WO2020172897A1 - 在拼接干涉仪中检测透镜面形的检测装置 - Google Patents

在拼接干涉仪中检测透镜面形的检测装置 Download PDF

Info

Publication number
WO2020172897A1
WO2020172897A1 PCT/CN2019/076923 CN2019076923W WO2020172897A1 WO 2020172897 A1 WO2020172897 A1 WO 2020172897A1 CN 2019076923 W CN2019076923 W CN 2019076923W WO 2020172897 A1 WO2020172897 A1 WO 2020172897A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
supporting
tested
detection device
detection
Prior art date
Application number
PCT/CN2019/076923
Other languages
English (en)
French (fr)
Inventor
甘大春
徐富超
贾辛
邢廷文
Original Assignee
中国科学院光电技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院光电技术研究所 filed Critical 中国科学院光电技术研究所
Priority to US16/626,278 priority Critical patent/US11268808B2/en
Publication of WO2020172897A1 publication Critical patent/WO2020172897A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0002Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
    • G01B5/0004Supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02029Combination with non-interferometric systems, i.e. for measuring the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • G01M11/0214Details of devices holding the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/04Optical benches therefor

Definitions

  • This application belongs to the field of optical inspection, and relates to a detection device suitable for detecting the surface shape of a lens in a splicing interferometer and a splicing interferometer including the detection device.
  • the stitching interferometer plans a mirror surface to be measured into multiple small sub-apertures, and measures the surface shape of the sub-apertures one by one, and then combines the surface shapes of the sub-apertures into the surface shape of the entire mirror through an algorithm.
  • An automatic splicing interferometer has been proposed to realize automatic splicing measurement of optical elements, but its detection accuracy is low, and it is generally only used as a process detection instrument in lens processing.
  • the main reason for its low accuracy is that in the stitching measurement process, the lens to be tested needs to be tilted and rotated to match the state of the reference lens or standard lens, and the tilt will change the force state of the lens to be tested, causing the lens to be tested Deformation, the amount of deformation produced by this kind of deformation is directly substituted into the detection result, which cannot achieve the purpose of high-precision detection.
  • the current splicing interferometer adopts the detection device to support the lens to be tested as follows: the detection device and the bottom surface of the lens to be tested adopt flexible support. Specifically, a flexible material (such as plasticine) is usually used to realize the axial direction of the lens to be tested. Support, the radial support of the detection device and the lens to be tested is achieved by wrapping tape.
  • this flexible support method cannot accurately measure the support force of the lens to be tested, so it cannot guarantee that this support method provides the same support force every time the surface shape is tested, so that the measurement is not repeatable; on the other hand, On the one hand, this flexible support method is different from the support method under the real working state of the lens to be tested. Therefore, the surface shape result obtained by using this support method is necessarily different from the surface shape under the real working state, so it cannot be guaranteed. The accuracy of the measurement results.
  • the support method of the lens to be tested by the detection device generally adopts the multi-point elastic support method evenly distributed around the bottom, through precise adjustment The support force of each elastic support point ensures that the force state of the lens to be tested is uniform and stable.
  • this kind of detection device with multi-point elastic support evenly distributed around the bottom cannot be used for the high-precision surface shape detection of the splicing interferometer. The key reason is that the splicing interferometer needs to be tilted and rotated during the inspection process.
  • the lens to be tested once the lens to be tested is tilted, it will cause the balance of the force of the lens to be tested to be broken under horizontal conditions, that is, the axial support force of the multi-point elastic support at the bottom of the detection device after tilting is the same as the axial support force in the horizontal state , And the axial force of the lens under test in the direction of the optical axis becomes smaller, causing the axial support force of the test device to be greater than the axial component of the lens under test, causing rigid displacement or surface changes of the lens under test. Affect the accuracy and repeatability of lens shape detection.
  • the present invention proposes a detection device for splicing interferometers to detect the surface shape of the lens.
  • the detection device can ensure that the force of the lens to be tested is uniform and stable during the detection process, and under different tilt angles of the lens to be tested , The force of the lens to be tested is always uniform and stable.
  • a detection device suitable for detecting the surface shape of a lens
  • the detection device comprising: a cylindrical detection frame, including a support boss provided circumferentially on the inner wall of the detection frame, The measuring lens is placed on the supporting boss; and a plurality of supporting units are installed at the bottom of the detecting frame in the circumferential direction of the detecting frame, and each supporting unit includes: a supporting mechanism configured to The detection frame is movable in the axial direction to support the lens to be tested in cooperation with the support boss; and a balance mechanism configured to provide a balance force that balances the force of the support mechanism to support the lens to be tested , So that when the axial direction of the detection frame is parallel and inclined with the direction of gravity of the lens to be tested, the axial supporting force of each support unit and each support boss to the lens to be tested All the same.
  • the balance mechanism includes: a counterweight; an adjustment rod, the counterweight is arranged on one end of the adjustment rod, and the support mechanism is installed on the other end of the adjustment rod; And a rotating shaft, the adjusting rod can rotate around the rotating shaft to achieve the tilt of the supporting unit; wherein the rotating shaft is located between the counterweight and the supporting mechanism, and the counterweight is configured to adjust the The counterweight changes the supporting force of the supporting mechanism to the lens to be tested relative to the balance force of the supporting mechanism.
  • the counterweight is adjustably disposed at one end of the adjusting rod and is configured to change the alignment of the support mechanism by adjusting the distance between the counterweight and the rotating shaft. Describe the supporting force of the lens to be tested.
  • the detection frame includes a plurality of mounting holes provided circumferentially at the bottom thereof, the adjustment rod is mounted to the bottom of the detection frame through the mounting holes, and the counterweight It is located outside the detection frame in the circumferential direction.
  • the supporting unit includes a supporting base, the rotating shaft is provided in the supporting base, and the supporting base is fixed on the detection frame.
  • the detection frame includes a main body part, a first extension part extending horizontally from the lower end of the main body part, and a vertical downward direction from an end of the first extension part away from the main body part.
  • An extended second extension portion, the first extension portion and the second extension portion form an accommodation space, and the support base is arranged in the accommodation space.
  • the mounting hole is formed on the second extension portion, and the adjusting rod is installed through the mounting hole.
  • the detection frame includes a plurality of injection holes arranged circumferentially on the main body portion of the detection frame, and positioning glue is injected into the injection holes to fix the lens to be tested in the radial direction.
  • the detection frame includes three support bosses evenly arranged circumferentially on the inner wall of the main body of the detection frame, and the three support bosses are located in the same plane.
  • a plurality of the supporting units are uniformly arranged at the bottom of the detection frame in the circumferential direction.
  • the support unit includes a fixing mechanism configured to fix the position of the counterweight on the adjustment rod.
  • the supporting surface of the supporting mechanism is coplanar with the supporting surface of the supporting boss.
  • a splicing interferometer including: the detection device according to any one of the foregoing embodiments; the interferometer, located above the lens to be tested of the detection device and configured to Measuring the surface shape of the lens to be measured; a mirror located between the interferometer and the lens to be measured and configured to guide the light emitted by the interferometer to the lens to be measured; and a control unit, and The interferometer, the reflecting mirror and the detection device are connected to send out control signals.
  • each support unit can measure and adjust the supporting force of the lens to be tested, it can ensure that the force state of the lens to be tested is consistent every time the surface shape of the lens to be tested is tested, so that the surface shape detection results are repeatable .
  • Figure 1a is a cross-sectional view of a detection device currently used for splicing interferometers to detect the surface shape of a lens.
  • Fig. 1b is a top view of the detecting device shown in Fig. 1a with the lens to be tested removed.
  • Fig. 2a is a cross-sectional view of a detection device used by a conventional interferometer to detect a surface shape.
  • Fig. 2b is a top view of the detecting device shown in Fig. 2a with the lens to be tested removed.
  • Figure 3a is a cross-sectional view of a detection device used by a splicing interferometer to detect the surface shape of a lens according to an embodiment of the present invention.
  • Fig. 3b is a top view of the detecting device shown in Fig. 3a after the lens to be tested is removed.
  • Fig. 4 is a partial enlarged view of the detection device shown in Fig. 3a, wherein the detection device includes a supporting unit.
  • Fig. 5a is a schematic diagram of the supporting force of the supporting unit of the lens to be tested in a horizontal state.
  • Fig. 5b is a schematic diagram of the supporting force of the lens to be tested by the supporting unit after the detection device shown in Fig. 3a is inclined at an angle of ⁇ .
  • Fig. 6 is a schematic diagram of a splicing interferometer according to an embodiment of the present invention.
  • the lens to be tested 201 the inspection frame 202,
  • Detection frame 302 support unit 303,
  • the lens support rod 3031 supports the base 3032,
  • the mirror 420 The mirror 420, the control unit 430.
  • Figure 1a is a cross-sectional view of a detection device currently used for splicing interferometers to detect the surface shape of a lens.
  • the detection device includes a lens to be tested 101, a detection frame 102, a plurality of axial support units 103 for axially supporting and fixing the lens to be tested 101, and a diameter for supporting and fixing the lens to be tested 101 radially.
  • Fig. 1b is a top view of the detecting device shown in Fig. 1a with the lens to be tested removed.
  • the axial support unit 103 is usually made of a certain flexibility and plasticity material (such as plasticine), and multiple points are evenly supported on the bottom surface of the entire lens to be tested; the radial support unit 104 is usually wound with tape In this way, the lens 101 to be tested and the detection frame 102 are radially supported and fixed.
  • a certain flexibility and plasticity material such as plasticine
  • this detection device structure is not suitable for lens surface shape detection, but only suitable for process detection in lens processing.
  • the axial support unit 103 using a material with certain flexibility and plasticity cannot accurately measure the supporting force of the lens 101 to be tested, which will cause the lens 101 to be tested every time the lens 101 to be tested is subjected to surface shape inspection.
  • the supporting forces are not the same, so the measurement results are not repeatable and cannot meet the accuracy requirements of the lens surface shape detection;
  • the bottom surface of the lens 101 to be tested is usually the working surface and cannot be used for support. It is to be tested under real working conditions.
  • the lens 101 is usually fixed by multi-point support around the bottom surface.
  • the bottom surface multi-point flexible support fixing method used for the surface shape detection of the lens under test 101 is different from the support method of the lens under test 101 in the real working state, so the bottom surface is flexible. There must be a difference between the surface shape result detected by the supporting lens and the surface shape in the real working state, and this difference is not allowed for the surface shape detection, and the accuracy of the measurement result cannot be guaranteed.
  • Fig. 2a is a cross-sectional view of a detection device used by a conventional interferometer to detect a surface shape.
  • the detection device includes a lens to be tested 201, a detection frame 202, three support bosses 203 evenly distributed in the circumferential direction of the inner wall of the test, and multiple elastic support units 204.
  • Fig. 2b is a top view of the detecting device shown in Fig. 2a with the lens to be tested removed. As shown in FIGS.
  • a plurality of elastic support units 204 are installed at the bottom of the detection frame 202, and the three support bosses 203 and the plurality of elastic support units 204 together form the support points evenly distributed in the circumferential direction at the bottom of the detection frame 202.
  • the lens 201 to be tested is supported and fixed by three supporting bosses 203 and a plurality of elastic supporting units 204 together.
  • the support force of the elastic support unit 204 of the lens to be tested 201 can be measured and adjusted by adjusting the amount of deformation of the elastic support unit 204, so as to finally ensure the support of each elastic support unit 204 of the lens to be tested 201 and each support boss 203 of the lens to be tested 201
  • the supporting forces are the same, and the axial support of the lens 201 to be tested by the detection device is a multi-point uniform support provided around the bottom surface.
  • This support method is suitable for high-precision surface shape detection: First, the support force of the lens 201 to be tested can be precisely measured and adjusted by this detection device, which can ensure that the surface shape detection process of the lens 201 to be tested is to be tested every time. The force state of the lens 201 remains the same, so the surface shape detection result is repeatable; secondly, the support mode of the test lens 201 is the multi-point uniform support provided by the periphery of the bottom surface, which is the same as the working state of the test lens 201 The support method is the same, so the surface shape detection result is accurate. However, the detection device used in this traditional interferometer is not suitable for splicing interferometers.
  • the splicing interferometer needs to tilt and rotate the lens to be tested during the surface shape detection process, once the detection device is tilted, the component force of the gravity of the lens to be tested along the optical axis of the lens will be reduced, but the elastic support unit will not support the lens to be tested. Change, which causes the detection device to have greater axial support force of the lens to be tested than the axial component of the gravity of the lens to be tested, resulting in displacement or deformation of the lens to be tested, which is not conducive to lens surface shape detection.
  • Fig. 3a is a cross-sectional view of a detection device used by a splicing interferometer to detect the surface shape of a lens according to an embodiment of the present invention
  • Fig. 3b is a top view of the detection device shown in Fig. 3a with the lens to be tested removed.
  • the detection device 300 includes a lens to be tested 301, a cylindrical detection frame 302, a plurality of supporting units 303 and a plurality of positioning glues 304.
  • the inner wall of the detection frame includes circumferentially distributed supporting bosses 3022, and the lens to be tested 301 is placed on the supporting bosses 3022.
  • the inner wall of the detection frame includes three support bosses 3022 evenly distributed in the circumferential direction, and the three support bosses are located in the same plane.
  • Fig. 4 is a partial enlarged view of the detection device shown in Fig. 3a.
  • the supporting unit 303 includes a supporting mechanism, a supporting base 3032, a rotating shaft 3033, an adjusting rod 3034, a counterweight 3035, and a fixing mechanism 3036.
  • the supporting mechanism includes a supporting rod 3031 that can be adjusted along the axial direction of the detection frame 302, and the end surface of the supporting rod 3031 is supported on the edge of the bottom surface of the lens 301 to be tested.
  • the rotating shaft 3033 is provided in the support base 3032 through a bearing, and the support base 3032 is fixed in the detection frame 302.
  • the counterweight 3035 is adjustably disposed at one end of the adjusting rod 3034 (the right end in FIG. 4) and can be adjusted radially along the adjusting rod 3034, and the supporting rod 3031 is installed at the other end of the adjusting rod 3034 ( The left end in FIG. 4), and the adjusting rod 3034 can freely rotate around the rotating shaft 3033.
  • the adjusting rod 3034 forms a lever structure with the rotating shaft 3033 as a fulcrum, and adjusting the balance force of the counterweight 3035 relative to the supporting rod 3031 can change the supporting force of the supporting rod 3031 to the lens 301 under test.
  • adjusting the position of the weight on the adjusting rod 3034 can change the supporting force of the supporting rod 3031 of the lens 301 to be measured.
  • adjusting the gravity of the weight 3035 can change the supporting force of the supporting rod 3031 of the lens 301 under test.
  • each supporting unit 303 of the lens to be tested 301 is the same as the supporting force of each supporting boss 3022 of the lens to be tested 301.
  • the lens to be tested 301 is supported by three supporting bosses 3022 and multiple counterweights.
  • the units 303 jointly constitute a multi-point uniform support around the bottom surface.
  • the supporting unit further includes a fixing mechanism 3036.
  • the fixing mechanism 3036 is arranged on the counterweight 3035, and when the counterweight 3035 is adjusted to a desired position on the adjustment rod, the fixing device 3036 is used to fix it at that position.
  • the fixing mechanism 3036 includes bolts.
  • the detection frame 302 includes a main body portion 3024, a first extension portion 3025 extending horizontally from the lower end of the main body portion, and a second extension portion 3026 extending vertically downward from an end of the first extension portion away from the main body portion.
  • the main body 3025 is provided with a plurality of injection holes 3021 in the circumferential direction, and the positioning glue 304 is injected into the injection holes 3021 to fix the lens to be tested in the radial direction.
  • the first extension portion 3025 and the second extension portion 3026 form an accommodation space, and the support base 3032 is disposed in the accommodation space.
  • a plurality of mounting holes 3023 are formed in the circumferential direction of the second extension portion 3026, and the adjusting rod 3034 passes through the mounting holes 3023 to mount the support unit 303 at the bottom of the detection frame 302.
  • the lens to be tested always maintains a balance of force, the lens to be tested will not undergo rigid body displacement and the surface shape of the lens to be tested changes little, so it can Ensure the repeatability and accuracy of surface shape detection.
  • the force state of the lens to be tested will be described below in conjunction with Figs. 5a and 5b.
  • the gravity of the lens to be tested 301 is Glens
  • the supporting force of each support unit 303 of the lens to be tested 301 is Fz
  • the gravity of the counterweight 3035 is Gzc
  • the length of the arm of the counterweight is L
  • the gravity of the lens to be tested 301 is equal to the resultant force of the supporting forces of the N supporting units 303 and the three supporting bosses 3022 of the lens to be tested 301.
  • the number N of supporting units 303 can be calculated according to the actual size of the lens to be tested.
  • the component force of gravity in the optical axis direction G'lens Glens*cos( ⁇ ) after the lens 301 to be tested is tilted at the angle ⁇ .
  • the direction of the optical axis of the lens 301 to be tested is always in a force-balanced state. Therefore, the use of the detection device structure of the present invention can ensure that the splicing interferometer is in the process of surface shape detection of the lens to be tested, no matter how the lens to be tested is tilted, the lens to be tested always maintains a balanced and uniform force.
  • the adjusting rod is configured to always be perpendicular to the supporting mechanism.
  • Fig. 6 is a schematic diagram of a splicing interferometer according to an embodiment of the present invention.
  • the splicing interferometer 400 includes an interferometer 410, a mirror 420, a control unit 430 and a detection device 300.
  • the detection device 300 is the detection device of any one of the foregoing embodiments of the present invention.
  • the interferometer 410 is arranged above the lens to be measured of the detection device, and the mirror 420 is located between the interferometer 410 and the lens to be measured.
  • the stitching interferometer includes two mirrors 420, but the application is not limited to this.
  • the light emitted by the interferometer 410 is guided by the mirror 420 to the lens to be measured.
  • the control unit 430 communicates with the interferometer 410, the mirror 420 and the detection device 300 to send control signals, thereby controlling the interferometer, the mirror and the detection device.
  • the detection device 300 can be used to adjust the lens to be tested to an appropriate position, and then the light emitted by the interferometer can be guided to the lens to be tested using a mirror, and then the surface shape of the sub-aperture can be measured; then the above process is repeated, Then the surface shape of the sub-aperture is combined into the surface shape of the entire mirror through an algorithm, thereby completing the surface shape measurement of the lens to be tested.

Abstract

一种适于检测透镜面形的检测装置(300)和包括该检测装置(300)的拼接干涉仪(400)。检测装置(300)包括:筒形的检测框架(302),包括在检测框架(302)的内壁周向设置的支撑凸台(3022),待测透镜(301)放置在支撑凸台(3022)上;和多个支撑单元(303),在检测框架(302)的周向方向上安装在检测框架(302)的底部;每个支撑单元(303)包括:支撑机构,配置成在检测框架(302)的轴向方向上可移动,以与支撑凸台(3022)协作共同支撑待测透镜(301);以及平衡机构,配置成提供与支撑机构支撑待测透镜(301)的力平衡的平衡力,使得在检测框架(302)的轴向方向处于与待测透镜(301)的重力方向平行和倾斜的情况下每个支撑单元(303)和每个支撑凸台(3022)对待测透镜(301)的轴向支撑力都相同。

Description

在拼接干涉仪中检测透镜面形的检测装置
相关申请的交叉引用
本申请要求于2019年2月26日提交的、申请号为201910141507.1、发明名称为“在拼接干涉仪中检测透镜面形的检测装置”的中国专利申请的优先权,该申请的全部内容在此通过引用并入本文。
技术领域
本申请属于光学检测领域,涉及一种适用于在拼接干涉仪中检测透镜面形的检测装置和包括该检测装置的拼接干涉仪。
背景技术
拼接干涉仪通过将一个待测镜面规划为多个小的子孔径,并逐个对子孔径测量面形,然后再将子孔径的面形通过算法组合成整个镜面的面形。已提出了一种自动拼接干涉仪,实现对光学元件的自动拼接测量,但其检测精度低,一般只作为镜片加工中的过程检测仪器。其精度低的最主要原因是在拼接测量过程中,需要倾斜和旋转待测透镜以匹配参考透镜或标准透镜的状态,而倾斜会使得待测透镜的受力状态发生改变,导致待测透镜发生变形,这种变形产生的变形量直接代入检测结果中,无法达到高精度的检测目的。
对于高精度透镜面形检测而言,待测透镜的面形检测的准确性和重复性与待测透镜在检测装置中的受力状态紧密相关。目前的拼接干涉仪采用的检测装置对待测透镜的支撑方式为:检测装置与待测透镜底面采用柔性支撑,具体来说,通常采用具有柔性的材料(如橡皮泥)实现待测透镜的轴向支撑,检测装置与待测透镜径向支撑通过缠绕胶带实现。然而,一方面,这种柔性的支撑方式对待测透镜的支撑力无法精确测量,所以无法保证每次面形检测时这种支撑方式都提供相同的支撑力,使得测量不具有重复性;另一方面,这种柔性的支撑方式与待测透镜的真实工作状态下的支撑方式不同,因此采用这种支撑方式所得到的面形结果与其在真实工作状态下的面形必然存在差异,所以无法保证测量结果的准确性。
在采用传统干涉仪检测透镜面形时,为了保证待测透镜在检测过程中受力均匀且稳定,检测装置对待测透镜的支撑方式一般采用底部周边均匀分布的多点弹力支撑方式,通过精密调整各个弹力支撑点的支撑力大小,保证待测透镜的受力状态均匀且稳定。但这种底部周边均匀分布的多点弹力支撑方式的检测装置并不能被用在拼接干涉仪的高精度面形检测上,关键的原因就在于拼接干涉仪在检测过程中需要倾斜和旋转待测透镜,待测透镜一旦发生倾 斜,就会导致水平条件下待测透镜受力平衡状态被打破,即倾斜后检测装置底部多点弹力支撑的轴向支撑力与水平状态时的轴向支撑力相同,而待测透镜重力在光轴方向上的轴向力变小,导致检测装置对待测透镜的轴向支撑力大于待测透镜重力轴向分量,引起待测透镜刚性位移或面形变化,严重影响透镜面形检测的准确性和重复性。
发明内容
为了解决上述问题,本发明提出了一种在拼接干涉仪检测透镜面形的检测装置,该检测装置可以保证待测透镜在检测过程中受力均匀稳定,且在待测透镜的不同倾斜角度下,待测透镜受力始终均匀稳定。
根据本发明的一个方面,提供了一种适于检测透镜面形的检测装置,所述检测装置包括:筒形的检测框架,包括在所述检测框架的内壁周向设置的支撑凸台,待测透镜放置在所述支撑凸台上;和多个支撑单元,在所述检测框架的周向方向上安装在所述检测框架的底部,每个支撑单元包括:支撑机构,配置成在所述检测框架的轴向方向上可移动,以与所述支撑凸台协作共同支撑所述待测透镜;以及平衡机构,配置成提供与所述支撑机构支撑所述待测透镜的力平衡的平衡力,使得在所述检测框架的轴向方向处于与所述待测透镜的重力方向平行和倾斜的情况下每个所述支撑单元和每个支撑凸台对所述待测透镜的轴向支撑力都相同。
根据本发明的一个示例性实施例,所述平衡机构包括:配重;调节杆,所述配重设置在所述调节杆的一端上,所述支撑机构安装在所述调节杆的另一端;以及转轴,所述调节杆能够围绕所述转轴旋转以实现所述支撑单元的倾斜;其中,所述转轴位于所述配重和所述支撑机构之间,所述配重配置成通过调节所述配重相对于所述支撑机构的平衡力而改变所述支撑机构对所述待测透镜的支撑力。
根据本发明的一个示例性实施例,所述配重可调节地设置在所述调节杆的一端并配置成通过调节所述配重与所述转轴之间的距离而改变所述支撑机构对所述待测透镜的支撑力。
根据本发明的一个示例性实施例,所述检测框架包括多个在其底部周向设置的安装孔,所述调节杆通过所述安装孔安装到所述检测框架的底部,并且所述配重在周向上位于所述检测框架的外侧。
根据本发明的一个示例性实施例,所述支撑单元包括支撑底座,所述转轴设置在所述支撑底座中,所述支撑底座固定在所述检测框架上。
根据本发明的一个示例性实施例,所述检测框架包括主体部、从主体部的下端水平延伸的第一延伸部以及从所述第一延伸部的远离所述主体部的一端竖直向下延伸的第二延伸部,所述第一延伸部与所述第二延伸部形成一容纳空间,所述支撑底座设置在所述容纳空间 中。
根据本发明的一个示例性实施例,所述安装孔形成在所述第二延伸部上,所述调节杆穿过所述安装孔安装。
根据本发明的一个示例性实施例,所述检测框架包括多个在其主体部上周向设置的注胶孔,定位胶注入到所述注胶孔中以在径向上固定所述待测透镜。
根据本发明的一个示例性实施例,所述检测框架包括在所述检测框架的主体部的内壁周向均匀设置的三个支撑凸台,三个所述支撑凸台位于同一平面内。
根据本发明的一个示例性实施例,多个所述支撑单元在周向上均匀地设置在所述检测框架的底部。
根据本发明的一个示例性实施例,所述支撑单元包括固定机构,所述固定机构配置成固定所述配重在所述调节杆上的位置。
根据本发明的一个示例性实施例,所述支撑机构的支撑面与所述支撑凸台的支撑面共面。
根据本发明的另一方面,提供了一种拼接干涉仪,包括:根据前述实施例中任一实施例所述的检测装置;干涉仪,位于所述检测装置的待测透镜的上方并配置成测量待测透镜的面形;反射镜,位于所述干涉仪和所述待测透镜之间并配置成将所述干涉仪发出的光线引导到所述待测透镜上;以及控制单元,与所述干涉仪、反射镜和检测装置相连通以发出控制信号。
与相关技术相比,本发明的优点在于:
1)由于每个支撑单元对待测透镜的支撑力都可测量和调节,可以保证每次对待测透镜进行面形检测的过程中待测透镜的受力状态一致,从而面形检测结果具有重复性。
2)由于支撑凸台和支撑单元对待测透镜的支撑方式与待测透镜使用状态下的支撑方式相同,所以可以保证面形检测结果的准确性。
3)由于采用支撑结构的支撑方式,不管待测透镜在检测过程中倾斜角度如何变化,待测透镜始终保持受力平衡,待测透镜不会发生刚体位移且待测透镜面形变化小,所以可以保证面形检测的重复性和准确性。
附图说明
本发明将参照附图来进一步详细说明,其中:
图1a为目前拼接干涉仪检测透镜面形所使用的检测装置的剖视图。
图1b为图1a所示的检测装置移除了待测透镜后的俯视图。
图2a为目前传统干涉仪检测面形所使用的检测装置的剖视图。
图2b为图2a所示的检测装置移除了待测透镜后的俯视图。
图3a为根据本发明的一个实施例的拼接干涉仪检测透镜面形所使用的检测装置的剖视图。
图3b为图3a所示的检测装置移除了待测透镜后的俯视图。
图4为图3a所示的检测装置的局部放大图,其中所述检测装置包括支撑单元。
图5a为水平状态下支撑单元对待测透镜的支撑力的示意图。
图5b为图3a所示的检测装置倾斜θ角后支撑单元对待测透镜的支撑力的示意图。
图6为根据本发明的一个实施例的拼接干涉仪的示意图。
附图标记说明:
待测透镜101,        检测镜框102,
轴向支撑单元103,    径向支撑单元104,
待测透镜201,        检测镜框202,
支撑凸台203,        弹性支撑单元204,
检测装置300,        待测透镜301,
检测框架302,        支撑单元303,
定位胶304,          注胶孔3021,
支撑凸台3022,       安装孔3023,
透镜支撑杆3031,    支撑底座3032,
转轴3033,          调节杆3034,
配重3035,          固定机构3036,
拼接干涉仪400,    干涉仪410,
反射镜420,         控制单元430。
具体实施方式
图1a为目前拼接干涉仪检测透镜面形所使用的检测装置的剖视图。如图1a所示,检测装置包括待测透镜101、检测框架102、用于轴向支撑固定待测透镜101的多个轴向支撑单元103、和用于径向支撑固定待测透镜101的径向支撑单元104。图1b为图1a所示的检测装置移除了待测透镜后的俯视图。如图1a和1b所示,轴向支撑单元103通常采用具有一定柔性和可塑性的材料(如橡皮泥),多点均匀支撑于整个待测透镜的底面;径向支撑单元104通常采用胶带缠绕的方式将待测透镜101与检测框架102进行径向支撑固定。
然而,这种检测装置结构不适用于透镜面形检测,只适合镜片加工中的过程检测。首先,采用具有一定柔性和可塑性的材料的轴向支撑单元103对待测透镜101的支撑力是无法精确测量的,这会导致每次对待测透镜101进行面形检测时待测透镜101所受到的支撑力都不相同,从而测量结果不具有重复性,无法满足透镜面形检测精度要求;其次,通常情况下待测透镜101的底面也是工作表面,不能用于支撑,在真实工作状态下待测透镜101通常采用底面周边多点支撑的方式固定,待测透镜101进行面形检测所采用的底面多点柔性支撑固定方式与待测透镜101在真实工作状态下的支撑方式不同,因此采用底面柔性支撑的透镜检测得到的面形结果与其在真实工作状态下的面形必然存在差异,而这种差异对于面形检测而言是不允许的,无法保证测量结果的准确性。
图2a为目前传统干涉仪检测面形所使用的检测装置的剖视图。如图2a所示,检测装置包括待测透镜201、检测框架202、在检测内壁周向均匀分布的3个支撑凸台203和多个弹性支撑单元204。图2b为图2a所示的检测装置移除了待测透镜后的俯视图。如图2a和2b所示,多个弹性支撑单元204安装于检测框架202底部,3个支撑凸台203与多个弹性支撑单元204在检测框架202底部共同构成周向均匀分布的支撑点。也就是说,待测透镜201由3个支撑凸台203和多个弹性支撑单元204共同支撑固定。弹性支撑单元204对待测透镜201的支撑力大小可以通过调整弹性支撑单元204的变形量测量并调节,最终保证各弹性支撑单元204对待测透镜201的支撑力和各支撑凸台203对待测透镜201的支撑力都相同,且检测装置对待测透镜201的轴向支撑为在底面周边提供的多点均匀支撑。
这种支撑方式适用于高精度面形检测:首先,这种检测装置对待测透镜201的支撑力是可以精密测量和调节的,这可以保证每次对待测透镜201进行面形检测过程中待测透镜201的受力状态保持一致,所以面形检测结果具有重复性;其次,检测装置对待测透镜201的支撑方式为底面周边提供的多点均匀支撑,这种支撑方式与待测透镜201工作状态下的支撑方式相同,所以面形检测结果具有准确性。但是这种传统干涉仪所使用的检测装置不适用于拼接干涉仪。因为拼接干涉仪在面形检测过程中需要倾斜和旋转待测透镜,检测装置一旦倾斜,待测透镜重力沿透镜光轴的分力会变小,但弹性支撑单元对待测透镜的支撑力不会变化,这就引起检测装置对待测透镜轴向支撑力大于待测透镜重力的轴向分力,从而导致待测透镜产生位移或变形,不利于透镜面形检测。
图3a为根据本发明的一个实施例的拼接干涉仪检测透镜面形所使用的检测装置的剖视图;图3b为图3a所示的检测装置移除了待测透镜后的俯视图。如图3a和3b所示,检测装置300包括待测透镜301、筒形的检测框架302、多个支撑单元303和多个定位胶304。在一个实施例中,检测框架的内壁包括周向分布的支撑凸台3022,待测透镜301放置在支撑凸台 3022上。如图3a和3b所示,检测框架的内壁包括3个周向均匀分布的支撑凸台3022,并且三个支撑凸台位于同一平面内。
图4为图3a所示的检测装置的局部放大图。如图4所示,支撑单元303包括支撑机构、支撑底座3032、转轴3033、调节杆3034、配重3035及固定机构3036。在一个实施例中,支撑机构包括支撑杆3031,可沿检测框架302的轴向调节,支撑杆3031的端面支撑于待测透镜301的底面边缘。在一个实施例中,转轴3033通过轴承设置在支撑底座3032中,支撑底座3032固定在检测框架302中。如图4所示,配重3035可调节地设置在调节杆3034的一端(图4中的右端)并可以沿所述调节杆3034径向调节,支撑杆3031安装在调节杆3034的另一端(图4中的左端),并且调节杆3034可绕转轴3033自由旋转。这样,调节杆3034以转轴3033为支点构成一个杠杆结构,调节配重3035相对于支撑杆3031的平衡力就可以改变支撑杆3031对待测透镜301的支撑力大小。在一个实施例中,调节配重在调节杆3034上的位置能够改变支撑杆3031对待测透镜301的支撑力大小。在另一个实施例中,调节配重3035的重力大小可以改变支撑杆3031对待测透镜301的支撑力大小。
在检测待测透镜的面形时,通过调节配重3035相对于支撑杆的平衡力(例如,调节配重在配重调节杆3034上的位置),保证所有支撑单元303对待测透镜301的支撑力都相同,且每个支撑单元303对待测透镜301的支撑力与每个支撑凸台3022对待测透镜301的支撑力相同,待测透镜301由3个支撑凸台3022和多个配重支撑单元303共同构成在底面周边的多点均匀支撑。
如图4所示,支撑单元还包括固定机构3036。在一个实施例中,固定机构3036设置在配重3035上,当配重3035被调节到位于调节杆上的期望位置后,利用固定装置3036将其固定于该位置。在一个实施例中,固定机构3036包括螺栓。
如图4所示,检测框架302包括主体部3024、从主体部的下端水平延伸的第一延伸部3025以及从第一延伸部的远离主体部的一端竖直向下延伸的第二延伸部3026。主体部3025在其周向设置有多个注胶孔3021,定位胶304注入到注胶孔3021中以在径向上固定所述待测透镜。第一延伸部3025和第二延伸部3026形成一容纳空间,支撑底座3032设置在所述容纳空间中。在第二延伸部3026的周向形成有多个安装孔3023,调节杆3034穿过安装孔3023从而将支撑单元303安装在检测框架302的底部。
在本申请的实施例中,不管待测透镜在检测过程中的倾斜角度如何变化,待测透镜始终保持受力平衡,待测透镜不会发生刚体位移且待测透镜面形变化小,所以可以保证面形检测的重复性和准确性。下面将结合图5a和5b来描述待测透镜的受力状态。
如图5a所示,待测透镜301的重力为Glens,每个支撑单元303对待测透镜301的支撑 力为Fz,配重3035的重力为Gzc,配重端的力臂长度为L,待测透镜端的力臂长度为l。由于最终3个支撑凸台3022和多个支撑单元303对待测透镜的支撑力都相同,根据力平衡的要求:Glens=(N+3)*Fz,其中N为支撑单元的数量。也就是说,待测透镜301的重力等于N个支撑单元303和3个支撑凸台3022对待测透镜301的支撑力的合力。根据杠杆原理,Fz*l=Gzc*L。所以Glens=(N+3)*Gzc*L/l。支撑单元303的数量N可以根据待测透镜的实际尺寸计算获得。
如图5b所示,待测透镜301倾斜θ角后重力在光轴方向的分力G’lens=Glens*cos(θ)。配重3035的重力在光轴方向的分力G’zc=Gzc*cos(θ),根据杠杆原理,Fz’*l=G’zc*L=Gzc*L*cos(θ)。在倾斜θ角后,N个支撑单元303和3个支撑凸台3022对待测透镜301的支撑力的合力为:(N+3)*Fz’=(N+3)*Gzc*L*cos(θ)/l=Glens*cos(θ)=G’lens。从该推导公式可知,待测透镜301倾斜θ角后,N个配重支撑单元303和3个支撑凸台3022对待测透镜301的支撑力的合力始终等于待测透镜301的重力在光轴方向上的分力。待测透镜301的光轴方向始终处于受力平衡状态。因此使用本发明的检测装置结构能保证拼接干涉仪在对待测透镜进行面形检测过程中,无论待测透镜如何倾斜,待测透镜始终保持受力平衡且受力均匀。在一个实施例中,在待测透镜301倾斜θ角的过程中,调节杆配置成始终与支撑机构保持垂直。
图6为根据本发明的一个实施例的拼接干涉仪的示意图。如图6所示,拼接干涉仪400包括干涉仪410、反射镜420、控制单元430以及检测装置300。检测装置300为本发明的上述实施例中的任一个实施例的检测装置。干涉仪410设置在所述检测装置的待测透镜的上方,反射镜420位于干涉仪410和所述待测透镜之间。在所示的实施例中,拼接干涉仪包括两个反射镜420,但本申请并不限于此。干涉仪410发出的光线被反射镜420引导到所述待测透镜上。控制单元430与干涉仪410、反射镜420和检测装置300相连通以发出控制信号,从而控制干涉仪、反射镜和检测装置。在测量时,可以先利用检测装置300将待测透镜调整到适当位置,然后利用反射镜将干涉仪发出的光线引导到待测透镜上,然后测量该子孔径的面形;接着重复上述过程,再将子孔径的面形通过算法组合成整个镜面的面形,从而完成了待测透镜的面形测量。
本领域的技术人员可以理解,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
虽然结合附图对本发明进行了说明,但是附图中公开的实施例旨在对本发明优选实施方式进行示例性说明,而不能理解为对本发明的一种限制。
虽然本总体发明构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。
应注意,措词“包括”不排除其它元件或步骤,措词“一”或“一个”不排除多个。

Claims (13)

  1. 一种适于检测透镜面形的检测装置,其特征在于:所述检测装置包括:
    筒形的检测框架,包括在所述检测框架的内壁周向设置的支撑凸台,待测透镜放置在所述支撑凸台上;和
    多个支撑单元,在所述检测框架的周向方向上安装在所述检测框架的底部,每个支撑单元包括:
    支撑机构,配置成在所述检测框架的轴向方向上可移动,以与所述支撑凸台协作共同支撑所述待测透镜;以及
    平衡机构,配置成提供与所述支撑机构支撑所述待测透镜的力平衡的平衡力,使得在所述检测框架的轴向方向处于与所述待测透镜的重力方向平行和倾斜的情况下每个所述支撑单元和每个支撑凸台对所述待测透镜的轴向支撑力都相同。
  2. 根据权利要求1所述的检测装置,其特征在于,所述平衡机构包括:
    配重;
    调节杆,所述配重设置在所述调节杆的一端上,所述支撑机构安装在所述调节杆的另一端;以及
    转轴,所述调节杆能够围绕所述转轴旋转以实现所述支撑单元的倾斜;
    其中,所述转轴位于所述配重和所述支撑机构之间,所述配重配置成通过调节所述配重相对于所述支撑机构的平衡力而改变所述支撑机构对所述待测透镜的支撑力。
  3. 根据权利要求2所述的检测装置,其特征在于,所述配重可调节地设置在所述调节杆的一端并配置成通过调节所述配重与所述转轴之间的距离而改变所述支撑机构对所述待测透镜的支撑力。
  4. 根据权利要求1-3中任一项所述的检测装置,其特征在于,所述检测框架包括多个在其底部周向设置的安装孔,所述调节杆通过所述安装孔安装到所述检测框架的底部,并且所述配重在周向上位于所述检测框架的外侧。
  5. 根据权利要求4所述的检测装置,其特征在于,所述支撑单元包括支撑底座,所述转轴设置在所述支撑底座中,所述支撑底座固定在所述检测框架上。
  6. 根据权利要求5所述的检测装置,其特征在于,所述检测框架包括主体部、从主体部的下端水平延伸的第一延伸部以及从所述第一延伸部的远离所述主体部的一端竖直向下延伸的第二延伸部,所述第一延伸部与所述第二延伸部形成一容纳空间,所述支撑底座设置在所述容纳空间中。
  7. 根据权利要求6所述的检测装置,其特征在于,所述安装孔形成在所述第二延伸部上,所述调节杆穿过所述安装孔安装。
  8. 根据权利要求6所述的检测装置,其特征在于,所述检测框架包括多个在其主体部上周向设置的注胶孔,定位胶注入到所述注胶孔中以在径向上固定所述待测透镜。
  9. 根据权利要求6所述检测装置,其特征在于,所述检测框架包括在所述检测框架的主体部的内壁周向均匀设置的三个支撑凸台,三个所述支撑凸台位于同一平面内。
  10. 根据权利要求9所述的检测装置,其特征在于,多个所述支撑单元在周向上均匀地设置在所述检测框架的底部。
  11. 根据权利要求1-3中任一项所述的检测装置,其特征在于,所述支撑单元包括固定机构,所述固定机构配置成固定所述配重在所述调节杆上的位置。
  12. 根据权利要求1-3中任一项所述的检测装置,其特征在于,所述支撑机构的支撑面与所述支撑凸台的支撑面共面。
  13. 一种拼接干涉仪,其特征在于,包括:
    根据权利要求1-12中任一项所述的检测装置;
    干涉仪,位于所述检测装置的待测透镜的上方并配置成测量待测透镜的面形;
    反射镜,位于所述干涉仪和所述待测透镜之间并配置成将所述干涉仪发出的光线引导到所述待测透镜上;以及
    控制单元,与所述干涉仪、反射镜和检测装置相连通以发出控制信号。
PCT/CN2019/076923 2019-02-26 2019-03-05 在拼接干涉仪中检测透镜面形的检测装置 WO2020172897A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/626,278 US11268808B2 (en) 2019-02-26 2019-03-05 Detection device for detecting lens surface in stitching interferometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910141507.1A CN109798840A (zh) 2019-02-26 2019-02-26 在拼接干涉仪中检测透镜面形的检测装置
CN201910141507.1 2019-02-26

Publications (1)

Publication Number Publication Date
WO2020172897A1 true WO2020172897A1 (zh) 2020-09-03

Family

ID=66561299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076923 WO2020172897A1 (zh) 2019-02-26 2019-03-05 在拼接干涉仪中检测透镜面形的检测装置

Country Status (3)

Country Link
US (1) US11268808B2 (zh)
CN (1) CN109798840A (zh)
WO (1) WO2020172897A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112504162B (zh) * 2020-12-04 2022-07-26 江苏鑫晨光热技术有限公司 一种定日镜面形快速解算系统及方法
CN114674254B (zh) * 2022-04-29 2023-03-24 南通爱唯家用纺织品有限公司 一种纺织布平整度检测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1818596A (zh) * 2005-02-08 2006-08-16 富士能株式会社 干涉仪的被测透镜支撑装置
US20100177322A1 (en) * 2009-01-14 2010-07-15 Canon Kabushiki Kaisha Measurement method and measurement apparatus
CN102788563A (zh) * 2012-08-31 2012-11-21 中国科学院光电技术研究所 一种在平面子孔径拼接测量中调整被测镜倾斜的装置和方法
CN102865809A (zh) * 2012-09-05 2013-01-09 中国科学院光电技术研究所 一种子孔径拼接干涉仪系统及测量光学镜片面形的方法
CN103575233A (zh) * 2013-11-20 2014-02-12 西安工业大学 大口径大相对孔径抛物面反射镜面形误差的检测方法
CN105423948A (zh) * 2015-12-14 2016-03-23 中国科学院长春光学精密机械与物理研究所 采用变形镜的拼接干涉检测非球面面形的装置及方法
CN108204789A (zh) * 2016-12-17 2018-06-26 中国科学院长春光学精密机械与物理研究所 用于检测大口径平面光学元件面形拼接的装置及检测方法
CN109341587A (zh) * 2018-11-28 2019-02-15 中国科学院光电技术研究所 拼接测量装置和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11259902A (ja) * 1998-03-06 1999-09-24 Toshiba Corp 光ディスク原盤記録装置および光ディスク原盤記録方法
JP4659465B2 (ja) * 2005-01-25 2011-03-30 キヤノン株式会社 振れ補正装置および光学機器
CN100365392C (zh) 2005-11-16 2008-01-30 中国科学院合肥物质科学研究院 基于数字跑道的田径训练信息采集和反馈系统
CN101887160B (zh) * 2010-06-30 2012-12-05 苏州大学 用于大口径空间光学反射镜加工的支撑系统
CN104142129B (zh) * 2014-07-18 2016-11-23 中国科学院长春光学精密机械与物理研究所 离轴三反非球面系统凸非球面次镜面形拼接检测方法
CN105423989A (zh) * 2015-12-21 2016-03-23 中国科学院长春光学精密机械与物理研究所 一种用于高精度光学元件面形检测的柔性支撑装置
CN105627947B (zh) * 2015-12-23 2018-04-06 中国科学院长春光学精密机械与物理研究所 一种旋转对称未知非球面面形误差的测量方法及其测量装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1818596A (zh) * 2005-02-08 2006-08-16 富士能株式会社 干涉仪的被测透镜支撑装置
US20100177322A1 (en) * 2009-01-14 2010-07-15 Canon Kabushiki Kaisha Measurement method and measurement apparatus
CN102788563A (zh) * 2012-08-31 2012-11-21 中国科学院光电技术研究所 一种在平面子孔径拼接测量中调整被测镜倾斜的装置和方法
CN102865809A (zh) * 2012-09-05 2013-01-09 中国科学院光电技术研究所 一种子孔径拼接干涉仪系统及测量光学镜片面形的方法
CN103575233A (zh) * 2013-11-20 2014-02-12 西安工业大学 大口径大相对孔径抛物面反射镜面形误差的检测方法
CN105423948A (zh) * 2015-12-14 2016-03-23 中国科学院长春光学精密机械与物理研究所 采用变形镜的拼接干涉检测非球面面形的装置及方法
CN108204789A (zh) * 2016-12-17 2018-06-26 中国科学院长春光学精密机械与物理研究所 用于检测大口径平面光学元件面形拼接的装置及检测方法
CN109341587A (zh) * 2018-11-28 2019-02-15 中国科学院光电技术研究所 拼接测量装置和方法

Also Published As

Publication number Publication date
CN109798840A (zh) 2019-05-24
US20210381827A1 (en) 2021-12-09
US11268808B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
CN105698713B (zh) 一种标定精密轴系回转轴线的装置及标定方法
CN104317030B (zh) 利用轴向色差进行快速辅助定心的光学装置
WO2020172897A1 (zh) 在拼接干涉仪中检测透镜面形的检测装置
CN109751938B (zh) 空间相机用大口径齿形反射镜组件高精度装调方法及装置
CN205079744U (zh) 一种离轴抛物面镜面形精度的检测装置
CN102384730B (zh) 一种激光小角度测量装置及回转轴系
CN210773918U (zh) 非接触式透镜中心厚度测量装置
WO2020094160A1 (zh) 微透镜中心仪
US11879995B2 (en) Laser tracker calibration system and methods
CN111175028A (zh) 小口径透镜的偏心检测装置及方法
CN215373881U (zh) 一种多孔同轴度检测设备
JP2005127914A (ja) 干渉計装置の被検レンズ載置台
CN112504635B (zh) 一种光楔式空间极高精度指向测量仪器标定装置
CN109959342A (zh) 物镜数值孔径的检测方法及装置
CN207206255U (zh) 玻璃透镜透过率测试用工装夹具
CN110044298B (zh) 晶棒承载装置以及立式激光干涉检测设备
JP2014153248A (ja) 面形状測定装置及び面形状測定方法
CN112066857A (zh) 一种光学镜片同轴度调试、检测装置及方法
CN219349282U (zh) 一种中心偏测量仪装调光学镜头的装置
CN107655931B (zh) 一种高精度筒体线膨胀系数测量装置及方法
JPS63155616A (ja) 回路印刷用縮小対物レンズの一体的な測定装置
CN106091903A (zh) 基于双平面定基准的大型旋臂弯沉量检测方法及装置
US2466322A (en) Interferometric gauge
WO2017186186A1 (zh) 一种血栓弹力仪及检测旋转轴转动角度的方法
RU2767804C1 (ru) Оптический стенд

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916966

Country of ref document: EP

Kind code of ref document: A1