  • the included angle between the third inclined surface and the central axis of the needle tube is ⁇ , and the range of ⁇ is 35-55°.
  • the needle is provided with a blind hole
  • the spring extends into the blind hole and the end of the spring is pressed against the bottom of the blind hole.
  • the blind hole can stabilize the spring and ensure that the spring can expand and contract along the axial direction.
  • the needle tube includes a sleeve and a plug, one end of the sleeve is provided with an elastic sheet, and the other end is clamped with the plug.
  • the outer wall of the plug is provided with ribs
  • the inner wall of the sleeve is provided with grooves
  • the front end of the plug extends into the sleeve and the ribs are clamped in the grooves.
  • the specific embodiment of the present invention adopts convex ribs and grooves to achieve mechanical continuity between the sleeve and the plug, and only a small amount of interference between the sleeve and the plug is required to ensure the sleeve and the plug. Electrical contact.
  • the tail end of the needle tube is provided with a rod extending along the axis of the needle tube and away from the open end.
  • the rod can be welded to the PCB board.
  • Fig. 1 is a schematic structural diagram of a specific embodiment of a spring probe provided by the present invention
  • FIG. 2 is a cross-sectional view of a specific embodiment of the spring probe provided by the present invention.
  • FIG. 3 is a partial cross-sectional view of the needle tube and needle clamping structure of a specific embodiment of the spring probe provided by the present invention
  • FIG. 4 is a schematic diagram of a state of a specific embodiment of the spring probe provided by the present invention when the needle tube and the needle are not clamped;
  • Fig. 5 is a schematic diagram of a state of a specific embodiment of the spring probe provided by the present invention during the clamping process of the needle tube and the needle;
  • Figure 6 is a schematic structural view of a specific embodiment of the needle tube provided by the present invention.
  • FIG. 7 is a partial cross-sectional view of the open end 4 of a specific embodiment of the needle tube provided by the present invention.
  • Figure 8 is a schematic structural view of a specific embodiment of the needle provided by the present invention.
  • Figure 9 is a schematic cross-sectional view of a specific embodiment of the needle provided by the present invention.
  • FIG. 10 is a cross-sectional view of another specific embodiment of the needle tube provided by the present invention.
  • FIG. 11 is a partial enlarged view of a cross-sectional view of another specific embodiment of the needle tube provided by the present invention.
  • FIG. 12 is a schematic structural view of a cross-sectional view of the elastic sheet of the needle tube provided by the present invention in the undeformed state of the first flange perpendicular to the central axis of the needle tube;
  • FIG. 13 is a schematic diagram of the structure when the first flange is in contact with the third inclined surface according to the specific embodiment of the present invention.
  • the needle 2 is defined as the front relative to the needle tube 1 and the needle 2 is defined as the rear relative to the needle 2.
  • Figure 1 is a schematic structural diagram of a specific embodiment of the spring probe provided by the present invention
  • Figure 2 is a cross-sectional view along the central axis of a specific embodiment of the spring probe provided by the present invention
  • Figure 3 is a partial cross-sectional view of the needle tube 1 and the needle 2 clamping structure of a specific embodiment of the spring probe provided by the present invention.
  • the spring probe includes a hollow needle tube 1, a needle 2 and a spring 3.
  • the tail end of the needle 2 is stuck in the needle tube 1 and the needle 2 can move axially along the needle tube 1, and the spring 3 It is arranged between the front end of the needle 2 and the inner bottom of the needle tube 1 to apply a pushing force to the needle 2.
  • the open end 4 of the needle tube 1 is provided with a plurality of elastic pieces 5 in the circumferential direction, and the inside of the elastic piece 5 is provided with the needle 2 and the needle tube 1
  • the needle tube 1 is preferably a hollow round tube with one end open and the other end closed.
  • One end of the spring 3 is against the inner bottom of the needle tube 1, and the other end is against the needle 2.
  • the tip of the needle 2 extends out of the needle tube 1.
  • the needle 2 can overcome the thrust of the spring 3 and move into the needle tube 1.
  • the spring 3 moves the needle 2 towards The needle tube 1 is pushed out.
  • the elastic sheet 5 is located at the open end 4 and extends along the axial direction of the needle tube 1, and a plurality of elastic sheets 5 are arranged at intervals.
  • a plurality of elastic sheets 5 are annularly arranged at the open end 4, a first flange 7 is arranged inside the elastic sheet 5, and the plurality of elastic sheets 5 and the plurality of first flanges 7 form a structure similar to a claw, the needle 2
  • the tail end extends into the claw, and under the push of the spring 3, the second flange 8 can abut on the first flange 7, which can prevent the needle 2 from falling out of the needle tube 1.
  • the elastic sheet 5 always maintains the elastic deformation outward along the radial direction of the needle tube 1.
  • the elastic force generated by the elastic deformation of the elastic sheet 5 presses the first flange 7 against the outer wall of the needle 2, that is, the first flange 7 and the needle 2 always maintain close contact, so that the needle tube 1 and the needle 2 always maintain electrical conduction .
  • the first flange 7 in order to press the first flange 7 against the outer wall of the needle 2, the first flange 7 is in interference fit with the outer wall of the needle 2.
  • the root of the elastic piece 5 is fixed.
  • the elastic piece 5 will deform radially outward along the needle tube 1.
  • FIG. 12 is a schematic structural diagram of a cross-sectional view of the first flange 7 perpendicular to the central axis of the needle tube 1 when the elastic sheet 5 is not deformed.
  • the orientation close to the central axis of the needle tube 1 as inside and the orientation away from the central axis of the needle tube 1 as outside.
  • the inner edge of each section of the first flange 7 perpendicular to the central axis of the needle tube 1 is arc-shaped, and the diameter of the inner edge is smaller than that of the needle 2.
  • the outer diameter of the outer wall makes the first flange 7 and the outer wall of the needle 2 interference fit.
  • the shape of the needle 2 is thick at both ends and thin in the middle. Therefore, the diameter of the inner edge of each section perpendicular to the central axis of the needle tube 1 of the first flange 7 is smaller than the outer diameter of the outer wall of the middle part of the needle 2. Since the inner edge of the first flange 7 is arc-shaped, the outer wall of the needle 2 is cylindrical. When the inner side of the first flange 7 contacts the outer wall of the needle 2, under the elastic force of the elastic sheet 5, the first flange 7 will also form a small amount of elastic deformation and generate a certain amount of elastic force, and the direction of the elastic force is roughly along the radial direction.
  • the component force of the elastic force makes the first flange 7 hug the outer wall of the needle tube 2 and further make the first flange 7 In close contact with the needle 2.
  • the greater the elastic force of the elastic sheet 5 the greater the amount of micro-deformation of the first flange 7.
  • the more contact points between the first flange 7 and the outer wall of the needle 2 are, and the contact is tighter at the same time, which improves the needle tube 1.
  • the stability of the electrical connection with the needle 2 reduces the impedance.
  • the amount of interference can be appropriately increased in the art as needed, that is, the difference between the outer diameter of the outer wall of the needle 2 and the inner diameter of the first flange 7 can be increased to increase the deformation of the elastic sheet 5, and thereby The first flange 7 is brought into closer contact with the needle 2.
  • the elastic deformation of the elastic sheet 5 is caused by the interference fit between the first flange 7 and the outer wall of the needle 2, for the spring probe provided by the specific embodiment of the present invention, even if there is a large vibration or shaking, The elastic force of the elastic sheet 5 always exists, and the first flange 7 and the needle 2 can still maintain close contact. Under normal circumstances, the size of the elastic piece 5 is small. Relative to the thrust of the spring 3, the pressure of the first flange 7 generated by the elastic piece 5 on the needle 2 is not enough to prevent the spring 3 from pushing the needle 2 to move. Therefore, even if a plurality of first flanges 7 surround the outer wall of the needle 2, the spring 3 does not affect the axial movement of the needle 2.
  • the specific embodiment of the present invention provides a method for forming the elastic sheet 5 and the first flange 7.
  • An annular flange is formed on the inner wall of the open end 4 of the needle tube 1 in advance, and then the open end 4 of the needle tube 1 is formed by machining equipment.
  • a plurality of notches 6 extending along the axial direction of the needle tube 1 are formed, and the notches 6 divide the open end 4 into a plurality of elastic pieces 5. Since the open end 4 is in the shape of a circular tube, the inner and outer edges of the cross-sectional surfaces perpendicular to the central axis of the needle tube 1 of the elastic sheet 5 formed in this manner in an undeformed state are convexly curved.
  • the needle tube 1 is made of metal material, so the elastic sheet 5 can be elastically deformed when subjected to a certain limit of external force.
  • the elastic force of the elastic sheet 5 is related to factors such as the material of the elastic sheet 5, the amount of interference between the first flange 7 and the needle 2, the height of the elastic sheet 5, the width of the elastic sheet 5, and the thickness of the elastic sheet 5.
  • the material of the elastic sheet 5 is beryllium copper, which not only has good electrical conductivity, but also has high hardness and excellent elasticity.
  • the material of the elastic sheet 5 is stainless steel. The advantage of the stainless steel material is that it has good elasticity, but its conductivity is slightly poor.
  • the elastic sheet 5 is formed with a notch directly at the open end 4 of the needle tube 1, so the elastic sheet 5 is in an arc shape.
  • the width of the elastic sheet 5 cannot be too large. Large, that is, the number of elastic sheets 5 cannot be too small.
  • the number of elastic sheets 5 is related to the diameter of the needle tube 1. The larger the diameter of the needle tube 1, the more elastic sheets 5 are needed. Preferably, the number of elastic sheets 5 is not less than four.
  • FIG. 6 is a schematic structural diagram of a specific embodiment of the needle tube 1 provided by the present invention
  • FIG. 7 is a partial cross-sectional view of the open end 4 of a specific embodiment of the needle tube 1 provided by the present invention
  • 8 is a schematic structural view of a specific embodiment of the needle 2 provided by the present invention
  • FIG. 9 is a schematic cross-sectional view of a specific embodiment of the needle 2 provided by the present invention.
  • the rear end of the first flange 7 has a first inclined surface 9 facing the inside of the needle tube 1, and the front end of the second flange 8 has a second inclined surface 10 facing the front end of the needle 2.
  • the first inclined surface 9 is in contact with the second inclined surface 10, and electrical conduction between the needle 2 and the needle tube 1 can be realized.
  • the included angle between the first inclined surface 9 and the central axis of the needle tube 1 is ⁇ , and the range of ⁇ is 35-55°.
  • the value of ⁇ is 40-50°. More preferably, the value of ⁇ is 45°.
  • the angle between the second inclined surface 10 and the central axis of the needle 2 is ⁇ , and the range of ⁇ is 35-55°.
  • the value of ⁇ is 40-50°. More preferably, the value of ⁇ is 45°.
  • a third inclined surface 19 facing the tail end of the needle 2 is provided near the front end of the needle 2, the front edge of the first flange 7 is provided with a first rounded corner 17, and the first flange 7 is located on the third Between the inclined surface 19 and the second flange 8.
  • the angle between the third inclined surface 19 and the central axis of the needle tube 1 is ⁇ , and the range of ⁇ is 35-55°. More preferably, the included angle is 40-50°. More preferably, the included angle is 45°.
  • the first flange 7 can move on the outer wall of the needle 2 between the third inclined surface 19 and the second flange 8.
  • the third inclined surface 19 defines the stroke of the needle 2 to retract.
  • FIG. 13 is a schematic cross-sectional view when the first flange 1 and the third inclined surface 19 are in contact with each other according to the specific embodiment of the present invention.
  • the first flange 7 abuts on the third inclined surface 19. Since the front edge of the first flange 7 is provided with a first rounded corner 17, A rounded corner 17 can slide a small distance along the third inclined surface 19, so that the third inclined surface 19 slightly enlarges the inner diameter of the first flange 7.
  • the elastic sheet 5 is elastically deformed, and the elastic force generated by the elastic sheet 5 deformation Furthermore, the first flange 7 is pressed against the third inclined surface 19, so that the electrical contact between the first flange 7 and the third inclined surface 19 or the needle 2 is closer.
  • the outer edge of the tail end of the needle 2 is provided with a second rounded corner 18.
  • the first rounded corner 17 and the second rounded corner 18 enable the tail end of the needle 2 to enter the needle tube 1 smoothly.
  • the needle 2 is provided with a blind hole 11, the spring 3 extends into the blind hole 11 and the end of the spring 3 is pressed against the bottom of the blind hole 11.
  • the blind hole 11 extends from the tail end of the needle 2 to the front end of the needle 2 along the axial direction of the needle 2.
  • the blind hole 11 can stabilize the spring 3 and ensure that the spring 3 can expand and contract along the axial direction.
  • FIG. 10 is a cross-sectional view of another specific embodiment of the needle tube 1 provided by the present invention.
  • Fig. 11 is an enlarged view of a cross-sectional view of another specific embodiment of the needle tube 1 provided by the present invention.
  • the needle tube 1 includes a sleeve 12 and a plug 13, one end of the sleeve 12 is provided with an elastic sheet 5, and the other end is clamped with the plug 13.
  • the outer wall of the plug 13 is provided with a rib 14, the inner wall of the sleeve 12 is provided with a groove 15, the front end of the plug 13 extends into the sleeve 12 and the rib 14 is clamped in the groove 15.
  • both the rib 14 and the groove 15 are ring-shaped.
  • the sleeve 12 is a round tube or cylinder with open ends, and the plug 13 closes one end of the sleeve 12.
  • the needle tube 1 adopts a segmented design, which is divided into two parts, a sleeve 12 and a plug 13. This design can reduce the requirement of the needle tube 1 on processing equipment.
  • the sleeve 12 and the plug 13 can be processed by four-axis CNC machining equipment, while the integrated design usually requires a more costly five-axis CNC processing equipment to complete the processing, so the segmented design Reduce the investment of processing equipment.
  • the elastic sheet 5 is formed by directly processing the notch 6 on the open end 4 of the needle tube 1. Therefore, the elastic sheet 5 is integrated with the needle tube 1, that is to say, the elastic sheet 5 and the needle tube 1 adopt the same Kind of material.
  • beryllium copper is used as the material for making the elastic sheet 5, but the price of beryllium copper is relatively high.
  • the sleeve 12 is made of beryllium copper with better elasticity but higher price
  • the plug 13 can be made of conductive materials with good conductivity but relatively low price, such as brass. The design reduces material costs.
  • the outer wall of the plug 13 and the inner wall of the sleeve 12 are interference fit, so that the sleeve 12 and the plug 13 are in close contact.
  • a large amount of interference is required in the absence of the rib 14 and the groove 15, in order to firmly fix the sleeve and the plug.
  • the disadvantage of using a larger amount of interference is that because the amount of interference is too large, the plug easily expands the inner diameter of the sleeve, which causes the sleeve and the plug to not be tightly combined, resulting in the expansion of the impedance between the sleeve and the plug. It may even cause the sleeve and the plug to fall off.
  • the mechanical connection is mainly realized by the concave-convex fit between the rib 14 and the groove 15, and only a small amount of interference between the sleeve 12 and the plug 13 is required to ensure that the sleeve 12 and the plug 13 Good electrical contact between 13.
  • the tail end of the needle tube 1 has a rod 16 which extends along the axis of the needle tube 1 and away from the open end 4.
  • the rod 16 can be welded to the PCB board.
  • Figure 4 is a schematic diagram of a state when the needle tube 1 and the needle 2 are not clamped in a specific embodiment of the spring probe provided by the present invention
  • Figure 5 The spring probe provided by the present invention
  • the second flange 8 will face the first flange. 7 Apply pressure to elastically deform the elastic sheet 5 toward the periphery of the open end 4, causing the jaws to expand.
  • the second flange 8 passes over the first flange 7, the claws shrink, the first flange 7 presses the outer wall of the needle tube 2, and the thrust of the spring 3 presses the second flange 8 against the inner side of the first flange 7.
  • the pushing force of the spring 3 is not enough to cause the elastic sheet 5 to undergo a large deformation, which causes the needle 2 to be separated from the needle tube 1.
  • the spring probe provided by this embodiment is easy to realize mechanized assembly, and the assembly efficiency is particularly important for a product with huge output such as the spring probe.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

一种弹簧探针,包括中空的针管(1)、尾端卡在针管(1)内并能沿着针管(1)轴向移动的针头(2)以及设置在针头(2)的前端与针管(1)内底部之间并对针头(2)施加推力的弹簧(3),针管(1)的开口端(4)环周向设有多个具有弹性的弹性片(5),弹性片(5)的内侧设有防止所述针头(2)与针管(1)脱离的第一凸缘(7),在弹性片(5)弹性变形所产生的弹性力的作用下,第一凸缘(7)压紧在所述针头(2)的外壁,针头(2)尾端的外壁设有第二凸缘(8),在弹簧(3)的作用下,第二凸缘(8)能够抵紧在第一凸缘(7)上。本弹簧探针阻抗小,针头与针管电性接触稳定,适合高频大电流信号传输,而且装配方便,有利于提高组装效率。

Description

弹簧探针 技术领域
本发明涉及精密连接技术领域,特别涉及一种弹簧探针。
背景技术
弹簧探针,又称为Pogo Pin,是一种由针头、针管以及弹簧三个基本部件通过精密设备铆压之后形成的弹簧式探针,针头的尾端插入到针管内,在弹簧推力的作用下,针头能够沿着针管轴向运动。弹簧探针是一个很精细的探针,体积可以做到非常小,常应用于手机、通讯、汽车、医疗、航空航天等电子产品中的精密连接。弹簧探针连接在电路中,起到传输电信号的作用。为了使电信号传输过程中保持稳定,要求针管与针头之间必须始终保持电接触,否则电信号传输阻抗增加,甚至会导致信号的中断。
为了使针头沿着轴向运动,针头与针管的内壁之间间隙配合。为了使针头与针管保持接触,在现有技术中,针头的尾端通常是斜面结构,当弹簧抵在斜面上时,弹簧对针头的推力存在偏离针头轴向的分力,使在弹簧探针工作时,针头与针管内壁接触,让电信号主要通过针头和针管传输,以确保弹簧探针的稳定及低阻抗。现有技术的缺陷在于,当遇到较大幅度的震荡时,针头与针管出现断开现象,造成信号的中断。随着5G技术的应用,对弹簧探针提出了更高的要求,要求弹簧探针低阻抗和高稳定性。
发明内容
根据本发明的一个方面,提供一种弹簧探针,包括中空的针管、尾端卡在针管内并能沿着针管轴向移动的针头以及设置在针头的前端与针管内底部之间并对针头施加推力的弹簧,针管的开口端环周向设有多个具有弹性的弹性片,弹性片的内侧设有防止针头与针管脱离的第一凸缘,在弹性片弹性变形所产生的弹性力的作用下,第一凸缘压紧在针头的外壁,针头尾端的外壁设有第二凸缘,在弹簧的作用下,第二凸缘能够抵紧在第一凸缘上。其有益效果是:采用卡爪结构约束针头,可以防止针头从针管中脱出;卡爪具有弹性,使针头与针管装配方便,容易实现机械化装配;针管与针头接触紧密,即使在通信设备大幅度的震荡或晃动时,弹性片的弹性力也始终存在,第一凸缘与针头仍然能保持紧密接触,尤其适合高频大电流的通信设备中。
在一些实施方式中,第一凸缘与针头的外壁干涉配合。使第一凸缘压紧在针头的外壁,实现良好的电接触。
在一些实施方式中,在弹性片未变形的状态下,第一凸缘的垂直于针管中心轴的各剖断面的内缘呈弧形,且内缘直径小于针头的外壁外径。第一凸缘的内缘直径小于针头的外壁外径,可实现第一凸缘与针头的外壁干涉配合。第一凸缘在压紧过程中产生微小变形,抱紧针头的外壁。
在一些实施方式中,在弹性片未变形的状态下,弹性片的垂直于针管中心轴的各剖断面的内缘和外缘呈外凸的弧形。
在一些实施方式中,开口端沿径向的剖断面呈圆形,开口端成型出多个缺口,缺口将开口端分割成多个弹性片。弹性片在圆形的针管上直接加工成型,弹性片与针管为一体结构,这种方式成型的弹性片垂直于针管中心轴的各剖断面的内缘和外缘呈外凸的弧形。
在一些实施方式中,弹性片的材料为铍铜。铍铜不仅导电性良好,而且硬度高且具有优良的弹性。
在一些实施方式中,弹性片的数量不少于4个。弹性片直接在针管的开口端开设缺口成型,因此弹性片呈弧形状,为了使弹性片能够产生径向向外的变形,弹性片的宽度不能太大,即弹性片的数量不能太少。
在一些实施方式中,第一凸缘的后端具有面向针管内部的第一斜面,第二凸缘的前端具有面向针头前端的第二斜面。当第二凸缘在抵紧第一凸缘上时,第一斜面与第二斜面之间面接触,使针管与针头之间实现电导通,降低了接触不良的风险。
在一些实施方式中,第一斜面与针管的中心轴的夹角为ɑ,ɑ的范围为35-55°,第二斜面与针头的中心轴的夹角为β,β的范围为35-55°。
在一些实施方式中,靠近针头前端位置设有面向针头尾端的第三斜面,第一凸缘的前端边缘设有第一圆角,第一凸缘位于第三斜面与第二凸缘之间。在一些工作高度相对较小应用场景中,在弹簧的推力作用下,第一凸缘抵在第三斜面上,由于第一凸缘的前端边缘设有第一圆角,第一圆角能够沿着第三斜面向上滑动微小的距离,使第三斜面将第一凸缘的内径略微撑大,相应地,弹性片发生一定的弹性变形,弹性片变形产生的弹力又进一步地使第一凸缘压紧在第三斜面上,使第一凸缘与第三斜面或针头之间的电性接触更加紧密。
在一些实施方式中,第三斜面与针管的中心轴的夹角为γ,γ的范围为35-55°。
在一些实施方式中,针头上设有盲孔,弹簧伸入到盲孔中且弹簧的端部抵紧在盲孔的底部。盲孔可以稳定弹簧,保证弹簧可以沿着轴向伸缩。
在一些实施方式中,针管包括套筒和堵头,套筒的一端设有弹性片,另一端与堵头卡接。
在一些实施方式中,堵头的外壁设有凸棱,套筒的内壁设有凹槽,堵头的前端伸入到套筒内且凸棱卡紧在凹槽中。本发明的具体实施方式采用凸棱与凹槽凹凸配合的方式实现套筒和堵头之间的机械连续,而套筒和堵头之间只需少量的过盈量以保证套筒与堵头的电性接触。
在一些实施方式中,针管的尾端设有沿着针管轴向并远离开口端延伸的杆。在将弹簧探针连接到PCB板上时,可以将杆与PCB板焊接连接。
附图说明
图1为本发明所提供的弹簧探针的一种具体实施方式的结构示意图;
图2为本发明所提供的弹簧探针的一种具体实施方式的剖视图;
图3本发明所提供的弹簧探针的一种具体实施方式的针管与针头卡接结构的局部剖视图;
图4为本发明所提供的弹簧探针的一种具体实施方式在针管与针头未卡接时的一种状态示意图;
图5本发明所提供的弹簧探针的一种具体实施方式在针管与针头卡接过程中的一种状态示意图;
图6为本发明所提供的针管的一种具体实施方式的结构示意图;
图7为本发明所提供的针管的一种具体实施方式的开口端4的局部剖面图;
图8为本发明所提供的针头的一种具体实施方式的结构示意图;
图9为本发明所提供的针头的一种具体实施方式的剖面示意图;
图10为本发明所提供的针管的另一种具体实施方式的剖面图;
图11为本发明所提供的针管的另一种具体实施方式的剖面图的局部放大图;
图12为本发明所提供的针管的弹性片在未变形状态下第一凸缘处垂直于针管的中心轴的剖断面的结构示意图;
图13为本发明的具体实施方式所提供的第一凸缘与第三斜面接触时的结构示意图。
具体实施方式
下面结合附图对本发明作进一步详细的说明。
为了便于描述本发明的具体实施方式,定义针头2相对于针管1为前,针管1相对于针头2为后。
参考图1-3,图1为本发明所提供的弹簧探针的一种具体实施方式的结构示意图;图2为本发明所提供的弹簧探针的一种具体实施方式沿着中心轴的剖视图;图3本发明所提供的弹簧探针的一种具体实施方式的针管1与针头2卡接结构的局部剖视图。
作为一种或多种具体的实施方式,弹簧探针包括中空的针管1、针头2及弹簧3,针头2的尾端卡在针管1内且针头2能沿着针管1轴向移动,弹簧3设置在针头2前端与针管1内底部之间并对针头2施加推力,针管1的开口端4环周向设有多个具有弹性的弹性片5,弹性片5的内侧设有防止针头2与针管1脱离的第一凸缘7,在弹性片5的弹性力的作用下,第一凸缘7压紧在针头2的外壁,针头2的尾端的外壁设有第二凸缘8,在弹簧3的作用下,第二凸缘8能够抵紧在第一凸缘7上。
在一些具体的实施方式中,针管1优选为一端开口且另一端封闭的中空圆管。弹簧3的一端抵在针管1的内底部,另一端抵在针头2上。针头2的前端伸到针管1外,当针头2受到足够大的轴向按压力时,针头2能克服弹簧3的推力而向针管1内运动,当除去按压力时,弹簧3将针头2向针管1外推。弹性片5位于开口端4且沿着针管1轴向延伸,多个弹性片5之间间隔设置。多个弹性片5环状地布置在开口端4,第一凸缘7设置在弹性片5的内侧,多个弹性片5和多个第一凸缘7形成类似于卡爪结构,针头2的尾端伸入到卡爪内,在弹簧3的推动下,第二凸缘8能够抵在第一凸缘7上,可以防止针头2从针管1中脱出。
在本发明的一些具体实施方式中,弹性片5始终保持沿着针管1的径向向外的弹性变形。弹性片5的弹性变形所产生的弹力将第一凸缘7压紧在针头2的外壁,即第一凸缘7与针头2始终保持紧密接触,使针管1与针头2之间始终保持电导通。
在本发明的一些具体实施方式中,为了使第一凸缘7压紧在针头2的外壁,第一凸缘7与针头2的外壁干涉配合。弹性片5的根部固定,当第一凸缘7与针头2的外壁干涉配合时,会使弹性片5产生沿着针管1径向向外的变形。
请参考图12,图12为弹性片5未变形状态下第一凸缘7处垂直于针管1的中心轴的剖断面的结构示意图。为了便于表述,定义靠近针管1中心轴的方位为内,远离针管1中心轴的方位为外。在本发明的一些具体实施方式中,在弹性片5未变形的状态下,第一凸缘7的垂直于针管1中心轴的各剖断面内缘呈弧形,且内缘的直径小于针头2的外壁外径,使第一凸缘7与针头2的外壁干涉配合。针头2形状为两端粗,中间细,因此第一凸缘7的垂直于针管1中心轴的各剖断面的内缘的直径小于针头2中间部分的外 壁外径。由于第一凸缘7的内缘呈弧形,针头2的外壁呈圆柱形,当第一凸缘7的内侧与针头2外壁接触时,在弹性片5弹性力的作用下,第一凸缘7也会形成微量的弹性变形并产生一定量的弹力,且弹力方向大致沿着径向,该弹力的分力使第一凸缘7抱紧针管2的外壁,进一步地使第一凸缘7与针头2紧密接触。同时,弹性片5的弹性力越大,则第一凸缘7的微变形量越大,相应地,第一凸缘7与针头2外壁的接触点越多,同时接触更加紧密,提高针管1与针头2之间的电连接的稳定性并降低了阻抗。在一些具体实施方式中,本领域内可以根据需要适当增加干涉量,即增加针头2的外壁外径与第一凸缘7的内缘直径的差值,来提高弹性片5的变形量,进而使第一凸缘7更紧密地与针头2接触。
由于弹性片5的弹性变形是第一凸缘7与针头2外壁之间的干涉配合而产生的,因此对于本发明的具体实施方式所提供的弹簧探针,即使出现大幅度的震荡或晃动,弹性片5的弹性力也始终存在,第一凸缘7与针头2仍然能保持紧密接触。正常情况下,弹性片5的尺寸小,相对于弹簧3的推力,由弹性片5的弹力所产生的第一凸缘7对针头2的压力还不足以阻止弹簧3推动针头2运动。因此,即使多个第一凸缘7环抱针头2外壁,也不影响弹簧3推动针头2轴向运动。
本发明的具体实施方式提供一种弹性片5及第一凸缘7的形成方式,预先在针管1的开口端4的内壁成型环状凸缘,再用机械加工设备在针管1的开口端4成型出多个沿着针管1轴向延伸的缺口6,缺口6将开口端4分割成多个弹性片5。由于开口端4呈圆管状,故这种方式成型的弹性片5在未变形状态下垂直于针管1中心轴的各剖断面的内缘和外缘呈外凸的弧形。
针管1由金属材料制成,因此弹性片5在受到一定限度的外力作用时能够产生弹性变形。弹性片5的弹性力大小与弹性片5的材质、第一凸缘7与针头2干涉量、弹性片5的高度、弹性片5的宽度以及弹性片5的厚度等因素有关。本领域内技术人员可以根据本发明的技术思路,通过有限次试验,选择合适的上述参数。
在本发明的一些具体实施方式中,弹性片5的材料为铍铜,铍铜不仅导电性良好,而且硬度高且具有优良的弹性。在本发明的另一些具体实施方式中,弹性片5的材料为不锈钢,不锈钢材料的优点在于弹性好,但其导电性略差。
在一些实施方式中,弹性片5直接在针管1的开口端4开设缺口成型,因此弹性片5呈弧形状,为了使弹性片5能够产生径向向外的变形,弹性片5的宽度不能太大,即弹性片5的数量不能太少。弹性片5的数量与针 管1的直径有关,针管1的直径越大,则需要更多的弹性片5。优选地,弹性片5的数量不少于4个。
参考图6-9,图6为本发明所提供的针管1的一种具体实施方式的结构示意图;图7为本发明所提供的针管1的一种具体实施方式的开口端4的局部剖面图;图8为本发明所提供的针头2的一种具体实施方式的结构示意图;图9为本发明所提供的针头2的一种具体实施方式的剖面示意图。
结合图3、图6-8,优选地,第一凸缘7的后端具有面向针管1内部的第一斜面9,第二凸缘8的前端具有面向针头2前端的第二斜面10。当第二凸缘8在抵紧第一凸缘7上时,第一斜面9与第二斜面10接触,能实现针头2与针管1之间电导通。优选地,第一斜面9与针管1的中心轴的夹角为ɑ,ɑ的范围为35-55°。优选地,ɑ的值为40-50°。更优选地,ɑ的值为45°。第二斜面10与针头2的中心轴的夹角为β,β的范围为35-55°。优选地,β的值为40-50°。更优选地,β的值为45°。
参考图7-8,优选地,靠近针头2前端位置设有面向针头2尾端的第三斜面19,第一凸缘7的前端边缘设有第一圆角17,第一凸缘7位于第三斜面19与第二凸缘8之间。第三斜面19与针管1的中心轴的夹角为γ,γ的范围为35-55°。更优选地,夹角为40-50°。更优选地,夹角为45°。当针头2伸缩时,第一凸缘7可以在第三斜面19与第二凸缘8之间的针头2外壁上移动。第三斜面19限定了针头2收缩的行程。请参考图13,图13为本发明的具体实施方式所提供的第一凸缘1与第三斜面19接触时的剖面示意图。在一些工作高度相对较小应用场景中,在弹簧3的推力作用下,第一凸缘7抵在第三斜面19上,由于第一凸缘7的前端边缘设有第一圆角17,第一圆角17能够沿着第三斜面19滑动微小的距离,使第三斜面19将第一凸缘7的内径略微撑大,相应地,弹性片5产生弹性变形,弹性片5变形产生的弹力又进一步地使第一凸缘7压紧在第三斜面19上,从而使第一凸缘7与第三斜面19或针头2之间的电性接触更加紧密。
作为一种或多种具体的实施方式,参考图8-9,针头2尾端的外边缘设有第二圆角18。第一圆角17和第二圆角18能使针头2尾端平滑地进入针管1。
结合图2和图9,优选地,针头2上设有盲孔11,弹簧3伸入到盲孔11中且弹簧3的端部抵紧在盲孔11的底部。盲孔11从针头2的尾端沿着针头2的轴向向针头2的前端延伸。盲孔11可以稳定弹簧3,保证弹簧3可以沿着轴向伸缩。
参考图10和图11,图10为本发明所提供的针管1的另一种具体实施方式的剖面图。图11为本发明所提供的针管1的另一种具体实施方式的剖 面图的放大图。优选地,针管1包括套筒12和堵头13,套筒12的一端设有弹性片5,另一端与堵头13卡接。具体地,堵头13的外壁设有凸棱14,套筒12的内壁设有凹槽15,堵头13的前端伸入到套筒12内且凸棱14卡紧在凹槽15中。优选地,凸棱14和凹槽15都呈环状。套筒12为两端敞口的圆管或圆筒,堵头13将套筒12的其中一端封闭。针管1采用分段式设计,即分为套筒12和堵头13两部分,该设计可以降低针管1对加工设备的要求。比如,在分段式设计中,套筒12和堵头13用四轴CNC加工设备就能完成加工,而一体式设计通常需要成本更高的五轴CNC加工设备完成加工,因此分段式设计减小了加工设备的投入。为了便于成型,在一些具体实施方式中,弹性片5通过在针管1的开口端4直接加工出缺口6形成,因此弹性片5与针管1为一体,也就是说弹性片5和针管1采用同种材质。在一些具体实施方式中,为了使弹性片5获得良好的弹性,采用铍铜作为制作弹性片5的材料,但是铍铜价格相对较高。在针管1分段式设计中,套筒12采用弹性较好但价格较高的铍铜,堵头13可以采用导电性好但价格相对较低的导电材料如黄铜等,相比于一体式设计降低了材料成本。为了保证电流能够从堵头13传导到套筒12,堵头13的外壁与套筒12的内壁过盈配合,使套筒12与堵头13紧密接触。在没有凸棱14和在凹槽15的情况下,为了牢固地将套筒与堵头固定,需要采用较大的过盈量。采用更大过盈量的缺陷在于,由于过盈量太大,堵头容易将套筒的内径撑大,导致套筒与堵头不能紧密结合,造成套筒与堵头之间的阻抗扩大,甚至会导致套筒与堵头脱落。在本发明的具体实施方式中,机械连接主要通过凸棱14与凹槽15的凹凸配合实现,而套筒12和堵头13之间只需少量的过盈量以保证套筒12与堵头13之间良好的电接触。
作为一种或多种具体实施方式,参考图6,针管1的尾端具有杆16,杆16沿着针管1轴向并远离开口端4延伸。在将弹簧探针连接到PCB板上时,可以将杆16与PCB板焊接连接。
参考图4-5,图4为本发明所提供的弹簧探针的一种具体实施方式在针管1与针头2未卡接时的一种状态示意图;图5本发明所提供的弹簧探针的一种具体实施方式在针管1与针头2卡接过程中的一种状态示意图。
在将针头2与针管1连接过程中,保持针头2与针管1同轴,并使针头2尾端相对地向针管1内部运动,在运动过程中,第二凸缘8会对第一凸缘7施加压力使弹性片5向着开口端4的四周弹性变形,导致卡爪扩张。当第二凸缘8越过第一凸缘7后,卡爪收缩,第一凸缘7压紧针管2外壁,弹簧3的推力将第二凸缘8抵紧在第一凸缘7的内侧。弹簧3的推力不足以使弹性片5发生大变形而导致针头2脱离针管1。本具体实施方式所提供 的弹簧探针容易实现机械化装配,组装效率对于弹簧探针这种产量巨大的产品尤其重要。
以上所述的仅是本发明的一些实施方式。对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (15)

  1. 弹簧探针,其特征在于,包括中空的针管(1)、尾端卡在所述针管(1)内并能沿着所述针管(1)轴向移动的针头(2)以及设置在所述针头(2)的前端与所述针管(1)内底部之间并对所述针头(2)施加推力的弹簧(3),所述针管(1)的开口端(4)环周向设有多个具有弹性的弹性片(5),所述弹性片(5)的内侧设有防止所述针头(2)与针管(1)脱离的第一凸缘(7),在所述弹性片(5)弹性变形所产生的弹性力的作用下,所述第一凸缘(7)压紧在所述针头(2)的外壁,所述针头(2)尾端的外壁设有第二凸缘(8),在所述弹簧(3)的作用下,所述第二凸缘(8)能够抵紧在所述第一凸缘(7)上。
  2. 根据权利要求1所述的弹簧探针,其特征在于,所述第一凸缘(7)与所述针头(2)的外壁干涉配合。
  3. 根据权利要求1所述的弹簧探针,其特征在于,在所述弹性片(5)未变形的状态下,所述第一凸缘(7)的垂直于针管(1)中心轴的各剖断面的内缘呈弧形,且内缘直径小于所述针头(2)的外壁外径。
  4. 根据权利要求1所述的弹簧探针,其特征在于,在所述弹性片(5)未变形的状态下,所述弹性片(5)的垂直于针管(1)中心轴的各剖断面的内缘和外缘呈外凸的弧形。
  5. 根据权利要求1所述的弹簧探针,其特征在于,所述开口端(4)沿径向的剖断面呈圆形,所述开口端(4)成型出多个缺口(6),所述缺口(6)将开口端(4)分割成多个弹性片(5)。
  6. 根据权利要求1所述的弹簧探针,其特征在于,所述弹性片(5)的材料为铍铜或不锈钢。
  7. 根据权利要求1所述的弹簧探针,其特征在于,所述弹性片(5)的数量不少于4个。
  8. 根据权利要求1所述的弹簧探针,其特征在于,所述第一凸缘(7)的后端具有面向针管(1)内部的第一斜面(9),第二凸缘(8)的前端具有面向针头(2)前端的第二斜面(10)。
  9. 根据权利要求8所述的弹簧探针,其特征在于,所述第一斜面(9)与针管(1)的中心轴的夹角为ɑ,ɑ的范围为35-55°,所述第二斜面(10)与针头(2)的中心轴的夹角为β,β的范围为35-55°。
  10. 根据权利要求1所述的弹簧探针,其特征在于,靠近所述针头(2)前端位置设有面向所述针头(2)尾端的第三斜面(19),所述第一凸缘(7)的前端边缘设有第一圆角(17),所述第一凸缘(7)位于所述第三斜面(19) 与第二凸缘(8)之间。
  11. 根据权利要求10所述的弹簧探针,其特征在于,所述第三斜面(19)与针头(2)的中心轴的夹角为γ,γ的范围为35-55°。
  12. 根据权利要求1所述的弹簧探针,其特征在于,所述针头(2)上设有盲孔(11),所述弹簧(3)伸入到所述盲孔(11)中且弹簧(3)的端部抵紧在所述盲孔(11)的底部。
  13. 根据权利要求1所述的弹簧探针,其特征在于,所述针管(1)包括套筒(12)和堵头(13),所述套筒(12)的一端设有所述弹性片(5),另一端与所述堵头(13)卡接。
  14. 根据权利要求13所述的弹簧探针,其特征在于,所述堵头(13)的外壁设有凸棱(14),所述套筒(12)的内壁设有凹槽(15),所述堵头(13)的前端伸入到所述套筒(12)内且所述凸棱(14)卡紧在所述凹槽(15)中。
  15. 根据权利要求1-14任一项所述的弹簧探针,其特征在于,所述针管(1)的尾端设有沿着所述针管(1)轴向并远离所述开口端(4)延伸的杆(16)。
PCT/CN2019/078765 2019-02-27 2019-03-19 弹簧探针 WO2020172927A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217030639A KR102653674B1 (ko) 2019-02-27 2019-03-19 스프링 프로브
US16/754,142 US11719720B2 (en) 2019-02-27 2019-03-19 Spring probe
JP2021550695A JP7337183B2 (ja) 2019-02-27 2019-03-19 スプリングプローブ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910146345.0 2019-02-27
CN201910146345.0A CN109787012B (zh) 2019-02-27 2019-02-27 弹簧探针

Publications (1)

Publication Number Publication Date
WO2020172927A1 true WO2020172927A1 (zh) 2020-09-03

Family

ID=66486428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078765 WO2020172927A1 (zh) 2019-02-27 2019-03-19 弹簧探针

Country Status (5)

Country Link
US (1) US11719720B2 (zh)
JP (1) JP7337183B2 (zh)
KR (1) KR102653674B1 (zh)
CN (1) CN109787012B (zh)
WO (1) WO2020172927A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009763A (zh) * 2020-01-17 2020-04-14 苏州华旃航天电器有限公司 一种弹性pin针接触机构
CN111473138A (zh) * 2020-04-28 2020-07-31 百强阀门集团有限公司 一种轨道式止回截止阀
CN111537869A (zh) * 2020-06-17 2020-08-14 深圳市容微精密电子有限公司 一种适用于大电流测试的探针测试底座
CN112636096B (zh) * 2020-12-09 2022-07-12 中国科学院合肥物质科学研究院 一种多通道电磁屏蔽电信号连接器
CN112230027A (zh) * 2020-12-18 2021-01-15 苏州和林微纳科技股份有限公司 一种高频同轴信号探针测试单元
CN113830445B (zh) * 2021-08-20 2023-01-13 广东邦普循环科技有限公司 固定组件及固定装置
JP1716912S (ja) * 2021-11-15 2022-06-08 電気的特性測定用プローブ
CN114434392B (zh) * 2021-12-28 2024-02-20 丹源医学科技(杭州)有限公司 一种电气连接件中斜圈弹簧的安装方法
CN116421369B (zh) * 2023-04-17 2024-05-14 宁波汉科医疗器械有限公司 一种骨环取出装置
CN116914465B (zh) * 2023-08-21 2024-02-02 东莞市燊瑞电子科技有限公司 一种耐久性调节式弹针
CN117109490B (zh) * 2023-10-23 2024-01-23 北京华力兴科技发展有限责任公司 一种x射线测厚仪探头及其固定装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0270276A1 (en) * 1986-11-14 1988-06-08 Advanced Scientific Corporation Circuit testing device
CN2563774Y (zh) * 2002-07-25 2003-07-30 莫列斯公司 压接式导电端子
US6696850B1 (en) * 2002-10-02 2004-02-24 Interconnect Devices, Inc. Contact probe with off-centered back-drilled aperture
CN204989256U (zh) * 2015-09-21 2016-01-20 国网冀北电力有限公司张家口供电公司 用于变电站蓄电池组检测的表笔
WO2017147761A1 (zh) * 2016-02-29 2017-09-08 华为技术有限公司 一种探针连接器单针及探针连接器
CN109121444A (zh) * 2016-03-08 2019-01-01 罗森伯格高频技术有限及两合公司 弹簧触销

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123975U (ja) * 1984-01-30 1985-08-21 日本電気ホームエレクトロニクス株式会社 接点ピン
KR100373152B1 (ko) 1999-11-17 2003-02-25 가부시키가이샤 아드반테스트 Ic 소켓 및 ic 시험 장치
JP3673153B2 (ja) 2000-08-10 2005-07-20 タイコエレクトロニクスアンプ株式会社 スプリングコンタクト
US7315176B2 (en) 2004-06-16 2008-01-01 Rika Denshi America, Inc. Electrical test probes, methods of making, and methods of using
CN200953400Y (zh) * 2006-09-06 2007-09-26 乔盟弹簧股份有限公司 探针式连接器改良结构
CN201149918Y (zh) * 2007-12-14 2008-11-12 东莞中探探针有限公司 弹簧式接触探针
US7507110B1 (en) * 2008-03-25 2009-03-24 Cheng Uei Precision Industry Co., Ltd. Probe connector
CN201247851Y (zh) * 2008-05-27 2009-05-27 育鼎精密工业股份有限公司 接触探针
US20100248558A1 (en) * 2009-03-27 2010-09-30 Yin Te-Hung Probe Connector
US7749032B1 (en) * 2009-06-25 2010-07-06 Cheng Uei Precision Industry Co., Ltd. Probe connector
CN201570650U (zh) * 2009-10-31 2010-09-01 富港电子(东莞)有限公司 探针式连接器
CN201570654U (zh) * 2009-11-20 2010-09-01 富港电子(东莞)有限公司 探针式连接器
CN202103215U (zh) * 2010-11-26 2012-01-04 富港電子(東莞)有限公司 探针连接器
CN202058917U (zh) * 2010-12-31 2011-11-30 富港电子(东莞)有限公司 探针连接器
CN202025900U (zh) * 2011-03-25 2011-11-02 富港电子(东莞)有限公司 探针连接器
US8066534B1 (en) * 2011-04-18 2011-11-29 Cheng Uei Precision Industry Co., Ltd. Probe connector
KR101817804B1 (ko) * 2011-08-03 2018-01-11 삼성전자주식회사 접촉 단자
JP5847576B2 (ja) 2011-12-29 2016-01-27 株式会社エンプラス プローブピン及び電気部品用ソケット
CN103022773B (zh) * 2012-12-17 2015-04-22 福立旺精密机电(中国)有限公司 探针式连接器
JP2018009790A (ja) 2016-07-11 2018-01-18 アルプス電気株式会社 スプリングコンタクトおよびスプリングコンタクトを使用したソケット
JP6909698B2 (ja) * 2017-10-05 2021-07-28 株式会社ヨコオ スプリングコネクタ
CN207368286U (zh) * 2017-10-16 2018-05-15 深圳市拓普联科技术股份有限公司 探针式连接器
CN107946813A (zh) * 2017-11-21 2018-04-20 东莞市星全工业有限公司 弹簧探针

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0270276A1 (en) * 1986-11-14 1988-06-08 Advanced Scientific Corporation Circuit testing device
CN2563774Y (zh) * 2002-07-25 2003-07-30 莫列斯公司 压接式导电端子
US6696850B1 (en) * 2002-10-02 2004-02-24 Interconnect Devices, Inc. Contact probe with off-centered back-drilled aperture
CN204989256U (zh) * 2015-09-21 2016-01-20 国网冀北电力有限公司张家口供电公司 用于变电站蓄电池组检测的表笔
WO2017147761A1 (zh) * 2016-02-29 2017-09-08 华为技术有限公司 一种探针连接器单针及探针连接器
CN109121444A (zh) * 2016-03-08 2019-01-01 罗森伯格高频技术有限及两合公司 弹簧触销

Also Published As

Publication number Publication date
US11719720B2 (en) 2023-08-08
US20210215741A1 (en) 2021-07-15
CN109787012B (zh) 2022-03-25
CN109787012A (zh) 2019-05-21
KR20210130203A (ko) 2021-10-29
KR102653674B1 (ko) 2024-04-01
JP2022523537A (ja) 2022-04-25
JP7337183B2 (ja) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2020172927A1 (zh) 弹簧探针
US5074809A (en) Ultraminiature high-frequency connection interface
US9172156B2 (en) Connector assembly having deformable surface
US8172593B2 (en) Cable connector expanding contact
US20110039448A1 (en) Coaxial Interconnect and Contact
US4072386A (en) Solid shell phonoconnectors
US4981445A (en) Inexpensive coaxial microwave connector with low loss and reflection, free of slotted-pin expansion problems
US3340495A (en) Ultra-high frequency connector
JPS60230383A (ja) 接点ばねソケツトの製造方法
JP2018088317A (ja) 同軸電気コネクタ及びその製造方法
CN103199397A (zh) 一种射频同轴连接器
JP2019110001A (ja) コネクタおよび端子の接続構造
US20210181236A1 (en) Spring probe with high stability
US11616325B2 (en) Low intermodulation radiofrequency coaxial connector
US6651326B2 (en) Compressive collar
US6299491B1 (en) RF connector clip ring
CN209692014U (zh) 弹簧探针
CN201303093Y (zh) 一种应用于同轴连接器的电接触装置
CN209641879U (zh) 弹性内导体连接器
JPS60187434A (ja) 金属管端部の外向きフレア成形工具及び外向きフレア成形方法
US5899754A (en) Coaxial connector
CN101404364A (zh) 一种应用于同轴连接器的电接触装置
US3533046A (en) Precision miniature sexless coaxial connector
US4920643A (en) Method of assembling electrical connector
CN210806064U (zh) 一种较大径向容差的射频连接器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550695

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217030639

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19916916

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.01.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19916916

Country of ref document: EP

Kind code of ref document: A1