WO2020171053A1 - Curable resin composition, sealing agent for liquid crystal display element, vertical conductive material, and liquid crystal display element - Google Patents

Curable resin composition, sealing agent for liquid crystal display element, vertical conductive material, and liquid crystal display element Download PDF

Info

Publication number
WO2020171053A1
WO2020171053A1 PCT/JP2020/006222 JP2020006222W WO2020171053A1 WO 2020171053 A1 WO2020171053 A1 WO 2020171053A1 JP 2020006222 W JP2020006222 W JP 2020006222W WO 2020171053 A1 WO2020171053 A1 WO 2020171053A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
meth
acrylate
liquid crystal
formula
Prior art date
Application number
PCT/JP2020/006222
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 高橋
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020514645A priority Critical patent/JP7160907B2/en
Publication of WO2020171053A1 publication Critical patent/WO2020171053A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a curable resin composition which is excellent in both adhesiveness to an alignment film and moisture permeation preventive property.
  • the present invention also relates to a liquid crystal display element sealant, a vertical conduction material, and a liquid crystal display element, which are obtained by using the curable resin composition.
  • a curable resin composition as disclosed in Patent Document 1 and Patent Document 2 is used from the viewpoints of shortening tact time and optimizing the amount of liquid crystal used.
  • a method called a dripping method in which is used as a sealant is used.
  • the dropping method first, a sealant is applied to one of the two substrates with electrodes to form a frame-shaped seal pattern. Then, a liquid crystal microdroplet is dropped in the sealing frame of the substrate while the sealant is uncured, the other substrate is superposed under vacuum, and the sealant is cured by light irradiation or heating to produce a liquid crystal display element. To do.
  • this dropping method is the mainstream method for manufacturing liquid crystal display elements.
  • liquid crystal display elements are increasingly required to have moisture resistance reliability when driven in high temperature and high humidity environments, and the sealant has the ability to prevent water from entering from the outside. Is more sought after.
  • the adhesion of the sealant to the substrate etc. is improved to prevent the infiltration of water from the interface between the sealant and the substrate etc., and the moisture permeation of the sealant is prevented. Needs to be improved.
  • As a method of improving the moisture permeation preventive property of the sealant a method of mixing a filler such as talc is considered, but when a strict humidity resistance reliability test is performed, display unevenness may occur in the liquid crystal display element. there were.
  • the application position of the sealant is on the alignment film such as polyimide, it is difficult to achieve both the adhesiveness to the alignment film and the moisture permeation preventive property.
  • the present invention contains a curable resin and a polymerization initiator and/or a thermosetting agent, wherein the curable resin is a compound represented by the following formula (1-1) and/or a formula (1-2) below. It is a curable resin composition containing the compound represented by.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents the following formulas (2-1), (2-2), or (2-3 )
  • R 3 represents a structure derived from an optionally substituted aliphatic dicarboxylic acid or an anhydride thereof
  • X represents a ring-opening structure of a cyclic lactone
  • n is 0 or more. It is 5 or less
  • Ep represents a structure derived from a bifunctional or higher functional epoxy compound.
  • * represents a bonding position
  • a is an integer of 1 or more and 8 or less
  • b is an integer of 1 or more and 8 or less
  • c is an integer of 1 or more and 3 or less
  • d is an integer of 1 or more and 8 or less.
  • the present inventors have found that by using a compound having a specific structure as the curable resin, it is possible to obtain a curable resin composition that is excellent in both the adhesiveness to the alignment film and the moisture permeation preventive property. It came to completion.
  • the curable resin composition of the present invention contains a curable resin.
  • the curable resin contains the compound represented by the formula (1-1) and/or the compound represented by the formula (1-2).
  • the curable resin composition of the present invention has adhesiveness and transparency to an alignment film. Excellent both in moisture resistance.
  • both the compound represented by the above formula (1-1) and the compound represented by the above formula (1-2) are excellent from the viewpoint of low liquid crystal contamination when used as a sealant for a liquid crystal display element. Shows low liquid crystal contamination.
  • the curable resin preferably contains the compound represented by the formula (1-1).
  • R 2 represents a group represented by the formula (2-1), (2-2) or (2-3).
  • R 2 is preferably a group represented by the above formula (2-2) from the viewpoint of the adhesiveness of the obtained curable resin composition and the flexibility of the cured product, and the above formula (2 More preferably, a in 2) is 2 (ethylene group).
  • a in 2 is 2 (ethylene group).
  • the bond position on the methylene group side is (meta) in the above formulas (1-1) and (1-2). ) It becomes the bonding position with the acryloyloxy group.
  • (meth)acryloyl means acryloyl or methacryloyl.
  • R 3 represents a structure derived from an optionally substituted aliphatic dicarboxylic acid or an anhydride thereof.
  • R 3 has a structure derived from an optionally substituted aliphatic dicarboxylic acid or its anhydride, the resulting curable resin composition has excellent adhesiveness to the alignment film.
  • examples of the substituent include a carbon chain having 1 to 60 carbon atoms which may have an unsaturated bond or a branched structure.
  • Examples of the above-mentioned optionally substituted aliphatic dicarboxylic acid or anhydride thereof include 1,2-cyclohexanedicarboxylic acid anhydride, 3-methylcyclohexane-1,2-dicarboxylic acid anhydride, and 4-methylcyclohexane-1,2-dicarboxylic acid anhydride.
  • R 3 preferably has a structure represented by the following formula (3-1), (3-2) or (3-3).
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and in the formula (3-3), R 6 and R 7 are each independently It represents a hydrogen atom or an organic group having 1 to 60 carbon atoms, or represents a structure in which R 6 and R 7 are bonded.
  • Examples of the structure represented by the above formula (3-1) include structures derived from 1,2-cyclohexanedicarboxylic acid anhydride, 3-methylcyclohexane-1,2-dicarboxylic acid anhydride and the like.
  • Examples of the structure represented by the above formula (3-2) include 4-cyclohexene-1,2-dicarboxylic acid, 3-methyl-4-cyclohexene-1,2-dicarboxylic acid anhydride, 3,4,5 , 6-tetrahydrophthalic anhydride, 4-methyl-4-cyclohexene-1,2-dicarboxylic acid anhydride and the like.
  • the structure represented by the above formula (3-3) may be a structure in which R 6 and R 7 are not bonded, or a structure in which R 6 and R 7 are bonded. From the viewpoint of enhancing the moisture permeation preventive property, a structure in which R 6 and R 7 are bonded is preferable.
  • Examples of the structure in which R 6 and R 7 are not bonded include, for example, tetrapropenyl succinic anhydride, decyl succinic anhydride, tetradecyl succinic anhydride, tetradecenyl succinic anhydride, and hexadecyl succinic anhydride.
  • R 6 and R 7 examples include 5-norbornene-2,3-dicarboxylic acid anhydride, bicyclo[2.2.2]oct-5-ene-2,3-dicarboxylic acid Structures derived from anhydride, 2-(2-carboxyethyl)-3-methylmaleic anhydride, 7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride, etc. Is mentioned.
  • X represents a ring-opening structure of a cyclic lactone.
  • the cyclic lactone include ⁇ -undecalactone, ⁇ -caprolactone, ⁇ -decalactone, ⁇ -dodecalactone, ⁇ -nonanolactone, ⁇ -heptanolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -butyrolactone. , ⁇ -butyrolactone, ⁇ -propiolactone, ⁇ -hexanolactone, 7-butyl-2-oxepanone and the like.
  • the number of carbon atoms in the straight chain portion of the main skeleton is 5 or more and 7 or less when the ring is opened.
  • the obtained curable resin composition has It has excellent adhesiveness to the alignment film and moisture-proof property of the cured product.
  • n is 1 or more and 5 or less
  • the resulting curable resin composition is more excellent in adhesiveness to the alignment film.
  • the compound represented by the above formula (1-1) and the compound represented by the above formula (1-2) may be a mixture of compounds each having a different number of repetitions of X. Is the average value.
  • Ep represents a structure derived from a bifunctional or higher functional epoxy compound.
  • the epoxy compound from which Ep is derived include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol E type epoxy compound, bisphenol S type epoxy compound, resorcinol type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene.
  • the Ep preferably has a structure derived from a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, or a bisphenol E type epoxy compound.
  • Examples of the method for producing the compound represented by the above formula (1-1) include the following methods. That is, a step of reacting the hydroxyalkyl (meth)acrylate with the optionally substituted aliphatic dicarboxylic acid or its anhydride by heating and stirring in the presence of a polymerization inhibitor, and the resulting reaction And the like, and a step of reacting a part of the epoxy groups by adding the above-mentioned bifunctional or higher functional epoxy compound and heating and stirring. Further, examples of the method for producing the compound represented by the above formula (1-2) include the following methods.
  • hydroxyalkyl (meth)acrylate examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate and 2-hydroxy-3-phenoxypropyl (meth). An acrylate etc. are mentioned.
  • the hydroxyalkyl (meth)acrylate may be reacted with the cyclic lactone before being reacted with the optionally substituted aliphatic dicarboxylic acid or its anhydride.
  • polymerization inhibitor examples include hydroquinone and p-methoxyphenol.
  • the preferable lower limit of the content of the compound represented by the formula (1-1) and/or the compound represented by the formula (1-2) in 100 parts by weight of the curable resin is 5 parts by weight, and the preferable upper limit is 90 parts by weight. It is a department.
  • the content of the compound represented by the above formula (1-1) and/or the compound represented by the above formula (1-2) is within this range, the resulting curable resin composition has adhesiveness to an alignment film. It is more excellent due to the effect of achieving both the moisture permeation preventive property.
  • the more preferable lower limit of the content of the compound represented by the formula (1-1) and/or the compound represented by the formula (1-2) is 10 parts by weight, and the more preferable upper limit thereof is 80 parts by weight.
  • the above “content of the compound represented by the formula (1-1) and/or the compound represented by the formula (1-2)” means that when only one of these compounds is contained, its content Means the content of one of the compounds, and when both are contained, it means the total content.
  • the curable resin composition of the present invention further comprises the compound represented by the formula (1-1) and the formula (1-2) as the curable resin as long as the object of the present invention is not impaired.
  • the other curable resin include, for example, other epoxy compounds other than the compound represented by the formula (1-1) and other (meth)acryl other than the compound represented by the formula (1-2).
  • a compound etc. are mentioned.
  • the “(meth)acryl” means acryl or methacryl
  • the “(meth)acryl compound” means a compound having a (meth)acryloyl group.
  • Examples of the other epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, 2,2′-diallyl bisphenol A type epoxy compounds, hydrogenated bisphenol type epoxy compounds, propylene oxide addition Bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol novolac type epoxy compound, orthocresol novolak type epoxy compound , Dicyclopentadiene novolac type epoxy compounds, biphenyl novolac type epoxy compounds, naphthalene phenol novolac type epoxy compounds, glycidyl amine type epoxy compounds, alkyl polyol type epoxy compounds, rubber modified epoxy compounds, glycidyl ester compounds and the like.
  • Examples of commercially available bisphenol A type epoxy compounds include jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-850CRP (manufactured by DIC), and the like.
  • Examples of commercially available bisphenol F type epoxy compounds include jER806 and jER4004 (both manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available bisphenol S-type epoxy compounds include EPICLON EXA1514 (manufactured by DIC) and the like.
  • Examples of commercially available 2,2′-diallyl bisphenol A type epoxy compounds include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.) and the like.
  • Examples of commercially available hydrogenated bisphenol type epoxy compounds include EPICLON EXA7015 (manufactured by DIC).
  • Examples of commercially available propylene oxide-added bisphenol A type epoxy compounds include EP-4000S (manufactured by ADEKA).
  • Examples of commercially available resorcinol type epoxy compounds include EX-201 (manufactured by Nagase Chemtex) and the like.
  • Examples of commercially available biphenyl type epoxy compounds include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation) and the like.
  • Examples of commercially available sulfide type epoxy compounds include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
  • Examples of commercially available diphenyl ether type epoxy compounds include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
  • Examples of commercially available dicyclopentadiene type epoxy compounds include EP-4088S (manufactured by ADEKA) and the like.
  • Commercially available naphthalene-type epoxy compounds include, for example, EPICLON HP4032 and EPICLON EXA-4700 (both manufactured by DIC).
  • Examples of commercially available phenol novolac type epoxy compounds include EPICLON N-770 (manufactured by DIC).
  • Examples of commercially available orthocresol novolac type epoxy compounds include EPICLON N-670-EXP-S (manufactured by DIC) and the like.
  • Examples of commercially available dicyclopentadiene novolac type epoxy compounds include EPICLON HP7200 (manufactured by DIC) and the like.
  • Examples of commercially available biphenyl novolac type epoxy compounds include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.) and the like.
  • Examples of commercially available naphthalenephenol novolac type epoxy compounds include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available glycidylamine type epoxy compounds include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON 430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company) and the like.
  • commercially available compounds include, for example, ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), EPICLON 726 (manufactured by DIC Co., Ltd.), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), and Denacol EX-611.
  • Rubber-modified epoxy compounds include, for example, YR-450, YR-207 (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), and Epolide PB (manufactured by Daicel).
  • Epolide PB manufactured by Daicel
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase Chemtex) and the like.
  • epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031, jER1032 (any one). And Mitsubishi Chemical Co., Ltd.), EXA-7120 (manufactured by DIC), TEPIC (manufactured by Nissan Chemical Co., Ltd.) and the like.
  • the curable resin may contain a partial (meth)acryl-modified epoxy resin as the other epoxy compound.
  • the partial (meth)acryl-modified epoxy resin means, for example, reacting a part of epoxy groups of an epoxy compound having two or more epoxy groups in one molecule with (meth)acrylic acid. Means a compound having at least one epoxy group and at least one (meth)acryloyl group in one molecule.
  • Examples of the other (meth)acrylic compounds include (meth)acrylic acid ester compounds, epoxy (meth)acrylates, urethane (meth)acrylates, and the like. Of these, epoxy (meth)acrylate is preferable.
  • the (meth)acrylic compound preferably has two or more (meth)acryloyl groups in one molecule from the viewpoint of reactivity.
  • the said "epoxy (meth)acrylate" represents the compound which made all the epoxy groups in an epoxy compound react with (meth)acrylic acid.
  • monofunctional ones include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate.
  • T-butyl (meth)acrylate 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, isononyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, iso Myristyl (meth)acrylate, stearyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, cyclohexyl ( (Meth)acrylate, isobornyl (meth)acrylate, bicyclopentenyl (meth)acrylate, benzyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-butoxyethyl (
  • bifunctional compounds of the (meth)acrylic acid ester compound examples include, for example, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, and 1,6-hexane.
  • trifunctional or higher functional (meth)acrylic acid ester compound examples include, for example, trimethylolpropane tri(meth)acrylate, ethylene oxide-added trimethylolpropane tri(meth)acrylate, and propylene oxide-added trimethylolpropane tri( (Meth)acrylate, caprolactone-modified trimethylolpropane tri(meth)acrylate, ethylene oxide-added isocyanuric acid tri(meth)acrylate, glycerin tri(meth)acrylate, propylene oxide-added glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, Examples thereof include tris(meth)acryloyloxyethyl phosphate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate and
  • Examples of the epoxy (meth)acrylate include those obtained by reacting an epoxy compound and (meth)acrylic acid in the presence of a basic catalyst according to a conventional method.
  • epoxy compound which is a raw material for synthesizing the epoxy (meth)acrylate the same epoxy compounds as those described above can be used.
  • epoxy (meth)acrylates include, for example, epoxy (meth)acrylate manufactured by Daicel Ornex Co., epoxy (meth)acrylate manufactured by Shin-Nakamura Chemical Co., and epoxy (meth) manufactured by Kyoeisha Chemical Co., Ltd. Examples thereof include (meth)acrylate and epoxy (meth)acrylate manufactured by Nagase Chemtex.
  • the epoxy (meth) acrylate manufactured by the Daicel Orunekusu Inc. for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRYL3708, EBECRYL3800, EBECRYL6040, EBECRYL RDX63182, KRM8076, and the like.
  • Examples of the epoxy (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. include epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 3002A, epoxy ester 1600A, Epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, epoxy ester 400EA, etc. are mentioned.
  • Examples of the epoxy (meth)acrylate manufactured by Nagase Chemtex include Denacol acrylate DA-141, Denacol acrylate DA-314, and Denacol acrylate DA-911.
  • the urethane (meth)acrylate can be obtained, for example, by reacting an isocyanate compound with a (meth)acrylic acid derivative having a hydroxyl group in the presence of a catalytic amount of a tin compound.
  • isocyanate compound examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4′-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate phenyl) thiophosphate, tetramethyl xylylene diisocyanate Examples thereof include isocyanate and 1,6,11-undecane triisocyanate.
  • MDI diphenylmethane-4,4′-diisocyanate
  • a chain-extended isocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used.
  • the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol and polycaprolactone diol.
  • Examples of the (meth)acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono(meth)acrylate, mono(meth)acrylate of divalent alcohol, mono(meth)acrylate of divalent alcohol or di(meth)acrylate. , Epoxy (meth) acrylate and the like.
  • Examples of the hydroxyalkyl mono(meth)acrylate include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate. Can be mentioned.
  • Examples of the dihydric alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol and the like.
  • Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, and glycerin.
  • Examples of the epoxy (meth)acrylate include bisphenol A type epoxy acrylate.
  • urethane (meth)acrylates examples include, for example, urethane (meth)acrylate manufactured by Toagosei Co., Ltd., urethane (meth)acrylate manufactured by Daicel Ornex Co., and urethane (meth) manufactured by Negami Kogyo Co., Ltd. Examples thereof include acrylate, urethane (meth)acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like. Examples of the urethane (meth)acrylate manufactured by Toagosei Co., Ltd.
  • the urethane (meth) acrylate manufactured by the Daicel Orunekusu Inc. for example, EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 etc. Can be mentioned.
  • Examples of the urethane (meth)acrylate manufactured by Negami Kogyo Co., Ltd. include Art Resin UN-330, Art Resin SH-500B, Art Resin UN-1200TPK, Art Resin UN-1255, Art Resin UN-3320HB, Art Resin UN-. 7100, Art Resin UN-9000A, Art Resin UN-9000H and the like.
  • urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, UA-306T.
  • the above-mentioned other (meth)acrylic compounds are preferably those having a hydrogen-bonding unit such as —OH group, —NH— group, and —NH 2 group.
  • the curable resin composition of the present invention contains a polymerization initiator and/or a thermosetting agent.
  • the polymerization initiator include radical polymerization initiators and cationic polymerization initiators.
  • radical polymerization initiator examples include a photoradical polymerization initiator that generates a radical upon irradiation with light and a thermal radical polymerization initiator that generates a radical upon heating.
  • photoradical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, thioxanthone compounds, and the like.
  • photo-radical polymerization initiator examples include 1-hydroxycyclohexyl phenyl ketone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butanone, 1,2-(dimethylamino) -2-((4-methylphenyl)methyl)-1-(4-(4-morpholinyl)phenyl)-1-butanone, 2,2-dimethoxy-1,2-diphenylethan-1-one, bis(2 , 4,6-Trimethylbenzoyl)phenylphosphine oxide, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 1-(4-(2-hydroxyethoxy)-phenyl)- 2-hydroxy-2-methyl-1-propan-1-one, 1-(4-(phenylthio)phenyl)-1,2-octanedione 2-(O-benzoyloxime), 2,4,6-trimethylbenzoyl Examples thereof include diphenyl
  • thermal radical polymerization initiator examples include those composed of azo compounds, organic peroxides and the like. Among them, an initiator composed of a polymer azo compound (hereinafter, also referred to as “polymer azo initiator”) is preferable.
  • the polymeric azo compound means a compound having an azo group and having a number average molecular weight of 300 or more, which produces a radical capable of curing a (meth)acryloyl group by heat.
  • the preferable lower limit of the number average molecular weight of the high molecular weight azo compound is 1,000, and the preferable upper limit thereof is 300,000.
  • the more preferable lower limit of the number average molecular weight of the high molecular weight azo compound is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
  • the said number average molecular weight is the value calculated
  • Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group those having a polyethylene oxide structure are preferable.
  • Specific examples of the polymer azo compound include polycondensates of 4,4′-azobis(4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis(4-cyanopentanoic acid). And a polycondensation product of polydimethylsiloxane having a terminal amino group.
  • Examples of commercially available high-molecular azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
  • examples of commercially available azo compounds that are not polymers include V-65 and V-501 (both manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxy ester, diacyl peroxide, peroxydicarbonate and the like.
  • a photo-cationic polymerization initiator is preferably used as the above-mentioned cationic polymerization initiator.
  • the photocationic polymerization initiator is not particularly limited as long as it generates a protonic acid or a Lewis acid by light irradiation, and may be an ionic photoacid generating type or a nonionic photoacid generating type. May be
  • photocationic polymerization initiator examples include onium salts such as aromatic diazonium salts, aromatic halonium salts and aromatic sulfonium salts, iron-arene complexes, titanocene complexes, arylsilanol-aluminum complexes and other organometallic complexes. Is mentioned.
  • photocationic polymerization initiators examples include ADEKA OPTOMER SP-150 and ADEKA OPTOMER SP-170 (both manufactured by ADEKA).
  • a preferable lower limit is 0.01 part by weight and a preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • a preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • thermosetting agent examples include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Among them, solid organic acid hydrazide is preferably used.
  • Examples of the solid organic acid hydrazide include 1,3-bis(hydrazinocarboethyl)-5-isopropylhydantoin, sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide and the like.
  • Examples of commercially available solid organic acid hydrazides include organic acid hydrazides manufactured by Otsuka Chemical Co., Ltd., organic acid hydrazides manufactured by Nippon Finechem Co., Ltd., and organic acid hydrazides manufactured by Ajinomoto Fine Techno Co., Ltd., and the like. Examples of the organic acid hydrazide manufactured by Otsuka Chemical Co., Ltd.
  • Examples of the organic acid hydrazide manufactured by Nippon Finechem Co., Ltd. include MDH. Examples of the organic acid hydrazides manufactured by Ajinomoto Fine-Techno Co., Inc. include Amicure VDH, Amicure VDH-J, Amicure UDH and the like.
  • the content of the thermosetting agent is preferably 1 part by weight and 50 parts by weight with respect to 100 parts by weight of the entire curable resin. When the content of the thermosetting agent is within this range, the curable resin composition obtained is more excellent in curability while maintaining excellent coatability and storage stability. A more preferable upper limit of the content of the thermosetting agent is 30 parts by weight.
  • the curable resin composition of the present invention contains a filler for the purpose of improving the viscosity, further improving the adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, further improving the moisture permeability of the cured product, and the like.
  • a filler for the purpose of improving the viscosity, further improving the adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, further improving the moisture permeability of the cured product, and the like.
  • a filler for the purpose of improving the viscosity, further improving the adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, further improving the moisture permeability of the cured product, and the like.
  • a filler for the purpose of improving the viscosity, further improving the adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, further improving the moisture permeability of the cured product, and the like.
  • An inorganic filler or an organic filler can be used as the filler.
  • the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide. , Calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
  • the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like.
  • the preferred lower limit of the content of the filler in 100 parts by weight of the curable resin composition of the present invention is 10 parts by weight, and the preferred upper limit is 70 parts by weight.
  • the more preferable lower limit of the content of the filler is 20 parts by weight, and the more preferable upper limit thereof is 60 parts by weight.
  • the curable resin composition of the present invention preferably contains a silane coupling agent for the purpose of further improving the adhesiveness.
  • the above-mentioned silane coupling agent mainly has a role as an adhesion aid for favorably adhering the curable resin composition to the substrate and the like.
  • the silane coupling agent for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane and the like are preferably used.
  • the preferred lower limit of the content of the silane coupling agent in 100 parts by weight of the curable resin composition of the present invention is 0.1 part by weight, and the preferred upper limit is 10 parts by weight.
  • the content of the silane coupling agent is within this range, the effect of improving the adhesiveness while suppressing the occurrence of liquid crystal contamination when the resulting curable resin composition is used as a sealant for liquid crystal display elements Can be more exerted.
  • the more preferable lower limit of the content of the silane coupling agent is 0.3 parts by weight, and the more preferable upper limit thereof is 5 parts by weight.
  • the curable resin composition of the present invention may contain a light shielding agent.
  • the curable resin composition of the present invention can be suitably used as a light-shielding sealant.
  • Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, resin-coated carbon black, and the like. Of these, titanium black is preferable.
  • the titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly in the light having a wavelength of 370 nm to 450 nm, as compared with the average transmittance of light having a wavelength of 300 nm to 800 nm. That is, the titanium black has a property of imparting a light-shielding property to the curable resin composition of the present invention by sufficiently shielding light having a wavelength in the visible light region, while transmitting light having a wavelength near the ultraviolet region. It is a light-shielding agent.
  • the light-shielding agent contained in the curable resin composition of the present invention is preferably a substance having a high insulating property, and titanium black is also suitable as a light-shielding agent having a high insulating property.
  • the titanium black has sufficient effects even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, or oxide. It is also possible to use surface-treated titanium black such as one coated with an inorganic component such as zirconium or magnesium oxide. Among them, those treated with an organic component are preferable because the insulating property can be further improved. Further, a liquid crystal display device produced by using the curable resin composition of the present invention containing the above-mentioned titanium black as a light shielding agent as a sealing agent for liquid crystal display devices has sufficient light shielding properties, and thus does not leak light. It is possible to realize a liquid crystal display element having high contrast and excellent image display quality.
  • an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, or oxide. It is also possible to use surface-treated titanium black such as one coated with an inorganic component such as zirconium or magnesium oxide. Among them, those treated with an
  • Examples of commercially available titanium blacks include titanium black manufactured by Mitsubishi Materials and titanium black manufactured by Ako Kasei. Examples of the titanium black manufactured by Mitsubishi Materials include 12S, 13M, 13M-C, 13R-N and 14M-C. Examples of titanium black manufactured by Ako Kasei Co., Ltd. include Tilak D.
  • the preferred lower limit of the specific surface area of the titanium black is 13 m 2 /g, the preferred upper limit is 30 m 2 /g, the more preferred lower limit is 15 m 2 /g, and the more preferred upper limit is 25 m 2 /g.
  • the preferred lower limit of the volume resistance of the titanium black is 0.5 ⁇ cm, the preferred upper limit is 3 ⁇ cm, the more preferred lower limit is 1 ⁇ cm, and the more preferred upper limit is 2.5 ⁇ cm.
  • the preferable lower limit of the primary particle diameter of the light-shielding agent is 1 nm, and the preferable upper limit thereof is 5 ⁇ m.
  • the more preferable lower limit of the primary particle size of the light shielding agent is 5 nm, the more preferable upper limit thereof is 200 nm, the still more preferable lower limit thereof is 10 nm, and the still more preferable upper limit thereof is 100 nm.
  • the primary particle size of the light-shielding agent can be measured using a particle size distribution meter (for example, "NICOMP 380ZLS" manufactured by PARTICLE SIZING SYSTEMS).
  • the preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the curable resin composition of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight.
  • the content of the light-shielding agent is within this range, the effect of improving the light-shielding property can be more exerted while maintaining the adhesiveness, the strength after curing, and the drawing property of the curable resin composition obtained.
  • the more preferable lower limit of the content of the light-shielding agent is 10 parts by weight, the more preferable upper limit thereof is 70 parts by weight, the further preferable lower limit thereof is 30 parts by weight, and the further preferable upper limit thereof is 60 parts by weight.
  • the curable resin composition of the present invention further contains additives such as a stress relaxation agent, a reactive diluent, a thixotropic agent, a spacer, a curing accelerator, an antifoaming agent, a leveling agent, and a polymerization inhibitor, if necessary. May be included.
  • additives such as a stress relaxation agent, a reactive diluent, a thixotropic agent, a spacer, a curing accelerator, an antifoaming agent, a leveling agent, and a polymerization inhibitor, if necessary. May be included.
  • the curable resin composition of the present invention for example, a curable resin, a polymerization initiator and/or a thermosetting agent, and a silane coupling agent to be added if necessary, using a mixer.
  • a mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a three-roll mill.
  • the curable resin composition of the present invention can be used as an adhesive, and can be particularly preferably used as a sealant for liquid crystal display elements.
  • a sealant for liquid crystal display devices which comprises the curable resin composition of the present invention, is also one aspect of the present invention.
  • a vertical conduction material can be manufactured by blending conductive fine particles with the liquid crystal display element sealing agent of the present invention.
  • a vertical conduction material containing the liquid crystal display element sealant of the present invention and conductive fine particles is also one aspect of the present invention.
  • conductive fine particles metal balls, resin fine particles having a conductive metal layer formed on the surface thereof, or the like can be used. Above all, a resin fine particle having a conductive metal layer formed on the surface thereof is preferable because the conductive connection can be made without damaging the transparent substrate or the like due to the excellent elasticity of the resin fine particle.
  • a liquid crystal display device having the cured product of the sealant for a liquid crystal display device of the present invention or the cured product of the vertically conductive material of the present invention is also one aspect of the present invention.
  • the sealant for a liquid crystal display element of the present invention can be suitably used for manufacturing a liquid crystal display element by a liquid crystal dropping method.
  • a liquid crystal dropping method is preferably used, and specific examples thereof include a method having the following steps. To be First, a step of forming a frame-shaped seal pattern by applying the liquid crystal display element sealant of the present invention to one of two transparent substrates having electrodes such as ITO thin films by screen printing, dispenser application, or the like. Then, a step of applying minute droplets of liquid crystal to the entire surface of the frame of the seal pattern and applying the other transparent substrate under vacuum is performed.
  • a liquid crystal display element can be obtained by a method of performing a step of irradiating the seal pattern portion with light such as ultraviolet rays to temporarily cure the sealing agent, and a step of heating the temporarily cured sealing agent to perform a final curing. it can.
  • the present invention it is possible to provide a curable resin composition which is excellent in both the adhesiveness to an alignment film and the moisture permeation preventive property. Further, according to the present invention, it is possible to provide a sealant for liquid crystal display elements, a vertical conduction material, and a liquid crystal display element, which are obtained by using the curable resin composition.
  • curable resin A 232 parts by weight of 2-hydroxyethyl acrylate, 336 parts by weight of 4-methylcyclohexane-1,2-dicarboxylic acid anhydride, and 0.1 part by weight of hydroquinone as a polymerization inhibitor were added to a reaction flask, and a mantle heater was used. And stirred at 90° C. for 5 hours. Next, 340 parts by weight of bisphenol A diglycidyl ether was added to the obtained reaction product, 0.5 parts by weight of triphenylphosphine was further added, and the mixture was stirred at 110° C. for 5 hours to obtain a curable resin A.
  • the curable resin A shows that in the above formula (1-2), R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is the above formula (3-1). It was confirmed that the compound has a structure (R 4 is a methyl group), n is 0, and Ep is a structure derived from bisphenol A diglycidyl ether.
  • curable resin B was obtained in the same manner as in “(Preparation of curable resin A)” above except that 232 parts by weight of 2-hydroxyethyl acrylate was changed to 256 parts by weight of 2-hydroxypropyl acrylate.
  • the curable resin B shows that in the above formula (1-2), R 1 is a hydrogen atom, R 2 is a methylethylene group, and R 3 is the above formula (3-1). It was confirmed that the compound has a structure represented (R 4 is a methyl group), n is 0, and Ep is a structure derived from bisphenol A diglycidyl ether.
  • curable resin C was obtained in the same manner as in “(Preparation of curable resin A)” above except that 232 parts by weight of 2-hydroxyethyl acrylate was changed to 256 parts by weight of 2-hydroxyethyl methacrylate.
  • the curable resin C shows that in the above formula (1-2), R 1 is a methyl group, R 2 is an ethylene group, and R 3 is a group represented by the above formula (3-1). It was confirmed that the compound has a structure (R 4 is a methyl group), n is 0, and Ep is a structure derived from bisphenol A diglycidyl ether.
  • curable resin D was obtained in the same manner as in "(Preparation of curable resin A)" above except that 340 parts by weight of bisphenol A diglycidyl ether was changed to 268 parts by weight of dicyclopentadiene diglycidyl ether.
  • the curable resin D shows that in the above formula (1-2), R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is the above formula (3-1). It was confirmed that the compound had a structure (R 4 is a methyl group), n was 0, and Ep was a structure derived from dicyclopentadiene diglycidyl ether.
  • the curable resin E shows that in the above formula (1-2), R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is the above formula (3-1). (R 4 is a methyl group), X is a ring-opening structure of ⁇ -caprolactone, n is 2.0 (average value), and Ep is a compound derived from bisphenol A diglycidyl ether. ..
  • Curable resin G (Production of curable resin G) Curable resin in the same manner as in "(Preparation of Curable Resin A)" above except that 336 parts by weight of 4-methylcyclohexane-1,2-dicarboxylic acid anhydride was changed to 536 parts by weight of tetrapropenyl succinic anhydride. Got G.
  • the curable resin G shows that in the formula (1-2), R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is a group represented by the formula (3-3). It was confirmed that the compound has a structure (R 6 is a hydrogen atom, R 7 is a dodecyl group), n is 0, and Ep is a structure derived from bisphenol A diglycidyl ether.
  • the curable resin H indicates that the compound represented by the above formula (1-1), the compound represented by the above formula (1-2), and bisphenol A diglycidyl ether. It was confirmed that the content ratio of the compound represented by the formula (1-1) was 57% by weight and the content ratio of the compound represented by the formula (1-2) was 23% by weight. Further, in the compound represented by the formula (1-1) contained in the curable resin H, R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is a structure represented by the formula (3-1). (R 4 is a methyl group), n was 0, and Ep was confirmed to be a structure derived from bisphenol A diglycidyl ether.
  • R 1 is a hydrogen atom
  • R 2 is an ethylene group
  • R 3 is a structure represented by the above formula (3-1).
  • (R 4 is a methyl group)
  • n was 0, and Ep was confirmed to be a structure derived from bisphenol A diglycidyl ether.
  • the compound represented by the above formula (1-1) contained in the curable resin I has a structure in which R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is a structure represented by the above formula (3-3). It was confirmed that (R 6 is a hydrogen atom, R 7 is a dodecyl group), n is 0, and Ep is a structure derived from bisphenol A diglycidyl ether. Furthermore, in the compound represented by the above formula (1-2) contained in the curable resin I, R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is a structure represented by the above formula (3-3). It was confirmed that (R 6 is a hydrogen atom, R 7 is a dodecyl group), n is 0, and Ep is a structure derived from bisphenol A diglycidyl ether.
  • the curable resin J shows that the compound represented by the above formula (1-1), the compound represented by the above formula (1-2), and bisphenol A diglycidyl ether. It was confirmed that the content of the compound represented by the formula (1-1) was 57% by weight and the content of the compound represented by the formula (1-2) was 21% by weight.
  • R 1 is a hydrogen atom
  • R 2 is an ethylene group
  • R 3 is a structure represented by the above formula (3-1).
  • curable resin K was prepared in the same manner as in “(Preparation of curable resin H)” above except that 168 parts by weight of 4-methylcyclohexane-1,2-dicarboxylic acid anhydride was changed to 148 parts by weight of phthalic anhydride. Obtained. According to 1 H-NMR and 13 C-NMR, the curable resin K shows that in the above formula (1-1), a portion corresponding to R 1 is a hydrogen atom, a portion corresponding to R 2 is an ethylene group, and R 3 corresponds to R 3 .
  • the portion containing 1,2-phenylene group, the value corresponding to n was 0, and the portion corresponding to Ep contained 55% by weight of a compound derived from bisphenol A diglycidyl ether.
  • a portion corresponding to R 1 is a hydrogen atom
  • a portion corresponding to R 2 is an ethylene group
  • a portion corresponding to R 3 is a 1,2-phenylene group.
  • N was 0, and the portion corresponding to Ep contained 24% by weight of a compound having a structure derived from bisphenol A diglycidyl ether.
  • the curable resin K contained 21% by weight of bisphenol A diglycidyl ether.
  • curable resin L was prepared in the same manner as in “(Preparation of curable resin A)” above, except that 336 parts by weight of 4-methylcyclohexane-1,2-dicarboxylic acid anhydride was changed to 296 parts by weight of phthalic anhydride. Obtained. According to 1 H-NMR and 13 C-NMR, the curable resin L shows that in the above formula (1-2), the portion corresponding to R 1 is a hydrogen atom, the portion corresponding to R 2 is an ethylene group, and R 3 is equivalent to R 3 . It was confirmed that the portion corresponding to 1,2-phenylene group, the value corresponding to n was 0, and the portion corresponding to Ep had a structure derived from bisphenol A diglycidyl ether.
  • Examples 1 to 12, Comparative Examples 1 to 4 According to the compounding ratios shown in Tables 1 and 2, each material was stirred by a planetary stirring device and then uniformly mixed by a three-roll ceramic roll to cure Examples 1 to 12 and Comparative Examples 1 to 4. A resin composition was obtained.
  • a planetary stirrer As a planetary stirrer, Awatori Rentaro (manufactured by Shinky Co.) was used.
  • a glass substrate with an ITO thin film was applied with an imide resin by spin coating, prebaked at 80° C., and then baked at 230° C. to prepare a substrate with an alignment film.
  • SE 7492 manufactured by Nissan Kagaku
  • 1 part by weight of a silica spacer was uniformly dispersed by a planetary stirring device.
  • SI-H055 manufactured by Sekisui Chemical Co., Ltd.
  • the curable resin composition in which the silica spacer was dispersed was minutely dropped on the alignment film of the substrate with the alignment film.
  • the curable resin composition was dropped onto the substrate with an alignment film, another substrate with an alignment film was laminated in a cross shape with the curable resin composition interposed therebetween, and after irradiating with ultraviolet rays of 3000 mJ/cm 2 with a metal halide lamp, An adhesive test piece was obtained by heating at 120° C. for 60 minutes. The strength when the panel peeled off was measured when the edge of the substrate in the produced adhesive test piece was pushed at a speed of 5 mm/min using a metal cylinder having a radius of 5 mm.
  • a glass substrate with an ITO thin film was applied with an imide resin by spin coating, prebaked at 80° C., and then baked at 230° C. to prepare a substrate with an alignment film.
  • SE 7492 manufactured by Nissan Kagaku
  • 1 part by weight of a silica spacer was uniformly dispersed by a planetary stirrer, and defoaming treatment was performed to obtain a curable resin composition. After removing the bubbles, the syringe for filling was filled, and the defoaming treatment was performed again.
  • SI-H055 (manufactured by Sekisui Chemical Co., Ltd.) was used as the silica spacer
  • PSY-10E (manufactured by Musashi Engineering Co., Ltd.) was used as the syringe for dispensing.
  • the curable resin composition was applied onto the alignment film of the substrate with the alignment film so as to draw a frame.
  • SHOTMASTER 300 (manufactured by Musashi Engineering Co., Ltd.) was used.
  • fine droplets of TN liquid crystal were dropped and applied in the frame of the curable resin composition by a liquid crystal dropping device.
  • Another substrate with an alignment film is overlaid on the substrate with an alignment film onto which TN liquid crystal has been dropped and applied via a curable resin composition, and the two substrates are bonded together under a reduced pressure of 5 Pa with a vacuum bonding device to form a cell.
  • Got JC-5001LA manufactured by Chisso Corporation
  • the curable resin composition was cured by heating at 120° C. for 60 minutes to prepare a liquid crystal display element.
  • the obtained liquid crystal display element was stored under an environment of a temperature of 80° C.
  • the present invention it is possible to provide a curable resin composition which is excellent in both the adhesiveness to an alignment film and the moisture permeation preventive property. Further, according to the present invention, it is possible to provide a sealant for liquid crystal display elements, a vertical conduction material, and a liquid crystal display element, which are obtained by using the curable resin composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Sealing Material Composition (AREA)
  • Epoxy Resins (AREA)
  • Liquid Crystal (AREA)
  • Conductive Materials (AREA)

Abstract

The objective of the present invention is to provide a curable resin composition having both excellent properties of adhering to an alignment film and moisture permeation preventive properties. In addition, the objective of the present invention is to provide a sealing agent for a liquid crystal display element, a vertical conductive material, and a liquid crystal display element, which are obtained by using the curable resin composition. The curable resin composition according to the present invention contains a curable resin and a polymerization initiator and/or a thermosetting agent, wherein the curable resin contains a compound represented by formula (1-1) and/or a compound represented by formula (1-2). In formulae (1-1) and (1-2), R represents a hydrogen atom or a methyl group, and R represents a group represented by formula (2-1), (2-2), or (2-3), R represents a structure derived from an optionally substituted aliphatic dicarboxylic acid or an anhydride thereof, X represents a ring-opened structure of a cyclic lactone, n is 0-5, and Ep represents a structure derived from a bifunctional or higher functional epoxy compound. In formulae (2-1) to (2-3), * represents a binding position; in formula (2-2), a is an integer of 1-8; and in formula (2-3), b is an integer of 1-8, c is an integer of 1-3, and d is an integer of 1-8.

Description

硬化性樹脂組成物、液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子Curable resin composition, sealant for liquid crystal display device, vertical conduction material, and liquid crystal display device
本発明は、配向膜に対する接着性と透湿防止性との両方に優れる硬化性樹脂組成物に関する。また、本発明は、該硬化性樹脂組成物を用いてなる液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子に関する。 TECHNICAL FIELD The present invention relates to a curable resin composition which is excellent in both adhesiveness to an alignment film and moisture permeation preventive property. The present invention also relates to a liquid crystal display element sealant, a vertical conduction material, and a liquid crystal display element, which are obtained by using the curable resin composition.
近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような、硬化性樹脂組成物をシール剤として用いた滴下工法と呼ばれる方式が用いられている。
滴下工法では、まず、2枚の電極付き基板の一方にシール剤を塗布し、枠状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を基板のシール枠内に滴下し、真空下で他方の基板を重ね合わせ、光照射や加熱によりシール剤を硬化させ、液晶表示素子を作製する。現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method for producing a liquid crystal display element such as a liquid crystal display cell, a curable resin composition as disclosed in Patent Document 1 and Patent Document 2 is used from the viewpoints of shortening tact time and optimizing the amount of liquid crystal used. A method called a dripping method in which is used as a sealant is used.
In the dropping method, first, a sealant is applied to one of the two substrates with electrodes to form a frame-shaped seal pattern. Then, a liquid crystal microdroplet is dropped in the sealing frame of the substrate while the sealant is uncured, the other substrate is superposed under vacuum, and the sealant is cured by light irradiation or heating to produce a liquid crystal display element. To do. At present, this dropping method is the mainstream method for manufacturing liquid crystal display elements.
ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。小型化の手法として、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。このような狭額縁設計に伴い、シール剤の塗布位置がポリイミド等の配向膜上となる場合が多くなっている。 By the way, downsizing of the device is the most demanded issue in the present age where mobile devices with various liquid crystal panels such as mobile phones and portable game machines are prevalent. As a method of miniaturization, there is a narrow frame of the liquid crystal display part, and for example, the position of the seal part is arranged under the black matrix (hereinafter, also referred to as a narrow frame design). With such a narrow frame design, the application position of the sealant is often on the alignment film such as polyimide.
特開2001-133794号公報JP 2001-133794 A 国際公開第02/092718号International Publication No. 02/092718
タブレット端末や携帯端末の普及に伴い、液晶表示素子には高温高湿環境下での駆動等における耐湿信頼性がますます要求されており、シール剤には外部からの水の浸入を防止する性能が一層求められている。液晶表示素子の耐湿信頼性を向上させるためには、シール剤と基板等との界面からの水の浸入を防ぐためにシール剤の基板等に対する接着性を向上させ、かつ、シール剤の透湿防止性を向上させる必要がある。シール剤の透湿防止性を向上させる方法としては、タルク等のフィラーを配合する方法が考えられるが、厳しい耐湿信頼性試験を行った場合には、液晶表示素子に表示むらが発生することがあった。特に、シール剤の塗布位置がポリイミド等の配向膜上となる場合において、配向膜に対する接着性と透湿防止性とを両立させることが困難であった。 With the spread of tablet terminals and mobile terminals, liquid crystal display elements are increasingly required to have moisture resistance reliability when driven in high temperature and high humidity environments, and the sealant has the ability to prevent water from entering from the outside. Is more sought after. In order to improve the moisture resistance reliability of the liquid crystal display element, the adhesion of the sealant to the substrate etc. is improved to prevent the infiltration of water from the interface between the sealant and the substrate etc., and the moisture permeation of the sealant is prevented. Needs to be improved. As a method of improving the moisture permeation preventive property of the sealant, a method of mixing a filler such as talc is considered, but when a strict humidity resistance reliability test is performed, display unevenness may occur in the liquid crystal display element. there were. In particular, when the application position of the sealant is on the alignment film such as polyimide, it is difficult to achieve both the adhesiveness to the alignment film and the moisture permeation preventive property.
本発明は、配向膜に対する接着性と透湿防止性との両方に優れる硬化性樹脂組成物を提供することを目的とする。また、本発明は、該硬化性樹脂組成物を用いてなる液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子を提供することを目的とする。 An object of the present invention is to provide a curable resin composition which is excellent in both adhesiveness to an alignment film and moisture permeation preventive property. Another object of the present invention is to provide a liquid crystal display element sealant, a vertical conduction material, and a liquid crystal display element, which are obtained by using the curable resin composition.
本発明は、硬化性樹脂と重合開始剤及び/又は熱硬化剤とを含有し、上記硬化性樹脂は、下記式(1-1)で表される化合物及び/又は下記式(1-2)で表される化合物を含有する硬化性樹脂組成物である。 The present invention contains a curable resin and a polymerization initiator and/or a thermosetting agent, wherein the curable resin is a compound represented by the following formula (1-1) and/or a formula (1-2) below. It is a curable resin composition containing the compound represented by.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
式(1-1)及び(1-2)中、Rは、水素原子又はメチル基を表し、Rは、下記式(2-1)、(2-2)、又は、(2-3)で表される基を表し、Rは、置換されていてもよい脂肪族ジカルボン酸又はその無水物由来の構造を表し、Xは、環状ラクトンの開環構造を表し、nは、0以上5以下であり、Epは、2官能以上のエポキシ化合物由来の構造を表す。 In the formulas (1-1) and (1-2), R 1 represents a hydrogen atom or a methyl group, and R 2 represents the following formulas (2-1), (2-2), or (2-3 ), R 3 represents a structure derived from an optionally substituted aliphatic dicarboxylic acid or an anhydride thereof, X represents a ring-opening structure of a cyclic lactone, and n is 0 or more. It is 5 or less, and Ep represents a structure derived from a bifunctional or higher functional epoxy compound.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(2-1)~(2-3)中、*は、結合位置を表し、式(2-2)中、aは、1以上8以下の整数であり、式(2-3)中、bは、1以上8以下の整数であり、cは、1以上3以下の整数であり、dは、1以上8以下の整数である。
以下に本発明を詳述する。
In formulas (2-1) to (2-3), * represents a bonding position, and in formula (2-2), a is an integer of 1 or more and 8 or less, and in formula (2-3), b is an integer of 1 or more and 8 or less, c is an integer of 1 or more and 3 or less, and d is an integer of 1 or more and 8 or less.
The present invention will be described in detail below.
本発明者は、硬化性樹脂として特定の構造を有する化合物を用いることにより、配向膜に対する接着性と透湿防止性との両方に優れる硬化性樹脂組成物が得られることを見出し、本発明を完成させるに至った。 The present inventors have found that by using a compound having a specific structure as the curable resin, it is possible to obtain a curable resin composition that is excellent in both the adhesiveness to the alignment film and the moisture permeation preventive property. It came to completion.
本発明の硬化性樹脂組成物は、硬化性樹脂を含有する。
上記硬化性樹脂は、上記式(1-1)で表される化合物及び/又は上記式(1-2)で表される化合物を含有する。上記式(1-1)で表される化合物及び/又は上記式(1-2)で表される化合物を含有することにより、本発明の硬化性樹脂組成物は、配向膜に対する接着性と透湿防止性との両方に優れる。また、液晶表示素子用シール剤として用いた場合の低液晶汚染性の観点から、上記式(1-1)で表される化合物及び上記式(1-2)で表される化合物はともに優れた低液晶汚染性を示す。上記硬化性樹脂は、上記式(1-1)で表される化合物を含有することが好ましい。
The curable resin composition of the present invention contains a curable resin.
The curable resin contains the compound represented by the formula (1-1) and/or the compound represented by the formula (1-2). By containing the compound represented by the above formula (1-1) and/or the compound represented by the above formula (1-2), the curable resin composition of the present invention has adhesiveness and transparency to an alignment film. Excellent both in moisture resistance. Further, both the compound represented by the above formula (1-1) and the compound represented by the above formula (1-2) are excellent from the viewpoint of low liquid crystal contamination when used as a sealant for a liquid crystal display element. Shows low liquid crystal contamination. The curable resin preferably contains the compound represented by the formula (1-1).
上記式(1-1)及び(1-2)中、Rは、上記式(2-1)、(2-2)、又は、(2-3)で表される基を表す。なかでも、得られる硬化性樹脂組成物の接着性や硬化物の柔軟性の観点から、上記Rは、上記式(2-2)で表される基であることが好ましく、上記式(2-2)におけるaが2である基(エチレン基)であることがより好ましい。
なお、上記式(2-1)及び式(2-3)において、*で示した結合位置のうち、メチレン基側の結合位置が上記式(1-1)及び(1-2)における(メタ)アクリロイルオキシ基との結合位置となる。
なお、本明細書において、上記「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを意味する。
In the formulas (1-1) and (1-2), R 2 represents a group represented by the formula (2-1), (2-2) or (2-3). Among them, R 2 is preferably a group represented by the above formula (2-2) from the viewpoint of the adhesiveness of the obtained curable resin composition and the flexibility of the cured product, and the above formula (2 More preferably, a in 2) is 2 (ethylene group).
In the above formulas (2-1) and (2-3), among the bond positions shown by *, the bond position on the methylene group side is (meta) in the above formulas (1-1) and (1-2). ) It becomes the bonding position with the acryloyloxy group.
In addition, in this specification, the above-mentioned "(meth)acryloyl" means acryloyl or methacryloyl.
上記式(1-1)及び(1-2)中、Rは、置換されていてもよい脂肪族ジカルボン酸又はその無水物由来の構造を表す。上記Rが、置換されていてもよい脂肪族ジカルボン酸又はその無水物由来の構造であることにより、得られる硬化性樹脂組成物が配向膜に対する接着性に優れるものとなる。 In the above formulas (1-1) and (1-2), R 3 represents a structure derived from an optionally substituted aliphatic dicarboxylic acid or an anhydride thereof. When R 3 has a structure derived from an optionally substituted aliphatic dicarboxylic acid or its anhydride, the resulting curable resin composition has excellent adhesiveness to the alignment film.
上記置換されていてもよい脂肪族ジカルボン酸又はその無水物が置換されている場合の置換基としては、例えば、不飽和結合や分岐構造を有していてもよい炭素数1~60の炭素鎖、環状構造を含む炭化水素骨格等が挙げられる。なかでも、透湿防止性を高める観点から、環状構造を含む炭化水素骨格であることが好ましい。 When the aliphatic dicarboxylic acid which may be substituted or the anhydride thereof is substituted, examples of the substituent include a carbon chain having 1 to 60 carbon atoms which may have an unsaturated bond or a branched structure. , A hydrocarbon skeleton including a cyclic structure, and the like. Among them, a hydrocarbon skeleton containing a cyclic structure is preferable from the viewpoint of enhancing the moisture permeation preventive property.
上記置換されていてもよい脂肪族ジカルボン酸又はその無水物としては、具体的には例えば、1,2-シクロヘキサンジカルボン酸無水物、3-メチルシクロヘキサン-1,2-ジカルボン酸無水物、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物、4-シクロヘキセン-1,2-ジカルボン酸、3-メチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、4-メチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、テトラプロペニルコハク酸無水物、デシルコハク酸無水物、テトラデシルコハク酸無水物、テトラデセニルコハク酸無水物、ヘキサデシルコハク酸無水物、イソオクタデセニルコハク酸無水物、ブチルコハク酸無水物、アリルコハク酸無水物、4-ヘキセン-1,2-ジカルボン酸無水物、2-ドデセン-1-イルコハク酸無水物、2,2-ジメチルコハク酸無水物、2-ヘキセン-1-イルコハク酸無水物、4-メチル-4-ペンテン-1,2-ジカルボン酸無水物、2-オクテニルコハク酸無水物、4,9-デカジエン-1,2-ジカルボン酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸無水物、2-(2-カルボキシエチル)-3-メチルマレイン酸無水物、7-オキサビシクロ[2.2.1]ヘプタ-5-エン-2,3-ジカルボン酸無水物、及び、これらのジカルボン酸等が挙げられる。 Examples of the above-mentioned optionally substituted aliphatic dicarboxylic acid or anhydride thereof include 1,2-cyclohexanedicarboxylic acid anhydride, 3-methylcyclohexane-1,2-dicarboxylic acid anhydride, and 4-methylcyclohexane-1,2-dicarboxylic acid anhydride. Methylcyclohexane-1,2-dicarboxylic acid anhydride, 4-cyclohexene-1,2-dicarboxylic acid, 3-methyl-4-cyclohexene-1,2-dicarboxylic acid anhydride, 3,4,5,6-tetrahydrophthal Acid anhydride, 4-methyl-4-cyclohexene-1,2-dicarboxylic acid anhydride, tetrapropenyl succinic anhydride, decyl succinic anhydride, tetradecyl succinic anhydride, tetradecenyl succinic anhydride, hexa Decyl succinic anhydride, isooctadecenyl succinic anhydride, butyl succinic anhydride, allyl succinic anhydride, 4-hexene-1,2-dicarboxylic acid anhydride, 2-dodecen-1-yl succinic anhydride, 2,2-Dimethylsuccinic anhydride, 2-hexen-1-ylsuccinic anhydride, 4-methyl-4-pentene-1,2-dicarboxylic anhydride, 2-octenylsuccinic anhydride, 4,9-decadiene -1,2-dicarboxylic acid anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride, bicyclo[2.2.2]oct-5-ene-2,3-dicarboxylic acid anhydride, 2-(2 -Carboxyethyl)-3-methylmaleic anhydride, 7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid anhydride, and these dicarboxylic acids.
配向膜に対する接着性をより向上させる観点から、上記Rは、下記式(3-1)、(3-2)、又は、(3-3)で表される構造であることが好ましい。 From the viewpoint of further improving the adhesion to the alignment film, R 3 preferably has a structure represented by the following formula (3-1), (3-2) or (3-3).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(3-1)~(3-3)中、*は、結合位置を表し、式(3-1)中、Rは、水素原子、又は、炭素数1以上10以下のアルキル基を表し、式(3-2)中、Rは、水素原子、又は、炭素数1以上10以下のアルキル基を表し、式(3-3)中、R及びRは、それぞれ独立して、水素原子、又は、炭素数1以上60以下の有機基を表すか、或いは、R、Rが結合している構造を表す。 In formulas (3-1) to (3-3), * represents a bonding position, and in formula (3-1), R 4 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. In the formula (3-2), R 5 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and in the formula (3-3), R 6 and R 7 are each independently It represents a hydrogen atom or an organic group having 1 to 60 carbon atoms, or represents a structure in which R 6 and R 7 are bonded.
上記式(3-1)で表される構造としては、例えば、1,2-シクロヘキサンジカルボン酸無水物、3-メチルシクロヘキサン-1,2-ジカルボン酸無水物等に由来する構造が挙げられる。
上記式(3-2)で表される構造としては、例えば、4-シクロヘキセン-1,2-ジカルボン酸、3-メチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、4-メチル-4-シクロヘキセン-1,2-ジカルボン酸無水物等に由来する構造が挙げられる。
上記式(3-3)で表される構造としては、R、Rが結合していない構造であってもよいし、R、Rが結合している構造であってもよいが、透湿防止性を高める観点から、R、Rが結合している構造が好ましい。
上記R、Rが結合していない構造としては、例えば、テトラプロペニルコハク酸無水物、デシルコハク酸無水物、テトラデシルコハク酸無水物、テトラデセニルコハク酸無水物、ヘキサデシルコハク酸無水物、イソオクタデセニルコハク酸無水物、ブチルコハク酸無水物、アリルコハク酸無水物、4-ヘキセン-1,2-ジカルボン酸無水物、2-ドデセン-1-イルコハク酸無水物、2,2-ジメチルコハク酸無水物、2-ヘキセン-1-イルコハク酸無水物、4-メチル-4-ペンテン-1,2-ジカルボン酸無水物、2-オクテニルコハク酸無水物、4,9-デカジエン-1,2-ジカルボン酸無水物等に由来する構造が挙げられる。
上記R、Rが結合している構造としては、例えば、5-ノルボルネン-2,3-ジカルボン酸無水物、ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸無水物、2-(2-カルボキシエチル)-3-メチルマレイン酸無水物、7-オキサビシクロ[2.2.1]ヘプタ-5-エン-2,3-ジカルボン酸無水物等に由来する構造が挙げられる。
Examples of the structure represented by the above formula (3-1) include structures derived from 1,2-cyclohexanedicarboxylic acid anhydride, 3-methylcyclohexane-1,2-dicarboxylic acid anhydride and the like.
Examples of the structure represented by the above formula (3-2) include 4-cyclohexene-1,2-dicarboxylic acid, 3-methyl-4-cyclohexene-1,2-dicarboxylic acid anhydride, 3,4,5 , 6-tetrahydrophthalic anhydride, 4-methyl-4-cyclohexene-1,2-dicarboxylic acid anhydride and the like.
The structure represented by the above formula (3-3) may be a structure in which R 6 and R 7 are not bonded, or a structure in which R 6 and R 7 are bonded. From the viewpoint of enhancing the moisture permeation preventive property, a structure in which R 6 and R 7 are bonded is preferable.
Examples of the structure in which R 6 and R 7 are not bonded include, for example, tetrapropenyl succinic anhydride, decyl succinic anhydride, tetradecyl succinic anhydride, tetradecenyl succinic anhydride, and hexadecyl succinic anhydride. Compounds, isooctadecenyl succinic anhydride, butyl succinic anhydride, allyl succinic anhydride, 4-hexene-1,2-dicarboxylic acid anhydride, 2-dodecen-1-ylsuccinic anhydride, 2,2- Dimethylsuccinic anhydride, 2-hexen-1-ylsuccinic anhydride, 4-methyl-4-pentene-1,2-dicarboxylic acid anhydride, 2-octenylsuccinic anhydride, 4,9-decadiene-1,2 -A structure derived from a dicarboxylic acid anhydride or the like can be mentioned.
Examples of the structure in which R 6 and R 7 are bonded include 5-norbornene-2,3-dicarboxylic acid anhydride, bicyclo[2.2.2]oct-5-ene-2,3-dicarboxylic acid Structures derived from anhydride, 2-(2-carboxyethyl)-3-methylmaleic anhydride, 7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride, etc. Is mentioned.
上記式(1-1)及び(1-2)中、Xは、環状ラクトンの開環構造を表す。
上記環状ラクトンとしては、例えば、γ-ウンデカラクトン、ε-カプロラクトン、γ-デカラクトン、σ-ドデカラクトン、γ-ノナノラクトン、γ-ヘプタノラクトン、γ-バレロラクトン、σ-バレロラクトン、β-ブチロラクトン、γ-ブチロラクトン、β-プロピオラクトン、σ-ヘキサノラクトン、7-ブチル-2-オキセパノン等が挙げられる。なかでも、開環したときに主骨格の直鎖部分の炭素数が5以上7以下となるものが好ましい。
なお、上記式(1-1)及び(1-2)中、nが0である場合、即ち、Xで表される環状ラクトンの開環構造がない場合でも、得られる硬化性樹脂組成物が配向膜に対する優れた接着性及び硬化物の透湿防止性を有するものとなる。上記nが1以上5以下である場合は、得られる硬化性樹脂組成物が配向膜に対する接着性により優れるものとなる。また、上記式(1-1)で表される化合物及び上記式(1-2)で表される化合物は、それぞれXの繰り返し数の異なる化合物の混合物であってもよく、その場合の上記nは、平均値である。
In the above formulas (1-1) and (1-2), X represents a ring-opening structure of a cyclic lactone.
Examples of the cyclic lactone include γ-undecalactone, ε-caprolactone, γ-decalactone, σ-dodecalactone, γ-nonanolactone, γ-heptanolactone, γ-valerolactone, σ-valerolactone, β-butyrolactone. , Γ-butyrolactone, β-propiolactone, σ-hexanolactone, 7-butyl-2-oxepanone and the like. Above all, it is preferable that the number of carbon atoms in the straight chain portion of the main skeleton is 5 or more and 7 or less when the ring is opened.
In the formulas (1-1) and (1-2), even when n is 0, that is, even when there is no ring-opening structure of the cyclic lactone represented by X, the obtained curable resin composition has It has excellent adhesiveness to the alignment film and moisture-proof property of the cured product. When n is 1 or more and 5 or less, the resulting curable resin composition is more excellent in adhesiveness to the alignment film. In addition, the compound represented by the above formula (1-1) and the compound represented by the above formula (1-2) may be a mixture of compounds each having a different number of repetitions of X. Is the average value.
上記式(1-1)及び(1-2)中、Epは2官能以上のエポキシ化合物由来の構造を表す。
上記Epの由来となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールE型エポキシ化合物、ビスフェノールS型エポキシ化合物、レゾルシノール型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。
なかでも、上記Epは、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、又は、ビスフェノールE型エポキシ化合物由来の構造であることが好ましい。
In the above formulas (1-1) and (1-2), Ep represents a structure derived from a bifunctional or higher functional epoxy compound.
Examples of the epoxy compound from which Ep is derived include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol E type epoxy compound, bisphenol S type epoxy compound, resorcinol type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene. Type epoxy compounds, rubber-modified epoxy compounds, glycidyl ester compounds and the like.
Above all, the Ep preferably has a structure derived from a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, or a bisphenol E type epoxy compound.
上記式(1-1)で表される化合物を製造する方法としては、例えば、以下の方法等が挙げられる。即ち、ヒドロキシアルキル(メタ)アクリレートと、上記置換されていてもよい脂肪族ジカルボン酸又はその無水物とを、重合禁止剤の存在下で加熱撹拌すること等により反応させる工程と、得られた反応物に上記2官能以上のエポキシ化合物を加えて加熱撹拌すること等により一部のエポキシ基を反応させる工程とを有する方法等が挙げられる。
また、上記式(1-2)で表される化合物を製造する方法としては、例えば、以下の方法等が挙げられる。即ち、ヒドロキシアルキル(メタ)アクリレートと、上記置換されていてもよい脂肪族ジカルボン酸又はその無水物とを、重合禁止剤の存在下で加熱撹拌すること等により反応させる工程と、得られた反応物に上記2官能以上のエポキシ化合物を加えて加熱撹拌すること等により全部のエポキシ基を反応させる工程とを有する方法等が挙げられる。
なお、本明細書において、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。
Examples of the method for producing the compound represented by the above formula (1-1) include the following methods. That is, a step of reacting the hydroxyalkyl (meth)acrylate with the optionally substituted aliphatic dicarboxylic acid or its anhydride by heating and stirring in the presence of a polymerization inhibitor, and the resulting reaction And the like, and a step of reacting a part of the epoxy groups by adding the above-mentioned bifunctional or higher functional epoxy compound and heating and stirring.
Further, examples of the method for producing the compound represented by the above formula (1-2) include the following methods. That is, a step of reacting the hydroxyalkyl (meth)acrylate with the optionally substituted aliphatic dicarboxylic acid or its anhydride by heating and stirring in the presence of a polymerization inhibitor, and the resulting reaction And a method of reacting all epoxy groups by adding the above-mentioned bifunctional or higher functional epoxy compound to the product and stirring with heating.
In addition, in this specification, the above-mentioned "(meth)acrylate" means an acrylate or a methacrylate.
上記ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等が挙げられる。
上記ヒドロキシアルキル(メタ)アクリレートは、上記置換されていてもよい脂肪族ジカルボン酸又はその無水物と反応させる前に上記環状ラクトンと反応させていてもよい。
Examples of the hydroxyalkyl (meth)acrylate include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate and 2-hydroxy-3-phenoxypropyl (meth). An acrylate etc. are mentioned.
The hydroxyalkyl (meth)acrylate may be reacted with the cyclic lactone before being reacted with the optionally substituted aliphatic dicarboxylic acid or its anhydride.
上記重合禁止剤としては、例えば、ハイドロキノン、p-メトキシフェノール等が挙げられる。 Examples of the polymerization inhibitor include hydroquinone and p-methoxyphenol.
上記硬化性樹脂100重量部中における式(1-1)で表される化合物及び/又は式(1-2)で表される化合物の含有量の好ましい下限は5重量部、好ましい上限は90重量部である。上記式(1-1)で表される化合物及び/又は式(1-2)で表される化合物の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が配向膜に対する接着性と透湿防止性とを両立する効果により優れるものとなる。上記式(1-1)で表される化合物及び/又は式(1-2)で表される化合物の含有量のより好ましい下限は10重量部、より好ましい上限は80重量部である。
なお、上記「式(1-1)で表される化合物及び/又は式(1-2)で表される化合物の含有量」は、これらの化合物のうち一方のみを含有する場合は、その含有する一方の化合物の含有量を意味し、両方を含有する場合は、その合計の含有量を意味する。
The preferable lower limit of the content of the compound represented by the formula (1-1) and/or the compound represented by the formula (1-2) in 100 parts by weight of the curable resin is 5 parts by weight, and the preferable upper limit is 90 parts by weight. It is a department. When the content of the compound represented by the above formula (1-1) and/or the compound represented by the above formula (1-2) is within this range, the resulting curable resin composition has adhesiveness to an alignment film. It is more excellent due to the effect of achieving both the moisture permeation preventive property. The more preferable lower limit of the content of the compound represented by the formula (1-1) and/or the compound represented by the formula (1-2) is 10 parts by weight, and the more preferable upper limit thereof is 80 parts by weight.
The above “content of the compound represented by the formula (1-1) and/or the compound represented by the formula (1-2)” means that when only one of these compounds is contained, its content Means the content of one of the compounds, and when both are contained, it means the total content.
本発明の硬化性樹脂組成物は、本発明の目的を阻害しない範囲において、上記硬化性樹脂として、更に、上記式(1-1)で表される化合物及び上記式(1-2)で表される化合物以外のその他の硬化性樹脂を含有してもよい。
上記その他の硬化性樹脂としては、例えば、上記式(1-1)で表される化合物以外のその他のエポキシ化合物、上記式(1-2)で表される化合物以外のその他の(メタ)アクリル化合物等が挙げられる。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」とは、(メタ)アクリロイル基を有する化合物を意味する。
The curable resin composition of the present invention further comprises the compound represented by the formula (1-1) and the formula (1-2) as the curable resin as long as the object of the present invention is not impaired. You may contain other curable resins other than the compound.
Examples of the other curable resin include, for example, other epoxy compounds other than the compound represented by the formula (1-1) and other (meth)acryl other than the compound represented by the formula (1-2). A compound etc. are mentioned.
In the present specification, the “(meth)acryl” means acryl or methacryl, and the “(meth)acryl compound” means a compound having a (meth)acryloyl group.
上記その他のエポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、2,2’-ジアリルビスフェノールA型エポキシ化合物、水添ビスフェノール型エポキシ化合物、プロピレンオキシド付加ビスフェノールA型エポキシ化合物、レゾルシノール型エポキシ化合物、ビフェニル型エポキシ化合物、スルフィド型エポキシ化合物、ジフェニルエーテル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、フェノールノボラック型エポキシ化合物、オルトクレゾールノボラック型エポキシ化合物、ジシクロペンタジエンノボラック型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ナフタレンフェノールノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物、アルキルポリオール型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。 Examples of the other epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, 2,2′-diallyl bisphenol A type epoxy compounds, hydrogenated bisphenol type epoxy compounds, propylene oxide addition Bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol novolac type epoxy compound, orthocresol novolak type epoxy compound , Dicyclopentadiene novolac type epoxy compounds, biphenyl novolac type epoxy compounds, naphthalene phenol novolac type epoxy compounds, glycidyl amine type epoxy compounds, alkyl polyol type epoxy compounds, rubber modified epoxy compounds, glycidyl ester compounds and the like.
上記ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、jER828EL、jER1004(いずれも三菱ケミカル社製)、EPICLON EXA-850CRP(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ化合物のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱ケミカル社製)等が挙げられる。
上記ビスフェノールS型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON EXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON EXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ化合物のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ化合物のうち市販されているものとしては、例えば、jER YX-4000H(三菱ケミカル社製)等が挙げられる。
上記スルフィド型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ化合物のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON HP4032、EPICLON EXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON N-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON N-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ化合物のうち市販されているものとしては、例えば、EPICLON HP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ化合物のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、ESN-165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ化合物のうち市販されているものとしては、例えば、jER630(三菱ケミカル社製)、EPICLON 430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ化合物のうち市販されているものとしては、例えば、ZX-1542(新日鉄住金化学社製)、EPICLON 726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ化合物のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ化合物のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱ケミカル社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
Examples of commercially available bisphenol A type epoxy compounds include jER828EL, jER1004 (all manufactured by Mitsubishi Chemical Corporation), EPICLON EXA-850CRP (manufactured by DIC), and the like.
Examples of commercially available bisphenol F type epoxy compounds include jER806 and jER4004 (both manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available bisphenol S-type epoxy compounds include EPICLON EXA1514 (manufactured by DIC) and the like.
Examples of commercially available 2,2′-diallyl bisphenol A type epoxy compounds include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.) and the like.
Examples of commercially available hydrogenated bisphenol type epoxy compounds include EPICLON EXA7015 (manufactured by DIC).
Examples of commercially available propylene oxide-added bisphenol A type epoxy compounds include EP-4000S (manufactured by ADEKA).
Examples of commercially available resorcinol type epoxy compounds include EX-201 (manufactured by Nagase Chemtex) and the like.
Examples of commercially available biphenyl type epoxy compounds include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation) and the like.
Examples of commercially available sulfide type epoxy compounds include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
Examples of commercially available diphenyl ether type epoxy compounds include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
Examples of commercially available dicyclopentadiene type epoxy compounds include EP-4088S (manufactured by ADEKA) and the like.
Commercially available naphthalene-type epoxy compounds include, for example, EPICLON HP4032 and EPICLON EXA-4700 (both manufactured by DIC).
Examples of commercially available phenol novolac type epoxy compounds include EPICLON N-770 (manufactured by DIC).
Examples of commercially available orthocresol novolac type epoxy compounds include EPICLON N-670-EXP-S (manufactured by DIC) and the like.
Examples of commercially available dicyclopentadiene novolac type epoxy compounds include EPICLON HP7200 (manufactured by DIC) and the like.
Examples of commercially available biphenyl novolac type epoxy compounds include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.) and the like.
Examples of commercially available naphthalenephenol novolac type epoxy compounds include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available glycidylamine type epoxy compounds include jER630 (manufactured by Mitsubishi Chemical Corporation), EPICLON 430 (manufactured by DIC Corporation), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company) and the like.
Among the above-mentioned alkyl polyol type epoxy compounds, commercially available compounds include, for example, ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), EPICLON 726 (manufactured by DIC Co., Ltd.), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), and Denacol EX-611. (Manufactured by Nagase Chemtex) and the like.
Commercially available rubber-modified epoxy compounds include, for example, YR-450, YR-207 (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), and Epolide PB (manufactured by Daicel).
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase Chemtex) and the like.
Other commercially available epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031, jER1032 (any one). And Mitsubishi Chemical Co., Ltd.), EXA-7120 (manufactured by DIC), TEPIC (manufactured by Nissan Chemical Co., Ltd.) and the like.
また、上記硬化性樹脂は、上記その他のエポキシ化合物として部分(メタ)アクリル変性エポキシ樹脂を含有してもよい。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ樹脂とは、例えば、1分子中に2つ以上のエポキシ基を有するエポキシ化合物の一部のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する化合物を意味する。
Further, the curable resin may contain a partial (meth)acryl-modified epoxy resin as the other epoxy compound.
In the present specification, the partial (meth)acryl-modified epoxy resin means, for example, reacting a part of epoxy groups of an epoxy compound having two or more epoxy groups in one molecule with (meth)acrylic acid. Means a compound having at least one epoxy group and at least one (meth)acryloyl group in one molecule.
上記その他の(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸エステル化合物、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。また、上記(メタ)アクリル化合物は、反応性の観点から、1分子中に(メタ)アクリロイル基を2個以上有するものが好ましい。
なお、本明細書において、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
Examples of the other (meth)acrylic compounds include (meth)acrylic acid ester compounds, epoxy (meth)acrylates, urethane (meth)acrylates, and the like. Of these, epoxy (meth)acrylate is preferable. The (meth)acrylic compound preferably has two or more (meth)acryloyl groups in one molecule from the viewpoint of reactivity.
In addition, in this specification, the said "epoxy (meth)acrylate" represents the compound which made all the epoxy groups in an epoxy compound react with (meth)acrylic acid.
上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。 Among the above-mentioned (meth)acrylic acid ester compounds, monofunctional ones include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate. , T-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, isononyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, iso Myristyl (meth)acrylate, stearyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, cyclohexyl ( (Meth)acrylate, isobornyl (meth)acrylate, bicyclopentenyl (meth)acrylate, benzyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-butoxyethyl (meth)acrylate, 2-phenoxyethyl (meth)acrylate, methoxyethylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, phenoxydiethylene glycol (meth)acrylate, phenoxypolyethylene glycol (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, ethyl carbi Tol (meth)acrylate, 2,2,2-trifluoroethyl (meth)acrylate, 2,2,3,3-tetrafluoropropyl (meth)acrylate, 1H,1H,5H-octafluoropentyl (meth)acrylate, Imido (meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, 2-(meth)acryloyloxyethylsuccinic acid, 2-(meth)acryloyloxyethylhexahydrophthalic acid, 2-( Examples thereof include (meth)acryloyloxyethyl 2-hydroxypropyl phthalate, 2-(meth)acryloyloxyethyl phosphate, and glycidyl (meth)acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional compounds of the (meth)acrylic acid ester compound include, for example, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, and 1,6-hexane. Diol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, tetraethylene glycol di (Meth)acrylate, polyethylene glycol di(meth)acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth ) Acrylate, polypropylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, ethylene oxide-added bisphenol A di(meth)acrylate, propylene oxide-added bisphenol A di(meth)acrylate, ethylene oxide-added bisphenol F di(meth)acrylate , Dimethyloldicyclopentadienyl di(meth)acrylate, ethylene oxide-modified isocyanuric acid di(meth)acrylate, 2-hydroxy-3-(meth)acryloyloxypropyl(meth)acrylate, carbonate diol di(meth)acrylate, Examples include polyether diol di(meth)acrylate, polyester diol di(meth)acrylate, polycaprolactone diol di(meth)acrylate, polybutadiene diol di(meth)acrylate, and the like.
また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Examples of the trifunctional or higher functional (meth)acrylic acid ester compound include, for example, trimethylolpropane tri(meth)acrylate, ethylene oxide-added trimethylolpropane tri(meth)acrylate, and propylene oxide-added trimethylolpropane tri( (Meth)acrylate, caprolactone-modified trimethylolpropane tri(meth)acrylate, ethylene oxide-added isocyanuric acid tri(meth)acrylate, glycerin tri(meth)acrylate, propylene oxide-added glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, Examples thereof include tris(meth)acryloyloxyethyl phosphate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate and dipentaerythritol hexa(meth)acrylate.
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応させることにより得られるもの等が挙げられる。 Examples of the epoxy (meth)acrylate include those obtained by reacting an epoxy compound and (meth)acrylic acid in the presence of a basic catalyst according to a conventional method.
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、上述したその他のエポキシ化合物と同様のものを用いることができる。 As the epoxy compound which is a raw material for synthesizing the epoxy (meth)acrylate, the same epoxy compounds as those described above can be used.
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、ダイセル・オルネクス社製のエポキシ(メタ)アクリレート、新中村化学工業社製のエポキシ(メタ)アクリレート、共栄社化学社製のエポキシ(メタ)アクリレート、ナガセケムテックス社製のエポキシ(メタ)アクリレート等が挙げられる。
上記ダイセル・オルネクス社製のエポキシ(メタ)アクリレートとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3708、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182、KRM8076等が挙げられる。
上記新中村化学工業社製のエポキシ(メタ)アクリレートとしては、例えば、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020等が挙げられる。
上記共栄社化学社製のエポキシ(メタ)アクリレートとしては、例えば、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA等が挙げられる。
上記ナガセケムテックス社製のエポキシ(メタ)アクリレートとしては、例えば、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911等が挙げられる。
Commercially available epoxy (meth)acrylates include, for example, epoxy (meth)acrylate manufactured by Daicel Ornex Co., epoxy (meth)acrylate manufactured by Shin-Nakamura Chemical Co., and epoxy (meth) manufactured by Kyoeisha Chemical Co., Ltd. Examples thereof include (meth)acrylate and epoxy (meth)acrylate manufactured by Nagase Chemtex.
The epoxy (meth) acrylate manufactured by the Daicel Orunekusu Inc., for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRYL3708, EBECRYL3800, EBECRYL6040, EBECRYL RDX63182, KRM8076, and the like.
Examples of the epoxy (meth)acrylate manufactured by Shin-Nakamura Chemical Co., Ltd. include EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020.
Examples of the epoxy (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. include epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 3002A, epoxy ester 1600A, Epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, epoxy ester 400EA, etc. are mentioned.
Examples of the epoxy (meth)acrylate manufactured by Nagase Chemtex include Denacol acrylate DA-141, Denacol acrylate DA-314, and Denacol acrylate DA-911.
上記ウレタン(メタ)アクリレートは、例えば、イソシアネート化合物に対して水酸基を有する(メタ)アクリル酸誘導体を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth)acrylate can be obtained, for example, by reacting an isocyanate compound with a (meth)acrylic acid derivative having a hydroxyl group in the presence of a catalytic amount of a tin compound.
上記イソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。 Examples of the above-mentioned isocyanate compound include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4′-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate phenyl) thiophosphate, tetramethyl xylylene diisocyanate Examples thereof include isocyanate and 1,6,11-undecane triisocyanate.
また、上記イソシアネート化合物としては、ポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。
上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。
Further, as the above-mentioned isocyanate compound, a chain-extended isocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used.
Examples of the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol and polycaprolactone diol.
上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、ヒドロキシアルキルモノ(メタ)アクリレート、二価のアルコールのモノ(メタ)アクリレート、三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
上記ヒドロキシアルキルモノ(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
上記二価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等が挙げられる。
上記三価のアルコールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、グリセリン等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノールA型エポキシアクリレート等が挙げられる。
Examples of the (meth)acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono(meth)acrylate, mono(meth)acrylate of divalent alcohol, mono(meth)acrylate of divalent alcohol or di(meth)acrylate. , Epoxy (meth) acrylate and the like.
Examples of the hydroxyalkyl mono(meth)acrylate include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate. Can be mentioned.
Examples of the dihydric alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol and the like.
Examples of the trihydric alcohol include trimethylolethane, trimethylolpropane, and glycerin.
Examples of the epoxy (meth)acrylate include bisphenol A type epoxy acrylate.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、東亞合成社製のウレタン(メタ)アクリレート、ダイセル・オルネクス社製のウレタン(メタ)アクリレート、根上工業社製のウレタン(メタ)アクリレート、新中村化学工業社製のウレタン(メタ)アクリレート、共栄社化学社製のウレタン(メタ)アクリレート等が挙げられる。
上記東亞合成社製のウレタン(メタ)アクリレートとしては、例えば、M-1100、M-1200、M-1210、M-1600等が挙げられる。
上記ダイセル・オルネクス社製のウレタン(メタ)アクリレートとしては、例えば、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260等が挙げられる。
上記根上工業社製のウレタン(メタ)アクリレートとしては、例えば、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H等が挙げられる。
上記新中村化学工業社製のウレタン(メタ)アクリレートとしては、例えば、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A等が挙げられる。
上記共栄社化学社製のウレタン(メタ)アクリレートとしては、例えば、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T等が挙げられる。
Examples of commercially available urethane (meth)acrylates include, for example, urethane (meth)acrylate manufactured by Toagosei Co., Ltd., urethane (meth)acrylate manufactured by Daicel Ornex Co., and urethane (meth) manufactured by Negami Kogyo Co., Ltd. Examples thereof include acrylate, urethane (meth)acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like.
Examples of the urethane (meth)acrylate manufactured by Toagosei Co., Ltd. include M-1100, M-1200, M-1210, M-1600 and the like.
The urethane (meth) acrylate manufactured by the Daicel Orunekusu Inc., for example, EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 etc. Can be mentioned.
Examples of the urethane (meth)acrylate manufactured by Negami Kogyo Co., Ltd. include Art Resin UN-330, Art Resin SH-500B, Art Resin UN-1200TPK, Art Resin UN-1255, Art Resin UN-3320HB, Art Resin UN-. 7100, Art Resin UN-9000A, Art Resin UN-9000H and the like.
Examples of the urethane (meth)acrylate manufactured by Shin Nakamura Chemical Co., Ltd. include U-2HA, U-2PHA, U-3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA- 4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A and the like.
Examples of the urethane (meth)acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, UA-306T. To be
上記その他の(メタ)アクリル化合物は、液晶汚染を抑制する観点から、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。 From the viewpoint of suppressing liquid crystal contamination, the above-mentioned other (meth)acrylic compounds are preferably those having a hydrogen-bonding unit such as —OH group, —NH— group, and —NH 2 group.
本発明の硬化性樹脂組成物は、重合開始剤及び/又は熱硬化剤を含有する。
上記重合開始剤としては、例えば、ラジカル重合開始剤やカチオン重合開始剤等が挙げられる。
The curable resin composition of the present invention contains a polymerization initiator and/or a thermosetting agent.
Examples of the polymerization initiator include radical polymerization initiators and cationic polymerization initiators.
上記ラジカル重合開始剤としては、光照射によりラジカルを発生する光ラジカル重合開始剤、加熱によりラジカルを発生する熱ラジカル重合開始剤等が挙げられる。 Examples of the radical polymerization initiator include a photoradical polymerization initiator that generates a radical upon irradiation with light and a thermal radical polymerization initiator that generates a radical upon heating.
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン化合物、アセトフェノン化合物、アシルフォスフィンオキサイド化合物、チタノセン化合物、オキシムエステル化合物、ベンゾインエーテル化合物、チオキサントン化合物等が挙げられる。
上記光ラジカル重合開始剤としては、具体的には例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン、1,2-(ジメチルアミノ)-2-((4-メチルフェニル)メチル)-1-(4-(4-モルホリニル)フェニル)-1-ブタノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-(4-(フェニルチオ)フェニル)-1,2-オクタンジオン2-(O-ベンゾイルオキシム)、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。
Examples of the photoradical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, thioxanthone compounds, and the like.
Specific examples of the photo-radical polymerization initiator include 1-hydroxycyclohexyl phenyl ketone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butanone, 1,2-(dimethylamino) -2-((4-methylphenyl)methyl)-1-(4-(4-morpholinyl)phenyl)-1-butanone, 2,2-dimethoxy-1,2-diphenylethan-1-one, bis(2 , 4,6-Trimethylbenzoyl)phenylphosphine oxide, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 1-(4-(2-hydroxyethoxy)-phenyl)- 2-hydroxy-2-methyl-1-propan-1-one, 1-(4-(phenylthio)phenyl)-1,2-octanedione 2-(O-benzoyloxime), 2,4,6-trimethylbenzoyl Examples thereof include diphenylphosphine oxide, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and the like.
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる開始剤(以下、「高分子アゾ開始剤」ともいう)が好ましい。
なお、本明細書において高分子アゾ化合物とは、アゾ基を有し、熱によって(メタ)アクリロイル基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
Examples of the thermal radical polymerization initiator include those composed of azo compounds, organic peroxides and the like. Among them, an initiator composed of a polymer azo compound (hereinafter, also referred to as “polymer azo initiator”) is preferable.
In the present specification, the polymeric azo compound means a compound having an azo group and having a number average molecular weight of 300 or more, which produces a radical capable of curing a (meth)acryloyl group by heat.
上記高分子アゾ化合物の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ化合物の数平均分子量がこの範囲であることにより、液晶汚染を抑制しつつ、硬化性樹脂と容易に混合することができる。上記高分子アゾ化合物の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
The preferable lower limit of the number average molecular weight of the high molecular weight azo compound is 1,000, and the preferable upper limit thereof is 300,000. When the number average molecular weight of the polymer azo compound is in this range, it can be easily mixed with the curable resin while suppressing liquid crystal contamination. The more preferable lower limit of the number average molecular weight of the high molecular weight azo compound is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
In addition, in this specification, the said number average molecular weight is the value calculated|required by polystyrene conversion, using tetrahydrofuran as a solvent by gel permeation chromatography (GPC). Examples of columns for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (Showa Denko KK).
上記高分子アゾ化合物としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ化合物としては、ポリエチレンオキサイド構造を有するものが好ましい。
上記高分子アゾ化合物としては、具体的には例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記高分子アゾ化合物のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも富士フイルム和光純薬社製)等が挙げられる。
また、高分子ではないアゾ化合物として市販されているものとしては、例えば、V-65、V-501(いずれも富士フイルム和光純薬社製)等が挙げられる。
Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable.
Specific examples of the polymer azo compound include polycondensates of 4,4′-azobis(4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis(4-cyanopentanoic acid). And a polycondensation product of polydimethylsiloxane having a terminal amino group.
Examples of commercially available high-molecular azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.). To be
In addition, examples of commercially available azo compounds that are not polymers include V-65 and V-501 (both manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxy ester, diacyl peroxide, peroxydicarbonate and the like.
上記カチオン重合開始剤としては、光カチオン重合開始剤が好適に用いられる。
上記光カチオン重合開始剤は、光照射によりプロトン酸又はルイス酸を発生するものであれば特に限定されず、イオン性光酸発生タイプのものであってもよいし、非イオン性光酸発生タイプであってもよい。
A photo-cationic polymerization initiator is preferably used as the above-mentioned cationic polymerization initiator.
The photocationic polymerization initiator is not particularly limited as long as it generates a protonic acid or a Lewis acid by light irradiation, and may be an ionic photoacid generating type or a nonionic photoacid generating type. May be
上記光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩、芳香族ハロニウム塩、芳香族スルホニウム塩等のオニウム塩類、鉄-アレン錯体、チタノセン錯体、アリールシラノール-アルミニウム錯体等の有機金属錯体類等が挙げられる。 Examples of the photocationic polymerization initiator include onium salts such as aromatic diazonium salts, aromatic halonium salts and aromatic sulfonium salts, iron-arene complexes, titanocene complexes, arylsilanol-aluminum complexes and other organometallic complexes. Is mentioned.
上記光カチオン重合開始剤のうち市販されているものとしては、例えば、アデカオプトマーSP-150、アデカオプトマーSP-170(いずれもADEKA社製)等が挙げられる。 Examples of commercially available photocationic polymerization initiators include ADEKA OPTOMER SP-150 and ADEKA OPTOMER SP-170 (both manufactured by ADEKA).
上記重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記重合開始剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物を液晶表示素子用シール剤として用いた場合に液晶汚染を抑制しつつ、保存安定性や硬化性により優れるものとなる。上記重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。 With respect to the content of the polymerization initiator, a preferable lower limit is 0.01 part by weight and a preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the above-mentioned polymerization initiator is within this range, when the resulting curable resin composition is used as a sealant for liquid crystal display devices, while suppressing liquid crystal contamination, it is more excellent in storage stability and curability. Becomes The more preferable lower limit of the content of the polymerization initiator is 0.1 parts by weight, and the more preferable upper limit thereof is 5 parts by weight.
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、固形の有機酸ヒドラジドが好適に用いられる。 Examples of the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Among them, solid organic acid hydrazide is preferably used.
上記固形の有機酸ヒドラジドとしては、例えば、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記固形の有機酸ヒドラジドのうち市販されているものとしては、例えば、大塚化学社製の有機酸ヒドラジド、日本ファインケム社製の有機酸ヒドラジド、味の素ファインテクノ社製の有機酸ヒドラジド等が挙げられる。
上記大塚化学社製の有機酸ヒドラジドとしては、例えば、SDH、ADH等が挙げられる。
上記日本ファインケム社製の有機酸ヒドラジドとしては、例えば、MDH等が挙げられる。
上記味の素ファインテクノ社製の有機酸ヒドラジドとしては、例えば、アミキュアVDH、アミキュアVDH-J、アミキュアUDH等が挙げられる。
Examples of the solid organic acid hydrazide include 1,3-bis(hydrazinocarboethyl)-5-isopropylhydantoin, sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide and the like.
Examples of commercially available solid organic acid hydrazides include organic acid hydrazides manufactured by Otsuka Chemical Co., Ltd., organic acid hydrazides manufactured by Nippon Finechem Co., Ltd., and organic acid hydrazides manufactured by Ajinomoto Fine Techno Co., Ltd., and the like.
Examples of the organic acid hydrazide manufactured by Otsuka Chemical Co., Ltd. include SDH and ADH.
Examples of the organic acid hydrazide manufactured by Nippon Finechem Co., Ltd. include MDH.
Examples of the organic acid hydrazides manufactured by Ajinomoto Fine-Techno Co., Inc. include Amicure VDH, Amicure VDH-J, Amicure UDH and the like.
上記熱硬化剤の含有量は、硬化性樹脂全体100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物が優れた塗布性や保存安定性を維持したまま、硬化性により優れるものとなる。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 The content of the thermosetting agent is preferably 1 part by weight and 50 parts by weight with respect to 100 parts by weight of the entire curable resin. When the content of the thermosetting agent is within this range, the curable resin composition obtained is more excellent in curability while maintaining excellent coatability and storage stability. A more preferable upper limit of the content of the thermosetting agent is 30 parts by weight.
本発明の硬化性樹脂組成物は、粘度の向上、応力分散効果による接着性の更なる向上、線膨張率の改善、硬化物の透湿防止性の更なる向上等を目的として充填剤を含有することが好ましい。 The curable resin composition of the present invention contains a filler for the purpose of improving the viscosity, further improving the adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, further improving the moisture permeability of the cured product, and the like. Preferably.
上記充填剤としては、無機充填剤や有機充填剤を用いることができる。
上記無機充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等が挙げられる。
上記有機充填剤としては、例えば、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等が挙げられる。
An inorganic filler or an organic filler can be used as the filler.
Examples of the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide. , Calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate and the like.
Examples of the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, and the like.
本発明の硬化性樹脂組成物100重量部中における上記充填剤の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等の悪化を抑制しつつ、接着性の向上等の効果をより発揮することができる。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The preferred lower limit of the content of the filler in 100 parts by weight of the curable resin composition of the present invention is 10 parts by weight, and the preferred upper limit is 70 parts by weight. When the content of the filler is within this range, it is possible to further exhibit the effect of improving the adhesiveness while suppressing the deterioration of the coating property and the like. The more preferable lower limit of the content of the filler is 20 parts by weight, and the more preferable upper limit thereof is 60 parts by weight.
本発明の硬化性樹脂組成物は、接着性を更に向上させることを目的として、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主に硬化性樹脂組成物と基板等とを良好に接着するための接着助剤としての役割を有する。
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等が好適に用いられる。
The curable resin composition of the present invention preferably contains a silane coupling agent for the purpose of further improving the adhesiveness. The above-mentioned silane coupling agent mainly has a role as an adhesion aid for favorably adhering the curable resin composition to the substrate and the like.
As the silane coupling agent, for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane and the like are preferably used.
本発明の硬化性樹脂組成物100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物を液晶表示素子用シール剤として用いた場合の液晶汚染の発生を抑制しつつ、接着性を向上させる効果をより発揮することができる。上記シランカップリング剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。 The preferred lower limit of the content of the silane coupling agent in 100 parts by weight of the curable resin composition of the present invention is 0.1 part by weight, and the preferred upper limit is 10 parts by weight. The content of the silane coupling agent is within this range, the effect of improving the adhesiveness while suppressing the occurrence of liquid crystal contamination when the resulting curable resin composition is used as a sealant for liquid crystal display elements Can be more exerted. The more preferable lower limit of the content of the silane coupling agent is 0.3 parts by weight, and the more preferable upper limit thereof is 5 parts by weight.
本発明の硬化性樹脂組成物は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の硬化性樹脂組成物は、遮光シール剤として好適に用いることができる。 The curable resin composition of the present invention may contain a light shielding agent. By containing the above light-shielding agent, the curable resin composition of the present invention can be suitably used as a light-shielding sealant.
上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、チタンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, resin-coated carbon black, and the like. Of these, titanium black is preferable.
上記チタンブラックは、波長300nm以上800nm以下の光に対する平均透過率と比較して、紫外線領域付近、特に波長370nm以上450nm以下の光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の硬化性樹脂組成物に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。本発明の硬化性樹脂組成物に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。 The titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly in the light having a wavelength of 370 nm to 450 nm, as compared with the average transmittance of light having a wavelength of 300 nm to 800 nm. That is, the titanium black has a property of imparting a light-shielding property to the curable resin composition of the present invention by sufficiently shielding light having a wavelength in the visible light region, while transmitting light having a wavelength near the ultraviolet region. It is a light-shielding agent. The light-shielding agent contained in the curable resin composition of the present invention is preferably a substance having a high insulating property, and titanium black is also suitable as a light-shielding agent having a high insulating property.
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを含有する本発明の硬化性樹脂組成物を液晶表示素子用シール剤として用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
The titanium black has sufficient effects even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, or oxide. It is also possible to use surface-treated titanium black such as one coated with an inorganic component such as zirconium or magnesium oxide. Among them, those treated with an organic component are preferable because the insulating property can be further improved.
Further, a liquid crystal display device produced by using the curable resin composition of the present invention containing the above-mentioned titanium black as a light shielding agent as a sealing agent for liquid crystal display devices has sufficient light shielding properties, and thus does not leak light. It is possible to realize a liquid crystal display element having high contrast and excellent image display quality.
上記チタンブラックのうち市販されているものとしては、例えば、三菱マテリアル社製のチタンブラック、赤穂化成社製のチタンブラック等が挙げられる。
上記三菱マテリアル社製のチタンブラックとしては、例えば、12S、13M、13M-C、13R-N、14M-C等が挙げられる。
上記赤穂化成社製のチタンブラックとしては、例えば、ティラックD等が挙げられる。
Examples of commercially available titanium blacks include titanium black manufactured by Mitsubishi Materials and titanium black manufactured by Ako Kasei.
Examples of the titanium black manufactured by Mitsubishi Materials include 12S, 13M, 13M-C, 13R-N and 14M-C.
Examples of titanium black manufactured by Ako Kasei Co., Ltd. include Tilak D.
上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The preferred lower limit of the specific surface area of the titanium black is 13 m 2 /g, the preferred upper limit is 30 m 2 /g, the more preferred lower limit is 15 m 2 /g, and the more preferred upper limit is 25 m 2 /g.
The preferred lower limit of the volume resistance of the titanium black is 0.5 Ω·cm, the preferred upper limit is 3 Ω·cm, the more preferred lower limit is 1 Ω·cm, and the more preferred upper limit is 2.5 Ω·cm.
上記遮光剤の一次粒子径の好ましい下限は1nm、好ましい上限は5μmである。上記遮光剤の一次粒子径がこの範囲であることにより、得られる硬化性樹脂組成物の粘度やチクソトロピーが大きく増大することなく、塗布性により優れるものとなる。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
なお、上記遮光剤の一次粒子径は、粒度分布計(例えば、PARTICLE SIZING SYSTEMS社製、「NICOMP 380ZLS」)を用いて測定することができる。
The preferable lower limit of the primary particle diameter of the light-shielding agent is 1 nm, and the preferable upper limit thereof is 5 μm. When the primary particle size of the light-shielding agent is in this range, the viscosity and thixotropy of the resulting curable resin composition are not significantly increased, and the coating property is more excellent. The more preferable lower limit of the primary particle size of the light shielding agent is 5 nm, the more preferable upper limit thereof is 200 nm, the still more preferable lower limit thereof is 10 nm, and the still more preferable upper limit thereof is 100 nm.
The primary particle size of the light-shielding agent can be measured using a particle size distribution meter (for example, "NICOMP 380ZLS" manufactured by PARTICLE SIZING SYSTEMS).
本発明の硬化性樹脂組成物100重量部中における上記遮光剤の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。上記遮光剤の含有量がこの範囲であることにより、得られる硬化性樹脂組成物の接着性、硬化後の強度、及び、描画性を維持しつつ、遮光性を向上させる効果をより発揮できる。上記遮光剤の含有量のより好ましい下限は10重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は60重量部である。 The preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the curable resin composition of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight. When the content of the light-shielding agent is within this range, the effect of improving the light-shielding property can be more exerted while maintaining the adhesiveness, the strength after curing, and the drawing property of the curable resin composition obtained. The more preferable lower limit of the content of the light-shielding agent is 10 parts by weight, the more preferable upper limit thereof is 70 parts by weight, the further preferable lower limit thereof is 30 parts by weight, and the further preferable upper limit thereof is 60 parts by weight.
本発明の硬化性樹脂組成物は、更に、必要に応じて、応力緩和剤、反応性希釈剤、揺変剤、スペーサー、硬化促進剤、消泡剤、レベリング剤、重合禁止剤等の添加剤を含有してもよい。 The curable resin composition of the present invention further contains additives such as a stress relaxation agent, a reactive diluent, a thixotropic agent, a spacer, a curing accelerator, an antifoaming agent, a leveling agent, and a polymerization inhibitor, if necessary. May be included.
本発明の硬化性樹脂組成物を製造する方法としては、例えば、混合機を用いて、硬化性樹脂と、重合開始剤及び/又は熱硬化剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。
上記混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等が挙げられる。
As a method for producing the curable resin composition of the present invention, for example, a curable resin, a polymerization initiator and/or a thermosetting agent, and a silane coupling agent to be added if necessary, using a mixer. And the like.
Examples of the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a three-roll mill.
本発明の硬化性樹脂組成物は、接着剤として用いることができ、特に液晶表示素子用シール剤として好適に用いることができる。本発明の硬化性樹脂組成物を用いてなる液晶表示素子用シール剤もまた、本発明の1つである。
また、本発明の液晶表示素子用シール剤に、導電性微粒子を配合することにより、上下導通材料を製造することができる。本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。
The curable resin composition of the present invention can be used as an adhesive, and can be particularly preferably used as a sealant for liquid crystal display elements. A sealant for liquid crystal display devices, which comprises the curable resin composition of the present invention, is also one aspect of the present invention.
In addition, a vertical conduction material can be manufactured by blending conductive fine particles with the liquid crystal display element sealing agent of the present invention. A vertical conduction material containing the liquid crystal display element sealant of the present invention and conductive fine particles is also one aspect of the present invention.
上記導電性微粒子としては、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, metal balls, resin fine particles having a conductive metal layer formed on the surface thereof, or the like can be used. Above all, a resin fine particle having a conductive metal layer formed on the surface thereof is preferable because the conductive connection can be made without damaging the transparent substrate or the like due to the excellent elasticity of the resin fine particle.
本発明の液晶表示素子用シール剤の硬化物、又は、本発明の上下導通材料の硬化物を有する液晶表示素子もまた、本発明の1つである。 A liquid crystal display device having the cured product of the sealant for a liquid crystal display device of the present invention or the cured product of the vertically conductive material of the present invention is also one aspect of the present invention.
本発明の液晶表示素子用シール剤は、液晶滴下工法による液晶表示素子の製造に好適に用いることができる。
本発明の液晶表示素子用シール剤を用いて本発明の液晶表示素子を製造する方法としては、液晶滴下工法が好適に用いられ、具体的には例えば、以下の各工程を有する方法等が挙げられる。
まず、ITO薄膜等の電極を有する2枚の透明基板の一方に、本発明の液晶表示素子用シール剤をスクリーン印刷、ディスペンサー塗布等により塗布して枠状のシールパターンを形成する工程を行う。次いで、液晶の微小滴をシールパターンの枠内全面に滴下塗布し、真空下で他方の透明基板を重ね合わせる工程を行う。その後、シールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程、及び、仮硬化させたシール剤を加熱して本硬化させる工程を行う方法により、液晶表示素子を得ることができる。
The sealant for a liquid crystal display element of the present invention can be suitably used for manufacturing a liquid crystal display element by a liquid crystal dropping method.
As a method for producing the liquid crystal display element of the present invention using the sealant for a liquid crystal display element of the present invention, a liquid crystal dropping method is preferably used, and specific examples thereof include a method having the following steps. To be
First, a step of forming a frame-shaped seal pattern by applying the liquid crystal display element sealant of the present invention to one of two transparent substrates having electrodes such as ITO thin films by screen printing, dispenser application, or the like. Then, a step of applying minute droplets of liquid crystal to the entire surface of the frame of the seal pattern and applying the other transparent substrate under vacuum is performed. After that, a liquid crystal display element can be obtained by a method of performing a step of irradiating the seal pattern portion with light such as ultraviolet rays to temporarily cure the sealing agent, and a step of heating the temporarily cured sealing agent to perform a final curing. it can.
本発明によれば、配向膜に対する接着性と透湿防止性との両方に優れる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物を用いてなる液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子を提供することができる。 According to the present invention, it is possible to provide a curable resin composition which is excellent in both the adhesiveness to an alignment film and the moisture permeation preventive property. Further, according to the present invention, it is possible to provide a sealant for liquid crystal display elements, a vertical conduction material, and a liquid crystal display element, which are obtained by using the curable resin composition.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(硬化性樹脂Aの作製)
反応フラスコに、2-ヒドロキシエチルアクリレート232重量部と、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物336重量部と、重合禁止剤としてハイドロキノン0.1重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した。次いで、得られた反応物にビスフェノールAジグリシジルエーテル340重量部を加え、さらにトリフェニルフォスフィンを0.5重量部加え、110℃で5時間撹拌することにより、硬化性樹脂Aを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Aは、上記式(1-2)における、Rが水素原子、Rがエチレン基、Rが上記式(3-1)で表される構造(Rがメチル基)、nが0、EpがビスフェノールAジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin A)
232 parts by weight of 2-hydroxyethyl acrylate, 336 parts by weight of 4-methylcyclohexane-1,2-dicarboxylic acid anhydride, and 0.1 part by weight of hydroquinone as a polymerization inhibitor were added to a reaction flask, and a mantle heater was used. And stirred at 90° C. for 5 hours. Next, 340 parts by weight of bisphenol A diglycidyl ether was added to the obtained reaction product, 0.5 parts by weight of triphenylphosphine was further added, and the mixture was stirred at 110° C. for 5 hours to obtain a curable resin A.
By 1 H-NMR and 13 C-NMR, the curable resin A shows that in the above formula (1-2), R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is the above formula (3-1). It was confirmed that the compound has a structure (R 4 is a methyl group), n is 0, and Ep is a structure derived from bisphenol A diglycidyl ether.
(硬化性樹脂Bの作製)
2-ヒドロキシエチルアクリレート232重量部を2-ヒドロキシプロピルアクリレート256重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Bを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Bは、上記式(1-2)における、Rが水素原子、Rがメチルエチレン基、Rが上記式(3-1)で表される構造(Rがメチル基)、nが0、EpがビスフェノールAジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin B)
A curable resin B was obtained in the same manner as in “(Preparation of curable resin A)” above except that 232 parts by weight of 2-hydroxyethyl acrylate was changed to 256 parts by weight of 2-hydroxypropyl acrylate.
By 1 H-NMR and 13 C-NMR, the curable resin B shows that in the above formula (1-2), R 1 is a hydrogen atom, R 2 is a methylethylene group, and R 3 is the above formula (3-1). It was confirmed that the compound has a structure represented (R 4 is a methyl group), n is 0, and Ep is a structure derived from bisphenol A diglycidyl ether.
(硬化性樹脂Cの作製)
2-ヒドロキシエチルアクリレート232重量部を2-ヒドロキシエチルメタクリレート256重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Cを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Cは、上記式(1-2)における、Rがメチル基、Rがエチレン基、Rが上記式(3-1)で表される構造(Rがメチル基)、nが0、EpがビスフェノールAジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin C)
A curable resin C was obtained in the same manner as in “(Preparation of curable resin A)” above except that 232 parts by weight of 2-hydroxyethyl acrylate was changed to 256 parts by weight of 2-hydroxyethyl methacrylate.
By 1 H-NMR and 13 C-NMR, the curable resin C shows that in the above formula (1-2), R 1 is a methyl group, R 2 is an ethylene group, and R 3 is a group represented by the above formula (3-1). It was confirmed that the compound has a structure (R 4 is a methyl group), n is 0, and Ep is a structure derived from bisphenol A diglycidyl ether.
(硬化性樹脂Dの作製)
ビスフェノールAジグリシジルエーテル340重量部をジシクロペンタジエンジグリシジルエーテル268重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Dを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Dは、上記式(1-2)における、Rが水素原子、Rがエチレン基、Rが上記式(3-1)で表される構造(Rがメチル基)、nが0、Epがジシクロペンタジエンジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin D)
A curable resin D was obtained in the same manner as in "(Preparation of curable resin A)" above except that 340 parts by weight of bisphenol A diglycidyl ether was changed to 268 parts by weight of dicyclopentadiene diglycidyl ether.
According to 1 H-NMR and 13 C-NMR, the curable resin D shows that in the above formula (1-2), R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is the above formula (3-1). It was confirmed that the compound had a structure (R 4 is a methyl group), n was 0, and Ep was a structure derived from dicyclopentadiene diglycidyl ether.
(硬化性樹脂Eの作製)
反応フラスコに、2-ヒドロキシエチルアクリレート232重量部と、ε-カプロラクトン228重量部と、重合禁止剤としてハイドロキノン0.1重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した。その後、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物336重量部を加えて更に5時間撹拌した。次いで、得られた反応物にビスフェノールAジグリシジルエーテル340重量部を加え、更にトリフェニルフォスフィンを0.5重量部加え、110℃で5時間撹拌することにより、硬化性樹脂Eを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Eは、上記式(1-2)における、Rが水素原子、Rがエチレン基、Rが上記式(3-1)で表される構造(Rがメチル基)、Xがε-カプロラクトンの開環構造、nが2.0(平均値)、EpがビスフェノールAジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin E)
232 parts by weight of 2-hydroxyethyl acrylate, 228 parts by weight of ε-caprolactone and 0.1 part by weight of hydroquinone as a polymerization inhibitor were added to the reaction flask, and the mixture was stirred at 90° C. for 5 hours using a mantle heater. Then, 336 parts by weight of 4-methylcyclohexane-1,2-dicarboxylic acid anhydride was added, and the mixture was further stirred for 5 hours. Then, 340 parts by weight of bisphenol A diglycidyl ether was added to the obtained reaction product, 0.5 parts by weight of triphenylphosphine was further added, and the mixture was stirred at 110° C. for 5 hours to obtain a curable resin E.
By 1 H-NMR and 13 C-NMR, the curable resin E shows that in the above formula (1-2), R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is the above formula (3-1). (R 4 is a methyl group), X is a ring-opening structure of ε-caprolactone, n is 2.0 (average value), and Ep is a compound derived from bisphenol A diglycidyl ether. ..
(硬化性樹脂Fの作製)
4-メチルシクロヘキサン-1,2-ジカルボン酸無水物336重量部を4-シクロヘキセン-1,2-ジカルボン酸無水物332重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Fを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Fは、上記式(1-2)における、Rが水素原子、Rがエチレン基、Rが上記式(3-2)で表される構造(Rが水素原子)、nが0、EpがビスフェノールAジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin F)
The above "(Preparation of curable resin A)" except that 336 parts by weight of 4-methylcyclohexane-1,2-dicarboxylic acid anhydride is changed to 332 parts by weight of 4-cyclohexene-1,2-dicarboxylic acid anhydride A curable resin F was obtained in the same manner as in.
According to 1 H-NMR and 13 C-NMR, the curable resin F shows that in the above formula (1-2), R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is the above formula (3-2). It was confirmed that the compound has the structure (R 5 is a hydrogen atom), n is 0, and Ep is a structure derived from bisphenol A diglycidyl ether.
(硬化性樹脂Gの作製)
4-メチルシクロヘキサン-1,2-ジカルボン酸無水物336重量部をテトラプロペニル無水コハク酸536重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Gを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Gは、上記式(1-2)における、Rが水素原子、Rがエチレン基、Rが上記式(3-3)で表される構造(Rが水素原子、Rがドデシル基)、nが0、EpがビスフェノールAジグリシジルエーテル由来の構造である化合物であることを確認した。
(Production of curable resin G)
Curable resin in the same manner as in "(Preparation of Curable Resin A)" above except that 336 parts by weight of 4-methylcyclohexane-1,2-dicarboxylic acid anhydride was changed to 536 parts by weight of tetrapropenyl succinic anhydride. Got G.
By 1 H-NMR and 13 C-NMR, the curable resin G shows that in the formula (1-2), R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is a group represented by the formula (3-3). It was confirmed that the compound has a structure (R 6 is a hydrogen atom, R 7 is a dodecyl group), n is 0, and Ep is a structure derived from bisphenol A diglycidyl ether.
(硬化性樹脂Hの作製)
反応フラスコに、2-ヒドロキシエチルアクリレート116重量部と、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物168重量部と、重合禁止剤としてハイドロキノン0.05重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した。次いで、得られた反応物にビスフェノールAジグリシジルエーテル340重量部を加え、さらにトリフェニルフォスフィンを0.5重量部加え、110℃で5時間撹拌することにより、硬化性樹脂Hを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Hは、上記式(1-1)で表される化合物、上記式(1-2)で表される化合物、及び、ビスフェノールAジグリシジルエーテルを含み、上記式(1-1)で表される化合物の含有割合が57重量%、上記式(1-2)で表される化合物の含有割合が23重量%であることを確認した。また、硬化性樹脂Hに含まれる上記式(1-1)で表される化合物は、Rが水素原子、Rがエチレン基、Rが上記式(3-1)で表される構造(Rがメチル基)、nが0、EpがビスフェノールAジグリシジルエーテル由来の構造であることを確認した。更に、硬化性樹脂Hに含まれる上記式(1-2)で表される化合物は、Rが水素原子、Rがエチレン基、Rが上記式(3-1)で表される構造(Rがメチル基)、nが0、EpがビスフェノールAジグリシジルエーテル由来の構造であることを確認した。
(Preparation of curable resin H)
To the reaction flask, 116 parts by weight of 2-hydroxyethyl acrylate, 168 parts by weight of 4-methylcyclohexane-1,2-dicarboxylic acid anhydride, and 0.05 parts by weight of hydroquinone as a polymerization inhibitor were added, and a mantle heater was used. And stirred at 90° C. for 5 hours. Then, 340 parts by weight of bisphenol A diglycidyl ether was added to the obtained reaction product, 0.5 parts by weight of triphenylphosphine was further added, and the mixture was stirred at 110° C. for 5 hours to obtain a curable resin H.
By 1 H-NMR and 13 C-NMR, the curable resin H indicates that the compound represented by the above formula (1-1), the compound represented by the above formula (1-2), and bisphenol A diglycidyl ether. It was confirmed that the content ratio of the compound represented by the formula (1-1) was 57% by weight and the content ratio of the compound represented by the formula (1-2) was 23% by weight. Further, in the compound represented by the formula (1-1) contained in the curable resin H, R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is a structure represented by the formula (3-1). (R 4 is a methyl group), n was 0, and Ep was confirmed to be a structure derived from bisphenol A diglycidyl ether. Further, in the compound represented by the above formula (1-2) contained in the curable resin H, R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is a structure represented by the above formula (3-1). (R 4 is a methyl group), n was 0, and Ep was confirmed to be a structure derived from bisphenol A diglycidyl ether.
(硬化性樹脂Iの作製)
4-メチルシクロヘキサン-1,2-ジカルボン酸無水物168重量部をテトラプロペニル無水コハク酸268重量部に変更したこと以外は、上記「(硬化性樹脂Hの作製)」と同様にして硬化性樹脂Iを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Iは、上記式(1-1)で表される化合物、上記式(1-2)で表される化合物、及び、ビスフェノールAジグリシジルエーテルを含み、上記式(1-1)で表される化合物の含有割合が60重量%、上記式(1-2)で表される化合物の含有割合が22重量%であることを確認した。また、硬化性樹脂Iに含まれる上記式(1-1)で表される化合物は、Rが水素原子、Rがエチレン基、Rが上記式(3-3)で表される構造(Rが水素原子、Rがドデシル基)、nが0、EpがビスフェノールAジグリシジルエーテル由来の構造であることを確認した。更に、硬化性樹脂Iに含まれる上記式(1-2)で表される化合物は、Rが水素原子、Rがエチレン基、Rが上記式(3-3)で表される構造(Rが水素原子、Rがドデシル基)、nが0、EpがビスフェノールAジグリシジルエーテル由来の構造であることを確認した。
(Preparation of curable resin I)
Curable resin in the same manner as in “(Preparation of Curable Resin H)” above, except that 168 parts by weight of 4-methylcyclohexane-1,2-dicarboxylic acid anhydride was changed to 268 parts by weight of tetrapropenyl succinic anhydride. Got I.
By 1 H-NMR and 13 C-NMR, the curable resin I shows that the curable resin I is a compound represented by the above formula (1-1), a compound represented by the above formula (1-2), and bisphenol A diglycidyl ether. It was confirmed that the content ratio of the compound represented by the formula (1-1) was 60% by weight, and the content ratio of the compound represented by the formula (1-2) was 22% by weight. The compound represented by the above formula (1-1) contained in the curable resin I has a structure in which R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is a structure represented by the above formula (3-3). It was confirmed that (R 6 is a hydrogen atom, R 7 is a dodecyl group), n is 0, and Ep is a structure derived from bisphenol A diglycidyl ether. Furthermore, in the compound represented by the above formula (1-2) contained in the curable resin I, R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is a structure represented by the above formula (3-3). It was confirmed that (R 6 is a hydrogen atom, R 7 is a dodecyl group), n is 0, and Ep is a structure derived from bisphenol A diglycidyl ether.
(硬化性樹脂Jの作製)
反応フラスコに、2-ヒドロキシエチルアクリレート116重量部と、ε-カプロラクトン114重量部と、重合禁止剤としてハイドロキノン0.5重量部とを加え、マントルヒーターを用いて90℃で5時間撹拌した。その後、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物168重量部を加えて更に5時間撹拌した。次いで、得られた反応物にビスフェノールAジグリシジルエーテル340重量部を加え、さらにトリフェニルフォスフィンを0.5重量部加え、110℃で5時間撹拌することにより、硬化性樹脂Jを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Jは、上記式(1-1)で表される化合物、上記式(1-2)で表される化合物、及び、ビスフェノールAジグリシジルエーテルを含み、上記式(1-1)で表される化合物の含有割合が57重量%、上記式(1-2)で表される化合物の含有割合が21重量%であることを確認した。また、硬化性樹脂Jに含まれる上記式(1-1)で表される化合物は、Rが水素原子、Rがエチレン基、Rが上記式(3-1)で表される構造(Rがメチル基)、Xがε-カプロラクトンの開環構造、nが1.0(平均値)、EpがビスフェノールAジグリシジルエーテル由来の構造であることを確認した。更に、硬化性樹脂Jに含まれる上記式(1-2)で表される化合物は、Rが水素原子、Rがエチレン基、Rが上記式(3-1)で表される構造(Rがメチル基)、Xがε-カプロラクトンの開環構造、nが1.8(平均値)、EpがビスフェノールAジグリシジルエーテル由来の構造であることを確認した。
(Preparation of curable resin J)
To the reaction flask were added 116 parts by weight of 2-hydroxyethyl acrylate, 114 parts by weight of ε-caprolactone, and 0.5 parts by weight of hydroquinone as a polymerization inhibitor, and the mixture was stirred at 90° C. for 5 hours using a mantle heater. Then, 168 parts by weight of 4-methylcyclohexane-1,2-dicarboxylic acid anhydride was added, and the mixture was further stirred for 5 hours. Next, 340 parts by weight of bisphenol A diglycidyl ether was added to the obtained reaction product, 0.5 parts by weight of triphenylphosphine was further added, and the mixture was stirred at 110° C. for 5 hours to obtain a curable resin J.
By 1 H-NMR and 13 C-NMR, the curable resin J shows that the compound represented by the above formula (1-1), the compound represented by the above formula (1-2), and bisphenol A diglycidyl ether. It was confirmed that the content of the compound represented by the formula (1-1) was 57% by weight and the content of the compound represented by the formula (1-2) was 21% by weight. In the compound represented by the above formula (1-1) contained in the curable resin J, R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is a structure represented by the above formula (3-1). It was confirmed that (R 4 is a methyl group), X is a ring-opening structure of ε-caprolactone, n is 1.0 (average value), and Ep is a structure derived from bisphenol A diglycidyl ether. Further, in the compound represented by the above formula (1-2) contained in the curable resin J, R 1 is a hydrogen atom, R 2 is an ethylene group, and R 3 is a structure represented by the above formula (3-1). It was confirmed that (R 4 is a methyl group), X is a ring-opening structure of ε-caprolactone, n is 1.8 (average value), and Ep is a structure derived from bisphenol A diglycidyl ether.
(硬化性樹脂Kの作製)
4-メチルシクロヘキサン-1,2-ジカルボン酸無水物168重量部を無水フタル酸148重量部に変更したこと以外は、上記「(硬化性樹脂Hの作製)」と同様にして硬化性樹脂Kを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Kは、上記式(1-1)における、Rに相当する部分が水素原子、Rに相当する部分がエチレン基、Rに相当する部分が1,2-フェニレン基、nに相当する値が0、Epに相当する部分がビスフェノールAジグリシジルエーテル由来の構造である化合物を55重量%含むことを確認した。また、硬化性樹脂Kは、上記式(1-2)における、Rに相当する部分が水素原子、Rに相当する部分がエチレン基、Rに相当する部分が1,2-フェニレン基、nに相当する値が0、Epに相当する部分がビスフェノールAジグリシジルエーテル由来の構造である化合物を24重量%含むことを確認した。更に、硬化性樹脂Kは、ビスフェノールAジグリシジルエーテルを21重量%含むことを確認した。
(Preparation of curable resin K)
A curable resin K was prepared in the same manner as in “(Preparation of curable resin H)” above except that 168 parts by weight of 4-methylcyclohexane-1,2-dicarboxylic acid anhydride was changed to 148 parts by weight of phthalic anhydride. Obtained.
According to 1 H-NMR and 13 C-NMR, the curable resin K shows that in the above formula (1-1), a portion corresponding to R 1 is a hydrogen atom, a portion corresponding to R 2 is an ethylene group, and R 3 corresponds to R 3 . It was confirmed that the portion containing 1,2-phenylene group, the value corresponding to n was 0, and the portion corresponding to Ep contained 55% by weight of a compound derived from bisphenol A diglycidyl ether. In the curable resin K, in the above formula (1-2), a portion corresponding to R 1 is a hydrogen atom, a portion corresponding to R 2 is an ethylene group, and a portion corresponding to R 3 is a 1,2-phenylene group. , N was 0, and the portion corresponding to Ep contained 24% by weight of a compound having a structure derived from bisphenol A diglycidyl ether. Further, it was confirmed that the curable resin K contained 21% by weight of bisphenol A diglycidyl ether.
(硬化性樹脂Lの作製)
4-メチルシクロヘキサン-1,2-ジカルボン酸無水物336重量部を無水フタル酸296重量部に変更したこと以外は、上記「(硬化性樹脂Aの作製)」と同様にして硬化性樹脂Lを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Lは、上記式(1-2)における、Rに相当する部分が水素原子、Rに相当する部分がエチレン基、Rに相当する部分が1,2-フェニレン基、nに相当する値が0、Epに相当する部分がビスフェノールAジグリシジルエーテル由来の構造である化合物であることを確認した。
(Preparation of curable resin L)
A curable resin L was prepared in the same manner as in “(Preparation of curable resin A)” above, except that 336 parts by weight of 4-methylcyclohexane-1,2-dicarboxylic acid anhydride was changed to 296 parts by weight of phthalic anhydride. Obtained.
According to 1 H-NMR and 13 C-NMR, the curable resin L shows that in the above formula (1-2), the portion corresponding to R 1 is a hydrogen atom, the portion corresponding to R 2 is an ethylene group, and R 3 is equivalent to R 3 . It was confirmed that the portion corresponding to 1,2-phenylene group, the value corresponding to n was 0, and the portion corresponding to Ep had a structure derived from bisphenol A diglycidyl ether.
(硬化性樹脂Mの作製)
反応フラスコに、アクリル酸116重量部と、ビスフェノールAジグリシジルエーテル340重量部と、重合禁止剤としてハイドロキノン0.5重量部と、トリフェニルフォスフィン0.5重量部とを加え、マントルヒーターを用いて110℃で5時間撹拌することにより、硬化性樹脂Mを得た。
H-NMR及び13C-NMRにより、硬化性樹脂Mは、下記式(4-1)で表される化合物の含有割合が53重量%、下記式(4-2)で表される化合物の含有割合が22重量%であることを確認した。
(Production of curable resin M)
To the reaction flask, 116 parts by weight of acrylic acid, 340 parts by weight of bisphenol A diglycidyl ether, 0.5 parts by weight of hydroquinone as a polymerization inhibitor, and 0.5 parts by weight of triphenylphosphine were added, and a mantle heater was used. And a curable resin M was obtained by stirring at 110° C. for 5 hours.
By 1 H-NMR and 13 C-NMR, the curable resin M contains 53% by weight of the compound represented by the following formula (4-1), and the curable resin M contains the compound represented by the following formula (4-2). It was confirmed that the content ratio was 22% by weight.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(実施例1~12、比較例1~4)
表1、2に記載された配合比に従い、各材料を、遊星式撹拌装置にて撹拌した後、セラミック3本ロールにて均一に混合して実施例1~12、比較例1~4の硬化性樹脂組成物を得た。遊星式撹拌装置としては、あわとり練太郎(シンキー社製)を用いた。
(Examples 1 to 12, Comparative Examples 1 to 4)
According to the compounding ratios shown in Tables 1 and 2, each material was stirred by a planetary stirring device and then uniformly mixed by a three-roll ceramic roll to cure Examples 1 to 12 and Comparative Examples 1 to 4. A resin composition was obtained. As a planetary stirrer, Awatori Rentaro (manufactured by Shinky Co.) was used.
<評価>
実施例及び比較例で得られた各硬化性樹脂組成物について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The following evaluations were performed for each curable resin composition obtained in the examples and comparative examples. The results are shown in Tables 1 and 2.
(配向膜に対する接着性)
ITO薄膜付きガラス基板にイミド樹脂をスピンコートで塗布し、80℃でプリベイクした後、230℃で焼成することにより、配向膜付き基板を作製した。イミド樹脂としてはSE7492(日産化学社製)を用いた。
実施例及び比較例で得られた各硬化性樹脂組成物100重量部に対して、シリカスペーサー1重量部を遊星式撹拌装置によって均一に分散させた。シリカスペーサーとしては、SI-H055(積水化学工業社製)を用いた。次いで、シリカスペーサーを分散させた硬化性樹脂組成物を配向膜付き基板の配向膜上に微小滴下した。硬化性樹脂組成物を滴下した配向膜付き基板に、硬化性樹脂組成物を介して別の配向膜付き基板を十字状に貼り合わせ、メタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって接着性試験片を得た。作製した接着試験片における基板の端部を半径5mmの金属円柱を使って5mm/minの速度で押し込んだときに、パネル剥がれが起こる際の強度を測定した。得られた測定値(kgf)をシール直径(cm)で除した値が、3.0kgf/cm以上であった場合を「◎」、2.5kgf/cm以上3.0kgf/cm未満であった場合を「○」、2.0kgf/cm以上2.5kgf/cm未満であった場合を「△」、2.0kgf/cm未満であった場合を「×」として配向膜に対する接着性を評価した。
(Adhesiveness to alignment film)
A glass substrate with an ITO thin film was applied with an imide resin by spin coating, prebaked at 80° C., and then baked at 230° C. to prepare a substrate with an alignment film. SE 7492 (manufactured by Nissan Kagaku) was used as the imide resin.
To 100 parts by weight of each curable resin composition obtained in Examples and Comparative Examples, 1 part by weight of a silica spacer was uniformly dispersed by a planetary stirring device. SI-H055 (manufactured by Sekisui Chemical Co., Ltd.) was used as the silica spacer. Then, the curable resin composition in which the silica spacer was dispersed was minutely dropped on the alignment film of the substrate with the alignment film. After the curable resin composition was dropped onto the substrate with an alignment film, another substrate with an alignment film was laminated in a cross shape with the curable resin composition interposed therebetween, and after irradiating with ultraviolet rays of 3000 mJ/cm 2 with a metal halide lamp, An adhesive test piece was obtained by heating at 120° C. for 60 minutes. The strength when the panel peeled off was measured when the edge of the substrate in the produced adhesive test piece was pushed at a speed of 5 mm/min using a metal cylinder having a radius of 5 mm. When the value obtained by dividing the obtained measured value (kgf) by the seal diameter (cm) was 3.0 kgf/cm or more, it was “⊚”, and it was 2.5 kgf/cm or more and less than 3.0 kgf/cm. The adhesiveness to the alignment film was evaluated as "○" when the case was 2.0 kgf/cm or more and less than 2.5 kgf/cm and "x" when it was less than 2.0 kgf/cm. ..
(透湿防止性)
実施例及び比較例で得られた各硬化性樹脂組成物を、平滑な離型フィルム上にコーターを用いて厚さ200μm以上300μm以下となるように塗布した。次いで、メタルハライドランプを用いて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって透湿度測定用フィルムを得た。JIS Z 0208の防湿包装材料の透湿度試験方法(カップ法)に準じた方法で透湿度試験用カップを作製し、得られた透湿度測定用フィルムを取り付け、温度80℃、湿度90%RHの恒温恒湿オーブンに投入して透湿度を測定した。得られた透湿度の値が、50g/m・24hr未満であった場合を「◎」、50g/m・24hr以上60g/m・24hr未満であった場合を「○」、60g/m・24hr以上70g/m・24hr未満であった場合を「△」、70g/m・24hr以上であった場合を「×」として透湿防止性を評価した。
(Moisture-proof property)
Each curable resin composition obtained in Examples and Comparative Examples was applied on a smooth release film by using a coater so that the thickness was 200 μm or more and 300 μm or less. Then, after irradiating with ultraviolet rays of 3000 mJ/cm 2 using a metal halide lamp, the film for moisture permeability measurement was obtained by heating at 120° C. for 60 minutes. A moisture permeability test cup was prepared by a method according to the moisture permeability test method (cup method) for moisture-proof packaging materials of JIS Z 0208, and the obtained moisture permeability measurement film was attached to the cup at a temperature of 80° C. and a humidity of 90% RH. It was placed in a constant temperature and constant humidity oven and the water vapor permeability was measured. When the obtained water vapor transmission rate was less than 50 g/m 2 ·24 hr, “⊚”, and when it was 50 g/m 2 ·24 hr or more and less than 60 g/m 2 ·24 hr, “◯”, 60 g/ m 2 · 24 hr or more 70 g / m where the a was less than 2 · 24 hr or "△", was evaluated anti-moisture permeability as "×" the case was 70g / m 2 · 24hr or more.
(液晶表示素子の表示性能)
ITO薄膜付きガラス基板にイミド樹脂をスピンコートで塗布し、80℃でプリベイクした後、230℃で焼成することにより、配向膜付き基板を作製した。イミド樹脂としてはSE7492(日産化学社製)を用いた。
実施例及び比較例で得られた各硬化性樹脂組成物100重量部に対して、シリカスペーサー1重量部を遊星式撹拌装置によって均一に分散させ、脱泡処理をして硬化性樹脂組成物中の泡を取り除いた後、ディスペンス用のシリンジに充填し、再び脱泡処理を行った。シリカスペーサーとしては、SI-H055(積水化学工業社製)を用い、ディスペンス用のシリンジとしては、PSY-10E(武蔵エンジニアリング社製)を用いた。次いで、ディスペンサーを用いて、硬化性樹脂組成物を枠を描く様に配向膜付き基板の配向膜上に塗布した。ディスペンサーとしては、SHOTMASTER300(武蔵エンジニアリング社製)を用いた。続いて、TN液晶の微小滴を液晶滴下装置にて硬化性樹脂組成物の枠内に滴下塗布した。TN液晶を滴下塗布した配向膜付き基板に、硬化性樹脂組成物を介して別の配向膜付き基板を重ね、真空貼り合わせ装置にて5Paの減圧下にて2枚の基板を貼り合わせ、セルを得た。TN液晶としては、JC-5001LA(チッソ社製)を用いた。得られたセルにメタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって硬化性樹脂組成物を硬化させ、液晶表示素子を作製した。得られた液晶表示素子を温度80℃、湿度90%RHの環境下にて144時間保管した後、AC3.5Vの電圧駆動をさせ、表示むら(色むら)の有無を目視で観察した。液晶表示素子の周辺部に表示むらが全く見られなかった場合を「◎」、少し薄い表示むらが見えた場合を「○」、はっきりとした濃い表示むらがあった場合を「△」、はっきりとした濃い表示むらが周辺部のみではなく、中央部まで広がっていた場合を「×」として液晶表示素子の表示性能を評価した。
なお、評価が「◎」、「○」の液晶表示素子は実用に全く問題のないレベルである。
(Display performance of liquid crystal display element)
A glass substrate with an ITO thin film was applied with an imide resin by spin coating, prebaked at 80° C., and then baked at 230° C. to prepare a substrate with an alignment film. SE 7492 (manufactured by Nissan Kagaku) was used as the imide resin.
To 100 parts by weight of each curable resin composition obtained in Examples and Comparative Examples, 1 part by weight of a silica spacer was uniformly dispersed by a planetary stirrer, and defoaming treatment was performed to obtain a curable resin composition. After removing the bubbles, the syringe for filling was filled, and the defoaming treatment was performed again. SI-H055 (manufactured by Sekisui Chemical Co., Ltd.) was used as the silica spacer, and PSY-10E (manufactured by Musashi Engineering Co., Ltd.) was used as the syringe for dispensing. Then, using a dispenser, the curable resin composition was applied onto the alignment film of the substrate with the alignment film so as to draw a frame. As the dispenser, SHOTMASTER 300 (manufactured by Musashi Engineering Co., Ltd.) was used. Then, fine droplets of TN liquid crystal were dropped and applied in the frame of the curable resin composition by a liquid crystal dropping device. Another substrate with an alignment film is overlaid on the substrate with an alignment film onto which TN liquid crystal has been dropped and applied via a curable resin composition, and the two substrates are bonded together under a reduced pressure of 5 Pa with a vacuum bonding device to form a cell. Got JC-5001LA (manufactured by Chisso Corporation) was used as the TN liquid crystal. After irradiating the obtained cell with ultraviolet rays of 3000 mJ/cm 2 with a metal halide lamp, the curable resin composition was cured by heating at 120° C. for 60 minutes to prepare a liquid crystal display element. The obtained liquid crystal display element was stored under an environment of a temperature of 80° C. and a humidity of 90% RH for 144 hours, then driven at a voltage of AC 3.5 V, and the presence or absence of display unevenness (color unevenness) was visually observed. When there is no display unevenness at the periphery of the liquid crystal display element, it is indicated as "◎", when a slightly light display unevenness is seen, it is indicated as "○", and when there is a clear dark display unevenness, it is indicated as "△". The display performance of the liquid crystal display device was evaluated as "x" when the dark display unevenness spreads not only to the peripheral portion but also to the central portion.
In addition, the liquid crystal display elements with the evaluations of “⊚” and “∘” have practically no problems.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
本発明によれば、配向膜に対する接着性と透湿防止性との両方に優れる硬化性樹脂組成物を提供することができる。また、本発明によれば、該硬化性樹脂組成物を用いてなる液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子を提供することができる。 According to the present invention, it is possible to provide a curable resin composition which is excellent in both the adhesiveness to an alignment film and the moisture permeation preventive property. Further, according to the present invention, it is possible to provide a sealant for liquid crystal display elements, a vertical conduction material, and a liquid crystal display element, which are obtained by using the curable resin composition.

Claims (6)

  1. 硬化性樹脂と重合開始剤及び/又は熱硬化剤とを含有し、前記硬化性樹脂は、下記式(1-1)で表される化合物及び/又は下記式(1-2)で表される化合物を含有することを特徴とする硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    式(1-1)及び(1-2)中、Rは、水素原子又はメチル基を表し、Rは、下記式(2-1)、(2-2)、又は、(2-3)で表される基を表し、Rは、置換されていてもよい脂肪族ジカルボン酸又はその無水物由来の構造を表し、Xは、環状ラクトンの開環構造を表し、nは、0以上5以下であり、Epは、2官能以上のエポキシ化合物由来の構造を表す。
    Figure JPOXMLDOC01-appb-C000002
    式(2-1)~(2-3)中、*は、結合位置を表し、式(2-2)中、aは、1以上8以下の整数であり、式(2-3)中、bは、1以上8以下の整数であり、cは、1以上3以下の整数であり、dは、1以上8以下の整数である。
    A curable resin and a polymerization initiator and/or a thermosetting agent are contained, and the curable resin is a compound represented by the following formula (1-1) and/or a compound represented by the following formula (1-2). A curable resin composition comprising a compound.
    Figure JPOXMLDOC01-appb-C000001
    In the formulas (1-1) and (1-2), R 1 represents a hydrogen atom or a methyl group, and R 2 represents the following formulas (2-1), (2-2), or (2-3 ), R 3 represents a structure derived from an optionally substituted aliphatic dicarboxylic acid or an anhydride thereof, X represents a ring-opening structure of a cyclic lactone, and n is 0 or more. It is 5 or less, and Ep represents a structure derived from a bifunctional or higher functional epoxy compound.
    Figure JPOXMLDOC01-appb-C000002
    In formulas (2-1) to (2-3), * represents a bonding position, and in formula (2-2), a is an integer of 1 or more and 8 or less, and in formula (2-3), b is an integer of 1 or more and 8 or less, c is an integer of 1 or more and 3 or less, and d is an integer of 1 or more and 8 or less.
  2. 前記式(1-1)及び(1-2)中、Rは、下記式(3-1)、(3-2)、又は、(3-3)で表される構造である請求項1記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    式(3-1)~(3-3)中、*は、結合位置を表し、式(3-1)中、Rは、水素原子、又は、炭素数1以上10以下のアルキル基を表し、式(3-2)中、Rは、水素原子、又は、炭素数1以上10以下のアルキル基を表し、式(3-3)中、R及びRは、それぞれ独立して、水素原子、又は、炭素数1以上60以下の有機基を表すか、或いは、R、Rが結合している構造を表す。
    R 3 in the formulas (1-1) and (1-2) is a structure represented by the following formula (3-1), (3-2) or (3-3): The curable resin composition described.
    Figure JPOXMLDOC01-appb-C000003
    In formulas (3-1) to (3-3), * represents a bonding position, and in formula (3-1), R 4 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. In the formula (3-2), R 5 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and in the formula (3-3), R 6 and R 7 are each independently It represents a hydrogen atom or an organic group having 1 to 60 carbon atoms, or represents a structure in which R 6 and R 7 are bonded.
  3. 硬化性樹脂は、前記式(1-1)で表される化合物を含有する請求項1又は2記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the curable resin contains a compound represented by the formula (1-1).
  4. 請求項1、2又は3記載の硬化性樹脂組成物を用いてなる液晶表示素子用シール剤。 A sealant for a liquid crystal display device, which comprises the curable resin composition according to claim 1.
  5. 請求項4記載の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料。 A vertical conduction material containing the sealant for liquid crystal display device according to claim 4 and conductive fine particles.
  6. 請求項4記載の液晶表示素子用シール剤の硬化物又は請求項5記載の上下導通材料の硬化物を有する液晶表示素子。 A liquid crystal display device comprising the cured product of the sealant for a liquid crystal display device according to claim 4 or the cured product of the vertical conduction material according to claim 5.
PCT/JP2020/006222 2019-02-18 2020-02-18 Curable resin composition, sealing agent for liquid crystal display element, vertical conductive material, and liquid crystal display element WO2020171053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020514645A JP7160907B2 (en) 2019-02-18 2020-02-18 Sealant for liquid crystal display element for substrate with polyimide alignment film, vertical conduction material, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019026403 2019-02-18
JP2019-026403 2019-02-18

Publications (1)

Publication Number Publication Date
WO2020171053A1 true WO2020171053A1 (en) 2020-08-27

Family

ID=72144608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006222 WO2020171053A1 (en) 2019-02-18 2020-02-18 Curable resin composition, sealing agent for liquid crystal display element, vertical conductive material, and liquid crystal display element

Country Status (3)

Country Link
JP (1) JP7160907B2 (en)
TW (1) TWI826652B (en)
WO (1) WO2020171053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182245A1 (en) * 2022-03-25 2023-09-28 積水化学工業株式会社 Liquid crystal display element sealant and liquid crystal display element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188517A (en) * 1988-01-25 1989-07-27 Toagosei Chem Ind Co Ltd Production of curable composition and photosetting composition produced thereby
JPH03182755A (en) * 1989-12-12 1991-08-08 Fuji Photo Film Co Ltd Liquid photosensitive resin composition
JP2007041559A (en) * 2005-07-06 2007-02-15 Sekisui Chem Co Ltd Sealing agent for liquid crystal one-drop-fill method, vertical conducting material, and liquid crystal display element
JP2007121991A (en) * 2005-09-29 2007-05-17 Sony Corp Liquid crystal orientated film and liquid crystal display element
WO2009004960A1 (en) * 2007-06-29 2009-01-08 Dic Corporation Ultraviolet-curable composition for light-transmitting layer and optical disk
WO2017221936A1 (en) * 2016-06-21 2017-12-28 積水化学工業株式会社 Sealant for liquid crystal display elements, vertical conduction material, and liquid crystal display element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320386A (en) * 2004-05-06 2005-11-17 Nippon Petrochemicals Co Ltd Polyimide film laminate
JP6770487B2 (en) * 2017-06-12 2020-10-14 ヤマハ発動機株式会社 Tape recovery device and component mounting device equipped with this device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188517A (en) * 1988-01-25 1989-07-27 Toagosei Chem Ind Co Ltd Production of curable composition and photosetting composition produced thereby
JPH03182755A (en) * 1989-12-12 1991-08-08 Fuji Photo Film Co Ltd Liquid photosensitive resin composition
JP2007041559A (en) * 2005-07-06 2007-02-15 Sekisui Chem Co Ltd Sealing agent for liquid crystal one-drop-fill method, vertical conducting material, and liquid crystal display element
JP2007121991A (en) * 2005-09-29 2007-05-17 Sony Corp Liquid crystal orientated film and liquid crystal display element
WO2009004960A1 (en) * 2007-06-29 2009-01-08 Dic Corporation Ultraviolet-curable composition for light-transmitting layer and optical disk
WO2017221936A1 (en) * 2016-06-21 2017-12-28 積水化学工業株式会社 Sealant for liquid crystal display elements, vertical conduction material, and liquid crystal display element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182245A1 (en) * 2022-03-25 2023-09-28 積水化学工業株式会社 Liquid crystal display element sealant and liquid crystal display element
JP7421691B1 (en) 2022-03-25 2024-01-24 積水化学工業株式会社 Sealant for liquid crystal display elements and liquid crystal display elements

Also Published As

Publication number Publication date
JPWO2020171053A1 (en) 2021-03-11
JP7160907B2 (en) 2022-10-25
TWI826652B (en) 2023-12-21
TW202104321A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
KR20180100473A (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6905158B2 (en) Sealing agent for display elements, vertical conductive materials, and display elements
JP2016056361A (en) Polymerizable compound, curable resin composition, sealing agent for liquid crystal display element, vertical conducting material, and liquid crystal display element
JP6792088B2 (en) Sealing agent for liquid crystal dropping method, cured product, vertical conductive material, and liquid crystal display element
JP6683429B2 (en) Curable resin particles used in a sealing agent for a liquid crystal dropping method, a sealing agent for a liquid crystal dropping method, and a liquid crystal display element
JP6978314B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7160907B2 (en) Sealant for liquid crystal display element for substrate with polyimide alignment film, vertical conduction material, and liquid crystal display element
KR20190055015A (en) A sealing agent for a liquid crystal display element, an upper and lower conductive material, and a liquid crystal display element
JP7127990B2 (en) Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element
WO2017038611A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6928177B2 (en) Curable resin composition, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP7385790B1 (en) Sealant for display elements, sealant for liquid crystal display elements, and liquid crystal display elements
TWI846852B (en) Curable resin composition, sealant for liquid crystal display element, upper and lower conductive material and liquid crystal display element
JP6676833B1 (en) Method for producing sealant for liquid crystal display element
JP7088833B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2020042089A (en) Liquid crystal display element sealant, vertical conductive material, and liquid crystal display element
WO2017119407A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020514645

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759465

Country of ref document: EP

Kind code of ref document: A1