WO2020172859A1 - 毫米波雷达的测角方法、设备及存储介质 - Google Patents

毫米波雷达的测角方法、设备及存储介质 Download PDF

Info

Publication number
WO2020172859A1
WO2020172859A1 PCT/CN2019/076515 CN2019076515W WO2020172859A1 WO 2020172859 A1 WO2020172859 A1 WO 2020172859A1 CN 2019076515 W CN2019076515 W CN 2019076515W WO 2020172859 A1 WO2020172859 A1 WO 2020172859A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
frame
measurement data
data
target speed
Prior art date
Application number
PCT/CN2019/076515
Other languages
English (en)
French (fr)
Inventor
卜运成
李怡强
陆新飞
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980005381.3A priority Critical patent/CN111295596A/zh
Priority to PCT/CN2019/076515 priority patent/WO2020172859A1/zh
Publication of WO2020172859A1 publication Critical patent/WO2020172859A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/62Sense-of-movement determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target

Definitions

  • the embodiments of the present invention relate to the field of radar, and in particular to a millimeter wave radar angle measurement method, equipment and storage medium.
  • millimeter-wave radar is playing an increasingly important role in driver assistance systems due to its unique advantages such as all-weather, all-weather, and long range of action, including lane keeping functions and rear vehicle collision prevention functions.
  • the accuracy of the target angle measurement directly affects the accuracy and robustness of the driving assistance function, which in turn affects the safety of the driving assistance system.
  • the beam forming method performs beam forming on the angle in the beam coverage area, and the angle corresponding to the peak position is used as the angle measurement value.
  • Spectrum estimation methods such as the MUSIC (Multiple Signal Classification) method, calculate the power spectrum corresponding to each angle by performing eigenvalue decomposition operations on the received signal, and the angle corresponding to the spectral peak is the angle measurement value.
  • the beamforming method is simple and easy to implement and has a small amount of calculation, the angle resolution is very low and it is easily affected by noise; although the spectral estimation method is in the case that the number of snapshots and the signal to noise ratio are large enough The lower angle measurement accuracy is high, but it is relatively complicated, and the angle measurement accuracy loss is serious under non-ideal conditions.
  • the embodiment of the present invention provides a millimeter wave radar angle measurement method, equipment and storage medium, so as to improve the millimeter wave radar angle measurement accuracy and robustness.
  • the first aspect of the embodiments of the present invention is to provide a millimeter wave radar angle measurement method, including:
  • each frame of measurement data obtain multi-channel target distance information and target speed information
  • Multi-frame superposition processing is performed according to the multi-channel target distance information and target speed information of the multi-frame measurement data of the preset number of frames to obtain the angle measurement result.
  • the second aspect of the embodiments of the present invention is to provide a millimeter wave radar, including: multiple transmitting channels, multiple receiving channels, a memory, and a processor;
  • the multiple transmitting channels and multiple receiving channels are used to collect measurement data
  • the memory is used to store program codes
  • the processor calls the program code, and when the program code is executed, it is used to perform the following operations:
  • each frame of measurement data obtain multi-channel target distance information and target speed information
  • Multi-frame superposition processing is performed according to the multi-channel target distance information and target speed information of the multi-frame measurement data of the preset number of frames to obtain the angle measurement result.
  • the third aspect of the embodiments of the present invention is to provide a movable platform, including:
  • the power system is installed on the fuselage to provide power
  • Millimeter wave radar as described in the second aspect.
  • the fourth aspect of the embodiments of the present invention is to provide a movable platform, including:
  • the power system is installed on the fuselage to provide power
  • Millimeter wave radar installed on the fuselage, including multiple transmitting channels and multiple receiving channels, used to collect measurement data;
  • Memory used to store program code
  • the processor calls the program code, and when the program code is executed, is used to perform the following operations:
  • each frame of measurement data obtain multi-channel target distance information and target speed information
  • Multi-frame superposition processing is performed according to the multi-channel target distance information and target speed information of the multi-frame measurement data of the preset number of frames to obtain the angle measurement result.
  • a sixth aspect of the embodiments of the present invention is to provide a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the method described in the first aspect.
  • the millimeter-wave radar angle measurement method, equipment and storage medium provided in this embodiment acquire multi-frame measurement data collected by the multi-channel millimeter-wave radar, wherein each frame of measurement data includes multi-channel sub-data; according to each frame of measurement Data, obtain multi-channel target distance information and target speed information; obtain the angle measurement result according to the multi-channel target distance information and target speed information of the preset frame number of multi-frame measurement data.
  • angle measurement is performed by combining multiple frames of measurement data, which can prevent errors in a single frame of measurement data from having a greater impact on the angle measurement results, and can improve the accuracy and robustness of millimeter wave radar angle measurement.
  • FIG. 1 is a flowchart of a millimeter wave radar angle measurement method provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of one frame of data of a detection signal provided by an embodiment of the present invention.
  • FIG. 3 is a flowchart of a millimeter wave radar angle measurement method provided by another embodiment of the present invention.
  • FIG. 4 is a flowchart of a millimeter wave radar angle measurement method provided by another embodiment of the present invention.
  • FIG. 5 is a flowchart of a millimeter wave radar angle measurement method according to another embodiment of the present invention.
  • Fig. 6 is a structural diagram of a millimeter wave radar provided by an embodiment of the present invention.
  • a component when a component is said to be “fixed to” another component, it can be directly on the other component or a central component may also exist. When a component is considered to be “connected” to another component, it can be directly connected to the other component or there may be a centered component at the same time.
  • the millimeter-wave radar angle measurement method provided by the embodiment of the present invention can be applied to movable platforms such as vehicles and unmanned aerial vehicles, and especially can be used in a driver assistance system of a vehicle.
  • the mobile platform is equipped with a multi-channel millimeter-wave radar.
  • the multi-channel millimeter-wave radar detects targets by transmitting millimeter-wave radio signals and analyzing the frequency changes in the reflected waves. It can use multiple transmitting channels to transmit millimeter-wave radio detection signals. Two receiving channels receive the echo signal reflected by the target to obtain measurement data, which improves the measurement efficiency of the radar.
  • the multi-channel millimeter wave radar may be a frequency modulated continuous wave (FMCW) radar.
  • the detection signal emitted by the transmitting channel is a linear frequency modulation continuous wave, such as a sawtooth wave linear frequency modulation signal or a symmetrical triangular wave linear frequency modulation signal.
  • Fig. 1 is a flowchart of a millimeter wave radar angle measurement method provided by an embodiment of the present invention. As shown in Fig. 1, the angle measurement method of the millimeter wave radar in this embodiment may include:
  • Step S101 Obtain multiple frames of measurement data collected by the multi-channel millimeter wave radar, where each frame of measurement data includes multi-channel sub-data.
  • the execution body of the method described in this embodiment can be the signal processing unit of the multi-channel millimeter-wave radar, or the processor of the movable platform equipped with the multi-channel millimeter-wave radar (for example, a vehicle-mounted processor), that is,
  • the multi-channel millimeter wave radar receives multi-frame measurement data and sends it to the processor of the movable platform, and the processor of the movable platform performs data processing to obtain the angle measurement result.
  • the detection signal transmitted by the transmitting channel uses a predetermined number of chirp signals (chirp signals) as a frame of data, as shown in FIG. 2, correspondingly, the predetermined number of signals received by multiple receiving channels
  • the echo signal is taken as a frame of measurement data, that is, each frame of measurement data includes sub-data of multiple channels.
  • Step S102 Obtain multi-channel target distance information and target speed information according to each frame of measurement data.
  • the measurement data of the millimeter-wave radar usually contains two dimensions of information, namely the target distance information and the target speed information.
  • the two-dimensional Fourier measurement of the distance dimension and the velocity dimension can be performed on each frame of measurement data.
  • Leaf transform obtains multi-channel target distance information and target speed information.
  • two-dimensional Fourier transform is performed on the sub-data of each channel to obtain the target distance information and target speed information of a single channel; according to the target distance information and target speed information of each channel , Get multi-channel target distance information and target speed information.
  • the Fast Fourier Transformation is performed on the sub-data of each channel in the distance dimension, which is equivalent to focusing on the signal in the distance dimension, and the target distance information can be obtained;
  • the frame measurement data includes multiple FM continuous wave signals, which form the data of the velocity dimension.
  • After fast Fourier transform the two-dimensional results of distance and velocity can be obtained.
  • the abscissa and ordinate are respectively distance and Speed, and the target distance information and target speed information can be obtained from the two-dimensional results of distance and speed.
  • Step S103 Perform multi-frame superposition processing according to the multi-channel target distance information and target speed information of the multi-frame measurement data of the preset number of frames to obtain the angle measurement result.
  • the measurement data is combined with multiple frames.
  • Multi-frame superimposition processing that is, according to the multi-channel target distance information and target speed information of the multi-frame measurement data of the preset number of frames, the angle measurement result is obtained.
  • the angle measurement result is less affected by the single frame data, thereby reducing
  • the error of a single frame of measurement data is affected by the angle measurement result, which improves the angle measurement accuracy and robustness of the millimeter wave radar.
  • the multi-frame measurement data of the preset number of frames are adjacent multi-frame measurement data.
  • the multi-channel target distance information and target speed information of the multi-channel target distance information and target speed information of the multi-frame measurement data of the preset number of frames are performed in step S103 to obtain the angle measurement
  • the results can specifically include:
  • Step S201 Obtain a beamforming result according to the target distance information and target speed information of the multiple channels of each frame of measurement data;
  • Step S202 Perform incoherent superposition on the beamforming results corresponding to the multiple frames of measurement data of the preset number of frames, obtain the peak position in the incoherent superposition result, and use the angle corresponding to the peak position as the angle measurement result.
  • the beamforming result can be obtained by beamforming the multi-channel target distance information and target speed information of one frame of measurement data.
  • the beamforming process is a conventional beamforming method, and will not be repeated here. .
  • After obtaining the beamforming results of each frame perform incoherent superposition of the beamforming results of multiple frames of measurement data of the preset number of frames, that is, sum the amplitudes corresponding to the same angle in the multiple beamforming results, and then The incoherent superposition result is obtained, and in the incoherent superposition result, the angle corresponding to the position of the wave crest is used as the angle measurement result.
  • the single frame measurement data is susceptible to noise due to the low angular resolution.
  • the accuracy and robustness of the angle measurement results obtained from only a single frame of measurement data are poor; and in this application, the beamforming results of multiple frames of measurement data are incoherently superimposed, Even if there is an error in the result of a certain wave velocity, it will have a small influence on the result of incoherent superposition, thereby improving the signal-to-noise ratio, thereby improving the accuracy and robustness of angle measurement.
  • step S103 multi-frame superposition processing is performed on the multi-channel target distance information and target speed information of the multi-frame measurement data of the preset number of frames to obtain the angle
  • the measurement results can specifically include:
  • Step S301 Acquire snapshot data according to the multi-channel target distance information and target speed information of each frame of measurement data
  • Step S302 Perform spectrum estimation on the snapshot data submission of the multi-frame measurement data of the preset number of frames, obtain the peak position in the spectrum estimation result, and use the angle corresponding to the peak position as the angle measurement result.
  • snapshot data can be obtained according to the target distance information and target speed information of the multi-channel of each frame of measurement data, so that multiple frames of measurement data can obtain multiple snapshot data.
  • Spectrum estimation can obtain the result of spectrum estimation, that is, the energy distribution (power spectrum) of the signal in all directions in space.
  • the spectrum estimation process can use conventional methods, which will not be repeated here.
  • the peak position in the spectrum estimation result the angle corresponding to the peak position is used as the angle measurement result.
  • by increasing the number of snapshot data it is avoided that an error in a certain snapshot data has a greater impact on the angle measurement result, thereby improving the accuracy and robustness of the angle measurement through spectrum estimation.
  • the millimeter-wave radar angle measurement method obtaineds multiple frames of measurement data collected by a multi-channel millimeter-wave radar, wherein each frame of measurement data includes multi-channel sub-data; according to each frame of measurement data, multiple channels are obtained The target distance information and target speed information of the target; according to the multi-channel target distance information and target speed information of the multi-frame measurement data of the preset number of frames, the angle measurement result is obtained.
  • angle measurement is performed by combining multiple frames of measurement data, which can prevent errors in a single frame of measurement data from having a greater impact on the angle measurement results, and can improve the accuracy and robustness of millimeter wave radar angle measurement.
  • the angle measurement method of the millimeter wave radar may further include:
  • the preset number of frames is determined according to the resolution unit of the multi-channel millimeter wave radar and/or the target speed.
  • the multi-frame measurement data is time-sensitive. If the preset number of frames is In the multi-frame measurement data, the angle of the target object when the first frame of measurement data is obtained has a large change relative to the angle of the target object when the last frame of measurement data is obtained, which may cause a large error in the angle measurement result. It is necessary to determine an appropriate preset frame number to avoid the large angle measurement result error caused by the above situation.
  • the preset number of frames can be determined according to the resolution unit of the multi-channel millimeter wave radar and/or the target speed.
  • the method further includes:
  • the amplitude and phase consistency correction is performed on the sub-data of each channel.
  • the multi-channel millimeter wave radar including high amplifier, mixer, intermediate amplifier
  • other radio frequency devices due to changes in time, temperature, environment, and device aging, etc.
  • the reason is that the characteristics of each receiving channel are inconsistent, causing amplitude and phase errors between multiple receiving channels, reducing the accuracy of radar angle measurement and anti-interference ability. Therefore, after obtaining the multi-frame measurement data collected by the multi-channel millimeter wave radar, you can The sub-data of each channel in each frame of measurement data is corrected for amplitude and phase consistency to improve the accuracy of radar angle measurement.
  • the performing amplitude-phase consistency correction on the sub-data of each channel may specifically include:
  • Step S401 Use any one of the multiple channels as a reference channel, and obtain the amplitude difference and phase difference of each of the remaining channels relative to the reference channel;
  • Step S402 Obtain the amplitude and phase difference parameters of each channel relative to the reference channel according to the amplitude difference and phase difference of each of the remaining channels relative to the reference channel, and determine the sub-data of each channel according to the amplitude and phase difference parameters. Perform amplitude-phase consistency correction.
  • a reference channel is first determined from multiple receiving channels.
  • the reference channel can be any one of the multiple receiving channels. Then, by comparing the amplitude and phase of the remaining channels with the reference channel, the remaining channels can be obtained.
  • the amplitude and phase difference parameters relative to the reference channel can be obtained according to the amplitude difference and phase difference between the channel and the reference channel, Then the sub-data of the channel is amplitude-phase compensated according to the amplitude-phase difference parameter, so that the sub-data of the channel and the sub-data of the reference channel maintain the same amplitude.
  • the amplitude difference between this channel and the reference channel is ⁇ n
  • the phase difference is Obtain the amplitude and phase difference parameters through the following formula:
  • the amplitude and phase of the sub-data of multiple channels can be kept consistent, and the angle measurement accuracy of the multi-channel millimeter wave radar can be further improved.
  • FIG. 6 is a structural diagram of a millimeter wave radar provided by an embodiment of the present invention. As shown in FIG. 6, the millimeter wave radar 50 includes multiple transmitting channels 51, multiple receiving channels 52, a memory 53 and a processor 53.
  • the multiple transmitting channels 51 and the multiple receiving channels 52 are used to collect measurement data
  • the memory 53 is used to store program codes
  • the processor 54 calls the program code, and when the program code is executed, it is used to perform the following operations:
  • each frame of measurement data obtain multi-channel target distance information and target speed information
  • Multi-frame superposition processing is performed according to the multi-channel target distance information and target speed information of the multi-frame measurement data of the preset number of frames to obtain the angle measurement result.
  • the processor 54 when the processor 54 performs multi-frame superposition processing according to the multi-channel target distance information and target speed information of the multi-frame measurement data of the preset number of frames to obtain the angle measurement result, the processor 54 is configured for:
  • the processor 54 when the processor 54 performs multi-frame superposition processing according to the multi-channel target distance information and target speed information of the multi-frame measurement data of the preset number of frames to obtain the angle measurement result, the processor 54 is configured for:
  • the millimeter wave radar is a frequency modulated continuous wave radar.
  • the processor 54 when the processor 54 obtains multi-channel target distance information and target speed information according to each frame of measurement data, the processor 54 is configured to:
  • target distance information and target speed information of each channel multi-channel target distance information and target speed information are obtained.
  • the processor 54 is further configured to:
  • the preset number of frames is determined according to the resolution unit of the multi-channel millimeter wave radar and/or the target speed.
  • the processor 54 is further configured to:
  • the amplitude and phase consistency correction is performed on the sub-data of each channel.
  • the processor 54 when the processor 54 performs amplitude-phase consistency correction on the sub-data of each channel, the processor 54 is configured to:
  • the millimeter wave radar further includes a communication interface 55 for sending or receiving instructions or data.
  • the millimeter wave radar acquires multi-frame measurement data collected by the multi-channel millimeter wave radar, wherein each frame of measurement data includes multi-channel sub-data; according to each frame of measurement data, multi-channel target distance information is obtained And target speed information; obtain the angle measurement result according to the multi-channel target distance information and target speed information of the multi-frame measurement data of the preset number of frames.
  • angle measurement is performed by combining multiple frames of measurement data, which can prevent errors in a single frame of measurement data from having a greater impact on the angle measurement results, and can improve the accuracy and robustness of millimeter wave radar angle measurement.
  • the embodiment of the present invention provides a movable platform.
  • the movable platform includes a fuselage, a power system, and the millimeter wave radar as described in the above embodiments; wherein the power system is installed on the fuselage for providing power.
  • the movable platform includes at least one of the following: a vehicle, an unmanned aerial vehicle, and a movable robot.
  • the aforementioned fuselage can be the fuselage of unmanned aerial vehicles or mobile robots, and the power system is installed on the fuselage;
  • the aforementioned fuselage can be the body of the vehicle, or Frame support parts such as the body and chassis, and the power system is installed on the body of the vehicle.
  • the movable platform includes a fuselage, a power system, a millimeter-wave radar, and a memory and a processor; the power system is installed on the fuselage for providing power; the millimeter-wave radar is installed on the fuselage, including multiple The transmitting channel and multiple receiving channels are used to collect measurement data; the memory is used to store program code; the processor calls the program code, and when the program code is executed, it is used to perform the following operations:
  • each frame of measurement data obtain multi-channel target distance information and target speed information
  • the movable platform includes at least one of the following: a vehicle, an unmanned aerial vehicle, and a movable robot.
  • the aforementioned fuselage can be the fuselage of unmanned aerial vehicles or mobile robots, and the power system is installed on the fuselage;
  • the aforementioned fuselage can be the body of the vehicle, or Frame support parts such as the body and chassis, and the power system is installed on the body of the vehicle.
  • the processor included in it may be a central processing unit mounted in the robot, such as a flight controller, a neural network chip, etc.; when the movable platform is a vehicle
  • the processor included may be a processing platform mounted in a vehicle, such as an ECU of an autonomous vehicle, a supercomputer platform, etc., and it is not limited to a processor understood in the traditional sense.
  • the millimeter wave radar provided by the embodiment of the present invention can be used only to transmit and receive signals, collect detection data, or perform preliminary processing on detection data. After the millimeter-wave radar obtains the detection data, the detection data can be transmitted to the processor on the movable platform, and then the processor of the movable platform can perform subsequent processing on the detection data.
  • this embodiment also provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the millimeter wave radar angle measurement method described in the foregoing embodiment.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated unit implemented in the form of a software functional unit may be stored in a computer readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium and includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor execute the method described in the various embodiments of the present invention. Part of the steps.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种毫米波雷达的测角方法、设备及存储介质,通过获取多通道毫米波雷达采集的多帧测量数据,其中每一帧测量数据包括多通道的子数据(S101);根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息(S102);根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果(S103)。通过结合多帧测量数据进行角度测量,可避免单帧测量数据存在的误差对角度测量结果产生较大的影响,可提高毫米波雷达测角精度和鲁棒性。

Description

毫米波雷达的测角方法、设备及存储介质 技术领域
本发明实施例涉及雷达领域,尤其涉及一种毫米波雷达的测角方法、设备及存储介质。
背景技术
近年来,雷达系统受到了越来越多的关注,例如应用到驾驶员辅助系统。其中毫米波雷达由于其全天时、全天候、作用距离远等独特的优势,在驾驶员辅助系统中发挥着越来越重要的作用,包括车道保持功能、后方车辆防碰撞功能等。对于毫米波雷达而言,其对目标角度测量的准确性直接影响辅助驾驶功能的准确性和鲁棒性,进而影响辅助驾驶系统的安全性。
目前多接收通道毫米波雷达系统进行角度测量时,多采用波束形成和谱估计的方式。其中,波束形成方法对波束覆盖区域内的角度进行波束形成,峰值位置对应的角度即作为角度测量值。谱估计方法,例如MUSIC(Multiple Signal Classification,多重信号分类)方法,通过对接收信号进行特征值分解等操作,计算各角度对应的功率谱,谱峰值对应的角度即作为角度测量值。
现有的角度测量方法中,波束形成方法虽然简单易行、且计算量小,但是角度分辨率很低,且容易受噪声影响;谱估计方法虽然在快拍数和信噪比足够大的情况下测角精度高,但是相对复杂,且在非理想情况下测角精度损失严重。
发明内容
本发明实施例提供一种毫米波雷达的测角方法、设备及存储介质,以提高毫米波雷达测角精度和鲁棒性。
本发明实施例的第一方面是提供一种毫米波雷达的测角方法,包括:
获取多通道毫米波雷达采集的多帧测量数据,其中每一帧测量数据包括多通道的子数据;
根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息;
根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果。
本发明实施例的第二方面是提供一种毫米波雷达,包括:多个发射通道、多个接收通道、存储器和处理器;
所述多个发射通道和多个接收通道用于采集测量数据;
所述存储器用于存储程序代码;
所述处理器调用所述程序代码,当程序代码被执行时,用于执行以下操作:
获取多通道毫米波雷达采集的多帧测量数据,其中每一帧测量数据包括多通道的子数据;
根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息;
根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果。
本发明实施例的第三方面是提供一种可移动平台,包括:
机身;
动力系统,安装在所述机身,用于提供动力;以及
如第二方面所述的毫米波雷达。
本发明实施例的第四方面是提供一种可移动平台,包括:
机身;
动力系统,安装在所述机身,用于提供动力;
毫米波雷达,安装在所述机身,包括多个发射通道和多个接收通道,用于采集测量数据;
存储器,用于存储程序代码;
处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
获取多通道毫米波雷达采集的多帧测量数据,其中每一帧测量数据包括多通道的子数据;
根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息;
根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度 信息进行多帧叠加处理,获取角度测量结果。
本发明实施例的第六方面是提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现第一方面所述的方法。
本实施例提供的毫米波雷达的测角方法、设备及存储介质,通过获取多通道毫米波雷达采集的多帧测量数据,其中每一帧测量数据包括多通道的子数据;根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息;根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息,获取角度测量结果。本实施例通过结合多帧测量数据进行角度测量,可避免单帧测量数据存在的误差对角度测量结果产生较大的影响,可提高毫米波雷达测角精度和鲁棒性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的毫米波雷达的测角方法的流程图;
图2为本发明实施例提供的探测信号一帧数据的示意图;
图3为本发明另一实施例提供的毫米波雷达的测角方法的流程图;
图4为本发明另一实施例提供的毫米波雷达的测角方法的流程图;
图5为本发明另一实施例提供的毫米波雷达的测角方法的流程图;
图6为本发明实施例提供的毫米波雷达的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接” 另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供的毫米波雷达的测角方法,可应用于车辆、无人飞行器等可移动平台中,尤其是可用于车辆的驾驶员辅助系统中。可移动平台上配置有多通道毫米波雷达,多通道毫米波雷达通过发射毫米波无线电信号并分析反射波中的频率变化来检测目标,可利用多个发射通道发射毫米波无线电探测信号,通过多个接收通道接收被目标反射的回波信号,从而获取测量数据,提高了雷达的测量效率。在一些实施例中,多通道毫米波雷达可以是调频连续波(frequency modulated continuous wave,FMCW)雷达。可选的,发射通道发射的探测信号是线性调频连续波,例如锯齿波线性调频信号或对称三角波线性调频信号等。
本发明实施例提供一种毫米波雷达的测角方法。图1为本发明实施例提供的毫米波雷达的测角方法的流程图。如图1所示,本实施例中的毫米波雷达的测角方法,可以包括:
步骤S101、获取多通道毫米波雷达采集的多帧测量数据,其中每一帧测量数据包括多通道的子数据。
本实施例中所述的方法的执行主体可以是该多通道毫米波雷达的信号处理单元,也可以是搭载该多通道毫米波雷达的可移动平台的处理器(例如车载处理器),也即多通道毫米波雷达接收到多帧测量数据后发送给可移动平台的处理器,由可移动平台的处理器进行数据处理获取角度测量结果。
在本实施例中,发射通道发射的探测信号以预定个数的线性调频信号(chirp信号)作为一帧数据,如图2所示,相应的,可将多接收通道接收到的预定个数的回波信号作为一帧测量数据,也即每一帧测量数据包括 多通道的子数据。
步骤S102、根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息。
在本实施例中,毫米波雷达的测量数据中通常包含两个维度的信息,也即目标距离信息和目标速度信息,可通过对每一帧测量数据进行距离维度和速度维度的二维傅里叶变换获取多通道的目标距离信息和目标速度信息。
具体的,对于任意一帧测量数据,对其每一通道的子数据分别进行二维傅里叶变换,获取单通道的目标距离信息和目标速度信息;根据各通道的目标距离信息和目标速度信息,获取多通道的目标距离信息和目标速度信息。
在本实施例中,对于每一通道的子数据在距离维度进行快速傅里叶变换(Fast Fourier Transformation,FFT),相当于对信号进行了距离维度的聚焦,可以获取目标距离信息;而由于一帧测量数据中包括多个调频连续波信号,其组成了速度维度的数据,对其进行快速傅里叶变换后,可得到距离与速度的二维结果,其中横坐标和纵坐标分别为距离和速度,而从距离与速度的二维结果中即可得到目标距离信息和目标速度信息。
步骤S103、根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果。
由于单帧测量数据容易受到噪声影响,信噪比相对较低,因此根据单帧测量数据进行角度测量结果的精度和鲁棒性较差,而在本实施例中,通过结合多帧测量数据进行多帧叠加处理,也即根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息,获取角度测量结果,其角度测量结果受单帧数据的影响较小,从而降低了单帧测量数据的受噪声产生的误差对角度测量结果的影响,进而提高毫米波雷达的测角精度和鲁棒性。其中预设帧数的多帧测量数据为相邻的多帧测量数据。
在一种可选实施例中,如图3所示,步骤S103所述的根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果,具体可包括:
步骤S201、根据每一帧测量数据的多通道的目标距离信息和目标速度 信息,获取波束形成结果;
步骤S202、对所述预设帧数的多帧测量数据对应的波束形成结果进行非相干叠加,获取非相干叠加结果中的波峰位置,以波峰位置对应的角度作为所述角度测量结果。
在本实施例中,通过对一帧测量数据的多通道的目标距离信息和目标速度信息进行波束形成后,可得到波束形成结果,其中波束形成过程为常规的波束形成方法,此处不再赘述。在获取每一帧的波束形成结果后,对预设帧数的多帧测量数据的波束形成结果进行非相干性叠加,也即将多个波束形成结果中相同角度对应的幅值进行求和,进而得到非相干叠加结果,在非相干叠加结果中,以波峰位置对应的角度作为所述角度测量结果。现有技术中仅以单帧测量结果的波束形成结果中的波峰位置对应的角度作为角度测量结果时,由于角度分辨率较低,所以单帧测量数据容易受到噪声影响,其波束形成结果在噪声的影响下也会存在一定的误差,仅根据单帧测量数据得到的角度测量结果的精度和鲁棒性较差;而本申请中通过将多帧测量数据的波束形成结果进行非相干性叠加,即使某一波速形成结果存在误差,对非相干叠加结果的影响也较小,从而提高了信噪比,进而提高了测角的精度和鲁棒性。
在另一种可选实施例中,如图4所示,步骤S103所述的根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果,具体可包括:
步骤S301、根据每一帧测量数据的多通道的目标距离信息和目标速度信息,获取快拍数据;
步骤S302、对所述预设帧数的多帧测量数据的对应的快拍数据递交进行谱估计,获取谱估计结果中的波峰位置,以波峰位置对应的角度作为所述角度测量结果。
在本实施例中,可根据每一帧测量数据的多通道的目标距离信息和目标速度信息获取快拍数据,从而多帧测量数据可以获取多个快拍数据,通过对该些快拍数据进行谱估计则可获取到谱估计结果,也即信号在空间各方向上的能量分布(功率谱),其中谱估计过程可采用常规方法,此处不再赘述。通过获取谱估计结果中的波峰位置,以波峰位置对应的角度作为 所述角度测量结果。本实施例中通过增加快拍数据的数量,避免了某一快拍数据存在误差时对角度测量结果影响较大,从而提高通过谱估计进行角度测量的精度和鲁棒性。
本实施例提供的毫米波雷达的测角方法,通过获取多通道毫米波雷达采集的多帧测量数据,其中每一帧测量数据包括多通道的子数据;根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息;根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息,获取角度测量结果。本实施例通过结合多帧测量数据进行角度测量,可避免单帧测量数据存在的误差对角度测量结果产生较大的影响,可提高毫米波雷达测角精度和鲁棒性。
上述任一实施例的基础上,所述毫米波雷达的测角方法还可包括:
根据所述多通道毫米波雷达的分辨单元和/或目标速度确定所述预设帧数。
在本实施例中,由于需要结合预设帧数的多帧测量数据获取角度测量结果,而目标物体的角度是实时变化的,而多帧测量数据是具有时效性的,如果预设帧数的多帧测量数据中,在获取第一帧测量数据时目标物体的角度相对于获取最后一帧测量数据时目标物体的角度发生了较大的变化,则很可能导致角度测量结果误差较大,因此需要确定一个合适的预设帧数,避免上述情况导致的较大角度测量结果误差。在上述情况中,可以看出,若目标物体的运动速度较大时,可减少所述预设帧数;此外,若毫米波雷达的分辨率较高(分辨单元较小),目标物体发生较小的角度变化即可被检测到,也需要减少所述预设帧数,因此本实施例中可根据多通道毫米波雷达的分辨单元和/或目标速度确定所述预设帧数。
在上述任一实施例的基础上,所述获取多通道毫米波雷达采集的多帧测量数据后,还包括:
对于任意一帧测量数据,对每一通道的子数据进行幅相一致性校正。
在本实施例中,由于多通道毫米波雷达整个接收通道(包括高放、混频器、中放)等射频器件的离散性、非线性或者由于时间、温度、环境的 改变及器件的老化等原因,会引起各接收通道特性不一致,使得多接收通道之间存在幅度相位误差,降低雷达测角精度和抗干扰能力,因此在获取到多通道毫米波雷达采集的多帧测量数据后,可对每一帧测量数据中的各通道的子数据进行幅相一致性校正,以提高雷达测角精度。
进一步的,如图5所示,所述对每一通道的子数据进行幅相一致性校正,具体可包括:
步骤S401、以多通道中的任一通道作为参考通道,获取其余每一通道相对于所述参考通道的幅度差以及相位差;
步骤S402、根据其余每一通道相对于所述参考通道的幅度差以及相位差获取每一通道相对于所述参考通道的幅相差异参数,根据所述幅相差异参数对每一通道的子数据进行幅相一致性校正。
在本实施例中,首先从多个接收通道中确定一个参考通道,参考通道可以是多个接收通道中的任意一个通道,然后通过比较其余通道与该参考通道的幅度和相位,可以获取其余每一通道相对于参考通道的幅度差以及相位差,进一步的,对于其余通道中的任一通道,可根据该通道与参考通道的幅度差以及相位差获取其相对于参考通道的幅相差异参数,然后根据幅相差异参数对该通道的子数据进行幅相补偿,使该通道的子数据与参考通道的子数据保持幅相一致。
具体的,假设通道n的子数据为s,该通道与参考通道的幅度差为ρ n,相位差为
Figure PCTCN2019076515-appb-000001
通过如下公式获取幅相差异参数:
Figure PCTCN2019076515-appb-000002
通过如下公式对通道n的子数据s进行幅相补偿:
Figure PCTCN2019076515-appb-000003
通过对每一通道进行上述的幅相一致性校正,即可实现多个通道的子数据幅相保持一致,进而可进一步提高多通道毫米波雷达的测角精度。
本发明实施例提供一种毫米波雷达。图6为本发明实施例提供的毫米波雷达的结构图,如图6所示,所述毫米波雷达50包括多个发射通道51、多个接收通道52、存储器53和处理器53。
所述多个发射通道51和多个接收通道52用于采集测量数据;
所述存储器53用于存储程序代码;
所述处理器54调用所述程序代码,当程序代码被执行时,用于执行以下操作:
获取多通道毫米波雷达采集的多帧测量数据,其中每一帧测量数据包括多通道的子数据;
根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息;
根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果。
可选的,在所述处理器54根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果时,所述处理器54被配置为:
根据每一帧测量数据的多通道的目标距离信息和目标速度信息,获取波束形成结果;
对所述预设帧数的多帧测量数据对应的波束形成结果进行非相干叠加,获取非相干叠加结果中的波峰位置,以波峰位置对应的角度作为所述角度测量结果。
可选的,在所述处理器54根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果时,所述处理器54被配置为:
根据每一帧测量数据的多通道的目标距离信息和目标速度信息,获取快拍数据;
对所述预设帧数的多帧测量数据的对应的快拍数据叠加进行谱估计,获取谱估计结果中的波峰位置,以波峰位置对应的角度作为所述角度测量结果。
在上述任一实施例的基础上,所述毫米波雷达为调频连续波雷达。
进一步的,在所述处理器54根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息时,所述处理器54被配置为:
对于任意一帧测量数据,对其每一通道的子数据分别进行二维傅里叶变换,获取单通道的目标距离信息和目标速度信息;
根据各通道的目标距离信息和目标速度信息,获取多通道的目标距离 信息和目标速度信息。
在上述任一实施例的基础上,所述处理器54还被配置为:
根据所述多通道毫米波雷达的分辨单元和/或目标速度确定所述预设帧数。
在上述任一实施例的基础上,在所述处理器54获取多通道毫米波雷达采集的多帧测量数据后,所述处理器54还被配置为:
对于任意一帧测量数据,对每一通道的子数据进行幅相一致性校正。
进一步的,在所述处理器54对每一通道的子数据进行幅相一致性校正时,所述处理器54被配置为:
以多通道中的任一通道作为参考通道,获取其余每一通道相对于所述参考通道的幅度差以及相位差;
根据其余每一通道相对于所述参考通道的幅度差以及相位差获取每一通道相对于所述参考通道的幅相差异参数,根据所述幅相差异参数对每一通道的子数据进行幅相一致性校正。
在上述任一实施例的基础上,所述毫米波雷达还包括通讯接口55,以用于发送或接收指令或数据。
本发明实施例提供的毫米波雷达的具体原理和实现方式均与上述实施例类似,此处不再赘述。
本实施例提供的毫米波雷达,通过获取多通道毫米波雷达采集的多帧测量数据,其中每一帧测量数据包括多通道的子数据;根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息;根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息,获取角度测量结果。本实施例通过结合多帧测量数据进行角度测量,可避免单帧测量数据存在的误差对角度测量结果产生较大的影响,可提高毫米波雷达测角精度和鲁棒性。
本发明实施例提供一种可移动平台。所述可移动平台包括机身、动力系统以及如上述实施例所述的毫米波雷达;其中动力系统,安装在所述机身,用于提供动力。
进一步的,所述可移动平台包括如下至少一种:车辆、无人飞行器、 可移动机器人。当然对于无人飞行器、可移动机器人,上述的机身可以为无人飞行器、可移动机器人的机身,动力系统安装在机身上;而对于车辆,上述的机身可以是车辆的车身,或者车身和底盘等框架支撑部分,动力系统安装在车辆的车身上。
本发明实施例提供的可移动平台的具体原理和实现方式均与上述实施例类似,此处不再赘述。
本发明另一实施例提供一种可移动平台。所述可移动平台包括机身、动力系统、毫米波雷达以及存储器和处理器;其中动力系统,安装在所述机身,用于提供动力;毫米波雷达安装在所述机身,包括多个发射通道和多个接收通道,用于采集测量数据;存储器用于存储程序代码;处理器调用所述程序代码,当程序代码被执行时,用于执行以下操作:
获取多通道毫米波雷达采集的多帧测量数据,其中每一帧测量数据包括多通道的子数据;
根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息;
根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息,获取角度测量结果。
进一步的,所述可移动平台包括如下至少一种:车辆、无人飞行器、可移动机器人。当然对于无人飞行器、可移动机器人,上述的机身可以为无人飞行器、可移动机器人的机身,动力系统安装在机身上;而对于车辆,上述的机身可以是车辆的车身,或者车身和底盘等框架支撑部分,动力系统安装在车辆的车身上。
当可移动平台为无人飞行器、可移动机器人或其他机器人形式时,其所包括的处理器可以是搭载于机器人中的中央处理器,例如飞控、神经网络芯片等;当可移动平台为车辆等更大型的设备时,其所包括的处理器可以是搭载于车辆等中的处理平台,例如自动驾驶车辆的ECU、超算平台等,此处并不限于传统意义上所理解的处理器。
本发明实施例提供的毫米波雷达可以只用来发射及接收信号,采集检测数据或对检测数据进行初步处理。当毫米波雷达获得检测数据后,可以将检测数据传输至可移动平台上的处理器,此时可移动平台的处理器可以 对检测数据进行后续处理。
本发明实施例提供的可移动平台的具体原理和实现方式均与上述实施例类似,此处不再赘述。
另外,本实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现上述实施例所述的毫米波雷达的测角方法。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述 各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (28)

  1. 一种毫米波雷达的测角方法,其特征在于,包括:
    获取多通道毫米波雷达采集的多帧测量数据,其中每一帧测量数据包括多通道的子数据;
    根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息;
    根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果。
  2. 根据权利要求1所述的方法,其特征在于,所述根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果,包括:
    根据每一帧测量数据的多通道的目标距离信息和目标速度信息,获取波束形成结果;
    对所述预设帧数的多帧测量数据对应的波束形成结果进行非相干叠加,获取非相干叠加结果中的波峰位置,以波峰位置对应的角度作为所述角度测量结果。
  3. 根据权利要求1所述的方法,其特征在于,所述根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果,包括:
    根据每一帧测量数据的多通道的目标距离信息和目标速度信息,获取快拍数据;
    对所述预设帧数的多帧测量数据的对应的快拍数据叠加进行谱估计,获取谱估计结果中的波峰位置,以波峰位置对应的角度作为所述角度测量结果。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述毫米波雷达为调频连续波雷达。
  5. 根据权利要求4所述的方法,其特征在于,所述根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息,包括:
    对于任意一帧测量数据,对其每一通道的子数据分别进行二维傅里叶变换,获取单通道的目标距离信息和目标速度信息;
    根据各通道的目标距离信息和目标速度信息,获取多通道的目标距离 信息和目标速度信息。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述多通道毫米波雷达的分辨单元和/或目标速度确定所述预设帧数。
  7. 根据权利要求1所述的方法,其特征在于,所述获取多通道毫米波雷达采集的多帧测量数据后,还包括:
    对于任意一帧测量数据,对每一通道的子数据进行幅相一致性校正。
  8. 根据权利要求7所述的方法,其特征在于,所述对每一通道的子数据进行幅相一致性校正,包括:
    以多通道中的任一通道作为参考通道,获取其余每一通道相对于所述参考通道的幅度差以及相位差;
    根据其余每一通道相对于所述参考通道的幅度差以及相位差获取每一通道相对于所述参考通道的幅相差异参数,根据所述幅相差异参数对每一通道的子数据进行幅相一致性校正。
  9. 一种毫米波雷达,其特征在于,包括:多个发射通道、多个接收通道、存储器和处理器;
    所述多个发射通道和多个接收通道用于采集测量数据;
    所述存储器用于存储程序代码;
    所述处理器调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    获取多通道毫米波雷达采集的多帧测量数据,其中每一帧测量数据包括多通道的子数据;
    根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息;
    根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息,获取角度测量结果。
  10. 根据权利要求9所述的设备,其特征在于,在所述处理器根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果时,所述处理器被配置为:
    根据每一帧测量数据的多通道的目标距离信息和目标速度信息,获取波束形成结果;
    对所述预设帧数的多帧测量数据对应的波束形成结果进行非相干叠加,获取非相干叠加结果中的波峰位置,以波峰位置对应的角度作为所述角度测量结果。
  11. 根据权利要求9所述的设备,其特征在于,在所述处理器根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果时,所述处理器被配置为:
    根据每一帧测量数据的多通道的目标距离信息和目标速度信息,获取快拍数据;
    对所述预设帧数的多帧测量数据的对应的快拍数据叠加进行谱估计,获取谱估计结果中的波峰位置,以波峰位置对应的角度作为所述角度测量结果。
  12. 根据权利要求9-11任一项所述的设备,其特征在于,所述毫米波雷达为调频连续波雷达。
  13. 根据权利要求12所述的设备,其特征在于,在所述处理器根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息时,所述处理器被配置为:
    对于任意一帧测量数据,对其每一通道的子数据分别进行二维傅里叶变换,获取单通道的目标距离信息和目标速度信息;
    根据各通道的目标距离信息和目标速度信息,获取多通道的目标距离信息和目标速度信息。
  14. 根据权利要求9所述的设备,其特征在于,所述处理器还被配置为:
    根据所述多通道毫米波雷达的分辨单元和/或目标速度确定所述预设帧数。
  15. 根据权利要求9任一项所述的设备,其特征在于,在所述处理器获取多通道毫米波雷达采集的多帧测量数据后,所述处理器还被配置为:
    对于任意一帧测量数据,对每一通道的子数据进行幅相一致性校正。
  16. 根据权利要求15所述的设备,其特征在于,在所述处理器对每一通道的子数据进行幅相一致性校正时,所述处理器被配置为:
    以多通道中的任一通道作为参考通道,获取其余每一通道相对于所述 参考通道的幅度差以及相位差;
    根据其余每一通道相对于所述参考通道的幅度差以及相位差获取每一通道相对于所述参考通道的幅相差异参数,根据所述幅相差异参数对每一通道的子数据进行幅相一致性校正。
  17. 一种可移动平台,其特征在于,包括:
    机身;
    动力系统,安装在所述机身,用于提供动力;以及
    如权利要求9-16任一项所述的毫米波雷达。
  18. 根据权利要求17所述的可移动平台,其特征在于,所述可移动平台包括如下至少一种:
    车辆、无人飞行器、可移动机器人。
  19. 一种可移动平台,其特征在于,包括:
    机身;
    动力系统,安装在所述机身,用于提供动力;
    毫米波雷达,安装在所述机身,包括多个发射通道和多个接收通道,用于采集测量数据;
    存储器,用于存储程序代码;
    处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    获取多通道毫米波雷达采集的多帧测量数据,其中每一帧测量数据包括多通道的子数据;
    根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息;
    根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息,获取角度测量结果。
  20. 根据权利要求19所述的可移动平台,其特征在于,在所述处理器根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果时,所述处理器被配置为:
    根据每一帧测量数据的多通道的目标距离信息和目标速度信息,获取波束形成结果;
    对所述预设帧数的多帧测量数据对应的波束形成结果进行非相干叠 加,获取非相干叠加结果中的波峰位置,以波峰位置对应的角度作为所述角度测量结果。
  21. 根据权利要求19所述的可移动平台,其特征在于,在所述处理器根据预设帧数的多帧测量数据的多通道的目标距离信息和目标速度信息进行多帧叠加处理,获取角度测量结果时,所述处理器被配置为:
    根据每一帧测量数据的多通道的目标距离信息和目标速度信息,获取快拍数据;
    对所述预设帧数的多帧测量数据的对应的快拍数据叠加进行谱估计,获取谱估计结果中的波峰位置,以波峰位置对应的角度作为所述角度测量结果。
  22. 根据权利要求19-21任一项所述的可移动平台,其特征在于,所述毫米波雷达为调频连续波雷达。
  23. 根据权利要求22所述的可移动平台,其特征在于,在所述处理器根据每一帧测量数据,获取多通道的目标距离信息和目标速度信息时,所述处理器被配置为:
    对于任意一帧测量数据,对其每一通道的子数据分别进行二维傅里叶变换,获取单通道的目标距离信息和目标速度信息;
    根据各通道的目标距离信息和目标速度信息,获取多通道的目标距离信息和目标速度信息。
  24. 根据权利要求19所述的可移动平台,其特征在于,所述处理器还被配置为:
    根据所述多通道毫米波雷达的分辨单元和/或目标速度确定所述预设帧数。
  25. 根据权利要求19任一项所述的可移动平台,其特征在于,在所述处理器获取多通道毫米波雷达采集的多帧测量数据后,所述处理器还被配置为:
    对于任意一帧测量数据,对每一通道的子数据进行幅相一致性校正。
  26. 根据权利要求25所述的可移动平台,其特征在于,在所述处理器对每一通道的子数据进行幅相一致性校正时,所述处理器被配置为:
    以多通道中的任一通道作为参考通道,获取其余每一通道相对于所述 参考通道的幅度差以及相位差;
    根据其余每一通道相对于所述参考通道的幅度差以及相位差获取每一通道相对于所述参考通道的幅相差异参数,根据所述幅相差异参数对每一通道的子数据进行幅相一致性校正。
  27. 根据权利要求19所述的可移动平台,其特征在于,所述可移动平台包括如下至少一种:
    车辆、无人飞行器、可移动机器人。
  28. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被处理器执行以实现如权利要求1-8任一项所述的方法。
PCT/CN2019/076515 2019-02-28 2019-02-28 毫米波雷达的测角方法、设备及存储介质 WO2020172859A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980005381.3A CN111295596A (zh) 2019-02-28 2019-02-28 毫米波雷达的测角方法、设备及存储介质
PCT/CN2019/076515 WO2020172859A1 (zh) 2019-02-28 2019-02-28 毫米波雷达的测角方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076515 WO2020172859A1 (zh) 2019-02-28 2019-02-28 毫米波雷达的测角方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020172859A1 true WO2020172859A1 (zh) 2020-09-03

Family

ID=71025034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076515 WO2020172859A1 (zh) 2019-02-28 2019-02-28 毫米波雷达的测角方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN111295596A (zh)
WO (1) WO2020172859A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762243B (zh) * 2021-03-17 2022-04-21 緯創資通股份有限公司 頻率調變連續波雷達、數位訊號處理方法與表徵資訊偵測方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852854A (zh) * 2010-06-07 2010-10-06 华南理工大学 一种水下多波束测探系统及其探测方法
CN106959440A (zh) * 2016-01-08 2017-07-18 上海航天卫星应用有限公司 一种用于雷达设备的幅相一致性补偿系统
CN107329128A (zh) * 2017-05-04 2017-11-07 武汉滨湖电子有限责任公司 一种基于快速存储技术的超分辨高精度低空测角方法
CN108196235A (zh) * 2018-02-08 2018-06-22 北京理工大学 一种用于多通道毫米波雷达的幅相校准方法
DE202018102708U1 (de) * 2018-05-15 2018-09-24 Autel Europe Gmbh Radarsensoranordnung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4079739B2 (ja) * 2002-10-08 2008-04-23 富士通テン株式会社 車載用レーダ装置
JP5023029B2 (ja) * 2008-09-10 2012-09-12 株式会社東芝 レーダ装置
CN102707285A (zh) * 2012-05-28 2012-10-03 河海大学 车载毫米波防撞雷达系统的频域恒虚警检测方法
CN103713285B (zh) * 2014-01-09 2016-03-02 西安电子科技大学 基于信息融合的分布式米波阵列雷达测角方法
CN103728614B (zh) * 2014-01-15 2015-10-28 西安电子科技大学 基于机扫米波雷达的改进单脉冲测角方法
CN104199020B (zh) * 2014-08-25 2016-08-24 西安电子科技大学 基于多帧信息融合的米波阵列雷达目标仰角测量方法
CN105137420B (zh) * 2015-09-09 2017-09-26 电子科技大学 一种多帧积累的非相干mimo雷达检测和定位方法
CN105204018B (zh) * 2015-09-09 2017-10-17 电子科技大学 一种利用多帧信息的二维doa跟踪方法
CN106054193A (zh) * 2016-05-24 2016-10-26 深圳市雷博泰克科技有限公司 一种车辆周围多目标检测方法、处理器及毫米波雷达系统
CN105974390B (zh) * 2016-06-30 2018-06-05 西安电子科技大学 基于多普勒信息的机扫米波雷达质量中心测角方法
CN108226883B (zh) * 2017-11-28 2020-04-28 深圳市易成自动驾驶技术有限公司 测试毫米波雷达性能的方法、装置及计算机可读存储介质
CN108802722B (zh) * 2018-08-28 2019-04-09 哈尔滨工业大学 一种基于虚拟谱的弱目标检测前跟踪方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852854A (zh) * 2010-06-07 2010-10-06 华南理工大学 一种水下多波束测探系统及其探测方法
CN106959440A (zh) * 2016-01-08 2017-07-18 上海航天卫星应用有限公司 一种用于雷达设备的幅相一致性补偿系统
CN107329128A (zh) * 2017-05-04 2017-11-07 武汉滨湖电子有限责任公司 一种基于快速存储技术的超分辨高精度低空测角方法
CN108196235A (zh) * 2018-02-08 2018-06-22 北京理工大学 一种用于多通道毫米波雷达的幅相校准方法
DE202018102708U1 (de) * 2018-05-15 2018-09-24 Autel Europe Gmbh Radarsensoranordnung

Also Published As

Publication number Publication date
CN111295596A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
JP6192910B2 (ja) レーダ装置および物標高算出方法
US9470782B2 (en) Method and apparatus for increasing angular resolution in an automotive radar system
CN109581352B (zh) 一种基于毫米波雷达的超分辨测角系统
US20190235048A1 (en) Apparatus and method for compensating for return loss of antenna of radar, and radar apparatus using same
JP5701106B2 (ja) レーダ装置及び該レーダ装置の到来角算出方法
US10338216B2 (en) Object detection in multiple radars
US20180128916A1 (en) Object detection in multiple radars
US20180143297A1 (en) Decentralised radar system
US11092686B2 (en) Method, apparatus and device for doppler compensation in a time switched MIMO radar system
US10345439B2 (en) Object detection in multiple radars
US11762079B2 (en) Distributed radar antenna array aperture
US20190086512A1 (en) Method and apparatus for vehicular radar calibration
WO2021129581A1 (zh) 一种信号处理方法及装置
CN111679266A (zh) 汽车毫米波雷达稀疏阵列栅瓣虚假目标识别方法及系统
WO2021115226A1 (zh) 一种测试平台以及通道误差的确定方法
NL2029890B1 (en) Radar apparatus, system, and method
WO2019223515A1 (zh) 信息测量方法及信息测量装置
US20210323560A1 (en) Vehicle speed calculation method, system, device, and storage medium
WO2020172859A1 (zh) 毫米波雷达的测角方法、设备及存储介质
CN112534299B (zh) 一种基于雷达信号的发射方法和装置
KR101796472B1 (ko) 레이더 장치 및 그것을 이용한 도래각 추정 방법
CN107783130B (zh) 基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理方法
CN117647797A (zh) 雷达的近距离速度纠正方法、装置、雷达及存储介质
US20180128912A1 (en) Object detection in multiple radars
Cassidy et al. Analysis of MIMO-DBS performance for wide FOV automotive imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916893

Country of ref document: EP

Kind code of ref document: A1