WO2020170784A1 - 高周波加熱装置 - Google Patents

高周波加熱装置 Download PDF

Info

Publication number
WO2020170784A1
WO2020170784A1 PCT/JP2020/003929 JP2020003929W WO2020170784A1 WO 2020170784 A1 WO2020170784 A1 WO 2020170784A1 JP 2020003929 W JP2020003929 W JP 2020003929W WO 2020170784 A1 WO2020170784 A1 WO 2020170784A1
Authority
WO
WIPO (PCT)
Prior art keywords
heated
high frequency
weight
heating chamber
thawing
Prior art date
Application number
PCT/JP2020/003929
Other languages
English (en)
French (fr)
Inventor
中村 秀樹
吉野 浩二
貞平 匡史
昌之 久保
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP20759418.5A priority Critical patent/EP3929490B1/en
Priority to JP2021501813A priority patent/JPWO2020170784A1/ja
Priority to CN202080010638.7A priority patent/CN113330255A/zh
Publication of WO2020170784A1 publication Critical patent/WO2020170784A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/688Circuits for monitoring or control for thawing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/6464Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using weight sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present disclosure relates to a high frequency heating device having a thawing function.
  • Patent Document 1 discloses a configuration in which a detection circuit detects the amount of a reflected wave received by an antenna, and a control unit controls various operations according to the output of the detection circuit. Has been done.
  • Patent Document 2 discloses a cooking device that automatically and accurately measures the temperature of food in response to a change in the ambient temperature near the infrared sensor, for example, when the ambient temperature fluctuates. Has been done.
  • Patent Document 3 has a detector that detects the amount of reflected power, integrates the output signal of the detector for each rotation of the turntable, and calculates the deviation between the latest integrated value and the integrated value at the start of heating.
  • a configuration for controlling a magnetron based on the above is disclosed.
  • Patent Document 4 has a weight sensor that detects the weight of food, a microwave sensor that detects the amount of reflected power, and a control unit that controls the magnetron according to the output signals of the weight sensor and the microwave sensor.
  • a high frequency heating device is disclosed.
  • the detection circuit described in Patent Document 1 and the infrared sensor described in Patent Document 2 automatically output based on the output of one or more sensors. It is cooked or thawed.
  • control unit does not receive the output signal of the detection circuit for a predetermined time after the start of cooking. In this case, cooking or thawing cannot be appropriately performed according to the amount of the object to be heated.
  • Patent Documents 1 and 3 in the graph showing the temporal change of the output signal of the detection circuit, when the output signal of the detection circuit has a minimum value or when the slope of the graph is close to 0 It is disclosed that signs of thawing appear. However, the output of the detection circuit may have a minimum value or the slope of the graph may be 0 even during decompression.
  • the present disclosure solves the above-mentioned conventional problems, and an object of the present disclosure is to provide a high-frequency heating device capable of accurately thawing an object to be heated.
  • a high-frequency heating device includes a heating chamber for housing an object to be heated, a radio wave generator, an antenna, a detector, and a controller.
  • the radio wave generator generates high frequency radio waves to supply to the heating chamber.
  • the antenna receives at least one of a high frequency radio wave supplied to the heating chamber and a high frequency radio wave returning from the heating chamber.
  • the detector detects high frequency radio waves received by the antenna.
  • the controller controls the radio wave generator based on the output signal of the detector.
  • the control unit further determines the end of thawing of the object to be heated based on the output signal of the detector, and the time width from the start of heating to the start of determining the end of thawing depending on at least one of the weight and type of the object to be heated. Change.
  • the object to be heated can be thawed accurately.
  • FIG. 1 is a schematic diagram of a high-frequency heating device according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a schematic diagram of the wave detector according to the first embodiment.
  • FIG. 3 is a graph showing changes over time in the output signal of the detector and the temperature of the object to be heated when 100 g of minced meat is thawed.
  • FIG. 4 is a schematic diagram of the high-frequency heating device according to the second embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of the high-frequency heating device according to the third embodiment of the present disclosure.
  • the high-frequency heating device includes a heating chamber for housing an object to be heated, a radio wave generator, an antenna, a wave detector, and a controller.
  • the radio wave generator generates high frequency radio waves to supply to the heating chamber.
  • the antenna receives at least one of a high frequency radio wave supplied to the heating chamber and a high frequency radio wave returning from the heating chamber.
  • the detector detects high frequency radio waves received by the antenna.
  • the controller controls the radio wave generator based on the output signal of the detector.
  • the control unit further determines the end of thawing of the object to be heated based on the output signal of the detector, and the time width from the start of heating to the start of determining the end of thawing depending on at least one of the weight and type of the object to be heated. Change.
  • the high frequency heating apparatus further includes an input unit for inputting at least one of the weight and the type of the object to be heated while being based on the first aspect.
  • the high-frequency heating device is based on the first aspect, is arranged inside the heating chamber and an input unit for inputting the type of the object to be heated, and is placed in the heating chamber.
  • An infrared sensor for detecting the temperature of the object to be heated is further provided.
  • the control unit further estimates the weight of the object to be heated by estimating the size of the object to be heated based on the temperature of the object to be heated, and according to at least one of the weight and the type of the object to be heated, from the start of heating. The time width until the start of determination of the end of defrosting is changed.
  • the high-frequency heating device is based on the first aspect, and further includes an input unit for inputting the type of the object to be heated and a weight sensor for detecting the weight of the object to be heated.
  • Prepare The control unit further changes the time width from the start of heating to the start of determination of the end of thawing depending on at least one of the weight and type of the object to be heated.
  • FIG. 1 is a schematic diagram of a high-frequency heating device 1a according to the first embodiment of the present disclosure.
  • the object to be heated 11 is placed on the placing table 13 which is the bottom surface of the heating chamber 10.
  • the radio wave generator 20 includes a magnetron and the like, and is controlled by the controller 24 to generate high frequency radio waves.
  • the high frequency radio wave generated by the radio wave generator 20 propagates through the waveguide 23 and is supplied to the heating chamber 10 through the entrance 12.
  • the entrance 12 is arranged below the heating chamber 10. However, the entrance 12 may be arranged above the heating chamber 10.
  • a part of the high-frequency radio wave supplied to the heating chamber 10 as an incident wave is not absorbed by the object 11 to be heated and returns to the waveguide 23 via the entrance 12 as a reflected wave.
  • the antenna 21 functions as a directional coupler, and extracts the incident wave and the reflected wave propagating through the waveguide 23 separately.
  • the detector 22 detects the incident wave and the reflected wave extracted by the antenna 21.
  • FIG. 2 is a schematic diagram of the detector 22.
  • the output signal of the detector 22 is a voltage value.
  • the detector 22 receives the incident wave and the reflected wave extracted by the antenna 21 via the input terminal 40.
  • the detector 22 has a resistor 41, a resistor 42, a diode 43, and a capacitor 44 connected between the input terminal 40 and the output terminal 45.
  • the resistor 41, the resistor 42, and the capacitor 44 are connected in parallel between the input terminal 40 and the output terminal 45.
  • the diode 43 is connected in series between the input terminal 40 and the output terminal 45.
  • the antenna 21 attenuates both the incident wave and the reflected wave by, for example, about 20 dB and receives them.
  • the detector 22 converts the signal received by the antenna 21 into a DC voltage.
  • the control unit 24 receives this DC voltage as an output signal of the detector 22 via the output terminal 45.
  • the detector 22 is used to obtain the temperature information of the object to be heated 11.
  • the entrance 12 is arranged on the side of the mounting table 13, that is, below the heating chamber 10.
  • the antenna 21 receives either the incident wave or the reflected wave, or both the incident wave and the reflected wave.
  • the detector 22 detects the received high frequency electric wave. Thereby, the control unit 24 can obtain approximate temperature information of the object to be heated 11.
  • the object 11 to be heated When thawing the frozen object 11 to be thawed, if the amount of the reflected wave is larger than the amount of the incident wave to some extent, the object 11 to be heated has not completely absorbed the radio wave, and the object 11 to be heated is still frozen. There is. When the amount of the reflected wave is smaller than the amount of the incident wave to some extent, the object to be heated 11 absorbs the radio wave and the thawing is progressing to some extent.
  • the high-frequency heating device 1a can roughly estimate the degree of thawing of the object to be heated 11 and the temperature of the object to be heated 11 by detecting the amount of incident waves and the amount of reflected waves.
  • the input unit 30 is provided for the user to input the weight and type of the article to be heated 11.
  • the output signal of the input unit 30 is input to the control unit 24.
  • a numerical value such as 100 g and 1 kg is input using the input unit 30.
  • the type of the object to be heated 11 such as minced meat or vegetables is selected using the input unit 30.
  • FIG. 3 shows temporal changes in the output signal Sd of the detector 22 and the temperature Tf of the object 11 to be heated when 100 g of minced meat is thawed.
  • a plurality of (eg, eight) needle-shaped temperature sensors are inserted inside the minced meat.
  • the temperature Tf shown in FIG. 3 is the temperature detected by the temperature sensor that detects 0° C. earliest among the plurality of temperature sensors.
  • the output signal Sd of the detector 22 indicates the amount of reflected wave.
  • the output signal Sd of the detector 22 may indicate the ratio of the amount of reflected waves to the amount of incident waves.
  • the output signal Sd fluctuates greatly due to the influence of noise or the like until about 4 seconds after the start of heating.
  • the temperature Tf of the object to be heated 11 exceeds 0° C. at the time when about 40 seconds have elapsed from the start of heating. Therefore, if the output signal Sd of the detector 22 is used as an indication of thawing, it is necessary to get an indication that thawing is progressing in about 40 seconds from the start of heating.
  • the minimum value of the output signal Sd of the detector 22 showing a true thawing sign was 30 to 45 seconds after the start of heating. I know that it will appear between.
  • the control unit 24 does not regard the minimum value of the output signal Sd that has appeared 30 seconds after the start of heating as a symptom of thawing, and appears thereafter.
  • the minimum value of the output signal Sd is regarded as a sign of true defrosting. This makes it possible to accurately detect the end of defrosting.
  • the control unit 24 stops the radio wave generation unit 20.
  • thawing 500 g of minced meat a minimum value of the output signal Sd showing a thawing sign appears about 60 seconds after the start of heating.
  • control unit 24 does not regard the minimum value of the output signal Sd appearing until 45 seconds after the start of heating as a thawing symptom, but the minimum value of the output signal Sd that appears after that as a thawing symptom. This makes it possible to accurately detect the end of thawing while taking into consideration the weight and type of the object to be heated 11.
  • thawing The time until the end of thawing depends on the type of the object to be heated 11. For example, vegetables contain more water than ground meat. Therefore, for the same weight, vegetables take longer to complete the thawing than ground meat. For example, in the case of thawing 100 g of vegetables, a minimum value of the output signal Sd showing a thawing sign appears about 60 seconds after the start of thawing.
  • control unit 24 does not regard the minimum value of the output signal Sd appearing until 45 seconds after the start of heating as a thawing symptom, but the minimum value of the output signal Sd that appears after that as a thawing symptom. This makes it possible to accurately detect the end of thawing while considering the type of the object to be heated 11.
  • control unit 24 changes the time width from the start of heating to the start of determination of the end of thawing depending on the weight and type of the object to be heated 11. Accordingly, the high frequency heating device 1a can accurately detect the end of the thawing of the object to be heated 11 according to the weight and the type of the object to be heated 11.
  • FIG. 4 is a schematic diagram of the high frequency heating device 1b.
  • the same or corresponding constituent elements as those of the first embodiment are designated by the same reference numerals, and overlapping description will be omitted.
  • the high frequency heating device 1b further includes an infrared sensor 25 arranged in the upper portion of the heating chamber 10 in addition to the configuration of the high frequency heating device 1a.
  • the infrared sensor 25 outputs a signal according to the temperature information inside the heating chamber 10.
  • the control unit 24 receives the output signal of the infrared sensor 25 in addition to the output signal of the detector 22.
  • the infrared sensor 25 includes eight infrared detecting elements arranged in one row or 64 infrared detecting elements arranged in a matrix of 8 ⁇ 8.
  • the infrared sensor 25 When the infrared sensor 25 includes eight infrared detecting elements arranged in one line, the infrared sensor 25 is operated while gradually changing the direction of the infrared sensor 25, thereby obtaining the temperature information of the entire upper surface of the object to be heated 11. It can be detected in a matrix.
  • the infrared sensor 25 includes 64 infrared detection elements arranged in an 8 ⁇ 8 matrix, the temperature information of the entire upper surface of the object 11 to be heated can be detected in a matrix at a time.
  • the temperature of the object to be heated 11 to be thawed is often 0°C or lower, and the high-frequency heating device 1b is often placed in a room at 10°C to 30°C. Therefore, the control unit 24 can determine how many of the 64 pieces of temperature information correspond to the temperature information of the object to be heated 11. Thereby, the control unit 24 can estimate the approximate size of the object to be heated 11.
  • control unit 24 stores in advance a table that associates the size of the object 11 to be heated with the weight of the object 11 to be heated. Accordingly, the control unit 24 can estimate the weight of the object to be heated 11 without the user inputting the weight of the object to be heated 11 using the input unit 30.
  • control unit 24 determines from the start of heating to the start of determination of the end of thawing depending on the estimated weight of the object to be heated 11 and the type of the object to be heated 11 selected by the input unit 30. Change the time width. Thereby, the high frequency heating device 1b can accurately detect the end of the thawing of the object to be heated 11 according to the weight and the type of the object to be heated 11.
  • FIG. 5 is a schematic view of the high frequency heating device 1c.
  • the same or corresponding constituent elements as those of the first embodiment are designated by the same reference numerals, and overlapping description will be omitted.
  • the high frequency heating apparatus 1c further includes a weight sensor 26 arranged below the mounting table 13 in addition to the configuration of the high frequency heating apparatus 1a.
  • the weight sensor 26 measures the weight of the object 11 to be heated.
  • the control unit 24 receives the output signal of the weight sensor 26 in addition to the output signal of the detector 22. Accordingly, the control unit 24 can recognize the weight of the object to be heated 11 without the user inputting the weight of the object to be heated 11 using the input unit 30.
  • control unit 24 from the start of heating to the start of determination of the end of thawing, depending on the measured weight of the object to be heated 11 and the type of the object to be heated 11 selected by the input unit 30. Change the time width.
  • the high frequency heating device 1c can accurately detect the end of the thawing of the object to be heated 11 according to the weight and the type of the object to be heated 11.
  • the present disclosure can be applied to devices such as microwave ovens and high-frequency defrosters that heat an object to be heated with high-frequency radio waves.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Ovens (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

高周波加熱装置は、被加熱物(11)を収容するための加熱室(10)と、電波発生部(20)と、アンテナ(21)と、検波器(22)と、制御部(24)とを備える。電波発生部は、加熱室に供給するための高周波電波を発生させる。アンテナは、加熱室に供給される高周波電波、加熱室から戻る高周波電波の少なくとも一方を受信する。検波器は、アンテナにより受信された高周波電波を検出する。制御部は、検波器の出力信号に基づいて電波発生部を制御する。制御部はさらに、検波器の出力信号に基づいて被加熱物の解凍終了を判定するとともに、被加熱物の重量および種類の少なくとも一方に応じて、加熱開始から解凍終了の判定開始までの時間幅を変化させる。

Description

高周波加熱装置
 本開示は、解凍機能を有した高周波加熱装置に関する。
 この種の高周波加熱装置に関して、特許文献1には、検波回路が、アンテナで受信された反射波の量を検出し、制御部が、検波回路の出力に応じて各種動作を制御する構成が開示されている。
 特許文献2には、赤外線センサの近傍の雰囲気温度が変動した場合などに、その変化に対応して食品の温度を簡単に精度よく測定し、仕上がりにバラツキのない自動調理を行う調理装置が開示されている。
 特許文献3には、反射電力の量を検出する検波器を有し、ターンテーブルの一回転毎に検波器の出力信号の積分し、最新の積分値と加熱開始時の積分値との偏差に基づいてマグネトロンを制御する構成が開示されている。
 特許文献4には、食品の重量を検出する重量センサと、反射電力の量を検出するマイクロ波センサと、重量センサおよびマイクロ波センサの出力信号に応じて、マグネトロンを制御する制御部とを有する高周波加熱装置が開示されている。
特開平3-95317号公報 特開平7-91669号公報 特開平4-17293号公報 特開平4-65095号公報
 上記従来の構成では、調理メニューまたは解凍メニューを使用者が選択すると、特許文献1に記載の検出回路、特許文献2に記載の赤外線センサなどの一つまたは複数のセンサの出力に基づいて自動的に調理または解凍が行われる。
 しかしながら、特許文献1に記載された方法では、制御部は、調理開始後の所定時間、検波回路の出力信号を受け取らない。これでは、被加熱物の量に対応して適切に調理または解凍を行うことができない。
 使用者が、調理メニューまたは解凍メニューの選択に加えて被加熱物の重量を入力することができる高周波解凍装置の場合、入力された重量が不正確であれば、調理、解凍を適切に行うことができない。
 特許文献1、3には、検波回路の出力信号の時間的変化を示すグラフにおいて、検波回路の出力信号が極小値となる場合、または、グラフの傾きが0に近い場合に、被解凍物に解凍の兆候が現れることが開示されている。しかしながら、解凍途中であっても、検波回路の出力が極小値となったり、グラフの傾きが0となったりすることがある。
 本開示は、上記従来の問題点を解決するものであり、精度よく被加熱物を解凍することができる高周波加熱装置を提供することを目的とする。
 本開示の一態様の高周波加熱装置は、被加熱物を収容するための加熱室と、電波発生部と、アンテナと、検波器と、制御部とを備える。
 電波発生部は、加熱室に供給するための高周波電波を発生させる。アンテナは、加熱室に供給される高周波電波、加熱室から戻る高周波電波の少なくとも一方を受信する。検波器は、アンテナにより受信された高周波電波を検出する。制御部は、検波器の出力信号に基づいて電波発生部を制御する。
 制御部はさらに、検波器の出力信号に基づいて被加熱物の解凍終了を判定するとともに、被加熱物の重量および種類の少なくとも一方に応じて、加熱開始から解凍終了の判定開始までの時間幅を変化させる。
 本態様によれば、精度よく被加熱物を解凍することができる。
図1は、本開示の実施の形態1に係る高周波加熱装置の概略図である。 図2は、実施の形態1における検波器の概略図である。 図3は、ひき肉100gを解凍したときの、検波器の出力信号および被加熱物の温度の時間的変化を示すグラフである。 図4は、本開示の実施の形態2に係る高周波加熱装置の概略図である。 図5は、本開示の実施の形態3に係る高周波加熱装置の概略図である。
 本開示の第1の態様の高周波加熱装置は、被加熱物を収容するための加熱室と、電波発生部と、アンテナと、検波器と、制御部とを備える。
 電波発生部は、加熱室に供給するための高周波電波を発生させる。アンテナは、加熱室に供給される高周波電波、加熱室から戻る高周波電波の少なくとも一方を受信する。検波器は、アンテナにより受信された高周波電波を検出する。制御部は、検波器の出力信号に基づいて電波発生部を制御する。
 制御部はさらに、検波器の出力信号に基づいて被加熱物の解凍終了を判定するとともに、被加熱物の重量および種類の少なくとも一方に応じて、加熱開始から解凍終了の判定開始までの時間幅を変化させる。
 本開示の第2の態様の高周波加熱装置は、第1の態様に基づきながら、被加熱物の重量および種類の少なくとも一方を入力するための入力部をさらに備える。
 本開示の第3の態様の高周波加熱装置は、第1の態様に基づきながら、被加熱物の種類を入力するための入力部と、加熱室の内部に配置され、加熱室に載置された被加熱物の温度を検出するための赤外線センサとをさらに備える。
 制御部はさらに、被加熱物の温度に基づいて被加熱物の大きさを推定することにより被加熱物の重量を推定し、被加熱物の重量および種類の少なくとも一方に応じて、加熱開始から解凍終了の判定開始までの時間幅を変化させる。
 本開示の第4の態様の高周波加熱装置は、第1の態様に基づきながら、被加熱物の種類を入力するための入力部と、被加熱物の重量を検出するための重量センサとをさらに備える。制御部はさらに、被加熱物の重量および種類の少なくとも一方に応じて、加熱開始から解凍終了の判定開始までの時間幅を変化させる。
 以下、本開示の実施の形態について、図面を参照しながら説明する。
 (実施の形態1)
 図1は、本開示の実施の形態1に係る高周波加熱装置1aの概略図である。
 図1に示すように、被加熱物11は、加熱室10の底面である載置台13に載置される。電波発生部20はマグネトロンなどを含み、制御部24に制御されて高周波電波を発生させる。電波発生部20により発生された高周波電波は、導波管23を伝播し、入射口12を通して加熱室10に供給される。本実施の形態では、入射口12は加熱室10の下部に配置される。しかし、入射口12は加熱室10の上部に配置されてもよい。
 入射波として加熱室10に供給された高周波電波の一部は、被加熱物11に吸収されず、反射波として入射口12を介して導波管23に戻る。アンテナ21は方向性結合器として機能し、導波管23を伝播する入射波と反射波とを別々に取り出す。検波器22は、アンテナ21により取り出された入射波と反射波とを検出する。
 図2は、検波器22の概略図である。通常、検波器22の出力信号は電圧値である。図2に示すように、検波器22は、アンテナ21により取り出された入射波と反射波とを入力端子40を介して受信する。
 検波器22は、入力端子40と出力端子45との間に接続された、抵抗41と、抵抗42と、ダイオード43と、コンデンサ44とを有する。抵抗41と抵抗42とコンデンサ44とは、入力端子40と出力端子45との間に並列に接続される。ダイオード43は、入力端子40と出力端子45との間に直列に接続される。
 アンテナ21は、入射波、反射波とも、例えば約20dB減衰させて受信する。検波器22は、アンテナ21により受信された信号をDC電圧に変換する。制御部24は、このDC電圧を検波器22の出力信号として出力端子45を介して受信する。
 本実施の形態では、被加熱物11の温度情報を得るために検波器22が用いられる。図1に示すように、入射口12が、載置台13の側方、すなわち、加熱室10の下部に配置される。
 アンテナ21は、入射波と反射波とのいずれか、または、入射波と反射波との両方を受信する。検波器22は、受信した高周波電波を検出する。これにより、制御部24は、被加熱物11のおおよその温度情報を得ることができる。
 凍結した被加熱物11を解凍する際に、入射波の量よりも反射波の量がある程度大きい場合は、被加熱物11が電波を吸収しきれておらず、まだ被加熱物11は凍っている。入射波の量よりも反射波の量がある程度小さい場合は、被加熱物11が電波を吸収しており、解凍がある程度進行している。
 高周波加熱装置1aは、入射波の量および反射波の量を検出することによって、被加熱物11の解凍の度合い、および、被加熱物11の温度をおおよそ推定することができる。
 入力部30は、使用者が被加熱物11の重量および種類を入力するために設けられる。入力部30の出力信号は制御部24に入力される。被加熱物11の重量に関しては、入力部30を用いて、例えば100g、1kgなどの数値が入力される。被加熱物11の種類に関しては、入力部30を用いて、例えばひき肉、野菜などの被加熱物11の種類が選択される。
 図3は、ひき肉100gを解凍したときの、検波器22の出力信号Sdおよび被加熱物11の温度Tfの時間的変化を示す。本実施の形態では、被加熱物11の温度Tfを検出するために、ひき肉の内部に複数(例えば8本)の針状の温度センサが挿入される。図3に示す温度Tfは、複数の温度センサのうちの最も早く0℃を検出した温度センサにより検出された温度である。
 図3において、検波器22の出力信号Sdは反射波の量を示している。しかし、検波器22の出力信号Sdは、入射波の量に対する反射波の量の比率を示してもよい。
 図3に示すように、加熱開始から約4秒後までは、ノイズなどの影響により出力信号Sdが大きく変動する。被加熱物11の温度Tfが0℃を超えるのは、加熱開始から40秒ほど経過した時点である。従って、検波器22の出力信号Sdを解凍の兆候として用いるのであれば、加熱開始から40秒ほどで解凍が進んでいるという兆候をつかみたい。
 一方、検波器22の出力信号Sdの時間的変化を示すグラフにおいて、出力信号Sdが極小値となる場合、または、グラフの傾きが0に近い場合に、被加熱物11の解凍の兆候が現れる。しかしながら、解凍途中でも、出力信号Sdの時間的変化を示すグラフに極小値が現れることがある。例えば、図3は、加熱開始から約20秒後に出力信号Sdが極小値となることを示す。
 解凍前の被加熱物11の温度をマイナス20℃に設定して実験した結果、真の解凍の兆候を示す検波器22の出力信号Sdの極小値は、加熱開始から30秒後~45秒後の間に現れることが分かっている。
 従って、使用者がひき肉100gを解凍するコースを選択した場合、制御部24は、加熱開始から30秒後までに現れた出力信号Sdの極小値を解凍の兆候とみなさず、それ以降に現れた出力信号Sdの極小値を真の解凍の兆候とみなす。これにより、精度よく解凍終了を検出することができる。解凍終了を検出すると、制御部24は電波発生部20を停止させる。
 被加熱物11が重いほど、解凍の終了までに時間がかかる。例えば、ひき肉500gを解凍する場合、加熱開始から約60秒後に解凍の兆候を示す出力信号Sdの極小値が現れる。
 従って、制御部24は、加熱開始から45秒後までに現れた出力信号Sdの極小値を解凍の兆候とはみなさず、それ以降に現れた出力信号Sdの極小値を解凍の兆候とみなす。これにより、被加熱物11の重量および種類を考慮しながら、精度よく解凍終了を検出することができる。
 解凍終了までの時間は、被加熱物11の種類によって異なる。例えば、野菜類の場合はひき肉よりも多くの水分を含む。このため、同じ重量の場合、野菜類の方がひき肉よりも解凍の終了までに時間がかかる。例えば、野菜類100gを解凍する場合、解凍開始から約60秒後に解凍の兆候を示す出力信号Sdの極小値が現れる。
 従って、制御部24は、加熱開始から45秒後までに現れた出力信号Sdの極小値を解凍の兆候とはみなさず、それ以降に現れた出力信号Sdの極小値を解凍の兆候とみなす。これにより、被加熱物11の種類を考慮しながら、精度よく解凍終了を検出することができる。
 本実施の形態では、制御部24は、被加熱物11の重量および種類に応じて、加熱開始から解凍終了の判定開始までの時間幅を変化させる。これにより、高周波加熱装置1aは、被加熱物11の重量および種類に応じて、被加熱物11の解凍終了を精度よく検出することができる。
 (実施の形態2)
 以下、本開示の実施の形態2に係る高周波加熱装置1bについて説明する。図4は、高周波加熱装置1bの概略図である。本実施の形態において、実施の形態1と同一または相当の構成要素には同一の符号を付し、重複する説明を省略する。
 図4に示すように、高周波加熱装置1bは、高周波加熱装置1aの構成に加えて、加熱室10内の上部に配置された赤外線センサ25をさらに備える。
 赤外線センサ25は、加熱室10内の温度情報に応じた信号を出力する。制御部24は、検波器22の出力信号に加えて、赤外線センサ25の出力信号を受信する。
 赤外線センサ25は、1列に並べられた8個の赤外線検出素子、または、8×8のマトリクス状に並べられた64個の赤外線検出素子を含む。
 赤外線センサ25が1列に並べられた8個の赤外線検出素子を含む場合、赤外線センサ25の向きを少しずつ変えながら赤外線センサ25を作動させることで、被加熱物11の上面全体の温度情報をマトリクス状に検出することができる。
 赤外線センサ25が8×8のマトリクス状に並べられた64個の赤外線検出素子を含む場合、被加熱物11の上面全体の温度情報を一度にマトリクス状に検出することができる。
 解凍対象の被加熱物11の温度は0℃以下であることが多く、高周波加熱装置1bは10℃から30℃の室内に置かれていることが多い。このため、制御部24は、64個の温度情報のうちのいくつが被加熱物11の温度情報に該当するかを判別することができる。これにより、制御部24は、被加熱物11のおおよその大きさを推定することができる。
 本実施の形態では、制御部24が、被加熱物11の大きさと被加熱物11の重量とを関連付けるテーブルを予め記憶している。これにより、使用者が入力部30を用いて被加熱物11の重量を入力することなく、制御部24が被加熱物11の重量を推定することができる。
 本実施の形態では、制御部24は、推定された被加熱物11の重量、および、入力部30により選択された被加熱物11の種類に応じて、加熱開始から解凍終了の判定開始までの時間幅を変化させる。これにより、高周波加熱装置1bは、被加熱物11の重量および種類に応じて、被加熱物11の解凍終了を精度よく検出することができる。
 (実施の形態3)
 以下、本開示の実施の形態3に係る高周波加熱装置1cについて説明する。図5は、高周波加熱装置1cの概略図である。本実施の形態において、実施の形態1と同一または相当の構成要素には同一の符号を付し、重複する説明を省略する。
 図5に示すように、高周波加熱装置1cは、高周波加熱装置1aの構成に加えて、載置台13の下方に配置された重量センサ26をさらに備える。
 重量センサ26は、被加熱物11の重量を測定する。制御部24は、検波器22の出力信号に加えて、重量センサ26の出力信号も受信する。これにより、使用者が入力部30を用いて被加熱物11の重量を入力することなく、制御部24が被加熱物11の重量を認識することができる。
 本実施の形態では、制御部24は、測定された被加熱物11の重量、および、入力部30により選択された被加熱物11の種類に応じて、加熱開始から解凍終了の判定開始までの時間幅を変化させる。これにより、高周波加熱装置1cは、被加熱物11の重量および種類に応じて、被加熱物11の解凍終了を精度よく検出することができる。
 本開示は、電子レンジ、高周波解凍装置など、被加熱物を高周波電波で加熱する機器に適用可能である。
 1a、1b、1c 高周波加熱装置
 10 加熱室
 11 被加熱物
 12 入射口
 13 載置台
 20 電波発生部
 21 アンテナ
 22 検波器
 23 導波管
 24 制御部
 25 赤外線センサ
 26 重量センサ
 30 入力部
 40 入力端子
 41、42 抵抗
 43 ダイオード
 44 コンデンサ
 45 出力端子

Claims (4)

  1.  被加熱物を収容するように構成された加熱室と、
     前記加熱室に供給するための高周波電波を発生させるように構成された電波発生部と、
     前記加熱室に供給される前記高周波電波、前記加熱室から戻る前記高周波電波の少なくとも一方を受信するように構成されたアンテナと、
     前記アンテナにより受信された前記高周波電波を検出するように構成された検波器と、
     前記検波器の出力信号に基づいて前記電波発生部を制御するように構成された制御部と、を備え、
     前記制御部は、前記検波器の出力信号に基づいて前記被加熱物の解凍終了を判定するとともに、前記被加熱物の重量および種類の少なくとも一方に応じて、加熱開始から前記解凍終了の判定開始までの時間幅を変化させる、高周波加熱装置。
  2.  前記被加熱物の重量および種類の少なくとも一方を入力するように構成された入力部をさらに備えた、請求項1に記載の高周波加熱装置。
  3.  前記被加熱物の種類を入力するように構成された入力部と、
     前記加熱室の内部に配置され、前記加熱室に載置された前記被加熱物の温度を検出するように構成された赤外線センサと、をさらに備え、
     前記制御部は、前記被加熱物の前記温度に基づいて前記被加熱物の大きさを推定することにより前記被加熱物の重量を推定し、前記被加熱物の前記重量および前記種類の少なくとも一方に応じて前記時間幅を変化させる、請求項1に記載の高周波加熱装置。
  4.  前記被加熱物の種類を入力するように構成された入力部と、
     前記被加熱物の重量を検出するように構成された重量センサと、をさらに備え、
     前記制御部は、前記被加熱物の前記重量および前記種類の少なくとも一方に応じて前記時間幅を変化させる、請求項1に記載の高周波加熱装置。
PCT/JP2020/003929 2019-02-22 2020-02-03 高周波加熱装置 WO2020170784A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20759418.5A EP3929490B1 (en) 2019-02-22 2020-02-03 High frequency heating apparatus
JP2021501813A JPWO2020170784A1 (ja) 2019-02-22 2020-02-03 高周波加熱装置
CN202080010638.7A CN113330255A (zh) 2019-02-22 2020-02-03 高频加热装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019029951 2019-02-22
JP2019-029951 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020170784A1 true WO2020170784A1 (ja) 2020-08-27

Family

ID=72144659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003929 WO2020170784A1 (ja) 2019-02-22 2020-02-03 高周波加熱装置

Country Status (4)

Country Link
EP (1) EP3929490B1 (ja)
JP (1) JPWO2020170784A1 (ja)
CN (1) CN113330255A (ja)
WO (1) WO2020170784A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190393U (ja) * 1983-06-01 1984-12-17 日本電子材料株式会社 浄化フイルタ
JPH0395317A (ja) 1989-09-07 1991-04-19 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH0417293B2 (ja) 1983-09-12 1992-03-25 Toyota Motor Co Ltd
JPH0465095B2 (ja) 1987-10-19 1992-10-19 Sanyo Kokusaku Pulp Co
JPH05144563A (ja) * 1991-11-21 1993-06-11 Sharp Corp 電子レンジ
JPH0791669B2 (ja) 1990-08-01 1995-10-04 新日本製鐵株式会社 耐食性に優れた防錆鋼板
JP2014048012A (ja) * 2012-09-03 2014-03-17 Mitsubishi Electric Corp 高周波加熱装置
WO2015141208A1 (ja) * 2014-03-18 2015-09-24 パナソニックIpマネジメント株式会社 高周波加熱装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170393U (ja) * 1983-04-28 1984-11-14 株式会社日立ホームテック 高周波加熱装置
JP2678071B2 (ja) * 1989-09-07 1997-11-17 松下電器産業株式会社 高周波加熱装置
JP2588294B2 (ja) * 1990-03-30 1997-03-05 株式会社東芝 電子レンジ
KR100366020B1 (ko) * 1999-07-12 2002-12-26 삼성전자 주식회사 전자렌지의 해동 방법
CN1453507A (zh) * 2002-04-28 2003-11-05 三星电子株式会社 微波炉的解冻方法
JP2011138721A (ja) * 2009-12-29 2011-07-14 Sharp Corp 高周波加熱調理器
JP2011174668A (ja) * 2010-02-25 2011-09-08 Panasonic Corp 加熱調理器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190393U (ja) * 1983-06-01 1984-12-17 日本電子材料株式会社 浄化フイルタ
JPH0417293B2 (ja) 1983-09-12 1992-03-25 Toyota Motor Co Ltd
JPH0465095B2 (ja) 1987-10-19 1992-10-19 Sanyo Kokusaku Pulp Co
JPH0395317A (ja) 1989-09-07 1991-04-19 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH0791669B2 (ja) 1990-08-01 1995-10-04 新日本製鐵株式会社 耐食性に優れた防錆鋼板
JPH05144563A (ja) * 1991-11-21 1993-06-11 Sharp Corp 電子レンジ
JP2014048012A (ja) * 2012-09-03 2014-03-17 Mitsubishi Electric Corp 高周波加熱装置
WO2015141208A1 (ja) * 2014-03-18 2015-09-24 パナソニックIpマネジメント株式会社 高周波加熱装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3929490A4

Also Published As

Publication number Publication date
CN113330255A (zh) 2021-08-31
EP3929490B1 (en) 2022-11-09
EP3929490A1 (en) 2021-12-29
EP3929490A4 (en) 2022-04-20
JPWO2020170784A1 (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
EP2326141B1 (en) Microwave oven and related method including a magnetron for heating and a SSMG for heated objects sensing
KR100411683B1 (ko) 가열조리기
US5530229A (en) Heating time control apparatus and method thereof for microwave oven
JPH02133712A (ja) 電子レンジの食品解凍を判定する方法及び装置
GB2117925A (en) Heating apparatus of thawing sensor controlled type
US10527290B2 (en) Oven appliance and methods of operation
EP1318698A2 (en) Microwave oven comprising an environmental sensor and dealing with the behavior of this sensor
WO2020170784A1 (ja) 高周波加熱装置
EP0645942A2 (en) Method for thawing food in microwave oven
JP2013130303A (ja) 高周波加熱装置
JP2023016049A (ja) 加熱調理器
KR0146131B1 (ko) 마이크로웨이브오븐의 자동조리 장치 및 방법
JP3248141B2 (ja) 高周波加熱装置
KR0133435B1 (ko) 마이크로웨이브오븐의 자동조리 장치 및 방법
JP3525254B2 (ja) 高周波加熱装置
KR100275871B1 (ko) 전자레인지의 무부하판단방법
JP7203301B2 (ja) 高周波加熱装置
JP3938181B2 (ja) 高周波加熱装置
JPH06249447A (ja) 高周波加熱装置とそれを用いたパン検知方法
JPH0833206B2 (ja) 調理器
JP2553659B2 (ja) 高周波加熱装置
KR100395948B1 (ko) 듀얼 센서 시스템
KR100499478B1 (ko) 토스터 겸용 전자레인지 및 그 제어방법
JPH10274416A (ja) 加熱調理器
KR100533272B1 (ko) 전자레인지의 팝콘요리제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020759418

Country of ref document: EP

Effective date: 20210922