WO2020171155A1 - Production method for organic polymer having carbon-carbon triple bond - Google Patents

Production method for organic polymer having carbon-carbon triple bond Download PDF

Info

Publication number
WO2020171155A1
WO2020171155A1 PCT/JP2020/006681 JP2020006681W WO2020171155A1 WO 2020171155 A1 WO2020171155 A1 WO 2020171155A1 JP 2020006681 W JP2020006681 W JP 2020006681W WO 2020171155 A1 WO2020171155 A1 WO 2020171155A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic polymer
carbon
group
polymer
triple bond
Prior art date
Application number
PCT/JP2020/006681
Other languages
French (fr)
Japanese (ja)
Inventor
達郎 春増
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021502122A priority Critical patent/JPWO2020171155A1/en
Publication of WO2020171155A1 publication Critical patent/WO2020171155A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon

Definitions

  • the present invention relates to a method for producing an organic polymer having a carbon-carbon triple bond.
  • An organic polymer in which an unsaturated bond is bonded to the main chain is a polymer exhibiting curability and can be used as a curable material, and is also a precursor for producing an organic polymer having a hydrolyzable silyl group. It is a very useful polymer that can also be used as a body.
  • Patent Document 1 after sodium methoxide is added to a hydroxyl group-containing polyoxyalkylene, methanol is distilled off at 130° C. under reduced pressure to metal-oxylate the hydroxyl group, and then allyl chloride is used as an electrophile. It has been shown that polyoxyalkylene having an allyl group was produced by adding the above to allyl etherify the hydroxyl group.
  • the present inventors attempted a reaction for converting a hydroxyl group of an organic polymer into a carbon-carbon triple bond by using propargyl chloride instead of allyl chloride, and during the reaction, a carbon-carbon triple bond was contained.
  • the organic polymer having a carbon-carbon triple bond contains a large amount of an isomerized organic polymer having an allene group as a by-product, it is hydrolyzable with respect to the carbon-carbon triple bond of the polymer. It was found that when a silyl group-containing hydrosilane compound was reacted to produce an organic polymer having a hydrolyzable silyl group, the physical properties of a cured product of the obtained polymer were not sufficient.
  • an object of the present invention is to suppress the isomerization reaction of a carbon-carbon triple bond and efficiently produce an organic polymer having a carbon-carbon triple bond from an organic polymer having a hydroxyl group. ..
  • Another object of the present invention is to produce an organic polymer having a hydrolyzable silyl group, which exhibits good physical properties in a cured product, from an organic polymer having a carbon-carbon triple bond.
  • the inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, after adding an alkali metal salt to a hydroxyl group-containing organic polymer to metaloxylate the hydroxyl group, a polymer having a carbon-carbon triple bond was found In producing an organic polymer having a carbon-carbon triple bond by adding and reacting an electron agent, by using a brominated hydrocarbon compound having a carbon-carbon triple bond as an electrophile, carbon-carbon It was found that the isomerization reaction of the triple bond is suppressed and an organic polymer having a carbon-carbon triple bond can be efficiently produced.
  • the organic polymer having a hydrolyzable silyl group produced by reacting the organic polymer having a carbon-carbon triple bond obtained above with a hydrosilane compound containing a hydrolyzable silyl group is a cured product. Has also been found to exhibit good physical properties, leading to the present invention.
  • the present invention is a method for producing an organic polymer (A) having a carbon-carbon triple bond, in which an alkali metal salt as a basic compound is allowed to act on an organic polymer (B) having a hydroxyl group to obtain an alkali metal salt.
  • a system containing the organic polymer (C) is formed after the organic polymer (C) having an alkali metal oxy group is formed and before the brominated hydrocarbon compound having a carbon-carbon triple bond is added.
  • the step of lowering the temperature of can be further included.
  • the organic polymer (A) has a polyoxyalkylene-based main chain skeleton.
  • the alkali metal salt is an alkali metal alkoxide.
  • the present invention also includes a step of producing an organic polymer (A) having a carbon-carbon triple bond by the above production method, and then reacting the organic polymer (A) with a hydrosilane compound having a hydrolyzable silyl group. It also relates to a method for producing an organic polymer (D) having a hydrolyzable silyl group.
  • an isomerization reaction of a carbon-carbon triple bond can be suppressed, and an organic polymer having a carbon-carbon triple bond can be efficiently produced from an organic polymer having a hydroxyl group.
  • an organic polymer having a hydrolyzable silyl group which shows a cured product having good physical properties, can be produced.
  • the carbon-carbon triple bond may be directly bonded to an oxygen atom to be contained in the organic polymer (A), but may be bonded to an oxygen atom via a divalent hydrocarbon group to form the organic polymer (A). Is preferably contained in.
  • the carbon number of the divalent hydrocarbon group is preferably 1 to 8, more preferably 1 to 5, still more preferably 1 to 3, still more preferably 1 to 2, and particularly preferably 1.
  • a propargyl group (HC ⁇ C—CH 2 —) is contained in the organic polymer (A) by bonding to an oxygen atom.
  • the main chain skeleton of the organic polymer (A) may be linear or may have a branched chain.
  • the type of the main chain skeleton is not particularly limited, but examples thereof include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, and polyoxypropylene-polyoxybutylene.
  • polyoxyalkylene polymers saturated hydrocarbon polymers, and (meth)acrylic acid ester polymers have a relatively low glass transition temperature, and the resulting cured product has excellent cold resistance.
  • a polyoxyalkylene polymer is more preferable.
  • the organic polymer (A) may be a polymer having any one of the above main chain skeletons, or may be a mixture of polymers having different main chain skeletons. Further, the mixture may be a mixture of polymers produced separately, or may be a mixture in which each polymer is produced simultaneously so as to have an arbitrary mixed composition.
  • Organic polymer having hydroxyl group (B) used as a precursor in the present invention is not particularly limited as long as it has the same main chain skeleton as the organic polymer (A) and has a hydroxyl group.
  • the position at which the hydroxyl group is bonded is not particularly limited, and it may be bonded to the end of the main chain skeleton or may be bonded to the main chain skeleton as a side chain.
  • the number of hydroxyl groups contained in the organic polymer (B) is not particularly limited, and may be one or two or more.
  • the number average molecular weight of the organic polymer (B) is preferably 3,000 to 100,000, more preferably 3,000 to 50,000, and particularly preferably 3,000 to 30,000 in terms of polystyrene equivalent molecular weight in GPC.
  • the number average molecular weight is within the above range, it is easy to obtain an organic polymer (B) having a viscosity that is easy to handle and excellent workability, while suppressing the production cost within an appropriate range.
  • the hydroxyl group concentration can be directly determined by titration analysis based on the principle of the hydroxyl value measurement method of JIS K 1557 and the iodine value measurement method specified in JIS K0070. It can also be indicated by the molecular weight converted to the end group, which is measured and taken into consideration the structure of the organic polymer (the degree of branching determined by the polymerization initiator used).
  • the terminal group-equivalent molecular weight of the organic polymer (B) is obtained by GPC of the organic polymer (B) by preparing a calibration curve of the number average molecular weight obtained by general GPC measurement of the polymer and the terminal group-equivalent molecular weight. It is also possible to calculate the number average molecular weight by converting it into the molecular weight converted to the end group.
  • the production method of the organic polymer (B) is not particularly limited, and a known synthesis method can be used.
  • the main chain skeleton of the organic polymer (B) is a polyoxyalkylene-based polymer having a preferable main chain skeleton.
  • the manufacturing method thereof will be described below.
  • the monoepoxide is not particularly limited, and examples thereof include alkylene oxides such as ethylene oxide, propylene oxide, ⁇ -butylene oxide, ⁇ -butylene oxide, hexene oxide, cyclohexene oxide, styrene oxide and ⁇ -methylstyrene oxide, and methylglycidyl.
  • alkyl glycidyl ethers such as ether, ethyl glycidyl ether, isopropyl glycidyl ether and butyl glycidyl ether, allyl glycidyl ethers and aryl glycidyl ethers.
  • Propylene oxide is preferred.
  • a basic compound such as KOH, NaOH, KOCH 3 , NaOCH 3 or the like is allowed to act on a polyoxyalkylene polymer having a small number average molecular weight, and a bifunctional or higher alkyl halide such as CH 2 BrCl or CH is added.
  • a high molecular weight polyoxyalkylene polymer can also be obtained by a chain extension reaction by reacting 2 Cl 2 , CH 2 Br 2, or the like.
  • a method for producing the organic polymer (B) includes ethylene, propylene, 1-butene, isobutylene and the like having 2 to 2 carbon atoms. Examples include a method of polymerizing the olefin compound of 6 as a main monomer to obtain a polymer, and then introducing a hydroxyl group at the terminal of the molecular chain of the obtained polymer.
  • an organic polymer (C) having an alkali metal oxy group (—OM) is prepared by reacting an alkali metal salt as a basic compound with an organic polymer (B) having a hydroxyl group (—OH). To form.
  • the alkali metal salt is not particularly limited as long as it is a basic compound having a function of converting a hydroxyl group of the organic polymer (B) into an alkali metal oxy group, and examples thereof include an alkali metal hydroxide or an alkali metal alkoxide. Is mentioned. Specific examples include sodium hydroxide, sodium alkoxide, potassium hydroxide, potassium alkoxide, lithium hydroxide, lithium alkoxide, cesium hydroxide, and cesium alkoxide.
  • sodium hydroxide, sodium methoxide, sodium ethoxide, sodium t-butoxide, potassium hydroxide, potassium methoxide, potassium ethoxide, and potassium t-butoxide are preferable, and sodium methoxide and More preferred is potassium methoxide.
  • sodium methoxide is particularly preferable in terms of availability.
  • the alkali metal salt may be used in a state of being dissolved in a solvent.
  • the amount of the alkali metal salt used is not particularly limited and can be appropriately determined in consideration of the target carbon-carbon triple bond introduction rate.
  • a molar ratio to the hydroxyl group of the organic polymer (B) 0.5 or more is preferable, 0.6 or more is more preferable, 0.7 or more is further preferable, and 0.8 or more is further more preferable.
  • the molar ratio is preferably 2.0 or less, more preferably 1.8 or less. If the amount of the alkali metal salt used is too small, the reaction may not proceed sufficiently. On the other hand, if the amount used is too large, the alkali metal salt may remain as an impurity and the side reaction may proceed.
  • the reaction temperature when the alkali metal salt acts on the organic polymer (B) is the first temperature.
  • the first temperature can be appropriately set by those skilled in the art in consideration of the reactivity between the hydroxyl group of the polymer and the alkali metal salt and is not particularly limited, but may be, for example, 100° C. or higher and 180° C. or lower. From the viewpoint of promptly proceeding the reaction of converting the hydroxyl group of the organic polymer (B) into an alkali metal oxy group, 110°C or higher is preferable, 120°C or higher is more preferable, 125°C or higher is further preferable, and 130°C or higher is Even more preferable. Further, from the viewpoint of suppressing decomposition of the organic polymer (B), the first temperature is preferably 170°C or lower, more preferably 160°C or lower, further preferably 150°C or lower, still more preferably 140°C or lower.
  • the electrophilic agent is added to the system while maintaining the temperature of the system at that time to carry out the carbon-carbon triple bond introduction reaction. You can go.
  • the temperature of the system containing the organic polymer (C) is changed from the first temperature to the second temperature.
  • the second temperature may be lower than the first temperature, but is preferably 5° C. or more lower than the first temperature, more preferably 10° C. or more lower temperature, further preferably 30° C. or more lower temperature. ..
  • a solvent may be added before or during this step in order to mitigate the increase in viscosity in the low temperature step.
  • the solvent is not particularly limited, and examples thereof include acetone, acetonitrile, benzene, t-butyl alcohol, t-butyl methyl ether, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, diglyme, 1,2-dimethoxyethane, dimethyl.
  • examples thereof include acetamide, dimethyl sulfoxide, dioxane, ethyl methyl ketone, n-hexane, n-heptane, toluene and tetrahydrofuran.
  • diethyl ether, n-hexane, n-heptane, and tetrahydrofuran are particularly preferable because they are easy to handle.
  • the second temperature is lower than the first temperature during the metal oxidization reaction, and a person skilled in the art can appropriately set the temperature at which the isomerization reaction of the side reaction can be suppressed while the carbon-carbon triple bond introduction reaction proceeds. Good. Specifically, the range of 30°C or higher and 120°C or lower is preferable.
  • the second temperature is preferably 40° C. or higher, more preferably 50° C. or higher, even more preferably 60° C. or higher, from the viewpoint of efficiently advancing the carbon-carbon triple bond introduction reaction while suppressing the isomerization reaction of the side reaction. 70° C. or higher is even more preferable. Further, from the viewpoint of sufficiently suppressing the isomerization reaction of the side reaction, the second temperature is preferably 110°C or lower, more preferably 100°C or lower.
  • the temperature of the system containing the organic polymer (C) is maintained at the first temperature or after the temperature is decreased from the first temperature to the second temperature, carbon-carbon is used as the electrophile.
  • a carbon-carbon compound is obtained by adding a brominated hydrocarbon compound having a triple bond to the system and allowing the reaction between the organic polymer (C) and the brominated hydrocarbon compound to proceed at a first temperature or a second temperature.
  • An organic polymer (A) having a triple bond is formed.
  • the amount of the brominated hydrocarbon compound having a carbon-carbon triple bond used is not particularly limited, and is appropriately determined in consideration of the reactivity of the brominated hydrocarbon compound used and the target carbon-carbon triple bond introduction rate. be able to.
  • the amount of the brominated hydrocarbon compound used is preferably 0.6 or more, more preferably 0.7 or more, and more preferably 0.9 or more as a molar ratio with respect to the hydroxyl group of the organic polymer (B). More preferably, 1.0 or more is particularly preferable.
  • the molar ratio is preferably 5.0 or less, more preferably 3.0 or less, still more preferably 2.0 or less, still more preferably 1.5 or less.
  • the reaction time of the carbon-carbon triple bond introduction reaction is not particularly limited and can be appropriately set by a person skilled in the art. For example, it may be 10 minutes or more and 5 hours or less, and preferably 30 minutes or more and 4 hours or less. More preferably, it is not less than 4 hours and not more than 4 hours.
  • the hydrogen atom of the hydroxyl group of the organic polymer (B) is converted into a carbon-carbon triple bond-containing group, and the organic polymer (A) having a carbon-carbon triple bond can be produced. ..
  • a brominated hydrocarbon compound as the electrophile having a carbon-carbon triple bond, instead of the chlorinated hydrocarbon compound used in Patent Document 1, a carbon-carbon triple bond can be obtained.
  • the isomerization reaction from the containing group (eg, HC ⁇ C—CH 2 —) to the allene group (eg, H 2 C ⁇ C ⁇ CH—) is suppressed, the isomerization rate to the allene group is low, and the carbon-carbon triple bond It is possible to obtain an organic polymer having a high content ratio.
  • the organic polymer (A) having a carbon-carbon triple bond produced as described above can be used as a curable material together with a curing agent or a curing catalyst. Further, as described below, it can also be used as a precursor when producing an organic polymer having a hydrolyzable silyl group.
  • a hydrosilane compound having a hydrolyzable silyl group is hydrosilylated to the organic polymer (A) having a carbon-carbon triple bond obtained by the production method of the present invention to convert the hydrolyzable silyl group into a polymer. By introducing it, the organic polymer (D) having a hydrolyzable silyl group can be produced.
  • the hydrosilane compound having a hydrolyzable silyl group is not particularly limited, but the following general formula (1): H-Si(R 1 ) 3-a (X) a (1)
  • R 1 represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, or a triorganosiloxy group represented by (R′) 3 SiO—.
  • the hydrocarbon group may have a hetero-containing group.
  • R' is the same or different and represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • X represents a hydroxyl group or a hydrolyzable group.
  • a is 1, 2, or 3.
  • R 1 examples include a hydrogen atom; an alkyl group such as a methyl group and an ethyl group; an alkyl group having a hetero-containing group such as a chloromethyl group and a methoxymethyl group; a cycloalkyl group such as a cyclohexyl group; an aryl such as a phenyl group Group; an aralkyl group such as a benzyl group; and a triorganosiloxy group represented by (R') 3 SiO- in which R'is a methyl group, a phenyl group or the like.
  • An alkyl group is preferable, a methyl group, an ethyl group, a chloromethyl group, and a methoxymethyl group are more preferable, a methyl group and an ethyl group are still more preferable, and a methyl group is particularly preferable.
  • R 1's When a plurality of R 1's are present, they may be the same or different from each other.
  • Examples of X include a hydroxyl group, hydrogen, halogen, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group.
  • X is preferably an alkoxy group, more preferably a methoxy group, an ethoxy group, an n-propoxy group and an isopropoxy group, more preferably a methoxy group and an ethoxy group, and particularly preferably a methoxy group, since they have mild hydrolyzability and are easy to handle. ..
  • As X only one type of group may be used, or two or more types of groups may be used in combination.
  • A is 1, 2, or 3.
  • hydrosilane compound having a hydrolyzable silyl group examples include, for example, trichlorosilane, dichloromethylsilane, chlorodimethylsilane, dichlorophenylsilane, (chloromethyl)dichlorosilane, (dichloromethyl)dichlorosilane, and bis(chloromethyl).
  • Halogenated silanes such as chlorosilane, (methoxymethyl)dichlorosilane, (dimethoxymethyl)dichlorosilane, bis(methoxymethyl)chlorosilane; trimethoxysilane, triethoxysilane, dimethoxymethylsilane, diethoxymethylsilane, dimethoxyphenylsilane , Ethyldimethoxysilane, methoxydimethylsilane, ethoxydimethylsilane, (chloromethyl)methylmethoxysilane, (chloromethyl)dimethoxysilane, (chloromethyl)diethoxysilane, bis(chloromethyl)methoxysilane, (methoxymethyl)methylmethoxy Silane, (methoxymethyl)dimethoxysilane, bis(methoxymethyl)methoxysilane, (methoxymethyl)diethoxysilane, (ethoxymethyl)diethoxys
  • the hydrosilylation reaction is preferably carried out in the presence of a hydrosilylation catalyst in order to accelerate the reaction.
  • a hydrosilylation catalyst is not particularly limited, but metals such as cobalt, nickel, iridium, platinum, palladium, rhodium and ruthenium, and complexes thereof can be used.
  • the reaction time of the hydrosilylation reaction may be appropriately set, but it is preferable to adjust the reaction time together with the temperature conditions so that the unintended condensation reaction of the polymer does not proceed. Specifically, 30 minutes or more and 15 hours or less are preferable, and 30 minutes or more and 8 hours or less are more preferable.
  • the hydrosilylation reaction may be carried out in the presence of an orthocarboxylic acid trialkyl ester.
  • an orthocarboxylic acid trialkyl ester examples include trimethyl orthoformate, triethyl orthoformate, trimethyl orthoacetate, triethyl orthoacetate and the like. Preferred are trimethyl orthoformate and trimethyl orthoacetate.
  • the amount used is not particularly limited, but is preferably about 0.1 to 10 parts by weight, more preferably about 0.1 to 3 parts by weight, based on 100 parts by weight of the organic polymer (A) having a carbon-carbon triple bond. ..
  • the hydrosilylation reaction of the organic polymer (A) having a carbon-carbon triple bond proceeds, and one or two molecules of the hydrosilane compound are added to one carbon-carbon triple bond, whereby The organic polymer (D) having a degradable silyl group can be produced.
  • the number average molecular weight in the examples is the GPC molecular weight measured under the following conditions.
  • Liquid transfer system Tosoh HLC-8220GPC Column: Tosoh TSKgel Super H series Solvent: THF Molecular weight: polystyrene conversion Measurement temperature: 40°C
  • the terminal group-equivalent molecular weights in the examples are obtained by measuring the hydroxyl value by the measuring method of JIS K 1557 and the iodine value by the measuring method of JIS K0070, and determining the structure of the organic polymer (the degree of branching determined by the polymerization initiator used). This is the molecular weight determined in consideration.
  • Example 1 1.05 molar equivalent of sodium methoxide was added as a 28% methanol solution to the hydroxyl group of the hydroxyl-terminated polyoxypropylene (P-1) obtained in Synthesis Example 1. Methanol was distilled off by vacuum devolatilization at 130° C. to convert the hydroxyl group of the polymer into an alkali metal oxy group. Then, the temperature of the system is lowered to 100° C., and at this temperature (second temperature), 1.16 molar equivalents of propargyl bromide to the hydroxyl group of the polymer (P-1) are added to give an alkali metal oxy group. A propargyl group was introduced into the polymer by reacting with the polymer for 2 hours.
  • Example 1 As is clear from Table 1, in Example 1, as compared with Comparative Examples 1 and 2, the molar ratio of the arene group was decreased and the molar ratio of the alkyne group was significantly increased. From this, the carbon-carbon triple bond introduction reaction is carried out by using a brominated hydrocarbon compound having a carbon-carbon triple bond, not a chlorohydrocarbon compound having a carbon-carbon triple bond, as the electrophile. Thus, it is understood that the isomerization reaction of the carbon-carbon triple bond can be suppressed and the organic polymer having the carbon-carbon triple bond can be efficiently produced. In addition, Example 1 has a smaller viscosity increase after the reaction as compared with Comparative Examples 1 and 2, and it can be seen that the use of the brominated hydrocarbon compound can suppress an increase in viscosity due to a side reaction.
  • Example 2 To 500 g of the polymer (Q-1) obtained in Example 1, 150 ⁇ L of platinum divinyldisiloxane complex (3% by weight of isopropanol solution in terms of platinum) and 8.37 g of trimethoxysilane were added to carry out hydrosilylation. The reaction was carried out. After reacting at 90° C. for 2 hours, unreacted trimethoxysilane was distilled off under reduced pressure to obtain a polyoxypropylene polymer (R-1) having a trimethoxysilyl group at the terminal.
  • the viscosity of the polymer before and after the silylation reaction was measured with an E-type viscometer (Tokyo Keiki, measuring cone: 3°C ⁇ R14), and the viscosity increase rate was calculated. Furthermore, 0.75 parts of tin octylate, 0.125 parts of laurylamine, and 0.6 parts of water are mixed with 100 parts of the polymer (R-2) to prevent bubbles from entering the polyethylene mold. And was cured at 23° C. and 50% RH for 1 hour and further at 70° C. for 20 hours to prepare a sheet having a thickness of about 3 mm. The sheet was punched into a No. 3 dumbbell mold and subjected to a tensile strength test at 23° C.
  • the polymer of Example 2 obtained by introducing a hydrolyzable silyl group into the polymer of Example 1 having a high alkyne group content has a comparatively low alkyne group content. It can be seen that, as compared with the polymer of Comparative Example 3 obtained by introducing a hydrolyzable silyl group into the polymer of Example 1, it has a low viscosity and high mechanical strength after curing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyethers (AREA)

Abstract

A production method for an organic polymer (A) having a carbon-carbon triple bond, said production method including: a step in which an organic polymer (B) having a hydroxyl group is subjected to the action of an alkali metal salt as a basic compound to form an organic polymer (C) having an alkali-metal oxy group; and a step in which a brominated hydrocarbon compound having a carbon-carbon triple bond is added to the system including the organic polymer (C) and is reacted therewith.

Description

炭素-炭素三重結合を有する有機重合体の製造方法Method for producing organic polymer having carbon-carbon triple bond
 本発明は、炭素-炭素三重結合を有する有機重合体の製造方法に関する。 The present invention relates to a method for producing an organic polymer having a carbon-carbon triple bond.
 不飽和結合が主鎖に結合した有機重合体は、硬化性を示す重合体であり硬化性材料として使用することができ、また、加水分解性シリル基を有する有機重合体を製造するための前駆体としても使用することができる極めて有用な重合体である。 An organic polymer in which an unsaturated bond is bonded to the main chain is a polymer exhibiting curability and can be used as a curable material, and is also a precursor for producing an organic polymer having a hydrolyzable silyl group. It is a very useful polymer that can also be used as a body.
 このような不飽和結合含有有機重合体の合成方法としては、水酸基を有する有機重合体を製造した後、該水酸基を不飽和結合含有基に変換する方法が知られている。なかでも、重合反応によって水酸基を有するポリオキシアルキレン系重合体を形成した後、該水酸基にアルカリ金属アルコキシドを反応させてメタルオキシ化した後、不飽和結合を有する求電子剤を反応させることで、不飽和結合を有する重合体とする方法が広く使用されている(例えば、特許文献1を参照)。 As a method for synthesizing such an unsaturated bond-containing organic polymer, a method of producing an organic polymer having a hydroxyl group and then converting the hydroxyl group into an unsaturated bond-containing group is known. Among them, after forming a polyoxyalkylene polymer having a hydroxyl group by a polymerization reaction, after reacting the hydroxyl group with an alkali metal alkoxide to metal oxylate, by reacting an electrophilic agent having an unsaturated bond, A method of using a polymer having an unsaturated bond is widely used (see, for example, Patent Document 1).
 特許文献1の実施例では、水酸基含有ポリオキシアルキレンに対してナトリウムメトキシドを添加した後、減圧下の130℃でメタノールを留去して水酸基をメタルオキシ化した後、求電子剤としてアリルクロライドを添加して水酸基をアリルエーテル化することで、アリル基を有するポリオキシアルキレンを製造したことが示されている。 In the example of Patent Document 1, after sodium methoxide is added to a hydroxyl group-containing polyoxyalkylene, methanol is distilled off at 130° C. under reduced pressure to metal-oxylate the hydroxyl group, and then allyl chloride is used as an electrophile. It has been shown that polyoxyalkylene having an allyl group was produced by adding the above to allyl etherify the hydroxyl group.
特開平7-97440号公報Japanese Unexamined Patent Publication No. 7-97440
 前記文献の実施例は、求電子剤としてアリルクロライドを用いることで、有機重合体に不飽和結合として炭素-炭素二重結合を導入するものであった。しかし、有機重合体に炭素-炭素三重結合を導入する試みは従来行われていない。 In the examples of the above-mentioned documents, allyl chloride was used as the electrophile to introduce a carbon-carbon double bond as an unsaturated bond into the organic polymer. However, no attempt has been made so far to introduce a carbon-carbon triple bond into an organic polymer.
 本発明者らは、アリルクロライドの代わりにプロパルギルクロライドを使用して、有機重合体が有する水酸基を炭素-炭素三重結合に変換する反応を試みたところ、当該反応中に、炭素-炭素三重結合含有基(例えばHC≡C-CH-)がアレン基(例えばHC=C=CH-)に異性化する副反応が進行してしまい、重合体の炭素-炭素三重結合の含有比率が低下することが判明した。 The present inventors attempted a reaction for converting a hydroxyl group of an organic polymer into a carbon-carbon triple bond by using propargyl chloride instead of allyl chloride, and during the reaction, a carbon-carbon triple bond was contained. A side reaction in which a group (for example, HC≡C-CH 2 -) is isomerized to an allene group (for example, H 2 C=C=CH-) proceeds, and the content ratio of carbon-carbon triple bond in the polymer decreases. It turned out to be.
 また、炭素-炭素三重結合を有する有機重合体に、異性化したアレン基を有する有機重合体が副生成物として多く含まれている場合、重合体の炭素-炭素三重結合に対して加水分解性シリル基含有ヒドロシラン化合物を反応させて加水分解性シリル基を有する有機重合体を製造した際に、得られる重合体の硬化物の物性が十分でないことが判明した。 Further, when the organic polymer having a carbon-carbon triple bond contains a large amount of an isomerized organic polymer having an allene group as a by-product, it is hydrolyzable with respect to the carbon-carbon triple bond of the polymer. It was found that when a silyl group-containing hydrosilane compound was reacted to produce an organic polymer having a hydrolyzable silyl group, the physical properties of a cured product of the obtained polymer were not sufficient.
 本発明は、上記現状に鑑み、炭素-炭素三重結合の異性化反応を抑制して、水酸基を有する有機重合体から炭素-炭素三重結合を有する有機重合体を効率良く製造することを目的とする。 In view of the above situation, an object of the present invention is to suppress the isomerization reaction of a carbon-carbon triple bond and efficiently produce an organic polymer having a carbon-carbon triple bond from an organic polymer having a hydroxyl group. ..
 また本発明は、炭素-炭素三重結合を有する有機重合体から、硬化物が良好な物性を示す、加水分解性シリル基を有する有機重合体を製造することを目的とする。 Another object of the present invention is to produce an organic polymer having a hydrolyzable silyl group, which exhibits good physical properties in a cured product, from an organic polymer having a carbon-carbon triple bond.
 本発明者らは上記課題を解決するために鋭意研究を重ねた結果、水酸基含有有機重合体に対してアルカリ金属塩を添加し、水酸基をメタルオキシ化した後、炭素-炭素三重結合を有する求電子剤を添加し反応させることで炭素-炭素三重結合を有する有機重合体を製造するにあたって、求電子剤として、炭素-炭素三重結合を有するブロモ化炭化水素化合物を使用することで、炭素-炭素三重結合の異性化反応が抑制され、炭素-炭素三重結合を有する有機重合体を効率よく製造できることを見出した。 The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, after adding an alkali metal salt to a hydroxyl group-containing organic polymer to metaloxylate the hydroxyl group, a polymer having a carbon-carbon triple bond was found In producing an organic polymer having a carbon-carbon triple bond by adding and reacting an electron agent, by using a brominated hydrocarbon compound having a carbon-carbon triple bond as an electrophile, carbon-carbon It was found that the isomerization reaction of the triple bond is suppressed and an organic polymer having a carbon-carbon triple bond can be efficiently produced.
 更に、上記により得られた炭素-炭素三重結合を有する有機重合体に対して、加水分解性シリル基含有ヒドロシラン化合物を反応させることで製造した加水分解性シリル基を有する有機重合体は、硬化物が良好な物性を示すことも見出し、本発明に至った。 Further, the organic polymer having a hydrolyzable silyl group produced by reacting the organic polymer having a carbon-carbon triple bond obtained above with a hydrosilane compound containing a hydrolyzable silyl group is a cured product. Has also been found to exhibit good physical properties, leading to the present invention.
 すなわち、本発明は、炭素-炭素三重結合を有する有機重合体(A)の製造方法であって、水酸基を有する有機重合体(B)に対し塩基性化合物としてアルカリ金属塩を作用させて、アルカリ金属オキシ基を有する有機重合体(C)を形成する工程、前記有機重合体(C)を含む系に、炭素-炭素三重結合を有するブロモ化炭化水素化合物を添加し、反応させる工程、を含む、有機重合体(A)の製造方法に関する。前記製造方法は、アルカリ金属オキシ基を有する有機重合体(C)を形成した後、炭素-炭素三重結合を有するブロモ化炭化水素化合物を添加する前に、前記有機重合体(C)を含む系の温度を低下させる工程、をさらに含むことができる。好ましくは、前記有機重合体(A)は、ポリオキシアルキレン系の主鎖骨格を有する。好ましくは、前記アルカリ金属塩が、アルカリ金属アルコキシドである。
 また本発明は、前記製造方法によって炭素-炭素三重結合を有する有機重合体(A)を製造した後、該有機重合体(A)に、加水分解性シリル基を有するヒドロシラン化合物を反応させる工程を含む、加水分解性シリル基を有する有機重合体(D)の製造方法にも関する。
That is, the present invention is a method for producing an organic polymer (A) having a carbon-carbon triple bond, in which an alkali metal salt as a basic compound is allowed to act on an organic polymer (B) having a hydroxyl group to obtain an alkali metal salt. A step of forming an organic polymer (C) having a metal oxy group, and a step of adding a brominated hydrocarbon compound having a carbon-carbon triple bond to a system containing the organic polymer (C) and reacting it. , A method for producing an organic polymer (A). In the production method, a system containing the organic polymer (C) is formed after the organic polymer (C) having an alkali metal oxy group is formed and before the brominated hydrocarbon compound having a carbon-carbon triple bond is added. The step of lowering the temperature of can be further included. Preferably, the organic polymer (A) has a polyoxyalkylene-based main chain skeleton. Preferably, the alkali metal salt is an alkali metal alkoxide.
The present invention also includes a step of producing an organic polymer (A) having a carbon-carbon triple bond by the above production method, and then reacting the organic polymer (A) with a hydrosilane compound having a hydrolyzable silyl group. It also relates to a method for producing an organic polymer (D) having a hydrolyzable silyl group.
 本発明によれば、炭素-炭素三重結合の異性化反応を抑制して、水酸基を有する有機重合体から炭素-炭素三重結合を有する有機重合体を効率よく製造することができる。 According to the present invention, an isomerization reaction of a carbon-carbon triple bond can be suppressed, and an organic polymer having a carbon-carbon triple bond can be efficiently produced from an organic polymer having a hydroxyl group.
 また、炭素-炭素三重結合を有する有機重合体から、硬化物が良好な物性を示す、加水分解性シリル基を有する有機重合体を製造することができる。 Further, from the organic polymer having a carbon-carbon triple bond, an organic polymer having a hydrolyzable silyl group, which shows a cured product having good physical properties, can be produced.
 以下に本発明の実施形態を詳細に説明する。 The embodiments of the present invention will be described in detail below.
 本発明は、水酸基を有する有機重合体(B)を前駆体とし、該有機重合体(B)が有する水酸基を、アルカリ金属オキシ基を経て、炭素-炭素三重結合含有基に変換することによる、炭素-炭素三重結合を有する有機重合体(A)を製造する方法に関する。 In the present invention, an organic polymer (B) having a hydroxyl group is used as a precursor, and the hydroxyl group of the organic polymer (B) is converted to a carbon-carbon triple bond-containing group via an alkali metal oxy group. The present invention relates to a method for producing an organic polymer (A) having a carbon-carbon triple bond.
 (炭素-炭素三重結合を有する有機重合体(A))
 炭素-炭素三重結合の構造は特に限定されず、炭素-炭素三重結合を構成する2つの炭素原子のうち、1つの炭素原子上に置換基を持たない末端アルキン基(HC≡C-)、及び、炭素-炭素三重結合を構成する2つの炭素原子のうち、いずれの炭素原子上にも置換基を有する内部アルキン基(RC≡C-)のいずれであってもよい。ここで、Rは、炭素数1~6の一価の炭化水素基であり、炭素数は1~4が好ましく、1~2がより好ましい。また、前記炭化水素基はアルキル基であることが好ましい。反応性の観点から、炭素-炭素三重結合は末端アルキン基であることが好ましい。
(Organic polymer having carbon-carbon triple bond (A))
The structure of the carbon-carbon triple bond is not particularly limited, and among the two carbon atoms forming the carbon-carbon triple bond, a terminal alkyne group having no substituent on one carbon atom (HC≡C-), and Of the two carbon atoms forming the carbon-carbon triple bond, any of an internal alkyne group (RC≡C-) having a substituent on any of the carbon atoms may be used. Here, R is a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and more preferably 1 to 2 carbon atoms. The hydrocarbon group is preferably an alkyl group. From the viewpoint of reactivity, the carbon-carbon triple bond is preferably a terminal alkyne group.
 炭素-炭素三重結合は、酸素原子に直接結合して有機重合体(A)に含まれていてもよいが、2価の炭化水素基を介して酸素原子に結合して有機重合体(A)に含まれていることが好ましい。前記2価の炭化水素基の炭素数は1~8が好ましく、1~5がより好ましく、1~3がさらに好ましく、1~2がより更に好ましく、1が特に好ましい。本発明では、特に、プロパルギル基(HC≡C-CH-)が酸素原子に結合して有機重合体(A)に含まれていることが好ましい。 The carbon-carbon triple bond may be directly bonded to an oxygen atom to be contained in the organic polymer (A), but may be bonded to an oxygen atom via a divalent hydrocarbon group to form the organic polymer (A). Is preferably contained in. The carbon number of the divalent hydrocarbon group is preferably 1 to 8, more preferably 1 to 5, still more preferably 1 to 3, still more preferably 1 to 2, and particularly preferably 1. In the present invention, it is particularly preferable that a propargyl group (HC≡C—CH 2 —) is contained in the organic polymer (A) by bonding to an oxygen atom.
 有機重合体(A)が有する炭素-炭素三重結合の個数は特に限定されないが、有機重合体(A)の1分子あたり平均して0.1~10個の炭素-炭素三重結合を有することが好ましく、より好ましくは0.5~6個である。有機重合体(A)における炭素-炭素三重結合の位置は特に限定されず、主鎖骨格の末端に結合していてもよいし、側鎖として主鎖骨格に結合していてもよい。 The number of carbon-carbon triple bonds contained in the organic polymer (A) is not particularly limited, but it is preferable that one molecule of the organic polymer (A) has an average of 0.1 to 10 carbon-carbon triple bonds. It is preferably 0.5 to 6, and more preferably 0.5 to 6. The position of the carbon-carbon triple bond in the organic polymer (A) is not particularly limited, and it may be bonded to the terminal of the main chain skeleton or may be bonded to the main chain skeleton as a side chain.
 有機重合体(A)の主鎖骨格は、直鎖状であってもよいし、分岐鎖を有していてもよい。該主鎖骨格の種類は特に限定されないが、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、およびポリオキシプロピレン-ポリオキシブチレン共重合体などのポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレンなどとの共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレンなどとの共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリルおよびスチレンなどとの共重合体、ならびにこれらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体などの飽和炭化水素系重合体;ポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレートなどの(メタ)アクリル酸エステル系モノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体、ならびに(メタ)アクリル酸系モノマー、酢酸ビニル、アクリロニトリル、およびスチレンなどのモノマーをラジカル重合して得られる重合体などのビニル系重合体;前述の重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリアミド系重合体;ポリカーボネート系重合体;ジアリルフタレート系重合体;などの有機重合体が挙げられる。上記各重合体はブロック状、グラフト状などのように混在していてもよい。これらの中でも、ポリオキシアルキレン系重合体、飽和炭化水素系重合体、および(メタ)アクリル酸エステル系重合体が比較的ガラス転移温度が低いことと、得られる硬化物が耐寒性に優れることから好ましく、ポリオキシアルキレン系重合体がより好ましい。 The main chain skeleton of the organic polymer (A) may be linear or may have a branched chain. The type of the main chain skeleton is not particularly limited, but examples thereof include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, and polyoxypropylene-polyoxybutylene. Polyoxyalkylene polymers such as copolymers; ethylene-propylene copolymers, polyisobutylene, copolymers of isobutylene and isoprene, etc., polychloroprene, polyisoprene, isoprene or butadiene and acrylonitrile and/or styrene, etc. A copolymer of polybutadiene, isoprene or butadiene with acrylonitrile, styrene and the like, and a saturated hydrocarbon polymer such as a hydrogenated polyolefin polymer obtained by hydrogenating these polyolefin polymers; Polyester-based polymer: (meth)acrylic acid ester-based polymer obtained by radical polymerization of (meth)acrylic acid ester-based monomer such as ethyl (meth)acrylate and butyl (meth)acrylate, and (meth)acrylic acid-based polymer Vinyl-based polymers such as polymers obtained by radically polymerizing monomers such as monomers, vinyl acetate, acrylonitrile and styrene; graft polymers obtained by polymerizing vinyl monomers in the above-mentioned polymers; polyamide-based polymers Examples thereof include organic polymers such as coalesce; polycarbonate-based polymers; diallylphthalate-based polymers; The above polymers may be mixed in a block form, a graft form or the like. Among these, polyoxyalkylene polymers, saturated hydrocarbon polymers, and (meth)acrylic acid ester polymers have a relatively low glass transition temperature, and the resulting cured product has excellent cold resistance. A polyoxyalkylene polymer is more preferable.
 有機重合体(A)は、上記した各種主鎖骨格のうち、いずれか1種の主鎖骨格を有する重合体でもよく、異なる主鎖骨格を有する重合体の混合物でもよい。また、混合物については、それぞれ別々に製造された重合体の混合物でもよいし、任意の混合組成になるように各重合体が同時に製造された混合物でもよい。 The organic polymer (A) may be a polymer having any one of the above main chain skeletons, or may be a mixture of polymers having different main chain skeletons. Further, the mixture may be a mixture of polymers produced separately, or may be a mixture in which each polymer is produced simultaneously so as to have an arbitrary mixed composition.
 (水酸基を有する有機重合体(B))
 本発明において前駆体として用いられる、水酸基を有する有機重合体(B)は、有機重合体(A)と同じ主鎖骨格を有し、かつ、水酸基を有する重合体であれば特に限定されない。水酸基が結合する位置は特に限定されず、主鎖骨格の末端に結合していてもよいし、側鎖として主鎖骨格に結合していてもよい。また、有機重合体(B)が有する水酸基の個数は特に限定されず、1個でもよいし、2個以上であってもよい。
(Organic polymer having hydroxyl group (B))
The organic polymer (B) having a hydroxyl group used as a precursor in the present invention is not particularly limited as long as it has the same main chain skeleton as the organic polymer (A) and has a hydroxyl group. The position at which the hydroxyl group is bonded is not particularly limited, and it may be bonded to the end of the main chain skeleton or may be bonded to the main chain skeleton as a side chain. The number of hydroxyl groups contained in the organic polymer (B) is not particularly limited, and may be one or two or more.
 有機重合体(B)の数平均分子量はGPCにおけるポリスチレン換算分子量として、3,000~100,000が好ましく、3,000~50,000がより好ましく、3,000~30,000が特に好ましい。数平均分子量が上記の範囲内であると、製造コストを適度な範囲内に抑えつつ、扱いやすい粘度を有し作業性に優れる有機重合体(B)を得やすい。 The number average molecular weight of the organic polymer (B) is preferably 3,000 to 100,000, more preferably 3,000 to 50,000, and particularly preferably 3,000 to 30,000 in terms of polystyrene equivalent molecular weight in GPC. When the number average molecular weight is within the above range, it is easy to obtain an organic polymer (B) having a viscosity that is easy to handle and excellent workability, while suppressing the production cost within an appropriate range.
 有機重合体(B)の分子量としては、JIS K 1557の水酸基価の測定方法と、JIS K 0070に規定されたよう素価の測定方法の原理に基づいた滴定分析により、直接的に水酸基濃度を測定し、有機重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた末端基換算分子量で示すことも出来る。有機重合体(B)の末端基換算分子量は、重合体の一般的なGPC測定により求めた数平均分子量と上記末端基換算分子量の検量線を作成し、有機重合体(B)のGPCにより求めた数平均分子量を末端基換算分子量に換算して求めることも可能である。 Regarding the molecular weight of the organic polymer (B), the hydroxyl group concentration can be directly determined by titration analysis based on the principle of the hydroxyl value measurement method of JIS K 1557 and the iodine value measurement method specified in JIS K0070. It can also be indicated by the molecular weight converted to the end group, which is measured and taken into consideration the structure of the organic polymer (the degree of branching determined by the polymerization initiator used). The terminal group-equivalent molecular weight of the organic polymer (B) is obtained by GPC of the organic polymer (B) by preparing a calibration curve of the number average molecular weight obtained by general GPC measurement of the polymer and the terminal group-equivalent molecular weight. It is also possible to calculate the number average molecular weight by converting it into the molecular weight converted to the end group.
 有機重合体(B)の分子量分布(Mw/Mn)は特に限定されないが、低粘度化が可能になることから、狭いことが好ましい。具体的には、2.0未満が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましく、1.3以下が最も好ましい。また、硬化物の耐久性や伸びを向上させる等、各種機械的物性を向上させる観点からは、1.2以下が好ましい。有機重合体(B)の分子量分布はGPC測定により得られる数平均分子量と重量平均分子量から求めることが出来る。 The molecular weight distribution (Mw/Mn) of the organic polymer (B) is not particularly limited, but it is preferable that the molecular weight distribution (Mw/Mn) is narrow because it can lower the viscosity. Specifically, it is preferably less than 2.0, more preferably 1.6 or less, further preferably 1.5 or less, particularly preferably 1.4 or less, most preferably 1.3 or less. Further, from the viewpoint of improving various mechanical properties such as improving durability and elongation of the cured product, 1.2 or less is preferable. The molecular weight distribution of the organic polymer (B) can be determined from the number average molecular weight and the weight average molecular weight obtained by GPC measurement.
 有機重合体(B)の製造方法は特に限定されず、公知の合成方法を使用することができるが、有機重合体(B)の主鎖骨格が、好ましい主鎖骨格であるポリオキシアルキレン系重合体、飽和炭化水素系重合体、又は(メタ)アクリル酸エステル系重合体である場合について、その製造方法を以下に説明する。 The production method of the organic polymer (B) is not particularly limited, and a known synthesis method can be used. However, the main chain skeleton of the organic polymer (B) is a polyoxyalkylene-based polymer having a preferable main chain skeleton. In the case of a polymer, a saturated hydrocarbon-based polymer, or a (meth)acrylic acid ester-based polymer, the manufacturing method thereof will be described below.
 (ポリオキシアルキレン系重合体)
 有機重合体(B)の主鎖骨格がポリオキシアルキレン系重合体である場合、有機重合体(B)は、例えば、水酸基を有する開始剤と触媒の存在下、モノエポキシドを開環重合することによって得ることができる。
(Polyoxyalkylene polymer)
When the main chain skeleton of the organic polymer (B) is a polyoxyalkylene polymer, the organic polymer (B) is obtained by ring-opening polymerization of a monoepoxide in the presence of an initiator having a hydroxyl group and a catalyst. Can be obtained by
 水酸基を有する開始剤としては特に限定されないが、例えば、エチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、低分子量のポリオキシプロピレングリコール、低分子量のポリオキシプロピレントリオール、アリルアルコール、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、低分子量のポリオキシプロピレンモノアリルエーテル、低分子量のポリオキシプロピレンモノアルキルエーテル等の、水酸基を1個以上有する有機化合物が挙げられる。 The initiator having a hydroxyl group is not particularly limited, for example, ethylene glycol, propylene glycol, glycerin, pentaerythritol, low molecular weight polyoxypropylene glycol, low molecular weight polyoxypropylene triol, allyl alcohol, methanol, ethanol, propanol, Organic compounds having one or more hydroxyl groups such as butanol, pentanol, hexanol, low molecular weight polyoxypropylene monoallyl ether, and low molecular weight polyoxypropylene monoalkyl ether can be mentioned.
 モノエポキシドとしては特に限定されないが、例えば、エチレンオキサイド、プロピレンオキサイド、α-ブチレンオキサイド、β-ブチレンオキサイド、ヘキセンオキサイド、シクロヘキセンオキサイド、スチレンオキサイド、α-メチルスチレンオキシド等のアルキレンオキサイド類や、メチルグリシジルエーテル、エチルグリシジルエーテル、イソプロピルグリシジルエーテル、ブチルグリシジルエーテル等のアルキルグリシジルエーテル類、アリルグリシジルエーテル類、アリールグリシジルエーテル類等が挙げられる。好ましくはプロピレンオキサイドである。 The monoepoxide is not particularly limited, and examples thereof include alkylene oxides such as ethylene oxide, propylene oxide, α-butylene oxide, β-butylene oxide, hexene oxide, cyclohexene oxide, styrene oxide and α-methylstyrene oxide, and methylglycidyl. Examples thereof include alkyl glycidyl ethers such as ether, ethyl glycidyl ether, isopropyl glycidyl ether and butyl glycidyl ether, allyl glycidyl ethers and aryl glycidyl ethers. Propylene oxide is preferred.
 触媒としては特に限定されないが、例えば、KOH、NaOH等のアルカリ触媒、トリフルオロボラン-エーテラート等の酸性触媒、アルミノポルフィリン金属錯体やシアン化コバルト亜鉛-グライム錯体触媒等の複合金属シアン化物錯体触媒等の公知の触媒を使用することができる。なかでも、複合金属シアン化物錯体触媒は、連鎖移動反応が少なく、高分子量でかつ分子量分布の狭い重合体が得られるため好ましい。また、数平均分子量の小さいポリオキシアルキレン系重合体に対し、塩基性化合物、例えばKOH、NaOH、KOCH、NaOCH等を作用させ、さらに2官能以上のハロゲン化アルキル、例えばCHBrCl、CHCl、CHBr等を反応させることによる鎖延長反応によっても、高分子量のポリオキシアルキレン系重合体を得ることができる。 The catalyst is not particularly limited, but examples thereof include alkali catalysts such as KOH and NaOH, acidic catalysts such as trifluoroborane-etherate, and complex metal cyanide complex catalysts such as aluminoporphyrin metal complex and cobalt zinc cyanide-glyme complex catalyst. Known catalysts can be used. Among them, the double metal cyanide complex catalyst is preferable because it has a small chain transfer reaction and a polymer having a high molecular weight and a narrow molecular weight distribution can be obtained. Further, a basic compound such as KOH, NaOH, KOCH 3 , NaOCH 3 or the like is allowed to act on a polyoxyalkylene polymer having a small number average molecular weight, and a bifunctional or higher alkyl halide such as CH 2 BrCl or CH is added. A high molecular weight polyoxyalkylene polymer can also be obtained by a chain extension reaction by reacting 2 Cl 2 , CH 2 Br 2, or the like.
 (飽和炭化水素系重合体)
 有機重合体(B)の主鎖骨格が飽和炭化水素系重合体である場合、有機重合体(B)の製造方法としては、エチレン、プロピレン、1-ブテン、イソブチレンなどの、炭素原子数2~6のオレフィン系化合物を主モノマーとして重合させて重合体を得た後、得られた重合体の分子鎖末端に水酸基を導入する方法などが挙げられる。
(Saturated hydrocarbon polymer)
When the main chain skeleton of the organic polymer (B) is a saturated hydrocarbon polymer, a method for producing the organic polymer (B) includes ethylene, propylene, 1-butene, isobutylene and the like having 2 to 2 carbon atoms. Examples include a method of polymerizing the olefin compound of 6 as a main monomer to obtain a polymer, and then introducing a hydroxyl group at the terminal of the molecular chain of the obtained polymer.
 ((メタ)アクリル酸エステル系重合体)
 有機重合体(B)の主鎖骨格が(メタ)アクリル酸エステル系重合体である場合、有機重合体(B)の製造方法としては、重合性不飽和基と水酸基を有する化合物(例えば、アクリル酸2-ヒドロキシエチル)を、(メタ)アクリル酸エステル系モノマーとともに共重合する方法が挙げられる。他の方法として、原子移動ラジカル重合などのリビングラジカル重合法によって(メタ)アクリル酸エステル系モノマーを重合して重合体を得た後、得られた重合体の分子鎖末端に水酸基を導入する方法などが挙げられる。
((Meth)acrylic acid ester-based polymer)
When the main chain skeleton of the organic polymer (B) is a (meth)acrylic acid ester-based polymer, a method for producing the organic polymer (B) includes a compound having a polymerizable unsaturated group and a hydroxyl group (for example, acryl 2-hydroxyethyl acid) may be used together with a (meth)acrylic acid ester monomer. As another method, a method of polymerizing a (meth)acrylic acid ester-based monomer by a living radical polymerization method such as atom transfer radical polymerization to obtain a polymer, and then introducing a hydroxyl group at the end of the molecular chain of the obtained polymer And so on.
 (メタルオキシ化反応)
 本発明では、まず、水酸基(-OH)を有する有機重合体(B)に対し、塩基性化合物としてアルカリ金属塩を作用させて、アルカリ金属オキシ基(-OM)を有する有機重合体(C)を形成する。
(Metal oxidation reaction)
In the present invention, first, an organic polymer (C) having an alkali metal oxy group (—OM) is prepared by reacting an alkali metal salt as a basic compound with an organic polymer (B) having a hydroxyl group (—OH). To form.
 前記アルカリ金属塩としては、有機重合体(B)が有する水酸基をアルカリ金属オキシ基に変換できる作用を有する塩基性化合物であれば特に限定されないが、例えば、アルカリ金属の水酸化物またはアルカリ金属アルコキシドが挙げられる。具体的には、水酸化ナトリウム、ナトリウムアルコキシド、水酸化カリウム、カリウムアルコキシド、水酸化リチウム、リチウムアルコキシド、水酸化セシウム、およびセシウムアルコキシドなどが挙げられる。取り扱いの容易さと溶解性から、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、水酸化カリウム、カリウムメトキシド、カリウムエトキシド、およびカリウムt-ブトキシドが好ましく、ナトリウムメトキシド、およびカリウムメトキシドがより好ましい。入手性の点でナトリウムメトキシドが特に好ましい。アルカリ金属塩は溶剤に溶解した状態で使用してもよい。 The alkali metal salt is not particularly limited as long as it is a basic compound having a function of converting a hydroxyl group of the organic polymer (B) into an alkali metal oxy group, and examples thereof include an alkali metal hydroxide or an alkali metal alkoxide. Is mentioned. Specific examples include sodium hydroxide, sodium alkoxide, potassium hydroxide, potassium alkoxide, lithium hydroxide, lithium alkoxide, cesium hydroxide, and cesium alkoxide. From the viewpoint of easy handling and solubility, sodium hydroxide, sodium methoxide, sodium ethoxide, sodium t-butoxide, potassium hydroxide, potassium methoxide, potassium ethoxide, and potassium t-butoxide are preferable, and sodium methoxide and More preferred is potassium methoxide. Sodium methoxide is particularly preferable in terms of availability. The alkali metal salt may be used in a state of being dissolved in a solvent.
 前記アルカリ金属塩の使用量は特に限定されず、目的の炭素-炭素三重結合導入率を考慮して適宜決定することができるが、例えば、有機重合体(B)が有する水酸基に対するモル比として、0.5以上が好ましく、0.6以上がより好ましく、0.7以上がさらに好ましく、0.8以上がより更に好ましい。前記モル比は2.0以下が好ましく、1.8以下がより好ましい。アルカリ金属塩の使用量が少なすぎると、反応が十分に進行しない場合がある。逆に使用量が多すぎると、アルカリ金属塩が不純物として残留してしまい、副反応が進行してしまう可能性がある。 The amount of the alkali metal salt used is not particularly limited and can be appropriately determined in consideration of the target carbon-carbon triple bond introduction rate. For example, as a molar ratio to the hydroxyl group of the organic polymer (B), 0.5 or more is preferable, 0.6 or more is more preferable, 0.7 or more is further preferable, and 0.8 or more is further more preferable. The molar ratio is preferably 2.0 or less, more preferably 1.8 or less. If the amount of the alkali metal salt used is too small, the reaction may not proceed sufficiently. On the other hand, if the amount used is too large, the alkali metal salt may remain as an impurity and the side reaction may proceed.
 有機重合体(B)に対してアルカリ金属塩を作用させる際の反応温度を、第一温度とする。第一温度は、重合体の水酸基とアルカリ金属塩との反応性を考慮して当業者が適宜設定することができ、特に限定されないが、例えば100℃以上180℃以下であってよい。有機重合体(B)が有する水酸基をアルカリ金属オキシ基に変換する反応を速やかに進行させる観点から、110℃以上が好ましく、120℃以上がより好ましく、125℃以上がさらに好ましく、130℃以上がより更に好ましい。また、有機重合体(B)の分解などを抑制する観点から、第一温度は170℃以下が好ましく、160℃以下がより好ましく、150℃以下がさらに好ましく、140℃以下がより更に好ましい。 The reaction temperature when the alkali metal salt acts on the organic polymer (B) is the first temperature. The first temperature can be appropriately set by those skilled in the art in consideration of the reactivity between the hydroxyl group of the polymer and the alkali metal salt and is not particularly limited, but may be, for example, 100° C. or higher and 180° C. or lower. From the viewpoint of promptly proceeding the reaction of converting the hydroxyl group of the organic polymer (B) into an alkali metal oxy group, 110°C or higher is preferable, 120°C or higher is more preferable, 125°C or higher is further preferable, and 130°C or higher is Even more preferable. Further, from the viewpoint of suppressing decomposition of the organic polymer (B), the first temperature is preferably 170°C or lower, more preferably 160°C or lower, further preferably 150°C or lower, still more preferably 140°C or lower.
 水酸基からアルカリ金属オキシ基への変換は平衡反応であるため、当該変換により生じるアルコール等の副生物を留去しながら前記変換反応を実施することが好ましい。アルコールを効率よく留去するために、減圧下で前記変換反応を実施することが好ましい。 Since the conversion of a hydroxyl group to an alkali metal oxy group is an equilibrium reaction, it is preferable to carry out the conversion reaction while distilling off by-products such as alcohol generated by the conversion. In order to efficiently distill off the alcohol, it is preferable to carry out the conversion reaction under reduced pressure.
 (低温化工程)
 本発明では、以上によりアルカリ金属オキシ基を有する有機重合体(C)を形成した後、その際の系の温度を維持したまま系に求電子剤を添加して炭素-炭素三重結合導入反応を行ってもよい。しかし、本発明の好ましい態様によると、アルカリ金属オキシ基を有する有機重合体(C)を形成した後、該有機重合体(C)を含む系の温度を、前記第一温度から第二温度まで低下させる。第二温度は第一温度よりも低い温度であればよいが、第一温度よりも5℃以上低い温度であることが好ましく、10℃以上低い温度がより好ましく、30℃以上低い温度がさらに好ましい。このように比較的低い第二温度で次の炭素-炭素三重結合導入反応を行うことで、炭素-炭素三重結合の異性化反応がより抑制されて、炭素-炭素三重結合を有する有機重合体をより効率よく製造することが可能となる。
(Cooling process)
In the present invention, after forming the organic polymer (C) having an alkali metal oxy group as described above, the electrophilic agent is added to the system while maintaining the temperature of the system at that time to carry out the carbon-carbon triple bond introduction reaction. You can go. However, according to a preferred embodiment of the present invention, after forming the organic polymer (C) having an alkali metal oxy group, the temperature of the system containing the organic polymer (C) is changed from the first temperature to the second temperature. Lower. The second temperature may be lower than the first temperature, but is preferably 5° C. or more lower than the first temperature, more preferably 10° C. or more lower temperature, further preferably 30° C. or more lower temperature. .. By carrying out the following carbon-carbon triple bond introduction reaction at a relatively low second temperature, the isomerization reaction of the carbon-carbon triple bond is further suppressed, and an organic polymer having a carbon-carbon triple bond is obtained. It becomes possible to manufacture more efficiently.
 また、低温化工程における粘度上昇を緩和するために、この工程の前、または途中に溶媒を添加してもよい。溶媒については特に限定されないが、例えば、アセトン、アセトニトリル、ベンゼン、t-ブチルアルコール、t-ブチルメチルエーテル、クロロホルム、シクロヘキサン、1,2-ジクロロエタン、ジエチルエーテル、ジグライム、1,2-ジメトキシエタン、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、エチルメチルケトン、n-ヘキサン、n-ヘプタン、トルエン、テトラヒドロフランなどが挙げられる。これらの中では、扱いやすさから、ジエチルエーテル、n-ヘキサン、n-ヘプタン、テトラヒドロフランが特に好ましい。 In addition, a solvent may be added before or during this step in order to mitigate the increase in viscosity in the low temperature step. The solvent is not particularly limited, and examples thereof include acetone, acetonitrile, benzene, t-butyl alcohol, t-butyl methyl ether, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, diglyme, 1,2-dimethoxyethane, dimethyl. Examples thereof include acetamide, dimethyl sulfoxide, dioxane, ethyl methyl ketone, n-hexane, n-heptane, toluene and tetrahydrofuran. Of these, diethyl ether, n-hexane, n-heptane, and tetrahydrofuran are particularly preferable because they are easy to handle.
 第二温度としては、メタルオキシ化反応時の第一温度よりも低く、かつ、炭素-炭素三重結合導入反応は進行しながら、副反応の異性化反応を抑制できる温度を当業者が適宜設定すればよい。具体的には、30℃以上120℃以下の範囲が好ましい。副反応の異性化反応を抑制しつつも、炭素-炭素三重結合導入反応を効率よく進行させる観点から、第二温度は40℃以上が好ましく、50℃以上がより好ましく、60℃以上がさらに好ましく、70℃以上がより更に好ましい。また、副反応の異性化反応を十分に抑制する観点から、第二温度は110℃以下が好ましく、100℃以下がより好ましい。 The second temperature is lower than the first temperature during the metal oxidization reaction, and a person skilled in the art can appropriately set the temperature at which the isomerization reaction of the side reaction can be suppressed while the carbon-carbon triple bond introduction reaction proceeds. Good. Specifically, the range of 30°C or higher and 120°C or lower is preferable. The second temperature is preferably 40° C. or higher, more preferably 50° C. or higher, even more preferably 60° C. or higher, from the viewpoint of efficiently advancing the carbon-carbon triple bond introduction reaction while suppressing the isomerization reaction of the side reaction. 70° C. or higher is even more preferable. Further, from the viewpoint of sufficiently suppressing the isomerization reaction of the side reaction, the second temperature is preferably 110°C or lower, more preferably 100°C or lower.
 (炭素-炭素三重結合導入反応)
 本発明によると、有機重合体(C)を含む系の温度を、第一温度で維持しながら、または、前記第一温度から第二温度まで低下させた後、求電子剤として、炭素-炭素三重結合を有するブロモ化炭化水素化合物を当該系に添加し、第一温度または第二温度で、有機重合体(C)と前記ブロモ化炭化水素化合物間の反応を進行させることで、炭素-炭素三重結合を有する有機重合体(A)を形成する。
(Carbon-carbon triple bond introduction reaction)
According to the present invention, the temperature of the system containing the organic polymer (C) is maintained at the first temperature or after the temperature is decreased from the first temperature to the second temperature, carbon-carbon is used as the electrophile. A carbon-carbon compound is obtained by adding a brominated hydrocarbon compound having a triple bond to the system and allowing the reaction between the organic polymer (C) and the brominated hydrocarbon compound to proceed at a first temperature or a second temperature. An organic polymer (A) having a triple bond is formed.
 炭素-炭素三重結合を有するブロモ化炭化水素化合物としては、特に限定されないが、例えば、臭化プロパルギル、1-ブロモ-2-ブチン、4-ブロモ-1-ブチン、1-ブロモ-2-オクチン、1-ブロモ-2-ペンチン、1,4-ジブロモ-2-ブチン、5-ブロモ-1-ペンチン、6-ブロモ-1-ヘキシンなどが挙げられる。なかでも、臭化プロパルギルが好ましい。また、炭素-炭素三重結合を有するブロモ化炭化水素化合物に加えて、塩化ビニル、塩化アリル、塩化メタリル、臭化ビニル、臭化アリル、臭化メタリル、ヨウ化ビニル、ヨウ化アリル、ヨウ化メタリルなどの、炭素-炭素二重結合を有するハロゲン化炭化水素化合物などを添加、反応させてもよい。 The brominated hydrocarbon compound having a carbon-carbon triple bond is not particularly limited, and examples thereof include propargyl bromide, 1-bromo-2-butyne, 4-bromo-1-butyne, 1-bromo-2-octyne, 1-bromo-2-pentyne, 1,4-dibromo-2-butyne, 5-bromo-1-pentyne, 6-bromo-1-hexyne and the like can be mentioned. Of these, propargyl bromide is preferred. In addition to a brominated hydrocarbon compound having a carbon-carbon triple bond, vinyl chloride, allyl chloride, methallyl chloride, vinyl bromide, allyl bromide, methallyl bromide, vinyl iodide, allyl iodide, methallyl iodide. A halogenated hydrocarbon compound having a carbon-carbon double bond or the like may be added and reacted.
 炭素-炭素三重結合を有するブロモ化炭化水素化合物の使用量は、特に限定されず、使用するブロモ化炭化水素化合物の反応性や、目的の炭素-炭素三重結合導入率を考慮して適宜決定することができる。具体的には、前記ブロモ化炭化水素化合物の使用量は、有機重合体(B)が有する水酸基に対するモル比として、0.6以上が好ましく、0.7以上がより好ましく、0.9以上がさらに好ましく、1.0以上が特に好ましい。また、前記モル比は5.0以下が好ましく、3.0以下がより好ましく、2.0以下がさらに好ましく、1.5以下がより更に好ましい。 The amount of the brominated hydrocarbon compound having a carbon-carbon triple bond used is not particularly limited, and is appropriately determined in consideration of the reactivity of the brominated hydrocarbon compound used and the target carbon-carbon triple bond introduction rate. be able to. Specifically, the amount of the brominated hydrocarbon compound used is preferably 0.6 or more, more preferably 0.7 or more, and more preferably 0.9 or more as a molar ratio with respect to the hydroxyl group of the organic polymer (B). More preferably, 1.0 or more is particularly preferable. The molar ratio is preferably 5.0 or less, more preferably 3.0 or less, still more preferably 2.0 or less, still more preferably 1.5 or less.
 炭素-炭素三重結合導入反応の反応時間は特に限定されず、当業者が適宜設定することができるが、例えば、10分以上5時間以下であってよく、30分以上4時間以下が好ましく、1時間以上4時間以下がより好ましい。 The reaction time of the carbon-carbon triple bond introduction reaction is not particularly limited and can be appropriately set by a person skilled in the art. For example, it may be 10 minutes or more and 5 hours or less, and preferably 30 minutes or more and 4 hours or less. More preferably, it is not less than 4 hours and not more than 4 hours.
 以上の反応により、有機重合体(B)が有する水酸基の水素原子が、炭素-炭素三重結合含有基に変換されて、炭素-炭素三重結合を有する有機重合体(A)を製造することができる。本発明によると、炭素-炭素三重結合を有する求電子剤として、特許文献1で使用されているようなクロロ化炭化水素化合物ではなく、ブロモ化炭化水素化合物を用いることで、炭素-炭素三重結合含有基(例えばHC≡C-CH-)からアレン基(例えばHC=C=CH-)への異性化反応が抑制され、アレン基への異性化率が低く炭素-炭素三重結合の含有比率が高い有機重合体を取得することが可能となる。 By the above reaction, the hydrogen atom of the hydroxyl group of the organic polymer (B) is converted into a carbon-carbon triple bond-containing group, and the organic polymer (A) having a carbon-carbon triple bond can be produced. .. According to the present invention, by using a brominated hydrocarbon compound as the electrophile having a carbon-carbon triple bond, instead of the chlorinated hydrocarbon compound used in Patent Document 1, a carbon-carbon triple bond can be obtained. The isomerization reaction from the containing group (eg, HC≡C—CH 2 —) to the allene group (eg, H 2 C═C═CH—) is suppressed, the isomerization rate to the allene group is low, and the carbon-carbon triple bond It is possible to obtain an organic polymer having a high content ratio.
 以上により製造される炭素-炭素三重結合を有する有機重合体(A)は、硬化剤や硬化触媒と共に用いて硬化性材料として利用することができる。また、以下で説明するとおり、加水分解性シリル基を有する有機重合体を製造する際の前駆体として利用することもできる。 The organic polymer (A) having a carbon-carbon triple bond produced as described above can be used as a curable material together with a curing agent or a curing catalyst. Further, as described below, it can also be used as a precursor when producing an organic polymer having a hydrolyzable silyl group.
 (加水分解性シリル基を有する有機重合体(D)の製造)
 本発明の製造方法によって得られた炭素-炭素三重結合を有する有機重合体(A)に対し、加水分解性シリル基を有するヒドロシラン化合物をヒドロシリル化反応させて、加水分解性シリル基を重合体に導入することで、加水分解性シリル基を有する有機重合体(D)を製造することができる。
(Production of Organic Polymer (D) Having Hydrolyzable Silyl Group)
A hydrosilane compound having a hydrolyzable silyl group is hydrosilylated to the organic polymer (A) having a carbon-carbon triple bond obtained by the production method of the present invention to convert the hydrolyzable silyl group into a polymer. By introducing it, the organic polymer (D) having a hydrolyzable silyl group can be produced.
 (加水分解性シリル基を有するヒドロシラン化合物)
 加水分解性シリル基を有するヒドロシラン化合物としては特に限定されないが、下記一般式(1):
H-Si(R3-a(X)     (1)
で表すことができる。式(1)中、Rは、炭素数1~20の置換または非置換の一価の炭化水素基、または、(R′)SiO-で示されるトリオルガノシロキシ基を表す。前記炭化水素基は、ヘテロ含有基を有してもよい。R′は、同一又は異なって、炭素数1~20の置換または非置換の一価の炭化水素基を表す。Xは水酸基または加水分解性基を表す。aは1、2、または3である。
(Hydrosilane compound having a hydrolyzable silyl group)
The hydrosilane compound having a hydrolyzable silyl group is not particularly limited, but the following general formula (1):
H-Si(R 1 ) 3-a (X) a (1)
Can be expressed as In the formula (1), R 1 represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, or a triorganosiloxy group represented by (R′) 3 SiO—. The hydrocarbon group may have a hetero-containing group. R'is the same or different and represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms. X represents a hydroxyl group or a hydrolyzable group. a is 1, 2, or 3.
 Rとしては、例えば、水素原子;メチル基、エチル基などのアルキル基;クロロメチル基、メトキシメチル基などのヘテロ含有基を有するアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などのアリール基;ベンジル基などのアラルキル基;R′がメチル基、フェニル基等である(R′)SiO-で示されるトリオルガノシロキシ基等が挙げられる。好ましくはアルキル基であり、より好ましくは、メチル基、エチル基、クロロメチル基、メトキシメチル基であり、さらに好ましくは、メチル基、エチル基であり、特に好ましくは、メチル基である。Rが複数存在する場合、それらは互いに同一であってもよいし、異なるものであってもよい。 Examples of R 1 include a hydrogen atom; an alkyl group such as a methyl group and an ethyl group; an alkyl group having a hetero-containing group such as a chloromethyl group and a methoxymethyl group; a cycloalkyl group such as a cyclohexyl group; an aryl such as a phenyl group Group; an aralkyl group such as a benzyl group; and a triorganosiloxy group represented by (R') 3 SiO- in which R'is a methyl group, a phenyl group or the like. An alkyl group is preferable, a methyl group, an ethyl group, a chloromethyl group, and a methoxymethyl group are more preferable, a methyl group and an ethyl group are still more preferable, and a methyl group is particularly preferable. When a plurality of R 1's are present, they may be the same or different from each other.
 Xとしては、例えば、水酸基、水素、ハロゲン、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、およびアルケニルオキシ基などが挙げられる。加水分解性が穏やかで取扱いやすいことから、Xはアルコキシ基が好ましく、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基がより好ましく、メトキシ基、エトキシ基がさらに好ましく、メトキシ基が特に好ましい。Xとしては、一種類の基のみを使用してよいし、二種類以上の基を併用してもよい。 Examples of X include a hydroxyl group, hydrogen, halogen, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group. X is preferably an alkoxy group, more preferably a methoxy group, an ethoxy group, an n-propoxy group and an isopropoxy group, more preferably a methoxy group and an ethoxy group, and particularly preferably a methoxy group, since they have mild hydrolyzability and are easy to handle. .. As X, only one type of group may be used, or two or more types of groups may be used in combination.
 aは1、2、または3である。aとしては、2または3が好ましい。 A is 1, 2, or 3. As a, 2 or 3 is preferable.
 前記加水分解性シリル基を有するヒドロシラン化合物の具体例としては、例えば、トリクロロシラン、ジクロロメチルシラン、クロロジメチルシラン、ジクロロフェニルシラン、(クロロメチル)ジクロロシラン、(ジクロロメチル)ジクロロシラン、ビス(クロロメチル)クロロシラン、(メトキシメチル)ジクロロシラン、(ジメトキシメチル)ジクロロシラン、ビス(メトキシメチル)クロロシランなどのハロゲン化シラン類;トリメトキシシラン、トリエトキシシラン、ジメトキシメチルシラン、ジエトキシメチルシラン、ジメトキシフェニルシラン、エチルジメトキシシラン、メトキシジメチルシラン、エトキシジメチルシラン、(クロロメチル)メチルメトキシシラン、(クロロメチル)ジメトキシシラン、(クロロメチル)ジエトキシシラン、ビス(クロロメチル)メトキシシラン、(メトキシメチル)メチルメトキシシラン、(メトキシメチル)ジメトキシシラン、ビス(メトキシメチル)メトキシシラン、(メトキシメチル)ジエトキシシラン、(エトキシメチル)ジエトキシシラン、(3,3,3-トリフルオロプロピル)ジメトキシシラン、(N,N-ジエチルアミノメチル)ジメトキシシラン、(N,N-ジエチルアミノメチル)ジエトキシシラン、[(クロロメチル)ジメトキシシリルオキシ]ジメチルシラン、[(クロロメチル)ジエトキシシリルオキシ]ジメチルシラン、[(メトキシメチル)ジメトキシシリルオキシ]ジメチルシラン、[(メトキシメチル)ジエメトキシシリルオキシ]ジメチルシラン、[(ジエチルアミノメチル)ジメトキシシリルオキシ]ジメチルシラン、[(3,3,3-トリフルオロプロピル)ジメトキシシリルオキシ]ジメチルシラン等のアルコキシシラン類;ジアセトキシメチルシラン、ジアセトキシフェニルシラン等のアシロキシシラン類;ビス(ジメチルケトキシメート)メチルシラン、ビス(シクロヘキシルケトキシメート)メチルシランなどのケトキシメートシラン類、トリイソプロペニロキシシラン、(クロロメチル)ジイソプロペニロキシシラン、(メトキシメチル)ジイソプロペニロキシシラン等のイソプロペニロキシシラン類(脱アセトン型)等が挙げられる。中でも、ジメトキシメチルシラン、トリメトキシシラン、トリエトキシシラン、又はメトキシメチルジメトキシシランが好ましい。 Specific examples of the hydrosilane compound having a hydrolyzable silyl group include, for example, trichlorosilane, dichloromethylsilane, chlorodimethylsilane, dichlorophenylsilane, (chloromethyl)dichlorosilane, (dichloromethyl)dichlorosilane, and bis(chloromethyl). ) Halogenated silanes such as chlorosilane, (methoxymethyl)dichlorosilane, (dimethoxymethyl)dichlorosilane, bis(methoxymethyl)chlorosilane; trimethoxysilane, triethoxysilane, dimethoxymethylsilane, diethoxymethylsilane, dimethoxyphenylsilane , Ethyldimethoxysilane, methoxydimethylsilane, ethoxydimethylsilane, (chloromethyl)methylmethoxysilane, (chloromethyl)dimethoxysilane, (chloromethyl)diethoxysilane, bis(chloromethyl)methoxysilane, (methoxymethyl)methylmethoxy Silane, (methoxymethyl)dimethoxysilane, bis(methoxymethyl)methoxysilane, (methoxymethyl)diethoxysilane, (ethoxymethyl)diethoxysilane, (3,3,3-trifluoropropyl)dimethoxysilane, (N, N-diethylaminomethyl)dimethoxysilane, (N,N-diethylaminomethyl)diethoxysilane, [(chloromethyl)dimethoxysilyloxy]dimethylsilane, [(chloromethyl)diethoxysilyloxy]dimethylsilane, [(methoxymethyl) Dimethoxysilyloxy]dimethylsilane, [(methoxymethyl)diemethoxysilyloxy]dimethylsilane, [(diethylaminomethyl)dimethoxysilyloxy]dimethylsilane, [(3,3,3-trifluoropropyl)dimethoxysilyloxy]dimethylsilane Alkoxysilanes such as; acetoxymethylsilanes such as diacetoxymethylsilane and diacetoxyphenylsilane; ketoximatesilanes such as bis(dimethylketoximate)methylsilane and bis(cyclohexylketoximate)methylsilane; triisopropenyl Examples thereof include isopropenyloxysilanes (deacetone type) such as roxysilane, (chloromethyl)diisopropenyloxysilane, and (methoxymethyl)diisopropenyloxysilane. Among them, dimethoxymethylsilane, trimethoxysilane, triethoxysilane, or methoxymethyldimethoxysilane is preferable.
 前記加水分解性シリル基を有するヒドロシラン化合物の使用量は、有機重合体(A)が有する炭素-炭素三重結合の量を考慮して適宜設定すればよい。具体的には、有機重合体(A)が有する炭素-炭素三重結合に対するヒドロシラン化合物のモル比は、反応性の観点から0.05以上10以下が好ましく、0.3以上2以下がより好ましい。 The amount of the hydrosilane compound having a hydrolyzable silyl group may be appropriately set in consideration of the amount of carbon-carbon triple bond contained in the organic polymer (A). Specifically, the molar ratio of the hydrosilane compound to the carbon-carbon triple bond of the organic polymer (A) is preferably 0.05 or more and 10 or less, and more preferably 0.3 or more and 2 or less from the viewpoint of reactivity.
 ヒドロシリル化反応は、反応促進のため、ヒドロシリル化触媒の存在下で実施することが好ましい。ヒドロシリル化触媒としては、特に限定されないが、コバルト、ニッケル、イリジウム、白金、パラジウム、ロジウム、ルテニウム等の金属や、その錯体等を用いることができる。具体的には、アルミナ、シリカ、カーボンブラック等の担体に白金を担持させたもの、塩化白金酸;塩化白金酸とアルコールやアルデヒドやケトン等とからなる塩化白金酸錯体;白金-オレフィン錯体[例えばPt(CH=CH(PPh)、Pt(CH=CHCl];白金-ビニルシロキサン錯体[例えばPt{(vinyl)MeSiOSiMe(vinyl)}、Pt{Me(vinyl)SiO}];白金-ホスフィン錯体[例えばPh(PPh、Pt(PBu];白金-ホスファイト錯体[例えばPt{P(OPh)]等が挙げられる。反応効率の点から、塩化白金酸、白金ビニルシロキサン錯体等の白金触媒が好ましい。また、白金触媒の活性を長時間維持するため、硫黄を加えることも好ましい。硫黄は、ヘキサン等の有機溶剤に溶解させた状態で添加することもできる。 The hydrosilylation reaction is preferably carried out in the presence of a hydrosilylation catalyst in order to accelerate the reaction. The hydrosilylation catalyst is not particularly limited, but metals such as cobalt, nickel, iridium, platinum, palladium, rhodium and ruthenium, and complexes thereof can be used. Specifically, platinum supported on a carrier such as alumina, silica, carbon black, chloroplatinic acid; chloroplatinic acid complex composed of chloroplatinic acid and alcohol, aldehyde, ketone, or the like; platinum-olefin complex [eg, Pt (CH 2 = CH 2) 2 (PPh 3), Pt (CH 2 = CH 2) 2 Cl 2]; platinum - vinylsiloxane complex [e.g. Pt {(vinyl) Me 2 SiOSiMe 2 (vinyl)}, Pt { Me(vinyl)SiO} 4 ]; platinum-phosphine complex [eg Ph(PPh 3 ) 4 , Pt(PBu 3 ) 4 ]; platinum-phosphite complex [eg Pt{P(OPh) 3 } 4 ] and the like. To be From the viewpoint of reaction efficiency, platinum catalysts such as chloroplatinic acid and platinum vinyl siloxane complex are preferable. It is also preferable to add sulfur in order to maintain the activity of the platinum catalyst for a long time. Sulfur may be added in a state of being dissolved in an organic solvent such as hexane.
 ヒドロシリル化反応温度は、特に限定されず、当業者が適宜設定できるが、反応系の粘度を下げたり、反応性を向上させる目的で、常温より高い温度が好ましく、具体的には、50℃~150℃がより好ましく、70℃~120℃がさらに好ましい。特に70℃以上のヒドロシリル化反応温度は、ヒドロシリル化反応の反応効率の観点から好ましい。また、白金触媒添加時の異物生成を抑制する目的で、40~70℃が好ましい。ヒドロシリル化反応中に温度を変化させても良い。 The hydrosilylation reaction temperature is not particularly limited and can be appropriately set by those skilled in the art, but for the purpose of lowering the viscosity of the reaction system and improving the reactivity, a temperature higher than room temperature is preferable, and specifically, 50°C to 150° C. is more preferable, and 70° C. to 120° C. is further preferable. Particularly, a hydrosilylation reaction temperature of 70° C. or higher is preferable from the viewpoint of reaction efficiency of the hydrosilylation reaction. Further, the temperature is preferably 40 to 70° C. for the purpose of suppressing the generation of foreign matter when adding the platinum catalyst. The temperature may be changed during the hydrosilylation reaction.
 ヒドロシリル化反応の反応時間も適宜設定すればよいが、意図しない重合体の縮合反応が進行しないように、温度条件とともに反応時間を調整することが好ましい。具体的には、30分以上15時間以下が好ましく、30分以上8時間以下がより好ましい。 The reaction time of the hydrosilylation reaction may be appropriately set, but it is preferable to adjust the reaction time together with the temperature conditions so that the unintended condensation reaction of the polymer does not proceed. Specifically, 30 minutes or more and 15 hours or less are preferable, and 30 minutes or more and 8 hours or less are more preferable.
 また、ヒドロシリル化反応は、オルトカルボン酸トリアルキルエステルの存在下で実施してもよい。これによって、ヒドロシリル化反応時の増粘を抑制し、得られる重合体の貯蔵安定性を改善することができる。オルトカルボン酸トリアルキルエステルとしては、例えば、オルトギ酸トリメチル、オルトギ酸トリエチル、オルト酢酸トリメチル、オルト酢酸トリエチル等が挙げられる。好ましくはオルトギ酸トリメチル、オルト酢酸トリメチルである。その使用量は特に限定されないが、炭素-炭素三重結合を有する有機重合体(A)100重量部に対して0.1~10重量部程度が好ましく、0.1~3重量部程度がより好ましい。 Also, the hydrosilylation reaction may be carried out in the presence of an orthocarboxylic acid trialkyl ester. This can suppress thickening during the hydrosilylation reaction and improve the storage stability of the resulting polymer. Examples of the orthocarboxylic acid trialkyl ester include trimethyl orthoformate, triethyl orthoformate, trimethyl orthoacetate, triethyl orthoacetate and the like. Preferred are trimethyl orthoformate and trimethyl orthoacetate. The amount used is not particularly limited, but is preferably about 0.1 to 10 parts by weight, more preferably about 0.1 to 3 parts by weight, based on 100 parts by weight of the organic polymer (A) having a carbon-carbon triple bond. ..
 以上の工程によって、炭素-炭素三重結合を有する有機重合体(A)に対するヒドロシリル化反応が進行し、1つの炭素-炭素三重結合に対して1又は2分子のヒドロシラン化合物が付加することで、加水分解性シリル基を有する有機重合体(D)を製造することができる。 Through the above steps, the hydrosilylation reaction of the organic polymer (A) having a carbon-carbon triple bond proceeds, and one or two molecules of the hydrosilane compound are added to one carbon-carbon triple bond, whereby The organic polymer (D) having a degradable silyl group can be produced.
 以上により製造される加水分解性シリル基を有する有機重合体(D)は、加水分解性シリル基の加水分解・縮合させる反応を利用した硬化性樹脂として利用することができる。その際には、シラノール縮合触媒等を配合することができる。本発明により製造された加水分解性シリル基を有する有機重合体(D)は、加水分解性シリル基の加水分解・縮合反応によって、靱性などの物性に優れた硬化物を与えることができる。 The organic polymer (D) having a hydrolyzable silyl group produced as described above can be used as a curable resin utilizing the reaction of hydrolyzing and condensing the hydrolyzable silyl group. At that time, a silanol condensation catalyst or the like can be added. The organic polymer (D) having a hydrolyzable silyl group produced according to the present invention can give a cured product having excellent physical properties such as toughness by the hydrolysis/condensation reaction of the hydrolyzable silyl group.
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、「部」は重量基準である。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, "part" is based on weight.
 実施例中の数平均分子量は以下の条件で測定したGPC分子量である。
  送液システム:東ソー製HLC-8220GPC
  カラム:東ソー製TSKgel SuperHシリーズ
  溶媒:THF
  分子量:ポリスチレン換算
  測定温度:40℃
The number average molecular weight in the examples is the GPC molecular weight measured under the following conditions.
Liquid transfer system: Tosoh HLC-8220GPC
Column: Tosoh TSKgel Super H series Solvent: THF
Molecular weight: polystyrene conversion Measurement temperature: 40°C
 実施例中の末端基換算分子量は、水酸基価をJIS K 1557の測定方法により、ヨウ素価をJIS K 0070の測定方法により求め、有機重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた分子量である。 The terminal group-equivalent molecular weights in the examples are obtained by measuring the hydroxyl value by the measuring method of JIS K 1557 and the iodine value by the measuring method of JIS K0070, and determining the structure of the organic polymer (the degree of branching determined by the polymerization initiator used). This is the molecular weight determined in consideration.
(合成例1)
 末端基換算分子量が約2,000のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量27,900(末端基換算分子量17,700)、分子量分布Mw/Mn=1.21のポリオキシプロピレン(P-1)を得た。重合体(P-1)の粘度は、E型粘度計(東京計器、測定コーン:3°C×R14)で測定した結果、39.3Pa・sであった。
(Synthesis example 1)
Polyoxypropylene glycol having a terminal group-converted molecular weight of about 2,000 was used as an initiator to polymerize propylene oxide with a zinc hexacyanocobaltate glyme complex catalyst to give a hydroxyl group at both terminals of a number average molecular weight of 27,900 (terminal group). A polyoxypropylene (P-1) having a converted molecular weight of 17,700) and a molecular weight distribution Mw/Mn=1.21 was obtained. The viscosity of the polymer (P-1) was 39.3 Pa·s as a result of measurement with an E-type viscometer (Tokyo Keiki, measuring cone: 3°C×R14).
 (実施例1)
 合成例1で得られた水酸基末端ポリオキシプロピレン(P-1)の水酸基に対して1.05モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。130℃で真空脱揮によりメタノールを留去して、重合体が有する水酸基をアルカリ金属オキシ基に変換した。次いで、系の温度を100℃に低下させ、この温度(第二温度)で、重合体(P-1)の水酸基に対して1.16モル当量の臭化プロパルギルを添加し、アルカリ金属オキシ基と2時間反応させることで、重合体にプロパルギル基を導入した。未反応の臭化プロパルギルを減圧脱揮により除去した。得られた未精製のプロパルギル基末端ポリオキシプロピレンにn-ヘキサンと水を混合撹拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端にプロパルギル基を有するポリオキシプロピレン(Q-1)を得た。重合体(Q-1)の粘度をE型粘度計(東京計器、測定コーン:3°C×R14)で測定し、反応前後の粘度から増粘率を算出した。また、重合体(Q-1)のH NMR分析により、重合体中に導入されたアルキン基とアレン基のモル比を算出した。結果を表1に示す。
(Example 1)
1.05 molar equivalent of sodium methoxide was added as a 28% methanol solution to the hydroxyl group of the hydroxyl-terminated polyoxypropylene (P-1) obtained in Synthesis Example 1. Methanol was distilled off by vacuum devolatilization at 130° C. to convert the hydroxyl group of the polymer into an alkali metal oxy group. Then, the temperature of the system is lowered to 100° C., and at this temperature (second temperature), 1.16 molar equivalents of propargyl bromide to the hydroxyl group of the polymer (P-1) are added to give an alkali metal oxy group. A propargyl group was introduced into the polymer by reacting with the polymer for 2 hours. Unreacted propargyl bromide was removed by vacuum devolatilization. The resulting unpurified propargyl-terminated polyoxypropylene was mixed and stirred with n-hexane and water, then water was removed by centrifugation, and hexane was removed from the obtained hexane solution under reduced pressure to remove metal in the polymer. The salt was removed. As described above, polyoxypropylene (Q-1) having a propargyl group at the terminal was obtained. The viscosity of the polymer (Q-1) was measured with an E-type viscometer (Tokyo Keiki, measuring cone: 3°C×R14), and the thickening rate was calculated from the viscosities before and after the reaction. Further, the molar ratio of the alkyne group and the allene group introduced into the polymer was calculated by 1 H NMR analysis of the polymer (Q-1). The results are shown in Table 1.
 (比較例1)
 合成例1で得られた水酸基末端ポリオキシプロピレン(P-1)の水酸基に対して1.05モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。130℃で真空脱揮によりメタノールを留去して、重合体が有する水酸基をアルカリ金属オキシ基に変換した。次いで、系の温度を100℃に低下させ、この温度(第二温度)で、重合体(P-1)の水酸基に対して1.16モル当量の塩化プロパルギルを添加し、アルカリ金属オキシ基と2時間反応させることで、重合体にプロパルギル基を導入した。未反応の塩化プロパルギルを減圧脱揮により除去した。得られた未精製のプロパルギル基末端ポリオキシプロピレンにn-ヘキサンと水を混合撹拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端にプロパルギル基を有するポリオキシプロピレン(Q-2)を得た。重合体(Q-2)の粘度をE型粘度計(東京計器、測定コーン:3°C×R14)で測定し、反応前後の粘度から増粘率を算出した。また、重合体(Q-2)のH NMR分析により、重合体中に導入されたアルキン基とアレン基のモル比を算出した。結果を表1に示す。
(Comparative Example 1)
1.05 molar equivalent of sodium methoxide was added as a 28% methanol solution to the hydroxyl group of the hydroxyl-terminated polyoxypropylene (P-1) obtained in Synthesis Example 1. The methanol was distilled off by vacuum devolatilization at 130° C. to convert the hydroxyl groups contained in the polymer into alkali metal oxy groups. Next, the temperature of the system is lowered to 100° C., and at this temperature (second temperature), 1.16 molar equivalents of propargyl chloride with respect to the hydroxyl groups of the polymer (P-1) are added to give an alkali metal oxy group. A propargyl group was introduced into the polymer by reacting for 2 hours. Unreacted propargyl chloride was removed by vacuum devolatilization. The resulting unpurified propargyl-terminated polyoxypropylene was mixed and stirred with n-hexane and water, then water was removed by centrifugation, and hexane was removed from the obtained hexane solution under reduced pressure to remove metal in the polymer. The salt was removed. As described above, polyoxypropylene (Q-2) having a propargyl group at the terminal was obtained. The viscosity of the polymer (Q-2) was measured with an E-type viscometer (Tokyo Keiki, measuring cone: 3°C×R14), and the thickening rate was calculated from the viscosities before and after the reaction. Further, the molar ratio of the alkyne group and the allene group introduced into the polymer was calculated by 1 H NMR analysis of the polymer (Q-2). The results are shown in Table 1.
 (比較例2)
 合成例1で得られた水酸基末端ポリオキシプロピレン(P-1)の水酸基に対して1.05モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。130℃で真空脱揮によりメタノールを留去して、重合体が有する水酸基をアルカリ金属オキシ基に変換した。次いで、系の温度を130℃(第二温度)に維持しつつ、重合体(P-1)の水酸基に対して1.16モル当量の塩化プロパルギルを添加し、アルカリ金属オキシ基と2時間反応させることで、重合体にプロパルギル基を導入した。未反応の塩化プロパルギルを減圧脱揮により除去した。得られた未精製のプロパルギル基末端ポリオキシプロピレンにn-ヘキサンと水を混合撹拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端にプロパルギル基を有するポリオキシプロピレン(Q-3)を得た。重合体(Q-3)の粘度をE型粘度計(東京計器、測定コーン:3°C×R14)で測定し、反応前後の粘度から増粘率を算出した。また、重合体(Q-3)のH NMR分析により、重合体中に導入されたアルキン基とアレン基のモル比を算出した。結果を表1に示す。
(Comparative example 2)
1.05 molar equivalent of sodium methoxide was added as a 28% methanol solution to the hydroxyl group of the hydroxyl-terminated polyoxypropylene (P-1) obtained in Synthesis Example 1. The methanol was distilled off by vacuum devolatilization at 130° C. to convert the hydroxyl groups contained in the polymer into alkali metal oxy groups. Next, while maintaining the temperature of the system at 130° C. (second temperature), 1.16 molar equivalents of propargyl chloride to the hydroxyl group of the polymer (P-1) were added, and the reaction was performed with the alkali metal oxy group for 2 hours. By doing so, a propargyl group was introduced into the polymer. Unreacted propargyl chloride was removed by vacuum devolatilization. The resulting unpurified propargyl-terminated polyoxypropylene was mixed and stirred with n-hexane and water, then water was removed by centrifugation, and hexane was removed from the obtained hexane solution under reduced pressure to remove metal in the polymer. The salt was removed. Thus, polyoxypropylene (Q-3) having a propargyl group at the terminal was obtained. The viscosity of the polymer (Q-3) was measured with an E-type viscometer (Tokyo Keiki, measuring cone: 3°C×R14), and the thickening rate was calculated from the viscosities before and after the reaction. Further, the molar ratio of the alkyne group and the allene group introduced into the polymer was calculated by 1 H NMR analysis of the polymer (Q-3). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1から明らかなように、実施例1では、比較例1及び2と比較して、アレン基のモル比が減少して、アルキン基のモル比が大幅に増加している。このことより、求電子剤として、炭素-炭素三重結合を有するクロロ化炭化水素化合物ではなく、炭素-炭素三重結合を有するブロモ化炭化水素化合物を使用して炭素-炭素三重結合導入反応を実施することで、炭素-炭素三重結合の異性化反応を抑制して、炭素-炭素三重結合を有する有機重合体を効率良く製造できることが分かる。また、実施例1は、比較例1及び2と比較して、反応後の増粘率が小さくなっており、ブロモ化炭化水素化合物を用いることで、副反応による粘度上昇を抑制できることが分かる。 As is clear from Table 1, in Example 1, as compared with Comparative Examples 1 and 2, the molar ratio of the arene group was decreased and the molar ratio of the alkyne group was significantly increased. From this, the carbon-carbon triple bond introduction reaction is carried out by using a brominated hydrocarbon compound having a carbon-carbon triple bond, not a chlorohydrocarbon compound having a carbon-carbon triple bond, as the electrophile. Thus, it is understood that the isomerization reaction of the carbon-carbon triple bond can be suppressed and the organic polymer having the carbon-carbon triple bond can be efficiently produced. In addition, Example 1 has a smaller viscosity increase after the reaction as compared with Comparative Examples 1 and 2, and it can be seen that the use of the brominated hydrocarbon compound can suppress an increase in viscosity due to a side reaction.
 (実施例2)
 実施例1で得られた重合体(Q-1)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびトリメトキシシラン8.37gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去する事により、末端にトリメトキシシリル基を有するポリオキシプロピレン系重合体(R-1)を得た。シリル化反応前後の重合体の粘度をE型粘度計(東京計器、測定コーン:3°C×R14)で測定し、増粘率を算出した。
 さらに、重合体(R-1)100部に対してオクチル酸錫0.75部、ラウリルアミン0.125部、および水0.6部を混合し、ポリエチレン製の型枠に気泡が入らないように充填し、23℃50%RHで1時間、さらに70℃で20時間養生させて厚さ約3mmのシートを作製した。シートを3号ダンベル型に打ち抜き、23℃50%RHで引っ張り強度試験を行い、100%モジュラス(M100)、および破断時の強度(TB)を測定した。引っ張り強度の測定は、(株)島津製オートグラフ(AGS-J)を用い200mm/minの引張り速度で行った。結果を表2に示す。
(Example 2)
To 500 g of the polymer (Q-1) obtained in Example 1, 150 μL of platinum divinyldisiloxane complex (3% by weight of isopropanol solution in terms of platinum) and 8.37 g of trimethoxysilane were added to carry out hydrosilylation. The reaction was carried out. After reacting at 90° C. for 2 hours, unreacted trimethoxysilane was distilled off under reduced pressure to obtain a polyoxypropylene polymer (R-1) having a trimethoxysilyl group at the terminal. The viscosity of the polymer before and after the silylation reaction was measured with an E-type viscometer (Tokyo Keiki, measuring cone: 3°C×R14) to calculate the viscosity increase rate.
Further, 0.75 parts of tin octylate, 0.125 parts of laurylamine, and 0.6 parts of water are mixed with 100 parts of the polymer (R-1) to prevent air bubbles from entering the polyethylene mold. And was cured at 23° C. and 50% RH for 1 hour and further at 70° C. for 20 hours to prepare a sheet having a thickness of about 3 mm. The sheet was punched into a No. 3 dumbbell mold and subjected to a tensile strength test at 23° C. and 50% RH to measure 100% modulus (M100) and strength at break (TB). The tensile strength was measured with an autograph (AGS-J) manufactured by Shimadzu Corporation at a pulling speed of 200 mm/min. The results are shown in Table 2.
 (比較例3)
 比較例1で得られた重合体(Q-2)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびトリメトキシシラン8.37gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去する事により、末端にトリメトキシシリル基を有するポリオキシプロピレン系重合体(R-2)を得た。シリル化反応前後の重合体の粘度をE型粘度計(東京計器、測定コーン:3°C×R14)で測定し、増粘率を算出した。
 さらに、重合体(R-2)100部に対してオクチル酸錫0.75部、ラウリルアミン0.125部、および水0.6部を混合し、ポリエチレン製の型枠に気泡が入らないように充填し、23℃50%RHで1時間、さらに70℃で20時間養生させて厚さ約3mmのシートを作製した。シートを3号ダンベル型に打ち抜き、23℃50%RHで引っ張り強度試験を行い、100%モジュラス(M100)、および破断時の強度(TB)を測定した。引っ張り強度の測定は、(株)島津製オートグラフ(AGS-J)を用い200mm/minの引張り速度で行った。結果を表2に示す。
(Comparative example 3)
To 500 g of the polymer (Q-2) obtained in Comparative Example 1, 150 μL of platinum divinyldisiloxane complex (3% by weight of platinum in isopropanol solution) and 8.37 g of trimethoxysilane were added, and hydrosilylation was performed. The reaction was carried out. After reacting for 2 hours at 90° C., unreacted trimethoxysilane was distilled off under reduced pressure to obtain a polyoxypropylene polymer (R-2) having a trimethoxysilyl group at the terminal. The viscosity of the polymer before and after the silylation reaction was measured with an E-type viscometer (Tokyo Keiki, measuring cone: 3°C×R14), and the viscosity increase rate was calculated.
Furthermore, 0.75 parts of tin octylate, 0.125 parts of laurylamine, and 0.6 parts of water are mixed with 100 parts of the polymer (R-2) to prevent bubbles from entering the polyethylene mold. And was cured at 23° C. and 50% RH for 1 hour and further at 70° C. for 20 hours to prepare a sheet having a thickness of about 3 mm. The sheet was punched into a No. 3 dumbbell mold and subjected to a tensile strength test at 23° C. and 50% RH, and 100% modulus (M100) and strength at break (TB) were measured. The tensile strength was measured with an autograph (AGS-J) manufactured by Shimadzu Corporation at a pulling speed of 200 mm/min. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表2から明らかなように、アルキン基含有率の高い実施例1の重合体に加水分解性シリル基を導入して得られた実施例2の重合体は、アルキン基含有率の比較的低い比較例1の重合体に加水分解性シリル基を導入して得られた比較例3の重合体と比較して、粘度が低く、硬化後に高い機械的強度を有することが分かる。
 
As is clear from Table 2, the polymer of Example 2 obtained by introducing a hydrolyzable silyl group into the polymer of Example 1 having a high alkyne group content has a comparatively low alkyne group content. It can be seen that, as compared with the polymer of Comparative Example 3 obtained by introducing a hydrolyzable silyl group into the polymer of Example 1, it has a low viscosity and high mechanical strength after curing.

Claims (5)

  1.  炭素-炭素三重結合を有する有機重合体(A)の製造方法であって、
     水酸基を有する有機重合体(B)に対し塩基性化合物としてアルカリ金属塩を作用させて、アルカリ金属オキシ基を有する有機重合体(C)を形成する工程、
     前記有機重合体(C)を含む系に、炭素-炭素三重結合を有するブロモ化炭化水素化合物を添加し、反応させる工程、を含む、有機重合体(A)の製造方法。
    A process for producing an organic polymer (A) having a carbon-carbon triple bond,
    A step of acting an alkali metal salt as a basic compound on the organic polymer (B) having a hydroxyl group to form an organic polymer (C) having an alkali metal oxy group,
    A method for producing an organic polymer (A), which comprises a step of adding a brominated hydrocarbon compound having a carbon-carbon triple bond to a system containing the organic polymer (C) and reacting the compound.
  2.  アルカリ金属オキシ基を有する有機重合体(C)を形成した後、炭素-炭素三重結合を有するブロモ化炭化水素化合物を添加する前に、前記有機重合体(C)を含む系の温度を低下させる工程、をさらに含む、請求項1に記載の有機重合体(A)の製造方法。 After forming the organic polymer (C) having an alkali metal oxy group, and before adding the brominated hydrocarbon compound having a carbon-carbon triple bond, the temperature of the system containing the organic polymer (C) is lowered. The method for producing the organic polymer (A) according to claim 1, further comprising a step.
  3.  前記有機重合体(A)は、ポリオキシアルキレン系の主鎖骨格を有する、請求項1又は2に記載の有機重合体(A)の製造方法。 The method for producing the organic polymer (A) according to claim 1 or 2, wherein the organic polymer (A) has a polyoxyalkylene-based main chain skeleton.
  4.  前記アルカリ金属塩が、アルカリ金属アルコキシドである、請求項1~3のいずれか1項に記載の有機重合体(A)の製造方法。 The method for producing the organic polymer (A) according to any one of claims 1 to 3, wherein the alkali metal salt is an alkali metal alkoxide.
  5.  請求項1~4のいずれか1項に記載の製造方法によって炭素-炭素三重結合を有する有機重合体(A)を製造した後、該有機重合体(A)に、加水分解性シリル基を有するヒドロシラン化合物を反応させる工程を含む、加水分解性シリル基を有する有機重合体(D)の製造方法。
     
    After producing an organic polymer (A) having a carbon-carbon triple bond by the production method according to any one of claims 1 to 4, the organic polymer (A) has a hydrolyzable silyl group. A method for producing an organic polymer (D) having a hydrolyzable silyl group, comprising the step of reacting a hydrosilane compound.
PCT/JP2020/006681 2019-02-20 2020-02-20 Production method for organic polymer having carbon-carbon triple bond WO2020171155A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021502122A JPWO2020171155A1 (en) 2019-02-20 2020-02-20 Method for Producing Organic Polymer with Carbon-Carbon Triple Bond

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-028775 2019-02-20
JP2019028775 2019-02-20

Publications (1)

Publication Number Publication Date
WO2020171155A1 true WO2020171155A1 (en) 2020-08-27

Family

ID=72144515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006681 WO2020171155A1 (en) 2019-02-20 2020-02-20 Production method for organic polymer having carbon-carbon triple bond

Country Status (2)

Country Link
JP (1) JPWO2020171155A1 (en)
WO (1) WO2020171155A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108213A (en) * 1987-10-21 1989-04-25 Sumitomo Chem Co Ltd Propargyl-etherified cresol novolak resin
CN101798382A (en) * 2010-03-23 2010-08-11 上海钰康生物科技有限公司 Polyether modified carbosilane surfactant capable of being hydrolyzed stably
CN102241820A (en) * 2011-03-03 2011-11-16 华东理工大学 Novel polytriazole elastomer and preparation method thereof
WO2016002907A1 (en) * 2014-07-02 2016-01-07 株式会社カネカ Curable composition and cured object obtained therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108213A (en) * 1987-10-21 1989-04-25 Sumitomo Chem Co Ltd Propargyl-etherified cresol novolak resin
CN101798382A (en) * 2010-03-23 2010-08-11 上海钰康生物科技有限公司 Polyether modified carbosilane surfactant capable of being hydrolyzed stably
CN102241820A (en) * 2011-03-03 2011-11-16 华东理工大学 Novel polytriazole elastomer and preparation method thereof
WO2016002907A1 (en) * 2014-07-02 2016-01-07 株式会社カネカ Curable composition and cured object obtained therefrom

Also Published As

Publication number Publication date
JPWO2020171155A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
JP3315210B2 (en) Curable composition
CN111918900B (en) Reactive silicon group-containing polymer and curable composition
JP4603156B2 (en) Method for producing reactive silicon group-containing polyether oligomer
JP2954602B2 (en) Method for producing hydrolyzable silicon group-containing polyoxyalkylene polymer
CN111936551A (en) Reactive silicon group-containing polymer and curable composition
JP6977747B2 (en) Curable Compositions for Floor Adhesives and Cured Products
JP4426318B2 (en) Organic polymer having epoxy group and / or oxetane group-containing silicon group at terminal and method for producing the same
WO2020171153A1 (en) Production method for organic polymer having hydrolyzable silyl group
JP6610690B2 (en) Curable composition and cured product
JP2020132770A (en) Method for producing organic polymer having carbon-carbon triple bond
JP6579206B2 (en) Curable composition and cured product
WO2020171155A1 (en) Production method for organic polymer having carbon-carbon triple bond
JP7226994B2 (en) Method for producing organic polymer containing terminal unsaturated bond or method for producing hydrolyzable silyl group-containing organic polymer
WO2020171154A1 (en) Production method for organic polymer having carbon-carbon triple bond
EP1277769B1 (en) Compositions of silicon containing (meth)acrylic acid ester polymers
JP2022034837A (en) Method for producing organic polymer having carbon-carbon triple bond
JP4132524B2 (en) Method for producing reactive silicon group-containing polyether oligomer
JP2020132768A (en) Method for manufacturing organic polymer having hydrolyzable silyl group
JP2020094105A (en) Method for producing organic polymer and curable composition
JP2021055013A (en) Reactive silicon group-containing polymer and curable composition
JP2020132769A (en) Method for manufacturing organic polymer having hydrolyzable silyl group
JP2022064562A (en) Method for producing oxyalkylene polymer and oxyalkylene polymer
JP2008195823A (en) Method for producing reactive silicon group-having organic polymer
JP2022034838A (en) Method for producing hydrolyzable silyl group-containing polymer
WO2021261383A1 (en) Thermally curable composition and cured product of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20758693

Country of ref document: EP

Kind code of ref document: A1