WO2020170874A1 - Optical layered body and method for manufacturing same - Google Patents

Optical layered body and method for manufacturing same Download PDF

Info

Publication number
WO2020170874A1
WO2020170874A1 PCT/JP2020/004976 JP2020004976W WO2020170874A1 WO 2020170874 A1 WO2020170874 A1 WO 2020170874A1 JP 2020004976 W JP2020004976 W JP 2020004976W WO 2020170874 A1 WO2020170874 A1 WO 2020170874A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically anisotropic
anisotropic layer
layer
liquid crystal
group
Prior art date
Application number
PCT/JP2020/004976
Other languages
French (fr)
Japanese (ja)
Inventor
丈也 酒井
Original Assignee
林テレンプ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林テレンプ株式会社 filed Critical 林テレンプ株式会社
Priority to KR1020217019611A priority Critical patent/KR102645532B1/en
Priority to CN202080014310.2A priority patent/CN113474691B/en
Priority to JP2021501868A priority patent/JP7196278B2/en
Publication of WO2020170874A1 publication Critical patent/WO2020170874A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Definitions

  • the present invention relates to an optical layered body in which arbitrary axes can be set and a manufacturing method thereof.
  • a variety of retardation plates are used in thin display devices such as liquid crystal displays (LCDs) and organic light emitting diodes (OLEDs) to improve display quality.
  • LCDs liquid crystal displays
  • OLEDs organic light emitting diodes
  • a broadband circular polarization plate is used to suppress reflection.
  • Patent Document 1 JP-A-2016-184013 discloses a first optically anisotropic layer made of a birefringence inducing material and a polymerizable liquid crystal.
  • a second retardation film in which the second optically anisotropic layer is directly laminated without an adhesive layer is disclosed.
  • a step of applying a birefringence inducing material on a supporting substrate to form a birefringence inducing material layer, and irradiating the birefringence inducing material layer with a first polarized light One light irradiation step, the polymerizable liquid crystal is applied to the birefringence induction material layer irradiated with the first polarized light, and the polymerizable liquid crystal material layer is laminated on the birefringence induction material layer.
  • a second light irradiation step of irradiating the laminated body with second polarized light, the polarization axis direction of the first polarized light, and the polarization axis direction of the second polarized light is described.
  • an object of the present invention is to provide an optical layered body and a manufacturing method capable of setting an arbitrary slow axis in each optically anisotropic layer.
  • the present inventor as a result of earnest research to solve the above problems, after forming a first optically anisotropic layer oriented by irradiating the birefringence inducing material layer with a first polarized light, By subjecting the surface of the optically anisotropic layer of 1 to an orientation different from that of the inner layer, and applying a polymerizable liquid crystal material to the surface to form a second optically anisotropic layer, ( i) The optical orientation of the inner layer made of the birefringence-inducing material is not affected by another layer, the desired orientation can be imparted to the inner layer, and (ii) the role as the orientation film.
  • the orientation of the surface layer to be achieved can be adjusted independently of the inner layer, it has been found that a desired orientation can be given to the second optically anisotropic layer in consideration of the relation with the orientation of the inner layer. It was Then, the obtained optical laminate was found to be able to arbitrarily set the slow axis of the first optically anisotropic layer and the slow axis of the second optically anisotropic layer, and completed the present invention. It was
  • a first optically anisotropic layer made of a birefringence inducing material A second optically anisotropic layer made of a polymerizable liquid crystal material, which is an optical laminate laminated adjacent to each other,
  • the first optically anisotropic layer is composed of a surface layer and an inner layer having different slow axes, and the surface layer and the second optically anisotropic layer are in contact with each other,
  • Aspect 2 The optical laminate according to Aspect 1, wherein the slow axis direction of the inner layer of the first optically anisotropic layer and the slow axis direction of the second optically anisotropic layer are non-parallel and non-orthogonal. An optical stack that intersects at an angle.
  • Aspect 3 The optical laminate according to Aspect 1 or 2, wherein the polymerizable liquid crystal material contains a crosslinking agent having a functional group capable of forming a crosslink with the birefringence inducing material.
  • [Mode 4] A method for manufacturing the optical laminate according to any one of aspects 1 to 3, On a birefringence inducing material layer made of a birefringence inducing material, irradiating a first polarized light for expressing a phase difference, a first light irradiation step of forming a first optically anisotropic layer, The surface of the first optically anisotropic layer is subjected to an alignment treatment so as to give an orientation different from that of the inner layer, and a surface alignment step of forming a surface layer on the first optically anisotropic layer, And a step of applying a polymerizable liquid crystal material to form a second optically anisotropic layer on the surface of the first optically anisotropic layer that has been subjected to the alignment treatment.
  • Aspect 5 The production method according to Aspect 4, wherein the surface alignment step irradiates the surface of the first optically anisotropic layer with second polarized light having a polarization axis direction different from that of the first polarized light. And a second light irradiation step of forming a surface layer on the first optically anisotropic layer, the method for producing an optical laminate.
  • Aspect 6 The manufacturing method according to Aspect 5, wherein a surface treatment step of treating the surface of the first optically anisotropic layer with a solvent between the first light irradiation step and the second light irradiation step.
  • the manufacturing method of an optical laminated body further provided with.
  • Aspect 8 The optical laminate according to any one of aspects 1 to 3, wherein The birefringence inducing material, a first optically anisotropic layer formed by irradiating a first polarized light for expressing a phase difference, The surface of the first optically anisotropic layer is subjected to an alignment treatment so as to give an orientation different from that of the inner layer, and a surface layer formed on the first optically anisotropic layer, An optical layered body comprising a second optically anisotropic layer formed by applying a polymerizable liquid crystal material on the surface layer.
  • a desired combination of slow axis can be formed in the first optically anisotropic layer and the second optically anisotropic layer, so that the slow phase of each other is delayed.
  • the angle at which the axes intersect can be set arbitrarily, and for example, it can be used as a circularly polarizing plate by laminating it with a linearly polarizing plate.
  • the method for producing an optical layered body of the present invention comprises irradiating a birefringence inducing material layer made of a birefringence inducing material with a first polarized light for expressing a retardation, and orienting the first optical anisotropy.
  • a first light irradiation step of forming a layer, and the surface of the first optically anisotropic layer is subjected to an alignment treatment so as to give an orientation different from that of the internal layer, and the surface of the first optically anisotropic layer is formed.
  • the method includes a surface alignment step of forming a layer, and a step of applying a polymerizable liquid crystal material to form a second optically anisotropic layer on the surface of the first optically anisotropic layer subjected to the alignment treatment.
  • FIGS. 1A-1D are schematic cross-sectional views for explaining one embodiment of a method for manufacturing an optical layered body of the present invention. Although cross-sections of each layer are shown in FIGS. 1A-1D, these do not represent actual thickness ratios.
  • FIG. 1A is a schematic cross-sectional view showing a laminate of a base material 10 and a birefringence inducing material layer 20.
  • FIG. 1B shows a state after the first light irradiation step, and shows the substrate 10 and the first optical anisotropy formed by orienting the molecules of the birefringence inducing material layer 20 by irradiation of the first polarized light. It is a schematic sectional drawing which shows the laminated body with the layer 30.
  • FIG. 1C shows a state after the surface alignment step, in which the substrate 10, the inner layer 31 having the same orientation as the first optically anisotropic layer 30, and the alignment treatment on the surface opposite to the substrate 10 are performed.
  • FIG. 3 is a schematic cross-sectional view showing a laminated body with the first optically anisotropic layer 30 formed of a surface layer 32 having an orientation different from that of the inner layer 31.
  • FIG. FIG. 1D shows a state after the second optically anisotropic layer forming step, in which the base material 10, the first optically anisotropic layer 30 including the inner layer 31 and the surface layer 32, and the polymerizable liquid crystal material are shown.
  • It is a schematic sectional drawing which shows the optical laminated body 100 with the 2nd optical anisotropic layer 40 formed by applying.
  • the molecular orientation of the birefringence inducing material can be induced by irradiating the birefringence inducing material layer 20 made of the birefringence inducing material shown in FIG. 1A with the first polarized light for expressing the retardation.
  • the first optically anisotropic layer 30 oriented so as to have a predetermined slow axis is formed from the optically isotropic birefringence inducing material layer 20.
  • the birefringence inducing material layer 20 is not converted without changing the polarization state of the irradiated first polarized light. It is possible to irradiate the polarized light of.
  • the surface of the first optically anisotropic layer 30 shown in FIG. 1B is subjected to an alignment treatment so as to be oriented differently from the orientation given in the first light irradiation step, whereby the first optically anisotropic layer is obtained.
  • the surface layer 32 can be formed on the functional layer 30.
  • the first optically anisotropic layer 30 is formed into two layers, that is, the inner layer 31 having the originally formed orientation and the surface layer 32 having the orientation different from that.
  • the surface layer 32 functions as an alignment film, and the second optical anisotropy aligned corresponding to the alignment of the surface layer 32 is applied.
  • the layer 40 can be formed.
  • the second optically anisotropic layer 40 oriented so as to have a slow axis different from that of the inner layer 31 is formed on the surface layer 32. Since the orientations of the inner layer 31 and the surface layer 32 can be adjusted independently, it is possible to impart a desired orientation to the second optically anisotropic layer 40 in consideration of the relationship with the orientation of the inner layer 31. Yes, they can cross each other at the desired slow axis.
  • an optical laminate of the present invention it is not necessary to cut a plurality of films at a predetermined angle and precisely bond them together, so that the crossing angle of the slow axes can be easily adjusted. Further, since it can be manufactured in a long shape, an optical layered body can be efficiently obtained.
  • the birefringence inducing material layer is formed of a birefringence inducing material.
  • the birefringence-inducing material refers to a material capable of inducing birefringence in an axis-selective manner by molecular motion by light irradiation (preferably light irradiation and heating/cooling treatment) and molecular orientation based on the motion.
  • the birefringence inducing material may have a photosensitive group and may include a liquid crystalline polymer having a side chain structure capable of forming a liquid crystal structure. It may have the property of inducing orientation.
  • the photoreaction include a photodimerization reaction, a photoisomerization reaction, and a photo-Fries rearrangement reaction.
  • the liquid crystalline polymer When the liquid crystalline polymer is capable of forming a liquid crystal structure, it may have liquid crystallinity by having a mesogenic group that is a rigid site that exhibits liquid crystallinity in the side chain structure, or may have other liquid crystals. It has a structure capable of forming a dimer by a hydrogen bond with a polymer or other side chains of the same polymer, and even if it exhibits liquid crystallinity by forming a mesogenic structure by its dimerization. Good.
  • the mesogenic group or mesogenic structure is composed of two or more aromatic rings or aliphatic rings and a linking group connecting them, and the linking group may be a covalent bond or a hydrogen bond.
  • the aromatic ring include a benzene ring, a naphthalene ring, a heterocycle (for example, an oxygen-containing heterocycle such as a furan ring and a pyran ring; a pyrrole ring, a nitrogen-containing heterocycle such as an imidazole ring), and the like. Include a cyclohexane ring and the like.
  • these aromatic rings or aliphatic rings may have a substituent, and as the substituent, an alkyl group (for example, a C 1-6 alkyl group, preferably a C 1-4 alkyl group), An alkyloxy group (for example, a C 1-6 alkyloxy group, preferably a C 1-4 alkyloxy group), an alkenyl group (for example, a C 1-6 alkenyl group, preferably a C 1-4 alkenyl group), an alkynyl group ( For example, a C 1-6 alkynyl group, preferably a C 1-4 alkynyl group), a halogen atom and the like can be mentioned.
  • an alkyl group for example, a C 1-6 alkyl group, preferably a C 1-4 alkyl group
  • An alkyloxy group for example, a C 1-6 alkyloxy group, preferably a C 1-4 alkyloxy group
  • an alkenyl group for example, a C 1-6 al
  • the linking group is a covalent bond
  • a hydrogen bond a side chain structure having a carboxy group at the terminal and the like can be mentioned. In this case, the carboxy groups form a hydrogen bond.
  • the photosensitive group is not particularly limited as long as it is a functional group capable of causing a photoreaction with light energy, for example, a chalcone group, a coumarin group, a cinnamoyl group, a cinnamic acid group, a cinnamylidene acetic acid group, a biphenylacryloyl group, Examples thereof include a furyl acryloyl group, a naphthyl acryloyl group, an azobenzene group, a benzylidene aniline group and derivatives thereof, and a cinnamoyl group is preferable.
  • the liquid crystalline polymer has at least a side chain structure having both a photosensitive group and a structure capable of forming a liquid crystal structure in the repeating unit, and the photosensitive group is a mesogenic group or a mesogenic structure. May exist independently in the side chain structure, or may exist in a complex manner by sharing a chemical structure.
  • the birefringence inducing material of the present invention may include a liquid crystalline polymer having at least one structure selected from the group consisting of side chain structures represented by the following formulas (1) and (2).
  • R 1 is a hydrogen atom, an alkyl group (for example, a C 1-6 alkyl group, preferably a C 1-4 alkyl group), an alkyloxy group (for example, C 1 -6 alkyloxy group, preferably C 1-4 alkyloxy group), alkenyl group (eg C 1-6 alkenyl group, preferably C 1-4 alkenyl group), alkynyl group (eg C 1-6 alkynyl group) , Preferably a C 1-4 alkynyl group), and one or more selected from halogen atoms.)
  • an alkyl group for example, a C 1-6 alkyl group, preferably a C 1-4 alkyl group
  • an alkyloxy group for example, C 1 -6 alkyloxy group, preferably C 1-4 alkyloxy group
  • alkenyl group eg C 1-6 alkenyl group, preferably C 1-4 alkenyl group
  • alkynyl group eg C 1-6
  • k is 0 or 1, when k is 0, l is 0, when k is 1, l is an integer of 1 to 12;
  • W is a coumarin group, a cinnamoyl group, a cinnamylideneacetic acid group, a biphenylacryloyl group, a furylacryloyl group.
  • R 2 and R 3 are the same or different and each represents a hydrogen atom, an alkyl group (for example, a C 1-6 alkyl group, preferably a C 1-4 alkyl group), an alkyl group.
  • An oxy group for example, a C 1-6 alkyloxy group, preferably a C 1-4 alkyloxy group
  • an alkenyl group for example, a C 1-6 alkenyl group, preferably a C 1-4 alkenyl group
  • an alkynyl group for example, , A C 1-6 alkynyl group, preferably a C 1-4 alkynyl group
  • carboxy group and a halogen atom for example, a C 1-6 alkyloxy group, preferably a C 1-4 alkyloxy group
  • the side chain structures represented by the above formulas (1) and (2) represent the chemical structure of the terminal of the side chain in the repeating unit, and these side chain structures are within a range that does not impair the effects of the present invention.
  • Various chemical structures may be included between the main chain structure and the main chain structure.
  • the liquid crystalline polymer may be a homopolymer consisting of the same repeating unit containing the side chain structure or a copolymer containing repeating units containing side chain structures of different structures in addition to the repeating unit containing the side chain structure.
  • the main chain structure include structures formed by polymerizing hydrocarbon, acrylate, methacrylate, siloxane, maleimide, N-phenylmaleimide and the like.
  • liquid crystalline polymer When the liquid crystalline polymer is a copolymer, it may have a repeating unit that does not have a structure capable of forming a photosensitive group and/or a liquid crystal structure.
  • the birefringence inducing material of the present invention from the viewpoint of improving the adhesion between the first optically anisotropic layer and the second optically anisotropic layer when the polymerizable liquid crystal material contains a crosslinking agent.
  • a liquid crystal polymer having a side chain structure having a crosslinkable functional group may be included.
  • the crosslinkable functional group is not particularly limited as long as it is a functional group that causes a crosslinking reaction with a crosslinking agent described below, and examples thereof include a hydroxyl group, a carboxy group, an amino group and a thiol group.
  • the side chain structure having a crosslinkable functional group has the above-mentioned photosensitive group, and may be contained in a repeating unit containing a side chain structure capable of forming a liquid crystal structure, and a repeating unit other than the repeating unit. It may have a crosslinkable functional group therein.
  • a hydroxyl group or a carboxy group is preferable as the crosslinkable functional group
  • the liquid crystalline polymer has a side chain structure having a crosslinkable functional group of —(CH 2 ) n —OH (where n is an integer of 1 to 6).
  • -Ph-COOH in the formula, Ph is a divalent phenyl group
  • these side chain structures represent at least a part of the chemical structure of the side chain in the repeating unit, and within a range that does not impair the effects of the present invention, various side chain structures are present between the side chain structure and the main chain structure.
  • the birefringence inducing material of the present invention may contain a low molecular weight compound together with the liquid crystalline polymer in order to promote the orientation of the side chains of the liquid crystalline polymer.
  • the low molecular weight compound has a substituent such as biphenyl, terphenyl, phenylbenzoate, and azobenzene, which are known as mesogen components, and such a substituent and allyl, acrylate, methacrylate, cinnamic acid group (or a derivative thereof).
  • a liquid crystallinity in which a functional group such as a group is bonded via a spacer for example, an (oxy)alkylene group having 1 to 15 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms)) Those having are preferably used.
  • a spacer for example, an (oxy)alkylene group having 1 to 15 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms)
  • These low molecular weight compounds may be used alone or in combination of two or more.
  • the birefringence inducing material layer 20 is laminated on the base material 10, but the base material 10 may be omitted.
  • the substrate may be an optically isotropic substrate, for example, a transparent substrate having an optically isotropic phase such as glass or a triacetyl cellulose film (TAC film).
  • TAC film triacetyl cellulose film
  • the base material for example, a base material made of a material having low adhesion to the birefringence inducing material layer (first optical anisotropic layer), such as a general-purpose polyester film, is used as a release base material. May be. When a release substrate is used, it can be peeled off after the optical layered body of the present invention is formed.
  • the optical layered body can be a thin optical member having a structure having no base material and having a thickness substantially composed only of the film thickness of the optically anisotropic layer.
  • the birefringence inducing material layer formed of the birefringence inducing material as described above may use a previously formed birefringence inducing material film (may or may not be laminated on the base material). Well, it may be formed by coating the substrate.
  • a coating film of a birefringence inducing material the birefringence inducing material as described above is dissolved in a solvent to form a solution, and this solution is applied onto a substrate.
  • the solvent can be appropriately selected depending on the type of the birefringence inducing material, and examples thereof include dioxane, dichloroethane, cyclohexanone, toluene, tetrahydrofuran, o-dichlorobenzene, methyl ethyl ketone, methyl isobutyl ketone, and ethylene glycol derivatives (eg, ethylene glycol).
  • the concentration of the solvent is not particularly limited, and may be, for example, one containing 5 to 50% by weight of the birefringence inducing material, preferably 8 to 40% by weight, more preferably 10 to 25% by weight. Good.
  • a known coating method such as spin coating or roll coating can be used to apply the solution to the substrate. After coating, if necessary, the coating film may be dried by heating to form a laminate having a substrate and a birefringence inducing material layer.
  • the birefringence inducing material layer is preferably substantially optically isotropic, that is, it is preferable that the liquid crystal polymer is not substantially aligned.
  • first light irradiation step In the first light irradiation step, the birefringence inducing material layer is irradiated with the first polarized light for expressing the phase difference.
  • a selective photoreaction of the molecules occurs not only on the surface of the birefringence inducing material layer but also inside the layer, and the orientation of the molecules is induced, which results in the first optical anisotropy.
  • a layer is formed.
  • the first polarized light can be directly irradiated onto the birefringence inducing material layer without passing through another layer, an intended slow axis is formed by the irradiated polarized light. can do.
  • the first polarized light is the infrared, visible light, ultraviolet rays (eg, near ultraviolet rays, far ultraviolet rays, etc.), X-rays, charged particle beams (eg, electron beams, etc.), etc.
  • the wavelength of the light may be 200 to 500 nm, though it is not particularly limited as long as it is the wavelength of the generated light and varies depending on the kind of the side chain structure of the liquid crystalline polymer.
  • the first polarized light may be, for example, a linearly polarized light of ultraviolet rays.
  • an ultraviolet irradiation device such as a high-pressure mercury lamp may be used as a light source and converted into linearly polarized light via a Glan-Taylor prism.
  • the irradiation amount of the first polarized light may be, for example, 10 mJ/cm 2 to 10 J/cm 2 , and preferably 50 mJ/cm 2 from the viewpoint of aligning not only the surface but also the inside of the birefringence inducing material layer. It may be ⁇ 1 J/cm 2 , more preferably 100 mJ/cm 2 to 500 mJ/cm 2 .
  • the method for producing an optical layered body of the present invention may optionally include a heating step of heating the formed first optically anisotropic layer after the first light irradiation step.
  • Molecular orientation is induced depending on the irradiation direction and vibration direction of the first polarized light irradiated in the first light irradiation step, and unaligned molecules are aligned according to the aligned molecules. It is possible for the molecules to carry out molecular motion, and it is possible to promote the orientation of unoriented molecules. After heating, it may be cooled down to about room temperature, for example, by leaving it standing.
  • the heating temperature in the heating step is not particularly limited as long as the orientation of the unaligned molecules is induced along the side chains where the liquid crystalline polymer undergoes a photoreaction due to molecular motion, but the liquid crystal phase transition temperature of the birefringence inducing material It is above, and it is preferable to set below the isotropic phase transition temperature. For example, it may be 100 to 200° C., preferably 110 to 180° C., and more preferably 120 to 160° C.
  • the heating time is not particularly limited as long as the orientation of the unaligned molecules is induced along the side chains where the liquid crystalline polymer undergoes a photoreaction due to molecular motion, but the type of the liquid crystalline polymer, the heating temperature, etc.
  • the time may be appropriately set depending on the above conditions, and may be, for example, 1 minute or longer, preferably 3 minutes or longer, and more preferably 5 minutes or longer.
  • the upper limit is not particularly limited, but may be about 60 minutes (preferably about 40 minutes, more preferably about 30 minutes) from the viewpoint of economy.
  • the surface of the first optically anisotropic layer is subjected to orientation treatment so as to be oriented differently from the inner layer.
  • the surface layer is formed on the first optically anisotropic layer and is composed of the same birefringence inducing materials, but two layers of the inner layer and the surface layer having different orientation states are formed. It is formed in the first optically anisotropic layer.
  • the internal layer may mean a portion of the first optically anisotropic layer other than the surface layer.
  • the method of the alignment treatment is not particularly limited as long as the surface of the first optically anisotropic layer can form an alignment layer different from the inner layer thereof, for example, a rubbing treatment, a photo-alignment treatment by the second polarized light irradiation, etc. Can be mentioned.
  • the orientation direction can be controlled by rotating a roller wrapped with a cloth such as cellulose, nylon or polyester while pressing it at a constant pressure and rubbing the surface of the first optically anisotropic layer in a constant direction. Therefore, the surface layer having a desired alignment direction can be formed, but the method of alignment treatment is preferably photo-alignment treatment by polarized light irradiation.
  • the surface of the first optically anisotropic layer is irradiated with a second polarized light having a polarization axis direction different from that of the first polarized light to form a surface layer on the first optically anisotropic layer. It may be the second light irradiation step of forming. In the second light irradiation step, even after the molecular orientation in the first light irradiation step (preferably the first light irradiation step and the heating step), a polarization axis direction different from that of the first polarized light is set.
  • the axial-selective photoreaction centering on the unreacted birefringence-inducing material of the first optically anisotropic layer selectively occurs near the surface. Can be provided with a different orientation from that of the inner layer. On the other hand, probably because the molecules of the inner layer of the first optically anisotropic layer are already oriented with a high degree of orientation, even after the second light irradiation step, the inside of the first optically anisotropic layer is The layer orientation itself is not transformed.
  • the second polarized light light having various wavelengths described above can be used as the first polarized light, and for example, linear polarized light of ultraviolet rays may be used. Further, as the second polarized light, a different kind of light from the first polarized light irradiated in the first light irradiation step may be used, or the same kind of light may be used.
  • the second polarized light may have a polarization axis direction different from that of the first polarized light, for example, the axis angle may differ from the polarization axis of the first polarized light by 5 to 85°, and preferably 10 They may differ by ⁇ 80°, more preferably by 20-70°.
  • the difference in the axis angle between the polarization axis of the second polarized light and the polarization axis of the first polarized light depends on the alignment state (not yet measured) near the surface of the first optically anisotropic layer after the first light irradiation step.
  • the slow axis of the second optically anisotropic layer to be formed later can be arbitrarily set by adjusting in consideration of the reaction birefringence inducing material and the like).
  • the irradiation amount of the second polarized light may be, for example, 50 mJ/cm 2 to 20 J/cm 2 , and preferably 100 mJ/cm 2 from the viewpoint of reorienting the surface of the oriented first optically anisotropic layer. It may be from cm 2 to 10 J/cm 2 , more preferably from 150 mJ/cm 2 to 1 J/cm 2 .
  • the method for producing an optical layered body of the present invention may further include a surface treatment step of treating the surface of the birefringence inducing material layer with a solvent after the first light irradiation step.
  • a surface treatment step of treating the surface of the birefringence inducing material layer with a solvent after the first light irradiation step.
  • a surface alignment step such as a second irradiation of polarized light and a rubbing treatment.
  • the surface treatment step may be performed after the heating step.
  • the surface treatment step by applying a solvent to the surface of the first optically anisotropic layer to dissolve the surface portion, the molecular orientation performed by the first light irradiation step is relaxed to a random state. Possibly because it is possible, it is possible to eliminate the orientation of the surface portion of the first optically anisotropic layer once formed by the first polarized light, and the orientation of the surface layer of the first optically anisotropic layer is isotropic.
  • the solvent may be applied to the surface of the first optically anisotropic layer and then dried. The drying method is not particularly limited as long as the applied solvent can be evaporated, but for example, it may be left standing and naturally dried. Only the surface to which the solvent is applied can be made isotropic.
  • the dose of the second polarization may be 0.1mJ / cm 2 ⁇ 200mJ / cm 2, preferably from 0.5mJ / cm 2 ⁇ 150mJ / cm 2, More preferably, it may be 1 mJ/cm 2 to 100 mJ/cm 2 .
  • the ratio of the irradiation amount of the first polarized light to the irradiation amount of the second polarized light is 1.5/1 to 100/1. May be, preferably 2/1 to 80/1, and more preferably 2.5/1 to 50/1.
  • the surface is isotropic, it is not necessary to consider the orientation state of the surface layer of the first optically anisotropic layer in the subsequent second light irradiation step, and thus the polarization axis of the second polarized light
  • the axial angle can be directly reflected on the slow axis of the second optically anisotropic layer. Therefore, the axis angle of the polarization axis of the second polarized light can be easily selected with respect to the setting of the slow axis of the second optically anisotropic layer to be formed later.
  • the solvent used in the surface treatment step is not particularly limited as long as it can dissolve the birefringence inducing material forming the first optically anisotropic layer, and is a good solvent for the birefringence inducing material. Or a poor solvent may be used.
  • the solvent used in the surface treatment step is, for example, a good birefringence-inducing material from the viewpoint of making the surface of the first optically anisotropic layer isotropic and suppressing dissolution of the first optically anisotropic layer to disturb the orientation thereof. It may be a mixed solvent in which a solvent and a poor solvent are mixed.
  • /Poor solvent may be 1/100 to 100/1, preferably 1/50 to 50/1, and more preferably 1/10 to 10/1.
  • the solvent used in the surface treatment step is, for example, water; an alcohol solvent such as methanol, ethanol, propanol, isopropyl alcohol, pentanol, or hexanol; an aliphatic or alicyclic group such as hexane, heptane, octane, cyclohexane Aromatic hydrocarbon solvents such as benzene, toluene, xylene; Ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, isopropyl methyl ketone, methyl isobutyl ketone, cyclohexanone; ethyl ether, propyl Ether-based solvents such as ether, isopropyl ether, methyl ethyl ether, methyl propyl ether, tetrahydrofuran, dioxane; nitrile-based solvent
  • the good solvent means a solvent having a solubility of 1 mass% or more at 25°C
  • the poor solvent means a solvent having a solubility of less than 1% by mass at 25°C.
  • dioxane, dichloroethane, cyclohexanone, toluene, tetrahydrofuran, o-dichlorobenzene or the like may be used as a good solvent for the birefringence inducing material
  • ethanol, methanol, n-hexane or the like may be used as a poor solvent for the birefringence inducing material. You may use.
  • These good solvents and poor solvents may be mixed at the above mixing weight ratio and used as a mixed solvent.
  • the second optically anisotropic layer forming step a polymerizable liquid crystal material is applied on the surface layer of the first optically anisotropic layer subjected to the alignment treatment to form the second optically anisotropic layer.
  • the surface layer oriented in the surface orientation step plays a role of an orientation film, and thus the second optical anisotropy oriented by utilizing the orientation direction is used. Layers can be formed.
  • the polymerizable liquid crystal material is a composition containing a monofunctional or difunctional polymerizable liquid crystal compound containing at least a reactive functional group and a mesogenic group, and reacts with a polymerization or crosslinking agent by light or heat.
  • the composition after the formation of the crosslinked structure is included.
  • the polymerizable liquid crystal compound may be a liquid crystal monomer or a liquid crystal polymer.
  • a polymerizable liquid crystal monomer and/or a polymerizable liquid crystal polymer having a polymerizable functional group which is polymerized by light or heat, or a crosslinkable functional group capable of introducing a crosslinked structure by a reaction with a crosslinking agent The crosslinkable liquid crystal monomer and/or the crosslinkable liquid crystal polymer having
  • the polymerizable liquid crystal compound is not particularly limited as long as it is a monomer having a mesogen group or a polymer having a unit composed of a mesogen group and capable of forming a liquid crystal structure and having polymerizability and/or crosslinkability.
  • Various polymerizable liquid crystal compounds can be used.
  • the polymerizable liquid crystal compound include Schiff base type, biphenyl type, terphenyl type, ester type, thioester type, stilbene type, tolan type, azoxy type, azo type, phenylcyclohexane type, pyrimidine type, cyclohexylcyclohexane type, trimesine type.
  • Examples include acid-based, triphenylene-based, torquecene-based, phthalocyanine-based, porphyrin-based liquid crystal compounds having a molecular skeleton, or a mixture of these compounds, and any compound that exhibits a nematic, cholesteric, or smectic liquid crystal phase. But it is okay.
  • a photopolymerizable nematic liquid crystal monomer may be used as the polymerizable liquid crystal compound.
  • the unit composed of the mesogen group may be in the main chain or side chain of the liquid crystal polymer.
  • the main chain type liquid crystal polymer polyester, polyamide, polycarbonate, polyimide, polyurethane, polybenzimidazole, polybenzoxazole, polybenzthiazole, polyazomethine, polyesteramide, polyester carbonate, Examples thereof include a polyesterimide-based liquid crystal polymer or a mixture thereof.
  • the side chain type liquid crystalline polymer may be a side chain of a polymer having a linear or cyclic skeleton chain such as polyacrylate type, polymethacrylate type, polyvinyl type, polysiloxane type, polyether type, polymalonate type. Examples thereof include a liquid crystal polymer having a mesogen group bonded thereto, or a mixture thereof.
  • the polymerizable liquid crystal material may contain a photopolymerization initiator and/or a thermal polymerization initiator when the polymerizable liquid crystal compound has a polymerizable functional group.
  • Irgacure 907, Irgacure 184, Irgacure 651, Irgacure 819, Irgacure 250, Irgacure 369 (all manufactured by Ciba Japan Co., Ltd.), Sequol BZ, Sequol Z, Sequol BEE (or more) , All manufactured by Seiko Chemical Co., Ltd., kayacure BP100 (manufactured by Nippon Kayaku Co., Ltd.), Kayacure UVI-6992 (manufactured by Dow), Adeka Optomer SP-152 or Adeka Optomer SP-170 (or more) , All commercially available from ADEKA, TAZ-A, TAZ-PP (all manufactured by Nippon Siber Hegner Co., Ltd.) and TAZ-104 (manufactured by Sanwa Chemical Co., Ltd.) can be used.
  • thermal polymerization initiator examples include azo compounds such as azobisisobutyronitrile; peroxides such as hydrogen peroxide, persulfates and benzoyl peroxide.
  • the content of the polymerization initiator is preferably 0.01 to 20% by weight, more preferably 0.03 to 10% by weight, further preferably 0.05 to 8% by weight, based on the total weight of the polymerizable liquid crystal material. .. Within the above range, polymerization can be carried out without disturbing the orientation of the polymerizable liquid crystal compound.
  • a photosensitizer When using a photopolymerization initiator as the polymerization initiator, a photosensitizer may be used together.
  • the photosensitizer include xanthone compounds such as xanthone and thioxanthone (eg, 2,4-diethylthioxanthone and 2-isopropylthioxanthone); anthracenes such as anthracene and alkoxy group-containing anthracene (eg, dibutoxyanthracene). Compounds; phenothiazine; rubrene and the like.
  • the polymerizable liquid crystal material may contain an appropriate crosslinking agent when the polymerizable liquid crystal compound has a crosslinkable functional group.
  • the polymerizable liquid crystal compound may be a liquid crystal compound which can be orientation-fixed by a means such as cross-linking (thermal cross-linking or photo-cross-linking) in a liquid crystal state or in a state cooled to a liquid crystal transition temperature or lower.
  • crosslinkable functional group examples include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group and oxetanyl group.
  • an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferable, and an acryloyloxy group is particularly preferable.
  • the polymerizable liquid crystal material contains a cross-linking agent
  • the liquid crystal polymer of the birefringence inducing material has a cross-linkable functional group
  • the liquid crystalline polymer can form cross-links.
  • the adhesion between layers can be improved.
  • the cross-linking agent a polyfunctional compound having two or more functional groups in the molecule can be mentioned.
  • the polyfunctional compound is not particularly limited as long as it has a functional group capable of forming a cross-linking bond with the liquid crystalline polymer.
  • the crosslinkable functional group is a hydroxyl group or a carboxy group
  • a compound having an isocyanate group, a carbodiimide group, an aziridine group, an azetidine group, an oxazoline group, an epoxy group, or the like can be given.
  • cross-linking agents from the viewpoint of reactivity to react with the cross-linkable functional group of the liquid crystalline polymer under a relatively mild reaction condition, it is a polyfunctional compound having two or more isocyanate groups in the molecule.
  • a polyisocyanate compound is preferable, and known polyisocyanate compounds can be used. Examples of polyisocyanate compounds include diisocyanate compounds and triisocyanate compounds.
  • diisocyanate compound examples include phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, methylcyclohexylene diisocyanate, bis(isocyanatomethyl)cyclohexane, methylenebis(cyclohexyl isocyanate), isophorone diisocyanate, hexamethylene diisocyanate. And a condensation compound of diol.
  • triisocyanate compound examples include an isocyanurate body of diisocyanate such as hexamethylene diisocyanate, a biuret body, and an adduct body which is an adduct of diisocyanate such as hexamethylene diisocyanate and methylolpropane.
  • an isocyanurate body of diisocyanate such as hexamethylene diisocyanate, a biuret body
  • adduct body which is an adduct of diisocyanate such as hexamethylene diisocyanate and methylolpropane.
  • crosslinking agents a triisocyanate compound can be preferably used.
  • the liquid crystal polymer may have an active hydrogen group as a cross-linkable functional group.
  • the active hydrogen group include a hydroxyl group, a carboxy group, an amino group, and a thiol group.
  • the active hydrogen group is a hydroxyl group, a urethane bond (-NH-CO-O-) is formed, and when the active hydrogen group is a carboxy group, an amide bond (-NH-CO-) is formed and an active hydrogen group is formed.
  • a urea bond (-NH-CO-NH-) is formed, and when the active hydrogen group is a thiol group, a thiourethane bond (-NH-CO-S-) is formed.
  • the active hydrogen group contained in the liquid crystal polymer is preferably a hydroxyl group or a carboxy group.
  • the content of the cross-linking agent in the polymerizable liquid crystal material is a polymerizable liquid crystal material from the viewpoint of suppressing the deterioration of the orientation and the optical properties of the second optically anisotropic layer due to the reaction with the liquid crystalline polymer.
  • the polymerizable liquid crystal material as described above is applied on the surface layer of the first optically anisotropic layer.
  • the application may be carried out by applying a polymerizable liquid crystal material dissolved in a solvent as a solution by a known coating method such as spin coating or roll coating.
  • the solvent can be appropriately selected depending on the type of the polymerizable liquid crystal material, and examples thereof include dioxane, dichloroethane, cyclohexanone, toluene, tetrahydrofuran, o-dichlorobenzene, methyl ethyl ketone, methyl isobutyl ketone, and ethylene glycol derivatives (eg ethylene.
  • Glycol monomethyl ether ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, etc.
  • propylene glycol derivatives propylene glycol monomethyl ether, propylene glycol 1-monomethyl ether 2-acetate, etc., and these solvents may be used alone or You may use it in combination of 2 or more types.
  • the solvent of the polymerizable liquid crystal material can be selected according to not only the combination of the types of the birefringence inducing material and the polymerizable liquid crystal material but also the alignment state of the surface layer. For example, when most of the molecules of the surface layer have a desired orientation (for example, when the surface treatment step is performed or when the rubbing treatment is performed as the orientation treatment), the orientation of the surface layer is set to the second orientation.
  • the solvent of the polymerizable liquid crystal material is preferably a poor solvent for the birefringence inducing material, from the viewpoint of suppressing the disturbance of the orientation of the first optically anisotropic layer while imparting it to the optically anisotropic layer.
  • the solvent of the polymerizable liquid crystal material is preferably a mixed solvent obtained by mixing a good solvent and a poor solvent of the birefringence inducing material.
  • the poor solvent of the birefringence inducing material is contained as the solvent of the polymerizable liquid crystal material, the first optically anisotropic layer is prevented from being disturbed and the orientation thereof is suppressed. can do.
  • a good solvent for the birefringence inducing material is contained as the solvent for the polymerizable liquid crystal material, the wettability of the solution with respect to the surface layer may be improved.
  • the molecules of the liquid crystal material can be aligned, and as a result, the second optically anisotropic layer can be aligned.
  • the solvent of the polymerizable liquid crystal material can be appropriately adjusted according to the combination of the types of the birefringence inducing material and the polymerizable liquid crystal material and the alignment state of the surface layer, but maintains the alignment of the first optically anisotropic layer.
  • a mixed weight ratio of the good solvent and the poor solvent of the birefringence inducing material good solvent/poor solvent.
  • a general solvent can be used according to the purpose, but it may contain, for example, toluene, an ethylene glycol derivative, a propylene glycol derivative or the like.
  • the surface layer of the first optically anisotropic layer existing below functions as an alignment film (alignment property imparting film), and alignment of liquid crystal molecules occurs.
  • the second optically anisotropic layer in which the liquid crystal is aligned in the predetermined direction is formed.
  • the second optically anisotropic layer forming step may optionally include a heating step and/or a light irradiation step (for example, a non-polarized light irradiation step) after forming the coating film of the polymerizable liquid crystal material.
  • the polymerizable liquid crystal material is already aligned in a predetermined direction corresponding to the orientation of the surface layer of the first optically anisotropic layer by forming a coating film, and the subsequent heating step and/or light irradiation.
  • the step for example, a non-polarized light irradiation step
  • the polymerizable liquid crystal material is polymerized and/or cross-linked to fix the orientation.
  • the orientation is fixed by polymerization by heating.
  • polymerization occurs upon irradiation with light and the orientation is fixed.
  • crosslinkage occurs during heating and/or irradiation with light, and the orientation is fixed.
  • the first optical difference is caused by the application of heat energy and/or light energy.
  • Crosslinking bonds can be formed between the layers of the anisotropic layer and the second optically anisotropic layer.
  • the heating step in the second optically anisotropic layer forming step is not particularly limited as long as the polymerization and/or crosslinking reaction proceeds, but it suppresses disturbing the orientation of the inner layer of the first optically anisotropic layer. From the viewpoint, it is preferable to perform the heating at a temperature not higher than the isotropic phase transition temperature of the birefringence inducing material. For example, it may be 70 to 180° C., preferably 80 to 150° C., and more preferably 100 to 140° C.
  • the heating time may be, for example, 1 minute or longer, preferably 3 minutes or longer, and more preferably 5 minutes or longer.
  • the upper limit is not particularly limited, but may be about 60 minutes (preferably about 40 minutes, more preferably about 30 minutes) from the viewpoint of economy.
  • the irradiation light is preferably non-polarized light.
  • the non-polarized light light having various wavelengths described above as the first polarized light or the second polarized light can be used, and for example, non-polarized ultraviolet light may be used.
  • the irradiation amount of light may be 10 mJ/cm 2 to 10 J/cm 2 , preferably 50 mJ/cm 2 to 1 J/cm 2 , and more preferably 100 mJ/cm 2 to 500 mJ/cm 2. ..
  • the optical layered body of the present invention is an optical layered body in which a first optically anisotropic layer made of a birefringence inducing material and a second optically anisotropic layer made of a polymerizable liquid crystal material are adjacently laminated.
  • the first optically anisotropic layer is composed of a surface layer and an inner layer having mutually different slow axes, and the surface layer and the second optically anisotropic layer are in contact with each other.
  • the first optically anisotropic layer is composed of a surface layer and an inner layer, and these layers are composed of the same birefringence inducing material.
  • the thickness of the first optically anisotropic layer may be 0.1 to 20 ⁇ m, preferably 0.3 to 15 ⁇ m, and more preferably 0.5 to 10 ⁇ m.
  • the surface layer may be near the surface of the first optically anisotropic layer that is in contact with the second optically anisotropic layer.
  • the surface layer may be formed by subjecting the surface of the first optically anisotropic layer to an orientation treatment so as to give an orientation different from that of the inner layer.
  • the alignment treatment may be performed according to the aspect of the surface alignment step in the above-described manufacturing method.
  • the polymerizable liquid crystal material forming the second optically anisotropic layer may contain a crosslinking agent having a functional group capable of forming a crosslink with the birefringence inducing material.
  • the cross-linking agent contained in the polymerizable liquid crystal material forms a cross-linking bond with the birefringence inducing material of the first optically anisotropic layer, whereby the first optically anisotropic layer and the second optically anisotropic layer are formed.
  • the adhesion with is improved. Thereby, since it is not necessary to provide an adhesive layer between the first optically anisotropic layer and the second optically anisotropic layer, the optical layered body can be made thin and the first optical anisotropic layer can be formed.
  • the thickness of the second optically anisotropic layer may be 0.1 to 20 ⁇ m, preferably 0.3 to 15 ⁇ m, and more preferably 0.5 to 10 ⁇ m. Further, the thickness ratio of the first optically anisotropic layer and the second optically anisotropic layer (first optically anisotropic layer/second optically anisotropic layer) is from 1/10 to It may be 10/1, preferably 1/8 to 8/1, and more preferably 1/5 to 5/1.
  • the second optically anisotropic layer may be formed by applying a polymerizable liquid crystal material on the surface layer of the first optically anisotropic layer subjected to the alignment treatment.
  • the application of the polymerizable liquid crystal material may be performed according to the aspect of the second optically anisotropic layer forming step in the above-described manufacturing method.
  • the thickness of the optical layered body of the present invention may be, for example, 1 to 40 ⁇ m, preferably 2 to 30 ⁇ m, and more preferably 3 to 20 ⁇ m.
  • the slow axis direction of the inner layer of the first optically anisotropic layer and the slow axis direction of the second optically anisotropic layer intersect.
  • the optical layered body of the present invention is produced by the above-mentioned production method, whereby the slow axis of the first optically anisotropic layer (inner layer) and the slow axis of the second optically anisotropic layer are formed.
  • the angle formed can be set to an arbitrary angle.
  • the slow axis direction of the first optically anisotropic layer (inner layer) and the slow axis direction of the second optically anisotropic layer may intersect at an angle that is non-parallel and non-orthogonal.
  • the angle formed by the slow axis of the first optically anisotropic layer (inner layer) and the slow axis of the second optically anisotropic layer may be 5 to 85°, preferably 8 It may be -80°, more preferably 10-75°.
  • the slow axis of the inner layer of the first optically anisotropic layer is measured as the slow axis of the entire first optically anisotropic layer because the influence of the orientation in the surface layer can be considered to be negligible. May be.
  • the slow axis direction is constant in the plane in the first optically anisotropic layer.
  • the polarization state is not converted by irradiating the lower layer with polarized light through the alignment layer (for example, from linearly polarized light to elliptically polarized light), without disturbing the molecular orientation, It is possible to keep the slow axis direction constant.
  • the optical layered body of the present invention can exhibit desired optical characteristics according to the above-mentioned manufacturing method.
  • the optical characteristics include a retardation value (for example, in-plane retardation value: Re).
  • the range shown below of these optical properties may be the range of the measured values of the optical laminate, and is the range of the measured values of the first optically anisotropic layer or the second optically anisotropic layer. Good.
  • the optical layered body of the present invention may have an in-plane retardation value (Re) of, for example, 1 to 600 nm, preferably 3 to 500 nm, and more preferably 5 to 400 nm.
  • the in-plane retardation value (Re) may be a measured value for light having a wavelength of 550 nm.
  • the optical laminate of the present invention can be used, for example, as a retardation film, and can be used for various optical members (antireflection film, optical compensation film, etc.).
  • the optical layered body of the present invention can be used as a circularly polarizing plate used as an antireflection film in an OLED such as an organic EL display device by laminating it with a linear polarizing plate as a retardation film.
  • the optical properties (retardation value Re, etc.) of the obtained optical layered body were measured by using a birefringence measuring device (AxoScan, AxoScan), and the thickness was measured by a film thickness meter (FILMETRICS, It was measured using F20).
  • Copolymer 1 was dissolved in tetrahydrofuran (THF) to prepare a solution. This solution was applied on a cover glass substrate with a spin coater to a thickness of 2.4 ⁇ m and dried at 25° C.
  • the coating film after drying was irradiated with polarized light (first polarized light) obtained by converting ultraviolet rays from a high-pressure mercury lamp into linearly polarized light using a Glan-Taylor prism for 200 seconds perpendicularly to the coating film (irradiation amount 200 mJ/ cm 2 ), a first optically anisotropic layer was formed. After irradiation of the first polarized light, the alignment was induced by heating at 130° C. for 3 minutes and cooling to room temperature. The optical properties of the obtained coating film were 90° with respect to the direction of the polarized axis of irradiation, in which the axial direction of the in-plane retardation was.
  • the ultraviolet rays from the high-pressure mercury lamp are converted into linearly polarized light whose polarization axis direction is different by 45° from the polarization axis direction of the previously irradiated polarized light (second polarized light).
  • second polarized light For 300 seconds (irradiation dose 300 mJ/cm 2 ) to form a surface layer on the first optically anisotropic layer.
  • a polymerizable liquid crystal compound (LC-242 manufactured by BASF) and 5 parts by weight of a photopolymerization initiator (Igarcure 907 manufactured by Ciba Specialty Chemicals) were mixed, and THF and propylene glycol 1-monomethyl ether 2-
  • a solution was prepared by dissolving in a mixed solvent having a volume ratio (THF:PGMEA) of 1:1 with acetate (PGMEA).
  • This solution is applied on the coating film obtained after the second polarized light irradiation by using a spin coater so as to have a thickness of 0.9 ⁇ m, heated to 70° C., and then cooled to room temperature.
  • An anisotropic layer was formed.
  • non-polarizing ultraviolet rays were irradiated for 100 seconds (irradiation amount 400 mJ/cm 2 ) to polymerize the polymerizable liquid crystal compound.
  • the in-plane retardation value of the obtained optical layered body was 242 nm (Linear Retardance: 228 nm, Circular Retardance: -78 nm).
  • the second optically anisotropic layer was transferred to an optically isotropic film with an adhesive. Then, the optical properties of the peeled first optically anisotropic layer and second optical anisotropic layer were measured.
  • the in-plane retardation value Re of the first optically anisotropic layer was 135 nm, and the slow axis direction was 90° with respect to the polarization axis direction of the irradiated first polarized light.
  • the in-plane retardation value Re of the second optically anisotropic layer was 115.3 nm, and the slow axis direction was 77° with respect to the polarization axis direction of the irradiated first polarized light.
  • the desired slow axis direction of the second optically anisotropic layer We were able to. From this, it was confirmed that the optical laminate was a laminate of two optically anisotropic layers, and the angle formed by the slow axis of each layer was 13°.
  • the slow axis direction was constant in the plane of the first optically anisotropic layer.
  • Example 2 Copolymer 1 was dissolved in THF to prepare a solution. This solution was applied on a cover glass substrate with a spin coater to a thickness of 2.4 ⁇ m and dried at 25° C. The coating film after drying was irradiated with polarized light (first polarized light) obtained by converting ultraviolet rays from a high-pressure mercury lamp into linearly polarized light using a Glan-Taylor prism for 200 seconds (irradiation amount 200 mJ/cm 2 ). An optically anisotropic layer was formed. After irradiation with polarized light, the alignment was induced by heating at 130° C. for 3 minutes and cooling to room temperature. The optical properties of the obtained coating film were 90° with respect to the direction of the polarized axis of irradiation, in which the axial direction of the in-plane retardation was.
  • first polarized light obtained by converting ultraviolet rays from a high-pressure mercury lamp into linearly polarized light using a Gla
  • a mixed solvent having a volume ratio of THF and ethanol (THF:ethanol) of 1:6 was applied to the obtained coating film by a spin coater and left to dry. Further, the polarized light (second polarized light) obtained by converting the ultraviolet light from the high-pressure mercury lamp into a linearly polarized light whose polarization axis direction is 60° different from the polarization axis direction of the polarized light previously irradiated by using the Glan-Taylor prism is applied. For 70 seconds (irradiation dose 70 mJ/cm 2 ) to form a surface layer on the first optically anisotropic layer.
  • a polymerizable liquid crystal compound (LC-242 manufactured by BASF) and 5 parts by weight of a photopolymerization initiator (Igarcure 907 manufactured by Ciba Specialty Chemicals) were mixed and dissolved in toluene to prepare a solution.
  • This solution is applied on the coating film obtained after the second polarized light irradiation by using a spin coater so as to have a thickness of 0.9 ⁇ m, heated to 70° C., and then cooled to room temperature.
  • An anisotropic layer was formed.
  • non-polarizing ultraviolet rays were irradiated for 100 seconds (irradiation amount 400 mJ/cm 2 ) to polymerize the polymerizable liquid crystal compound.
  • the obtained optical layered body had an in-plane retardation value of 142.7 nm (Linear Retardance: 114.8 nm, Circular Retardance: 84.5 nm).
  • the optical characteristics of each layer of the obtained optical layered product were calculated by the analysis software (Multi-Layer Analysis) of the birefringence measuring device (AxoScan, manufactured by AXOMETRICS).
  • the in-plane retardation value Re of the first optically anisotropic layer was 100 nm, and the slow axis direction was 90° with respect to the polarization axis direction of the irradiated first polarized light.
  • the in-plane retardation value Re of the second optically anisotropic layer was 180 nm, and the slow axis direction was 28.5° with respect to the polarization axis direction of the irradiated first polarized light.
  • the optical laminate was a laminate of two optically anisotropic layers, and the angle formed by the slow axis of each layer was 61.5°.
  • the slow axis direction was constant in the plane of the first optically anisotropic layer.
  • Example 3 Copolymer 2 was dissolved in THF to prepare a solution. This solution was applied on a cover glass substrate with a spin coater to a thickness of 2.4 ⁇ m and dried at 25° C. The coating film after drying was irradiated with polarized light (first polarized light) obtained by converting ultraviolet rays from a high-pressure mercury lamp into linearly polarized light using a Glan-Taylor prism for 200 seconds (irradiation amount 200 mJ/cm 2 ). An optically anisotropic layer was formed. After irradiation of the first polarized light, the alignment was induced by heating at 130° C. for 3 minutes and cooling to room temperature. The optical properties of the obtained coating film were 90° with respect to the direction of the polarized axis of irradiation, in which the axial direction of the in-plane retardation was.
  • first polarized light obtained by converting ultraviolet rays from a high-pressure mercury lamp into linearly polarized light using
  • the ultraviolet rays from the high-pressure mercury lamp are converted into linearly polarized light whose polarization axis direction is different by 45° from the polarization axis direction of the previously irradiated polarized light (second polarized light).
  • second polarized light For 300 seconds (irradiation dose 300 mJ/cm 2 ) to form a surface layer on the first optically anisotropic layer.
  • a polymerizable liquid crystal compound (LC-242 manufactured by BASF), 5 parts by weight of a photopolymerization initiator (Igarcure 907 manufactured by Ciba Specialty Chemicals), and polyisocyanate (Duranate TKA-100 manufactured by Asahi Kasei Co., Ltd.) 0.6 parts by weight were mixed and dissolved in a mixed solvent having a volume ratio of THF and PGMEA (THF:PGMEA) of 1:1 to prepare a solution.
  • This solution is applied on the coating film obtained after the second polarized light irradiation by using a spin coater so as to have a thickness of 0.9 ⁇ m, heated to 70° C., and then cooled to room temperature.
  • An anisotropic layer was formed. Furthermore, non-polarizing ultraviolet rays were irradiated for 100 seconds (irradiation amount 400 mJ/cm 2 ) to polymerize the polymerizable liquid crystal compound and to crosslink the copolymer 2.
  • the obtained optical layered body had an in-plane retardation value of 202 nm (Linear Retardance: 185 nm, Circular Retardance: 81 nm).
  • a cross cut test was performed. As a result of performing the test according to JIS K 5600, peeling of the second optically anisotropic layer was not observed, and it was confirmed that the film had good adhesion.
  • optical characteristics of each layer of the obtained optical layered body showed the same optical characteristics as in Example 1.
  • Copolymer 1 was dissolved in tetrahydrofuran (THF) to prepare a solution. This solution was applied on a cover glass substrate with a spin coater to a thickness of 2.6 ⁇ m and dried at 25° C. The dried coating film was irradiated with ultraviolet rays from a high-pressure mercury lamp for 30 seconds with polarized light converted into linearly polarized light using a Glan-Taylor prism (irradiation amount 30 mJ/cm 2 ).
  • THF tetrahydrofuran
  • a polymerizable liquid crystal compound (LC-242, manufactured by BASF) and 5 parts by weight of a photopolymerization initiator (Igarcure 907, manufactured by Ciba Specialty Chemicals) were mixed on the obtained coating film.
  • the solution dissolved in toluene was applied using a spin coater to a thickness of 1.2 ⁇ m, heated to 70° C., and then cooled to room temperature. It was confirmed that the polymerizable liquid crystal compound was oriented at 90° with respect to the irradiated polarization axis direction.
  • the ultraviolet rays from the high-pressure mercury lamp were converted into linearly polarized light whose polarization axis direction was 60° different from the polarization axis direction of the previously irradiated polarized light, and the coating film was irradiated with the polarized light for 100 seconds ( Irradiation amount 100 mJ/cm 2 ).
  • the obtained optical layered body had an in-plane retardation value of 172.9 nm (Linear Retardance: 136.8 nm, Circular Retardance: ⁇ 105.7 nm) at any point.
  • the second optically anisotropic layer had an in-plane retardation value Re of 116.8 nm at any point, and the slow axis direction was 39.8° with respect to the polarization axis direction of the previously irradiated polarized light. ..
  • Re in-plane retardation value
  • the slow axes of the first optically anisotropic layer and the second optically anisotropic layer can be adjusted arbitrarily. there were.
  • Example 2 since the surface treatment with the solvent was performed before the irradiation with the second polarized light, it was possible to more easily orient the surface.
  • Example 3 since the polyisocyanate having an isocyanate group capable of forming a cross-link with the hydroxy group of the copolymer 2 was contained together with the polymerizable liquid crystal compound, the first optically anisotropic layer and the second optically different layer were mixed. The adhesion to the anisotropic layer was good.
  • an optical laminate in which the angle at which the slow axes intersect with each other can be arbitrarily set.
  • Such an optical laminate can be used for applications such as a polarizing plate and an optical compensation film used for a liquid crystal display device, an organic EL display device.
  • a linear polarizing plate when laminated with a linear polarizing plate, it can be used as a circular polarizing plate used in an organic EL display device.
  • Base material 20 Birefringence inducing material layer 30
  • First optical anisotropic layer 31 Inner layer 32
  • Surface layer 40 Second optical anisotropy Layer 100

Abstract

Provided are an optical layered body which can have an arbitrary axis setting, and a method for manufacturing the same. In the optical layered body (100), a first optically anisotropic layer (30) comprising a birefringence inducing material and a second optically anisotropic layer (40) comprising a polymerizable liquid crystal material are layered adjacent to each other, the first optically anisotropic layer (30) being constituted from a surface layer (32) and an internal layer (31) having mutually different slow axes, the surface layer (32) and the second optically anisotropic layer (40) being in contact with each other, and the slow-axis direction of the internal layer (31) of the first optically anisotropic layer and the slow-axis direction of the second optically anisotropic layer (40) intersecting with each other.

Description

光学積層体およびその製造方法Optical layered body and manufacturing method thereof 関連出願Related application
 本願は2019年2月22日出願の特願2019-030471の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。 The present application claims the priority of Japanese Patent Application No. 2019-030471 filed on February 22, 2019, and is hereby incorporated by reference in its entirety as a part of the present application.
 本発明は、任意の軸設定が可能である光学積層体およびその製造方法に関する。 The present invention relates to an optical layered body in which arbitrary axes can be set and a manufacturing method thereof.
 液晶ディスプレイ(LCD)や有機発光ダイオード(OLED)に代表される薄型の表示デバイスには、表示品質向上のため、各種位相差板が用いられている。例えば、有機EL表示装置などのOLEDでは、反射を抑制するために広帯域円偏光板が使用されている。 A variety of retardation plates are used in thin display devices such as liquid crystal displays (LCDs) and organic light emitting diodes (OLEDs) to improve display quality. For example, in an OLED such as an organic EL display device, a broadband circular polarization plate is used to suppress reflection.
 このような広帯域円偏光板に用いられる位相差フィルムとして、特許文献1(特開2016-184013号公報)には、複屈折誘起材料からなる第一の光学異方性層と、重合性液晶からなる、第二の光学異方性層とが、粘着層を介さずに直接積層された位相差フィルムが開示されている。また、その製造方法として、支持基材上に、複屈折誘起材料を塗布し、複屈折誘起材料層を形成する工程と、前記複屈折誘起材料層上に、第一の偏光を照射する、第一の光照射工程と、前記第一の偏光を照射された、前記複屈折誘起材料層上に、重合性液晶を塗布して、前記複屈折誘起材料層上に重合性液晶材料層が積層された積層体を形成する工程と、前記積層体に第二の偏光を照射する第二の光照射工程とを含み、前記第一の偏光の偏光軸方向と、前記第二の偏光の偏光軸方向とが、異なることを特徴とする位相差フィルムの製造方法が記載されている。 As a retardation film used for such a broadband circularly polarizing plate, Patent Document 1 (JP-A-2016-184013) discloses a first optically anisotropic layer made of a birefringence inducing material and a polymerizable liquid crystal. A second retardation film in which the second optically anisotropic layer is directly laminated without an adhesive layer is disclosed. Further, as its manufacturing method, a step of applying a birefringence inducing material on a supporting substrate to form a birefringence inducing material layer, and irradiating the birefringence inducing material layer with a first polarized light, One light irradiation step, the polymerizable liquid crystal is applied to the birefringence induction material layer irradiated with the first polarized light, and the polymerizable liquid crystal material layer is laminated on the birefringence induction material layer. And a second light irradiation step of irradiating the laminated body with second polarized light, the polarization axis direction of the first polarized light, and the polarization axis direction of the second polarized light. And are different from each other, a method for producing a retardation film is described.
特開2016-184013号公報JP, 2016-184013, A
 しかしながら、特許文献1に記載の位相差フィルムの製造方法では、複屈折誘起材料層を配向させるための第二の偏光を照射する第二の光照射工程において、配向されている重合性液晶材料層を介して第二の偏光を照射することとなり、配向されている重合性液晶材料層を透過する際に第二の偏光の偏光状態が変換されてしまうため、複屈折誘起材料層に所望の偏光を照射することは困難であった。そのため、複屈折誘起材料層と重合性液晶材料層とで意図した遅相軸の関係とすることが困難であった。 However, in the method for producing a retardation film described in Patent Document 1, in the second light irradiation step of irradiating the second polarized light for aligning the birefringence inducing material layer, the polymerizable liquid crystal material layer that is aligned is aligned. The second polarized light is radiated through, and the polarization state of the second polarized light is converted when passing through the oriented polymerizable liquid crystal material layer, so that the desired polarization in the birefringence inducing material layer is changed. Was difficult to irradiate. Therefore, it was difficult to establish the intended slow axis relationship between the birefringence inducing material layer and the polymerizable liquid crystal material layer.
 したがって、本発明の目的は、各光学異方性層において任意の遅相軸に設定することが可能である光学積層体および製造方法を提供することである。 Therefore, an object of the present invention is to provide an optical layered body and a manufacturing method capable of setting an arbitrary slow axis in each optically anisotropic layer.
 本発明者は、上記課題を解決するために鋭意研究を行った結果、複屈折誘起材料層に第一の偏光を照射して配向した第一の光学異方性層を形成した後に、第一の光学異方性層の表面をその内部層とは異なる配向となるように配向処理し、その表面に重合性液晶材料を適用して第二の光学異方性層を形成することによって、(i)複屈折誘起材料から構成される内部層の光配向において別の層が影響を及ぼすことがなく、内部層に所望の配向を付与することができるとともに、(ii)配向膜としての役割を果たす表面層の配向を内部層とは独立して調整できるため、内部層の配向性との関係を考慮して、第二の光学異方性層に所望の配向を付与することができることを見出した。そして、得られる光学積層体は、第一の光学異方性層の遅相軸と第二の光学異方性層の遅相軸を任意に設定することができることを見出し、本発明を完成させた。 The present inventor, as a result of earnest research to solve the above problems, after forming a first optically anisotropic layer oriented by irradiating the birefringence inducing material layer with a first polarized light, By subjecting the surface of the optically anisotropic layer of 1 to an orientation different from that of the inner layer, and applying a polymerizable liquid crystal material to the surface to form a second optically anisotropic layer, ( i) The optical orientation of the inner layer made of the birefringence-inducing material is not affected by another layer, the desired orientation can be imparted to the inner layer, and (ii) the role as the orientation film. Since the orientation of the surface layer to be achieved can be adjusted independently of the inner layer, it has been found that a desired orientation can be given to the second optically anisotropic layer in consideration of the relation with the orientation of the inner layer. It was Then, the obtained optical laminate was found to be able to arbitrarily set the slow axis of the first optically anisotropic layer and the slow axis of the second optically anisotropic layer, and completed the present invention. It was
 すなわち、本発明は、以下の態様で構成されうる。
〔態様1〕
 複屈折誘起材料からなる第一の光学異方性層と、
 重合性液晶材料からなる第二の光学異方性層とが、隣接して積層された光学積層体であって、
 第一の光学異方性層が、互いに遅相軸が異なる表面層と内部層とで構成され、前記表面層と第二の光学異方性層とが接しており、
 第一の光学異方性層の内部層の遅相軸方向と第二の光学異方性層の遅相軸方向とが、交差している、光学積層体。
〔態様2〕
 態様1に記載の光学積層体であって、第一の光学異方性層の内部層の遅相軸方向と第二の光学異方性層の遅相軸方向とが、非平行かつ非直交である角度で交差している、光学積層体。
〔態様3〕
 態様1または2に記載の光学積層体であって、重合性液晶材料が、複屈折誘起材料と架橋結合を形成できる官能基を有する架橋剤を含む、光学積層体。
〔態様4〕
 態様1~3のいずれか一態様に記載の光学積層体を製造する方法であって、
 複屈折誘起材料からなる複屈折誘起材料層上に、位相差を発現するための第一の偏光を照射して、第一の光学異方性層を形成する第一の光照射工程と、
 前記第一の光学異方性層の表面を、その内部層とは異なる配向を施すように配向処理し、第一の光学異方性層に表面層を形成する表面配向工程と、
 配向処理した前記第一の光学異方性層の表面上に、重合性液晶材料を適用して第二の光学異方性層を形成する工程とを備える、光学積層体の製造方法。
〔態様5〕
 態様4に記載の製造方法であって、前記表面配向工程が、前記第一の光学異方性層の表面に、前記第一の偏光とは異なる偏光軸方向を有する第二の偏光を照射して、第一の光学異方性層に表面層を形成する第二の光照射工程である、光学積層体の製造方法。
〔態様6〕
 態様5に記載の製造方法であって、前記第一の光照射工程と前記第二の光照射工程との間に、前記第一の光学異方性層の表面を溶媒で処理する表面処理工程をさらに備える、光学積層体の製造方法。
〔態様7〕
 態様1~3のいずれか一態様に記載の光学積層体と、直線偏光板とが積層されている円偏光板。
〔態様8〕
 態様1~3のいずれか一態様に記載の光学積層体であって、
 複屈折誘起材料に、位相差を発現するための第一の偏光を照射して形成された第一の光学異方性層と、
 前記第一の光学異方性層の表面を、その内部層とは異なる配向を施すように配向処理して、第一の光学異方性層に形成された表面層と、
 前記表面層上に、重合性液晶材料が適用して形成された第二の光学異方性層とを備える、光学積層体。
That is, the present invention can be configured in the following modes.
[Aspect 1]
A first optically anisotropic layer made of a birefringence inducing material,
A second optically anisotropic layer made of a polymerizable liquid crystal material, which is an optical laminate laminated adjacent to each other,
The first optically anisotropic layer is composed of a surface layer and an inner layer having different slow axes, and the surface layer and the second optically anisotropic layer are in contact with each other,
An optical laminate in which the slow axis direction of the inner layer of the first optically anisotropic layer and the slow axis direction of the second optically anisotropic layer intersect.
[Aspect 2]
The optical laminate according to Aspect 1, wherein the slow axis direction of the inner layer of the first optically anisotropic layer and the slow axis direction of the second optically anisotropic layer are non-parallel and non-orthogonal. An optical stack that intersects at an angle.
[Aspect 3]
The optical laminate according to Aspect 1 or 2, wherein the polymerizable liquid crystal material contains a crosslinking agent having a functional group capable of forming a crosslink with the birefringence inducing material.
[Mode 4]
A method for manufacturing the optical laminate according to any one of aspects 1 to 3,
On a birefringence inducing material layer made of a birefringence inducing material, irradiating a first polarized light for expressing a phase difference, a first light irradiation step of forming a first optically anisotropic layer,
The surface of the first optically anisotropic layer is subjected to an alignment treatment so as to give an orientation different from that of the inner layer, and a surface alignment step of forming a surface layer on the first optically anisotropic layer,
And a step of applying a polymerizable liquid crystal material to form a second optically anisotropic layer on the surface of the first optically anisotropic layer that has been subjected to the alignment treatment.
[Aspect 5]
The production method according to Aspect 4, wherein the surface alignment step irradiates the surface of the first optically anisotropic layer with second polarized light having a polarization axis direction different from that of the first polarized light. And a second light irradiation step of forming a surface layer on the first optically anisotropic layer, the method for producing an optical laminate.
[Aspect 6]
The manufacturing method according to Aspect 5, wherein a surface treatment step of treating the surface of the first optically anisotropic layer with a solvent between the first light irradiation step and the second light irradiation step. The manufacturing method of an optical laminated body further provided with.
[Aspect 7]
A circularly polarizing plate in which the optical laminate according to any one of aspects 1 to 3 and a linearly polarizing plate are laminated.
[Aspect 8]
The optical laminate according to any one of aspects 1 to 3, wherein
The birefringence inducing material, a first optically anisotropic layer formed by irradiating a first polarized light for expressing a phase difference,
The surface of the first optically anisotropic layer is subjected to an alignment treatment so as to give an orientation different from that of the inner layer, and a surface layer formed on the first optically anisotropic layer,
An optical layered body comprising a second optically anisotropic layer formed by applying a polymerizable liquid crystal material on the surface layer.
 なお、請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。 Note that any combination of at least two components disclosed in the claims and/or the description and/or the drawings is included in the present invention. In particular, any combination of two or more claims recited in the claims is included in the present invention.
 本発明の光学積層体およびその製造方法によると、第一の光学異方性層と第二の光学異方性層とで所望の遅相軸の組合せとすることができるため、互いの遅相軸の交差する角度を任意に設定可能であり、例えば、直線偏光板と積層させることにより円偏光板として使用することが可能である。 According to the optical layered body and the method for producing the same of the present invention, a desired combination of slow axis can be formed in the first optically anisotropic layer and the second optically anisotropic layer, so that the slow phase of each other is delayed. The angle at which the axes intersect can be set arbitrarily, and for example, it can be used as a circularly polarizing plate by laminating it with a linearly polarizing plate.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。図面は必ずしも一定の縮尺で示されておらず、本発明の原理を示す上で誇張したものになっている。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。
本発明の光学積層体の製造方法の一実施態様における第一の光照射工程前の概略断面図である。 本発明の光学積層体の製造方法の一実施態様における第一の光照射工程後の概略断面図である。 本発明の光学積層体の製造方法の一実施態様における表面配向工程後の概略断面図である。 本発明の光学積層体の製造方法の一実施態様における第二の光学異方性層形成工程後の概略断面図である。
The present invention will be understood more clearly from the following description of preferred embodiments with reference to the accompanying drawings. The drawings are not necessarily shown to scale and are exaggerated to illustrate the principles of the invention. However, the embodiments and drawings are for illustration and description purposes only, and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims.
It is a schematic sectional drawing before the 1st light irradiation process in one embodiment of the manufacturing method of the optical layered product of the present invention. It is a schematic sectional drawing after the 1st light irradiation process in one embodiment of the manufacturing method of the optical layered product of the present invention. It is a schematic sectional drawing after the surface alignment process in one embodiment of a manufacturing method of an optical layered product of the present invention. It is a schematic sectional drawing after the 2nd optically anisotropic layer formation process in one embodiment of a manufacturing method of an optical layered product of the present invention.
[光学積層体の製造方法]
 本発明の光学積層体の製造方法は、複屈折誘起材料からなる複屈折誘起材料層上に、位相差を発現するための第一の偏光を照射して、配向した第一の光学異方性層を形成する第一の光照射工程と、前記第一の光学異方性層の表面を、その内部層とは異なる配向を施すように配向処理し、第一の光学異方性層に表面層を形成する表面配向工程と、配向処理した前記第一の光学異方性層の表面上に、重合性液晶材料を適用して第二の光学異方性層を形成する工程とを備える。
[Method for producing optical laminate]
The method for producing an optical layered body of the present invention comprises irradiating a birefringence inducing material layer made of a birefringence inducing material with a first polarized light for expressing a retardation, and orienting the first optical anisotropy. A first light irradiation step of forming a layer, and the surface of the first optically anisotropic layer is subjected to an alignment treatment so as to give an orientation different from that of the internal layer, and the surface of the first optically anisotropic layer is formed. The method includes a surface alignment step of forming a layer, and a step of applying a polymerizable liquid crystal material to form a second optically anisotropic layer on the surface of the first optically anisotropic layer subjected to the alignment treatment.
 以下、本発明の一実施態様について図面を参照しながら説明する。図1A~図1Dは、本発明の光学積層体の製造方法の一実施態様を説明するための概略断面図である。図1A~図1Dには、各層の断面が示されているが、これらは実際の厚さの比を示すものではない。 An embodiment of the present invention will be described below with reference to the drawings. 1A to 1D are schematic cross-sectional views for explaining one embodiment of a method for manufacturing an optical layered body of the present invention. Although cross-sections of each layer are shown in FIGS. 1A-1D, these do not represent actual thickness ratios.
 図1Aは、基材10と複屈折誘起材料層20との積層体を示す概略断面図である。図1Bは、第一の光照射工程後の状態を示し、基材10と、第一の偏光の照射により複屈折誘起材料層20の分子が配向して形成された第一の光学異方性層30との積層体を示す概略断面図である。図1Cは、表面配向工程後の状態を示し、基材10と、前記第一の光学異方性層30と同じ配向を有する内部層31、および基材10とは反対側の表面の配向処理により内部層31とは異なる配向を施された表面層32からなる第一の光学異方性層30との積層体を示す概略断面図である。図1Dは、第二の光学異方性層形成工程後の状態を示し、基材10と、内部層31および表面層32からなる第一の光学異方性層30と、重合性液晶材料を適用して形成された第二の光学異方性層40との光学積層体100を示す概略断面図である。 FIG. 1A is a schematic cross-sectional view showing a laminate of a base material 10 and a birefringence inducing material layer 20. FIG. 1B shows a state after the first light irradiation step, and shows the substrate 10 and the first optical anisotropy formed by orienting the molecules of the birefringence inducing material layer 20 by irradiation of the first polarized light. It is a schematic sectional drawing which shows the laminated body with the layer 30. FIG. 1C shows a state after the surface alignment step, in which the substrate 10, the inner layer 31 having the same orientation as the first optically anisotropic layer 30, and the alignment treatment on the surface opposite to the substrate 10 are performed. 3 is a schematic cross-sectional view showing a laminated body with the first optically anisotropic layer 30 formed of a surface layer 32 having an orientation different from that of the inner layer 31. FIG. FIG. 1D shows a state after the second optically anisotropic layer forming step, in which the base material 10, the first optically anisotropic layer 30 including the inner layer 31 and the surface layer 32, and the polymerizable liquid crystal material are shown. It is a schematic sectional drawing which shows the optical laminated body 100 with the 2nd optical anisotropic layer 40 formed by applying.
 図1Aに示す複屈折誘起材料からなる複屈折誘起材料層20上に、位相差を発現するための第一の偏光を照射することにより、複屈折誘起材料の分子配向を誘起することができる。これにより、図1Bに示すように、光学的に等方である複屈折誘起材料層20から所定の遅相軸を有するように配向された第一の光学異方性層30が形成される。第一の光照射工程において、複屈折誘起材料層20の上には別の層がないため、照射された第一の偏光の偏光状態が変換されることなく、複屈折誘起材料層20に所望の偏光を照射することが可能である。 The molecular orientation of the birefringence inducing material can be induced by irradiating the birefringence inducing material layer 20 made of the birefringence inducing material shown in FIG. 1A with the first polarized light for expressing the retardation. Thereby, as shown in FIG. 1B, the first optically anisotropic layer 30 oriented so as to have a predetermined slow axis is formed from the optically isotropic birefringence inducing material layer 20. In the first light irradiation step, since there is no other layer on the birefringence inducing material layer 20, the birefringence inducing material layer 20 is not converted without changing the polarization state of the irradiated first polarized light. It is possible to irradiate the polarized light of.
 次いで、図1Bに示す第一の光学異方性層30の表面に、第一の光照射工程で付与された配向とは異なる配向を施すように配向処理することにより、第一の光学異方性層30に表面層32を形成することができる。これにより、図1Cに示すように、第一の光学異方性層30は、元々形成されていた配向を有する内部層31と、それとは異なる配向を有する表面層32との2層が形成される。 Next, the surface of the first optically anisotropic layer 30 shown in FIG. 1B is subjected to an alignment treatment so as to be oriented differently from the orientation given in the first light irradiation step, whereby the first optically anisotropic layer is obtained. The surface layer 32 can be formed on the functional layer 30. As a result, as shown in FIG. 1C, the first optically anisotropic layer 30 is formed into two layers, that is, the inner layer 31 having the originally formed orientation and the surface layer 32 having the orientation different from that. It
 そして、図1Cに示す表面層32上に、重合性液晶材料を適用すると、表面層32が配向膜の役割を果たし、表面層32の配向に対応して配向された第二の光学異方性層40を形成することができる。これにより、図1Dに示すように、表面層32上に内部層31とは異なる遅相軸を有するように配向された第二の光学異方性層40が形成される。内部層31と表面層32とは独立して配向を調整できるため、内部層31の配向性との関係を考慮して、第二の光学異方性層40に所望の配向を付与することができ、互いに所望の遅相軸で交差できる。 Then, when a polymerizable liquid crystal material is applied on the surface layer 32 shown in FIG. 1C, the surface layer 32 functions as an alignment film, and the second optical anisotropy aligned corresponding to the alignment of the surface layer 32 is applied. The layer 40 can be formed. As a result, as shown in FIG. 1D, the second optically anisotropic layer 40 oriented so as to have a slow axis different from that of the inner layer 31 is formed on the surface layer 32. Since the orientations of the inner layer 31 and the surface layer 32 can be adjusted independently, it is possible to impart a desired orientation to the second optically anisotropic layer 40 in consideration of the relationship with the orientation of the inner layer 31. Yes, they can cross each other at the desired slow axis.
 本発明の光学積層体の製造方法によると、複数のフィルムを所定の角度にカットし、精密に貼り合わせるなどの必要がないため、簡便に遅相軸の交差角度を調整することができる。また、長尺状に製造することも可能であるため、効率的に光学積層体を得ることができる。 According to the method for producing an optical laminate of the present invention, it is not necessary to cut a plurality of films at a predetermined angle and precisely bond them together, so that the crossing angle of the slow axes can be easily adjusted. Further, since it can be manufactured in a long shape, an optical layered body can be efficiently obtained.
(複屈折誘起材料層)
 複屈折誘起材料層は複屈折誘起材料から形成される。本発明において、複屈折誘起材料とは、光照射(好ましくは光照射と加熱冷却処理)による分子運動とそれに基づく分子配向により軸選択的に複屈折を誘起することができる材料をいう。
(Birefringence inducing material layer)
The birefringence inducing material layer is formed of a birefringence inducing material. In the present invention, the birefringence-inducing material refers to a material capable of inducing birefringence in an axis-selective manner by molecular motion by light irradiation (preferably light irradiation and heating/cooling treatment) and molecular orientation based on the motion.
 例えば、複屈折誘起材料は、感光性基を有し、かつ液晶構造を形成可能な側鎖構造を有する液晶性高分子を含んでいてもよく、側鎖に有する感光性基の光反応により分子配向が誘起される性質を有していてもよい。光反応は、光二量化反応、光異性化反応、光フリース転位反応等が挙げられる。 For example, the birefringence inducing material may have a photosensitive group and may include a liquid crystalline polymer having a side chain structure capable of forming a liquid crystal structure. It may have the property of inducing orientation. Examples of the photoreaction include a photodimerization reaction, a photoisomerization reaction, and a photo-Fries rearrangement reaction.
 液晶性高分子が液晶構造を形成可能である場合、側鎖構造に液晶性を発揮する剛直な部位であるメソゲン基を有することにより液晶性を発現していてもよいし、または、他の重合体または同一重合体の他の側鎖等との水素結合による二量体を形成可能な構造を有しており、その二量化によりメソゲン構造を形成することにより、液晶性を発現していてもよい。 When the liquid crystalline polymer is capable of forming a liquid crystal structure, it may have liquid crystallinity by having a mesogenic group that is a rigid site that exhibits liquid crystallinity in the side chain structure, or may have other liquid crystals. It has a structure capable of forming a dimer by a hydrogen bond with a polymer or other side chains of the same polymer, and even if it exhibits liquid crystallinity by forming a mesogenic structure by its dimerization. Good.
 メソゲン基またはメソゲン構造は、2つ以上の芳香族環または脂肪族環とこれを結合する連結基とで構成され、連結基は共有結合でも水素結合でもよい。
 芳香族環としては、ベンゼン環、ナフタレン環、複素環(例えば、フラン環、ピラン環等の酸素含有複素環;ピロール環、イミダゾール環等の窒素含有複素環)等が挙げられ、脂肪族環としては、シクロヘキサン環等が挙げられる。なお、これらの芳香族環または脂肪族環は、置換基を有していてもよく、置換基としては、アルキル基(例えば、C1-6アルキル基、好ましくはC1-4アルキル基)、アルキルオキシ基(例えば、C1-6アルキルオキシ基、好ましくはC1-4アルキルオキシ基)、アルケニル基(例えば、C1-6アルケニル基、好ましくはC1-4アルケニル基)、アルキニル基(例えば、C1-6アルキニル基、好ましくはC1-4アルキニル基)、ハロゲン原子等が挙げられる。
 連結基としては、共有結合である場合、単結合、-O-、-COO-、-OCO-、-N=N-、-NO=N-、-C=C-、-C≡C-、-CO-C=C-、-CH=N-、アルキレン基等が挙げられる。水素結合である場合、末端にカルボキシ基を有する側鎖構造等が挙げられ、この場合、カルボキシ基同士で水素結合を形成する。
The mesogenic group or mesogenic structure is composed of two or more aromatic rings or aliphatic rings and a linking group connecting them, and the linking group may be a covalent bond or a hydrogen bond.
Examples of the aromatic ring include a benzene ring, a naphthalene ring, a heterocycle (for example, an oxygen-containing heterocycle such as a furan ring and a pyran ring; a pyrrole ring, a nitrogen-containing heterocycle such as an imidazole ring), and the like. Include a cyclohexane ring and the like. In addition, these aromatic rings or aliphatic rings may have a substituent, and as the substituent, an alkyl group (for example, a C 1-6 alkyl group, preferably a C 1-4 alkyl group), An alkyloxy group (for example, a C 1-6 alkyloxy group, preferably a C 1-4 alkyloxy group), an alkenyl group (for example, a C 1-6 alkenyl group, preferably a C 1-4 alkenyl group), an alkynyl group ( For example, a C 1-6 alkynyl group, preferably a C 1-4 alkynyl group), a halogen atom and the like can be mentioned.
When the linking group is a covalent bond, a single bond, —O—, —COO—, —OCO—, —N=N—, —NO=N—, —C=C—, —C≡C—, -CO-C=C-, -CH=N-, an alkylene group and the like can be mentioned. In the case of a hydrogen bond, a side chain structure having a carboxy group at the terminal and the like can be mentioned. In this case, the carboxy groups form a hydrogen bond.
 感光性基としては、光エネルギーにより光反応を起こすことが可能な官能基であれば特に制限されず、例えば、カルコン基、クマリン基、シンナモイル基、桂皮酸基、シンナミリデン酢酸基、ビフェニルアクリロイル基、フリルアクリロイル基、ナフチルアクリロイル基、アゾベンゼン基、ベンジリデンアニリン基またはこれらの誘導体等が挙げられ、好ましくは、シンナモイル基であってもよい。 The photosensitive group is not particularly limited as long as it is a functional group capable of causing a photoreaction with light energy, for example, a chalcone group, a coumarin group, a cinnamoyl group, a cinnamic acid group, a cinnamylidene acetic acid group, a biphenylacryloyl group, Examples thereof include a furyl acryloyl group, a naphthyl acryloyl group, an azobenzene group, a benzylidene aniline group and derivatives thereof, and a cinnamoyl group is preferable.
 液晶性高分子は、繰り返し単位中に、感光性基および液晶構造を形成可能な構造の両方を有している側鎖構造を少なくとも有しているが、感光性基は、メソゲン基またはメソゲン構造とは、側鎖構造の中で独立に存在していてもよいし、化学構造を共有して複合的に存在していてもよい。 The liquid crystalline polymer has at least a side chain structure having both a photosensitive group and a structure capable of forming a liquid crystal structure in the repeating unit, and the photosensitive group is a mesogenic group or a mesogenic structure. May exist independently in the side chain structure, or may exist in a complex manner by sharing a chemical structure.
 本発明の複屈折誘起材料は、下記式(1)および(2)で表される側鎖構造からなる群から選択される少なくとも1種の構造を有する液晶性高分子を含んでいてもよい。 The birefringence inducing material of the present invention may include a liquid crystalline polymer having at least one structure selected from the group consisting of side chain structures represented by the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、tは1~3の整数であり、Rは水素原子、アルキル基(例えば、C1-6アルキル基、好ましくはC1-4アルキル基)、アルキルオキシ基(例えば、C1-6アルキルオキシ基、好ましくはC1-4アルキルオキシ基)、アルケニル基(例えば、C1-6アルケニル基、好ましくはC1-4アルケニル基)、アルキニル基(例えば、C1-6アルキニル基、好ましくはC1-4アルキニル基)、およびハロゲン原子から選択される1種または2種以上を示す。) (In the formula, t is an integer of 1 to 3, R 1 is a hydrogen atom, an alkyl group (for example, a C 1-6 alkyl group, preferably a C 1-4 alkyl group), an alkyloxy group (for example, C 1 -6 alkyloxy group, preferably C 1-4 alkyloxy group), alkenyl group (eg C 1-6 alkenyl group, preferably C 1-4 alkenyl group), alkynyl group (eg C 1-6 alkynyl group) , Preferably a C 1-4 alkynyl group), and one or more selected from halogen atoms.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、kは0または1であり、kが0の場合、lは0、kが1の場合、lは1~12の整数;Xは、単結合、C1-3アルキレン基、-C=C-、-C≡C-、-O-、-N=N-、-COO-、または-OCO-;Wは、クマリン基、シンナモイル基、シンナミリデン酢酸基、ビフェニルアクリロイル基、フリルアクリロイル基、ナフチルアクリロイル基、またはそれらの誘導体基;RおよびRは、それぞれ同一または異なって、水素原子、アルキル基(例えば、C1-6アルキル基、好ましくはC1-4アルキル基)、アルキルオキシ基(例えば、C1-6アルキルオキシ基、好ましくはC1-4アルキルオキシ基)、アルケニル基(例えば、C1-6アルケニル基、好ましくはC1-4アルケニル基)、アルキニル基(例えば、C1-6アルキニル基、好ましくはC1-4アルキニル基)、カルボキシ基およびハロゲン原子から選択される1種または2種以上を示す。) (In the formula, k is 0 or 1, when k is 0, l is 0, when k is 1, l is an integer of 1 to 12; X is a single bond, a C 1-3 alkylene group, C=C-, -C≡C-, -O-, -N=N-, -COO-, or -OCO-; W is a coumarin group, a cinnamoyl group, a cinnamylideneacetic acid group, a biphenylacryloyl group, a furylacryloyl group. , A naphthylacryloyl group, or a derivative group thereof; R 2 and R 3 are the same or different and each represents a hydrogen atom, an alkyl group (for example, a C 1-6 alkyl group, preferably a C 1-4 alkyl group), an alkyl group. An oxy group (for example, a C 1-6 alkyloxy group, preferably a C 1-4 alkyloxy group), an alkenyl group (for example, a C 1-6 alkenyl group, preferably a C 1-4 alkenyl group), an alkynyl group (for example, , A C 1-6 alkynyl group, preferably a C 1-4 alkynyl group), a carboxy group and a halogen atom.
 なお、上記式(1)および(2)で表される側鎖構造は、繰り返し単位における側鎖の末端の化学構造を表しており、本発明の効果を損なわない範囲において、これらの側鎖構造と主鎖構造との間に種々の化学構造を含んでいてもよい。 The side chain structures represented by the above formulas (1) and (2) represent the chemical structure of the terminal of the side chain in the repeating unit, and these side chain structures are within a range that does not impair the effects of the present invention. Various chemical structures may be included between the main chain structure and the main chain structure.
 液晶性高分子は、上記側鎖構造を含む同一繰り返し単位からなる単独重合体または上記側鎖構造を含む繰り返し単位以外に構造の異なる側鎖構造を含む繰り返し単位を含む共重合体であってもよい。主鎖構造としては、炭化水素、アクリレート、メタクリレート、シロキサン、マレイミド、N-フェニルマレイミド等が重合して形成される構造が挙げられる。 The liquid crystalline polymer may be a homopolymer consisting of the same repeating unit containing the side chain structure or a copolymer containing repeating units containing side chain structures of different structures in addition to the repeating unit containing the side chain structure. Good. Examples of the main chain structure include structures formed by polymerizing hydrocarbon, acrylate, methacrylate, siloxane, maleimide, N-phenylmaleimide and the like.
 液晶性高分子は、共重合体である場合、感光性基および/または液晶構造を形成可能な構造を有していない繰り返し単位を有していてもよい。 When the liquid crystalline polymer is a copolymer, it may have a repeating unit that does not have a structure capable of forming a photosensitive group and/or a liquid crystal structure.
 また、本発明の複屈折誘起材料は、重合性液晶材料に架橋剤が含まれる場合に、第一の光学異方性層と第二の光学異方性層との密着性を向上させる観点から、架橋性官能基を有する側鎖構造を有する液晶性高分子を含んでいてもよい。架橋性官能基とは、後述の架橋剤と架橋反応を起こす官能基であれば特に限定されないが、例えば、水酸基、カルボキシ基、アミノ基、チオール基等が挙げられる。架橋性官能基を有する側鎖構造は、上記の感光性基を有し、かつ液晶構造を形成可能である側鎖構造を含む繰り返し単位に含まれていてもよく、当該繰り返し単位以外の繰り返し単位中に架橋性官能基を有していてもよい。 Further, the birefringence inducing material of the present invention, from the viewpoint of improving the adhesion between the first optically anisotropic layer and the second optically anisotropic layer when the polymerizable liquid crystal material contains a crosslinking agent. Alternatively, a liquid crystal polymer having a side chain structure having a crosslinkable functional group may be included. The crosslinkable functional group is not particularly limited as long as it is a functional group that causes a crosslinking reaction with a crosslinking agent described below, and examples thereof include a hydroxyl group, a carboxy group, an amino group and a thiol group. The side chain structure having a crosslinkable functional group has the above-mentioned photosensitive group, and may be contained in a repeating unit containing a side chain structure capable of forming a liquid crystal structure, and a repeating unit other than the repeating unit. It may have a crosslinkable functional group therein.
 例えば、架橋性官能基として水酸基、カルボキシ基が好ましく、液晶性高分子は、架橋性官能基を有する側鎖構造として、-(CH-OH(式中、nは1~6の整数である)および-Ph-COOH(式中、Phは二価のフェニル基である)からなる群から選択される少なくとも1種の構造を有していてもよい。なお、これらの側鎖構造は、繰り返し単位における側鎖の化学構造の少なくとも一部を表しており、本発明の効果を損なわない範囲において、これらの側鎖構造と主鎖構造との間に種々の化学構造を含んでいてもよい。 For example, a hydroxyl group or a carboxy group is preferable as the crosslinkable functional group, and the liquid crystalline polymer has a side chain structure having a crosslinkable functional group of —(CH 2 ) n —OH (where n is an integer of 1 to 6). And -Ph-COOH (in the formula, Ph is a divalent phenyl group), and may have at least one structure selected from the group consisting of: In addition, these side chain structures represent at least a part of the chemical structure of the side chain in the repeating unit, and within a range that does not impair the effects of the present invention, various side chain structures are present between the side chain structure and the main chain structure. The chemical structure of
 また、本発明の複屈折誘起材料は、液晶性高分子の側鎖の配向性を促進するために、液晶性高分子とともに低分子化合物を含んでいてもよい。低分子化合物としては、メソゲン成分として知られているビフェニル、ターフェニル、フェニルベンゾエート、アゾベンゼン等の置換基を有し、このような置換基と、アリル、アクリレート、メタクリレート、桂皮酸基(またはその誘導体基)等の官能基を、スペーサー(例えば、炭素数1~15(好ましくは炭素数1~10、より好ましくは炭素数1~5)の(オキシ)アルキレン基等)を介して結合した液晶性を有するものが好ましく用いられる。これらの低分子化合物は、単独でまたは二種以上組み合わせて使用してもよい。 The birefringence inducing material of the present invention may contain a low molecular weight compound together with the liquid crystalline polymer in order to promote the orientation of the side chains of the liquid crystalline polymer. The low molecular weight compound has a substituent such as biphenyl, terphenyl, phenylbenzoate, and azobenzene, which are known as mesogen components, and such a substituent and allyl, acrylate, methacrylate, cinnamic acid group (or a derivative thereof). A liquid crystallinity in which a functional group such as a group is bonded via a spacer (for example, an (oxy)alkylene group having 1 to 15 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms)) Those having are preferably used. These low molecular weight compounds may be used alone or in combination of two or more.
 図1Aでは、基材10の上に複屈折誘起材料層20が積層されているが、基材10は省略してもよい。基材を用いる場合、光学的等方体からなる基材であってもよく、例えば、ガラスや、トリアセチルセルロースフィルム(TACフィルム)等の光学的等方相からなる透明基材であってもよい。また、基材としては、例えば、汎用ポリエステルフィルムなどの、複屈折誘起材料層(第一の光学異方性層)との密着性が低い材料からなる基材を、離型用基材として用いてもよい。離型用基材を用いる場合、本発明の光学積層体形成後に剥離することが可能であるため、基材自体の光学特性を考慮しなくてもよく、不透明な基材を用いてもよい。例えば、基材上に本発明の光学積層体を形成した後、粘着剤などを介して他の光学部材(例えば偏光板など)に接合し、その後離型用基材を剥離して使用することにより、光学積層体を、基材を持たない構成とし、厚みが実質的に光学異方性層の膜厚のみからなる、薄型の光学部材とすることができる。 In FIG. 1A, the birefringence inducing material layer 20 is laminated on the base material 10, but the base material 10 may be omitted. When a substrate is used, the substrate may be an optically isotropic substrate, for example, a transparent substrate having an optically isotropic phase such as glass or a triacetyl cellulose film (TAC film). Good. As the base material, for example, a base material made of a material having low adhesion to the birefringence inducing material layer (first optical anisotropic layer), such as a general-purpose polyester film, is used as a release base material. May be. When a release substrate is used, it can be peeled off after the optical layered body of the present invention is formed. Therefore, it is not necessary to consider the optical characteristics of the substrate itself, and an opaque substrate may be used. For example, after the optical laminate of the present invention is formed on a substrate, it is bonded to another optical member (such as a polarizing plate) via an adhesive or the like, and then the release substrate is peeled off for use. Thus, the optical layered body can be a thin optical member having a structure having no base material and having a thickness substantially composed only of the film thickness of the optically anisotropic layer.
 上述のような複屈折誘起材料からなる複屈折誘起材料層は、あらかじめ形成されていた複屈折誘起材料膜(基材に積層されていてもよく、積層されていなくてもよい)を用いてもよく、基材に塗膜して形成してもよい。複屈折誘起材料の塗膜を形成する場合、上述のような複屈折誘起材料を溶媒に溶解して溶液とし、この溶液を基材上に塗布する。溶媒は、複屈折誘起材料の種類に応じて適宜選択することができ、例えば、ジオキサン、ジクロロエタン、シクロヘキサノン、トルエン、テトラヒドロフラン、o-ジクロロベンゼン、メチルエチルケトン、メチルイソブチルケトン、エチレングリコール誘導体(例えば、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル等)、プロピレングリコール誘導体(例えば、プロピレングリコールモノメチルエーテル、プロピレングリコール1-モノメチルエーテル2-アセタート等)などが挙げられ、これらの溶媒は、単独でまたは二種以上組み合わせて使用してもよい。
 溶媒の濃度は、特に限定されないが、例えば、複屈折誘起材料を5~50重量%含有するものであってもよく、好ましくは8~40重量%、より好ましくは10~25重量%であってもよい。基材への溶液の塗布には、例えば、スピンコート、ロールコート等、公知の塗工方法を用いることができる。
 塗工後、必要に応じ、加熱して塗膜を乾燥させ、基材と複屈折誘起材料層とを有する積層体を形成してもよい。
The birefringence inducing material layer formed of the birefringence inducing material as described above may use a previously formed birefringence inducing material film (may or may not be laminated on the base material). Well, it may be formed by coating the substrate. When forming a coating film of a birefringence inducing material, the birefringence inducing material as described above is dissolved in a solvent to form a solution, and this solution is applied onto a substrate. The solvent can be appropriately selected depending on the type of the birefringence inducing material, and examples thereof include dioxane, dichloroethane, cyclohexanone, toluene, tetrahydrofuran, o-dichlorobenzene, methyl ethyl ketone, methyl isobutyl ketone, and ethylene glycol derivatives (eg, ethylene glycol). Monoethyl ether, diethylene glycol monoethyl ether, etc.), propylene glycol derivatives (eg, propylene glycol monomethyl ether, propylene glycol 1-monomethyl ether 2-acetate, etc.), etc., and these solvents may be used alone or in combination of two or more kinds. You may use it.
The concentration of the solvent is not particularly limited, and may be, for example, one containing 5 to 50% by weight of the birefringence inducing material, preferably 8 to 40% by weight, more preferably 10 to 25% by weight. Good. A known coating method such as spin coating or roll coating can be used to apply the solution to the substrate.
After coating, if necessary, the coating film may be dried by heating to form a laminate having a substrate and a birefringence inducing material layer.
 第一の光照射工程前において、複屈折誘起材料層は、実質的に光学的に等方であることが好ましく、すなわち、液晶高分子が実質的に配向されていないことが好ましい。 Before the first light irradiation step, the birefringence inducing material layer is preferably substantially optically isotropic, that is, it is preferable that the liquid crystal polymer is not substantially aligned.
(第一の光照射工程)
 第一の光照射工程では、複屈折誘起材料層上に、位相差を発現するための第一の偏光を照射する。第一の光照射工程を行うことによって、複屈折誘起材料層の表面だけでなく内部にまで、分子の選択的な光反応が生じ、分子の配向性が誘起され、第一の光学異方性層が形成される。本発明の光学積層体の製造方法では、複屈折誘起材料層上に、別の層を介することなく第一の偏光を直接照射することができるため、照射した偏光により意図した遅相軸を形成することができる。
(First light irradiation step)
In the first light irradiation step, the birefringence inducing material layer is irradiated with the first polarized light for expressing the phase difference. By performing the first light irradiation step, a selective photoreaction of the molecules occurs not only on the surface of the birefringence inducing material layer but also inside the layer, and the orientation of the molecules is induced, which results in the first optical anisotropy. A layer is formed. In the method for producing an optical layered body of the present invention, since the first polarized light can be directly irradiated onto the birefringence inducing material layer without passing through another layer, an intended slow axis is formed by the irradiated polarized light. can do.
 第一の偏光は、赤外線、可視光線、紫外線(例えば、近紫外線、遠紫外線等)、X線、荷電粒子線(例えば、電子線等)等、液晶性高分子の感光性基が光反応を生じる波長の光であれば特に限定されず、液晶性高分子の側鎖構造の種類によっても異なるが、光の波長は、200~500nmであってもよい。第一の偏光は、例えば、紫外線の直線偏光であってもよく、この場合、例えば、光源として高圧水銀灯などの紫外線照射装置を用いて、グランテーラープリズムを介して直線偏光に偏光変換してもよい。
 また、第一の偏光の照射量は、複屈折誘起材料層の表面だけでなく内部まで配向させる観点から、例えば10mJ/cm~10J/cmであってもよく、好ましくは50mJ/cm~1J/cm、より好ましくは100mJ/cm~500mJ/cmであってもよい。
The first polarized light is the infrared, visible light, ultraviolet rays (eg, near ultraviolet rays, far ultraviolet rays, etc.), X-rays, charged particle beams (eg, electron beams, etc.), etc. The wavelength of the light may be 200 to 500 nm, though it is not particularly limited as long as it is the wavelength of the generated light and varies depending on the kind of the side chain structure of the liquid crystalline polymer. The first polarized light may be, for example, a linearly polarized light of ultraviolet rays. In this case, for example, an ultraviolet irradiation device such as a high-pressure mercury lamp may be used as a light source and converted into linearly polarized light via a Glan-Taylor prism. Good.
The irradiation amount of the first polarized light may be, for example, 10 mJ/cm 2 to 10 J/cm 2 , and preferably 50 mJ/cm 2 from the viewpoint of aligning not only the surface but also the inside of the birefringence inducing material layer. It may be ˜1 J/cm 2 , more preferably 100 mJ/cm 2 to 500 mJ/cm 2 .
 本発明の光学積層体の製造方法では、必要に応じて、第一の光照射工程後、形成された第一の光学異方性層を加熱する加熱工程を備えていてもよい。第一の光照射工程で照射された第一の偏光の照射方向と振動方向に依存して分子配向が誘起され、未配向の分子も配向した分子に従って配向するが、その後の加熱により液晶性高分子が分子運動を行うことが可能となり、未配向分子の配向を促進することができる。加熱後は、例えば放置することなどにより室温程度まで、冷却すればよい。 The method for producing an optical layered body of the present invention may optionally include a heating step of heating the formed first optically anisotropic layer after the first light irradiation step. Molecular orientation is induced depending on the irradiation direction and vibration direction of the first polarized light irradiated in the first light irradiation step, and unaligned molecules are aligned according to the aligned molecules. It is possible for the molecules to carry out molecular motion, and it is possible to promote the orientation of unoriented molecules. After heating, it may be cooled down to about room temperature, for example, by leaving it standing.
 加熱工程での加熱温度は、液晶性高分子が分子運動によって光反応を起こした側鎖に沿って未配向分子の配向が誘起される限り特に限定されないが、複屈折誘起材料の液晶相転移温度以上であり、等方相転移温度以下に設定することが好ましい。例えば、100~200℃であってもよく、好ましくは110~180℃、より好ましくは120~160℃であってもよい。 The heating temperature in the heating step is not particularly limited as long as the orientation of the unaligned molecules is induced along the side chains where the liquid crystalline polymer undergoes a photoreaction due to molecular motion, but the liquid crystal phase transition temperature of the birefringence inducing material It is above, and it is preferable to set below the isotropic phase transition temperature. For example, it may be 100 to 200° C., preferably 110 to 180° C., and more preferably 120 to 160° C.
 また、加熱時間は、液晶性高分子が分子運動によって光反応を起こした側鎖に沿って未配向分子の配向が誘起される限り特に限定されないが、液晶性高分子の種類や、加熱温度などに応じて適宜設定することができ、例えば1分以上で行ってもよく、好ましくは3分以上、より好ましくは5分以上であってもよい。上限は特に限定されないが、経済性の観点から、60分程度(好ましくは40分程度、より好ましくは30分程度)であってもよい。 The heating time is not particularly limited as long as the orientation of the unaligned molecules is induced along the side chains where the liquid crystalline polymer undergoes a photoreaction due to molecular motion, but the type of the liquid crystalline polymer, the heating temperature, etc. The time may be appropriately set depending on the above conditions, and may be, for example, 1 minute or longer, preferably 3 minutes or longer, and more preferably 5 minutes or longer. The upper limit is not particularly limited, but may be about 60 minutes (preferably about 40 minutes, more preferably about 30 minutes) from the viewpoint of economy.
(表面配向工程)
 表面配向工程では、第一の光学異方性層の表面を、その内部層とは異なる配向を施すように配向処理する。表面配向処理を行うことによって、第一の光学異方性層に表面層が形成され、互いに同一の複屈折誘起材料から構成されているが、配向状態の異なる内部層および表面層の2層が第一の光学異方性層内に形成される。なお、内部層とは、第一の光学異方性層のうち、表面層以外の部位を示していてもよい。
(Surface orientation process)
In the surface orientation step, the surface of the first optically anisotropic layer is subjected to orientation treatment so as to be oriented differently from the inner layer. By performing the surface orientation treatment, the surface layer is formed on the first optically anisotropic layer and is composed of the same birefringence inducing materials, but two layers of the inner layer and the surface layer having different orientation states are formed. It is formed in the first optically anisotropic layer. The internal layer may mean a portion of the first optically anisotropic layer other than the surface layer.
 配向処理の方法は、第一の光学異方性層の表面をその内部層とは異なる配向層を形成できる限り特に限定されないが、例えば、ラビング処理、第二の偏光照射による光配向処理等が挙げられる。ラビング処理では、セルロースやナイロン、ポリエステル等の布を巻きつけたローラーを一定圧力で押し込みながら回転させて第一の光学異方性層の表面を一定方向に擦ることにより配向方向を制御することができるため、所望の配向方向の表面層を形成することができるが、配向処理の方法は、偏光照射による光配向処理であることが好ましい。 The method of the alignment treatment is not particularly limited as long as the surface of the first optically anisotropic layer can form an alignment layer different from the inner layer thereof, for example, a rubbing treatment, a photo-alignment treatment by the second polarized light irradiation, etc. Can be mentioned. In the rubbing treatment, the orientation direction can be controlled by rotating a roller wrapped with a cloth such as cellulose, nylon or polyester while pressing it at a constant pressure and rubbing the surface of the first optically anisotropic layer in a constant direction. Therefore, the surface layer having a desired alignment direction can be formed, but the method of alignment treatment is preferably photo-alignment treatment by polarized light irradiation.
 表面配向工程は、第一の光学異方性層の表面に、第一の偏光とは異なる偏光軸方向を有する第二の偏光を照射して、第一の光学異方性層に表面層を形成する第二の光照射工程であってもよい。第二の光照射工程では、第一の光照射工程(好ましくは、第一の光照射工程および加熱工程)により分子配向された後であっても、第一の偏光とは異なる偏光軸方向を有する第二の偏光を照射することにより、第一の光学異方性層の未反応の複屈折誘起材料を中心として軸選択的な光反応が表面近傍において選択的に生じるためか、その表面近傍に対して内部層とは異なる配向性を付与することができる。一方、第一の光学異方性層の内部層の分子は既に高配向度で配向しているためか、第二の光照射工程後であっても、第一の光学異方性層の内部層の配向自体は変換されることがない。 In the surface alignment step, the surface of the first optically anisotropic layer is irradiated with a second polarized light having a polarization axis direction different from that of the first polarized light to form a surface layer on the first optically anisotropic layer. It may be the second light irradiation step of forming. In the second light irradiation step, even after the molecular orientation in the first light irradiation step (preferably the first light irradiation step and the heating step), a polarization axis direction different from that of the first polarized light is set. By irradiating with the second polarized light, the axial-selective photoreaction centering on the unreacted birefringence-inducing material of the first optically anisotropic layer selectively occurs near the surface. Can be provided with a different orientation from that of the inner layer. On the other hand, probably because the molecules of the inner layer of the first optically anisotropic layer are already oriented with a high degree of orientation, even after the second light irradiation step, the inside of the first optically anisotropic layer is The layer orientation itself is not transformed.
 第二の偏光は、第一の偏光として上記した種々の波長の光を用いることができ、例えば、紫外線の直線偏光を用いてもよい。また、第二の偏光は、第一の光照射工程で照射した第一の偏光と異なる種類の光を用いてもよく、同様の種類の光を用いてもよい。 As the second polarized light, light having various wavelengths described above can be used as the first polarized light, and for example, linear polarized light of ultraviolet rays may be used. Further, as the second polarized light, a different kind of light from the first polarized light irradiated in the first light irradiation step may be used, or the same kind of light may be used.
 第二の偏光は、第一の偏光とは異なる偏光軸方向を有してもよく、例えば、第一の偏光の偏光軸とは軸角度が5~85°異なっていてもよく、好ましくは10~80°、より好ましくは20~70°異なっていてもよい。ここで、第二の偏光の偏光軸と第一の偏光の偏光軸との軸角度の差は、第一の光照射工程後の第一の光学異方性層の表面近傍の配向状態(未反応の複屈折誘起材料の存在割合など)を考慮して調整することにより、後に形成する第二の光学異方性層の遅相軸を任意に設定することができる。 The second polarized light may have a polarization axis direction different from that of the first polarized light, for example, the axis angle may differ from the polarization axis of the first polarized light by 5 to 85°, and preferably 10 They may differ by ~80°, more preferably by 20-70°. Here, the difference in the axis angle between the polarization axis of the second polarized light and the polarization axis of the first polarized light depends on the alignment state (not yet measured) near the surface of the first optically anisotropic layer after the first light irradiation step. The slow axis of the second optically anisotropic layer to be formed later can be arbitrarily set by adjusting in consideration of the reaction birefringence inducing material and the like).
 第二の偏光の照射量は、配向されている第一の光学異方性層の表面を再配向させる観点から、例えば50mJ/cm~20J/cmであってもよく、好ましくは100mJ/cm~10J/cm、より好ましくは150mJ/cm~1J/cmであってもよい。 The irradiation amount of the second polarized light may be, for example, 50 mJ/cm 2 to 20 J/cm 2 , and preferably 100 mJ/cm 2 from the viewpoint of reorienting the surface of the oriented first optically anisotropic layer. It may be from cm 2 to 10 J/cm 2 , more preferably from 150 mJ/cm 2 to 1 J/cm 2 .
 必要に応じて、本発明の光学積層体の製造方法では、第一の光照射工程の後に、前記複屈折誘起材料層の表面を溶媒で処理する表面処理工程をさらに備えていてもよい。表面処理工程の後、例えば、第二の偏光照射、ラビング処理などの表面配向工程を行うのが好ましい。また、第一の光照射工程の後に加熱工程が行われる場合には、表面処理工程は加熱工程の後に行われてもよい。 If necessary, the method for producing an optical layered body of the present invention may further include a surface treatment step of treating the surface of the birefringence inducing material layer with a solvent after the first light irradiation step. After the surface treatment step, it is preferable to perform a surface alignment step such as a second irradiation of polarized light and a rubbing treatment. When the heating step is performed after the first light irradiation step, the surface treatment step may be performed after the heating step.
 表面処理工程では、第一の光学異方性層の表面に溶媒を適用して前記表面部分を溶解させることにより、第一の光照射工程により施された分子配向を緩和させてランダムな状態にできるためか、第一の偏光によって一旦形成された第一の光学異方性層の表面部分の配向性をなくすことができ、第一の光学異方性層の表面層の配向を等方性にすることができる。表面処理工程では、溶媒を第一の光学異方性層の表面に塗布した後に乾燥させてもよい。乾燥の方法は、塗布した溶媒を蒸発させることができる限り特に限定されないが、例えば、放置して自然乾燥させてもよい。溶媒が適用された表面のみを等方性にすることができる。 In the surface treatment step, by applying a solvent to the surface of the first optically anisotropic layer to dissolve the surface portion, the molecular orientation performed by the first light irradiation step is relaxed to a random state. Probably because it is possible, it is possible to eliminate the orientation of the surface portion of the first optically anisotropic layer once formed by the first polarized light, and the orientation of the surface layer of the first optically anisotropic layer is isotropic. Can be In the surface treatment step, the solvent may be applied to the surface of the first optically anisotropic layer and then dried. The drying method is not particularly limited as long as the applied solvent can be evaporated, but for example, it may be left standing and naturally dried. Only the surface to which the solvent is applied can be made isotropic.
 表面が等方性になることにより、その後の第二の光照射工程において、表面の光配向がしやすくなるため、第二の偏光の照射量を小さくすることができる。表面処理工程を行った場合、第二の偏光の照射量は、例えば、0.1mJ/cm~200mJ/cmであってもよく、好ましくは0.5mJ/cm~150mJ/cm、より好ましくは1mJ/cm~100mJ/cmであってもよい。
 また、表面処理工程を行った場合、第一の偏光の照射量と第二の偏光の照射量との比(第一の偏光/第二の偏光)は、1.5/1~100/1であってもよく、好ましくは2/1~80/1、より好ましくは2.5/1~50/1であってもよい。
When the surface is isotropic, the photo-alignment of the surface is facilitated in the subsequent second light irradiation step, so that the irradiation amount of the second polarized light can be reduced. When performing the surface treatment step, the dose of the second polarization, for example, may be 0.1mJ / cm 2 ~ 200mJ / cm 2, preferably from 0.5mJ / cm 2 ~ 150mJ / cm 2, More preferably, it may be 1 mJ/cm 2 to 100 mJ/cm 2 .
When the surface treatment step is performed, the ratio of the irradiation amount of the first polarized light to the irradiation amount of the second polarized light (first polarized light/second polarized light) is 1.5/1 to 100/1. May be, preferably 2/1 to 80/1, and more preferably 2.5/1 to 50/1.
 表面が等方性になることにより、その後の第二の光照射工程において、第一の光学異方性層の表面層の配向状態を考慮する必要がないため、第二の偏光の偏光軸の軸角度を第二の光学異方性層の遅相軸に直接反映させることができる。そのため、後に形成する第二の光学異方性層の遅相軸の設定に対して、第二の偏光の偏光軸の軸角度を容易に選択することができる。 Since the surface is isotropic, it is not necessary to consider the orientation state of the surface layer of the first optically anisotropic layer in the subsequent second light irradiation step, and thus the polarization axis of the second polarized light The axial angle can be directly reflected on the slow axis of the second optically anisotropic layer. Therefore, the axis angle of the polarization axis of the second polarized light can be easily selected with respect to the setting of the slow axis of the second optically anisotropic layer to be formed later.
 表面処理工程で用いる溶媒は、第一の光学異方性層を構成する複屈折誘起材料を溶解することができる溶媒であれば特に限定されず、複屈折誘起材料に対して良溶媒であってもよく、貧溶媒であってもよい。表面処理工程で用いる溶媒は、第一の光学異方性層の表面を等方性にすることおよび内部まで溶解してその配向を乱すことを抑制する観点から、例えば、複屈折誘起材料の良溶媒と貧溶媒とを混合した混合溶媒であってもよい。複屈折誘起材料の良溶媒と貧溶媒とを含む混合溶媒を用いる場合、用いる溶媒の複屈折誘起材料に対する溶解性に応じて適宜調整することができるが、例えば、これらの混合重量比(良溶媒/貧溶媒)は、1/100~100/1であってもよく、好ましくは1/50~50/1、より好ましくは1/10~10/1であってもよい。 The solvent used in the surface treatment step is not particularly limited as long as it can dissolve the birefringence inducing material forming the first optically anisotropic layer, and is a good solvent for the birefringence inducing material. Or a poor solvent may be used. The solvent used in the surface treatment step is, for example, a good birefringence-inducing material from the viewpoint of making the surface of the first optically anisotropic layer isotropic and suppressing dissolution of the first optically anisotropic layer to disturb the orientation thereof. It may be a mixed solvent in which a solvent and a poor solvent are mixed. When a mixed solvent containing a good solvent and a poor solvent for the birefringence inducing material is used, it can be appropriately adjusted depending on the solubility of the solvent used in the birefringence inducing material. /Poor solvent) may be 1/100 to 100/1, preferably 1/50 to 50/1, and more preferably 1/10 to 10/1.
 表面処理工程で用いる溶媒は、例えば、水;メタノール、エタノール、プロパノール、イソプロピルアルコール、ペンタノール、へキサノール等のアルコール系溶媒;ヘキサン、へプタン、オクタン、シクロへキサン等の脂肪族または脂環式の炭化水素系溶媒;ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、ジエチルケトン、メチルプロピルケトン、イソプロピルメチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;エチルエーテル、プロピルエーテル、イソプロピルエーテル、メチルエチルエーテル、メチルプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N,N-ジメチルホルムアミド等のアミド系溶媒;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系溶媒;エチレングリコール、プロピレングリコール等のグリコール系溶媒;グリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコール1-モノメチルエーテル2-アセタート等のグリコールエーテル系溶媒;四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、ジクロロベンゼン等のハロゲン化炭化水素溶媒;などが挙げられる。これらの溶媒は、単独でまたは二種以上組み合わせて使用してもよい。なお、これらの溶媒は、複屈折誘起材料の種類によって溶解性が異なるため、使用する複屈折誘起材料に応じて、その良溶媒、貧溶媒のいずれであるかを考慮した上で使用することができる。
 なお、本発明において、良溶媒とは、25℃において、溶質に対する溶解度が1質量%以上の溶媒をいい、貧溶媒とは、25℃において、溶質に対する溶解度が1質量%未満の溶媒をいう。
The solvent used in the surface treatment step is, for example, water; an alcohol solvent such as methanol, ethanol, propanol, isopropyl alcohol, pentanol, or hexanol; an aliphatic or alicyclic group such as hexane, heptane, octane, cyclohexane Aromatic hydrocarbon solvents such as benzene, toluene, xylene; Ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, isopropyl methyl ketone, methyl isobutyl ketone, cyclohexanone; ethyl ether, propyl Ether-based solvents such as ether, isopropyl ether, methyl ethyl ether, methyl propyl ether, tetrahydrofuran, dioxane; nitrile-based solvents such as acetonitrile and propionitrile; sulfoxide-based solvents such as dimethyl sulfoxide; amides such as N,N-dimethylformamide System solvents; ester solvents such as methyl acetate, ethyl acetate, butyl acetate; glycol solvents such as ethylene glycol and propylene glycol; glycol monoethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol 1-monomethyl ether 2 -Glycol ether solvents such as acetate; halogenated hydrocarbon solvents such as carbon tetrachloride, chloroform, dichloromethane, dichloroethane, dichlorobenzene; and the like. You may use these solvent individually or in combination of 2 or more types. Since these solvents have different solubilities depending on the type of the birefringence inducing material, it is necessary to consider whether the solvent is a good solvent or a poor solvent depending on the birefringence inducing material used. it can.
In the present invention, the good solvent means a solvent having a solubility of 1 mass% or more at 25°C, and the poor solvent means a solvent having a solubility of less than 1% by mass at 25°C.
 例えば、複屈折誘起材料に対する良溶媒として、ジオキサン、ジクロロエタン、シクロヘキサノン、トルエン、テトラヒドロフラン、o-ジクロロベンゼン等を用いてもよく、複屈折誘起材料に対する貧溶媒として、エタノール、メタノール、n-ヘキサン等を用いてもよい。これらの良溶媒と貧溶媒とを上述の混合重量比で混合して混合溶媒として用いてもよい。 For example, dioxane, dichloroethane, cyclohexanone, toluene, tetrahydrofuran, o-dichlorobenzene or the like may be used as a good solvent for the birefringence inducing material, and ethanol, methanol, n-hexane or the like may be used as a poor solvent for the birefringence inducing material. You may use. These good solvents and poor solvents may be mixed at the above mixing weight ratio and used as a mixed solvent.
(第二の光学異方性層形成工程)
 第二の光学異方性層形成工程では、配向処理した第一の光学異方性層の表面層上に、重合性液晶材料を適用して第二の光学異方性層を形成する。第二の光学異方性層形成工程を行うことによって、表面配向工程で配向された表面層が配向膜の役割を果たすため、その配向方向を利用して配向された第二の光学異方性層を形成することができる。
(Second optical anisotropic layer forming step)
In the second optically anisotropic layer forming step, a polymerizable liquid crystal material is applied on the surface layer of the first optically anisotropic layer subjected to the alignment treatment to form the second optically anisotropic layer. By performing the second optically anisotropic layer forming step, the surface layer oriented in the surface orientation step plays a role of an orientation film, and thus the second optical anisotropy oriented by utilizing the orientation direction is used. Layers can be formed.
 本発明において、重合性液晶材料は、反応性官能基とメソゲン基とを少なくとも含む単官能もしくは二官能性の重合性液晶化合物を含む組成物であり、光や熱により重合または架橋剤との反応により架橋構造を形成した後の組成物を含む。 In the present invention, the polymerizable liquid crystal material is a composition containing a monofunctional or difunctional polymerizable liquid crystal compound containing at least a reactive functional group and a mesogenic group, and reacts with a polymerization or crosslinking agent by light or heat. The composition after the formation of the crosslinked structure is included.
 重合性液晶化合物は、液晶性モノマーであってもよく、液晶性ポリマーであってもよい。例えば、重合性液晶化合物としては、光や熱により重合する重合性官能基を有する重合性液晶モノマーおよび/または重合性液晶ポリマーや、架橋剤との反応により架橋構造を導入可能な架橋性官能基を有する架橋性液晶モノマーおよび/または架橋性液晶ポリマー等が挙げられる。 The polymerizable liquid crystal compound may be a liquid crystal monomer or a liquid crystal polymer. For example, as the polymerizable liquid crystal compound, a polymerizable liquid crystal monomer and/or a polymerizable liquid crystal polymer having a polymerizable functional group which is polymerized by light or heat, or a crosslinkable functional group capable of introducing a crosslinked structure by a reaction with a crosslinking agent The crosslinkable liquid crystal monomer and/or the crosslinkable liquid crystal polymer having
 重合性液晶化合物は、メソゲン基を有するモノマーまたはメソゲン基で構成されたユニットを有するポリマーであって、液晶構造を形成可能であるとともに、重合性および/または架橋性を有する限り特に限定されず、各種重合性液晶化合物を利用することができる。重合性液晶化合物としては、例えば、シッフ塩基系、ビフェニル系、ターフェニル系、エステル系、チオエステル系、スチルベン系、トラン系、アゾキシ系、アゾ系、フェニルシクロヘキサン系、ピリミジン系、シクロヘキシルシクロヘキサン系、トリメシン酸系、トリフェニレン系、トルクセン系、フタロシアニン系、ポルフィリン系分子骨格を有する液晶化合物、またはこれらの化合物の混合物等が挙げられ、ネマチック性、コレステリック性またはスメクチック性の液晶相を示す化合物であればいずれでもよい。一例として、重合性液晶化合物として、光重合性のネマチック液晶モノマーを用いてもよい。 The polymerizable liquid crystal compound is not particularly limited as long as it is a monomer having a mesogen group or a polymer having a unit composed of a mesogen group and capable of forming a liquid crystal structure and having polymerizability and/or crosslinkability. Various polymerizable liquid crystal compounds can be used. Examples of the polymerizable liquid crystal compound include Schiff base type, biphenyl type, terphenyl type, ester type, thioester type, stilbene type, tolan type, azoxy type, azo type, phenylcyclohexane type, pyrimidine type, cyclohexylcyclohexane type, trimesine type. Examples include acid-based, triphenylene-based, torquecene-based, phthalocyanine-based, porphyrin-based liquid crystal compounds having a molecular skeleton, or a mixture of these compounds, and any compound that exhibits a nematic, cholesteric, or smectic liquid crystal phase. But it is okay. As an example, a photopolymerizable nematic liquid crystal monomer may be used as the polymerizable liquid crystal compound.
 前記メソゲン基で構成されたユニットは、液晶ポリマーの主鎖にあってもよく、側鎖にあってもよい。主鎖型液晶ポリマーとしては、ポリエステル系、ポリアミド系、ポリカーボネート系、ポリイミド系、ポリウレタン系、ポリベンズイミダゾール系、ポリベンズオキサゾール系、ポリベンズチアゾール系、ポリアゾメチン系、ポリエステルアミド系、ポリエステルカーボネート系、ポリエステルイミド系の液晶ポリマー、またはこれらの混合物等が挙げられる。また、側鎖型液晶性ポリマーとしては、ポリアクリレート系、ポリメタクリレート系、ポリビニル系、ポリシロキサン系、ポリエーテル系、ポリマロネート系等の直鎖状又は環状構造の骨格鎖を有する高分子に側鎖としてメソゲン基が結合した液晶ポリマー、またはこれらの混合物等が挙げられる。 The unit composed of the mesogen group may be in the main chain or side chain of the liquid crystal polymer. The main chain type liquid crystal polymer, polyester, polyamide, polycarbonate, polyimide, polyurethane, polybenzimidazole, polybenzoxazole, polybenzthiazole, polyazomethine, polyesteramide, polyester carbonate, Examples thereof include a polyesterimide-based liquid crystal polymer or a mixture thereof. The side chain type liquid crystalline polymer may be a side chain of a polymer having a linear or cyclic skeleton chain such as polyacrylate type, polymethacrylate type, polyvinyl type, polysiloxane type, polyether type, polymalonate type. Examples thereof include a liquid crystal polymer having a mesogen group bonded thereto, or a mixture thereof.
 また、重合性液晶材料は、重合性液晶化合物が重合性官能基を有する場合、光重合開始剤および/または熱重合開始剤を含有するものであってもよい。 Further, the polymerizable liquid crystal material may contain a photopolymerization initiator and/or a thermal polymerization initiator when the polymerizable liquid crystal compound has a polymerizable functional group.
 光重合開始剤としては、イルガキュア(Irgacure)907、イルガキュア184、イルガキュア651、イルガキュア819、イルガキュア250、イルガキュア369(以上、全てチバ・ジャパン(株)製)、セイクオールBZ、セイクオールZ、セイクオールBEE(以上、全て精工化学(株)製)、カヤキュアー(kayacure)BP100(日本化薬(株)製)、カヤキュアーUVI-6992(ダウ社製)、アデカオプトマーSP-152又はアデカオプトマーSP-170(以上、全て(株)ADEKA製)、TAZ-A、TAZ-PP(以上、日本シイベルヘグナー社製)及びTAZ-104(三和ケミカル社製)など、市販の光重合開始剤を用いることができる。 As the photopolymerization initiator, Irgacure 907, Irgacure 184, Irgacure 651, Irgacure 819, Irgacure 250, Irgacure 369 (all manufactured by Ciba Japan Co., Ltd.), Sequol BZ, Sequol Z, Sequol BEE (or more) , All manufactured by Seiko Chemical Co., Ltd., kayacure BP100 (manufactured by Nippon Kayaku Co., Ltd.), Kayacure UVI-6992 (manufactured by Dow), Adeka Optomer SP-152 or Adeka Optomer SP-170 (or more) , All commercially available from ADEKA, TAZ-A, TAZ-PP (all manufactured by Nippon Siber Hegner Co., Ltd.) and TAZ-104 (manufactured by Sanwa Chemical Co., Ltd.) can be used.
 熱重合開始剤としては、アゾビスイソブチロニトリル等のアゾ化合物;過酸化水素、過硫酸塩、過酸化ベンゾイル等の過酸化物等が挙げられる。 Examples of the thermal polymerization initiator include azo compounds such as azobisisobutyronitrile; peroxides such as hydrogen peroxide, persulfates and benzoyl peroxide.
 重合開始剤の含有量は、重合性液晶材料の総重量に対して、0.01~20重量%が好ましく、0.03~10重量%がより好ましく、0.05~8重量%がさらに好ましい。上記範囲内であれば、重合性液晶化合物の配向を乱すことなく重合させることができる。 The content of the polymerization initiator is preferably 0.01 to 20% by weight, more preferably 0.03 to 10% by weight, further preferably 0.05 to 8% by weight, based on the total weight of the polymerizable liquid crystal material. .. Within the above range, polymerization can be carried out without disturbing the orientation of the polymerizable liquid crystal compound.
 なお、重合開始剤として光重合開始剤を用いる場合、光増感剤を併用してもよい。光増感剤としては、例えば、キサントン及びチオキサントン等のキサントン化合物(例えば、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン等);アントラセン及びアルコキシ基含有アントラセン(例えば、ジブトキシアントラセン等)等のアントラセン化合物;フェノチアジン;ルブレン等が挙げられる。 When using a photopolymerization initiator as the polymerization initiator, a photosensitizer may be used together. Examples of the photosensitizer include xanthone compounds such as xanthone and thioxanthone (eg, 2,4-diethylthioxanthone and 2-isopropylthioxanthone); anthracenes such as anthracene and alkoxy group-containing anthracene (eg, dibutoxyanthracene). Compounds; phenothiazine; rubrene and the like.
 また、重合性液晶材料は、重合性液晶化合物が架橋性官能基を有する場合、適切な架橋剤を含有するものであってもよい。この場合、重合性液晶化合物は、液晶状態あるいは液晶転移温度以下に冷却した状態で、架橋(熱架橋あるいは光架橋)等の手段により配向固定化できる液晶化合物でもよい。 Also, the polymerizable liquid crystal material may contain an appropriate crosslinking agent when the polymerizable liquid crystal compound has a crosslinkable functional group. In this case, the polymerizable liquid crystal compound may be a liquid crystal compound which can be orientation-fixed by a means such as cross-linking (thermal cross-linking or photo-cross-linking) in a liquid crystal state or in a state cooled to a liquid crystal transition temperature or lower.
 架橋性官能基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、特にアクリロイルオキシ基がより好ましい。 Examples of the crosslinkable functional group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group and oxetanyl group. Among them, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferable, and an acryloyloxy group is particularly preferable.
 重合性液晶材料が架橋剤を含有している場合、架橋性官能基を有する重合性液晶化合物との架橋を形成する以外に、複屈折誘起材料の液晶性高分子が架橋性官能基を有する場合、液晶性高分子が架橋結合を形成することができる。この場合、複屈折誘起材料から構成される第一の光学異方性層と、架橋剤を含む第二の光学異方性層との層間で架橋結合を形成させることが可能となるため、その層間の密着性を向上させることができる。 When the polymerizable liquid crystal material contains a cross-linking agent, in addition to forming a cross-link with the polymerizable liquid crystal compound having a cross-linkable functional group, when the liquid crystal polymer of the birefringence inducing material has a cross-linkable functional group The liquid crystalline polymer can form cross-links. In this case, since it becomes possible to form a cross-linking bond between the first optically anisotropic layer composed of the birefringence inducing material and the second optically anisotropic layer containing the cross-linking agent, The adhesion between layers can be improved.
 架橋剤としては、分子内に2個以上の官能基を有する多官能性化合物が挙げられる。液晶性高分子に架橋結合を形成させる場合、多官能性化合物としては、液晶性高分子と架橋結合を形成できる官能基を有していれば特に制限されないが、例えば、液晶性高分子が架橋性官能基を有し、当該架橋性官能基が水酸基またはカルボキシ基の場合、イソシアネート基、カルボジイミド基、アジリジン基、アゼチジン基、オキサゾリン基、エポキシ基等を有する化合物が挙げられる。これらの架橋剤のうち、液晶性高分子が有する架橋性官能基と比較的温和な反応条件で反応する反応性の観点から、分子内に2個以上のイソシアネート基を有する多官能性化合物であるポリイソシアネート系化合物が好ましく、ポリイソシアネート系化合物は公知のものが使用可能である。例えば、ポリイソシアネート系化合物としては、ジイソシアネート化合物、トリイソシアネート化合物等が挙げられる。ジイソシアネート化合物としては、例えば、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、メチレンビス(シクロヘキシルイソシアネート)、イソホロンジイソシアネート、ヘキサメチレンジイソシアネートとジオールとの縮合化合物等が挙げられる。また、トリイソシアネート化合物としては、ヘキサメチレンジイソシアネート等のジイソシアネートのイソシアヌレート体、ビウレット体、ヘキサメチレンジイソシアネート等のジイソシアネートとメチロールプロパンとの付加体であるアダクト体等が挙げられる。これらの架橋剤のうち、トリイソシアネート化合物を好適に用いることができる。 As the cross-linking agent, a polyfunctional compound having two or more functional groups in the molecule can be mentioned. When a cross-linking bond is formed in the liquid crystalline polymer, the polyfunctional compound is not particularly limited as long as it has a functional group capable of forming a cross-linking bond with the liquid crystalline polymer. In the case where the crosslinkable functional group is a hydroxyl group or a carboxy group, a compound having an isocyanate group, a carbodiimide group, an aziridine group, an azetidine group, an oxazoline group, an epoxy group, or the like can be given. Among these cross-linking agents, from the viewpoint of reactivity to react with the cross-linkable functional group of the liquid crystalline polymer under a relatively mild reaction condition, it is a polyfunctional compound having two or more isocyanate groups in the molecule. A polyisocyanate compound is preferable, and known polyisocyanate compounds can be used. Examples of polyisocyanate compounds include diisocyanate compounds and triisocyanate compounds. Examples of the diisocyanate compound include phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, methylcyclohexylene diisocyanate, bis(isocyanatomethyl)cyclohexane, methylenebis(cyclohexyl isocyanate), isophorone diisocyanate, hexamethylene diisocyanate. And a condensation compound of diol. Examples of the triisocyanate compound include an isocyanurate body of diisocyanate such as hexamethylene diisocyanate, a biuret body, and an adduct body which is an adduct of diisocyanate such as hexamethylene diisocyanate and methylolpropane. Of these crosslinking agents, a triisocyanate compound can be preferably used.
 架橋剤がポリイソシアネート系化合物である場合、液晶性高分子は架橋性官能基として活性水素基を有していてもよい。活性水素基としては、水酸基、カルボキシ基、アミノ基、およびチオール基等が挙げられる。活性水素基が水酸基である場合はウレタン結合(-NH-CO-O-)が形成され、活性水素基がカルボキシ基である場合はアミド結合(-NH-CO-)が形成され、活性水素基がアミノ基である場合はウレア結合(-NH-CO-NH-)が形成され、活性水素基がチオール基である場合はチオウレタン結合(-NH-CO-S-)が形成される。液晶性高分子が有している活性水素基としては、水酸基、カルボキシ基が好ましい。 When the cross-linking agent is a polyisocyanate compound, the liquid crystal polymer may have an active hydrogen group as a cross-linkable functional group. Examples of the active hydrogen group include a hydroxyl group, a carboxy group, an amino group, and a thiol group. When the active hydrogen group is a hydroxyl group, a urethane bond (-NH-CO-O-) is formed, and when the active hydrogen group is a carboxy group, an amide bond (-NH-CO-) is formed and an active hydrogen group is formed. When is an amino group, a urea bond (-NH-CO-NH-) is formed, and when the active hydrogen group is a thiol group, a thiourethane bond (-NH-CO-S-) is formed. The active hydrogen group contained in the liquid crystal polymer is preferably a hydroxyl group or a carboxy group.
 本発明では、重合性液晶材料における架橋剤の含有量は、液晶性高分子との反応による第二の光学異方性層の配向性や光学特性の低下の抑制の観点から、重合性液晶材料の総重量に対して、0.01~5重量%であってもよく、好ましくは0.05~3重量%、より好ましくは0.1~1.5重量%であってもよい。 In the present invention, the content of the cross-linking agent in the polymerizable liquid crystal material is a polymerizable liquid crystal material from the viewpoint of suppressing the deterioration of the orientation and the optical properties of the second optically anisotropic layer due to the reaction with the liquid crystalline polymer. May be 0.01 to 5% by weight, preferably 0.05 to 3% by weight, and more preferably 0.1 to 1.5% by weight.
 第二の光学異方性層形成工程では、第一の光学異方性層の表面層上に上述のような重合性液晶材料が適用される。適用にあたっては、溶媒に溶解した重合性液晶材料を溶液としてスピンコート、ロールコート等の公知の塗工方法で塗布することによって行われてもよい。溶媒としては、重合性液晶材料の種類に応じて適宜選択することができ、例えば、ジオキサン、ジクロロエタン、シクロヘキサノン、トルエン、テトラヒドロフラン、o-ジクロロベンゼン、メチルエチルケトン、メチルイソブチルケトン、エチレングリコール誘導体(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルなど)、プロピレングリコール誘導体(プロピレングリコールモノメチルエーテル、プロピレングリコール1-モノメチルエーテル2-アセタート)などが挙げられ、これらの溶媒は、単独でまたは二種以上組み合わせて使用してもよい。 In the second optically anisotropic layer forming step, the polymerizable liquid crystal material as described above is applied on the surface layer of the first optically anisotropic layer. The application may be carried out by applying a polymerizable liquid crystal material dissolved in a solvent as a solution by a known coating method such as spin coating or roll coating. The solvent can be appropriately selected depending on the type of the polymerizable liquid crystal material, and examples thereof include dioxane, dichloroethane, cyclohexanone, toluene, tetrahydrofuran, o-dichlorobenzene, methyl ethyl ketone, methyl isobutyl ketone, and ethylene glycol derivatives (eg ethylene. Glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, etc.), propylene glycol derivatives (propylene glycol monomethyl ether, propylene glycol 1-monomethyl ether 2-acetate), etc., and these solvents may be used alone or You may use it in combination of 2 or more types.
 重合性液晶材料の溶媒は、複屈折誘起材料および重合性液晶材料の種類の組合せだけでなく、表面層の配向状態に応じて選択することができる。例えば、表面層の分子の大部分が所望の配向である場合(例えば、表面処理工程を行った場合や、配向処理としてラビング処理を行った場合など)には、表面層の配向を第二の光学異方性層に付与しつつ、第一の光学異方性層の配向を乱すことを抑制する観点から、重合性液晶材料の溶媒は、複屈折誘起材料の貧溶媒であることが好ましい。一方、表面層の分子の一部のみが所望の配向である場合、重合性液晶材料の溶媒は、複屈折誘起材料の良溶媒と貧溶媒とを混合した混合溶媒であることが好ましい。この場合のメカニズムは定かではないが、重合性液晶材料の溶媒として複屈折誘起材料の貧溶媒を含有させると、第一の光学異方性層を侵すことがなく、その配向を乱すことを抑制することができる。一方、重合性液晶材料の溶媒として複屈折誘起材料の良溶媒を含有させると、溶液の表面層に対する濡れ性が向上するためか、表面層の分子の一部のみが有する配向に対して重合性液晶材料の分子を沿わせることでき、その結果、第二の光学異方性層を配向させることができる。重合性液晶材料の溶媒は、複屈折誘起材料および重合性液晶材料の種類の組合せならびに表面層の配向状態に応じて適宜調整することができるが、第一の光学異方性層の配向を維持する観点から、表面層を侵さないように複屈折誘起材料に対する貧溶媒を含んでいることが好ましく、例えば、複屈折誘起材料の良溶媒と貧溶媒との混合重量比(良溶媒/貧溶媒)は、0/100~100/1であってもよく、好ましくは0/100~50/1、より好ましくは0/100~10/1であってもよい。重合性液晶材料の溶媒としては、一般的な溶媒を目的に応じて使用できるが、例えば、トルエン、エチレングリコール誘導体、プロピレングリコール誘導体などを含んでいてもよい。 The solvent of the polymerizable liquid crystal material can be selected according to not only the combination of the types of the birefringence inducing material and the polymerizable liquid crystal material but also the alignment state of the surface layer. For example, when most of the molecules of the surface layer have a desired orientation (for example, when the surface treatment step is performed or when the rubbing treatment is performed as the orientation treatment), the orientation of the surface layer is set to the second orientation. The solvent of the polymerizable liquid crystal material is preferably a poor solvent for the birefringence inducing material, from the viewpoint of suppressing the disturbance of the orientation of the first optically anisotropic layer while imparting it to the optically anisotropic layer. On the other hand, when only a part of the molecules of the surface layer have a desired orientation, the solvent of the polymerizable liquid crystal material is preferably a mixed solvent obtained by mixing a good solvent and a poor solvent of the birefringence inducing material. Although the mechanism in this case is not clear, when the poor solvent of the birefringence inducing material is contained as the solvent of the polymerizable liquid crystal material, the first optically anisotropic layer is prevented from being disturbed and the orientation thereof is suppressed. can do. On the other hand, if a good solvent for the birefringence inducing material is contained as the solvent for the polymerizable liquid crystal material, the wettability of the solution with respect to the surface layer may be improved. The molecules of the liquid crystal material can be aligned, and as a result, the second optically anisotropic layer can be aligned. The solvent of the polymerizable liquid crystal material can be appropriately adjusted according to the combination of the types of the birefringence inducing material and the polymerizable liquid crystal material and the alignment state of the surface layer, but maintains the alignment of the first optically anisotropic layer. In view of the above, it is preferable to include a poor solvent for the birefringence inducing material so as not to damage the surface layer. For example, a mixed weight ratio of the good solvent and the poor solvent of the birefringence inducing material (good solvent/poor solvent). May be 0/100 to 100/1, preferably 0/100 to 50/1, and more preferably 0/100 to 10/1. As the solvent of the polymerizable liquid crystal material, a general solvent can be used according to the purpose, but it may contain, for example, toluene, an ethylene glycol derivative, a propylene glycol derivative or the like.
 溶液の塗布により塗膜を形成し、必要に応じて加熱して塗膜を乾燥させる。その際、下部に存在する第一の光学異方性層の表面層が配向膜(配向性付与膜)として機能し、液晶分子の配向が生じる。これにより所定の方向に液晶が配向した第二の光学異方性層が形成される。 -Form a coating film by applying the solution, and heat to dry the coating film if necessary. At that time, the surface layer of the first optically anisotropic layer existing below functions as an alignment film (alignment property imparting film), and alignment of liquid crystal molecules occurs. As a result, the second optically anisotropic layer in which the liquid crystal is aligned in the predetermined direction is formed.
 第二の光学異方性層形成工程では、重合性液晶材料の塗膜形成後に必要に応じて、加熱工程および/または光照射工程(例えば、非偏光照射工程)を備えていてもよい。重合性液晶材料は、塗膜を形成させることによって、第一の光学異方性層の表面層の配向に対応してすでに所定の方向に配向しており、その後の加熱工程および/または光照射工程(例えば、非偏光照射工程)で重合性液晶材料が重合および/または架橋することにより、配向性が固定される。
 具体的には、重合性液晶材料が、熱重合性の材料からなる場合、加熱による重合により配向性が固定される。光重合性の材料からなる場合、光の照射時に重合が生じ、配向性が固定される。架橋性の材料からなる場合、加熱および/または光の照射時に架橋が生じ、配向性が固定される。
The second optically anisotropic layer forming step may optionally include a heating step and/or a light irradiation step (for example, a non-polarized light irradiation step) after forming the coating film of the polymerizable liquid crystal material. The polymerizable liquid crystal material is already aligned in a predetermined direction corresponding to the orientation of the surface layer of the first optically anisotropic layer by forming a coating film, and the subsequent heating step and/or light irradiation. In the step (for example, a non-polarized light irradiation step), the polymerizable liquid crystal material is polymerized and/or cross-linked to fix the orientation.
Specifically, when the polymerizable liquid crystal material is a thermally polymerizable material, the orientation is fixed by polymerization by heating. In the case of using a photopolymerizable material, polymerization occurs upon irradiation with light and the orientation is fixed. When the material is a crosslinkable material, crosslinkage occurs during heating and/or irradiation with light, and the orientation is fixed.
 また、重合性液晶材料が架橋剤を含有しており、架橋剤が複屈折誘起材料と架橋結合を形成できる官能基を有する場合、熱エネルギーおよび/または光エネルギーの付与により、第一の光学異方性層と第二の光学異方性層との層間で架橋結合を形成させることができる。 When the polymerizable liquid crystal material contains a cross-linking agent and the cross-linking agent has a functional group capable of forming a cross-linkage with the birefringence inducing material, the first optical difference is caused by the application of heat energy and/or light energy. Crosslinking bonds can be formed between the layers of the anisotropic layer and the second optically anisotropic layer.
 第二の光学異方性層形成工程における加熱工程では、上記重合および/または架橋反応が進行する限り特に限定されないが、第一の光学異方性層の内部層の配向を乱すことを抑制する観点から、複屈折誘起材料の等方相転移温度以下の加熱温度で行うことが好ましい。例えば、70~180℃であってもよく、好ましくは80~150℃、より好ましくは100~140℃であってもよい。また、加熱時間は、例えば1分以上で行ってもよく、好ましくは3分以上、より好ましくは5分以上であってもよい。上限は特に限定されないが、経済性の観点から、60分程度(好ましくは40分程度、より好ましくは30分程度)であってもよい。 The heating step in the second optically anisotropic layer forming step is not particularly limited as long as the polymerization and/or crosslinking reaction proceeds, but it suppresses disturbing the orientation of the inner layer of the first optically anisotropic layer. From the viewpoint, it is preferable to perform the heating at a temperature not higher than the isotropic phase transition temperature of the birefringence inducing material. For example, it may be 70 to 180° C., preferably 80 to 150° C., and more preferably 100 to 140° C. The heating time may be, for example, 1 minute or longer, preferably 3 minutes or longer, and more preferably 5 minutes or longer. The upper limit is not particularly limited, but may be about 60 minutes (preferably about 40 minutes, more preferably about 30 minutes) from the viewpoint of economy.
 第二の光学異方性層形成工程における光照射工程では、上記重合および/または架橋反応が進行する限り特に限定されないが、照射する光としては非偏光が好ましい。非偏光としては、第一の偏光や第二の偏光として上記した種々の波長の光を用いることができ、例えば、非偏光紫外線でもよい。光の照射量は、10mJ/cm~10J/cmであってもよく、好ましくは50mJ/cm~1J/cm、より好ましくは100mJ/cm~500mJ/cmであってもよい。 In the light irradiation step in the second optically anisotropic layer forming step, it is not particularly limited as long as the above-mentioned polymerization and/or crosslinking reaction proceeds, but the irradiation light is preferably non-polarized light. As the non-polarized light, light having various wavelengths described above as the first polarized light or the second polarized light can be used, and for example, non-polarized ultraviolet light may be used. The irradiation amount of light may be 10 mJ/cm 2 to 10 J/cm 2 , preferably 50 mJ/cm 2 to 1 J/cm 2 , and more preferably 100 mJ/cm 2 to 500 mJ/cm 2. ..
[光学積層体]
 本発明の光学積層体は、複屈折誘起材料からなる第一の光学異方性層と、重合性液晶材料からなる第二の光学異方性層とが、隣接して積層された光学積層体であって、第一の光学異方性層が、互いに遅相軸が異なる表面層と内部層とで構成され、前記表面層と第二の光学異方性層とが接している。
[Optical layered product]
The optical layered body of the present invention is an optical layered body in which a first optically anisotropic layer made of a birefringence inducing material and a second optically anisotropic layer made of a polymerizable liquid crystal material are adjacently laminated. The first optically anisotropic layer is composed of a surface layer and an inner layer having mutually different slow axes, and the surface layer and the second optically anisotropic layer are in contact with each other.
 第一の光学異方性層は、表面層および内部層で構成されており、これらの層は同一の複屈折誘起材料から構成されている。例えば、第一の光学異方性層の厚さは、0.1~20μmであってもよく、好ましくは0.3~15μm、より好ましくは0.5~10μmであってもよい。表面層は、第二の光学異方性層と接する第一の光学異方性層の表面近傍であってもよい。例えば、表面層は、内部層とは異なる配向を施すように第一の光学異方性層の表面が配向処理されて形成されていてもよい。ここで、配向処理は、上述の製造方法における表面配向工程の態様により施されていてもよい。 The first optically anisotropic layer is composed of a surface layer and an inner layer, and these layers are composed of the same birefringence inducing material. For example, the thickness of the first optically anisotropic layer may be 0.1 to 20 μm, preferably 0.3 to 15 μm, and more preferably 0.5 to 10 μm. The surface layer may be near the surface of the first optically anisotropic layer that is in contact with the second optically anisotropic layer. For example, the surface layer may be formed by subjecting the surface of the first optically anisotropic layer to an orientation treatment so as to give an orientation different from that of the inner layer. Here, the alignment treatment may be performed according to the aspect of the surface alignment step in the above-described manufacturing method.
 第二の光学異方性層を構成する重合性液晶材料が、複屈折誘起材料と架橋結合を形成できる官能基を有する架橋剤を含んでいてもよい。重合性液晶材料が含んでいる架橋剤が、第一の光学異方性層の複屈折誘起材料と架橋結合を形成することにより、第一の光学異方性層と第二の光学異方性との密着性が向上する。これにより、第一の光学異方性層と第二の光学異方性層との間に粘着層を設けなくてもよいため、光学積層体を薄層化することができるとともに、第一の光学異方性層の表面層と第二の光学異方性層とが接する構造にすることができる。なお、第一の光学異方性層と第二の光学異方性層との密着性は、後述の実施例に記載したクロスカット試験により確認することができる。 The polymerizable liquid crystal material forming the second optically anisotropic layer may contain a crosslinking agent having a functional group capable of forming a crosslink with the birefringence inducing material. The cross-linking agent contained in the polymerizable liquid crystal material forms a cross-linking bond with the birefringence inducing material of the first optically anisotropic layer, whereby the first optically anisotropic layer and the second optically anisotropic layer are formed. The adhesion with is improved. Thereby, since it is not necessary to provide an adhesive layer between the first optically anisotropic layer and the second optically anisotropic layer, the optical layered body can be made thin and the first optical anisotropic layer can be formed. It is possible to have a structure in which the surface layer of the optically anisotropic layer and the second optically anisotropic layer are in contact with each other. The adhesion between the first optically anisotropic layer and the second optically anisotropic layer can be confirmed by a cross cut test described in Examples below.
 第二の光学異方性層の厚さは、0.1~20μmであってもよく、好ましくは0.3~15μm、より好ましくは0.5~10μmであってもよい。また、第一の光学異方性層と第二の光学異方性層との厚さの比(第一の光学異方性層/第二の光学異方性層)は、1/10~10/1であってもよく、好ましくは1/8~8/1、より好ましくは1/5~5/1であってもよい。例えば、第二の光学異方性層は、配向処理した第一の光学異方性層の表面層上に、重合性液晶材料を適用して形成されていてもよい。ここで、重合性液晶材料の適用は、上述の製造方法における第二の光学異方性層形成工程の態様により施されていてもよい。 The thickness of the second optically anisotropic layer may be 0.1 to 20 μm, preferably 0.3 to 15 μm, and more preferably 0.5 to 10 μm. Further, the thickness ratio of the first optically anisotropic layer and the second optically anisotropic layer (first optically anisotropic layer/second optically anisotropic layer) is from 1/10 to It may be 10/1, preferably 1/8 to 8/1, and more preferably 1/5 to 5/1. For example, the second optically anisotropic layer may be formed by applying a polymerizable liquid crystal material on the surface layer of the first optically anisotropic layer subjected to the alignment treatment. Here, the application of the polymerizable liquid crystal material may be performed according to the aspect of the second optically anisotropic layer forming step in the above-described manufacturing method.
 本発明の光学積層体の厚さは、例えば、1~40μmであってもよく、好ましくは2~30μm、より好ましくは3~20μmであってもよい。 The thickness of the optical layered body of the present invention may be, for example, 1 to 40 μm, preferably 2 to 30 μm, and more preferably 3 to 20 μm.
 本発明の光学積層体は、第一の光学異方性層の内部層の遅相軸方向と第二の光学異方性層の遅相軸方向とが、交差している。本発明の光学積層体は、上述の製造方法により製造されることによって、第一の光学異方性層(内部層)の遅相軸と第二の光学異方性層の遅相軸とのなす角を任意の角度に設定することが可能である。第一の光学異方性層(内部層)の遅相軸方向と第二の光学異方性層の遅相軸方向とが、非平行かつ非直交である角度で交差していてもよい。例えば、第一の光学異方性層(内部層)の遅相軸と第二の光学異方性層の遅相軸とのなす角は、5~85°であってもよく、好ましくは8~80°、より好ましくは10~75°であってもよい。なお、第一の光学異方性層の内部層の遅相軸は、表面層における配向の影響がごくわずかであるとみなせるため、第一の光学異方性層全体の遅相軸として測定されてもよい。 In the optical layered body of the present invention, the slow axis direction of the inner layer of the first optically anisotropic layer and the slow axis direction of the second optically anisotropic layer intersect. The optical layered body of the present invention is produced by the above-mentioned production method, whereby the slow axis of the first optically anisotropic layer (inner layer) and the slow axis of the second optically anisotropic layer are formed. The angle formed can be set to an arbitrary angle. The slow axis direction of the first optically anisotropic layer (inner layer) and the slow axis direction of the second optically anisotropic layer may intersect at an angle that is non-parallel and non-orthogonal. For example, the angle formed by the slow axis of the first optically anisotropic layer (inner layer) and the slow axis of the second optically anisotropic layer may be 5 to 85°, preferably 8 It may be -80°, more preferably 10-75°. The slow axis of the inner layer of the first optically anisotropic layer is measured as the slow axis of the entire first optically anisotropic layer because the influence of the orientation in the surface layer can be considered to be negligible. May be.
 本発明の光学積層体は、特に、第一の光学異方性層において、面内で遅相軸方向は一定であることが好ましい。本発明では、配向層を介して下側の層に偏光を照射することにより偏光状態が変換される(例えば、直線偏光から楕円偏光になる)ことがないためか、分子配向を乱すことなく、遅相軸方向を一定にすることが可能である。 In the optical layered body of the present invention, it is particularly preferable that the slow axis direction is constant in the plane in the first optically anisotropic layer. In the present invention, because the polarization state is not converted by irradiating the lower layer with polarized light through the alignment layer (for example, from linearly polarized light to elliptically polarized light), without disturbing the molecular orientation, It is possible to keep the slow axis direction constant.
 本発明の光学積層体は、上述の製造方法の態様により、所望の光学特性を発現させることが可能である。光学特性としては、例えば、リタデーション値(例えば、面内のリタデーション値:Re)等が挙げられる。これらの光学特性の下記に示す範囲は、光学積層体の測定値の範囲であってもよく、第一の光学異方性層または第二の光学異方性層の測定値の範囲であってもよい。 The optical layered body of the present invention can exhibit desired optical characteristics according to the above-mentioned manufacturing method. Examples of the optical characteristics include a retardation value (for example, in-plane retardation value: Re). The range shown below of these optical properties may be the range of the measured values of the optical laminate, and is the range of the measured values of the first optically anisotropic layer or the second optically anisotropic layer. Good.
 面内のリタデーション値(Re)とは、フィルム上の直交する二軸の屈折率(nx、ny)の異方性(△Nxy=|nx-ny|)とフィルム厚さd(nm)との積(△Nxy×d)で定義されるパラメータであり、光学的等方性、異方性を示す尺度である。本発明の光学積層体は、面内のリタデーション値(Re)が、例えば、1~600nmであってもよく、好ましくは3~500nm、より好ましくは5~400nmであってもよい。なお、面内のリタデーション値(Re)は、波長550nmの光に対する測定値であってもよい。 The in-plane retardation value (Re) means the anisotropy (ΔNxy=|nx-ny|) of the biaxial refractive indexes (nx, ny) orthogonal to each other on the film and the film thickness d (nm). It is a parameter defined by the product (ΔNxy×d) and is a scale showing optical isotropy and anisotropy. The optical layered body of the present invention may have an in-plane retardation value (Re) of, for example, 1 to 600 nm, preferably 3 to 500 nm, and more preferably 5 to 400 nm. The in-plane retardation value (Re) may be a measured value for light having a wavelength of 550 nm.
 本発明の光学積層体は、例えば、位相差フィルムとして使用することができ、各種光学部材(反射防止フィルム、光学補償フィルム等)に用いることが可能である。本発明の光学積層体は、例えば、位相差フィルムとして直線偏光板と積層させることにより有機EL表示装置などのOLEDに反射防止膜として利用される円偏光板として使用することが可能である。 The optical laminate of the present invention can be used, for example, as a retardation film, and can be used for various optical members (antireflection film, optical compensation film, etc.). The optical layered body of the present invention can be used as a circularly polarizing plate used as an antireflection film in an OLED such as an organic EL display device by laminating it with a linear polarizing plate as a retardation film.
 以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.
(単量体1)
 p-クマル酸と6-クロロ-1-ヘキサノールを、アルカリ条件下で加熱することにより、4-(6-ヒドロキシヘキシルオキシ)桂皮酸を合成した。この生成物にp-トルエンスルホン酸の存在下でメタクリル酸を大過剰加えてエステル化反応させ、下記化学式に示される単量体1を合成した。
(Monomer 1)
4-(6-hydroxyhexyloxy)cinnamic acid was synthesized by heating p-coumaric acid and 6-chloro-1-hexanol under alkaline conditions. A large excess of methacrylic acid was added to this product in the presence of p-toluenesulfonic acid to cause an esterification reaction to synthesize a monomer 1 represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(単量体2)
 4-ヒドロキシ安息香酸と6-クロロ-1-ヘキサノールを、アルカリ条件下で加熱することにより、4-(6-ヒドロキシヘキシルオキシ)安息香酸を合成した。次いでこの生成物にp-トルエンスルホン酸の存在下でメタクリル酸を大過剰加えてエステル化反応させ、下記化学式に示される単量体2を合成した。
(Monomer 2)
4-(6-Hydroxyhexyloxy)benzoic acid was synthesized by heating 4-hydroxybenzoic acid and 6-chloro-1-hexanol under alkaline conditions. Then, a large excess of methacrylic acid was added to this product in the presence of p-toluenesulfonic acid to cause an esterification reaction to synthesize a monomer 2 represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(共重合体1)
 単量体1と単量体2のモル比が単量体1:単量体2=3:7となるように単量体1と単量体2をジオキサン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して、70℃で24時間重合することにより共重合体1を得た。この共重合体1は液晶性を呈した。
(Copolymer 1)
The monomer 1 and the monomer 2 were dissolved in dioxane so that the molar ratio of the monomer 1 and the monomer 2 was monomer 1:monomer 2=3:7. AIBN (azobisisobutyronitrile) was added and polymerized at 70° C. for 24 hours to obtain a copolymer 1. This copolymer 1 exhibited liquid crystallinity.
(共重合体2)
 単量体1、単量体2、メタクリル酸2-ヒドロキシエチル(HEMA)のモル比が単量体1:単量体2:HEMA=3:7:2となるように単量体1、単量体2、およびHEMAをジオキサン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して、70℃で24時間重合することにより共重合体2を得た。この共重合体2は液晶性を呈した。
(Copolymer 2)
Monomer 1 and monomer 2 are mixed so that the molar ratio of Monomer 1, Monomer 2 and 2-hydroxyethyl methacrylate (HEMA) is Monomer 1: Monomer 2: HEMA = 3:7:2. The copolymer 2 was obtained by dissolving the monomer 2 and HEMA in dioxane, adding AIBN (azobisisobutyronitrile) as a reaction initiator, and polymerizing at 70° C. for 24 hours. This copolymer 2 exhibited liquid crystallinity.
 以下の実施例及び比較例において、得られた光学積層体の光学特性(リタデーション値Reなど)は複屈折測定装置(AXOMETRICS社製、AxoScan)を用い、厚さは膜厚計(FILMETRICS社製、F20)を用いて測定した。 In the following examples and comparative examples, the optical properties (retardation value Re, etc.) of the obtained optical layered body were measured by using a birefringence measuring device (AxoScan, AxoScan), and the thickness was measured by a film thickness meter (FILMETRICS, It was measured using F20).
(実施例1)
 共重合体1をテトラヒドロフラン(THF)に溶解し、溶液を調製した。この溶液をカバーガラス基板上にスピンコーターを用いて2.4μmの厚さになるよう塗布して、25℃で乾燥させた。乾燥後の塗膜に、高圧水銀灯からの紫外線を、グランテーラープリズムを用いて直線偏光性に変換した偏光(第一の偏光)を塗膜に対して垂直に200秒間照射し(照射量200mJ/cm)、第一の光学異方性層を形成した。第一の偏光照射後、130℃で3分間加熱し、室温まで冷却することにより配向を誘起した。得られた塗膜の光学特性は、面内位相差の軸方向が照射した偏光軸方向に対して90°であった。
(Example 1)
Copolymer 1 was dissolved in tetrahydrofuran (THF) to prepare a solution. This solution was applied on a cover glass substrate with a spin coater to a thickness of 2.4 μm and dried at 25° C. The coating film after drying was irradiated with polarized light (first polarized light) obtained by converting ultraviolet rays from a high-pressure mercury lamp into linearly polarized light using a Glan-Taylor prism for 200 seconds perpendicularly to the coating film (irradiation amount 200 mJ/ cm 2 ), a first optically anisotropic layer was formed. After irradiation of the first polarized light, the alignment was induced by heating at 130° C. for 3 minutes and cooling to room temperature. The optical properties of the obtained coating film were 90° with respect to the direction of the polarized axis of irradiation, in which the axial direction of the in-plane retardation was.
 その後、高圧水銀灯からの紫外線を、グランテーラープリズムを用いて、偏光軸方向が先に照射した偏光の偏光軸方向と45°異なる直線偏光性に変換した偏光(第二の偏光)を、塗膜に300秒間照射し(照射量300mJ/cm)、第一の光学異方性層に表面層を形成した。 Then, using a Glan-Taylor prism, the ultraviolet rays from the high-pressure mercury lamp are converted into linearly polarized light whose polarization axis direction is different by 45° from the polarization axis direction of the previously irradiated polarized light (second polarized light). For 300 seconds (irradiation dose 300 mJ/cm 2 ) to form a surface layer on the first optically anisotropic layer.
 重合性液晶化合物(BASF社製、LC-242)100重量部、および光重合開始剤(チバ・スペシャリティ・ケミカルズ製、イガルキュア907)5重量部を混合し、THFとプロピレングリコール1-モノメチルエーテル2-アセタート(PGMEA)との体積比(THF:PGMEA)が1:1の混合溶媒に溶解し、溶液を準備した。この溶液を、第二の偏光照射後に得られた塗膜上に、スピンコーターを用いて0.9μmの厚さになるよう塗布し、70℃まで加熱後、室温まで冷却し、第二の光学異方性層を形成した。さらに、非偏光性の紫外線を100秒間照射し(照射量400mJ/cm)、重合性液晶化合物を重合させた。得られた光学積層体は、面内リタデーション値が242nm(Linear Retardance:228nm、Circular Retardance:-78nm)であった。 100 parts by weight of a polymerizable liquid crystal compound (LC-242 manufactured by BASF) and 5 parts by weight of a photopolymerization initiator (Igarcure 907 manufactured by Ciba Specialty Chemicals) were mixed, and THF and propylene glycol 1-monomethyl ether 2- A solution was prepared by dissolving in a mixed solvent having a volume ratio (THF:PGMEA) of 1:1 with acetate (PGMEA). This solution is applied on the coating film obtained after the second polarized light irradiation by using a spin coater so as to have a thickness of 0.9 μm, heated to 70° C., and then cooled to room temperature. An anisotropic layer was formed. Furthermore, non-polarizing ultraviolet rays were irradiated for 100 seconds (irradiation amount 400 mJ/cm 2 ) to polymerize the polymerizable liquid crystal compound. The in-plane retardation value of the obtained optical layered body was 242 nm (Linear Retardance: 228 nm, Circular Retardance: -78 nm).
 得られた光学積層体の各層の光学特性を調査するために、第二の光学異方性層のみを粘着剤付の光学等方性フィルムに転写した。そして、剥離した第一の光学異方性層および第二の光学異方性層の光学特性をそれぞれ測定した。第一の光学異方性層は、面内リタデーション値Reが135nmであり、遅相軸方向は照射した第1の偏光照射の偏光軸方向に対して90°であった。第二の偏光の照射において、第一の光学異方性層自体は既に配向していたため、その配向自体が大きく影響を受けることは無く、軸方向は維持したままであった。第二の光学異方性層は、面内リタデーション値Reが115.3nmであり、遅相軸方向は照射した第1の偏光照射の偏光軸方向に対して77°であった。第二の偏光の照射において、第一の光学異方性層の表面近傍の配向状態を考慮して偏光軸方向を選択した結果、所望の第二の光学異方性層の遅相軸方向にすることができた。これにより、2層の光学異方性層が積層された光学積層体であることが確認され、各層の遅相軸のなす角は13°であった。また、第一の光学異方性層の面内で遅相軸方向は一定であった。 In order to investigate the optical properties of each layer of the obtained optical laminate, only the second optically anisotropic layer was transferred to an optically isotropic film with an adhesive. Then, the optical properties of the peeled first optically anisotropic layer and second optical anisotropic layer were measured. The in-plane retardation value Re of the first optically anisotropic layer was 135 nm, and the slow axis direction was 90° with respect to the polarization axis direction of the irradiated first polarized light. Upon irradiation with the second polarized light, since the first optically anisotropic layer itself had already been oriented, the orientation itself was not significantly affected and the axial direction was maintained. The in-plane retardation value Re of the second optically anisotropic layer was 115.3 nm, and the slow axis direction was 77° with respect to the polarization axis direction of the irradiated first polarized light. In the irradiation of the second polarized light, as a result of selecting the polarization axis direction in consideration of the alignment state near the surface of the first optically anisotropic layer, the desired slow axis direction of the second optically anisotropic layer We were able to. From this, it was confirmed that the optical laminate was a laminate of two optically anisotropic layers, and the angle formed by the slow axis of each layer was 13°. The slow axis direction was constant in the plane of the first optically anisotropic layer.
(実施例2)
 共重合体1をTHFに溶解し、溶液を調製した。この溶液をカバーガラス基板上にスピンコーターを用いて2.4μmの厚さになるよう塗布して、25℃で乾燥させた。乾燥後の塗膜に、高圧水銀灯からの紫外線を、グランテーラープリズムを用いて直線偏光性に変換した偏光(第一の偏光)を200秒間照射し(照射量200mJ/cm)、第一の光学異方性層を形成した。偏光照射後、130℃で3分間加熱し、室温まで冷却することにより配向を誘起した。得られた塗膜の光学特性は、面内位相差の軸方向が照射した偏光軸方向に対して90°であった。
(Example 2)
Copolymer 1 was dissolved in THF to prepare a solution. This solution was applied on a cover glass substrate with a spin coater to a thickness of 2.4 μm and dried at 25° C. The coating film after drying was irradiated with polarized light (first polarized light) obtained by converting ultraviolet rays from a high-pressure mercury lamp into linearly polarized light using a Glan-Taylor prism for 200 seconds (irradiation amount 200 mJ/cm 2 ). An optically anisotropic layer was formed. After irradiation with polarized light, the alignment was induced by heating at 130° C. for 3 minutes and cooling to room temperature. The optical properties of the obtained coating film were 90° with respect to the direction of the polarized axis of irradiation, in which the axial direction of the in-plane retardation was.
 その後、得られた塗膜にTHFとエタノールとの体積比(THF:エタノール)が1:6の混合溶媒をスピンコーターで塗布し、放置することにより乾燥させた。さらに、高圧水銀灯からの紫外線を、グランテーラープリズムを用いて、偏光軸方向が先に照射した偏光の偏光軸方向と60°異なる直線偏光性に変換した偏光(第二の偏光)を、塗膜に70秒間照射し(照射量70mJ/cm)、第一の光学異方性層に表面層を形成した。 After that, a mixed solvent having a volume ratio of THF and ethanol (THF:ethanol) of 1:6 was applied to the obtained coating film by a spin coater and left to dry. Further, the polarized light (second polarized light) obtained by converting the ultraviolet light from the high-pressure mercury lamp into a linearly polarized light whose polarization axis direction is 60° different from the polarization axis direction of the polarized light previously irradiated by using the Glan-Taylor prism is applied. For 70 seconds (irradiation dose 70 mJ/cm 2 ) to form a surface layer on the first optically anisotropic layer.
 重合性液晶化合物(BASF社製、LC-242)100重量部、および光重合開始剤(チバ・スペシャリティ・ケミカルズ製、イガルキュア907)5重量部を混合し、トルエンに溶解し、溶液を準備した。この溶液を、第二の偏光照射後に得られた塗膜上に、スピンコーターを用いて0.9μmの厚さになるよう塗布し、70℃まで加熱後、室温まで冷却し、第二の光学異方性層を形成した。さらに、非偏光性の紫外線を100秒間照射し(照射量400mJ/cm)、重合性液晶化合物を重合させた。得られた光学積層体は、面内リタデーション値が142.7nm(Linear Retardance:114.8nm、Circular Retardance:84.5nm)であった。 100 parts by weight of a polymerizable liquid crystal compound (LC-242 manufactured by BASF) and 5 parts by weight of a photopolymerization initiator (Igarcure 907 manufactured by Ciba Specialty Chemicals) were mixed and dissolved in toluene to prepare a solution. This solution is applied on the coating film obtained after the second polarized light irradiation by using a spin coater so as to have a thickness of 0.9 μm, heated to 70° C., and then cooled to room temperature. An anisotropic layer was formed. Furthermore, non-polarizing ultraviolet rays were irradiated for 100 seconds (irradiation amount 400 mJ/cm 2 ) to polymerize the polymerizable liquid crystal compound. The obtained optical layered body had an in-plane retardation value of 142.7 nm (Linear Retardance: 114.8 nm, Circular Retardance: 84.5 nm).
 得られた光学積層体の各層の光学特性を複屈折測定装置(AXOMETRICS社製、AxoScan)の解析ソフト(Multi-Layer Analysis)によりそれぞれ算出した。第一の光学異方性層は、面内リタデーション値Reが100nmであり、遅相軸方向は照射した第1の偏光照射の偏光軸方向に対して90°であった。第二の光学異方性層は、面内リタデーション値Reが180nmであり、遅相軸方向は照射した第1の偏光照射の偏光軸方向に対して28.5°であった。これにより、2層の光学異方性層が積層された光学積層体であることが確認され、各層の遅相軸のなす角は61.5°であった。また、第一の光学異方性層の面内で遅相軸方向は一定であった。 The optical characteristics of each layer of the obtained optical layered product were calculated by the analysis software (Multi-Layer Analysis) of the birefringence measuring device (AxoScan, manufactured by AXOMETRICS). The in-plane retardation value Re of the first optically anisotropic layer was 100 nm, and the slow axis direction was 90° with respect to the polarization axis direction of the irradiated first polarized light. The in-plane retardation value Re of the second optically anisotropic layer was 180 nm, and the slow axis direction was 28.5° with respect to the polarization axis direction of the irradiated first polarized light. From this, it was confirmed that the optical laminate was a laminate of two optically anisotropic layers, and the angle formed by the slow axis of each layer was 61.5°. The slow axis direction was constant in the plane of the first optically anisotropic layer.
(実施例3)
 共重合体2をTHFに溶解し、溶液を調製した。この溶液をカバーガラス基板上にスピンコーターを用いて2.4μmの厚さになるよう塗布して、25℃で乾燥させた。乾燥後の塗膜に、高圧水銀灯からの紫外線を、グランテーラープリズムを用いて直線偏光性に変換した偏光(第一の偏光)を200秒間照射し(照射量200mJ/cm)、第一の光学異方性層を形成した。第一の偏光照射後、130℃で3分間加熱し、室温まで冷却することにより配向を誘起した。得られた塗膜の光学特性は、面内位相差の軸方向が照射した偏光軸方向に対して90°であった。
(Example 3)
Copolymer 2 was dissolved in THF to prepare a solution. This solution was applied on a cover glass substrate with a spin coater to a thickness of 2.4 μm and dried at 25° C. The coating film after drying was irradiated with polarized light (first polarized light) obtained by converting ultraviolet rays from a high-pressure mercury lamp into linearly polarized light using a Glan-Taylor prism for 200 seconds (irradiation amount 200 mJ/cm 2 ). An optically anisotropic layer was formed. After irradiation of the first polarized light, the alignment was induced by heating at 130° C. for 3 minutes and cooling to room temperature. The optical properties of the obtained coating film were 90° with respect to the direction of the polarized axis of irradiation, in which the axial direction of the in-plane retardation was.
 その後、高圧水銀灯からの紫外線を、グランテーラープリズムを用いて、偏光軸方向が先に照射した偏光の偏光軸方向と45°異なる直線偏光性に変換した偏光(第二の偏光)を、塗膜に300秒間照射し(照射量300mJ/cm)、第一の光学異方性層に表面層を形成した。 Then, using a Glan-Taylor prism, the ultraviolet rays from the high-pressure mercury lamp are converted into linearly polarized light whose polarization axis direction is different by 45° from the polarization axis direction of the previously irradiated polarized light (second polarized light). For 300 seconds (irradiation dose 300 mJ/cm 2 ) to form a surface layer on the first optically anisotropic layer.
 重合性液晶化合物(BASF社製、LC-242)100重量部、光重合開始剤(チバ・スペシャリティ・ケミカルズ製、イガルキュア907)5重量部、およびポリイソシアネート(旭化成株式会社製、デュラネートTKA-100)0.6重量部を混合し、THFとPGMEAとの体積比(THF:PGMEA)が1:1の混合溶媒に溶解し、溶液を準備した。この溶液を、第二の偏光照射後に得られた塗膜上に、スピンコーターを用いて0.9μmの厚さになるよう塗布し、70℃まで加熱後、室温まで冷却し、第二の光学異方性層を形成した。さらに、非偏光性の紫外線を100秒間照射し(照射量400mJ/cm)、重合性液晶化合物を重合させるとともに、共重合体2を架橋させた。得られた光学積層体は、面内リタデーション値が202nm(Linear Retardance:185nm、Circular Retardance:81nm)であった。更に、第一の光学異方性層と第二の光学異方性層との界面の密着性を確認するため、クロスカット試験を実施した。試験をJIS K 5600に準拠して実施した結果、第二の光学異方性層の剥離は観察されず、良好な密着性を有していることが確認された。 100 parts by weight of a polymerizable liquid crystal compound (LC-242 manufactured by BASF), 5 parts by weight of a photopolymerization initiator (Igarcure 907 manufactured by Ciba Specialty Chemicals), and polyisocyanate (Duranate TKA-100 manufactured by Asahi Kasei Co., Ltd.) 0.6 parts by weight were mixed and dissolved in a mixed solvent having a volume ratio of THF and PGMEA (THF:PGMEA) of 1:1 to prepare a solution. This solution is applied on the coating film obtained after the second polarized light irradiation by using a spin coater so as to have a thickness of 0.9 μm, heated to 70° C., and then cooled to room temperature. An anisotropic layer was formed. Furthermore, non-polarizing ultraviolet rays were irradiated for 100 seconds (irradiation amount 400 mJ/cm 2 ) to polymerize the polymerizable liquid crystal compound and to crosslink the copolymer 2. The obtained optical layered body had an in-plane retardation value of 202 nm (Linear Retardance: 185 nm, Circular Retardance: 81 nm). Furthermore, in order to confirm the adhesiveness of the interface between the first optically anisotropic layer and the second optically anisotropic layer, a cross cut test was performed. As a result of performing the test according to JIS K 5600, peeling of the second optically anisotropic layer was not observed, and it was confirmed that the film had good adhesion.
 得られた光学積層体の各層の光学特性は、実施例1と同程度の光学特性を示した。 The optical characteristics of each layer of the obtained optical layered body showed the same optical characteristics as in Example 1.
(比較例1)
 共重合体1をテトラヒドロフラン(THF)に溶解し、溶液を調製した。この溶液をカバーガラス基板上にスピンコーターを用いて2.6μmの厚さになるよう塗布して、25℃で乾燥させた。乾燥後の塗膜に、高圧水銀灯からの紫外線を、グランテーラープリズムを用いて直線偏光性に変換した偏光を30秒間照射した(照射量30mJ/cm)。
(Comparative Example 1)
Copolymer 1 was dissolved in tetrahydrofuran (THF) to prepare a solution. This solution was applied on a cover glass substrate with a spin coater to a thickness of 2.6 μm and dried at 25° C. The dried coating film was irradiated with ultraviolet rays from a high-pressure mercury lamp for 30 seconds with polarized light converted into linearly polarized light using a Glan-Taylor prism (irradiation amount 30 mJ/cm 2 ).
 その後、得られた塗膜上に、重合性液晶化合物(BASF社製、LC-242)100重量部、および光重合開始剤(チバ・スペシャリティ・ケミカルズ製、イガルキュア907)5重量部を混合し、トルエンに溶解した溶液を、スピンコーターを用いて1.2μmの厚さになるよう塗布し、70℃まで加熱後、室温まで冷却した。重合性液晶化合物は、照射した偏光軸方向に対して90°に配向していることが確認された。 Thereafter, 100 parts by weight of a polymerizable liquid crystal compound (LC-242, manufactured by BASF) and 5 parts by weight of a photopolymerization initiator (Igarcure 907, manufactured by Ciba Specialty Chemicals) were mixed on the obtained coating film. The solution dissolved in toluene was applied using a spin coater to a thickness of 1.2 μm, heated to 70° C., and then cooled to room temperature. It was confirmed that the polymerizable liquid crystal compound was oriented at 90° with respect to the irradiated polarization axis direction.
 その後、高圧水銀灯からの紫外線を、グランテーラープリズムを用いて、偏光軸方向が先に照射した偏光の偏光軸方向と60°異なる直線偏光性に変換した偏光を、塗膜に100秒間照射した(照射量100mJ/cm)。 Then, using a Glan-Taylor prism, the ultraviolet rays from the high-pressure mercury lamp were converted into linearly polarized light whose polarization axis direction was 60° different from the polarization axis direction of the previously irradiated polarized light, and the coating film was irradiated with the polarized light for 100 seconds ( Irradiation amount 100 mJ/cm 2 ).
 得られた光学積層体は、任意の点において面内リタデーション値が172.9nm(Linear Retardance:136.8nm、Circular Retardance:-105.7nm)であった。 The obtained optical layered body had an in-plane retardation value of 172.9 nm (Linear Retardance: 136.8 nm, Circular Retardance: −105.7 nm) at any point.
 得られた光学積層体の各層の光学特性を調査するために、第二の光学異方性層のみを剥離した。第二の光学異方性層は、任意の点において面内リタデーション値Reが116.8nmであり、遅相軸方向は先に照射した偏光の偏光軸方向に対して39.8°であった。これにより、2層の光学異方性層が積層された光学積層体であることが確認されたが、各層の遅相軸のなす角は50.2°であり、第2回目の偏光照射時の偏光軸方向(=60°)と大幅に異なる。更には、面内で遅相軸方向が一定ではないこと、配向が乱れミクロドメイン発生によるヘイズが生じていることが確認された。これは、配向された第二の光学異方性を介して第2回目の偏光照射したことにより、共重合体1からなる第一の光学異方性に偏光が入射するときに、直線偏光から楕円偏光となってしまうこと、偏光軸方向(楕円偏光の長軸方向)も変わってしまうためと考えられる。よって、この比較例1では、所望の光学積層体を作製することが困難であった。 Only the second optically anisotropic layer was peeled off in order to investigate the optical properties of each layer of the obtained optical laminate. The second optically anisotropic layer had an in-plane retardation value Re of 116.8 nm at any point, and the slow axis direction was 39.8° with respect to the polarization axis direction of the previously irradiated polarized light. .. As a result, it was confirmed that the optical laminated body was formed by laminating two optically anisotropic layers, but the angle formed by the slow axes of the layers was 50.2°. It is significantly different from the polarization axis direction of (=60°). Furthermore, it was confirmed that the slow axis direction was not constant in the plane and that the orientation was disturbed and the haze was caused by the generation of microdomains. This is because when polarized light is incident on the first optical anisotropy composed of the copolymer 1 by irradiating the second polarized light through the oriented second optical anisotropy, the linear polarized light is changed. It is considered that elliptically polarized light is obtained and the polarization axis direction (the major axis direction of elliptically polarized light) is also changed. Therefore, in Comparative Example 1, it was difficult to produce a desired optical laminate.
 実施例1~3の光学積層体は、特定の方法により製造したため、第一の光学異方性層と第二の光学異方性層の各層の遅相軸を任意に調整することが可能であった。特に、実施例2では、第二の偏光を照射する前に、溶媒による表面処理を行ったため、より容易に表面の配向を施すことが可能であった。また、実施例3では、共重合体2のヒドロキシ基と架橋結合を形成できるイソシアネート基を有するポリイソシアネートを重合性液晶化合物とともに含有させたため、第一の光学異方性層と第二の光学異方性層との密着性が良好であった。 Since the optical laminates of Examples 1 to 3 were manufactured by a specific method, the slow axes of the first optically anisotropic layer and the second optically anisotropic layer can be adjusted arbitrarily. there were. In particular, in Example 2, since the surface treatment with the solvent was performed before the irradiation with the second polarized light, it was possible to more easily orient the surface. Moreover, in Example 3, since the polyisocyanate having an isocyanate group capable of forming a cross-link with the hydroxy group of the copolymer 2 was contained together with the polymerizable liquid crystal compound, the first optically anisotropic layer and the second optically different layer were mixed. The adhesion to the anisotropic layer was good.
 一方、比較例1の光学積層体は、複屈折誘起材料層を配向させるための偏光を重合性液晶材料からなる層を介して照射したため、その偏光は重合性液晶材料からなる層により変換されてしまい、各層の遅相軸を所望のものに調整することができていなかった。 On the other hand, in the optical layered body of Comparative Example 1, polarized light for orienting the birefringence inducing material layer was irradiated through the layer made of the polymerizable liquid crystal material, so that the polarized light was converted by the layer made of the polymerizable liquid crystal material. However, the slow axis of each layer could not be adjusted to a desired one.
 本発明によれば、互いの遅相軸の交差する角度を任意に設定可能である光学積層体を提供することができる。このような光学積層体は、液晶表示装置、有機EL表示装置へ利用される偏光板、光学補償フィルム等の用途で用いることができる。特に、直線偏光板と積層させることにより有機EL表示装置に利用される円偏光板として使用することが可能である。 According to the present invention, it is possible to provide an optical laminate in which the angle at which the slow axes intersect with each other can be arbitrarily set. Such an optical laminate can be used for applications such as a polarizing plate and an optical compensation film used for a liquid crystal display device, an organic EL display device. In particular, when laminated with a linear polarizing plate, it can be used as a circular polarizing plate used in an organic EL display device.
 以上のとおり、図面を参照しながら本発明の好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, the preferred embodiments of the present invention have been described with reference to the drawings. However, those skilled in the art can easily envision various changes and modifications within the obvious scope by viewing the present specification. Ah Therefore, such changes and modifications are construed as being within the scope of the invention defined by the claims.
 10・・・基材
 20・・・複屈折誘起材料層
 30・・・第一の光学異方性層
 31・・・内部層
 32・・・表面層
 40・・・第二の光学異方性層
 100・・・光学積層体
10... Base material 20... Birefringence inducing material layer 30... First optical anisotropic layer 31... Inner layer 32... Surface layer 40... Second optical anisotropy Layer 100... Optical laminate

Claims (7)

  1.  複屈折誘起材料からなる第一の光学異方性層と、
     重合性液晶材料からなる第二の光学異方性層とが、隣接して積層された光学積層体であって、
     第一の光学異方性層が、互いに遅相軸が異なる表面層と内部層とで構成され、前記表面層と第二の光学異方性層とが接しており、
     第一の光学異方性層の内部層の遅相軸方向と第二の光学異方性層の遅相軸方向とが、交差している、光学積層体。
    A first optically anisotropic layer made of a birefringence inducing material,
    A second optically anisotropic layer made of a polymerizable liquid crystal material, which is an optical laminate laminated adjacent to each other,
    The first optically anisotropic layer is composed of a surface layer and an inner layer having different slow axes, and the surface layer and the second optically anisotropic layer are in contact with each other,
    An optical laminate in which the slow axis direction of the inner layer of the first optically anisotropic layer and the slow axis direction of the second optically anisotropic layer intersect.
  2.  請求項1に記載の光学積層体であって、第一の光学異方性層の内部層の遅相軸方向と第二の光学異方性層の遅相軸方向とが、非平行かつ非直交である角度で交差している、光学積層体。 The optical layered body according to claim 1, wherein the slow axis direction of the inner layer of the first optically anisotropic layer and the slow axis direction of the second optically anisotropic layer are non-parallel and non-parallel. Optical stacks that intersect at an angle that is orthogonal.
  3.  請求項1または2に記載の光学積層体であって、重合性液晶材料が、複屈折誘起材料と架橋結合を形成できる官能基を有する架橋剤を含む、光学積層体。 The optical laminate according to claim 1 or 2, wherein the polymerizable liquid crystal material contains a crosslinking agent having a functional group capable of forming a crosslink with the birefringence inducing material.
  4.  請求項1~3のいずれか一項に記載の光学積層体を製造する方法であって、
     複屈折誘起材料からなる複屈折誘起材料層上に、位相差を発現するための第一の偏光を照射して、第一の光学異方性層を形成する第一の光照射工程と、
     前記第一の光学異方性層の表面を、その内部層とは異なる配向を施すように配向処理し、第一の光学異方性層に表面層を形成する表面配向工程と、
     配向処理した前記第一の光学異方性層の表面上に、重合性液晶材料を適用して第二の光学異方性層を形成する工程とを備える、光学積層体の製造方法。
    A method for producing the optical laminate according to any one of claims 1 to 3, comprising:
    On a birefringence inducing material layer made of a birefringence inducing material, irradiating a first polarized light for expressing a phase difference, a first light irradiation step of forming a first optically anisotropic layer,
    The surface of the first optically anisotropic layer is subjected to an alignment treatment so as to give an orientation different from that of the inner layer, and a surface alignment step of forming a surface layer on the first optically anisotropic layer,
    And a step of applying a polymerizable liquid crystal material to form a second optically anisotropic layer on the surface of the first optically anisotropic layer that has been subjected to the alignment treatment.
  5.  請求項4に記載の製造方法であって、前記表面配向工程が、前記第一の光学異方性層の表面に、前記第一の偏光とは異なる偏光軸方向を有する第二の偏光を照射して、第一の光学異方性層に表面層を形成する第二の光照射工程である、光学積層体の製造方法。 The manufacturing method according to claim 4, wherein the surface alignment step irradiates the surface of the first optically anisotropic layer with second polarized light having a polarization axis direction different from that of the first polarized light. Then, the method for producing an optical layered body, which is the second light irradiation step of forming a surface layer on the first optically anisotropic layer.
  6.  請求項5に記載の製造方法であって、前記第一の光照射工程と前記第二の光照射工程との間に、前記第一の光学異方性層の表面を溶媒で処理する表面処理工程をさらに備える、光学積層体の製造方法。 The manufacturing method according to claim 5, wherein the surface treatment of treating the surface of the first optically anisotropic layer with a solvent between the first light irradiation step and the second light irradiation step. The manufacturing method of an optical laminated body which further comprises a process.
  7.  請求項1~3のいずれか一項に記載の光学積層体と、直線偏光板とが積層されている円偏光板。 A circularly polarizing plate in which the optical layered body according to any one of claims 1 to 3 and a linearly polarizing plate are laminated.
PCT/JP2020/004976 2019-02-22 2020-02-07 Optical layered body and method for manufacturing same WO2020170874A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217019611A KR102645532B1 (en) 2019-02-22 2020-02-07 Optical laminate and manufacturing method thereof
CN202080014310.2A CN113474691B (en) 2019-02-22 2020-02-07 Optical layered body and method for producing same
JP2021501868A JP7196278B2 (en) 2019-02-22 2020-02-07 Optical layered body and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019030471 2019-02-22
JP2019-030471 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020170874A1 true WO2020170874A1 (en) 2020-08-27

Family

ID=72145087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004976 WO2020170874A1 (en) 2019-02-22 2020-02-07 Optical layered body and method for manufacturing same

Country Status (4)

Country Link
JP (1) JP7196278B2 (en)
KR (1) KR102645532B1 (en)
CN (1) CN113474691B (en)
WO (1) WO2020170874A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080378A1 (en) * 2020-10-13 2022-04-21 日産化学株式会社 Method for manufacturing single-layer phase difference material
WO2022138932A1 (en) * 2020-12-25 2022-06-30 日産化学株式会社 Method for producing single-layer phase difference film and single-layer phase difference film-forming polymer composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202313A (en) * 2004-01-19 2005-07-28 Nitto Denko Corp Optical retardation film, manufacturing method for same, and optical film using same
JP2005292732A (en) * 2004-04-05 2005-10-20 Nitto Denko Corp Manufacturing method for laminated phase difference film, laminated phase difference film and optical film using the same
JP2005292727A (en) * 2004-04-05 2005-10-20 Nitto Denko Corp Laminated phase difference film, its manufacturing method and optical film using the same
JP2016004142A (en) * 2014-06-17 2016-01-12 林テレンプ株式会社 Optical film laminate and production method of the same, and liquid crystal display panel containing laminate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968699A (en) * 1995-08-31 1997-03-11 Sharp Corp Photosensitive film and manufacture thereof, and liquid crystal panel using the film and manufacture of the panel
JP4548036B2 (en) * 2004-08-06 2010-09-22 日本ゼオン株式会社 Optical laminate, polarizing plate, and liquid crystal display device
JP2006209073A (en) * 2004-12-28 2006-08-10 Dainippon Printing Co Ltd Optical element and method for manufacturing the same
CA2861759A1 (en) * 2010-12-30 2012-07-05 Smartershade, Inc. Variable transmission window
JP5905272B2 (en) * 2011-01-27 2016-04-20 住友化学株式会社 Method for producing optically anisotropic layer
JP6636253B2 (en) 2015-03-25 2020-01-29 林テレンプ株式会社 Retardation film, method for producing the same, and optical member having the retardation film
US10386679B2 (en) * 2015-04-21 2019-08-20 Zeon Corporation Multilayer film and method for manufacturing same, method for manufacturing optically anisotropic transfer body, optically anisotropic layer, optically anisotropic member, and optical layered body
JP2017067964A (en) * 2015-09-29 2017-04-06 富士フイルム株式会社 Optical sheet and manufacturing method of the same, and liquid crystal display
JP7025702B2 (en) * 2016-03-31 2022-02-25 日産化学株式会社 Orientation layer forming composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202313A (en) * 2004-01-19 2005-07-28 Nitto Denko Corp Optical retardation film, manufacturing method for same, and optical film using same
JP2005292732A (en) * 2004-04-05 2005-10-20 Nitto Denko Corp Manufacturing method for laminated phase difference film, laminated phase difference film and optical film using the same
JP2005292727A (en) * 2004-04-05 2005-10-20 Nitto Denko Corp Laminated phase difference film, its manufacturing method and optical film using the same
JP2016004142A (en) * 2014-06-17 2016-01-12 林テレンプ株式会社 Optical film laminate and production method of the same, and liquid crystal display panel containing laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080378A1 (en) * 2020-10-13 2022-04-21 日産化学株式会社 Method for manufacturing single-layer phase difference material
WO2022138932A1 (en) * 2020-12-25 2022-06-30 日産化学株式会社 Method for producing single-layer phase difference film and single-layer phase difference film-forming polymer composition

Also Published As

Publication number Publication date
JPWO2020170874A1 (en) 2021-11-11
CN113474691B (en) 2023-05-30
KR20210123290A (en) 2021-10-13
JP7196278B2 (en) 2022-12-26
KR102645532B1 (en) 2024-03-07
CN113474691A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
US10059877B2 (en) Optically anisotropic layer, method for producing the optically anisotropic layer, a laminate, polarizing plate, display device, liquid crystal compound, method for producing the liquid crystal compound, and carboxylic acid compound
JP5451176B2 (en) Optical film, polarizing plate, display device, and optical film manufacturing method
CN101918885B (en) Optical film, preparation method of the same, and liquid crystal display comprising the same
JP5531419B2 (en) Compound and optical film containing the compound
JP6636253B2 (en) Retardation film, method for producing the same, and optical member having the retardation film
JP5649779B2 (en) Liquid crystalline composition and optical film
JP2016004142A (en) Optical film laminate and production method of the same, and liquid crystal display panel containing laminate
WO2020170874A1 (en) Optical layered body and method for manufacturing same
US20180348417A1 (en) Optical film, polarizing plate, and image display device
JP7305682B2 (en) OPTICAL FILM LAMINATE AND METHOD FOR MANUFACTURING OPTICAL FILM LAMINATE
JP2010001284A (en) Compound and optical film
JP7349990B2 (en) Retardation film and its manufacturing method
JP2015094801A (en) Optically anisotropic element and manufacturing method of the same
WO2022075071A1 (en) Optical laminate and circularly polarizing plate
KR20150018426A (en) Composition for forming optical anisotropic layer
CN111727388B (en) Adhesive composition, adhesive layer, optical laminate, and image display device
JP6824941B2 (en) Optical film laminate, manufacturing method thereof, and liquid crystal display panel including the laminate
JP2016004143A (en) Optical film laminate and manufacturing method of the same
JP2023044898A (en) Polarizing optical element
WO2014168258A1 (en) Method for producing optically anisotropic film
WO2022018995A1 (en) Optical film and optical film laminate
JP7353052B2 (en) Laminated optical film and its manufacturing method, polarizing plate, and image display device
JP7291651B2 (en) Normal wavelength dispersion liquid crystal compound, polymerizable liquid crystal composition, cured product, optical film, polarizing plate, and image display device
KR20230056711A (en) Oriented liquid crystal film, manufacturing method thereof, and image display device
KR20150018422A (en) Process for producing optical anisotropic laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20760270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20760270

Country of ref document: EP

Kind code of ref document: A1