WO2020171630A1 - Composé électroluminescent organique et dispositif électroluminescent organique le comprenant - Google Patents

Composé électroluminescent organique et dispositif électroluminescent organique le comprenant Download PDF

Info

Publication number
WO2020171630A1
WO2020171630A1 PCT/KR2020/002478 KR2020002478W WO2020171630A1 WO 2020171630 A1 WO2020171630 A1 WO 2020171630A1 KR 2020002478 W KR2020002478 W KR 2020002478W WO 2020171630 A1 WO2020171630 A1 WO 2020171630A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
organic electroluminescent
independently
membered
Prior art date
Application number
PCT/KR2020/002478
Other languages
English (en)
Inventor
Hyo-Soon Park
Jin-Ri HONG
Hyo-Jung Lee
Hyun-Ju Kang
Tae-Jun Han
Ye-Jin Jeon
Original Assignee
Rohm And Haas Electronic Materials Korea Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm And Haas Electronic Materials Korea Ltd. filed Critical Rohm And Haas Electronic Materials Korea Ltd.
Priority to CN202080015176.8A priority Critical patent/CN113454185A/zh
Publication of WO2020171630A1 publication Critical patent/WO2020171630A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present disclosure relates to an organic electroluminescent compound and an organic electroluminescent device comprising the same.
  • An electroluminescent device is a self-light-emitting display device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time.
  • the first organic EL device was developed by Eastman Kodak in 1987, by using small aromatic diamine molecules and aluminum complexes as materials for forming a light-emitting layer ( see Appl. Phys. Lett. 51, 913, 1987).
  • Iridium(III) complexes have been widely known as phosphorescent light-emitting materials, including bis(2-(2'-benzothienyl)-pyridinato-N,C-3')iridium(acetylacetonate) ((acac)Ir(btp) 2 ), tris(2-phenylpyridine)iridium (Ir(ppy) 3 ) and bis(4,6-difluorophenylpyridinato-N,C2)picolinato iridium (Firpic) as red-, green-, and blue-emitting materials, respectively.
  • bis(2-(2'-benzothienyl)-pyridinato-N,C-3')iridium(acetylacetonate) (acac)Ir(btp) 2 )
  • tris(2-phenylpyridine)iridium Ir(ppy) 3
  • CBP 4,4'-N,N'-dicarbazole-biphenyl
  • BCP bathocuproine
  • BAlq aluminum(III) bis(2-methyl-8-quinolinate)(4-phenylphenolate)
  • Korean Patent Application Laying-Open No. 2018-0012709 discloses a compound of a fused structure comprising an indolocarbazole and an azepine. However, said reference does not specifically disclose a compound in which an aryl or a heteroaryl is bonded to the core structure.
  • the objective of the present disclosure is firstly, to provide an organic electroluminescent compound effective for producing an organic electroluminescent device having improved driving voltage, luminous efficiency, lifespan characteristic, and/or power efficiency, and secondly, to provide an organic electroluminescent device comprising the organic electroluminescent compound.
  • X 1 to X 13 each independently, represent N or CR 1 , in which at least one of X 1 to X 13 is CR 1 ;
  • L represents a single bond, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene;
  • R 1 each independently, represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, -SiR 2 R 3 R 4 , or -NR 5 R 6 ; or may be linked to an adjacent substituent to form a ring(s);
  • each of R 1 may be the same or different, in which at least one R 1 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl;
  • Ar each independently, represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, -SiR 2 R 3 R 4 , or -NR 5 R 6 ;
  • R 2 to R 6 each independently, represent hydrogen, deuterium, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C3-C30)cycloalkyl; or may be linked to an adjacent substituent to form a ring(s); if a plurality of R 2 , a plurality of R 3 , a plurality of R 4 , a plurality of R 5 , and a plurality of R 6 are present, each of R 2 , each of R 3 , each of R 4 , each of R 5 , and each of R 6 may be the same or different; and
  • a represents an integer of 1 to 3, in which, if a is an integer of 2 or more, each of Ar may be the same or different.
  • organic electroluminescent compound according to the present disclosure it is possible to produce an organic electroluminescent device having low driving voltage, high luminous efficiency, excellent lifespan characteristic, and/or high power efficiency.
  • organic electroluminescent compound in the present disclosure means a compound that may be used in an organic electroluminescent device. If necessary, the organic electroluminescent compound may be comprised in any layer constituting an organic electroluminescent device.
  • organic electroluminescent material in the present disclosure means a material that may be used in an organic electroluminescent device, and may comprise at least one compound. If necessary, the organic electroluminescent material may be comprised in any layer constituting an organic electroluminescent device.
  • the organic electroluminescent material may be a hole injection material, a hole transport material, a hole auxiliary material, a light-emitting auxiliary material, an electron blocking material, a light-emitting material, an electron buffer material, a hole blocking material, an electron transport material, an electron injection material, etc.
  • the organic electroluminescent material of the present disclosure may comprise at least one compound represented by formula 1.
  • the compound represented by formula 1 may be comprised in a light-emitting layer, an electron transport layer, and/or an electron buffer layer, but is not limited thereto.
  • the compound represented by formula 1 may be comprised as a host material, in which the host material may be a host material of a green or red organic electroluminescent device.
  • the compound represented by formula 1 when comprised in an electron transport layer, the compound represented by formula 1 may be comprised as an electron transport material.
  • the compound represented by formula 1 may be comprised as an electron buffer material.
  • (C1-C30)alkyl is meant to be a linear or branched alkyl having 1 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 1 to 20, and more preferably 1 to 10.
  • the above alkyl may include methyl, ethyl, n -propyl, isopropyl, n -butyl, isobutyl, tert -butyl, etc.
  • (C2-C30)alkenyl is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 2 to 20, and more preferably 2 to 10.
  • the above alkenyl may include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc.
  • (C2-C30)alkynyl is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 2 to 20, and more preferably 2 to 10.
  • the above alkynyl may include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc.
  • (C3-C30)cycloalkyl(ene) is meant to be a mono- or polycyclic hydrocarbon having 3 to 30 ring backbone carbon atoms, in which the number of carbon atoms is preferably 3 to 20, and more preferably 3 to 7.
  • the above cycloalkyl may include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.
  • (3- to 7-membered)heterocycloalkyl is meant to be a cycloalkyl having 3 to 7, preferably 5 to 7, ring backbone atoms, and including at least one heteroatom selected from the group consisting of B, N, O, S, Si, and P, and preferably the group consisting of O, S, and N.
  • the above heterocycloalkyl may include tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc.
  • (C6-C30)aryl(ene) is meant to be a monocyclic or fused ring radical derived from an aromatic hydrocarbon having 6 to 30 ring backbone carbon atoms, in which the number of the ring backbone carbon atoms is preferably 6 to 25, more preferably 6 to 18.
  • the above aryl(ene) may be partially saturated, and may comprise a spiro structure.
  • the above aryl may include phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenylnaphthyl, naphthylphenyl, phenylterphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, spirobifluorenyl, azulenyl, etc.
  • the above aryl may include phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, benzanthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, naphthacenyl, pyrenyl, 1-chrysenyl, 2-chrysenyl, 3-chrysenyl, 4-chrysenyl, 5-chrysenyl, 6-chrysenyl, benzo[c]phenanthryl, benzo[g]chrysenyl, 1-triphenylenyl, 2-triphenylenyl, 3-triphenylenyl, 4-triphenylenyl, 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl, 9-fluorenyl, benzofluorenyl, dibenzofluorfluor
  • (3- to 30-membered)heteroaryl(ene) is an aryl having 3 to 30 ring backbone atoms, and including at least one, preferably 1 to 4 heteroatoms selected from the group consisting of B, N, O, S, Si, and P.
  • the above heteroaryl(ene) may be a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and may comprise a spiro structure.
  • the above heteroaryl may include a monocyclic ring-type heteroaryl such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl, and a fused ring-type heteroaryl such as benzofuranyl, benzothiophenyl, isobenzofuranyl, dibenzofuranyl, dibenzothiophenyl, benzimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, isoindolyl
  • the above heteroaryl may include 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, pyrazinyl, 2-pyridinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 6-pyrimidinyl, 1,2,3-triazin-4-yl, 1,2,4-triazin-3-yl, 1,3,5-triazin-2-yl, 1-imidazolyl, 2-imidazolyl, 1-pyrazolyl, 1-indolidinyl, 2-indolidinyl, 3-indolidinyl, 5-indolidinyl, 6-indolidinyl, 7-indolidinyl, 8-indolidinyl, 2-imidazopyridinyl, 3-imidazopyridinyl, 5-imidazopyridinyl, 6-imidazopyridinyl, 7-imidazopyridinyl, 8-imidazopyridinyl, 3-pyridinyl, 5-imidazo
  • ortho indicates that two substituents are adjacent to each other, and for example, when two substituents in a benzene derivative occupy positions 1 and 2, it is called an ortho position.
  • Meta indicates that two substituents are at positions 1 and 3, and for example, when two substituents in a benzene derivative occupy positions 1 and 3, it is called a meta position.
  • Para indicates that two substituents are at positions 1 and 4, and for example, when two substituents in a benzene derivative occupy positions 1 and 4, it is called a para position.
  • substituted in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or another functional group, i.e., a substituent.
  • the substituents may be at least one selected from the group consisting of a (C1-C6)alkyl, a (C6-C15)aryl, a (5- to 15-membered)heteroaryl, and/or a (C1-C6)alkyl(C6-C15)aryl.
  • the substituents each independently, may be at least one selected from the group consisting of methyl, tert -butyl, phenyl, biphenyl, dimethylfluorenyl, pyridinyl, dibenzofuranyl, dibenzothiophenyl, and/or carbazolyl, etc.
  • the compound of the present disclosure may be represented by the following formula 1-1:
  • R a to R m each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, -SiR 2 R 3 R 4 , or -NR 5 R 6 ; or may be linked to an adjacent substituent to form a ring(s); with the proviso that at least one of R a to R m represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl; and
  • R 2 to R 6 are as defined in formula 1 above.
  • X 1 to X 13 each independently, represent N or CR 1 , in which at least one of X 1 to X 13 is CR 1 .
  • L represents a single bond, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene; preferably a single bond, a substituted or unsubstituted (C6-C15)arylene, or a substituted or unsubstituted (5- to 20-membered)heteroarylene; and more preferably a single bond, an unsubstituted (C6-C15)arylene, or a (5- to 20-membered)heteroarylene unsubstituted or substituted with a (C1-C6)alkyl(s).
  • the heteroarylene may comprise at least one of nitrogen, oxygen, and sulfur.
  • L may represent a single bond, phenylene, naphthylene, pyridylene, pyrimidinylene, triazinylene, quinolinylene, quinazolinylene, quinoxalinylene, naphthyridinylene, carbazolylene, benzofuropyrimidinylene, benzothienopyrimidinylene, dimethylindenopyrimidinylene, benzoquinoxalinylene, benzocarbazolylene, etc.
  • R 1 each independently, represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, -SiR 2 R 3 R 4 , or -NR 5 R 6 ; or may be linked to an adjacent substituent to form a ring(s).
  • each of R 1 may be the same or different, in which at least one R 1 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl.
  • R 1 each independently, represents hydrogen, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 15-membered)heteroaryl. More preferably, R 1 , each independently, represents hydrogen; a (C6-C30)aryl unsubstituted or substituted with a (C1-C6)alkyl(s), a (5- to 15-membered)heteroaryl(s), and/or a (C1-C6)alkyl(C6-C15)aryl(s); or a (5- to 15-membered)heteroaryl unsubstituted or substituted with a (C6-C15)aryl(s).
  • R 1 may, each independently, represent hydrogen; a phenyl; a naphthyl; a biphenyl; a terphenyl; a quaterphenyl; a phenyl substituted with a dimethylfluorenyl(s); a phenyl substituted with a dibenzofuranyl(s); a phenyl substituted with a carbazolyl(s); a biphenyl substituted with a dimethylfluorenyl(s); a biphenyl substituted with a dibenzofuranyl(s); a biphenyl substituted with a dibenzothiophenyl(s); a pyridinyl; a pyridinyl substituted with a biphenyl(s); a triazinyl substituted with a phenyl(s); a quinazolinyl substituted with a phenyl(s); a carbazolin
  • Ar each independently, represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, -SiR 2 R 3 R 4 , or -NR 5 R 6 .
  • Ar represents a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (5- to 20-membered)heteroaryl, or -NR 5 R 6 . More preferably, Ar represents a (C6-C30)aryl unsubstituted or substituted with a (C1-C6)alkyl(s); a (5- to 20-membered)heteroaryl unsubstituted or substituted with a (C6-C12)aryl(s) and/or a (5- to 15-membered)heteroaryl(s); or -NR 5 R 6 .
  • Ar may, each independently, represent a phenyl; a naphthyl; a biphenyl; a terphenyl; a phenyl substituted with a tert-butyl(s); a diphenylfluorenyl; a pyridinyl; a triazinyl substituted with a phenyl(s); a triazinyl substituted with a phenyl(s) and a pyridinyl(s); a carbazolyl; a dibenzofuranyl; dibenzothiophenyl; a carbazolyl substituted with a phenyl(s); a benzonaphthofuranyl; a diphenylamino, etc.
  • R 2 to R 6 each independently, represent hydrogen, deuterium, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C3-C30)cycloalkyl; or may be linked to an adjacent substituent to form a ring(s); if a plurality of R 2 , a plurality of R 3 , a plurality of R 4 , a plurality of R 5 , and a plurality of R 6 are present, each of R 2 , each of R 3 , each of R 4 , each of R 5 , and each of R 6 may be the same or different.
  • R 2 to R 6 each independently, represent a substituted or unsubstituted (C6-C12)aryl. More preferably, R 2 to R 6 , each independently, represent an unsubstituted (C6-C12)aryl. According to one embodiment of the present disclosure, R 2 to R 6 , each independently, may represent a phenyl, etc.
  • a represents an integer of 1 to 3, in which, if a is an integer of 2 or more, each of Ar may be the same or different. According to one embodiment of the present disclosure, a represents 1 or 2.
  • Ar and R 1 each independently, may be hydrogen or selected from any one of the substituents listed in the following group 1, in which at least one R 1 is selected from the following group 1.
  • D1 and D2 each independently, represent a benzene ring or a naphthalene ring;
  • X 21 represents O, S, NR 22 , or CR 23 R 24 ;
  • X 22 each independently, represents CR 31 or N, in which at least one X 22 represents N;
  • X 23 each independently, represents CR 32 or N;
  • L 11 to L 13 and L 15 to L 18 each independently, represent a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered)heteroarylene;
  • L 14 represents a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered)heteroarylene;
  • R 11 to R 24 , R 31 , and R 32 each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C3-C30)cycloalkyl; or may be linked to an adjacent substituent to form a substituted or unsubstituted ring(s); and
  • Ar and R 1 each independently, may hydrogen or selected from any one of the substituents listed in the following group 2, in which at least one R 1 is selected from the following group 2.
  • L 1 is identical to the definition of L in formula 1 above, and
  • a 1 to A 3 each independently, represent a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl.
  • Ar and R 1 each independently, may be hydrogen or selected from any one of the substituents listed in the following group 3, in which at least one R 1 is selected from the following group 3.
  • X 1 to X 13 each independently, represent N or CR 1 , in which at least one of X 1 to X 13 is CR 1 ;
  • L represents a single bond, a substituted or unsubstituted (C6-C15)arylene, or a substituted or unsubstituted (5- to 20-membered)heteroarylene;
  • R 1 each independently, represents hydrogen, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 15-membered)heteroaryl, in which at least one R 1 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl;
  • Ar represents a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (5- to 20-
  • X 1 to X 13 each independently, represent N or CR 1 , in which at least one of X 1 to X 13 is CR 1 ;
  • L represents a single bond, an unsubstituted (C6-C15)arylene, or a (5- to 20-membered)heteroarylene unsubstituted or substituted with a (C1-C6)alkyl(s);
  • R 1 each independently, represents hydrogen; a (C6-C30)aryl unsubstituted or substituted with a (C1-C6)alkyl(s), a (5- to 15-membered)heteroaryl(s), and/or a (C1-C6)alkyl(C6-C15)aryl(s); or a (5- to 15-membered)heteroaryl unsubstituted or substituted with a (C6-C15)aryl(s); with the proviso that at least one R 1
  • the ring may be a substituted or unsubstituted, mono- or polycyclic, (3- to 30-membered) alicyclic or aromatic ring, or the combination thereof.
  • the formed ring may contain at least one heteroatom selected from B, N, O, S, Si, and P, preferably at least one heteroatom selected from N, O, and S.
  • the number of the ring backbone atoms is 5 to 20. According to another embodiment of the present disclosure, the number of the ring backbone atoms is 5 to 15.
  • the fused ring may be a substituted or unsubstituted dibenzothiophene ring, a substituted or unsubstituted dibenzofuran ring, a substituted or unsubstituted naphthalene ring, a substituted or unsubstituted phenanthrene ring, a substituted or unsubstituted fluorene ring, a substituted or unsubstituted benzothiophene ring, a substituted or unsubstituted benzofuran ring, a substituted or unsubstituted indole ring, a substituted or unsubstituted indene ring, a substituted or unsubstituted benzene ring, or a substituted or unsubstituted carbazole ring.
  • heteroaryl(ene) may, each independently, contain at least one heteroatom selected from B, N, O, S, Si, and P.
  • the heteroatom may be bonded to at least one selected from the group consisting of hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (5- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubsti
  • the compound represented by formula 1 includes the following compounds, but is not limited thereto.
  • the compound represented by formula 1 according to the present disclosure may be produced by a synthetic method known to one skilled in the art based on KR 2018-0012709 A.
  • the organic electroluminescent compound of the present disclosure may be synthesized as shown in the following reaction scheme, but is not limited thereto.
  • the present disclosure provides an organic electroluminescent material comprising the compound represented by formula 1, and an organic electroluminescent device comprising the organic electroluminescent material.
  • the organic electroluminescent material may consist of the compound according to the present disclosure alone, or may further comprise conventional materials included in organic electroluminescent materials.
  • the organic electroluminescent compound represented by formula 1 of the present disclosure may be comprised in at least one of a light-emitting layer, a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer, an electron transport layer, an electron buffer layer, an electron injection layer, an interlayer, a hole blocking layer, and an electron blocking layer, preferably in a light-emitting layer.
  • the organic electroluminescent compound represented by formula 1 of the present disclosure may be comprised as a host material.
  • the light-emitting layer may further comprise at least one dopant. If necessary, the organic electroluminescent compound of the present disclosure may be used as a co-host material.
  • the light-emitting layer may further include an organic electroluminescent compound other than the organic electroluminescent compound represented by formula 1 of the present disclosure (first host material) as a second host material.
  • first host material organic electroluminescent compound other than the organic electroluminescent compound represented by formula 1 of the present disclosure
  • the weight ratio between the first host material and the second host material is in the range of 1:99 to 99:1.
  • the second host material may be selected from any of the known host materials.
  • the second host material may be selected from the group consisting of the compounds represented by the following formulas 11 to 16:
  • A represents -O- or -S-;
  • R 41 to R 44 each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (5- to 30-membered)heteroaryl, or -SiR 45 R 46 R 47 , where R 45 to R 47 , each independently, represent a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl;
  • L 4 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (5- to 30-membered)heteroarylene;
  • M represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 30-membered)heteroaryl;
  • Y 1 and Y 2 each independently, represent -O-, -S-, -N(R 51 )-, or -C(R 52 )(R 53 )-, and Y 1 and Y 2 are not present simultaneously;
  • R 51 to R 53 each independently, represent a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 30-membered)heteroaryl, in which R 52 and R 53 may be the same or different; and
  • h and i each independently, represent an integer of 1 to 3; j, k, l and m, each independently, represent an integer of 1 to 4; q represents an integer of 1 to 3; and where h, i, j, k, l, m or q is an integer of 2 or more, each of (Cz-L 4 ), each of (Cz), each of R 41 , each of R 42 , each of R 43 , or each of R 44 may be the same or different.
  • Y 3 to Y 5 each independently, represent CR 54 or N;
  • R 54 represents hydrogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 30-membered)heteroaryl;
  • B 1 and B 2 each independently, represent hydrogen, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 30-membered)heteroaryl;
  • B 3 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 30-membered)heteroaryl;
  • L 5 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (5- to 30-membered)heteroarylene.
  • the examples of the second host material include the following, but are not limited thereto.
  • TPS represents a triphenylsilyl group.
  • the dopant comprised in the organic electroluminescent device of the present disclosure is at least one phosphorescent or fluorescent dopant, preferably at least one phosphorescent dopant.
  • the phosphorescent dopant material applied to the organic electroluminescent device of the present disclosure is not particulary limited, but may be preferably selected from the metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), more preferably selected from ortho-metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), and even more preferably ortho-metallated iridium complex compounds.
  • the dopant comprised in the organic electroluminescent device of the present disclosure may be exemplified as a compound represented by the following formula 101, but is not limited thereto.
  • L is selected from the following structures 1 to 3:
  • R 100 to R 103 each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a cyano, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C1-C30)alkoxy; or may be linked to an adjacent R 100 to R 103 to form a substituted or unsubstituted fused ring with a pyridine, e.g., a substituted or unsubstituted quinoline, a substituted or unsubstituted isoquinoline, a substituted or unsubstituted benzofuropyridine, a substituted or unsubstitute
  • R 104 to R 107 each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a cyano, or a substituted or unsubstituted (C1-C30)alkoxy; or may be linked to adjacent R 104 to R 107 to form a substituted or unsubstituted fused ring with a benzene, e.g., a substituted or unsubstituted naphthyl, a substituted or unsubstituted fluorene, a substituted or unsubstituted dibenzothiophene, a substituted or
  • R 201 to R 220 each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (C6-C30)aryl; or may be linked to adjacent R 201 to R 220 to form a substituted or unsubstituted fused ring; and
  • n an integer of 1 to 3.
  • dopant compound is as follows, but are not limited thereto.
  • the organic electroluminescent device comprises a first electrode; a second electrode; and at least one organic layer between the first and second electrodes.
  • the organic layer may comprise a light-emitting layer, and may further comprise at least one layer selected from a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer, an electron transport layer, an electron buffer layer, an electron injection layer, an interlayer, a hole blocking layer, and an electron blocking layer.
  • Each of the layers may further consist of multi-layers.
  • the first electrode and the second electrode may each be formed with a transmissive conductive material, a transflective conductive material, or a reflective conductive material.
  • the organic electroluminescent device may be a top emission type, a bottom emission type, or both-sides emission type according to the kinds of the material forming the first electrode and the second electrode.
  • the hole injection layer may be further doped with a p-dopant, and the electron injection layer may be further doped with an n-dopant.
  • the organic electroluminescent device according to the present disclosure may further comprise an azine-based compound as at least one selected from an electron transport material, an electron injection material, an electron buffer material, and a hole blocking material, in addition to the organic electroluminescent compound of the present disclosure.
  • an azine-based compound as at least one selected from an electron transport material, an electron injection material, an electron buffer material, and a hole blocking material, in addition to the organic electroluminescent compound of the present disclosure.
  • the organic layer may further comprise at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds.
  • the organic layer may further comprise at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4 th period, transition metals of the 5 th period, lanthanides and organic metals of d-transition elements of the Periodic Table, or at least one complex compound comprising said metal.
  • the organic electroluminescent device of the present disclosure may emit white light by further including at least one light-emitting layer containing a blue, red, or green light-emitting compound, which is known in the art, besides the compound of the present disclosure. In addition, it may further include a yellow or orange light-emitting layer, if necessary.
  • a layer selected from a chalcogenide layer, a metal halide layer and a metal oxide layer may be preferably placed on an inner surface(s) of one or both electrodes.
  • a chalcogenide (including oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer
  • a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer.
  • the surface layer may provide operation stability for the organic electroluminescent device.
  • the chalcogenide includes SiO X (1 ⁇ X ⁇ 2), AlO X (1 ⁇ X ⁇ 1.5), SiON, SiAlON, etc.;
  • the metal halide includes LiF, MgF 2 , CaF 2 , a rare earth metal fluoride, etc.; and the metal oxide includes Cs 2 O, Li 2 O, MgO, SrO, BaO, CaO, etc.
  • a hole injection layer, a hole transport layer, or an electron blocking layer, or a combination thereof may be used between the anode and the light-emitting layer.
  • the hole injection layer may be multilayers in order to lower the hole injection barrier (or hole injection voltage) from the anode to the hole transport layer or the electron blocking layer, wherein each of the multilayers may use two compounds simultaneously.
  • the hole transport layer or the electron blocking layer may also be multilayers.
  • An electron buffer layer, a hole blocking layer, an electron transport layer, or an electron injection layer, or a combination thereof can be used between the light-emitting layer and the cathode.
  • the electron buffer layer may be multilayers in order to control the injection of the electron and improve the interfacial properties between the light-emitting layer and the electron injection layer, wherein each of the multilayers may use two compounds simultaneously.
  • the hole blocking layer or the electron transport layer may also be multilayers, wherein each of the multilayers may use a plurality of compounds.
  • the light-emitting auxiliary layer may be placed between the anode and the light-emitting layer, or between the cathode and the light-emitting layer.
  • the light-emitting auxiliary layer When the light-emitting auxiliary layer is placed between the anode and the light-emitting layer, it can be used for promoting the hole injection and/or the hole transport, or for preventing the overflow of electrons.
  • the light-emitting auxiliary layer is placed between the cathode and the light-emitting layer, it can be used for promoting the electron injection and/or the electron transport, or for preventing the overflow of holes.
  • the hole auxiliary layer may be placed between the hole transport layer (or hole injection layer) and the light-emitting layer, and may be effective to promote or block the hole transport rate (or the hole injection rate), thereby enabling the charge balance to be controlled.
  • the electron blocking layer may be placed between the hole transport layer (or hole injection layer) and the light-emitting layer, and may block overflowing electrons from the light-emitting layer and confine the excitons in the light-emitting layer to prevent light leakage.
  • the hole transport layer which is further included, may be used as a hole auxiliary layer or an electron blocking layer.
  • the hole auxiliary layer and the electron blocking layer may have an effect of improving the efficiency and/or the lifespan of the organic electroluminescent device.
  • a mixed region of an electron transport compound and a reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant is preferably placed on at least one surface of a pair of electrodes.
  • the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to an electroluminescent medium.
  • the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to the electroluminescent medium.
  • the oxidative dopant includes various Lewis acids and acceptor compounds; and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof.
  • a reductive dopant layer may be employed as a charge-generating layer to produce an organic electroluminescent device having two or more light-emitting layers, which emits white light.
  • An organic electroluminescent material according to one embodiment of the present disclosure may be used as light-emitting materials for a white organic light-emitting device.
  • the white organic light-emitting device has been suggested to have various structures such as a parallel arrangement (side-by-side) method, a stacking method, or color conversion material (CCM) method, etc., according to the arrangement of R (red), G (green), B (blue), or YG (yellowish green) light-emitting units.
  • the organic electroluminescent material according to one embodiment of the present disclosure may also be applied to the organic electroluminescent device comprising a quantum dot (QD).
  • QD quantum dot
  • each layer of the organic electroluminescent device of the present disclosure dry film-forming methods such as vacuum evaporation, sputtering, plasma, ion plating, etc., or wet film-forming methods such as ink jet printing, spin coating, dip coating, flow coating, etc., can be used.
  • the first and second host compounds of the present disclosure may be co-evaporated or mixture-evaporated to form a film.
  • a thin film can be formed by dissolving or diffusing the materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc.
  • the solvent is not particularly limited as long as the material constituting each layer is soluble or dispersible in the solvents, which do not cause any problems in forming a film.
  • a display system e.g., a display system for smartphones, tablets, notebooks, PCs, TVs, or cars
  • a lighting system e.g., an outdoor or indoor lighting system
  • An OLED comprising a compound according to the present disclosure was produced as follows: A transparent electrode indium tin oxide (ITO) thin film (10 ⁇ /sq) on a glass substrate for an OLED (GEOMATEC CO., LTD., Japan) was subjected to an ultrasonic washing with acetone, ethanol, and distilled water, sequentially, and then was stored in isopropyl alcohol.
  • the ITO substrate was mounted on a substrate holder of a vacuum vapor deposition apparatus.
  • Compound HI-1 was introduced into a cell of the vacuum vapor deposition apparatus, and the pressure in the chamber of the apparatus was then controlled to 10 -6 torr.
  • compound HI-2 was introduced into another cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer.
  • Compound HT-1 was then introduced into another cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a first hole transport layer having a thickness of 10 nm on the second hole injection layer.
  • Compound HT-2 was then introduced into another cell of the vacuum vapor deposition apparatus and was evaporated by applying an electric current to the cell, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer.
  • a light-emitting layer was formed thereon as follows: The compound shown in Table 1 was introduced into one cell of the vacuum vapor depositing apparatus as a host, and compound D-39 was introduced into another cell as a dopant. The two materials were evaporated at different rates, and respectively deposited in a doping amount of 3 wt% to form a light-emitting layer having a thickness of 40 nm on the second hole transport layer.
  • compound ET-1 and compound EI-1 were evaporated at a rate of 1:1 in two other cells to deposit an electron transport layer having a thickness of 35 nm on the light-emitting layer.
  • an Al cathode having a thickness of 80 nm was deposited on the electron injection layer by another vacuum vapor deposition apparatus.
  • an OLED was produced.
  • Comparative Examples 1 and 2 Producing an OLED deposited with a
  • An OLED was produced in the same manner as in Device Example 1, except that the compound shown in Table 1 was used as a host of the light-emitting layer.
  • the driving voltage, luminous efficiency, and CIE color coordinates at a luminance of 1,000 nit, and the time taken for luminance to decrease from 100% to 95% at a luminance of 5,000 nit (lifespan; T95) of the OLEDs produced in Device Example 1 and Comparative Examples 1 and 2 are provided in Table 1 below.
  • the OLED produced by using the organic electroluminescent compound according to the present disclosure as a host exhibited equivalent or lower driving voltage, equivalent or higher luminous efficiency, and longer lifespan characteristic compared to the OLED produced by using the comparative compound as a host.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

La présente invention concerne un composé électroluminescent organique représenté par la formule 1, et un dispositif électroluminescent organique le comprenant. Un dispositif électroluminescent organique qui présente des caractéristiques améliorées en termes de tension de commande, d'efficacité lumineuse, de durée de vie et/ou de rendement énergétique peut être obtenu au moyen du composé électroluminescent organique de la présente invention.
PCT/KR2020/002478 2019-02-20 2020-02-20 Composé électroluminescent organique et dispositif électroluminescent organique le comprenant WO2020171630A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080015176.8A CN113454185A (zh) 2019-02-20 2020-02-20 有机电致发光化合物以及包含其的有机电致发光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190019995A KR20200101740A (ko) 2019-02-20 2019-02-20 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR10-2019-0019995 2019-02-20

Publications (1)

Publication Number Publication Date
WO2020171630A1 true WO2020171630A1 (fr) 2020-08-27

Family

ID=72143665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002478 WO2020171630A1 (fr) 2019-02-20 2020-02-20 Composé électroluminescent organique et dispositif électroluminescent organique le comprenant

Country Status (3)

Country Link
KR (1) KR20200101740A (fr)
CN (1) CN113454185A (fr)
WO (1) WO2020171630A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539262A (zh) * 2021-04-08 2022-05-27 陕西莱特光电材料股份有限公司 有机化合物及包含其的电子元件和电子装置
CN115490691A (zh) * 2021-08-20 2022-12-20 陕西莱特迈思光电材料有限公司 含氮化合物及包含其的有机电致发光器件和电子装置
CN115490691B (zh) * 2021-08-20 2024-06-04 陕西莱特光电材料股份有限公司 含氮化合物及包含其的有机电致发光器件和电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150121337A (ko) * 2014-04-18 2015-10-29 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20180012709A (ko) * 2016-07-27 2018-02-06 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20180035554A (ko) * 2016-09-29 2018-04-06 롬엔드하스전자재료코리아유한회사 전자 전달층 및 전자 버퍼층을 포함하는 유기 전계 발광 소자
KR20180099525A (ko) * 2017-02-28 2018-09-05 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
CN108727398A (zh) * 2018-06-28 2018-11-02 宁波卢米蓝新材料有限公司 一种稠环化合物及其制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150121337A (ko) * 2014-04-18 2015-10-29 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20180012709A (ko) * 2016-07-27 2018-02-06 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20180035554A (ko) * 2016-09-29 2018-04-06 롬엔드하스전자재료코리아유한회사 전자 전달층 및 전자 버퍼층을 포함하는 유기 전계 발광 소자
KR20180099525A (ko) * 2017-02-28 2018-09-05 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
CN108727398A (zh) * 2018-06-28 2018-11-02 宁波卢米蓝新材料有限公司 一种稠环化合物及其制备方法和用途

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539262A (zh) * 2021-04-08 2022-05-27 陕西莱特光电材料股份有限公司 有机化合物及包含其的电子元件和电子装置
WO2022213794A1 (fr) * 2021-04-08 2022-10-13 陕西莱特光电材料股份有限公司 Composé organique, élément électronique le comprenant et dispositif électronique
CN114539262B (zh) * 2021-04-08 2023-05-23 陕西莱特光电材料股份有限公司 有机化合物及包含其的电子元件和电子装置
CN115490691A (zh) * 2021-08-20 2022-12-20 陕西莱特迈思光电材料有限公司 含氮化合物及包含其的有机电致发光器件和电子装置
CN115490691B (zh) * 2021-08-20 2024-06-04 陕西莱特光电材料股份有限公司 含氮化合物及包含其的有机电致发光器件和电子装置

Also Published As

Publication number Publication date
KR20200101740A (ko) 2020-08-28
CN113454185A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2019177407A1 (fr) Matériau de composition pour dispositif électroluminescent organique, pluralité de matériaux hôtes et dispositif électroluminescent organique les comprenant
EP3494117A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique le comprenant
EP3551623A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique le comprenant
EP3446345A1 (fr) Pluralité de matériaux hôtes et dispositif électroluminescent organique les comprenant
WO2015099507A1 (fr) Nouveau composé organique électroluminescent, matériau hôte à plusieurs constituants et dispositif organique électroluminescent le comprenant
WO2018021841A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique le comprenant
WO2019143184A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce dernier
EP2817387A1 (fr) Nouveaux composés électroluminescents organiques et dispositif électroluminescent organique les comprenant
EP2616462A1 (fr) Nouveaux composés électroluminescents organiques et dispositif électroluminescent organique utilisant celui-ci
WO2015093878A1 (fr) Composé électroluminescent organique, et matériau hôte à composants multiples et dispositif électroluminescent organique comprenant ledit composé
WO2014129846A1 (fr) Composés électroluminescents organiques et dispositif électroluminescent organique comprenant ces composés
WO2020085829A1 (fr) Pluralité de matériaux électroluminescents et dispositif électroluminescent organique les comprenant
EP3201200A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé
WO2020022769A1 (fr) Pluralité de matériaux hôtes et dispositif électroluminescent organique les comprenant
WO2020197240A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique le comprenant
WO2020091446A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique le comprenant
EP3458457A1 (fr) Composé organique électroluminescent, matériau organique électroluminescent et dispositif organique électroluminescent les comprenant
EP3386987A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé
WO2017183859A1 (fr) Pluralité de matériaux hôtes et dispositif électroluminescent organique les comprenant
WO2014104704A1 (fr) Nouveaux composés électroluminescents organiques et dispositif électroluminescent organique les comprenant
WO2019190149A1 (fr) Matériau de composition pour dispositif électroluminescent organique, pluralité de matériaux hôtes, et dispositif électroluminescent organique les comprenant
WO2016052962A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique comprenant ce composé
WO2017200210A1 (fr) Composé organique électroluminescent, matériau organique électroluminescent et dispositif organique électroluminescent les comprenant
WO2018066812A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique le comprenant
WO2020032574A1 (fr) Composé électroluminescent organique et dispositif électroluminescent organique le comprenant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20758857

Country of ref document: EP

Kind code of ref document: A1