WO2022075071A1 - Optical laminate and circularly polarizing plate - Google Patents

Optical laminate and circularly polarizing plate Download PDF

Info

Publication number
WO2022075071A1
WO2022075071A1 PCT/JP2021/034879 JP2021034879W WO2022075071A1 WO 2022075071 A1 WO2022075071 A1 WO 2022075071A1 JP 2021034879 W JP2021034879 W JP 2021034879W WO 2022075071 A1 WO2022075071 A1 WO 2022075071A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically anisotropic
anisotropic layer
layer
liquid crystal
group
Prior art date
Application number
PCT/JP2021/034879
Other languages
French (fr)
Japanese (ja)
Inventor
丈也 酒井
Original Assignee
林テレンプ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林テレンプ株式会社 filed Critical 林テレンプ株式会社
Priority to JP2022555352A priority Critical patent/JPWO2022075071A1/ja
Publication of WO2022075071A1 publication Critical patent/WO2022075071A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an optical laminate that can be used as a retardation plate and a circular polarizing plate including the optical laminate.
  • Various retardation plates are used in thin display devices such as liquid crystal displays (LCDs) and organic light emitting diodes (OLEDs) in order to improve display quality.
  • LCDs liquid crystal displays
  • OLEDs organic light emitting diodes
  • a broadband circular polarizing plate is used in order to suppress reflection.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 10-688166 describes a 1/4 wave plate in which the phase difference of the birefringent light is 1/4 wavelength and a birefringent light.
  • a phase difference plate characterized in that a 1/2 wave plate having a phase difference of 1/2 wavelength is bonded together with their optical axes crossed is disclosed.
  • Patent Document 2 Japanese Patent No. 4646030
  • a phase difference plate of a liquid crystal display device a first phase difference plate having a phase difference of 1/4 wavelength and a phase difference of 1/2 wavelength are provided. It is described that the second retardation plate is arranged and the Nz coefficient of the second retardation plate is 0 or more and less than 1.
  • Patent Documents 1 and 2 do not describe the relationship between the Nz coefficients of both the 1/4 wave plate and the 1/2 wave plate, and do not describe the use of different Nz coefficients from each other.
  • a stretched film or a film in which a liquid crystal material is oriented on an alignment film is generally used, and such a film has an Nz coefficient of 1 and is optically uniaxial. It is a film of.
  • an optical uniaxial film is used as both the 1/4 wave plate and the 1/2 wave plate and the laminated circular polarizing plate is mounted on an OLED panel, the reflected light of the electrode is sufficient when observed from the diagonal direction of the panel. There is a problem that the oblique viewing contrast of the OLED panel is lowered.
  • Patent Documents 1 and 2 it is necessary to use an adhesive to bond the 1/4 wave plate and the 1/2 wave plate, and the birefringence of the adhesive itself may affect it. ..
  • an object of the present invention is to provide an optical laminate capable of suppressing reflected light even when observed from an oblique direction and suppressing a decrease in oblique viewing contrast.
  • the present inventor has identified layers having a phase difference of 1/4 wavelength and layers having a phase difference of 1/2 wavelength, which are laminated adjacent to each other.
  • the present invention has been completed by finding that the optical laminate having the Nz coefficient of can suppress the reflected light even when observed from an oblique direction and can suppress the decrease in the oblique viewing contrast.
  • the present invention can be configured in the following aspects.
  • It contains a first optically anisotropic layer made of a birefringence-inducing material and a second optically anisotropic layer made of a polymerizable liquid crystal material and laminated adjacent to the first optically anisotropic layer. It is an optical laminate,
  • the Nz coefficient of the first optically anisotropic layer is ⁇ 0.5 ⁇ Nz ⁇ 0.5 (preferably ⁇ 0.5 ⁇ Nz ⁇ 0 or 0 ⁇ Nz ⁇ 0.5, more preferably ⁇ 0.3”.
  • the second optically anisotropic layer has the optical characteristics of the positive A plate.
  • One of the first optically anisotropic layer and the second optically anisotropic layer has a phase difference of 1/4 wavelength, and the other layer has a phase difference of 1/2 wavelength.
  • the slow axis direction of the first optically anisotropic layer and the slow axis direction of the second optically anisotropic layer are non-parallel and non-orthogonal.
  • the first optically anisotropic layer has a phase difference of 1/2 wavelength and has an Nz coefficient of 0 ⁇ Nz ⁇ 0.5 (preferably).
  • the first optically anisotropic layer has a phase difference of 1/4 wavelength and has an Nz coefficient of ⁇ 0.5 ⁇ Nz ⁇ 0.5. (Preferably ⁇ 0.5 ⁇ Nz ⁇ 0, more preferably ⁇ 0.3 ⁇ Nz ⁇ ⁇ 0.1).
  • a circular polarizing plate in which the optical laminate according to any one of aspects 1 to 4 and a linear polarizing plate are laminated.
  • the reflected light can be suppressed even when observed from an oblique direction, and the decrease in oblique viewing contrast can be suppressed.
  • a linear polarizing plate By laminating with a linear polarizing plate, a circular polarizing plate can be suppressed. It can be used as.
  • FIG. 1 It is schematic cross-sectional view of the laminated body after the surface orientation process in one Embodiment of the manufacturing method of the optical laminated body of this invention. It is schematic cross-sectional view of the laminated body after the 2nd optical anisotropic layer forming step in one Embodiment of the manufacturing method of the optical laminated body of this invention. It is a figure which shows the viewing angle characteristic of the reflected light of the circular polarizing plate of the structure of Example 1.
  • FIG. It is a spectrum of the reflected light of the circular polarizing plate by the circular polarizing plate of Example 1 and the cyclic polyolefin ⁇ / 4 retardation film single layer. It is a figure which shows the viewing angle characteristic of the reflected light of the circular polarizing plate of the structure of Example 2.
  • FIG. It is a graph which shows the wavelength dependence of the phase difference value of the transmitted light of the circular polarizing plate of Example 2.
  • FIG. It is a figure which shows the viewing angle characteristic of the reflected light of the circular polarizing plate of the structure of the comparative example 1.
  • the optical laminate of the present invention comprises a first optically anisotropic layer made of a birefringence-inducing material and a second optically anisotropic layer made of a polymerizable liquid crystal material and laminated adjacent to the first optically anisotropic layer. Includes an optically anisotropic layer.
  • the birefringence-inducing material refers to a material capable of inducing birefringence axially selectively by molecular motion due to light irradiation (preferably light irradiation and heat-cooling treatment) and molecular orientation based on the molecular motion.
  • the birefringence-inducing material may contain a side-chain type liquid crystal polymer having a photosensitive group and having a side chain structure capable of forming a liquid crystal structure, and the light of the photosensitive group having the side chain may be contained. It may have a property that molecular orientation is induced by the reaction.
  • the photoreaction caused by the photosensitive group include a photodimerization reaction, a photoisomerization reaction, and a photofries rearrangement reaction.
  • the side chain structure capable of forming a liquid crystal structure may exhibit liquid crystallinity by having a mesogen group which is a rigid site exhibiting liquid crystallinity, or another polymer or another polymer or It has a structure capable of forming a dimer by hydrogen bonding with other side chains of the same polymer, and may exhibit liquid crystallinity by forming a mesogen structure by dimerization thereof.
  • a mesogen group or mesogen structure is composed of two or more aromatic or aliphatic rings and a linking group that binds them, and the linking group may be a covalent bond or a hydrogen bond.
  • the aromatic ring include a benzene ring, a naphthalene ring, a heterocycle (for example, an oxygen-containing heterocycle such as a furan ring and a pyran ring; a nitrogen-containing heterocycle such as a pyrrole ring and an imidazole ring), and examples thereof include an aliphatic ring.
  • Examples include a cyclohexane ring.
  • these aromatic rings or aliphatic rings may have a substituent, and the substituent may be an alkyl group (for example, a C 1-6 alkyl group, preferably a C 1-4 alkyl group).
  • Alkyloxy group eg, C 1-6 alkyloxy group, preferably C 1-4 alkyloxy group
  • alkenyl group eg, C 2-6 alkenyl group, preferably C 2-4 alkenyl group
  • alkynyl group eg, C 2-4 alkenyl group
  • C 2-6 alkynyl group, preferably C 2-4 alkynyl group halogen atom and the like can be mentioned.
  • a hydrogen bond a side chain structure having a carboxy group at the terminal may be mentioned, and in this case, a hydrogen bond is formed between the carboxy groups.
  • the photosensitive group is not particularly limited as long as it is a functional group capable of causing a photoreaction by light energy.
  • Examples thereof include a frillacryloyl group, a naphthylacryloyl group, an azobenzene group, a benzylideneaniline group or a derivative thereof, and a cinnamoyl group may be preferable.
  • the side chain type liquid crystal polymer may have at least a side chain structure having both a photosensitive group and a structure capable of forming a liquid crystal structure in the repeating unit, and the photosensitive group is a mesogen.
  • the group or mesogen structure may exist independently in the side chain structure, or may exist in a complex manner by sharing a chemical structure.
  • the side chain type liquid crystal polymer has a side chain structure represented by the following formulas (1) and (2) as a side chain structure having both a photosensitive group and a structure capable of forming a liquid crystal structure. It may have at least one side chain structure selected from the group.
  • C 1-6 alkyl group preferably C 1-4 alkyl group
  • alkyloxy group for example, C 1-6 alkyloxy group, preferably C 1-4 alkyloxy group
  • halogen atom or cyano group Represents.
  • R 2 and R 3 each represent a substituent at four positions on the benzene ring, and may represent the same or different substituents at the four positions.
  • W is a cinnamoyloxy group, an alkane group, a biphenylacryloyloxy group, a frillacryloyloxy group.
  • R4 and R5 are the same or different, hydrogen atom, alkyl group (eg, C 1-6 alkyl group, preferably C 1-4 alkyl group). , Alkyloxy group (eg, C 1-6 alkyloxy group, preferably C 1-4 alkyloxy group), halogen atom or cyano group. It should be noted that R 4 and R 5 each represent a substituent at four positions on the benzene ring, and may represent the same or different substituents at the four positions.
  • the side chain type liquid crystal polymer preferably contains at least the side chain structure represented by the above formula (1). More preferably, in the above formula (1), a side chain structure having a chemical structure in which t represents 0 and R 1 represents a hydrogen atom may be contained, and such a side chain structure is photosensitive at the terminal. Since it has a katsura acid group, which is a group, and the carboxy group in the katsura acid group has hydrogen-binding property, the terminal benzoic acid group or katsura skin of the side chain of another polymer or the same polymer. It is possible to form a mesogen structure by forming a hydrogen bond together with the carboxy group of the acid group and dimerizing it.
  • the side chain structures represented by the above formulas (1) and (2) represent the chemical structure of the end of the side chain in the repeating unit, and these side chain structures are not impaired to the extent that the effect of the present invention is not impaired.
  • Various chemical structures may be contained between the main chain structure and the main chain structure.
  • the side chain type liquid crystal polymer is a homopolymer composed of the same repeating unit containing the side chain structure or a copolymer containing a repeating unit containing a side chain structure having a different structure in addition to the repeating unit containing the side chain structure.
  • the main chain structure include structures formed by polymerizing hydrocarbons, acrylates, methacrylates, siloxanes, maleimides, N-phenylmaleimides and the like.
  • the side chain type liquid crystal polymer When the side chain type liquid crystal polymer is a copolymer, it may have a repeating unit that does not have a photosensitive group and / or a structure capable of forming a liquid crystal structure.
  • the birefringence-inducing material of the present invention may contain a low molecular weight compound together with the side chain type liquid crystal polymer in order to promote the orientation of the side chain of the side chain type liquid crystal polymer.
  • the low molecular weight compound has a substituent such as biphenyl, terphenyl, phenylbenzoate, and azobenzene known as a mesogen component, and such a substituent and an allyl, acrylate, methacrylate, and cinnamic acid group (or a derivative thereof) are included.
  • a liquidity in which a functional group such as (group) is bonded via a spacer for example, an (oxy) alkylene group having 1 to 15 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms)).
  • a spacer for example, an (oxy) alkylene group having 1 to 15 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms)).
  • Those having the above are preferably used.
  • These small molecule compounds may be used alone or in combination of two or more.
  • the polymerizable liquid crystal material is a composition containing a monofunctional or bifunctional polymerizable liquid crystal compound containing at least a reactive functional group and a mesogen group, and is polymerized by light or heat or reacted with a cross-linking agent. Contains the composition after forming a crosslinked structure with.
  • the polymerizable liquid crystal compound may be a liquid crystal monomer or a liquid crystal polymer.
  • a polymerizable liquid crystal monomer having a polymerizable functional group that polymerizes by light or heat and / or a polymerizable liquid crystal polymer, or a cross-linking functional group capable of introducing a cross-linked structure by reaction with a cross-linking agent examples thereof include a crosslinkable liquid crystal monomer having a crosslinkable liquid crystal monomer and / or a crosslinkable liquid crystal polymer.
  • the polymerizable liquid crystal compound is a monomer having a mesogen group or a polymer having a unit composed of a mesogen group, and is not particularly limited as long as it can form a liquid crystal structure and has polymerizable and / or crosslinkability.
  • Various polymerizable liquid crystal compounds can be used. Examples of the polymerizable liquid crystal compound include Schiff basic, biphenyl, terphenyl, ester, thioester, stilben, trans, azoxy, azo, phenylcyclohexane, pyrimidine, cyclohexylcyclohexane, and trimesin.
  • Examples thereof include acid-based, triphenylene-based, torquesen-based, phthalocyanine-based, porphyrin-based liquid crystal compounds having a molecular skeleton, or mixtures of these compounds, and any compound exhibiting a nematic, cholesteric, or smectic liquid crystal phase. But it may be.
  • a photopolymerizable nematic liquid crystal monomer may be used as the polymerizable liquid crystal compound.
  • the unit composed of the mesogen group may be in the main chain or the side chain of the liquid crystal polymer.
  • the main chain type liquid crystal polymer polyester type, polyamide type, polycarbonate type, polyimide type, polyurethane type, polybenzimidazole type, polybenzoxazole type, polybenzthiazole type, polyazomethine type, polyesteramide type, polyester carbonate type, Examples thereof include polyesterimide-based liquid crystal polymers and mixtures thereof.
  • the side chain type liquid crystal polymer is a polymer having a linear or cyclic skeletal chain such as a polyacrylate-based, polymethacrylate-based, polyvinyl-based, polysiloxane-based, polyether-based, or polymalonate-based polymer as a side chain.
  • a polyacrylate-based, polymethacrylate-based, polyvinyl-based, polysiloxane-based, polyether-based, or polymalonate-based polymer as a side chain.
  • examples thereof include a liquid crystal polymer to which a mesogen group is bonded, a mixture thereof, and the like.
  • the polymerizable liquid crystal material may contain a photopolymerization initiator and / or a thermal polymerization initiator when the polymerizable liquid crystal compound has a polymerizable functional group.
  • Photopolymerization initiators include Irgacure 907, Irgacure 184, Irgacure 651, Irgacure 819, Irgacure 250, Irgacure 369 (all manufactured by Ciba Japan Co., Ltd.), Sakeol BZ, Sakeall Z, Sakeall BEE (and above).
  • thermal polymerization initiator examples include azo compounds such as azobisisobutyronitrile, peroxides such as hydrogen peroxide, persulfates, and benzoyl peroxide.
  • the content of the polymerization initiator is preferably 0.01 to 20% by weight, more preferably 0.03 to 10% by weight, still more preferably 0.05 to 8% by weight, based on the total weight of the polymerizable liquid crystal material. .. Within the above range, the polymerizable liquid crystal compound can be polymerized without disturbing the orientation.
  • a photosensitizer may be used in combination.
  • the photosensitizer include xanthone compounds such as xanthone and thioxanthone (eg, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, etc.); anthracene and anthracene containing an alkoxy group (eg, dibutoxyanthracene, etc.).
  • xanthone compounds such as xanthone and thioxanthone (eg, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, etc.); anthracene and anthracene containing an alkoxy group (eg, dibutoxyanthracene, etc.).
  • xanthone compounds such as xanthone and thioxanthone (eg, 2,4-diethylthioxanthone, 2-isopropylthioxanth
  • the polymerizable liquid crystal material may contain an appropriate cross-linking agent when the polymerizable liquid crystal compound has a cross-linking functional group.
  • the polymerizable liquid crystal compound may be a liquid crystal compound that can be oriented and fixed by means such as crosslinking (thermal crosslinking or photocrosslinking) in a liquid state or in a state of being cooled to a liquid crystal transition temperature or lower.
  • crosslinkable functional group examples include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group and the like.
  • acryloyloxy group, methacryloyloxy group, vinyloxy group, oxylanyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable.
  • cross-linking agent examples include polyfunctional compounds having two or more functional groups in the molecule.
  • examples of the polyfunctional compound include compounds having an isocyanate group, a carbodiimide group, an aziridine group, an azetidine group, an oxazoline group, an epoxy group, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group and the like.
  • known polyisocyanate compounds can be used, for example, polyisocyanate.
  • the system compound examples include a diisocyanate compound and a triisocyanate compound.
  • diisocyanate compound examples include phenylenediocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, methylcyclohexylene diisocyanate, bis (isocyanatomethyl) cyclohexane, methylenebis (cyclohexyl isocyanate), isophorone diisocyanate, and hexamethylene diisocyanate.
  • diisocyanate compound examples include phenylenediocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, methylcyclohexylene diisocyanate, bis (isocyanatomethyl) cyclohexane, methylenebis (cyclohexyl isocyanate), isophorone diisocyanate, and
  • triisocyanate compound examples include an isocyanurate compound of diisocyanate such as hexamethylene diisocyanate, a biuret compound, and an adduct compound which is an adduct of diisocyanate such as hexamethylene diisocyanate and trimethylolpropane.
  • the content of the cross-linking agent is 0. It may be 01 to 5% by weight, preferably 0.05 to 3% by weight, and more preferably 0.1 to 1.5% by weight.
  • one of the first optically anisotropic layer and the second optically anisotropic layer has a phase difference of 1/4 wavelength, and the other layer is 1 /. It has a phase difference of two wavelengths. That is, in the optical laminate of the present invention, the first optically anisotropic layer has a phase difference of 1/4 wavelength, and the second optically anisotropic layer has a phase difference of 1/2 wavelength.
  • the body or the first optically anisotropic layer is an optical laminate having a phase difference of 1/2 wavelength, and the second optically anisotropic layer has a phase difference of 1/4 wavelength.
  • the phase difference of 1/4 wavelength means that the in-plane phase difference value (Re) is 1/4 of the design wavelength, and is, for example, from 1 / 4-50 nm of the design wavelength to 1/4 + 50 nm of the design wavelength. There may be.
  • the Re of the layer having a phase difference of 1/4 wavelength may be 88 to 188 nm.
  • the phase difference of 1/2 wavelength means a case where the in-plane phase difference value (Re) is 1/2 of the design wavelength, for example, from 1 / 2-50 nm of the design wavelength to 1/1 of the design wavelength. It may be 2 + 50 nm.
  • the Re of the layer having a phase difference of 1/2 wavelength may be 225 to 325 nm.
  • the in-plane phase difference value (Re) may be a measured value for light having a wavelength of 550 nm.
  • the Nz coefficient of the first optically anisotropic layer made of a birefringence-inducing material is ⁇ 0.5 to 0.5
  • the second optically anisotropic material is made of a polymerizable liquid crystal material.
  • the layer has the optical properties of a positive A plate.
  • an optical laminate having a specific Nz coefficient between a layer having a phase difference of 1/4 wavelength and a layer having a phase difference of 1/2 wavelength, which are laminated adjacent to each other, is observed from an oblique direction.
  • the reflected light can be suppressed and the decrease in the oblique viewing contrast can be suppressed.
  • the Nz coefficient of the first optically anisotropic layer is ⁇ 0.5 ⁇ Nz ⁇ 0 or 0 ⁇ Nz ⁇ 0.5 from the viewpoint of further improving the viewing angle characteristics of the reflected light. It is preferably ⁇ 0.3 ⁇ Nz ⁇ 0 or 0 ⁇ Nz ⁇ 0.3.
  • the first optically anisotropic layer has a phase difference of 1/2 wavelength, and its Nz coefficient is 0 ⁇ Nz ⁇ 0. It is preferably .5, more preferably the Nz coefficient is 0 ⁇ Nz ⁇ 0.4, and further preferably the Nz coefficient may be 0.1 ⁇ Nz ⁇ 0.3. That is, the first optically anisotropic layer has a phase difference of 1/2 wavelength, and the Nz coefficient is 0 ⁇ Nz ⁇ 0.5 (more preferably 0 ⁇ Nz ⁇ 0.4, still more preferably 0.
  • the second optically anisotropic layer has a phase difference of 1/4 wavelength, and has the optical characteristics of a positive A plate (for example, the Nz coefficient is 0.95 ⁇ ). It may be an optical laminate (Nz ⁇ 1.05).
  • the optical laminate of the present invention preferably has an Nz coefficient of ⁇ 0.5 ⁇ Nz ⁇ 0.5, preferably ⁇ 0. .5 ⁇ Nz ⁇ 0 is more preferable, and ⁇ 0.3 ⁇ Nz ⁇ ⁇ 0.1 is even more preferable. That is, the first optically anisotropic layer has a phase difference of 1/4 wavelength, and the Nz coefficient is ⁇ 0.5 ⁇ Nz ⁇ 0.5 (more preferably ⁇ 0.5 ⁇ Nz ⁇ 0, further.
  • the second optically anisotropic layer has a phase difference of 1/2 wavelength, and has the optical characteristics of a positive A plate (for example, Nz). It may be an optical laminate (with a coefficient of 0.95 ⁇ Nz ⁇ 1.05).
  • the thickness of the first optically anisotropic layer can be appropriately adjusted according to the desired in-plane retardation value (Re), but may be, for example, 0.1 to 20 ⁇ m, which is preferable. May be 0.3 to 15 ⁇ m, more preferably 0.5 to 10 ⁇ m.
  • the thickness of the second optically anisotropic layer can be appropriately adjusted according to the desired in-plane retardation value (Re), but may be 0.1 to 20 ⁇ m, which is preferable. May be 0.3 to 15 ⁇ m, more preferably 0.5 to 10 ⁇ m.
  • the thickness ratio of the first optically anisotropic layer and the second optically anisotropic layer is 1/10 to 1/10 or more. It may be 10/1, preferably 1/8 to 8/1, and more preferably 1/5 to 5/1.
  • the thickness of the optical laminate of the present invention may be, for example, 1 to 40 ⁇ m, preferably 2 to 30 ⁇ m, and more preferably 3 to 20 ⁇ m.
  • the slow-phase axial direction of the first optically anisotropic layer and the slow-phase axial direction of the second optically anisotropic layer are non-parallel from the viewpoint of being used for a circular polarizing plate. They may intersect at angles that are non-orthogonal.
  • the angle formed by the slow axis of the first optically anisotropic layer and the slow axis of the second optically anisotropic layer may be 5 to 85 °, preferably 8 to 80 °. More preferably, it may be 10 to 75 °.
  • the optical laminate of the present invention is produced by the manufacturing method described later from the viewpoint of arbitrarily setting the angle formed by the slow axis of the first optically anisotropic layer and the slow axis of the second optically anisotropic layer. It is preferably manufactured, in which case the first optically anisotropic layer is composed of an adjacent layer and an inner layer having different slow axes, and the adjacent layer and the second optically anisotropic layer are formed. It may be an optical laminate in contact with. The adjacent layer may be present only at the interface of the first optically anisotropic layer in contact with the second optically anisotropic layer.
  • the adjacent layer may be formed by orienting the surface of the first optically anisotropic layer so as to give an orientation different from that of the inner layer.
  • the alignment treatment may be performed according to the aspect of the surface alignment step in the manufacturing method described later. Since the influence of orientation in the adjacent layer can be considered to be negligible, the slow axis of the inner layer of the first optically anisotropic layer is measured as the slow axis of the entire first optically anisotropic layer. , The angle formed by the slow axis of the first optically anisotropic layer and the slow axis of the second optically anisotropic layer may be measured.
  • the slow phase axial direction is constant in the plane, particularly in the first optically anisotropic layer.
  • the polarization state is not changed (for example, from linear polarization to elliptically polarized light) by irradiating the lower layer with polarized light through the alignment layer, or the molecular orientation. It is possible to make the slow phase axial direction constant without disturbing.
  • the optical laminate of the present invention can be used as a retardation plate, and can be used for various optical members (antireflection film, optical compensation film, etc.).
  • the optical laminate of the present invention can be used as a circular polarizing plate used as an antireflection film in an OLED such as an organic EL display device by laminating it with a linear polarizing plate, for example.
  • the circular polarizing plate may be obtained by laminating the above optical laminated body and the linear polarizing plate, and the linear polarizing plate may be laminated on the layer side having a phase difference of 1/2 wavelength of the optical laminated body.
  • the optical laminate may be directly manufactured and laminated on the linear polarizing plate as shown in the manufacturing method described later, that is, 1 of the linear polarizing plate and the optical laminate. It may be a circular polarizing plate in which layers having a phase difference of / 2 wavelengths are laminated adjacent to each other.
  • the linear polarizing plate and the optical laminate may be laminated by bonding them together using a known adhesive, adhesive, or the like, that is, the phase difference of 1/2 wavelength between the linear polarizing plate and the optical laminate. It may be a circular polarizing plate laminated with an adhesive or a pressure-sensitive adhesive between the layers. Further, a transparent substrate made of glass or an optically isotropic phase such as a triacetyl cellulose film (TAC film) may be contained between the linear polarizing plate and the optical laminate.
  • TAC film triacetyl cellulose film
  • the method for producing an optical laminate of the present invention includes a film forming step of forming a birefringence-inducing material to form a birefringence-inducing material layer, and a polarization for expressing a phase difference on the birefringence-inducing material layer.
  • a step of applying a polymerizable liquid crystal material to form a second optically anisotropic layer may be provided on the surface of the material layer.
  • the conditions differ depending on the types of the birefringence-inducing material and the polymerizable liquid crystal material, but the Nz coefficient of each layer and the Nz coefficient of each layer are adjusted by adjusting the orientation of the molecules constituting each layer according to the film forming conditions and the irradiation conditions of polarization. It is possible to control the in-plane phase difference value (Re).
  • each of the above steps may be changed, for example, a film forming step of forming a birefringence-inducing material to form a birefringence-inducing material layer, and imparting a function as an alignment film to the birefringence-inducing material layer.
  • a method comprising, in this order, a light irradiation step of irradiating a birefringence-induced material layer from above the optically anisotropic layer with polarization for expressing a phase difference to form a first optically anisotropic layer.
  • a birefringence-inducing material is formed from the viewpoint of arbitrarily setting the angle formed by the slow axis of the first optically anisotropic layer and the slow axis of the second optically anisotropic layer.
  • FIGS. 1A-1D are schematic cross-sectional views for explaining an embodiment of the method for manufacturing an optical laminate of the present invention.
  • FIGS. 1A-1D show cross sections of each layer, but they do not show the actual thickness ratio.
  • FIG. 1A is a schematic cross-sectional view showing a state after the film forming process and showing a laminate of the base material 10 and the birefringence-induced material layer 20.
  • FIG. 1B shows a state after the light irradiation step, which is a laminate of the base material 10 and the first optically anisotropic layer 30 formed by orienting the molecules of the birefringence-induced material layer 20 by irradiation with polarization. It is a schematic cross-sectional view which shows.
  • FIG. 1C shows the state after the surface alignment step, in which the base material 10, the inner layer 31 having the same orientation as the first optically anisotropic layer 30, and the surface opposite to the base material 10 are oriented.
  • FIG. 1D shows a state after the second optically anisotropic layer forming step, in which a base material 10, a first optically anisotropic layer 30 composed of an inner layer 31 and an adjacent layer 32, and a polymerizable liquid crystal material are provided.
  • a schematic cross-sectional view shows the optical laminated body 100 with the 2nd optically anisotropic layer 40 formed by applying.
  • the birefringence-inducing material layer 20 can be formed as shown in FIG. 1A.
  • the molecular orientation of the birefringence-inducing material can be induced.
  • a first optically anisotropic layer 30 oriented so as to have a predetermined delayed phase axis is formed from the optically isotropic birefringence-induced material layer 20.
  • the optical characteristics of the first optically anisotropic layer 30 can be controlled by adjusting the film forming conditions of the birefringence-inducing material in the film forming step and the polarization irradiation conditions in the light irradiation step.
  • the birefringence-induced material layer 20 is irradiated with the desired polarization without changing the polarization state of the irradiated polarization. Is possible.
  • the surface of the first optically anisotropic layer 30 shown in FIG. 1B is oriented so as to have an orientation different from the orientation given in the light irradiation step, so that the first optically anisotropic layer 30 is oriented.
  • the adjacent layer 32 can be formed on the surface.
  • the first optically anisotropic layer 30 is formed with two layers, an inner layer 31 having the originally formed orientation and an adjacent layer 32 having a different orientation. Will be done.
  • the adjacent layer 32 served as an alignment film and was oriented corresponding to the orientation of the adjacent layer 32 as shown in FIG. 1D.
  • the second optically anisotropic layer 40 can be formed.
  • a second optically anisotropic layer 40 oriented so as to have a slow phase axis different from that of the inner layer 31 is formed on the adjacent layer 32.
  • the in-plane retardation value (Re) is changed to the phase difference of 1/4 wavelength or the position of 1/2 wavelength. It can be controlled to have a phase difference.
  • the orientation of the inner layer 31 and the adjacent layer 32 can be adjusted independently, so that the second optically anisotropic layer 40 is considered in consideration of the relationship with the orientation of the inner layer 31.
  • the birefringence-inducing material layer is formed by forming a film of the above-mentioned birefringence-inducing material.
  • the birefringence-induced material layer 20 is laminated on the base material 10, but the base material 10 may be omitted.
  • a base material may be a base material made of an optically isotropic material, and may be a transparent base material made of an optically isotropic phase such as glass or a triacetyl cellulose film (TAC film). good.
  • first optically anisotropic layer such as a general-purpose polyester film
  • the mold release base material is used as the mold release base material.
  • a release base material it can be peeled off after forming the optical laminate of the present invention, so that the optical characteristics of the base material itself need not be considered, and an opaque base material may be used.
  • the optical laminate of the present invention is bonded to another optical member (for example, a linear polarizing plate) via an adhesive or the like, and then the release substrate is peeled off and used.
  • the optical laminate is configured to have no base material, and the thickness is substantially only the thickness of the first optically anisotropic layer and the second optically anisotropic layer. It can be a member.
  • the birefringence-inducing material layer is a cast film formed by dissolving the birefringence-inducing material as described above in a solvent to prepare a solution, applying this solution on a substrate, and drying to remove the solvent. There may be.
  • the Nz coefficient is an index of the refractive index component in the in-plane direction and the thickness direction. It is possible by adjusting the coating conditions and the drying conditions that affect the orientation of the type liquid crystal polymer). Further, as described above, the in-plane phase difference value (Re) is a parameter that affects not only the refractive index but also the thickness.
  • the above coating is performed.
  • the solvent of the double refraction organic material affects the Nz coefficient and the in-plane retardation value (Re) due to the difference in its solubility and dryness, but can be appropriately selected depending on the type of the double refraction-inducing material.
  • Examples include ethers, diethylene glycol dimethyl ethers, etc.), propylene glycol derivatives (eg, propylene glycol monomethyl ethers, propylene glycol 1-monomethyl ether 2-acetate, etc.), and these solvents may be used alone or in combination of two or more. May be good.
  • the concentration of the solution can be appropriately adjusted in consideration of the influence on the film thickness and the like, and may contain, for example, 5 to 50% by weight of the birefringence-inducing material, preferably 8 to 40% by weight. , More preferably 10 to 25% by weight.
  • a known coating method such as spin coating or roll coating can be used for applying the solution to the substrate.
  • the drying rate may be adjusted by adjusting the drying temperature and time in order to control the Nz coefficient and the in-plane retardation value (Re).
  • the Nz coefficient tends to decrease by slowing down the drying rate, and the drying rate can also be adjusted by selecting a solvent. For example, the drying rate can be slowed down by using a high boiling point solvent.
  • the birefringence-induced material layer may be irradiated with polarization (first polarization) for developing a phase difference.
  • polarization first polarization
  • a selective photoreaction of molecules occurs not only on the surface of the birefringence-induced material layer but also inside, the orientation of the molecules is induced, and the first optically anisotropic layer is formed. Will be done.
  • the first polarization is a photosensitive group of a side chain type liquid crystal polymer such as infrared rays, visible rays, ultraviolet rays (for example, near ultraviolet rays, far ultraviolet rays, etc.), X rays, charged particle rays (for example, electron beams, etc.).
  • the wavelength of the light is not particularly limited as long as it is light having a wavelength that causes a photoreaction, and varies depending on the type of side chain structure of the side chain type liquid crystal polymer, but the wavelength of the light may be 200 to 500 nm.
  • the first polarization may be, for example, linear polarization of ultraviolet rays, and in this case, for example, even if an ultraviolet irradiation device such as a high-pressure mercury lamp is used as a light source and the polarization is converted to linear polarization via a Grantailer prism. good.
  • the irradiation amount of the first polarization is, for example, 10 mJ / cm 2 from the viewpoint of aligning not only the surface of the birefringence-induced material layer but also the inside, and from the viewpoint of adjusting the Nz coefficient and the in-plane retardation value (Re). It may be up to 10 J / cm 2 , preferably 50 mJ / cm 2 to 1 J / cm 2 , and more preferably 100 mJ / cm 2 to 500 mJ / cm 2 .
  • the method for producing an optical laminate of the present invention may include a heating step for heating the formed first optically anisotropic layer, if necessary, after the light irradiation step.
  • the heating step induces molecular orientation depending on the irradiation direction and vibration direction of the first polarized light irradiated in the light irradiation step, and the unaligned molecules are also oriented according to the oriented molecules, but the side chains are further heated.
  • the type liquid crystal polymer can perform molecular movement and can promote the orientation of unaligned molecules. After heating, it may be cooled to about room temperature by, for example, leaving it to stand.
  • the heating temperature in the heating step is not particularly limited as long as the orientation of the unoriented molecule is induced along the side chain in which the side chain liquid crystal polymer causes a photoreaction by molecular motion, but the liquid crystal of the birefringence-inducing material is liquid crystal. It is preferable to set the temperature to be equal to or higher than the phase transition temperature and lower than or equal to the isotropic phase transition temperature (preferably less than the isotropic phase transition temperature). For example, it may be 100 to 200 ° C, preferably 110 to 180 ° C, and more preferably 120 to 160 ° C.
  • the heating time is not particularly limited as long as the orientation of the unoriented molecule is induced along the side chain in which the liquid crystal polymer causes a photoreaction by molecular motion, but the type of the liquid crystal polymer, the heating temperature, etc. It may be appropriately set according to the above, and may be carried out for, for example, 1 minute or longer, preferably 2 minutes or longer, and more preferably 3 minutes or longer.
  • the upper limit is not particularly limited, but from the viewpoint of economic efficiency, it may be about 60 minutes (preferably about 40 minutes, more preferably about 30 minutes).
  • the surface of the first optically anisotropic layer may be oriented so as to be oriented differently from the inner layer thereof.
  • an adjacent layer is formed on the first optically anisotropic layer, and the two layers of the inner layer and the adjacent layer, which are composed of the same birefringence-inducing materials but have different orientation states, are formed. It is formed in the first optically anisotropic layer.
  • the inner layer may indicate a portion of the first optically anisotropic layer other than the adjacent layer.
  • the method of alignment treatment is not particularly limited as long as the surface of the first optically anisotropic layer can form an alignment layer different from the inner layer thereof, and examples thereof include rubbing treatment and photoalignment treatment by polarization irradiation.
  • the orientation direction can be controlled by rubbing the surface of the first optically anisotropic layer in a fixed direction by rotating a roller wrapped with a cloth such as cellulose, nylon, or polyester while pushing it at a constant pressure. Therefore, an adjacent layer in a desired orientation direction can be formed, but the orientation treatment method is preferably photoalignment treatment by polarization irradiation.
  • the surface of the first optically anisotropic layer is irradiated with a second polarization having a polarization axis direction different from that of the first polarization, and the layer adjacent to the first optically anisotropic layer is formed. It may be the second light irradiation step to form. In the second light irradiation step, even after the molecular orientation by the first light irradiation step (the above-mentioned light irradiation step) (preferably, the first light irradiation step and the heating step), the first polarization is applied.
  • an axis-selective optical reaction is selectively generated in the vicinity of the surface centering on the unreacted birefringence-inducing material of the first optically anisotropic layer. Perhaps because of this, it is possible to impart a different orientation to the vicinity of the surface than the inner layer. On the other hand, probably because the molecules in the inner layer of the first optically anisotropic layer are already oriented with a high degree of orientation, the inside of the first optically anisotropic layer even after the second light irradiation step. The layer orientation itself is not transformed.
  • the second polarization light of various wavelengths described above can be used as the first polarization, and for example, linear polarization of ultraviolet rays may be used. Further, as the second polarization, light of a different type from that of the first polarization irradiated in the light irradiation step may be used, or light of the same type may be used.
  • the second polarization may have a polarization axis direction different from that of the first polarization, for example, the axis angle may differ from the polarization axis of the first polarization by 5 to 85 °, preferably 10. It may differ by -80 °, more preferably 20-70 °.
  • the difference in the axis angle between the polarization axis of the second polarization and the polarization axis of the first polarization is the orientation state near the surface of the first optically anisotropic layer after the first light irradiation step (not yet).
  • the slow axis of the second optically anisotropic layer to be formed later can be arbitrarily set by adjusting in consideration of the abundance ratio of the birefringence-inducing material in the reaction.
  • the irradiation amount of the second polarization may be, for example, 50 mJ / cm 2 to 20 J / cm 2 , preferably 100 mJ / cm, from the viewpoint of reorienting the surface of the first optically anisotropic layer to be oriented. It may be cm 2 to 10 J / cm 2 , more preferably 150 mJ / cm 2 to 1 J / cm 2 .
  • the method for producing an optical laminate of the present invention may further include a surface treatment step of treating the surface of the birefringence-induced material layer with a solvent after the first light irradiation step.
  • a surface treatment step of treating the surface of the birefringence-induced material layer with a solvent after the first light irradiation step.
  • a surface orientation step such as a second polarization irradiation and a rubbing treatment.
  • the surface treatment step may be performed after the heating step.
  • a solvent is applied to the surface of the first optically anisotropic layer to dissolve the surface portion, whereby the molecular orientation applied by the first light irradiation step can be relaxed and a random state can be obtained. Perhaps because of this, the orientation of the surface portion of the first optically anisotropic layer once formed by the first polarization can be eliminated, and the orientation of the adjacent layer of the first optically anisotropic layer becomes isotropic. can do.
  • the solvent may be applied to the surface of the first optically anisotropic layer and then dried. The drying method is not particularly limited as long as the applied solvent can be evaporated, but for example, it may be left to dry naturally. Only the surface to which the solvent is applied can be isotropic.
  • the irradiation amount of the second polarization may be, for example, 0.1 mJ / cm 2 to 500 mJ / cm 2 , preferably 0.5 mJ / cm 2 to 400 mJ / cm 2 . More preferably, it may be 1 mJ / cm 2 to 300 mJ / cm 2 .
  • the ratio of the irradiation amount of the first polarization to the irradiation amount of the second polarization is 1/5 to 100/1. It may be preferably 1/2 to 80/1, more preferably 1 / 1.5 to 50/1.
  • the surface is isotropic, it is not necessary to consider the orientation state of the adjacent layer of the first optically anisotropic layer in the subsequent second light irradiation step, so that the polarization axis of the second polarization can be used.
  • the axis angle can be directly reflected on the slow axis of the second optically anisotropic layer. Therefore, the axis angle of the polarization axis of the second polarization can be easily selected with respect to the setting of the slow phase axis of the second optically anisotropic layer to be formed later.
  • the solvent used in the surface treatment step is not particularly limited as long as it can dissolve the birefringence-inducing material constituting the first optically anisotropic layer, and is a good solvent for the birefringence-inducing material. It may be a poor solvent.
  • the solvent used in the surface treatment step is, for example, a good birefringence-inducing material from the viewpoint of making the surface of the first optically anisotropic layer isotropic and suppressing the dissolution to the inside to disturb the orientation. It may be a mixed solvent in which a solvent and a poor solvent are mixed.
  • a mixed solvent containing a good solvent and a poor solvent of the compound refraction-inducing material When a mixed solvent containing a good solvent and a poor solvent of the compound refraction-inducing material is used, it can be appropriately adjusted depending on the solubility of the solvent used in the compound refraction-inducing material.
  • / Poor solvent may be 1/100 to 100/1, preferably 1/50 to 50/1, and more preferably 1/10 to 10/1.
  • the solvent used in the surface treatment step is, for example, water; an alcohol solvent such as methanol, ethanol, propanol, isopropyl alcohol, pentanol, hexanol; an aliphatic or alicyclic solvent such as hexane, heptane, octane, cyclohexane.
  • an alcohol solvent such as methanol, ethanol, propanol, isopropyl alcohol, pentanol, hexanol
  • an aliphatic or alicyclic solvent such as hexane, heptane, octane, cyclohexane.
  • Aromatic hydrocarbon solvents such as benzene, toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, isopropyl methyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl ether and propyl Ether solvents such as ether, isopropyl ether, methyl ethyl ether, methyl propyl ether, tetrahydrofuran, dioxane; nitrile solvents such as acetonitrile and propionitrile; sulfoxide solvents such as dimethyl sulfoxide; amides such as N, N-dimethylformamide System solvent; Ester solvent such as methyl acetate, ethyl acetate, butyl acetate; Glycol solvent such as ethylene glycol and propylene glycol; Gly
  • a good solvent means a solvent having a solubility in a solute of 1% by mass or more at 25 ° C.
  • a poor solvent means a solvent having a solubility in a solute of less than 1% by mass at 25 ° C.
  • dioxane, dichloroethane, cyclohexanone, toluene, tetrahydrofuran, o-dichlorobenzene, dimethoxyethane and the like may be used as a good solvent for the birefringence-inducing material, and ethanol, methanol, n- as a poor solvent for the birefringence-inducing material. You may use hexane or the like. These good solvents and poor solvents may be mixed at the above-mentioned mixed weight ratio and used as a mixed solvent.
  • the second optically anisotropic layer forming step In the second optically anisotropic layer forming step, even if a polymerizable liquid crystal material is applied on the adjacent layer of the first optically anisotropic layer that has been oriented, the second optically anisotropic layer is formed. good.
  • the adjacent layer oriented in the surface orientation step acts as an alignment film, and therefore the second optical anisotropy oriented using the orientation direction. Layers can be formed.
  • the in-plane retardation value (Re) of the second optically anisotropic layer can be controlled by adjusting the concentration of the solution or the like at the time of applying the polymerizable liquid crystal material to adjust the thickness.
  • the above-mentioned polymerizable liquid crystal material is applied on the adjacent layer of the first optically anisotropic layer.
  • the application may be carried out by dissolving the polymerizable liquid crystal material in a solvent and applying it as a solution by a known coating method such as spin coating or roll coating.
  • the solvent can be appropriately selected depending on the type of the polymerizable liquid crystal material, for example, dioxane, dichloroethane, cyclohexanone, toluene, tetrahydrofuran, o-dichlorobenzene, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol derivative (for example, ethylene).
  • Glycol monomethyl ether ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, etc.
  • propylene glycol derivatives propylene glycol monomethyl ether, propylene glycol 1-monomethyl ether 2-acetate, etc.
  • these solvents may be used alone or in two. You may use it in combination of more than seeds.
  • the solvent of the polymerizable liquid crystal material can be selected not only according to the combination of the types of the birefringence-inducing material and the polymerizable liquid crystal material, but also according to the orientation state of the adjacent layer. For example, if the majority of the molecules in the adjacent layer are in the desired orientation (eg, when a surface treatment step is performed, or when a rubbing treatment is performed as an alignment treatment), the orientation of the adjacent layer is second.
  • the solvent of the polymerizable liquid crystal material is preferably a poor solvent of the birefringence-inducing material from the viewpoint of suppressing the orientation of the first optically anisotropic layer from being disturbed while imparting it to the optically anisotropic layer.
  • the solvent of the polymerizable liquid crystal material is preferably a mixed solvent in which a good solvent and a poor solvent of the birefringence-inducing material are mixed.
  • the wettability of the solution with respect to the adjacent layer is improved, or it is polymerizable with respect to the orientation of only a part of the molecules of the adjacent layer.
  • the molecules of the liquid crystal material can be aligned, and as a result, the second optically anisotropic layer can be oriented.
  • the solvent of the polymerizable liquid crystal material can be appropriately adjusted according to the combination of the types of the birefringence-inducing material and the polymerizable liquid crystal material and the orientation state of the adjacent layer, but the orientation of the first optically anisotropic layer is maintained.
  • a poor solvent for the birefringence-inducing material so as not to invade the adjacent layer. May be 0/100 to 100/1, preferably 0/100 to 50/1, and more preferably 0/100 to 10/1.
  • a general solvent can be used depending on the purpose, but for example, toluene, tetrahydrofuran, ethylene glycol derivative, propylene glycol derivative and the like may be contained.
  • a coating film is formed by applying the solution, and if necessary, it is heated to dry the coating film. At that time, the adjacent layer of the first optically anisotropic layer existing at the lower part functions as an alignment film (orientation-imparting film), and the alignment of the liquid crystal molecules occurs. As a result, a second optically anisotropic layer in which the liquid crystal is oriented in a predetermined direction is formed.
  • the second optically anisotropic layer forming step may include a heating step and / or a light irradiation step (for example, a non-polarized irradiation step), if necessary, after forming the coating film of the polymerizable liquid crystal material.
  • the polymerizable liquid crystal material is already oriented in a predetermined direction corresponding to the orientation of the adjacent layer of the first optically anisotropic layer by forming a coating film, and is subsequently heated and / or irradiated with light.
  • the orientation is fixed by the polymerization and / or cross-linking of the polymerizable liquid crystal material in the step (eg, unpolarized irradiation step).
  • the orientation is fixed by polymerization by heating.
  • polymerization occurs when it is irradiated with light, and the orientation is fixed.
  • crosslinkable material crosslinkage occurs during heating and / or irradiation with light, and the orientation is fixed.
  • the first optical difference is obtained by applying thermal energy and / or light energy.
  • Crosslinks can be formed between the layers of the square layer and the second optically anisotropic layer.
  • the heating step in the second optically anisotropic layer forming step is not particularly limited as long as the above-mentioned polymerization and / or cross-linking reaction proceeds, but suppresses disturbing the orientation of the inner layer of the first optically anisotropic layer. From the viewpoint, it is preferable to carry out the heating at a heating temperature equal to or lower than the isotropic phase transition temperature (preferably less than the isotropic phase transition temperature) of the birefringence-inducing material. For example, it may be 70 to 180 ° C., preferably 70 to 150 ° C., and more preferably 70 to 140 ° C.
  • the heating time may be, for example, 1 minute or longer, preferably 2 minutes or longer, and more preferably 3 minutes or longer.
  • the upper limit is not particularly limited, but from the viewpoint of economic efficiency, it may be about 60 minutes (preferably about 40 minutes, more preferably about 30 minutes).
  • the light irradiation step in the second optically anisotropic layer forming step is not particularly limited as long as the above-mentioned polymerization and / or crosslinking reaction proceeds, but non-polarized light is preferable as the light to be irradiated.
  • the unpolarized light light having various wavelengths described above can be used as the first polarized light or the second polarized light, and for example, unpolarized ultraviolet rays may be used.
  • the irradiation amount of light may be 10 mJ / cm 2 to 10 J / cm 2 , preferably 50 mJ / cm 2 to 1 J / cm 2 , and more preferably 100 mJ / cm 2 to 500 mJ / cm 2 . ..
  • (Monomer 1) 4- (6-Hydroxyhexyloxy) cinnamic acid was synthesized by heating p-coumaric acid and 6-chloro-1-hexanol under alkaline conditions. A large excess of methacrylic acid was added to this product in the presence of p-toluenesulfonic acid to cause an esterification reaction, and Monomer 1 represented by the following chemical formula was synthesized.
  • (Monomer 2) 4- (6-Hydroxyhexyloxy) benzoic acid was synthesized by heating 4-hydroxybenzoic acid and 6-chloro-1-hexanol under alkaline conditions. Next, a large excess of methacrylic acid was added to this product in the presence of p-toluenesulfonic acid to cause an esterification reaction, and the monomer 2 represented by the following chemical formula was synthesized.
  • the optical characteristics (Nz coefficient, in-plane retardation value Re, etc.) of the obtained optical laminate are obtained by using a birefringence measuring device (AXOMETRICS, AxoScan), and the thickness is the film thickness.
  • the measurement was performed using a meter (F20 manufactured by FILMETRIS).
  • Copolymer 1 was dissolved in 1,2-dimethoxyethane (DME) in an amount of 15% by weight to prepare a solution. This solution was applied onto a cover glass substrate to a thickness of about 3.5 ⁇ m using a spin coater, and the coating film was dried at 60 ° C. for 3 minutes and then at 80 ° C. for 3 minutes. Then, the ultraviolet rays from the high-pressure mercury lamp were converted into linearly polarized light using a Grantailer prism (first polarization), and the dried coating film was irradiated with the dried coating film for 100 seconds (irradiation amount 100 mJ / cm 2 ).
  • DME 1,2-dimethoxyethane
  • the film 1 (first optically anisotropic layer) was formed by inducing orientation by heating at 130 ° C. for 3 minutes and then slowly cooling to room temperature.
  • the optical characteristics of the obtained film 1 were an Nz coefficient of 0.2 and an in-plane retardation value of 250 nm.
  • the axial direction of the in-plane phase difference was 90 ° with respect to the irradiated polarization vibration direction.
  • a mixed solution having a volume ratio of tetrahydrofuran (THF) and ethanol (THF: ethanol) of 1: 6 was applied to the obtained membrane 1 with a spin coater, and dried by leaving it to stand. Further, using a Grantailer prism, the ultraviolet rays from the high-pressure mercury lamp are converted into a linear polarization whose polarization vibration direction is 60 ° different from the polarization vibration direction of the first polarization, and the polarization (second polarization) is applied to the film 1. It was irradiated for 300 seconds (irradiation amount 300 mJ / cm 2 ).
  • a non-polarizing ultraviolet ray is irradiated for 100 seconds (irradiation amount 300 mJ / cm 2 ) to polymerize the polymerizable liquid crystal compound to form a film 2 (second optically anisotropic layer), and the film 1 and the film 2 are formed.
  • irradiation amount 300 mJ / cm 2 irradiation amount 300 mJ / cm 2
  • the film 1 and the film 2 are formed.
  • the optical characteristics of the film 2 were an Nz coefficient of 1 and an in-plane retardation value of 115 nm.
  • the axial direction of the in-plane phase difference was 90 ° with respect to the irradiated polarization vibration direction.
  • the angle formed by the slow axis of the film 1 and the film 2 was 60 °.
  • the laminate thus prepared was bonded to a linear polarizing plate using an adhesive to prepare a circular polarizing plate.
  • the composition order of the circular polarizing plate is that the linear polarizing plate, the film 1, and the film 2 are laminated in this order, and the bonding angle is 15 ° with respect to the transmission axis of the linear polarizing plate, the slow axis of the film 1 is 15 °, and the film 2 is formed.
  • the slow axis of was set to 75 °.
  • the viewing angle characteristics of the reflected light of this circularly polarizing plate are confirmed by calculation using simulation software (“LCDMaster”, manufactured by Shintech), and FIG. 2 shows the reflection characteristics of the circularly polarizing plate. Compared with FIG.
  • Example 2 Copolymer 1 was dissolved in a mixed solvent having a volume ratio of DME, THF and cyclohexanone (DME: THF: cyclohexanone) of 7: 5: 5 so as to be 15% by weight to prepare a solution.
  • This solution was applied onto a cover glass substrate to a thickness of about 2 ⁇ m using a spin coater, and the coating film was allowed to stand at room temperature for 10 minutes and then dried at 80 ° C. for 3 minutes.
  • the ultraviolet rays from the high-pressure mercury lamp were converted into linearly polarized light using a Grantailer prism (first polarization), and the dried coating film was irradiated with the dried coating film for 100 seconds (irradiation amount 100 mJ / cm 2 ).
  • the film 1 (first optically anisotropic layer) was formed by inducing orientation by heating at 130 ° C. for 3 minutes and then slowly cooling to room temperature.
  • the optical characteristics of the obtained film 1 were that the Nz coefficient was ⁇ 0.1 and the in-plane retardation value was 110 nm.
  • the axial direction of the in-plane phase difference was 90 ° with respect to the irradiated polarization vibration direction.
  • a mixed solution having a volume ratio of THF and ethanol (THF: ethanol) of 1: 6 was applied to the obtained membrane 1 with a spin coater, and dried by leaving it to stand. Further, using a Grantailer prism, the ultraviolet rays from the high-pressure mercury lamp are converted into a linear polarization whose polarization vibration direction is 60 ° different from the polarization vibration direction of the first polarization, and the polarization (second polarization) is applied to the film 1. It was irradiated for 300 seconds (irradiation amount 300 mJ / cm 2 ).
  • a non-polarizing ultraviolet ray is irradiated for 100 seconds (irradiation amount 300 mJ / cm 2 ) to polymerize the polymerizable liquid crystal compound to form a film 2 (second optically anisotropic layer), and the film 1 and the film 2 are formed.
  • irradiation amount 300 mJ / cm 2 irradiation amount 300 mJ / cm 2
  • the film 1 and the film 2 are formed.
  • the optical characteristics of the film 2 were an Nz coefficient of 1 and an in-plane retardation value of 250 nm.
  • the axial direction of the in-plane phase difference was 90 ° with respect to the irradiated polarization vibration direction.
  • the angle formed by the slow axis of the film 1 and the film 2 was 60 °.
  • the laminate thus prepared was bonded to a linear polarizing plate using an adhesive to prepare a circular polarizing plate.
  • the composition order of the circular polarizing plate is that the linear polarizing plate, the film 2, and the film 1 are laminated in this order, and the bonding angle is 15 ° with respect to the transmission axis of the linear polarizing plate, the slow axis of the film 2 is 15 °, and the film 1 is formed.
  • the slow axis of was set to 75 °.
  • the viewing angle characteristics of the reflected light of this circularly polarizing plate are confirmed by calculation using simulation software (“LCDMaster”, manufactured by Shintech), and FIG. 4 shows the reflection characteristics of the circularly polarizing plate. Compared with FIG.
  • a linear polarizing plate is used via an adhesive.
  • a circular polarizing plate The composition order of the circular polarizing plate is that the linear polarizing plate, the ⁇ / 2 retardation film, and the ⁇ / 4 retardation film are laminated in this order, and the bonding angle is ⁇ / 2 with respect to the transmission axis of the linear polarizing plate.
  • the slow axis of the retardation film was set to 15 °, and the slow axis of the ⁇ / 4 polarizing film was set to 75 °. It was confirmed that even with this circularly polarizing plate, the phase difference wavelength dependence shows the inverse wavelength dispersibility. However, it can be estimated from the calculation that the reflection characteristics of this circular polarizing plate are inferior in the viewing angle characteristics of the reflected light as compared with Examples 1 and 2 (FIG. 6). Actually, when the circularly polarizing plate was arranged on the mirror surface and the reflection characteristics in oblique view were visually confirmed, the reflected light could not be suppressed as compared with the circularly polarizing plates of Examples 1 and 2. Was confirmed.
  • the optical laminate of the present invention can be used as a retardation plate, and can be used in applications such as a polarizing plate used in a liquid crystal display device and an organic EL display device, and an optical compensation film.
  • a polarizing plate used in a liquid crystal display device and an organic EL display device and an optical compensation film.
  • it can be used as a circular polarizing plate used in an organic EL display device by laminating it with a linear polarizing plate.

Abstract

Provided is an optical laminate which is capable of suppressing reflected light even when observed from an oblique direction, and is capable of suppressing a decrease in oblique contrast. The optical laminate (100) comprises: a first optically anisotropic layer (30) composed of a birefringence inducing material; and a second optically anisotropic layer (40) composed of a polymerizable liquid crystal material and laminated adjacent to the first optically anisotropic layer (30), wherein the Nz coefficient of the first optically anisotropic layer (30) is -0.5≤Nz≤0.5, the second optically anisotropic layer (40) has an optical characteristic of a positive A plate, one of the first optically anisotropic layer (30) and the second optically anisotropic layer (40) has a phase difference of 1/4 wavelength, and the other has a phase difference of 1/2 wavelength.

Description

光学積層体および円偏光板Optical laminate and circular polarizing plate 関連出願Related application
 本願は2020年10月7日出願の特願2020-170076の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2020-170076 filed on October 7, 2020, and the whole thereof is cited as a part of this application by reference.
 本発明は、位相差板として使用可能である光学積層体、およびそれを含む円偏光板に関する。 The present invention relates to an optical laminate that can be used as a retardation plate and a circular polarizing plate including the optical laminate.
 液晶ディスプレイ(LCD)や有機発光ダイオード(OLED)に代表される薄型の表示デバイスには、表示品質向上のため、各種位相差板が用いられている。例えば、有機EL表示装置などのOLEDでは、反射を抑制するために広帯域円偏光板が使用されている。 Various retardation plates are used in thin display devices such as liquid crystal displays (LCDs) and organic light emitting diodes (OLEDs) in order to improve display quality. For example, in an OLED such as an organic EL display device, a broadband circular polarizing plate is used in order to suppress reflection.
 円偏光板に用いられる位相差板として、特許文献1(特開平10-68816号公報)には、複屈折光の位相差が1/4波長である1/4波長板と、複屈折光の位相差が1/2波長である1/2波長板とを、それらの光軸が交差した状態で貼り合わせたことを特徴とする位相差板が開示されている。 As the retardation plate used for the circular polarizing plate, Patent Document 1 (Japanese Unexamined Patent Publication No. 10-68816) describes a 1/4 wave plate in which the phase difference of the birefringent light is 1/4 wavelength and a birefringent light. A phase difference plate characterized in that a 1/2 wave plate having a phase difference of 1/2 wavelength is bonded together with their optical axes crossed is disclosed.
 また、特許文献2(特許第4646030号公報)には、液晶表示装置の位相差板として、1/4波長の位相差を持つ第1の位相差板と、1/2波長の位相差を持つ第2の位相差板とが配置され、第2の位相差板のNz係数が0以上1未満であることが記載されている。 Further, in Patent Document 2 (Japanese Patent No. 4646030), as a phase difference plate of a liquid crystal display device, a first phase difference plate having a phase difference of 1/4 wavelength and a phase difference of 1/2 wavelength are provided. It is described that the second retardation plate is arranged and the Nz coefficient of the second retardation plate is 0 or more and less than 1.
特開平10-68816号公報Japanese Unexamined Patent Publication No. 10-68816 特許第4646030号公報Japanese Patent No. 4646030
 しかしながら、特許文献1および2には、1/4波長板および1/2波長板の両方のNz係数の関係について記載されておらず、互いに異なるNz係数を用いることについて記載されていない。1/4波長板および1/2波長板には、一般的に延伸フィルムや液晶材料を配向膜上で配向させたフィルムが用いられるが、このようなフィルムはNz係数が1である光学一軸性のフィルムである。例えば、1/4波長板および1/2波長板として、ともに光学一軸性フィルムを使用し、積層した円偏光板では、OLEDパネルに装着した場合、パネル斜め方向から観察すると電極の反射光を十分に抑えることができず、OLEDパネルの斜め視コントラストが低下してしまうという問題点があった。 However, Patent Documents 1 and 2 do not describe the relationship between the Nz coefficients of both the 1/4 wave plate and the 1/2 wave plate, and do not describe the use of different Nz coefficients from each other. As the 1/4 wave plate and the 1/2 wave plate, a stretched film or a film in which a liquid crystal material is oriented on an alignment film is generally used, and such a film has an Nz coefficient of 1 and is optically uniaxial. It is a film of. For example, when an optical uniaxial film is used as both the 1/4 wave plate and the 1/2 wave plate and the laminated circular polarizing plate is mounted on an OLED panel, the reflected light of the electrode is sufficient when observed from the diagonal direction of the panel. There is a problem that the oblique viewing contrast of the OLED panel is lowered.
 また、特許文献1および2では、1/4波長板と1/2波長板とを貼り合わせるために接着剤を使用する必要があり、接着剤自体が有する複屈折性が影響を及ぼす場合がある。 Further, in Patent Documents 1 and 2, it is necessary to use an adhesive to bond the 1/4 wave plate and the 1/2 wave plate, and the birefringence of the adhesive itself may affect it. ..
 したがって、本発明の目的は、斜め方向から観察しても反射光を抑制することができ、斜め視コントラストの低下を抑制することができる光学積層体を提供することである。 Therefore, an object of the present invention is to provide an optical laminate capable of suppressing reflected light even when observed from an oblique direction and suppressing a decrease in oblique viewing contrast.
 本発明者は、上記課題を解決するために鋭意研究を行った結果、隣接して積層された1/4波長の位相差を有する層と1/2波長の位相差を有する層とでそれぞれ特定のNz係数を有する光学積層体は、斜め方向から観察しても反射光を抑制することができ、斜め視コントラストの低下を抑制することができることを見出し、本発明を完成させた。 As a result of diligent research to solve the above problems, the present inventor has identified layers having a phase difference of 1/4 wavelength and layers having a phase difference of 1/2 wavelength, which are laminated adjacent to each other. The present invention has been completed by finding that the optical laminate having the Nz coefficient of can suppress the reflected light even when observed from an oblique direction and can suppress the decrease in the oblique viewing contrast.
 すなわち、本発明は、以下の態様で構成されうる。
〔態様1〕
 複屈折誘起材料からなる第一の光学異方性層と、重合性液晶材料からなり、当該第一の光学異方性層に隣接して積層された第二の光学異方性層とを含む光学積層体であって、
 前記第一の光学異方性層のNz係数が-0.5≦Nz≦0.5(好ましくは-0.5≦Nz<0または0<Nz≦0.5、より好ましくは-0.3≦Nz<0または0<Nz≦0.3)であり、前記第二の光学異方性層がポジティブAプレートの光学特性を有し、
 前記第一の光学異方性層および前記第二の光学異方性層のうちの一方の層が1/4波長の位相差を有し、もう一方の層が1/2波長の位相差を有する、光学積層体。
〔態様2〕
 態様1に記載の光学積層体であって、前記第一の光学異方性層の遅相軸方向と前記第二の光学異方性層の遅相軸方向とが、非平行かつ非直交である角度で交差している、光学積層体。
〔態様3〕
 態様1または2に記載の光学積層体であって、前記第一の光学異方性層は、1/2波長の位相差を有し、且つNz係数が0≦Nz≦0.5(好ましくは0<Nz≦0.4、より好ましくは0.1≦Nz≦0.3)である、光学積層体。
〔態様4〕
 態様1または2に記載の光学積層体であって、前記第一の光学異方性層は、1/4波長の位相差を有し、且つNz係数が-0.5≦Nz≦0.5(好ましくは-0.5≦Nz≦0、より好ましくは-0.3≦Nz≦-0.1)である、光学積層体。
〔態様5〕
 態様1~4のいずれか一態様に記載の光学積層体と、直線偏光板とが積層されている円偏光板。
That is, the present invention can be configured in the following aspects.
[Aspect 1]
It contains a first optically anisotropic layer made of a birefringence-inducing material and a second optically anisotropic layer made of a polymerizable liquid crystal material and laminated adjacent to the first optically anisotropic layer. It is an optical laminate,
The Nz coefficient of the first optically anisotropic layer is −0.5 ≦ Nz ≦ 0.5 (preferably −0.5 ≦ Nz <0 or 0 <Nz ≦ 0.5, more preferably −0.3”. ≦ Nz <0 or 0 <Nz ≦ 0.3), and the second optically anisotropic layer has the optical characteristics of the positive A plate.
One of the first optically anisotropic layer and the second optically anisotropic layer has a phase difference of 1/4 wavelength, and the other layer has a phase difference of 1/2 wavelength. Have an optical laminate.
[Aspect 2]
In the optical laminate according to the first aspect, the slow axis direction of the first optically anisotropic layer and the slow axis direction of the second optically anisotropic layer are non-parallel and non-orthogonal. Optical laminates that intersect at an angle.
[Aspect 3]
In the optical laminate according to the first or second aspect, the first optically anisotropic layer has a phase difference of 1/2 wavelength and has an Nz coefficient of 0 ≦ Nz ≦ 0.5 (preferably). An optical laminate in which 0 <Nz ≦ 0.4, more preferably 0.1 ≦ Nz ≦ 0.3).
[Aspect 4]
In the optical laminate according to the first or second aspect, the first optically anisotropic layer has a phase difference of 1/4 wavelength and has an Nz coefficient of −0.5 ≦ Nz ≦ 0.5. (Preferably −0.5 ≦ Nz ≦ 0, more preferably −0.3 ≦ Nz ≦ −0.1).
[Aspect 5]
A circular polarizing plate in which the optical laminate according to any one of aspects 1 to 4 and a linear polarizing plate are laminated.
 なお、請求の範囲および/または明細書に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。 It should be noted that any combination of the claims and / or at least two components disclosed in the specification is included in the present invention. In particular, any combination of two or more of the claims described in the claims is included in the present invention.
 本発明の光学積層体によると、斜め方向から観察しても反射光を抑制することができ、斜め視コントラストの低下を抑制することが可能であり、直線偏光板と積層させることにより円偏光板として使用することが可能である。 According to the optical laminate of the present invention, the reflected light can be suppressed even when observed from an oblique direction, and the decrease in oblique viewing contrast can be suppressed. By laminating with a linear polarizing plate, a circular polarizing plate can be suppressed. It can be used as.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。図面は必ずしも一定の縮尺で示されておらず、本発明の原理を示す上で誇張したものになっている。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。
本発明の光学積層体の製造方法の一実施態様における製膜工程後の概略断面図である。 本発明の光学積層体の製造方法の一実施態様における光照射工程後の積層体概略断面図である。 本発明の光学積層体の製造方法の一実施態様における表面配向工程後の積層体概略断面図である。 本発明の光学積層体の製造方法の一実施態様における第二の光学異方性層形成工程後の積層体概略断面図である。 実施例1の構成の円偏光板の反射光の視野角特性を示す図である。 実施例1の円偏光板および環状ポリオレフィンλ/4位相差フィルム単層による円偏光板の反射光のスペクトルである。 実施例2の構成の円偏光板の反射光の視野角特性を示す図である。 実施例2の円偏光板の透過光の位相差値の波長依存性を示すグラフである。 比較例1の構成の円偏光板の反射光の視野角特性を示す図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. The drawings are not necessarily shown at a constant scale and are exaggerated to show the principles of the invention. However, embodiments and drawings are for illustration and illustration purposes only and should not be used to define the scope of the invention. The scope of the invention is determined by the appended claims.
It is the schematic cross-sectional view after the film forming process in one Embodiment of the manufacturing method of the optical laminated body of this invention. It is schematic cross-sectional view of the laminated body after a light irradiation step in one Embodiment of the manufacturing method of the optical laminated body of this invention. It is schematic cross-sectional view of the laminated body after the surface orientation process in one Embodiment of the manufacturing method of the optical laminated body of this invention. It is schematic cross-sectional view of the laminated body after the 2nd optical anisotropic layer forming step in one Embodiment of the manufacturing method of the optical laminated body of this invention. It is a figure which shows the viewing angle characteristic of the reflected light of the circular polarizing plate of the structure of Example 1. FIG. It is a spectrum of the reflected light of the circular polarizing plate by the circular polarizing plate of Example 1 and the cyclic polyolefin λ / 4 retardation film single layer. It is a figure which shows the viewing angle characteristic of the reflected light of the circular polarizing plate of the structure of Example 2. FIG. It is a graph which shows the wavelength dependence of the phase difference value of the transmitted light of the circular polarizing plate of Example 2. FIG. It is a figure which shows the viewing angle characteristic of the reflected light of the circular polarizing plate of the structure of the comparative example 1. FIG.
[光学積層体]
 本発明の光学積層体は、複屈折誘起材料からなる第一の光学異方性層と、重合性液晶材料からなり、当該第一の光学異方性層に隣接して積層された第二の光学異方性層とを含む。
[Optical laminate]
The optical laminate of the present invention comprises a first optically anisotropic layer made of a birefringence-inducing material and a second optically anisotropic layer made of a polymerizable liquid crystal material and laminated adjacent to the first optically anisotropic layer. Includes an optically anisotropic layer.
 本発明において、複屈折誘起材料とは、光照射(好ましくは光照射と加熱冷却処理)による分子運動とそれに基づく分子配向により軸選択的に複屈折を誘起することができる材料をいう。例えば、複屈折誘起材料は、感光性基を有し、かつ液晶構造を形成可能な側鎖構造を有する側鎖型液晶性高分子を含んでいてもよく、側鎖に有する感光性基の光反応により分子配向が誘起される性質を有していてもよい。感光性基が起こす光反応としては、光二量化反応、光異性化反応、光フリース転位反応等が挙げられる。 In the present invention, the birefringence-inducing material refers to a material capable of inducing birefringence axially selectively by molecular motion due to light irradiation (preferably light irradiation and heat-cooling treatment) and molecular orientation based on the molecular motion. For example, the birefringence-inducing material may contain a side-chain type liquid crystal polymer having a photosensitive group and having a side chain structure capable of forming a liquid crystal structure, and the light of the photosensitive group having the side chain may be contained. It may have a property that molecular orientation is induced by the reaction. Examples of the photoreaction caused by the photosensitive group include a photodimerization reaction, a photoisomerization reaction, and a photofries rearrangement reaction.
 液晶構造を形成可能な側鎖構造としては、側鎖構造に液晶性を発揮する剛直な部位であるメソゲン基を有することにより液晶性を発現していてもよいし、または、他の重合体または同一重合体の他の側鎖等との水素結合による二量体を形成可能な構造を有しており、その二量化によりメソゲン構造を形成することにより、液晶性を発現していてもよい。 As the side chain structure capable of forming a liquid crystal structure, the side chain structure may exhibit liquid crystallinity by having a mesogen group which is a rigid site exhibiting liquid crystallinity, or another polymer or another polymer or It has a structure capable of forming a dimer by hydrogen bonding with other side chains of the same polymer, and may exhibit liquid crystallinity by forming a mesogen structure by dimerization thereof.
 メソゲン基またはメソゲン構造は、2つ以上の芳香族環または脂肪族環とこれを結合する連結基とで構成され、連結基は共有結合でも水素結合でもよい。
 芳香族環としては、ベンゼン環、ナフタレン環、複素環(例えば、フラン環、ピラン環等の酸素含有複素環;ピロール環、イミダゾール環等の窒素含有複素環)等が挙げられ、脂肪族環としては、シクロヘキサン環等が挙げられる。なお、これらの芳香族環または脂肪族環は、置換基を有していてもよく、置換基としては、アルキル基(例えば、C1-6アルキル基、好ましくはC1-4アルキル基)、アルキルオキシ基(例えば、C1-6アルキルオキシ基、好ましくはC1-4アルキルオキシ基)、アルケニル基(例えば、C2-6アルケニル基、好ましくはC2-4アルケニル基)、アルキニル基(例えば、C2-6アルキニル基、好ましくはC2-4アルキニル基)、ハロゲン原子等が挙げられる。
 連結基としては、共有結合である場合、単結合、-O-、-COO-、-OCO-、-N=N-、-NO=N-、-C=C-、-C≡C-、-CO-C=C-、-CH=N-、アルキレン基等が挙げられる。水素結合である場合、末端にカルボキシ基を有する側鎖構造等が挙げられ、この場合、カルボキシ基同士で水素結合を形成する。
A mesogen group or mesogen structure is composed of two or more aromatic or aliphatic rings and a linking group that binds them, and the linking group may be a covalent bond or a hydrogen bond.
Examples of the aromatic ring include a benzene ring, a naphthalene ring, a heterocycle (for example, an oxygen-containing heterocycle such as a furan ring and a pyran ring; a nitrogen-containing heterocycle such as a pyrrole ring and an imidazole ring), and examples thereof include an aliphatic ring. Examples include a cyclohexane ring. In addition, these aromatic rings or aliphatic rings may have a substituent, and the substituent may be an alkyl group (for example, a C 1-6 alkyl group, preferably a C 1-4 alkyl group). Alkyloxy group (eg, C 1-6 alkyloxy group, preferably C 1-4 alkyloxy group), alkenyl group (eg, C 2-6 alkenyl group, preferably C 2-4 alkenyl group), alkynyl group (eg, C 2-4 alkenyl group) For example, C 2-6 alkynyl group, preferably C 2-4 alkynyl group), halogen atom and the like can be mentioned.
As a linking group, in the case of a covalent bond, a single bond, -O-, -COO-, -OCO-, -N = N-, -NO = N-, -C = C-, -C≡C-, -CO-C = C-, -CH = N-, alkylene group and the like can be mentioned. In the case of a hydrogen bond, a side chain structure having a carboxy group at the terminal may be mentioned, and in this case, a hydrogen bond is formed between the carboxy groups.
 感光性基としては、光エネルギーにより光反応を起こすことが可能な官能基であれば特に制限されず、例えば、カルコン基、クマリン基、シンナモイル基、桂皮酸基、シンナミリデン酢酸基、ビフェニルアクリロイル基、フリルアクリロイル基、ナフチルアクリロイル基、アゾベンゼン基、ベンジリデンアニリン基またはこれらの誘導体等が挙げられ、好ましくは、シンナモイル基であってもよい。 The photosensitive group is not particularly limited as long as it is a functional group capable of causing a photoreaction by light energy. Examples thereof include a frillacryloyl group, a naphthylacryloyl group, an azobenzene group, a benzylideneaniline group or a derivative thereof, and a cinnamoyl group may be preferable.
 側鎖型液晶性高分子は、繰り返し単位中に、感光性基および液晶構造を形成可能な構造の両方を有している側鎖構造を少なくとも有していてもよく、感光性基は、メソゲン基またはメソゲン構造とは、側鎖構造の中で独立に存在していてもよいし、化学構造を共有して複合的に存在していてもよい。 The side chain type liquid crystal polymer may have at least a side chain structure having both a photosensitive group and a structure capable of forming a liquid crystal structure in the repeating unit, and the photosensitive group is a mesogen. The group or mesogen structure may exist independently in the side chain structure, or may exist in a complex manner by sharing a chemical structure.
 側鎖型液晶性高分子は、感光性基および液晶構造を形成可能な構造の両方を有している側鎖構造として、下記式(1)および(2)で表される側鎖構造からなる群から選択される少なくとも1種の側鎖構造を有していてもよい。 The side chain type liquid crystal polymer has a side chain structure represented by the following formulas (1) and (2) as a side chain structure having both a photosensitive group and a structure capable of forming a liquid crystal structure. It may have at least one side chain structure selected from the group.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、rは1~12の整数であり;sは0または1であり;tは0または1であり;Xは、単結合、C1-3アルキレン基、-C=C-、-C≡C-、-O-、-N=N-、-COO-、または-OCO-を表し;Rは、水素原子、アルキル基(例えば、C1-6アルキル基、好ましくはC1-4アルキル基)、またはヒドロキシアルキル基(例えば、ヒドロキシC1-6アルキル基、好ましくはヒドロキシC1-4アルキル基)を表し;RおよびRは、同一または異なって、水素原子、アルキル基(例えば、C1-6アルキル基、好ましくはC1-4アルキル基)、アルキルオキシ基(例えば、C1-6アルキルオキシ基、好ましくはC1-4アルキルオキシ基)、ハロゲン原子またはシアノ基を表す。なお、RおよびRは、それぞれベンゼン環上の4箇所における置換基を表し、4箇所において同一または異なる置換基を表していてもよい。 In the formula, r is an integer from 1 to 12; s is 0 or 1; t is 0 or 1; X 1 is a single bond, C 1-3 alkylene group, -C = C-,-. Represents C≡C-, -O-, -N = N-, -COO-, or -OCO-; R 1 is a hydrogen atom, an alkyl group (eg, C 1-6 alkyl group, preferably C 1- ). Represents a 4 alkyl group), or a hydroxyalkyl group (eg, a hydroxy C 1-6 alkyl group, preferably a hydroxy C 1-4 alkyl group); R 2 and R 3 are the same or different, hydrogen atom, alkyl group. (For example, C 1-6 alkyl group, preferably C 1-4 alkyl group), alkyloxy group (for example, C 1-6 alkyloxy group, preferably C 1-4 alkyloxy group), halogen atom or cyano group. Represents. It should be noted that R 2 and R 3 each represent a substituent at four positions on the benzene ring, and may represent the same or different substituents at the four positions.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式中、r’は1~12の整数であり;s’は0または1であり;uは1~12の整数であり;Xは、単結合、C1-3アルキレン基、-C=C-、-C≡C-、-O-、-N=N-、-COO-、または-OCO-を表し;Wは、シンナモイルオキシ基、カルコン基、ビフェニルアクリロイルオキシ基、フリルアクリロイルオキシ基、ナフチルアクリロイルオキシ基、またはそれらの誘導体基を表し;RおよびRは、同一または異なって、水素原子、アルキル基(例えば、C1-6アルキル基、好ましくはC1-4アルキル基)、アルキルオキシ基(例えば、C1-6アルキルオキシ基、好ましくはC1-4アルキルオキシ基)、ハロゲン原子またはシアノ基を表す。なお、RおよびRは、それぞれベンゼン環上の4箇所における置換基を表し、4箇所において同一または異なる置換基を表していてもよい。 In the formula, r'is an integer from 1 to 12; s'is 0 or 1; u is an integer from 1 to 12; X 2 is a single bond, C 1-3 alkylene group, -C = Represents C-, -C≡C-, -O-, -N = N-, -COO-, or -OCO-; W is a cinnamoyloxy group, an alkane group, a biphenylacryloyloxy group, a frillacryloyloxy group. , Naftylacryloyloxy group, or a derivative group thereof; R4 and R5 are the same or different, hydrogen atom, alkyl group (eg, C 1-6 alkyl group, preferably C 1-4 alkyl group). , Alkyloxy group (eg, C 1-6 alkyloxy group, preferably C 1-4 alkyloxy group), halogen atom or cyano group. It should be noted that R 4 and R 5 each represent a substituent at four positions on the benzene ring, and may represent the same or different substituents at the four positions.
 側鎖型液晶性高分子は、上記式(1)で表される側鎖構造を少なくとも含んでいることが好ましい。より好ましくは、上記式(1)中、tが0を表し、Rが水素原子を表す化学構造を有する側鎖構造を含んでいてもよく、このような側鎖構造は、末端に感光性基である桂皮酸基を有しており、桂皮酸基中のカルボキシ基が水素結合性を有しているため、他の重合体または同一重合体の側鎖が有する末端の安息香酸基や桂皮酸基のカルボキシ基とともに水素結合を形成して二量化することによりメソゲン構造を形成することが可能である。 The side chain type liquid crystal polymer preferably contains at least the side chain structure represented by the above formula (1). More preferably, in the above formula (1), a side chain structure having a chemical structure in which t represents 0 and R 1 represents a hydrogen atom may be contained, and such a side chain structure is photosensitive at the terminal. Since it has a katsura acid group, which is a group, and the carboxy group in the katsura acid group has hydrogen-binding property, the terminal benzoic acid group or katsura skin of the side chain of another polymer or the same polymer. It is possible to form a mesogen structure by forming a hydrogen bond together with the carboxy group of the acid group and dimerizing it.
 なお、上記式(1)および(2)で表される側鎖構造は、繰り返し単位における側鎖の末端の化学構造を表しており、本発明の効果を損なわない範囲において、これらの側鎖構造と主鎖構造との間に種々の化学構造を含んでいてもよい。 The side chain structures represented by the above formulas (1) and (2) represent the chemical structure of the end of the side chain in the repeating unit, and these side chain structures are not impaired to the extent that the effect of the present invention is not impaired. Various chemical structures may be contained between the main chain structure and the main chain structure.
 側鎖型液晶性高分子は、上記側鎖構造を含む同一繰り返し単位からなる単独重合体または上記側鎖構造を含む繰り返し単位以外に構造の異なる側鎖構造を含む繰り返し単位を含む共重合体であってもよい。主鎖構造としては、炭化水素、アクリレート、メタクリレート、シロキサン、マレイミド、N-フェニルマレイミド等が重合して形成される構造が挙げられる。 The side chain type liquid crystal polymer is a homopolymer composed of the same repeating unit containing the side chain structure or a copolymer containing a repeating unit containing a side chain structure having a different structure in addition to the repeating unit containing the side chain structure. There may be. Examples of the main chain structure include structures formed by polymerizing hydrocarbons, acrylates, methacrylates, siloxanes, maleimides, N-phenylmaleimides and the like.
 側鎖型液晶性高分子は、共重合体である場合、感光性基および/または液晶構造を形成可能な構造を有していない繰り返し単位を有していてもよい。 When the side chain type liquid crystal polymer is a copolymer, it may have a repeating unit that does not have a photosensitive group and / or a structure capable of forming a liquid crystal structure.
 本発明の複屈折誘起材料は、側鎖型液晶性高分子の側鎖の配向性を促進するために、側鎖型液晶性高分子とともに低分子化合物を含んでいてもよい。低分子化合物としては、メソゲン成分として知られているビフェニル、ターフェニル、フェニルベンゾエート、アゾベンゼン等の置換基を有し、このような置換基と、アリル、アクリレート、メタクリレート、桂皮酸基(またはその誘導体基)等の官能基を、スペーサー(例えば、炭素数1~15(好ましくは炭素数1~10、より好ましくは炭素数1~5)の(オキシ)アルキレン基等)を介して結合した液晶性を有するものが好ましく用いられる。これらの低分子化合物は、単独でまたは二種以上組み合わせて使用してもよい。 The birefringence-inducing material of the present invention may contain a low molecular weight compound together with the side chain type liquid crystal polymer in order to promote the orientation of the side chain of the side chain type liquid crystal polymer. The low molecular weight compound has a substituent such as biphenyl, terphenyl, phenylbenzoate, and azobenzene known as a mesogen component, and such a substituent and an allyl, acrylate, methacrylate, and cinnamic acid group (or a derivative thereof) are included. A liquidity in which a functional group such as (group) is bonded via a spacer (for example, an (oxy) alkylene group having 1 to 15 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms)). Those having the above are preferably used. These small molecule compounds may be used alone or in combination of two or more.
 本発明において、重合性液晶材料は、反応性官能基とメソゲン基とを少なくとも含む単官能もしくは二官能性の重合性液晶化合物を含む組成物であり、光や熱により重合または架橋剤との反応により架橋構造を形成した後の組成物を含む。 In the present invention, the polymerizable liquid crystal material is a composition containing a monofunctional or bifunctional polymerizable liquid crystal compound containing at least a reactive functional group and a mesogen group, and is polymerized by light or heat or reacted with a cross-linking agent. Contains the composition after forming a crosslinked structure with.
 重合性液晶化合物は、液晶性モノマーであってもよく、液晶性ポリマーであってもよい。例えば、重合性液晶化合物としては、光や熱により重合する重合性官能基を有する重合性液晶モノマーおよび/または重合性液晶ポリマーや、架橋剤との反応により架橋構造を導入可能な架橋性官能基を有する架橋性液晶モノマーおよび/または架橋性液晶ポリマー等が挙げられる。 The polymerizable liquid crystal compound may be a liquid crystal monomer or a liquid crystal polymer. For example, as the polymerizable liquid crystal compound, a polymerizable liquid crystal monomer having a polymerizable functional group that polymerizes by light or heat and / or a polymerizable liquid crystal polymer, or a cross-linking functional group capable of introducing a cross-linked structure by reaction with a cross-linking agent. Examples thereof include a crosslinkable liquid crystal monomer having a crosslinkable liquid crystal monomer and / or a crosslinkable liquid crystal polymer.
 重合性液晶化合物は、メソゲン基を有するモノマーまたはメソゲン基で構成されたユニットを有するポリマーであって、液晶構造を形成可能であるとともに、重合性および/または架橋性を有する限り特に限定されず、各種重合性液晶化合物を利用することができる。重合性液晶化合物としては、例えば、シッフ塩基系、ビフェニル系、ターフェニル系、エステル系、チオエステル系、スチルベン系、トラン系、アゾキシ系、アゾ系、フェニルシクロヘキサン系、ピリミジン系、シクロヘキシルシクロヘキサン系、トリメシン酸系、トリフェニレン系、トルクセン系、フタロシアニン系、ポルフィリン系分子骨格を有する液晶化合物、またはこれらの化合物の混合物等が挙げられ、ネマチック性、コレステリック性またはスメクチック性の液晶相を示す化合物であればいずれでもよい。一例として、重合性液晶化合物として、光重合性のネマチック液晶モノマーを用いてもよい。 The polymerizable liquid crystal compound is a monomer having a mesogen group or a polymer having a unit composed of a mesogen group, and is not particularly limited as long as it can form a liquid crystal structure and has polymerizable and / or crosslinkability. Various polymerizable liquid crystal compounds can be used. Examples of the polymerizable liquid crystal compound include Schiff basic, biphenyl, terphenyl, ester, thioester, stilben, trans, azoxy, azo, phenylcyclohexane, pyrimidine, cyclohexylcyclohexane, and trimesin. Examples thereof include acid-based, triphenylene-based, torquesen-based, phthalocyanine-based, porphyrin-based liquid crystal compounds having a molecular skeleton, or mixtures of these compounds, and any compound exhibiting a nematic, cholesteric, or smectic liquid crystal phase. But it may be. As an example, a photopolymerizable nematic liquid crystal monomer may be used as the polymerizable liquid crystal compound.
 前記メソゲン基で構成されたユニットは、液晶ポリマーの主鎖にあってもよく、側鎖にあってもよい。主鎖型液晶ポリマーとしては、ポリエステル系、ポリアミド系、ポリカーボネート系、ポリイミド系、ポリウレタン系、ポリベンズイミダゾール系、ポリベンズオキサゾール系、ポリベンズチアゾール系、ポリアゾメチン系、ポリエステルアミド系、ポリエステルカーボネート系、ポリエステルイミド系の液晶ポリマー、またはこれらの混合物等が挙げられる。また、側鎖型液晶ポリマーとしては、ポリアクリレート系、ポリメタクリレート系、ポリビニル系、ポリシロキサン系、ポリエーテル系、ポリマロネート系等の直鎖状又は環状構造の骨格鎖を有する高分子に側鎖としてメソゲン基が結合した液晶ポリマー、またはこれらの混合物等が挙げられる。 The unit composed of the mesogen group may be in the main chain or the side chain of the liquid crystal polymer. As the main chain type liquid crystal polymer, polyester type, polyamide type, polycarbonate type, polyimide type, polyurethane type, polybenzimidazole type, polybenzoxazole type, polybenzthiazole type, polyazomethine type, polyesteramide type, polyester carbonate type, Examples thereof include polyesterimide-based liquid crystal polymers and mixtures thereof. The side chain type liquid crystal polymer is a polymer having a linear or cyclic skeletal chain such as a polyacrylate-based, polymethacrylate-based, polyvinyl-based, polysiloxane-based, polyether-based, or polymalonate-based polymer as a side chain. Examples thereof include a liquid crystal polymer to which a mesogen group is bonded, a mixture thereof, and the like.
 また、重合性液晶材料は、重合性液晶化合物が重合性官能基を有する場合、光重合開始剤および/または熱重合開始剤を含有するものであってもよい。 Further, the polymerizable liquid crystal material may contain a photopolymerization initiator and / or a thermal polymerization initiator when the polymerizable liquid crystal compound has a polymerizable functional group.
 光重合開始剤としては、イルガキュア(Irgacure)907、イルガキュア184、イルガキュア651、イルガキュア819、イルガキュア250、イルガキュア369(以上、全てチバ・ジャパン(株)製)、セイクオールBZ、セイクオールZ、セイクオールBEE(以上、全て精工化学(株)製)、カヤキュアー(kayacure)BP100(日本化薬(株)製)、カヤキュアーUVI-6992(ダウ社製)、アデカオプトマーSP-152又はアデカオプトマーSP-170(以上、全て(株)ADEKA製)、TAZ-A、TAZ-PP(以上、日本シイベルヘグナー社製)及びTAZ-104(三和ケミカル社製)など、市販の光重合開始剤を用いることができる。 Photopolymerization initiators include Irgacure 907, Irgacure 184, Irgacure 651, Irgacure 819, Irgacure 250, Irgacure 369 (all manufactured by Ciba Japan Co., Ltd.), Sakeol BZ, Sakeall Z, Sakeall BEE (and above). , All manufactured by Seiko Kagaku Co., Ltd., kayacure BP100 (manufactured by Nippon Kayaku Co., Ltd.), Kayacure UVI-6992 (manufactured by Dow), ADEKA PTOMER SP-152 or ADEKA PTOMER SP-170 (above) , All manufactured by ADEKA Corporation), TAZ-A, TAZ-PP (all manufactured by Nippon Sibel Hegner) and TAZ-104 (manufactured by Sanwa Chemical Co., Ltd.) and the like, commercially available photopolymerization initiators can be used.
 熱重合開始剤としては、アゾビスイソブチロニトリル等のアゾ化合物、過酸化水素、過硫酸塩、過酸化ベンゾイル等の過酸化物等が挙げられる。 Examples of the thermal polymerization initiator include azo compounds such as azobisisobutyronitrile, peroxides such as hydrogen peroxide, persulfates, and benzoyl peroxide.
 重合開始剤の含有量は、重合性液晶材料の総重量に対して、0.01~20重量%が好ましく、0.03~10重量%がより好ましく、0.05~8重量%がさらに好ましい。上記範囲内であれば、重合性液晶化合物の配向を乱すことなく重合させることができる。 The content of the polymerization initiator is preferably 0.01 to 20% by weight, more preferably 0.03 to 10% by weight, still more preferably 0.05 to 8% by weight, based on the total weight of the polymerizable liquid crystal material. .. Within the above range, the polymerizable liquid crystal compound can be polymerized without disturbing the orientation.
 なお、重合開始剤として光重合開始剤を用いる場合、光増感剤を併用してもよい。光増感剤としては、例えば、キサントン及びチオキサントン等のキサントン化合物(例えば、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン等);アントラセン及びアルコキシ基含有アントラセン(例えば、ジブトキシアントラセン等)等のアントラセン化合物;フェノチアジン;ルブレン等が挙げられる。 When a photopolymerization initiator is used as the polymerization initiator, a photosensitizer may be used in combination. Examples of the photosensitizer include xanthone compounds such as xanthone and thioxanthone (eg, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, etc.); anthracene and anthracene containing an alkoxy group (eg, dibutoxyanthracene, etc.). Compounds; phenothiazine; rubrene and the like can be mentioned.
 また、重合性液晶材料は、重合性液晶化合物が架橋性官能基を有する場合、適切な架橋剤を含有するものであってもよい。この場合、重合性液晶化合物は、液晶状態あるいは液晶転移温度以下に冷却した状態で、架橋(熱架橋あるいは光架橋)等の手段により配向固定化できる液晶化合物でもよい。 Further, the polymerizable liquid crystal material may contain an appropriate cross-linking agent when the polymerizable liquid crystal compound has a cross-linking functional group. In this case, the polymerizable liquid crystal compound may be a liquid crystal compound that can be oriented and fixed by means such as crosslinking (thermal crosslinking or photocrosslinking) in a liquid state or in a state of being cooled to a liquid crystal transition temperature or lower.
 架橋性官能基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、特にアクリロイルオキシ基がより好ましい。 Examples of the crosslinkable functional group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group and the like. Of these, acryloyloxy group, methacryloyloxy group, vinyloxy group, oxylanyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable.
 架橋剤としては、分子内に2個以上の官能基を有する多官能性化合物が挙げられる。多官能性化合物としては、イソシアネート基、カルボジイミド基、アジリジン基、アゼチジン基、オキサゾリン基、エポキシ基、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基等を有する化合物が挙げられる。これらの架橋剤のうち、分子内に2個以上のイソシアネート基を有する多官能性化合物であるポリイソシアネート系化合物を用いる場合、ポリイソシアネート系化合物は公知のものが使用可能であり、例えば、ポリイソシアネート系化合物としては、ジイソシアネート化合物、トリイソシアネート化合物等が挙げられる。ジイソシアネート化合物としては、例えば、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、メチレンビス(シクロヘキシルイソシアネート)、イソホロンジイソシアネート、ヘキサメチレンジイソシアネートとジオールとの縮合化合物等が挙げられる。また、トリイソシアネート化合物としては、ヘキサメチレンジイソシアネート等のジイソシアネートのイソシアヌレート体、ビウレット体、ヘキサメチレンジイソシアネート等のジイソシアネートとメチロールプロパンとの付加体であるアダクト体等が挙げられる。 Examples of the cross-linking agent include polyfunctional compounds having two or more functional groups in the molecule. Examples of the polyfunctional compound include compounds having an isocyanate group, a carbodiimide group, an aziridine group, an azetidine group, an oxazoline group, an epoxy group, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group and the like. Among these cross-linking agents, when a polyisocyanate compound which is a polyfunctional compound having two or more isocyanate groups in the molecule is used, known polyisocyanate compounds can be used, for example, polyisocyanate. Examples of the system compound include a diisocyanate compound and a triisocyanate compound. Examples of the diisocyanate compound include phenylenediocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, methylcyclohexylene diisocyanate, bis (isocyanatomethyl) cyclohexane, methylenebis (cyclohexyl isocyanate), isophorone diisocyanate, and hexamethylene diisocyanate. Examples thereof include a condensed compound of diol and diol. Examples of the triisocyanate compound include an isocyanurate compound of diisocyanate such as hexamethylene diisocyanate, a biuret compound, and an adduct compound which is an adduct of diisocyanate such as hexamethylene diisocyanate and trimethylolpropane.
 架橋剤の含有量は、液晶性高分子との反応による第二の光学異方性層の配向性や光学特性の低下の抑制の観点から、重合性液晶材料の総重量に対して、0.01~5重量%であってもよく、好ましくは0.05~3重量%、より好ましくは0.1~1.5重量%であってもよい。 The content of the cross-linking agent is 0. It may be 01 to 5% by weight, preferably 0.05 to 3% by weight, and more preferably 0.1 to 1.5% by weight.
 本発明の光学積層体は、第一の光学異方性層および第二の光学異方性層のうちの一方の層が1/4波長の位相差を有し、もう一方の層が1/2波長の位相差を有する。すなわち、本発明の光学積層体は、第一の光学異方性層が1/4波長の位相差を有し、第二の光学異方性層が1/2波長の位相差を有する光学積層体、または第一の光学異方性層が1/2波長の位相差を有し、第二の光学異方性層が1/4波長の位相差を有する光学積層体である。1/4波長の位相差とは、面内位相差値(Re)が、設計波長の1/4である場合を示し、例えば、設計波長の1/4-50nm~設計波長の1/4+50nmであってもよい。例えば、設計波長が550nmの場合、1/4波長の位相差を有する層のReは88~188nmであってもよい。また、1/2波長の位相差とは、面内位相差値(Re)が、設計波長の1/2である場合を示し、例えば、設計波長の1/2-50nm~設計波長の1/2+50nmであってもよい。例えば、設計波長が550nmの場合、1/2波長の位相差を有する層のReは225~325nmであってもよい。ここで、面内位相差値(Re)とは、フィルム面内の直交する二軸の屈折率(nx、ny)の異方性(△Nxy=|nx-ny|)とフィルム厚さd(nm)との積(△Nxy×d)で定義されるパラメータであり、光学的等方性、異方性を示す尺度である。なお、本明細書において、面内位相差値(Re)は、波長550nmの光に対する測定値であってもよい。 In the optical laminate of the present invention, one of the first optically anisotropic layer and the second optically anisotropic layer has a phase difference of 1/4 wavelength, and the other layer is 1 /. It has a phase difference of two wavelengths. That is, in the optical laminate of the present invention, the first optically anisotropic layer has a phase difference of 1/4 wavelength, and the second optically anisotropic layer has a phase difference of 1/2 wavelength. The body or the first optically anisotropic layer is an optical laminate having a phase difference of 1/2 wavelength, and the second optically anisotropic layer has a phase difference of 1/4 wavelength. The phase difference of 1/4 wavelength means that the in-plane phase difference value (Re) is 1/4 of the design wavelength, and is, for example, from 1 / 4-50 nm of the design wavelength to 1/4 + 50 nm of the design wavelength. There may be. For example, when the design wavelength is 550 nm, the Re of the layer having a phase difference of 1/4 wavelength may be 88 to 188 nm. Further, the phase difference of 1/2 wavelength means a case where the in-plane phase difference value (Re) is 1/2 of the design wavelength, for example, from 1 / 2-50 nm of the design wavelength to 1/1 of the design wavelength. It may be 2 + 50 nm. For example, when the design wavelength is 550 nm, the Re of the layer having a phase difference of 1/2 wavelength may be 225 to 325 nm. Here, the in-plane retardation value (Re) is the anisotropy (ΔNxy = | nx−ny |) of the refractive index (nx, ny) of the orthogonal biaxial axes in the film plane and the film thickness d ( It is a parameter defined by the product (ΔNxy × d) with nm), and is a scale showing optical isotropic and anisotropy. In the present specification, the in-plane phase difference value (Re) may be a measured value for light having a wavelength of 550 nm.
 本発明の光学積層体は、複屈折誘起材料からなる第一の光学異方性層のNz係数が-0.5~0.5であり、重合性液晶材料からなる第二の光学異方性層がポジティブAプレートの光学特性を有する。本発明では、隣接して積層された1/4波長の位相差を有する層と1/2波長の位相差を有する層とでそれぞれ特定のNz係数を有する光学積層体は、斜め方向から観察しても反射光を抑制することができ、斜め視コントラストの低下を抑制することができることを見出した。ここで、本明細書において、Nz係数は、面内の主屈折率をnx(遅相軸方向)、ny(進相軸方向)とし、厚み方向の屈折率をnzとしたとき、Nz=(nx-nz)/(nx-ny)で表される屈折率成分の指標である。 In the optical laminate of the present invention, the Nz coefficient of the first optically anisotropic layer made of a birefringence-inducing material is −0.5 to 0.5, and the second optically anisotropic material is made of a polymerizable liquid crystal material. The layer has the optical properties of a positive A plate. In the present invention, an optical laminate having a specific Nz coefficient between a layer having a phase difference of 1/4 wavelength and a layer having a phase difference of 1/2 wavelength, which are laminated adjacent to each other, is observed from an oblique direction. However, it has been found that the reflected light can be suppressed and the decrease in the oblique viewing contrast can be suppressed. Here, in the present specification, the Nz coefficient is Nz = (when the main refractive index in the plane is nx (slow phase axis direction) and ny (phase advance axis direction) and the refractive index in the thickness direction is nz. It is an index of the refractive index component represented by nx-nz) / (nx-ny).
 ポジティブAプレートとは、屈折率分布がnx>ny=nzを満足する正の一軸性位相差光学素子をいう。ポジティブAプレートの光学特性を有する場合、本発明において、ポジティブAプレートにおける「ny=nz」との記載は、面内の進相軸方向の屈折率(ny)と厚み方向の屈折率(nz)とが必ずしも完全に一致する必要はなく、例えば、Nz=1程度(例えば、Nz係数が0.95~1.05の範囲内)であってもよい。 The positive A plate refers to a positive uniaxial phase difference optical element whose refractive index distribution satisfies nx> ny = nz. When the positive A plate has the optical characteristics, in the present invention, the description of "ny = nz" in the positive A plate refers to the in-plane refractive index in the phase-advancing axis direction (ny) and the refractive index in the thickness direction (nz). Does not necessarily have to completely match, and may be, for example, about Nz = 1 (for example, the Nz coefficient is in the range of 0.95 to 1.05).
 本発明の光学積層体は、より反射光の視野角特性を向上させる観点から、第一の光学異方性層のNz係数が-0.5≦Nz<0または0<Nz≦0.5であることが好ましく、-0.3≦Nz<0または0<Nz≦0.3であることがより好ましい。 In the optical laminate of the present invention, the Nz coefficient of the first optically anisotropic layer is −0.5 ≦ Nz <0 or 0 <Nz ≦ 0.5 from the viewpoint of further improving the viewing angle characteristics of the reflected light. It is preferably −0.3 ≦ Nz <0 or 0 <Nz ≦ 0.3.
 本発明の光学積層体は、より反射光の視野角特性を向上させる観点から、第一の光学異方性層が1/2波長の位相差を有し、そのNz係数が0≦Nz≦0.5であることが好ましく、より好ましくはNz係数が0<Nz≦0.4、さらに好ましくはNz係数が0.1≦Nz≦0.3であってもよい。すなわち、第一の光学異方性層が1/2波長の位相差を有し、且つNz係数が0≦Nz≦0.5(より好ましくは0<Nz≦0.4、さらに好ましくは0.1≦Nz≦0.3)であり、第二の光学異方性層が1/4波長の位相差を有し、且つポジティブAプレートの光学特性を有する(例えば、Nz係数が0.95≦Nz≦1.05である)光学積層体であってもよい。 In the optical laminate of the present invention, from the viewpoint of further improving the viewing angle characteristics of reflected light, the first optically anisotropic layer has a phase difference of 1/2 wavelength, and its Nz coefficient is 0 ≦ Nz ≦ 0. It is preferably .5, more preferably the Nz coefficient is 0 <Nz ≦ 0.4, and further preferably the Nz coefficient may be 0.1 ≦ Nz ≦ 0.3. That is, the first optically anisotropic layer has a phase difference of 1/2 wavelength, and the Nz coefficient is 0 ≦ Nz ≦ 0.5 (more preferably 0 <Nz ≦ 0.4, still more preferably 0. 1 ≦ Nz ≦ 0.3), the second optically anisotropic layer has a phase difference of 1/4 wavelength, and has the optical characteristics of a positive A plate (for example, the Nz coefficient is 0.95 ≦). It may be an optical laminate (Nz ≦ 1.05).
 本発明の光学積層体は、第一の光学異方性層が1/4波長の位相差を有する場合、そのNz係数が-0.5≦Nz≦0.5であることが好ましく、-0.5≦Nz≦0であることがより好ましく、-0.3≦Nz≦-0.1であることがさらに好ましい。すなわち、第一の光学異方性層が1/4波長の位相差を有し、且つNz係数が-0.5≦Nz≦0.5(より好ましくは-0.5≦Nz≦0、さらに好ましくは-0.3≦Nz≦-0.1)であり、第二の光学異方性層が1/2波長の位相差を有し、且つポジティブAプレートの光学特性を有する(例えば、Nz係数が0.95≦Nz≦1.05である)光学積層体であってもよい。 When the first optically anisotropic layer has a phase difference of 1/4 wavelength, the optical laminate of the present invention preferably has an Nz coefficient of −0.5 ≦ Nz ≦ 0.5, preferably −0. .5 ≦ Nz ≦ 0 is more preferable, and −0.3 ≦ Nz ≦ −0.1 is even more preferable. That is, the first optically anisotropic layer has a phase difference of 1/4 wavelength, and the Nz coefficient is −0.5 ≦ Nz ≦ 0.5 (more preferably −0.5 ≦ Nz ≦ 0, further. It is preferably −0.3 ≦ Nz ≦ −0.1), the second optically anisotropic layer has a phase difference of 1/2 wavelength, and has the optical characteristics of a positive A plate (for example, Nz). It may be an optical laminate (with a coefficient of 0.95 ≦ Nz ≦ 1.05).
 第一の光学異方性層の厚さは、所望の面内位相差値(Re)に応じて適宜調整することが可能であるが、例えば、0.1~20μmであってもよく、好ましくは0.3~15μm、より好ましくは0.5~10μmであってもよい。
 また、第二の光学異方性層の厚さは、所望の面内位相差値(Re)に応じて適宜調整することが可能であるが、0.1~20μmであってもよく、好ましくは0.3~15μm、より好ましくは0.5~10μmであってもよい。
 また、第一の光学異方性層と第二の光学異方性層との厚さの比(第一の光学異方性層/第二の光学異方性層)は、1/10~10/1であってもよく、好ましくは1/8~8/1、より好ましくは1/5~5/1であってもよい。
The thickness of the first optically anisotropic layer can be appropriately adjusted according to the desired in-plane retardation value (Re), but may be, for example, 0.1 to 20 μm, which is preferable. May be 0.3 to 15 μm, more preferably 0.5 to 10 μm.
The thickness of the second optically anisotropic layer can be appropriately adjusted according to the desired in-plane retardation value (Re), but may be 0.1 to 20 μm, which is preferable. May be 0.3 to 15 μm, more preferably 0.5 to 10 μm.
The thickness ratio of the first optically anisotropic layer and the second optically anisotropic layer (first optically anisotropic layer / second optically anisotropic layer) is 1/10 to 1/10 or more. It may be 10/1, preferably 1/8 to 8/1, and more preferably 1/5 to 5/1.
 本発明の光学積層体の厚さは、例えば、1~40μmであってもよく、好ましくは2~30μm、より好ましくは3~20μmであってもよい。 The thickness of the optical laminate of the present invention may be, for example, 1 to 40 μm, preferably 2 to 30 μm, and more preferably 3 to 20 μm.
 本発明の光学積層体は、円偏光板に使用する観点から、第一の光学異方性層の遅相軸方向と第二の光学異方性層の遅相軸方向とが、非平行かつ非直交である角度で交差していてもよい。例えば、第一の光学異方性層の遅相軸と第二の光学異方性層の遅相軸とのなす角は、5~85°であってもよく、好ましくは8~80°、より好ましくは10~75°であってもよい。 In the optical laminate of the present invention, the slow-phase axial direction of the first optically anisotropic layer and the slow-phase axial direction of the second optically anisotropic layer are non-parallel from the viewpoint of being used for a circular polarizing plate. They may intersect at angles that are non-orthogonal. For example, the angle formed by the slow axis of the first optically anisotropic layer and the slow axis of the second optically anisotropic layer may be 5 to 85 °, preferably 8 to 80 °. More preferably, it may be 10 to 75 °.
 本発明の光学積層体は、第一の光学異方性層の遅相軸と第二の光学異方性層の遅相軸とのなす角を任意に設定する観点から、後述の製造方法により製造されていることが好ましく、その場合、第一の光学異方性層が、互いに遅相軸が異なる隣接層と内部層とで構成され、当該隣接層と第二の光学異方性層とが接している光学積層体であってもよい。隣接層は、第二の光学異方性層と接する第一の光学異方性層の界面のみに存在していてもよい。例えば、隣接層は、内部層とは異なる配向を施すように第一の光学異方性層の表面が配向処理されて形成されていてもよい。ここで、配向処理は、後述の製造方法における表面配向工程の態様により施されていてもよい。なお、隣接層における配向の影響がごくわずかであるとみなせるため、第一の光学異方性層の内部層の遅相軸を、第一の光学異方性層全体の遅相軸として測定し、第一の光学異方性層の遅相軸と第二の光学異方性層の遅相軸とのなす角を測定してもよい。 The optical laminate of the present invention is produced by the manufacturing method described later from the viewpoint of arbitrarily setting the angle formed by the slow axis of the first optically anisotropic layer and the slow axis of the second optically anisotropic layer. It is preferably manufactured, in which case the first optically anisotropic layer is composed of an adjacent layer and an inner layer having different slow axes, and the adjacent layer and the second optically anisotropic layer are formed. It may be an optical laminate in contact with. The adjacent layer may be present only at the interface of the first optically anisotropic layer in contact with the second optically anisotropic layer. For example, the adjacent layer may be formed by orienting the surface of the first optically anisotropic layer so as to give an orientation different from that of the inner layer. Here, the alignment treatment may be performed according to the aspect of the surface alignment step in the manufacturing method described later. Since the influence of orientation in the adjacent layer can be considered to be negligible, the slow axis of the inner layer of the first optically anisotropic layer is measured as the slow axis of the entire first optically anisotropic layer. , The angle formed by the slow axis of the first optically anisotropic layer and the slow axis of the second optically anisotropic layer may be measured.
 本発明の光学積層体は、特に、第一の光学異方性層において、面内で遅相軸方向は一定であることが好ましい。後述の好ましい態様の製造方法では、配向層を介して下側の層に偏光を照射することにより偏光状態が変換される(例えば、直線偏光から楕円偏光になる)ことがないためか、分子配向を乱すことなく、遅相軸方向を一定にすることが可能である。 In the optical laminate of the present invention, it is preferable that the slow phase axial direction is constant in the plane, particularly in the first optically anisotropic layer. In the manufacturing method of the preferred embodiment described later, the polarization state is not changed (for example, from linear polarization to elliptically polarized light) by irradiating the lower layer with polarized light through the alignment layer, or the molecular orientation. It is possible to make the slow phase axial direction constant without disturbing.
 本発明の光学積層体は、位相差板として使用することができ、各種光学部材(反射防止フィルム、光学補償フィルム等)に用いることが可能である。本発明の光学積層体は、例えば、直線偏光板と積層させることにより有機EL表示装置などのOLEDに反射防止膜として利用される円偏光板として使用することが可能である。 The optical laminate of the present invention can be used as a retardation plate, and can be used for various optical members (antireflection film, optical compensation film, etc.). The optical laminate of the present invention can be used as a circular polarizing plate used as an antireflection film in an OLED such as an organic EL display device by laminating it with a linear polarizing plate, for example.
 円偏光板は、上記光学積層体と直線偏光板とが積層されており、直線偏光板が光学積層体の1/2波長の位相差を有する層側に積層されていてもよい。直線偏光板と光学積層体との積層は、後述の製造方法に示すように光学積層体を直線偏光板上に直接製造して積層してもよく、すなわち、直線偏光板と光学積層体の1/2波長の位相差を有する層とが隣接して積層された円偏光板であってもよい。また、直線偏光板と光学積層体とを公知の接着剤や粘着剤等を使用して貼り合わせることにより積層してもよく、すなわち、直線偏光板と光学積層体の1/2波長の位相差を有する層との間に接着剤や粘着剤を介して積層された円偏光板であってもよい。また、直線偏光板と光学積層体との間にガラスや、トリアセチルセルロースフィルム(TACフィルム)等の光学的等方相からなる透明基材を含んでいてもよい。 The circular polarizing plate may be obtained by laminating the above optical laminated body and the linear polarizing plate, and the linear polarizing plate may be laminated on the layer side having a phase difference of 1/2 wavelength of the optical laminated body. As for the lamination of the linear polarizing plate and the optical laminate, the optical laminate may be directly manufactured and laminated on the linear polarizing plate as shown in the manufacturing method described later, that is, 1 of the linear polarizing plate and the optical laminate. It may be a circular polarizing plate in which layers having a phase difference of / 2 wavelengths are laminated adjacent to each other. Further, the linear polarizing plate and the optical laminate may be laminated by bonding them together using a known adhesive, adhesive, or the like, that is, the phase difference of 1/2 wavelength between the linear polarizing plate and the optical laminate. It may be a circular polarizing plate laminated with an adhesive or a pressure-sensitive adhesive between the layers. Further, a transparent substrate made of glass or an optically isotropic phase such as a triacetyl cellulose film (TAC film) may be contained between the linear polarizing plate and the optical laminate.
[光学積層体の製造方法]
 本発明の光学積層体の製造方法は、複屈折誘起材料を製膜して複屈折誘起材料層を形成する製膜工程と、前記複屈折誘起材料層上に、位相差を発現するための偏光を照射して第一の光学異方性層を形成する光照射工程と、前記複屈折誘起材料層に配向膜としての機能を付与するために配向処理する配向工程と、配向処理した複屈折誘起材料層の表面上に、重合性液晶材料を適用して第二の光学異方性層を形成する工程とを備えていてもよい。
[Manufacturing method of optical laminate]
The method for producing an optical laminate of the present invention includes a film forming step of forming a birefringence-inducing material to form a birefringence-inducing material layer, and a polarization for expressing a phase difference on the birefringence-inducing material layer. A light irradiation step of forming a first optically anisotropic layer by irradiating with water, an alignment step of orienting the birefringence-inducing material layer in order to impart a function as an alignment film, and a birefringence-induced birefringence. A step of applying a polymerizable liquid crystal material to form a second optically anisotropic layer may be provided on the surface of the material layer.
 本発明では、複屈折誘起材料および重合性液晶材料の種類に応じて条件は異なるが、製膜条件や偏光の照射条件により各層を構成する分子の配向を調整することにより、各層のNz係数および面内位相差値(Re)を制御することが可能である。 In the present invention, the conditions differ depending on the types of the birefringence-inducing material and the polymerizable liquid crystal material, but the Nz coefficient of each layer and the Nz coefficient of each layer are adjusted by adjusting the orientation of the molecules constituting each layer according to the film forming conditions and the irradiation conditions of polarization. It is possible to control the in-plane phase difference value (Re).
 上記各工程の順番は変更してもよく、例えば、複屈折誘起材料を製膜して複屈折誘起材料層を形成する製膜工程と、前記複屈折誘起材料層に配向膜としての機能を付与するための偏光を照射する配向工程と、配向処理した複屈折誘起材料層の表面上に、重合性液晶材料を適用して第二の光学異方性層を形成する工程と、前記第二の光学異方性層上から複屈折誘起材料層に対して、位相差を発現するための偏光を照射して第一の光学異方性層を形成する光照射工程と、をこの順番で備える方法によって、上記各条件を調整することにより本発明の光学積層体を製造することが可能である。 The order of each of the above steps may be changed, for example, a film forming step of forming a birefringence-inducing material to form a birefringence-inducing material layer, and imparting a function as an alignment film to the birefringence-inducing material layer. The second step of forming a second optically anisotropic layer by applying a polymerizable liquid crystal material on the surface of the birefringence-induced birefringence-induced material layer that has been subjected to the alignment treatment. A method comprising, in this order, a light irradiation step of irradiating a birefringence-induced material layer from above the optically anisotropic layer with polarization for expressing a phase difference to form a first optically anisotropic layer. By adjusting each of the above conditions, it is possible to manufacture the optical laminate of the present invention.
 本発明において、第一の光学異方性層の遅相軸と第二の光学異方性層の遅相軸とのなす角を任意に設定する観点から、複屈折誘起材料を製膜して複屈折誘起材料層を形成する製膜工程と、前記複屈折誘起材料層上に、位相差を発現するための偏光を照射して第一の光学異方性層を形成する光照射工程と、前記第一の光学異方性層の表面を、その内部とは異なる配向を施すように配向処理する表面配向工程と、配向処理した前記第一の光学異方性層の表面上に、重合性液晶材料を適用して第二の光学異方性層を形成する工程と、を備える製造方法により光学積層体を製造することが好ましい。
 このような好ましい態様の方法で光学積層体を製造することにより、複数のフィルムを所定の角度にカットし、精密に貼り合わせるなどの必要がないため、簡便に遅相軸の交差角度を任意の角度に調整することができる。また、長尺状に製造することも可能であるため、効率的に光学積層体を得ることができる。
In the present invention, a birefringence-inducing material is formed from the viewpoint of arbitrarily setting the angle formed by the slow axis of the first optically anisotropic layer and the slow axis of the second optically anisotropic layer. A film forming step for forming the birefringence-induced material layer, and a light irradiation step for forming the first optically anisotropic layer by irradiating the birefringence-induced material layer with polarized light for expressing a phase difference. A surface alignment step of orienting the surface of the first optically anisotropic layer so as to give an orientation different from the inside thereof, and a polymerizable property on the surface of the first optically anisotropic layer subjected to the orientation treatment. It is preferable to manufacture the optical laminate by a manufacturing method including a step of applying a liquid crystal material to form a second optically anisotropic layer.
By manufacturing the optical laminate by the method of such a preferable embodiment, it is not necessary to cut a plurality of films at a predetermined angle and precisely bond them to each other. It can be adjusted to the angle. Further, since it can be manufactured in a long shape, an optical laminate can be efficiently obtained.
 以下、好ましい態様の製造方法における一実施態様について図面を参照しながら説明する。図1A~図1Dは、本発明の光学積層体の製造方法の一実施態様を説明するための概略断面図である。図1A~図1Dには、各層の断面が示されているが、これらは実際の厚さの比を示すものではない。 Hereinafter, one embodiment of the preferred embodiment of the manufacturing method will be described with reference to the drawings. 1A to 1D are schematic cross-sectional views for explaining an embodiment of the method for manufacturing an optical laminate of the present invention. FIGS. 1A-1D show cross sections of each layer, but they do not show the actual thickness ratio.
 図1Aは、製膜工程後の状態を示し、基材10と複屈折誘起材料層20との積層体を示す概略断面図である。図1Bは、光照射工程後の状態を示し、基材10と、偏光の照射により複屈折誘起材料層20の分子が配向して形成された第一の光学異方性層30との積層体を示す概略断面図である。図1Cは、表面配向工程後の状態を示し、基材10と、前記第一の光学異方性層30と同じ配向を有する内部層31、および基材10とは反対側の表面の配向処理により内部層31とは異なる配向を施された隣接層32からなる第一の光学異方性層30との積層体を示す概略断面図である。図1Dは、第二の光学異方性層形成工程後の状態を示し、基材10と、内部層31および隣接層32からなる第一の光学異方性層30と、重合性液晶材料を適用して形成された第二の光学異方性層40との光学積層体100を示す概略断面図である。 FIG. 1A is a schematic cross-sectional view showing a state after the film forming process and showing a laminate of the base material 10 and the birefringence-induced material layer 20. FIG. 1B shows a state after the light irradiation step, which is a laminate of the base material 10 and the first optically anisotropic layer 30 formed by orienting the molecules of the birefringence-induced material layer 20 by irradiation with polarization. It is a schematic cross-sectional view which shows. FIG. 1C shows the state after the surface alignment step, in which the base material 10, the inner layer 31 having the same orientation as the first optically anisotropic layer 30, and the surface opposite to the base material 10 are oriented. It is a schematic cross-sectional view which shows the laminated body with the 1st optical anisotropic layer 30 which consists of the adjacent layer 32 which was given the orientation different from the inner layer 31. FIG. 1D shows a state after the second optically anisotropic layer forming step, in which a base material 10, a first optically anisotropic layer 30 composed of an inner layer 31 and an adjacent layer 32, and a polymerizable liquid crystal material are provided. It is a schematic cross-sectional view which shows the optical laminated body 100 with the 2nd optically anisotropic layer 40 formed by applying.
 基材10上に複屈折誘起材料を製膜することにより、図1Aに示すように、複屈折誘起材料層20を形成することができる。複屈折誘起材料からなる複屈折誘起材料層20上に、位相差を発現するための偏光を照射することにより、複屈折誘起材料の分子配向を誘起することができる。これにより、図1Bに示すように、光学的に等方である複屈折誘起材料層20から所定の遅相軸を有するように配向された第一の光学異方性層30が形成される。製膜工程における複屈折誘起材料の製膜条件および光照射工程における偏光の照射条件を調整することにより第一の光学異方性層30の光学特性を制御することができる。光照射工程において、複屈折誘起材料層20の上には別の層がないため、照射された偏光の偏光状態が変換されることなく、複屈折誘起材料層20に所望の偏光を照射することが可能である。 By forming a birefringence-inducing material on the base material 10, the birefringence-inducing material layer 20 can be formed as shown in FIG. 1A. By irradiating the birefringence-inducing material layer 20 made of the birefringence-inducing material with polarization for developing a phase difference, the molecular orientation of the birefringence-inducing material can be induced. As a result, as shown in FIG. 1B, a first optically anisotropic layer 30 oriented so as to have a predetermined delayed phase axis is formed from the optically isotropic birefringence-induced material layer 20. The optical characteristics of the first optically anisotropic layer 30 can be controlled by adjusting the film forming conditions of the birefringence-inducing material in the film forming step and the polarization irradiation conditions in the light irradiation step. In the light irradiation step, since there is no other layer on the birefringence-induced material layer 20, the birefringence-induced material layer 20 is irradiated with the desired polarization without changing the polarization state of the irradiated polarization. Is possible.
 次いで、図1Bに示す第一の光学異方性層30の表面に、光照射工程で付与された配向とは異なる配向を施すように配向処理することにより、第一の光学異方性層30に隣接層32を形成することができる。これにより、図1Cに示すように、第一の光学異方性層30には、元々形成されていた配向を有する内部層31と、それとは異なる配向を有する隣接層32との2層が形成される。 Next, the surface of the first optically anisotropic layer 30 shown in FIG. 1B is oriented so as to have an orientation different from the orientation given in the light irradiation step, so that the first optically anisotropic layer 30 is oriented. The adjacent layer 32 can be formed on the surface. As a result, as shown in FIG. 1C, the first optically anisotropic layer 30 is formed with two layers, an inner layer 31 having the originally formed orientation and an adjacent layer 32 having a different orientation. Will be done.
 そして、図1Cに示す隣接層32上に、重合性液晶材料を適用すると、隣接層32が配向膜の役割を果たし、図1Dに示すように、隣接層32の配向に対応して配向された第二の光学異方性層40を形成することができる。これにより、隣接層32上に内部層31とは異なる遅相軸を有するように配向された第二の光学異方性層40が形成される。重合性液晶材料の適用において、第二の光学異方性層40の厚さを調整することにより、その面内位相差値(Re)を1/4波長の位相差または1/2波長の位相差を有するように制御することができる。また、このような製造方法では、内部層31と隣接層32とは独立して配向を調整できるため、内部層31の配向性との関係を考慮して、第二の光学異方性層40に所望の配向を付与することができ、互いに所望の遅相軸で交差できる。 Then, when the polymerizable liquid crystal material was applied on the adjacent layer 32 shown in FIG. 1C, the adjacent layer 32 served as an alignment film and was oriented corresponding to the orientation of the adjacent layer 32 as shown in FIG. 1D. The second optically anisotropic layer 40 can be formed. As a result, a second optically anisotropic layer 40 oriented so as to have a slow phase axis different from that of the inner layer 31 is formed on the adjacent layer 32. In the application of the polymerizable liquid crystal material, by adjusting the thickness of the second optically anisotropic layer 40, the in-plane retardation value (Re) is changed to the phase difference of 1/4 wavelength or the position of 1/2 wavelength. It can be controlled to have a phase difference. Further, in such a manufacturing method, the orientation of the inner layer 31 and the adjacent layer 32 can be adjusted independently, so that the second optically anisotropic layer 40 is considered in consideration of the relationship with the orientation of the inner layer 31. Can be imparted with the desired orientation and can intersect each other on the desired slow axis.
(製膜工程)
 複屈折誘起材料層は上述の複屈折誘起材料を製膜することにより形成される。図1Aでは、基材10の上に複屈折誘起材料層20が積層されているが、基材10は省略してもよい。基材を用いる場合、光学的等方体からなる基材であってもよく、例えば、ガラスや、トリアセチルセルロースフィルム(TACフィルム)等の光学的等方相からなる透明基材であってもよい。または、基材としては、例えば、汎用ポリエステルフィルムなどの、複屈折誘起材料層(第一の光学異方性層)との密着性が低い材料からなる基材を、離型用基材として用いてもよい。離型用基材を用いる場合、本発明の光学積層体形成後に剥離することが可能であるため、基材自体の光学特性を考慮しなくてもよく、不透明な基材を用いてもよい。例えば、基材上に本発明の光学積層体を形成した後、粘着剤などを介して他の光学部材(例えば、直線偏光板など)に接合し、その後離型用基材を剥離して使用することにより、光学積層体を、基材を持たない構成とし、厚さが実質的に第一の光学異方性層および第二の光学異方性層の膜厚のみからなる、薄型の光学部材とすることができる。
(Film formation process)
The birefringence-inducing material layer is formed by forming a film of the above-mentioned birefringence-inducing material. In FIG. 1A, the birefringence-induced material layer 20 is laminated on the base material 10, but the base material 10 may be omitted. When a base material is used, it may be a base material made of an optically isotropic material, and may be a transparent base material made of an optically isotropic phase such as glass or a triacetyl cellulose film (TAC film). good. Alternatively, as the base material, a base material made of a material having low adhesion to the birefringence-inducing material layer (first optically anisotropic layer), such as a general-purpose polyester film, is used as the mold release base material. May be. When a release base material is used, it can be peeled off after forming the optical laminate of the present invention, so that the optical characteristics of the base material itself need not be considered, and an opaque base material may be used. For example, after forming the optical laminate of the present invention on a substrate, it is bonded to another optical member (for example, a linear polarizing plate) via an adhesive or the like, and then the release substrate is peeled off and used. By doing so, the optical laminate is configured to have no base material, and the thickness is substantially only the thickness of the first optically anisotropic layer and the second optically anisotropic layer. It can be a member.
 複屈折誘起材料層は、上述のような複屈折誘起材料を溶媒に溶解して溶液とし、この溶液を基材上に塗布して、乾燥することにより溶媒を除去して形成したキャスト製膜であってもよい。複屈折誘起材料の塗膜を形成する場合、Nz係数は面内方向および厚み方向の屈折率成分の指標であるので、Nz係数の制御としては複屈折誘起材料を構成する分子(例えば、側鎖型液晶性高分子)の配向に影響する塗工条件および乾燥条件を調整することにより可能である。また、面内位相差値(Re)は、上述したように、屈折率だけでなく、厚さにも影響するパラメータであるので、面内位相差値(Re)の制御としては、上記塗工条件および乾燥条件以外にも、製膜時に溶液の濃度等を調整して複屈折誘起材料層の厚さを調整することにより可能である。 The birefringence-inducing material layer is a cast film formed by dissolving the birefringence-inducing material as described above in a solvent to prepare a solution, applying this solution on a substrate, and drying to remove the solvent. There may be. When forming a coating film of a birefringence-inducing material, the Nz coefficient is an index of the refractive index component in the in-plane direction and the thickness direction. It is possible by adjusting the coating conditions and the drying conditions that affect the orientation of the type liquid crystal polymer). Further, as described above, the in-plane phase difference value (Re) is a parameter that affects not only the refractive index but also the thickness. Therefore, as the control of the in-plane phase difference value (Re), the above coating is performed. In addition to the conditions and drying conditions, it is possible by adjusting the concentration of the solution and the like at the time of film formation to adjust the thickness of the birefringence-induced material layer.
 複屈折有機材料の溶媒としては、その溶解性や乾燥性の差異によりNz係数や面内位相差値(Re)に影響するが、複屈折誘起材料の種類に応じて適宜選択することができ、例えば、ジオキサン、ジクロロエタン、シクロヘキサノン、トルエン、テトラヒドロフラン、o-ジクロロベンゼン、メチルエチルケトン、メチルイソブチルケトン、エチレングリコール誘導体(例えば、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル(1,2-ジメトキシエタン)、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル等)、プロピレングリコール誘導体(例えば、プロピレングリコールモノメチルエーテル、プロピレングリコール1-モノメチルエーテル2-アセタート等)などが挙げられ、これらの溶媒は、単独でまたは二種以上組み合わせて使用してもよい。 The solvent of the double refraction organic material affects the Nz coefficient and the in-plane retardation value (Re) due to the difference in its solubility and dryness, but can be appropriately selected depending on the type of the double refraction-inducing material. For example, dioxane, dichloroethane, cyclohexanone, toluene, tetrahydrofuran, o-dichlorobenzene, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol derivatives (eg, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether (1,2-dimethoxyethane), diethylene glycol monoethyl). Examples include ethers, diethylene glycol dimethyl ethers, etc.), propylene glycol derivatives (eg, propylene glycol monomethyl ethers, propylene glycol 1-monomethyl ether 2-acetate, etc.), and these solvents may be used alone or in combination of two or more. May be good.
 溶液の濃度は、膜厚等への影響を考慮して適宜調整することができ、例えば、複屈折誘起材料を5~50重量%含有するものであってもよく、好ましくは8~40重量%、より好ましくは10~25重量%であってもよい。基材への溶液の塗布には、例えば、スピンコート、ロールコート等、公知の塗工方法を用いることができる。 The concentration of the solution can be appropriately adjusted in consideration of the influence on the film thickness and the like, and may contain, for example, 5 to 50% by weight of the birefringence-inducing material, preferably 8 to 40% by weight. , More preferably 10 to 25% by weight. A known coating method such as spin coating or roll coating can be used for applying the solution to the substrate.
 塗工後、溶媒を除去するために乾燥する必要がある。使用する溶媒に応じて異なるが、Nz係数や面内位相差値(Re)を制御するために、乾燥温度や時間を調整することにより乾燥速度を調整してもよい。乾燥速度を遅くすることによりNz係数は低下する傾向にあり、溶媒を選択することによっても乾燥速度を調整することが可能である。例えば、高沸点溶媒を用いることにより乾燥速度を遅くすることができる。 After coating, it needs to be dried to remove the solvent. Although it depends on the solvent used, the drying rate may be adjusted by adjusting the drying temperature and time in order to control the Nz coefficient and the in-plane retardation value (Re). The Nz coefficient tends to decrease by slowing down the drying rate, and the drying rate can also be adjusted by selecting a solvent. For example, the drying rate can be slowed down by using a high boiling point solvent.
(光照射工程)
 光照射工程では、複屈折誘起材料層上に、位相差を発現するための偏光(第一の偏光)を照射してもよい。光照射工程を行うことによって、複屈折誘起材料層の表面だけでなく内部にまで、分子の選択的な光反応が生じ、分子の配向性が誘起され、第一の光学異方性層が形成される。本発明の光学積層体の製造方法では、複屈折誘起材料層上に、別の層を介することなく偏光を直接照射することができるため、照射した偏光により意図した遅相軸を形成することができる。
(Light irradiation process)
In the light irradiation step, the birefringence-induced material layer may be irradiated with polarization (first polarization) for developing a phase difference. By performing the light irradiation step, a selective photoreaction of molecules occurs not only on the surface of the birefringence-induced material layer but also inside, the orientation of the molecules is induced, and the first optically anisotropic layer is formed. Will be done. In the method for producing an optical laminate of the present invention, it is possible to directly irradiate the birefringence-induced material layer with polarized light without interposing another layer, so that the intended slow-phase axis can be formed by the irradiated polarized light. can.
 第一の偏光は、赤外線、可視光線、紫外線(例えば、近紫外線、遠紫外線等)、X線、荷電粒子線(例えば、電子線等)等、側鎖型液晶性高分子の感光性基が光反応を生じる波長の光であれば特に限定されず、側鎖型液晶性高分子の側鎖構造の種類によっても異なるが、光の波長は、200~500nmであってもよい。第一の偏光は、例えば、紫外線の直線偏光であってもよく、この場合、例えば、光源として高圧水銀灯などの紫外線照射装置を用いて、グランテーラープリズムを介して直線偏光に偏光変換してもよい。
 また、第一の偏光の照射量は、複屈折誘起材料層の表面だけでなく内部まで配向させる観点、ならびにNz係数および面内位相差値(Re)を調整する観点から、例えば10mJ/cm~10J/cmであってもよく、好ましくは50mJ/cm~1J/cm、より好ましくは100mJ/cm~500mJ/cmであってもよい。
The first polarization is a photosensitive group of a side chain type liquid crystal polymer such as infrared rays, visible rays, ultraviolet rays (for example, near ultraviolet rays, far ultraviolet rays, etc.), X rays, charged particle rays (for example, electron beams, etc.). The wavelength of the light is not particularly limited as long as it is light having a wavelength that causes a photoreaction, and varies depending on the type of side chain structure of the side chain type liquid crystal polymer, but the wavelength of the light may be 200 to 500 nm. The first polarization may be, for example, linear polarization of ultraviolet rays, and in this case, for example, even if an ultraviolet irradiation device such as a high-pressure mercury lamp is used as a light source and the polarization is converted to linear polarization via a Grantailer prism. good.
Further, the irradiation amount of the first polarization is, for example, 10 mJ / cm 2 from the viewpoint of aligning not only the surface of the birefringence-induced material layer but also the inside, and from the viewpoint of adjusting the Nz coefficient and the in-plane retardation value (Re). It may be up to 10 J / cm 2 , preferably 50 mJ / cm 2 to 1 J / cm 2 , and more preferably 100 mJ / cm 2 to 500 mJ / cm 2 .
 本発明の光学積層体の製造方法では、光照射工程後、必要に応じて、形成された第一の光学異方性層を加熱する加熱工程を備えていてもよい。加熱工程により、光照射工程で照射された第一の偏光の照射方向と振動方向に依存して分子配向が誘起され、未配向の分子も配向した分子に従って配向するが、その後の加熱により側鎖型液晶性高分子が分子運動を行うことが可能となり、未配向分子の配向を促進することができる。加熱後は、例えば放置することなどにより室温程度まで、冷却すればよい。 The method for producing an optical laminate of the present invention may include a heating step for heating the formed first optically anisotropic layer, if necessary, after the light irradiation step. The heating step induces molecular orientation depending on the irradiation direction and vibration direction of the first polarized light irradiated in the light irradiation step, and the unaligned molecules are also oriented according to the oriented molecules, but the side chains are further heated. The type liquid crystal polymer can perform molecular movement and can promote the orientation of unaligned molecules. After heating, it may be cooled to about room temperature by, for example, leaving it to stand.
 加熱工程での加熱温度は、側鎖型液晶性高分子が分子運動によって光反応を起こした側鎖に沿って未配向分子の配向が誘起される限り特に限定されないが、複屈折誘起材料の液晶相転移温度以上であり、等方相転移温度以下(好ましくは等方相転移温度未満)に設定することが好ましい。例えば、100~200℃であってもよく、好ましくは110~180℃、より好ましくは120~160℃であってもよい。 The heating temperature in the heating step is not particularly limited as long as the orientation of the unoriented molecule is induced along the side chain in which the side chain liquid crystal polymer causes a photoreaction by molecular motion, but the liquid crystal of the birefringence-inducing material is liquid crystal. It is preferable to set the temperature to be equal to or higher than the phase transition temperature and lower than or equal to the isotropic phase transition temperature (preferably less than the isotropic phase transition temperature). For example, it may be 100 to 200 ° C, preferably 110 to 180 ° C, and more preferably 120 to 160 ° C.
 また、加熱時間は、液晶性高分子が分子運動によって光反応を起こした側鎖に沿って未配向分子の配向が誘起される限り特に限定されないが、液晶性高分子の種類や、加熱温度などに応じて適宜設定することができ、例えば1分以上で行ってもよく、好ましくは2分以上、より好ましくは3分以上であってもよい。上限は特に限定されないが、経済性の観点から、60分程度(好ましくは40分程度、より好ましくは30分程度)であってもよい。 The heating time is not particularly limited as long as the orientation of the unoriented molecule is induced along the side chain in which the liquid crystal polymer causes a photoreaction by molecular motion, but the type of the liquid crystal polymer, the heating temperature, etc. It may be appropriately set according to the above, and may be carried out for, for example, 1 minute or longer, preferably 2 minutes or longer, and more preferably 3 minutes or longer. The upper limit is not particularly limited, but from the viewpoint of economic efficiency, it may be about 60 minutes (preferably about 40 minutes, more preferably about 30 minutes).
(表面配向工程)
 表面配向工程では、第一の光学異方性層の表面を、その内部層とは異なる配向を施すように配向処理してもよい。表面配向処理を行うことによって、第一の光学異方性層に隣接層が形成され、互いに同一の複屈折誘起材料から構成されているが、配向状態の異なる内部層および隣接層の2層が第一の光学異方性層内に形成される。なお、内部層とは、第一の光学異方性層のうち、隣接層以外の部位を示していてもよい。
(Surface orientation process)
In the surface orientation step, the surface of the first optically anisotropic layer may be oriented so as to be oriented differently from the inner layer thereof. By performing the surface orientation treatment, an adjacent layer is formed on the first optically anisotropic layer, and the two layers of the inner layer and the adjacent layer, which are composed of the same birefringence-inducing materials but have different orientation states, are formed. It is formed in the first optically anisotropic layer. The inner layer may indicate a portion of the first optically anisotropic layer other than the adjacent layer.
 配向処理の方法は、第一の光学異方性層の表面をその内部層とは異なる配向層を形成できる限り特に限定されないが、例えば、ラビング処理、偏光照射による光配向処理等が挙げられる。ラビング処理では、セルロースやナイロン、ポリエステル等の布を巻きつけたローラーを一定圧力で押し込みながら回転させて第一の光学異方性層の表面を一定方向に擦ることにより配向方向を制御することができるため、所望の配向方向の隣接層を形成することができるが、配向処理の方法は、偏光照射による光配向処理であることが好ましい。 The method of alignment treatment is not particularly limited as long as the surface of the first optically anisotropic layer can form an alignment layer different from the inner layer thereof, and examples thereof include rubbing treatment and photoalignment treatment by polarization irradiation. In the rubbing process, the orientation direction can be controlled by rubbing the surface of the first optically anisotropic layer in a fixed direction by rotating a roller wrapped with a cloth such as cellulose, nylon, or polyester while pushing it at a constant pressure. Therefore, an adjacent layer in a desired orientation direction can be formed, but the orientation treatment method is preferably photoalignment treatment by polarization irradiation.
 表面配向工程は、第一の光学異方性層の表面に、第一の偏光とは異なる偏光軸方向を有する第二の偏光を照射して、第一の光学異方性層に隣接層を形成する第二の光照射工程であってもよい。第二の光照射工程では、第一の光照射工程(上記光照射工程)(好ましくは、第一の光照射工程および加熱工程)により分子配向された後であっても、第一の偏光とは異なる偏光軸方向を有する第二の偏光を照射することにより、第一の光学異方性層の未反応の複屈折誘起材料を中心として軸選択的な光反応が表面近傍において選択的に生じるためか、その表面近傍に対して内部層とは異なる配向性を付与することができる。一方、第一の光学異方性層の内部層の分子は既に高配向度で配向しているためか、第二の光照射工程後であっても、第一の光学異方性層の内部層の配向自体は変換されることがない。 In the surface orientation step, the surface of the first optically anisotropic layer is irradiated with a second polarization having a polarization axis direction different from that of the first polarization, and the layer adjacent to the first optically anisotropic layer is formed. It may be the second light irradiation step to form. In the second light irradiation step, even after the molecular orientation by the first light irradiation step (the above-mentioned light irradiation step) (preferably, the first light irradiation step and the heating step), the first polarization is applied. By irradiating the second polarization with different polarization axis directions, an axis-selective optical reaction is selectively generated in the vicinity of the surface centering on the unreacted birefringence-inducing material of the first optically anisotropic layer. Perhaps because of this, it is possible to impart a different orientation to the vicinity of the surface than the inner layer. On the other hand, probably because the molecules in the inner layer of the first optically anisotropic layer are already oriented with a high degree of orientation, the inside of the first optically anisotropic layer even after the second light irradiation step. The layer orientation itself is not transformed.
 第二の偏光は、第一の偏光として上記した種々の波長の光を用いることができ、例えば、紫外線の直線偏光を用いてもよい。また、第二の偏光は、上記光照射工程で照射した第一の偏光と異なる種類の光を用いてもよく、同様の種類の光を用いてもよい。 As the second polarization, light of various wavelengths described above can be used as the first polarization, and for example, linear polarization of ultraviolet rays may be used. Further, as the second polarization, light of a different type from that of the first polarization irradiated in the light irradiation step may be used, or light of the same type may be used.
 第二の偏光は、第一の偏光とは異なる偏光軸方向を有してもよく、例えば、第一の偏光の偏光軸とは軸角度が5~85°異なっていてもよく、好ましくは10~80°、より好ましくは20~70°異なっていてもよい。ここで、第二の偏光の偏光軸と第一の偏光の偏光軸との軸角度の差は、第一の光照射工程後の第一の光学異方性層の表面近傍の配向状態(未反応の複屈折誘起材料の存在割合など)を考慮して調整することにより、後に形成する第二の光学異方性層の遅相軸を任意に設定することができる。 The second polarization may have a polarization axis direction different from that of the first polarization, for example, the axis angle may differ from the polarization axis of the first polarization by 5 to 85 °, preferably 10. It may differ by -80 °, more preferably 20-70 °. Here, the difference in the axis angle between the polarization axis of the second polarization and the polarization axis of the first polarization is the orientation state near the surface of the first optically anisotropic layer after the first light irradiation step (not yet). The slow axis of the second optically anisotropic layer to be formed later can be arbitrarily set by adjusting in consideration of the abundance ratio of the birefringence-inducing material in the reaction.
 第二の偏光の照射量は、配向されている第一の光学異方性層の表面を再配向させる観点から、例えば50mJ/cm~20J/cmであってもよく、好ましくは100mJ/cm~10J/cm、より好ましくは150mJ/cm~1J/cmであってもよい。 The irradiation amount of the second polarization may be, for example, 50 mJ / cm 2 to 20 J / cm 2 , preferably 100 mJ / cm, from the viewpoint of reorienting the surface of the first optically anisotropic layer to be oriented. It may be cm 2 to 10 J / cm 2 , more preferably 150 mJ / cm 2 to 1 J / cm 2 .
 必要に応じて、本発明の光学積層体の製造方法では、第一の光照射工程の後に、前記複屈折誘起材料層の表面を溶媒で処理する表面処理工程をさらに備えていてもよい。表面処理工程の後、例えば、第二の偏光照射、ラビング処理などの表面配向工程を行うのが好ましい。また、第一の光照射工程の後に加熱工程が行われる場合には、表面処理工程は加熱工程の後に行われてもよい。 If necessary, the method for producing an optical laminate of the present invention may further include a surface treatment step of treating the surface of the birefringence-induced material layer with a solvent after the first light irradiation step. After the surface treatment step, it is preferable to perform a surface orientation step such as a second polarization irradiation and a rubbing treatment. Further, when the heating step is performed after the first light irradiation step, the surface treatment step may be performed after the heating step.
 表面処理工程では、第一の光学異方性層の表面に溶媒を適用して表面部分を溶解させることにより、第一の光照射工程により施された分子配向を緩和させてランダムな状態にできるためか、第一の偏光によって一旦形成された第一の光学異方性層の表面部分の配向性をなくすことができ、第一の光学異方性層の隣接層の配向を等方性にすることができる。表面処理工程では、溶媒を第一の光学異方性層の表面に塗布した後に乾燥させてもよい。乾燥の方法は、塗布した溶媒を蒸発させることができる限り特に限定されないが、例えば、放置して自然乾燥させてもよい。溶媒が適用された表面のみを等方性にすることができる。 In the surface treatment step, a solvent is applied to the surface of the first optically anisotropic layer to dissolve the surface portion, whereby the molecular orientation applied by the first light irradiation step can be relaxed and a random state can be obtained. Perhaps because of this, the orientation of the surface portion of the first optically anisotropic layer once formed by the first polarization can be eliminated, and the orientation of the adjacent layer of the first optically anisotropic layer becomes isotropic. can do. In the surface treatment step, the solvent may be applied to the surface of the first optically anisotropic layer and then dried. The drying method is not particularly limited as long as the applied solvent can be evaporated, but for example, it may be left to dry naturally. Only the surface to which the solvent is applied can be isotropic.
 表面が等方性になることにより、その後の第二の光照射工程において、表面の光配向がしやすくなるため、第二の偏光の照射量を小さくすることができる。表面処理工程を行った場合、第二の偏光の照射量は、例えば、0.1mJ/cm~500mJ/cmであってもよく、好ましくは0.5mJ/cm~400mJ/cm、より好ましくは1mJ/cm~300mJ/cmであってもよい。
 また、表面処理工程を行った場合、第一の偏光の照射量と第二の偏光の照射量との比(第一の偏光/第二の偏光)は、1/5~100/1であってもよく、好ましくは1/2~80/1、より好ましくは1/1.5~50/1であってもよい。
Since the surface becomes isotropic, the light orientation of the surface becomes easy in the subsequent second light irradiation step, so that the irradiation amount of the second polarization can be reduced. When the surface treatment step is performed, the irradiation amount of the second polarization may be, for example, 0.1 mJ / cm 2 to 500 mJ / cm 2 , preferably 0.5 mJ / cm 2 to 400 mJ / cm 2 . More preferably, it may be 1 mJ / cm 2 to 300 mJ / cm 2 .
Further, when the surface treatment step is performed, the ratio of the irradiation amount of the first polarization to the irradiation amount of the second polarization (first polarization / second polarization) is 1/5 to 100/1. It may be preferably 1/2 to 80/1, more preferably 1 / 1.5 to 50/1.
 表面が等方性になることにより、その後の第二の光照射工程において、第一の光学異方性層の隣接層の配向状態を考慮する必要がないため、第二の偏光の偏光軸の軸角度を第二の光学異方性層の遅相軸に直接反映させることができる。そのため、後に形成する第二の光学異方性層の遅相軸の設定に対して、第二の偏光の偏光軸の軸角度を容易に選択することができる。 Since the surface is isotropic, it is not necessary to consider the orientation state of the adjacent layer of the first optically anisotropic layer in the subsequent second light irradiation step, so that the polarization axis of the second polarization can be used. The axis angle can be directly reflected on the slow axis of the second optically anisotropic layer. Therefore, the axis angle of the polarization axis of the second polarization can be easily selected with respect to the setting of the slow phase axis of the second optically anisotropic layer to be formed later.
 表面処理工程で用いる溶媒は、第一の光学異方性層を構成する複屈折誘起材料を溶解することができる溶媒であれば特に限定されず、複屈折誘起材料に対して良溶媒であってもよく、貧溶媒であってもよい。表面処理工程で用いる溶媒は、第一の光学異方性層の表面を等方性にすることおよび内部まで溶解してその配向を乱すことを抑制する観点から、例えば、複屈折誘起材料の良溶媒と貧溶媒とを混合した混合溶媒であってもよい。複屈折誘起材料の良溶媒と貧溶媒とを含む混合溶媒を用いる場合、用いる溶媒の複屈折誘起材料に対する溶解性に応じて適宜調整することができるが、例えば、これらの混合重量比(良溶媒/貧溶媒)は、1/100~100/1であってもよく、好ましくは1/50~50/1、より好ましくは1/10~10/1であってもよい。 The solvent used in the surface treatment step is not particularly limited as long as it can dissolve the birefringence-inducing material constituting the first optically anisotropic layer, and is a good solvent for the birefringence-inducing material. It may be a poor solvent. The solvent used in the surface treatment step is, for example, a good birefringence-inducing material from the viewpoint of making the surface of the first optically anisotropic layer isotropic and suppressing the dissolution to the inside to disturb the orientation. It may be a mixed solvent in which a solvent and a poor solvent are mixed. When a mixed solvent containing a good solvent and a poor solvent of the compound refraction-inducing material is used, it can be appropriately adjusted depending on the solubility of the solvent used in the compound refraction-inducing material. / Poor solvent) may be 1/100 to 100/1, preferably 1/50 to 50/1, and more preferably 1/10 to 10/1.
 表面処理工程で用いる溶媒は、例えば、水;メタノール、エタノール、プロパノール、イソプロピルアルコール、ペンタノール、へキサノール等のアルコール系溶媒;ヘキサン、へプタン、オクタン、シクロへキサン等の脂肪族または脂環式の炭化水素系溶媒;ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、ジエチルケトン、メチルプロピルケトン、イソプロピルメチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;エチルエーテル、プロピルエーテル、イソプロピルエーテル、メチルエチルエーテル、メチルプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N,N-ジメチルホルムアミド等のアミド系溶媒;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系溶媒;エチレングリコール、プロピレングリコール等のグリコール系溶媒;グリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコール1-モノメチルエーテル2-アセタート等のグリコールエーテル系溶媒;四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、ジクロロベンゼン等のハロゲン化炭化水素溶媒;などが挙げられる。これらの溶媒は、単独でまたは二種以上組み合わせて使用してもよい。なお、これらの溶媒は、複屈折誘起材料の種類によって溶解性が異なるため、使用する複屈折誘起材料に応じて、その良溶媒、貧溶媒のいずれであるかを考慮した上で使用することができる。
 なお、本発明において、良溶媒とは、25℃において、溶質に対する溶解度が1質量%以上の溶媒をいい、貧溶媒とは、25℃において、溶質に対する溶解度が1質量%未満の溶媒をいう。
The solvent used in the surface treatment step is, for example, water; an alcohol solvent such as methanol, ethanol, propanol, isopropyl alcohol, pentanol, hexanol; an aliphatic or alicyclic solvent such as hexane, heptane, octane, cyclohexane. Aromatic hydrocarbon solvents such as benzene, toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, isopropyl methyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl ether and propyl Ether solvents such as ether, isopropyl ether, methyl ethyl ether, methyl propyl ether, tetrahydrofuran, dioxane; nitrile solvents such as acetonitrile and propionitrile; sulfoxide solvents such as dimethyl sulfoxide; amides such as N, N-dimethylformamide System solvent; Ester solvent such as methyl acetate, ethyl acetate, butyl acetate; Glycol solvent such as ethylene glycol and propylene glycol; Glycol monoethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol 1-monomethyl ether 2 -Glycol ether solvent such as acetate; halogenated hydrocarbon solvent such as carbon tetrachloride, chloroform, dichloromethane, dichloroethane, dichlorobenzene; and the like. These solvents may be used alone or in combination of two or more. Since these solvents have different solubility depending on the type of birefringence-inducing material, it is necessary to consider whether the solvent is a good solvent or a poor solvent depending on the birefringence-inducing material used. can.
In the present invention, a good solvent means a solvent having a solubility in a solute of 1% by mass or more at 25 ° C., and a poor solvent means a solvent having a solubility in a solute of less than 1% by mass at 25 ° C.
 例えば、複屈折誘起材料に対する良溶媒として、ジオキサン、ジクロロエタン、シクロヘキサノン、トルエン、テトラヒドロフラン、o-ジクロロベンゼン、ジメトキシエタン等を用いてもよく、複屈折誘起材料に対する貧溶媒として、エタノール、メタノール、n-ヘキサン等を用いてもよい。これらの良溶媒と貧溶媒とを上述の混合重量比で混合して混合溶媒として用いてもよい。 For example, dioxane, dichloroethane, cyclohexanone, toluene, tetrahydrofuran, o-dichlorobenzene, dimethoxyethane and the like may be used as a good solvent for the birefringence-inducing material, and ethanol, methanol, n- as a poor solvent for the birefringence-inducing material. You may use hexane or the like. These good solvents and poor solvents may be mixed at the above-mentioned mixed weight ratio and used as a mixed solvent.
(第二の光学異方性層形成工程)
 第二の光学異方性層形成工程では、配向処理した第一の光学異方性層の隣接層上に、重合性液晶材料を適用して第二の光学異方性層を形成してもよい。第二の光学異方性層形成工程を行うことによって、表面配向工程で配向された隣接層が配向膜の役割を果たすため、その配向方向を利用して配向された第二の光学異方性層を形成することができる。第二の光学異方性層の面内位相差値(Re)の制御としては、重合性液晶材料の適用時に溶液の濃度等を調整して厚さを調整することにより可能である。
(Second optically anisotropic layer forming step)
In the second optically anisotropic layer forming step, even if a polymerizable liquid crystal material is applied on the adjacent layer of the first optically anisotropic layer that has been oriented, the second optically anisotropic layer is formed. good. By performing the second optical anisotropy layer forming step, the adjacent layer oriented in the surface orientation step acts as an alignment film, and therefore the second optical anisotropy oriented using the orientation direction. Layers can be formed. The in-plane retardation value (Re) of the second optically anisotropic layer can be controlled by adjusting the concentration of the solution or the like at the time of applying the polymerizable liquid crystal material to adjust the thickness.
 第二の光学異方性層形成工程では、第一の光学異方性層の隣接層上に上述のような重合性液晶材料が適用される。適用にあたっては、重合性液晶材料を溶媒に溶解して溶液としてスピンコート、ロールコート等の公知の塗工方法で塗布することによって行われてもよい。溶媒としては、重合性液晶材料の種類に応じて適宜選択することができ、例えば、ジオキサン、ジクロロエタン、シクロヘキサノン、トルエン、テトラヒドロフラン、o-ジクロロベンゼン、メチルエチルケトン、メチルイソブチルケトン、エチレングリコール誘導体(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルなど)、プロピレングリコール誘導体(プロピレングリコールモノメチルエーテル、プロピレングリコール1-モノメチルエーテル2-アセタート)などが挙げられ、これらの溶媒は、単独でまたは二種以上組み合わせて使用してもよい。 In the second optically anisotropic layer forming step, the above-mentioned polymerizable liquid crystal material is applied on the adjacent layer of the first optically anisotropic layer. The application may be carried out by dissolving the polymerizable liquid crystal material in a solvent and applying it as a solution by a known coating method such as spin coating or roll coating. The solvent can be appropriately selected depending on the type of the polymerizable liquid crystal material, for example, dioxane, dichloroethane, cyclohexanone, toluene, tetrahydrofuran, o-dichlorobenzene, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol derivative (for example, ethylene). Glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, etc.), propylene glycol derivatives (propylene glycol monomethyl ether, propylene glycol 1-monomethyl ether 2-acetate, etc.), etc., these solvents may be used alone or in two. You may use it in combination of more than seeds.
 重合性液晶材料の溶媒は、複屈折誘起材料および重合性液晶材料の種類の組合せだけでなく、隣接層の配向状態に応じて選択することができる。例えば、隣接層の分子の大部分が所望の配向である場合(例えば、表面処理工程を行った場合や、配向処理としてラビング処理を行った場合など)には、隣接層の配向を第二の光学異方性層に付与しつつ、第一の光学異方性層の配向を乱すことを抑制する観点から、重合性液晶材料の溶媒は、複屈折誘起材料の貧溶媒であることが好ましい。一方、隣接層の分子の一部のみが所望の配向である場合、重合性液晶材料の溶媒は、複屈折誘起材料の良溶媒と貧溶媒とを混合した混合溶媒であることが好ましい。この場合のメカニズムは定かではないが、重合性液晶材料の溶媒として複屈折誘起材料の貧溶媒を含有させると、第一の光学異方性層を侵すことがなく、その配向を乱すことを抑制することができる。一方、重合性液晶材料の溶媒として複屈折誘起材料の良溶媒を含有させると、溶液の隣接層に対する濡れ性が向上するためか、隣接層の分子の一部のみが有する配向に対して重合性液晶材料の分子を沿わせることでき、その結果、第二の光学異方性層を配向させることができる。重合性液晶材料の溶媒は、複屈折誘起材料および重合性液晶材料の種類の組合せならびに隣接層の配向状態に応じて適宜調整することができるが、第一の光学異方性層の配向を維持する観点から、隣接層を侵さないように複屈折誘起材料に対する貧溶媒を含んでいることが好ましく、例えば、複屈折誘起材料の良溶媒と貧溶媒との混合重量比(良溶媒/貧溶媒)は、0/100~100/1であってもよく、好ましくは0/100~50/1、より好ましくは0/100~10/1であってもよい。重合性液晶材料の溶媒としては、一般的な溶媒を目的に応じて使用できるが、例えば、トルエン、テトラヒドロフラン、エチレングリコール誘導体、プロピレングリコール誘導体などを含んでいてもよい。 The solvent of the polymerizable liquid crystal material can be selected not only according to the combination of the types of the birefringence-inducing material and the polymerizable liquid crystal material, but also according to the orientation state of the adjacent layer. For example, if the majority of the molecules in the adjacent layer are in the desired orientation (eg, when a surface treatment step is performed, or when a rubbing treatment is performed as an alignment treatment), the orientation of the adjacent layer is second. The solvent of the polymerizable liquid crystal material is preferably a poor solvent of the birefringence-inducing material from the viewpoint of suppressing the orientation of the first optically anisotropic layer from being disturbed while imparting it to the optically anisotropic layer. On the other hand, when only a part of the molecules of the adjacent layer has a desired orientation, the solvent of the polymerizable liquid crystal material is preferably a mixed solvent in which a good solvent and a poor solvent of the birefringence-inducing material are mixed. Although the mechanism in this case is not clear, when a poor solvent of the birefringence-inducing material is contained as the solvent of the polymerizable liquid crystal material, the first optically anisotropic layer is not invaded and the orientation is suppressed from being disturbed. can do. On the other hand, if a good solvent of the birefringence-inducing material is contained as the solvent of the polymerizable liquid crystal material, the wettability of the solution with respect to the adjacent layer is improved, or it is polymerizable with respect to the orientation of only a part of the molecules of the adjacent layer. The molecules of the liquid crystal material can be aligned, and as a result, the second optically anisotropic layer can be oriented. The solvent of the polymerizable liquid crystal material can be appropriately adjusted according to the combination of the types of the birefringence-inducing material and the polymerizable liquid crystal material and the orientation state of the adjacent layer, but the orientation of the first optically anisotropic layer is maintained. From this point of view, it is preferable to contain a poor solvent for the birefringence-inducing material so as not to invade the adjacent layer. May be 0/100 to 100/1, preferably 0/100 to 50/1, and more preferably 0/100 to 10/1. As the solvent of the polymerizable liquid crystal material, a general solvent can be used depending on the purpose, but for example, toluene, tetrahydrofuran, ethylene glycol derivative, propylene glycol derivative and the like may be contained.
 溶液の塗布により塗膜を形成し、必要に応じて加熱して塗膜を乾燥させる。その際、下部に存在する第一の光学異方性層の隣接層が配向膜(配向性付与膜)として機能し、液晶分子の配向が生じる。これにより所定の方向に液晶が配向した第二の光学異方性層が形成される。 A coating film is formed by applying the solution, and if necessary, it is heated to dry the coating film. At that time, the adjacent layer of the first optically anisotropic layer existing at the lower part functions as an alignment film (orientation-imparting film), and the alignment of the liquid crystal molecules occurs. As a result, a second optically anisotropic layer in which the liquid crystal is oriented in a predetermined direction is formed.
 第二の光学異方性層形成工程では、重合性液晶材料の塗膜形成後に必要に応じて、加熱工程および/または光照射工程(例えば、非偏光照射工程)を備えていてもよい。重合性液晶材料は、塗膜を形成させることによって、第一の光学異方性層の隣接層の配向に対応してすでに所定の方向に配向しており、その後の加熱工程および/または光照射工程(例えば、非偏光照射工程)で重合性液晶材料が重合および/または架橋することにより、配向性が固定される。
 具体的には、重合性液晶材料が、熱重合性の材料からなる場合、加熱による重合により配向性が固定される。光重合性の材料からなる場合、光の照射時に重合が生じ、配向性が固定される。架橋性の材料からなる場合、加熱および/または光の照射時に架橋が生じ、配向性が固定される。
The second optically anisotropic layer forming step may include a heating step and / or a light irradiation step (for example, a non-polarized irradiation step), if necessary, after forming the coating film of the polymerizable liquid crystal material. The polymerizable liquid crystal material is already oriented in a predetermined direction corresponding to the orientation of the adjacent layer of the first optically anisotropic layer by forming a coating film, and is subsequently heated and / or irradiated with light. The orientation is fixed by the polymerization and / or cross-linking of the polymerizable liquid crystal material in the step (eg, unpolarized irradiation step).
Specifically, when the polymerizable liquid crystal material is made of a heat-polymerizable material, the orientation is fixed by polymerization by heating. When it is made of a photopolymerizable material, polymerization occurs when it is irradiated with light, and the orientation is fixed. When made of a crosslinkable material, crosslinkage occurs during heating and / or irradiation with light, and the orientation is fixed.
 また、重合性液晶材料が架橋剤を含有しており、架橋剤が複屈折誘起材料と架橋結合を形成できる官能基を有する場合、熱エネルギーおよび/または光エネルギーの付与により、第一の光学異方性層と第二の光学異方性層との層間で架橋結合を形成させることができる。 Further, when the polymerizable liquid crystal material contains a cross-linking agent and the cross-linking agent has a functional group capable of forming a cross-linking bond with the birefringence-inducing material, the first optical difference is obtained by applying thermal energy and / or light energy. Crosslinks can be formed between the layers of the square layer and the second optically anisotropic layer.
 第二の光学異方性層形成工程における加熱工程では、上記重合および/または架橋反応が進行する限り特に限定されないが、第一の光学異方性層の内部層の配向を乱すことを抑制する観点から、複屈折誘起材料の等方相転移温度以下(好ましくは等方相転移温度未満)の加熱温度で行うことが好ましい。例えば、70~180℃であってもよく、好ましくは70~150℃、より好ましくは70~140℃であってもよい。また、加熱時間は、例えば1分以上で行ってもよく、好ましくは2分以上、より好ましくは3分以上であってもよい。上限は特に限定されないが、経済性の観点から、60分程度(好ましくは40分程度、より好ましくは30分程度)であってもよい。 The heating step in the second optically anisotropic layer forming step is not particularly limited as long as the above-mentioned polymerization and / or cross-linking reaction proceeds, but suppresses disturbing the orientation of the inner layer of the first optically anisotropic layer. From the viewpoint, it is preferable to carry out the heating at a heating temperature equal to or lower than the isotropic phase transition temperature (preferably less than the isotropic phase transition temperature) of the birefringence-inducing material. For example, it may be 70 to 180 ° C., preferably 70 to 150 ° C., and more preferably 70 to 140 ° C. The heating time may be, for example, 1 minute or longer, preferably 2 minutes or longer, and more preferably 3 minutes or longer. The upper limit is not particularly limited, but from the viewpoint of economic efficiency, it may be about 60 minutes (preferably about 40 minutes, more preferably about 30 minutes).
 第二の光学異方性層形成工程における光照射工程では、上記重合および/または架橋反応が進行する限り特に限定されないが、照射する光としては非偏光が好ましい。非偏光としては、第一の偏光や第二の偏光として上記した種々の波長の光を用いることができ、例えば、非偏光紫外線でもよい。光の照射量は、10mJ/cm~10J/cmであってもよく、好ましくは50mJ/cm~1J/cm、より好ましくは100mJ/cm~500mJ/cmであってもよい。 The light irradiation step in the second optically anisotropic layer forming step is not particularly limited as long as the above-mentioned polymerization and / or crosslinking reaction proceeds, but non-polarized light is preferable as the light to be irradiated. As the unpolarized light, light having various wavelengths described above can be used as the first polarized light or the second polarized light, and for example, unpolarized ultraviolet rays may be used. The irradiation amount of light may be 10 mJ / cm 2 to 10 J / cm 2 , preferably 50 mJ / cm 2 to 1 J / cm 2 , and more preferably 100 mJ / cm 2 to 500 mJ / cm 2 . ..
 以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the present Examples.
(単量体1)
 p-クマル酸と6-クロロ-1-ヘキサノールを、アルカリ条件下で加熱することにより、4-(6-ヒドロキシヘキシルオキシ)桂皮酸を合成した。この生成物にp-トルエンスルホン酸の存在下でメタクリル酸を大過剰加えてエステル化反応させ、下記化学式に示される単量体1を合成した。
(Monomer 1)
4- (6-Hydroxyhexyloxy) cinnamic acid was synthesized by heating p-coumaric acid and 6-chloro-1-hexanol under alkaline conditions. A large excess of methacrylic acid was added to this product in the presence of p-toluenesulfonic acid to cause an esterification reaction, and Monomer 1 represented by the following chemical formula was synthesized.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(単量体2)
 4-ヒドロキシ安息香酸と6-クロロ-1-ヘキサノールを、アルカリ条件下で加熱することにより、4-(6-ヒドロキシヘキシルオキシ)安息香酸を合成した。次いでこの生成物にp-トルエンスルホン酸の存在下でメタクリル酸を大過剰加えてエステル化反応させ、下記化学式に示される単量体2を合成した。
(Monomer 2)
4- (6-Hydroxyhexyloxy) benzoic acid was synthesized by heating 4-hydroxybenzoic acid and 6-chloro-1-hexanol under alkaline conditions. Next, a large excess of methacrylic acid was added to this product in the presence of p-toluenesulfonic acid to cause an esterification reaction, and the monomer 2 represented by the following chemical formula was synthesized.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(共重合体1)
 単量体1、単量体2、メタクリル酸2-ヒドロキシエチル(HEMA)のモル比が単量体1:単量体2:HEMA=3:7:0.5となるように単量体1、単量体2、およびHEMAをジオキサン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して、70℃で24時間重合することにより共重合体1を得た。この共重合体1は液晶性を呈した。
(Copolymer 1)
Monomer 1 so that the molar ratio of monomer 1, monomer 2, and 2-hydroxyethyl methacrylate (HEMA) is monomer 1: monomer 2: HEMA = 3: 7: 0.5. , Monomer 2 and HEMA were dissolved in dioxane, AIBN (azobisisobutyronitrile) was added as a reaction initiator, and polymerization was carried out at 70 ° C. for 24 hours to obtain a copolymer 1. This copolymer 1 exhibited liquid crystallinity.
 以下の実施例及び比較例において、得られた光学積層体の光学特性(Nz係数、面内位相差値Reなど)は複屈折測定装置(AXOMETRICS社製、AxoScan)を用い、厚さは膜厚計(FILMETRICS社製、F20)を用いて測定した。 In the following examples and comparative examples, the optical characteristics (Nz coefficient, in-plane retardation value Re, etc.) of the obtained optical laminate are obtained by using a birefringence measuring device (AXOMETRICS, AxoScan), and the thickness is the film thickness. The measurement was performed using a meter (F20 manufactured by FILMETRIS).
(実施例1)
 共重合体1を1,2-ジメトキシエタン(DME)に15重量%になるように溶解し、溶液を調製した。この溶液をカバーガラス基板上にスピンコーターを用いて約3.5μmの厚さになるように塗布し、この塗膜を60℃で3分間乾燥後、80℃で3分間乾燥させた。その後、高圧水銀灯からの紫外線を、グランテーラープリズムを用いて直線偏光性に変換した偏光(第一の偏光)を、乾燥後の塗膜に100秒間照射した(照射量100mJ/cm)。次に、130℃で3分間加熱後、室温まで徐冷することによって配向を誘起し、膜1(第一の光学異方性層)を形成した。得られた膜1の光学特性は、Nz係数は0.2、面内位相差値は250nmであった。また、面内位相差の軸方向は照射した偏光振動方向に対して90°であった。
(Example 1)
Copolymer 1 was dissolved in 1,2-dimethoxyethane (DME) in an amount of 15% by weight to prepare a solution. This solution was applied onto a cover glass substrate to a thickness of about 3.5 μm using a spin coater, and the coating film was dried at 60 ° C. for 3 minutes and then at 80 ° C. for 3 minutes. Then, the ultraviolet rays from the high-pressure mercury lamp were converted into linearly polarized light using a Grantailer prism (first polarization), and the dried coating film was irradiated with the dried coating film for 100 seconds (irradiation amount 100 mJ / cm 2 ). Next, the film 1 (first optically anisotropic layer) was formed by inducing orientation by heating at 130 ° C. for 3 minutes and then slowly cooling to room temperature. The optical characteristics of the obtained film 1 were an Nz coefficient of 0.2 and an in-plane retardation value of 250 nm. The axial direction of the in-plane phase difference was 90 ° with respect to the irradiated polarization vibration direction.
 続いて、得られた膜1にテトラヒドロフラン(THF)とエタノールとの体積比(THF:エタノール)が1:6の混合液をスピンコーターで塗布し、放置することにより乾燥した。さらに、高圧水銀灯からの紫外線を、グランテーラープリズムを用いて、偏光振動方向が第一の偏光の偏光振動方向と60°異なる直線偏光性に変換した偏光(第二の偏光)を、膜1に300秒間照射した(照射量300mJ/cm)。 Subsequently, a mixed solution having a volume ratio of tetrahydrofuran (THF) and ethanol (THF: ethanol) of 1: 6 was applied to the obtained membrane 1 with a spin coater, and dried by leaving it to stand. Further, using a Grantailer prism, the ultraviolet rays from the high-pressure mercury lamp are converted into a linear polarization whose polarization vibration direction is 60 ° different from the polarization vibration direction of the first polarization, and the polarization (second polarization) is applied to the film 1. It was irradiated for 300 seconds (irradiation amount 300 mJ / cm 2 ).
 重合性液晶化合物(「LC-242」、BASF社製)100重量部、光重合開始剤(「イルガキュア907」、チバ・スペシャルティ・ケミカルズ製)5重量部を混合し、THFとプロピレングリコール1-モノメチルエーテル2-アセタート(PGMEA)との体積比(THF:PGMEA)が1:1の混合溶媒に20重量%になるように溶解し、溶液を準備した。この溶液を、膜1の第二の偏光を照射した表面上に、スピンコーターを用いて約0.9μmの厚さになるように塗布し、70℃で3分間加熱後、室温まで降温した。さらに、非偏光性の紫外線を100秒間照射し(照射量300mJ/cm)、重合性液晶化合物を重合させ、膜2(第二の光学異方性層)を形成し、膜1および膜2の積層体を得た。得られた積層体の光学特性を調査するために、膜2のみを粘着剤付の光学等方性フィルムに転写し、膜2の光学特性を測定した。膜2の光学特性は、Nz係数は1、面内位相差値は115nmであった。また、面内位相差の軸方向は照射した偏光振動方向に対して90°であった。これにより、膜1と膜2の遅相軸のなす角は60°であった。 Mix 100 parts by weight of a polymerizable liquid crystal compound (“LC-242”, manufactured by BASF) and 5 parts by weight of a photopolymerization initiator (“Irgacure 907”, manufactured by Ciba Specialty Chemicals), and mix THF and propylene glycol 1-monomethyl. A solution was prepared by dissolving the ether 2-acetate (PGMEA) in a mixed solvent having a volume ratio (THF: PGMEA) of 1: 1 so as to be 20% by weight. This solution was applied onto the surface of the membrane 1 irradiated with the second polarization to a thickness of about 0.9 μm using a spin coater, heated at 70 ° C. for 3 minutes, and then cooled to room temperature. Further, a non-polarizing ultraviolet ray is irradiated for 100 seconds (irradiation amount 300 mJ / cm 2 ) to polymerize the polymerizable liquid crystal compound to form a film 2 (second optically anisotropic layer), and the film 1 and the film 2 are formed. Was obtained. In order to investigate the optical properties of the obtained laminate, only the film 2 was transferred to an optically isotropic film with an adhesive, and the optical properties of the film 2 were measured. The optical characteristics of the film 2 were an Nz coefficient of 1 and an in-plane retardation value of 115 nm. The axial direction of the in-plane phase difference was 90 ° with respect to the irradiated polarization vibration direction. As a result, the angle formed by the slow axis of the film 1 and the film 2 was 60 °.
 このようにして作製した積層体を、粘着剤を用いて直線偏光板と貼合し、円偏光板を作製した。円偏光板の構成順は、直線偏光板、膜1、膜2の順に積層されており、貼合角は直線偏光板の透過軸に対して、膜1の遅相軸が15°、膜2の遅相軸が75°となるようにした。
 この円偏光板の反射光の視野角特性をシミュレーションソフト(「LCDMaster」、シンテック製)を用いて計算により確認し、図2に円偏光板の反射特性を示す。後述の比較例1の図6と比較すると、コントラストの高い範囲(図の色が濃い範囲)がはるかに広く、反射光の視野角特性が改善されることが計算から推定できる。また、斜め視での反射特性を目視で確認したところ、比較例1の円偏光板と比較して、反射光を抑制できていることが確認された。
 また、この円偏光板を、鏡面上に配置し反射光のスペクトルを測定した(図3)。反射光のスペクトルは、一軸延伸された環状ポリオレフィンλ/4位相差フィルムの単層品と比較して、広帯域の反射防止特性であることが確認された。
The laminate thus prepared was bonded to a linear polarizing plate using an adhesive to prepare a circular polarizing plate. The composition order of the circular polarizing plate is that the linear polarizing plate, the film 1, and the film 2 are laminated in this order, and the bonding angle is 15 ° with respect to the transmission axis of the linear polarizing plate, the slow axis of the film 1 is 15 °, and the film 2 is formed. The slow axis of was set to 75 °.
The viewing angle characteristics of the reflected light of this circularly polarizing plate are confirmed by calculation using simulation software (“LCDMaster”, manufactured by Shintech), and FIG. 2 shows the reflection characteristics of the circularly polarizing plate. Compared with FIG. 6 of Comparative Example 1 described later, it can be estimated from the calculation that the high contrast range (the dark color range in the figure) is much wider and the viewing angle characteristic of the reflected light is improved. Further, when the reflection characteristics in oblique view were visually confirmed, it was confirmed that the reflected light could be suppressed as compared with the circular polarizing plate of Comparative Example 1.
Further, this circular polarizing plate was placed on a mirror surface and the spectrum of reflected light was measured (FIG. 3). It was confirmed that the spectrum of the reflected light had wide-wavelength antireflection characteristics as compared with the single-layer product of the uniaxially stretched cyclic polyolefin λ / 4 retardation film.
(実施例2)
 共重合体1をDME、THFおよびシクロヘキサノンの体積比(DME:THF:シクロヘキサノン)が7:5:5の混合溶媒に15重量%になるように溶解し、溶液を調製した。この溶液をカバーガラス基板上にスピンコーターを用いて約2μmの厚さになるように塗布し、この塗膜を室温で10分間静置後、80℃で3分間乾燥させた。その後、高圧水銀灯からの紫外線を、グランテーラープリズムを用いて直線偏光性に変換した偏光(第一の偏光)を、乾燥後の塗膜に100秒間照射した(照射量100mJ/cm)。次に、130℃で3分間加熱後、室温まで徐冷することによって配向を誘起し、膜1(第一の光学異方性層)を形成した。得られた膜1の光学特性は、Nz係数は-0.1、面内位相差値は110nmであった。また、面内位相差の軸方向は照射した偏光振動方向に対して90°であった。
(Example 2)
Copolymer 1 was dissolved in a mixed solvent having a volume ratio of DME, THF and cyclohexanone (DME: THF: cyclohexanone) of 7: 5: 5 so as to be 15% by weight to prepare a solution. This solution was applied onto a cover glass substrate to a thickness of about 2 μm using a spin coater, and the coating film was allowed to stand at room temperature for 10 minutes and then dried at 80 ° C. for 3 minutes. Then, the ultraviolet rays from the high-pressure mercury lamp were converted into linearly polarized light using a Grantailer prism (first polarization), and the dried coating film was irradiated with the dried coating film for 100 seconds (irradiation amount 100 mJ / cm 2 ). Next, the film 1 (first optically anisotropic layer) was formed by inducing orientation by heating at 130 ° C. for 3 minutes and then slowly cooling to room temperature. The optical characteristics of the obtained film 1 were that the Nz coefficient was −0.1 and the in-plane retardation value was 110 nm. The axial direction of the in-plane phase difference was 90 ° with respect to the irradiated polarization vibration direction.
 続いて、得られた膜1にTHFとエタノールとの体積比(THF:エタノール)が1:6の混合液をスピンコーターで塗布し、放置することにより乾燥した。さらに、高圧水銀灯からの紫外線を、グランテーラープリズムを用いて、偏光振動方向が第一の偏光の偏光振動方向と60°異なる直線偏光性に変換した偏光(第二の偏光)を、膜1に300秒間照射した(照射量300mJ/cm)。 Subsequently, a mixed solution having a volume ratio of THF and ethanol (THF: ethanol) of 1: 6 was applied to the obtained membrane 1 with a spin coater, and dried by leaving it to stand. Further, using a Grantailer prism, the ultraviolet rays from the high-pressure mercury lamp are converted into a linear polarization whose polarization vibration direction is 60 ° different from the polarization vibration direction of the first polarization, and the polarization (second polarization) is applied to the film 1. It was irradiated for 300 seconds (irradiation amount 300 mJ / cm 2 ).
 重合性液晶化合物(「LC-242」、BASF社製)100重量部、光重合開始剤(「イルガキュア907」、チバ・スペシャルティ・ケミカルズ製)5重量部を混合し、THFとPGMEAとの体積比(THF:PGMEA)が1:1の混合溶媒に20重量%になるように溶解し、溶液を準備した。この溶液を、膜1の第二の偏光を照射した表面上に、スピンコーターを用いて約2.3μmの厚さになるように塗布し、70℃で3分間加熱後、室温まで降温した。さらに、非偏光性の紫外線を100秒間照射し(照射量300mJ/cm)、重合性液晶化合物を重合させ、膜2(第二の光学異方性層)を形成し、膜1および膜2の積層体を得た。得られた積層体の光学特性を調査するために、膜2のみを粘着剤付の光学等方性フィルムに転写し、膜2の光学特性を測定した。膜2の光学特性は、Nz係数は1、面内位相差値は250nmであった。また、面内位相差の軸方向は照射した偏光振動方向に対して90°であった。これにより、膜1と膜2の遅相軸のなす角は60°であった。 Mix 100 parts by weight of a polymerizable liquid crystal compound (“LC-242”, manufactured by BASF) and 5 parts by weight of a photopolymerization initiator (“Irgacure 907”, manufactured by Ciba Specialty Chemicals), and the volume ratio of THF and PGMEA. (THF: PGMEA) was dissolved in a 1: 1 mixed solvent in an amount of 20% by weight to prepare a solution. This solution was applied onto the surface of the membrane 1 irradiated with the second polarization to a thickness of about 2.3 μm using a spin coater, heated at 70 ° C. for 3 minutes, and then cooled to room temperature. Further, a non-polarizing ultraviolet ray is irradiated for 100 seconds (irradiation amount 300 mJ / cm 2 ) to polymerize the polymerizable liquid crystal compound to form a film 2 (second optically anisotropic layer), and the film 1 and the film 2 are formed. Was obtained. In order to investigate the optical properties of the obtained laminate, only the film 2 was transferred to an optically isotropic film with an adhesive, and the optical properties of the film 2 were measured. The optical characteristics of the film 2 were an Nz coefficient of 1 and an in-plane retardation value of 250 nm. The axial direction of the in-plane phase difference was 90 ° with respect to the irradiated polarization vibration direction. As a result, the angle formed by the slow axis of the film 1 and the film 2 was 60 °.
 このようにして作製した積層体を、粘着剤を用いて直線偏光板と貼合し、円偏光板を作製した。円偏光板の構成順は、直線偏光板、膜2、膜1の順に積層されており、貼合角は直線偏光板の透過軸に対して、膜2の遅相軸が15°、膜1の遅相軸が75°となるようにした。
 この円偏光板の反射光の視野角特性をシミュレーションソフト(「LCDMaster」、シンテック製)を用いて計算により確認し、図4に円偏光板の反射特性を示す。後述の比較例1の図6と比較すると、コントラストの高い範囲(図の色が濃い範囲)が広く、反射光の視野角特性が改善されることが計算から推定できる。また、円偏光板を鏡面上に配置し、斜め視での反射特性を目視で確認したところ、比較例1の円偏光板と比較して、反射光を抑制できていることが確認された。
 この円偏光板を用いて、透過した光(入射側は直線偏光板、出射側は膜1、基板)の位相差値の波長依存性を測定した(図5)。位相差波長依存性は逆波長分散性を示していることを確認した。
The laminate thus prepared was bonded to a linear polarizing plate using an adhesive to prepare a circular polarizing plate. The composition order of the circular polarizing plate is that the linear polarizing plate, the film 2, and the film 1 are laminated in this order, and the bonding angle is 15 ° with respect to the transmission axis of the linear polarizing plate, the slow axis of the film 2 is 15 °, and the film 1 is formed. The slow axis of was set to 75 °.
The viewing angle characteristics of the reflected light of this circularly polarizing plate are confirmed by calculation using simulation software (“LCDMaster”, manufactured by Shintech), and FIG. 4 shows the reflection characteristics of the circularly polarizing plate. Compared with FIG. 6 of Comparative Example 1 described later, it can be estimated from the calculation that the range with high contrast (the range where the color in the figure is dark) is wide and the viewing angle characteristic of the reflected light is improved. Further, when the circularly polarizing plate was arranged on the mirror surface and the reflection characteristics in oblique view were visually confirmed, it was confirmed that the reflected light could be suppressed as compared with the circularly polarizing plate of Comparative Example 1.
Using this circular polarizing plate, the wavelength dependence of the phase difference value of the transmitted light (straight polarizing plate on the incident side, film 1 on the emitting side, substrate) was measured (FIG. 5). It was confirmed that the phase difference wavelength dependence indicates the inverse wavelength dispersibility.
(比較例1)
 一軸延伸された環状ポリオレフィンλ/2位相差フィルム(Nz係数が1)、および一軸延伸された環状ポリオレフィンλ/4位相差フィルム(Nz係数が1)を用いて、粘着剤を介して直線偏光板と貼合し、円偏光板を作製した。円偏光板の構成順は、直線偏光板、λ/2位相差フィルム、λ/4位相差フィルムの順に積層されており、貼合角は直線偏光板の透過軸に対して、λ/2位相差フィルムの遅相軸が15°、λ/4位相差フィルムの遅相軸が75°となるようにした。
 この円偏光板でも位相差波長依存性は逆波長分散性を示していることを確認された。しかしながら、この円偏光板の反射特性は、実施例1および2と比較して反射光の視野角特性が劣っていることが計算から推定できる(図6)。実際に、円偏光板を鏡面上に配置し、斜め視での反射特性を目視で確認したところ、実施例1、実施例2の円偏光板と比較して、反射光が抑制できていないことが確認された。
(Comparative Example 1)
Using a uniaxially stretched cyclic polyolefin λ / 2 retardation film (Nz coefficient 1) and a uniaxially stretched cyclic polyolefin λ / 4 retardation film (Nz coefficient 1), a linear polarizing plate is used via an adhesive. To prepare a circular polarizing plate. The composition order of the circular polarizing plate is that the linear polarizing plate, the λ / 2 retardation film, and the λ / 4 retardation film are laminated in this order, and the bonding angle is λ / 2 with respect to the transmission axis of the linear polarizing plate. The slow axis of the retardation film was set to 15 °, and the slow axis of the λ / 4 polarizing film was set to 75 °.
It was confirmed that even with this circularly polarizing plate, the phase difference wavelength dependence shows the inverse wavelength dispersibility. However, it can be estimated from the calculation that the reflection characteristics of this circular polarizing plate are inferior in the viewing angle characteristics of the reflected light as compared with Examples 1 and 2 (FIG. 6). Actually, when the circularly polarizing plate was arranged on the mirror surface and the reflection characteristics in oblique view were visually confirmed, the reflected light could not be suppressed as compared with the circularly polarizing plates of Examples 1 and 2. Was confirmed.
 本発明の光学積層体は、位相差板として使用することができ、液晶表示装置、有機EL表示装置へ利用される偏光板、光学補償フィルム等の用途で用いることができる。特に、直線偏光板と積層させることにより有機EL表示装置に利用される円偏光板として使用することが可能である。 The optical laminate of the present invention can be used as a retardation plate, and can be used in applications such as a polarizing plate used in a liquid crystal display device and an organic EL display device, and an optical compensation film. In particular, it can be used as a circular polarizing plate used in an organic EL display device by laminating it with a linear polarizing plate.
 以上のとおり、図面を参照しながら本発明の好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, a preferred embodiment of the present invention has been described with reference to the drawings, but those skilled in the art can easily assume various changes and modifications within a trivial range by looking at the present specification. There will be. Therefore, such changes and amendments are construed as being within the scope of the invention as defined by the claims.
 10・・・基材
 20・・・複屈折誘起材料層
 30・・・第一の光学異方性層
 31・・・内部層
 32・・・隣接層
 40・・・第二の光学異方性層
 100・・・光学積層体
10 ... Substrate 20 ... Birefringence-induced material layer 30 ... First optical anisotropy layer 31 ... Internal layer 32 ... Adjacent layer 40 ... Second optical anisotropy Layer 100 ... Optical laminate

Claims (5)

  1.  複屈折誘起材料からなる第一の光学異方性層と、重合性液晶材料からなり、当該第一の光学異方性層に隣接して積層された第二の光学異方性層とを含む光学積層体であって、
     前記第一の光学異方性層のNz係数が-0.5≦Nz≦0.5であり、前記第二の光学異方性層がポジティブAプレートの光学特性を有し、
     前記第一の光学異方性層および前記第二の光学異方性層のうちの一方の層が1/4波長の位相差を有し、もう一方の層が1/2波長の位相差を有する、光学積層体。
    It contains a first optically anisotropic layer made of a birefringence-inducing material and a second optically anisotropic layer made of a polymerizable liquid crystal material and laminated adjacent to the first optically anisotropic layer. It is an optical laminate,
    The Nz coefficient of the first optically anisotropic layer is −0.5 ≦ Nz ≦ 0.5, and the second optically anisotropic layer has the optical characteristics of the positive A plate.
    One of the first optically anisotropic layer and the second optically anisotropic layer has a phase difference of 1/4 wavelength, and the other layer has a phase difference of 1/2 wavelength. Have an optical laminate.
  2.  請求項1に記載の光学積層体であって、前記第一の光学異方性層の遅相軸方向と前記第二の光学異方性層の遅相軸方向とが、非平行かつ非直交である角度で交差している、光学積層体。 The optical laminate according to claim 1, wherein the slow axis direction of the first optically anisotropic layer and the slow axis direction of the second optically anisotropic layer are non-parallel and non-orthogonal. Optical laminates that intersect at an angle.
  3.  請求項1または2に記載の光学積層体であって、前記第一の光学異方性層は、1/2波長の位相差を有し、且つNz係数が0≦Nz≦0.5である、光学積層体。 The optical laminate according to claim 1 or 2, wherein the first optically anisotropic layer has a phase difference of 1/2 wavelength and has an Nz coefficient of 0 ≦ Nz ≦ 0.5. , Optical laminate.
  4.  請求項1または2に記載の光学積層体であって、前記第一の光学異方性層は、1/4波長の位相差を有し、且つNz係数が-0.5≦Nz≦0.5である、光学積層体。 The optical laminate according to claim 1 or 2, wherein the first optically anisotropic layer has a phase difference of 1/4 wavelength and has an Nz coefficient of −0.5 ≦ Nz ≦ 0. An optical laminate of 5.
  5.  請求項1~4のいずれか一項に記載の光学積層体と、直線偏光板とが積層されている円偏光板。 A circular polarizing plate in which the optical laminate according to any one of claims 1 to 4 and a linear polarizing plate are laminated.
PCT/JP2021/034879 2020-10-07 2021-09-22 Optical laminate and circularly polarizing plate WO2022075071A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022555352A JPWO2022075071A1 (en) 2020-10-07 2021-09-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020170076 2020-10-07
JP2020-170076 2020-10-07

Publications (1)

Publication Number Publication Date
WO2022075071A1 true WO2022075071A1 (en) 2022-04-14

Family

ID=81126787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034879 WO2022075071A1 (en) 2020-10-07 2021-09-22 Optical laminate and circularly polarizing plate

Country Status (2)

Country Link
JP (1) JPWO2022075071A1 (en)
WO (1) WO2022075071A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004118185A (en) * 2002-09-06 2004-04-15 Dainippon Printing Co Ltd Stacked phase differential optical element, manufacturing method therefor, and liquid crystal display device
JP2016012134A (en) * 2014-06-27 2016-01-21 三星電子株式会社Samsung Electronics Co.,Ltd. Optical film, manufacturing method thereof, and display device
US20160231486A1 (en) * 2015-02-11 2016-08-11 Dongwoo Fine-Chem Co., Ltd. Highly Durable Polarizing Plate And Display Device Comprising The Same
WO2018135186A1 (en) * 2017-01-18 2018-07-26 日東電工株式会社 Polarizing plate with optical compensation layer and organic el panel using same
WO2020158428A1 (en) * 2019-01-29 2020-08-06 林テレンプ株式会社 Optical film laminate, positive c plate, and production method for optical film laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004118185A (en) * 2002-09-06 2004-04-15 Dainippon Printing Co Ltd Stacked phase differential optical element, manufacturing method therefor, and liquid crystal display device
JP2016012134A (en) * 2014-06-27 2016-01-21 三星電子株式会社Samsung Electronics Co.,Ltd. Optical film, manufacturing method thereof, and display device
US20160231486A1 (en) * 2015-02-11 2016-08-11 Dongwoo Fine-Chem Co., Ltd. Highly Durable Polarizing Plate And Display Device Comprising The Same
WO2018135186A1 (en) * 2017-01-18 2018-07-26 日東電工株式会社 Polarizing plate with optical compensation layer and organic el panel using same
WO2020158428A1 (en) * 2019-01-29 2020-08-06 林テレンプ株式会社 Optical film laminate, positive c plate, and production method for optical film laminate

Also Published As

Publication number Publication date
JPWO2022075071A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
JP5451176B2 (en) Optical film, polarizing plate, display device, and optical film manufacturing method
JP5531419B2 (en) Compound and optical film containing the compound
JP6636253B2 (en) Retardation film, method for producing the same, and optical member having the retardation film
KR20180132644A (en) Optical anisotropic layer and manufacturing method thereof, optically anisotropic laminate and manufacturing method thereof, optically anisotropic transfer body, polarizing plate, and image display device
JP2016004142A (en) Optical film laminate and production method of the same, and liquid crystal display panel containing laminate
JP2007176870A (en) Chiral agent
JP5649779B2 (en) Liquid crystalline composition and optical film
JP7196278B2 (en) Optical layered body and manufacturing method thereof
JP2010001284A (en) Compound and optical film
JP7305682B2 (en) OPTICAL FILM LAMINATE AND METHOD FOR MANUFACTURING OPTICAL FILM LAMINATE
JP7349990B2 (en) Retardation film and its manufacturing method
JP2015094801A (en) Optically anisotropic element and manufacturing method of the same
WO2022075071A1 (en) Optical laminate and circularly polarizing plate
JP6824941B2 (en) Optical film laminate, manufacturing method thereof, and liquid crystal display panel including the laminate
JP7371110B2 (en) Polymerizable liquid crystal compositions, optically anisotropic films, optical films, polarizing plates, and image display devices
JP7285226B2 (en) Polymerizable liquid crystal composition, compound, optically anisotropic film, optical film, polarizing plate, and image display device
WO2021060428A1 (en) Polymerizable liquid crystal composition, compound, optically anisotropic film, optical film, polarizing plate and image display device
CN111727388B (en) Adhesive composition, adhesive layer, optical laminate, and image display device
JP2016004143A (en) Optical film laminate and manufacturing method of the same
WO2006064950A1 (en) Preparation of an optical compensation sheet using photosensitive compounds
JP2022033442A (en) Polymer, polymerizable liquid crystal composition, optical anisotropic film, optical film, polarizing plate and image display device
JP2022033445A (en) Polymerizable liquid crystal composition, optical anisotropic film, optical film, polarizer, and image display device
WO2022018995A1 (en) Optical film and optical film laminate
JP4877160B2 (en) Circularly polarized light separating sheet, method for producing the same, and liquid crystal display device using the same
JP2015197489A (en) Organic film and production method thereof, optical film, organic semiconductor, polarizing plate, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555352

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877372

Country of ref document: EP

Kind code of ref document: A1