WO2020170779A1 - 核酸配列計測用デバイス、核酸配列計測方法、および核酸配列計測装置 - Google Patents

核酸配列計測用デバイス、核酸配列計測方法、および核酸配列計測装置 Download PDF

Info

Publication number
WO2020170779A1
WO2020170779A1 PCT/JP2020/003856 JP2020003856W WO2020170779A1 WO 2020170779 A1 WO2020170779 A1 WO 2020170779A1 JP 2020003856 W JP2020003856 W JP 2020003856W WO 2020170779 A1 WO2020170779 A1 WO 2020170779A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid sequence
probe
fluorescent molecule
donor fluorescent
Prior art date
Application number
PCT/JP2020/003856
Other languages
English (en)
French (fr)
Inventor
祐樹 宮内
崇 蓼沼
朋之 田口
Original Assignee
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河電機株式会社 filed Critical 横河電機株式会社
Priority to US17/431,010 priority Critical patent/US20220136039A1/en
Priority to EP20760137.8A priority patent/EP3929276B1/en
Priority to CN202080014016.1A priority patent/CN113454201A/zh
Publication of WO2020170779A1 publication Critical patent/WO2020170779A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0636Reflectors

Definitions

  • the present invention relates to a nucleic acid sequence measuring device, a nucleic acid sequence measuring method, and a nucleic acid sequence measuring device for measuring a target having a specific nucleic acid sequence contained in a sample by hybridization.
  • a nucleic acid sequence measurement device that measures the presence and amount of a specific nucleic acid using a DNA chip is known (Patent Document 1).
  • the quenching molecule quenches the fluorescence of the fluorescent molecule.
  • the target when the target is supplied, the target binds to the detection unit, the binding via the binding unit is canceled, and the quenching molecule separates from the fluorescent molecule, so that the fluorescent molecule exhibits fluorescence.
  • a light quantity measuring device for measuring the light quantity of the light taken in by the light detecting means, a light quantity calculating means for calculating the light quantity of the fluorescent signal light based on the output signal of the light detecting means, and an exciting light irradiation for irradiating the exciting light Means, by irradiating this excitation light, a reference fluorescence signal generating means for generating a reference fluorescence signal, and a light of known light amount by the reference fluorescence signal is given to the light detecting means,
  • a light amount measuring device including a calibrating unit that calibrates the light amount calculated by the light amount calculating unit (Patent Document 2).
  • the method of Patent Document 1 when the quenching due to the binding between the fluorescent probe and the quenching probe is incomplete, there is fluorescence (offset light) when the target is not present, and thus a small change in the fluorescent light amount of the fluorescent molecule by the target. Is a lower limit of detection. Further, in this method, the detection sensitivity is not sufficient because the change in the fluorescent light amount of only the fluorescent probe is detected. Further, the offset light is fluorescence of a fluorescent molecule that is not quenched by the quenching molecule in a state where the fluorescent probe and the quenching probe are bound to each other when hybridization with the target has not occurred. When the binding between the fluorescent probe and the quenching probe is canceled by the hybridization with the target and the number of fluorescent molecules separated from the quenching molecule increases, the offset light decreases. However, the method of Patent Document 1 cannot measure this offset light.
  • the image of the DNA chip in which the negative control sample containing no target is subjected to the hybridization reaction and the target is included. It is necessary to acquire an image of the DNA chip obtained by subjecting the sample to be hybridized. Therefore, when comparing the detected light amounts of the images of the DNA chips, there is a variation in the light amount between the chips and between the spots, and this variation in the light amount is a restriction on the lower limit of detection.
  • this light amount measuring device when comparing the light amount before and after the hybridization of the same chip, an image of the DNA chip before the hybridization is acquired, and the DNA chip is once moved from the biochip reader to the incubator to carry out the hybridization reaction. After that, it is necessary to acquire the image of the DNA chip with this apparatus again after promoting the operation, and the work is complicated.
  • An object of the present invention is to provide a nucleic acid sequence measurement device, a nucleic acid sequence measurement method, and a nucleic acid sequence measurement device which are not affected by variations in light amount between chips and spots and have excellent detection sensitivity.
  • a nucleic acid sequence measuring device for measuring a target having a specific nucleic acid sequence contained in a sample by hybridization, A donor fluorescent probe having a first binding part and a first proximal end, and a donor fluorescent molecule added at a predetermined position; A quenching probe having a second binding portion and a second proximal end, and having an acceptor fluorescent molecule added at a predetermined position; A substrate having a solid phase surface on which the first proximal end of the donor fluorescent probe and the second proximal end of the quenching probe are respectively fixed, Equipped with The first binding part of the donor fluorescent probe and the second binding part of the quenching probe have complementary sequences to each other, At least one of the donor fluorescent probe or the quenching probe has a detection unit having a sequence complementary to the nucleic acid sequence of the target, The donor fluorescent probe and the quenching probe have the first proximal end and the second proximal end so that the
  • a device for measuring a nucleic acid sequence which is characterized in that [2] When hybridization between the target and the detection unit does not occur, the binding between the first binding unit of the donor fluorescent probe and the quenching probe is maintained, thereby approaching the donor fluorescent molecule. The fluorescence of the donor fluorescent molecule is quenched by the acceptor fluorescent molecule, and the acceptor fluorescent molecule exhibits fluorescence, When hybridization occurs between the target and the detection unit, the binding between the first binding portion of the donor fluorescent probe and the second binding portion of the quenching probe is canceled, so that the acceptor fluorescent molecule is removed.
  • At least a part of the second coupling part of the quenching probe functions as the detection part, [1], [2], [4] and [5].
  • a nucleic acid sequence measuring method for measuring a target having a specific nucleic acid sequence contained in a sample by hybridization comprising: (A) preparing a sample containing the target, (B) supplying the sample to a nucleic acid sequence measurement device, (C) measuring the fluorescence amount of the donor fluorescent molecule and the fluorescence amount of the acceptor fluorescent molecule from the nucleic acid sequence measuring device, (D) a step of causing a hybridization reaction between the target in the sample and at least one of a donor fluorescent probe and a quencher probe in the nucleic acid sequence measuring device, and (e) after the reaction, from the nucleic acid sequence measuring device Measuring the fluorescence amount of the donor fluorescent molecule and the fluorescence amount of the acceptor fluorescent molecule, Including, The nucleic acid sequence measurement device, A donor
  • a method for measuring a nucleic acid sequence comprising: [12] The nucleic acid sequence measurement method according to [11], wherein the number of molecules of the hybridized target is calculated from the change in fluorescence amount of the donor fluorescent molecule before and after the hybridization reaction. [13] The method for measuring a nucleic acid sequence according to [11], wherein the number of target molecules that have not undergone a hybridization reaction is calculated from the change in the fluorescence amount of the acceptor fluorescent molecule before and after the hybridization reaction.
  • nucleic acid sequence measurement device From the nucleic acid sequence measurement device, a fluorescence reader for measuring the fluorescence amount of the donor fluorescent molecule and the fluorescence amount of the acceptor fluorescent molecule, A nucleic acid sequence measuring device having: [15] The nucleic acid sequence measuring device according to [14], which measures the fluorescence amount of the donor fluorescent molecule and the fluorescence amount of the acceptor fluorescent molecule from the nucleic acid sequence measuring device in the presence of the sample. [16] The nucleic acid sequence measuring device according to [14] or [15], which has a stirring function for hybridizing the target with the donor fluorescent probe or the quenching probe. [17] The nucleic acid sequence measuring device according to any one of [14] to [16], which has a function of separating fluorescence from the nucleic acid sequence measuring device into two colors and measuring fluorescence at the same time.
  • the nucleic acid sequence measuring device of the present invention it is possible to measure the amount of the probe set in which the binding is maintained by measuring the fluorescence of the acceptor fluorescent molecule. Further, the offset light of the fluorescence of the donor fluorescent molecule can be detected and quantified as the fluorescence of the acceptor fluorescent molecule. Therefore, the offset light of the donor fluorescent molecule can be subtracted by calculation by the fluorescence of the acceptor fluorescent molecule, and the change in the fluorescence of the donor fluorescent molecule due to the hybridization with the target can be detected with high accuracy.
  • the fluorescence decrease of the acceptor fluorescent molecule which has a negative correlation with the fluorescence increase of the donor fluorescent molecule due to the progress of the hybridization reaction with the target, can be captured, and the correlation can be doubled to improve the detection sensitivity. Can be made. Further, the lower limit of detection can be lowered without being affected by the variation in the light amount between chips and between spots.
  • the nucleic acid sequence measuring method of the present invention it is possible to measure the amount of the probe set in which the binding is maintained by measuring the fluorescence of the acceptor fluorescent molecule. Further, the offset light of the fluorescence of the donor fluorescent molecule can be detected and quantified as the fluorescence of the acceptor fluorescent molecule. Therefore, the offset light of the donor fluorescent molecule can be subtracted by calculation by the fluorescence of the acceptor fluorescent molecule, and the change in the fluorescence of the donor fluorescent molecule due to the hybridization with the target can be detected with high accuracy.
  • the fluorescence decrease of the acceptor fluorescent molecule which has a negative correlation with the fluorescence increase of the donor fluorescent molecule due to the progress of the hybridization reaction with the target, can be captured, and the correlation can be doubled to improve the detection sensitivity. Can be made. Further, the lower limit of detection can be lowered without being affected by the variation in the light amount between chips and between spots.
  • the labeling step is not necessary, and the washing step is omitted, whereby the labor required for the hybridization experiment is further shortened, and the working time and the cost are reduced. Further, it is possible to avoid performance deterioration, light amount reduction, background light increase, occurrence of variations, etc. due to imperfections in the cleaning process. In the conventional method, there is a risk that the signal and background light may increase and vary due to the cleaning method, cleaning degree, cleaning unevenness, and the like, but according to the present invention, such a risk can be avoided. As a result, more uniform results can be obtained on the array surface, and detection reproducibility is also improved.
  • the nucleic acid sequence measuring method of the present invention real-time observation of hybridization becomes possible. That is, it becomes possible to perform array observation in a state (wet state) in which the solution containing the detection target molecule (target) is added to the DNA array. As a result, it becomes possible to confirm the light amount in a state where the influence of washing is eliminated and to observe the hybridization in real time. Therefore, depending on the situation, such as when the sample concentration is high and the hybridization proceeds rapidly, it is possible to finish the hybridization in a shorter time.
  • the nucleic acid sequence measuring device of the present invention at the same position coordinates in the spot of the DNA chip, it is possible to calculate the change in the light amount before and after the hybridizing reaction at the simultaneous points, and therefore, it is fixed in the spot. It is possible to grasp the variation of the probe and the variation of the hybridization reaction in detail. Further, in the fluorescence image, a pixel having a large correlation between the fluorescence amount of the donor fluorescent molecule (hereinafter, also referred to as the donor fluorescence amount) and the fluorescence amount of the acceptor fluorescent molecule (hereinafter, also referred to as the acceptor fluorescence amount) is selected, It is possible to calculate the change in the light amount by calculation, which enables highly accurate measurement.
  • the nucleic acid sequence measuring apparatus of the present invention since an image of a spot can be acquired, it is possible to confirm a change in light amount for each pixel of the detector, and it is possible to detect a detailed change in light amount.
  • the nucleic acid sequence measuring device of the present invention is a nucleic acid sequence measuring device for measuring a target having a specific nucleic acid sequence contained in a sample by hybridization, A donor fluorescent probe having a first binding portion and a first proximal end, and a donor fluorescent molecule added at a predetermined position; A quenching probe having a second binding part and a second proximal end, and having an acceptor fluorescent molecule added at a predetermined position; A substrate having a solid phase surface on which the first proximal end of the donor fluorescent probe and the second proximal end of the quenching probe are respectively fixed, Equipped with The first binding part of the donor fluorescent probe and the second binding part of the quenching probe have complementary sequences to each other, At least one of the donor fluorescent probe or the quenching probe has a detection unit having a sequence complementary to the nucleic acid sequence of the target, The donor fluorescent probe and the quenching probe have the first proximal end and the second proximal end so that the fluor
  • FIG. 1 is a diagram showing a configuration example of a probe.
  • the nucleic acid sequence measuring device according to the present embodiment is a donor fluorescent probe in which a donor fluorescent molecule 11 is added to a complementary sequence of a target 30 which is a nucleic acid to be detected on a solid phase surface 100 such as a substrate. 10 and the quenching probe 20 to which the acceptor fluorescent molecule 21 is added are fixed and configured.
  • the principle of fluorescence resonance energy transfer (FRET) from the donor fluorescent molecule 11 to the acceptor fluorescent molecule 21 is used, and when the acceptor fluorescent molecule 21 approaches the donor fluorescent molecule 11, the donor fluorescent molecule 11 is excited and the donor fluorescent molecule 11 is excited. Energy is transferred from the fluorescent molecule 11 to the acceptor fluorescent molecule 21, and the acceptor fluorescent molecule exhibits fluorescence.
  • FRET fluorescence resonance energy transfer
  • the combination of the donor fluorescent molecule and the acceptor fluorescent molecule is not particularly limited as long as it is a combination that causes fluorescence resonance energy transfer, but a combination of the donor fluorescent molecule and the acceptor fluorescent molecule having high fluorescence resonance energy transfer efficiency is preferable.
  • the sensitivity can be further improved by selecting a combination of a donor fluorescent molecule and an acceptor fluorescent molecule having high fluorescence resonance energy transfer efficiency.
  • Table 1 shows an example of the combination of the donor fluorescent molecule and the acceptor fluorescent molecule in which energy transfer occurs, and the excitation wavelength and the fluorescent wavelength of each fluorescent molecule.
  • the combination of two kinds of left and right fluorescent molecules in each row of the donor fluorescent molecule and the acceptor fluorescent molecule shows an example of the combination of the donor fluorescent molecule and the acceptor fluorescent molecule.
  • the donor fluorescent probe 10 includes an X part 12, a detection sequence 13, and a linker 14.
  • the X portion 12 is provided from the 3'end and is a portion corresponding to several bases which is a complementary sequence of the target 30.
  • the detection sequence 13 is provided following the X portion 12 and is a complementary sequence of the target 30.
  • the linker 14 is connected to the detection sequence 13 and continues to the 5'end.
  • the donor fluorescent molecule 11 is fixed to the 3'end of the donor fluorescent probe 10.
  • the quenching probe 20 includes a Y portion 22, a detection sequence 23, and a linker 24.
  • the Y portion 22 is a portion for several bases provided from the 5'end.
  • the detection sequence 23 is provided following the Y portion 22 and is a complementary sequence of the target 30.
  • the linker 24 is connected to the detection sequence 23 and continues to the 3'end.
  • An acceptor fluorescent molecule 21 is fixed to the 5'end of the quenching probe 20.
  • the donor fluorescent probe 10 and the quenching probe 20 are immobilized on the solid phase surface 100 via the linker 14 and the linker 24, respectively.
  • the sequence of the X portion 12 of the donor fluorescent probe 10 and the sequence of the Y portion 22 of the quenching probe 20 are complementary to each other. Further, the donor fluorescent probe 10 and the quenching probe 20 are fixed at a position where the X portion 12 of the donor fluorescent probe 10 and the Y portion 22 of the quenching probe 20 can be bonded to each other, and the X portion 12 and the quenching of the donor fluorescent probe 10 are quenched.
  • acceptor fluorescent molecule 21 approaches the donor fluorescent molecule 11 when the Y portion 22 of the probe 20 is bound and the donor fluorescent molecule is irradiated with excitation light, energy is transferred from the donor fluorescent molecule 11 to the acceptor fluorescent molecule 21.
  • the positional relationship is ensured so that the acceptor fluorescent molecule moves and exhibits fluorescence.
  • nucleic acid sequence has a nucleic acid sequence capable of forming a double-stranded state with the other nucleic acid sequence, and is not necessarily completely complementary. Instead, it may contain some mismatched base pairs.
  • the affinity between the donor fluorescent probe 10 and the target 30 is desirable to be higher than the affinity between the donor fluorescent probe 10 and the quenching probe 20 by the X part 12 and the Y part 22.
  • FIG. 2 is a diagram schematically showing the principle of detecting a target.
  • the donor fluorescent probe 10 having the donor fluorescent molecule 11 added thereto and the quenching probe 20 having the acceptor fluorescent molecule 21 added thereto are bound to each other.
  • the donor fluorescent molecule 11 and the acceptor fluorescent molecule 21 are close to each other.
  • the donor fluorescent molecule is irradiated with excitation light in this state, the energy of the excited donor fluorescent molecule 11 is transferred to the acceptor fluorescent molecule 21, the donor fluorescent molecule 11 is quenched, and the acceptor fluorescent molecule 21 exhibits fluorescence.
  • the target 30 When the target 30 is present, the target 30 binds to the donor fluorescent probe 10.
  • the donor fluorescent probe 10 and the quenching probe 20 are unbonded and the acceptor fluorescent molecule 21 and the donor fluorescent molecule 11 are separated from each other. For this reason, energy transfer from the donor fluorescent molecule to the acceptor fluorescent molecule disappears, fluorescence does not appear from the acceptor fluorescent molecule, and the donor fluorescent molecule 11 becomes fluorescent by irradiation of the excitation light to the donor fluorescent molecule. Therefore, by observing the solid phase surface 100 with a fluorescence reader, the presence or absence of the target nucleic acid (target 30) in the sample can be confirmed by whether or not the donor fluorescent probe 10 exhibits fluorescence.
  • the nucleic acid sequence measuring method of the present invention is not limited to the above embodiment, and various modifications as described below are possible.
  • the amount of fluorescence when the target molecule is not present can be controlled. For example, when the number of quenching probes is larger than that of the donor fluorescent probes, the probability of coupled donor fluorescent molecules increases and the fluorescence amount of the donor fluorescent molecules decreases. Thereby, the fluorescence (offset light) of the donor fluorescent molecule when the target molecule does not exist can be suppressed to a low level. Further, when the number of donor fluorescent probes is larger than that of quenching probes, the probability of energy transfer to the acceptor fluorescent molecule is reduced, and the fluorescence (hybridizing light amount) exhibited after the target substance is detected becomes stronger.
  • the sequence of the X part 12 of the donor fluorescent probe 10 is complementary to the target 30, but the sequences of the X part 12 of the donor fluorescent probe 10 and the Y part 22 of the quenching probe 20 are set as the target type. Regardless, it may be a common array. In this case, the X section 12 and the Y section 22 have the same structure regardless of the target type, and only the detection array 13 and the detection array 23 need to be changed according to the target type, which facilitates the design. Further, there is an advantage that the extinction/emission characteristics are constant regardless of the detection target.
  • the solid phase surface on which the donor fluorescent probe and the quenching probe are fixed is not limited to the flat surface on the substrate.
  • the donor fluorescent probe and quencher probe may be immobilized on the bead surface.
  • the donor fluorescent probe and the quenching probe have a shape in which they are radially spread around the bead.
  • the surface area of the solid phase surface on which the probe is fixed is increased, and the amount of probe per unit area can be increased.
  • by collecting the beads that have captured the detection target molecule by their size, magnetism, etc. it becomes possible to selectively recover the detection target molecule.
  • the recovered molecule can be used for other tests in the subsequent process.
  • Donor fluorescent molecule or acceptor fluorescent molecule need not be attached to the tip of the probe.
  • FIG. 3 shows an example in which the donor fluorescent molecule and the acceptor fluorescent molecule are located in the middle of the probe.
  • the donor fluorescent molecule 11 is added in the middle of the donor fluorescent probe 10A
  • the acceptor fluorescent molecule 21 is added in the middle of the quenching probe 20A.
  • the acceptor fluorescent molecule 21 faces each other so that the acceptor fluorescent molecule 21 approaches the donor fluorescent molecule 11 in a state where the donor fluorescent probe 10A and the quenching probe 20A are bound so that energy transfer from the donor fluorescent molecule 11 to the acceptor fluorescent molecule 21 occurs. It is desirable to design the position.
  • the tip of the probe can be further modified.
  • FIG. 4A is a diagram showing an example in which a donor fluorescent molecule and an acceptor fluorescent molecule are added to a plurality of places.
  • the donor fluorescent molecules 11, 11, 11 are added to the donor fluorescent probe 10B
  • the acceptor fluorescent molecules 21, 21, 21 are added to the quenching probe 20B.
  • the types of the respective donor fluorescent molecules or acceptor fluorescent molecules may be different.
  • the fluorescence amount of the acceptor fluorescent molecule when the target 30 is not bound and the fluorescence amount of the donor fluorescent molecule when the target is bound are increased, Higher sensitivity detection is possible.
  • the fluorescence amount of the donor fluorescent molecule is high when the target molecule is not present and the offset light is used for the fluorescence detection of the acceptor fluorescent molecule, the absorption wavelength of the acceptor fluorescent molecule in the fluorescence wavelength spectrum of the donor fluorescent molecule is detected.
  • a molecule that absorbs light having a detection wavelength of fluorescence of the acceptor fluorescent molecule may be added to the donor fluorescent probe as a donor fluorescent molecule.
  • This molecule may be added to the quenching probe as an acceptor fluorescent molecule.
  • the fluorescence (offset light) of the donor fluorescent molecule when the target molecule does not exist can be suppressed to a low level.
  • the range of the excitation light source is adjusted so that the excitation light does not directly excite the acceptor fluorescent molecule.
  • a molecule that absorbs light of a wavelength may be added to the quenching probe as an acceptor fluorescent molecule. Thereby, the fluorescence (offset light) of the acceptor fluorescent molecule when the target molecule is present can be suppressed low.
  • the detection sequence 13 of the donor fluorescent probe 10 is provided with the detection sequence 23.
  • the donor fluorescent probe may be provided with a detection sequence complementary to the target.
  • the binding frequency of the target can be increased by providing a detection sequence in both probes.
  • the target 30 is designed to be bound to the donor fluorescent probe 10, but the target may be designed to be bound to the quenching probe. In this case, changes in the characteristics of the donor fluorescent molecule due to the proximity of the target can be avoided.
  • FIG. 4B is a diagram showing an example in which the target 30 is coupled to the quenching probe 20C.
  • the quenching probe 20C may be provided with a sequence having a higher affinity for the target 30 so that the target 30 binds to the quenching probe 20C instead of the donor fluorescent probe 10C.
  • the donor fluorescent probe 10C may or may not be provided with a detection sequence complementary to the target.
  • the probe liquid is heated and then rapidly cooled to couple the donor fluorescent probe 10 and the quenching probe 20.
  • the donor fluorescent probe 10 and the quenching probe 20 are bonded via the X section 12 and the Y section 22.
  • the probe solution is heated to 95° C., the temperature is kept for 5 minutes, and then rapidly cooled to 25° C. to couple the donor fluorescent probe 10 and the quenching probe 20.
  • the donor fluorescent probe 10 and the quenching probe 20 are bonded to the solid phase surface 100 while being bonded to each other via the X part 12 and the Y part 22.
  • the positional relationship between the donor fluorescent probe 10 and the quenching probe 20 can be appropriately managed, and energy transfer from the donor fluorescent molecule to the acceptor fluorescent molecule can be appropriately exerted. Therefore, the detection sensitivity can be improved.
  • the nucleic acid sequence measuring method of the present invention is a nucleic acid sequence measuring method using the nucleic acid sequence measuring device of the present invention, and is a nucleic acid sequence measuring method of measuring a target having a specific nucleic acid sequence contained in a sample by hybridization. ..
  • the nucleic acid measurement method of the present invention includes the following steps (a) to (e).
  • A preparing a sample containing the target, (B) supplying the sample to a nucleic acid sequence measurement device, (C) a step of measuring the fluorescence amount of the donor fluorescent molecule and the fluorescence amount of the acceptor fluorescent molecule from the nucleic acid sequence measuring device of the present invention, (D) a step of causing a hybridization reaction between the target in the sample and at least one of a donor fluorescent probe and a quencher probe in the nucleic acid sequence measuring device; and (e) after the reaction, from the nucleic acid sequence measuring device Measuring the fluorescence amount of the donor fluorescent molecule and the fluorescence amount of the acceptor fluorescent molecule.
  • a sample 50 containing the target 30 having a specific nucleic acid sequence of interest is prepared (step (a)).
  • a gene having a specific nucleic acid sequence (target 30) may be amplified.
  • a test to confirm whether or not the gene is amplified may be performed, and the hybridization reaction described below may be performed only when the gene is amplified.
  • timing of testing for the presence of a gene is not limited to after the amplification is completed, and may be during the amplification reaction.
  • electrophoresis, antigen-antibody reaction, mass spectrometry, real-time PCR method, or the like can be appropriately used.
  • the nucleic acid (target 30) may be bound to a protein or sugar chain. In this case, the interaction of the protein or sugar chain with the nucleic acid (target 30) can be confirmed.
  • the sample 50 including the target 30 is supplied to the solid phase surface 100 of the nucleic acid measurement device (step (b)). Then, the fluorescence amount of the donor fluorescent molecule and the fluorescence amount of the acceptor fluorescent molecule from the nucleic acid sequence measurement device are measured (step (c)). As described above, when the target 30 is not present, the donor fluorescent molecule 11 and the acceptor fluorescent molecule 11 are added to the quencher probe 20 to which the acceptor fluorescent molecule 21 is added, thereby binding the donor fluorescent molecule 11 and the acceptor fluorescent molecule 11. The fluorescent molecules 21 are in close proximity.
  • the donor fluorescent molecule When the donor fluorescent molecule is irradiated with excitation light in this state, the energy of the excited donor fluorescent molecule 11 is transferred to the acceptor fluorescent molecule 21, the donor fluorescent molecule 11 is quenched, and the acceptor fluorescent molecule 21 exhibits fluorescence.
  • the acceptor fluorescent molecule 21 of the quenching probe 20 cannot completely quench the fluorescence of the donor fluorescent molecule 11 of the donor fluorescent probe 10.
  • This fluorescence that cannot be quenched becomes offset light of the donor fluorescent molecule 11, and this offset light is an acceptor when a hybridization reaction between the target 30 and at least one of the donor fluorescent probe 10 and the quenching probe 20 has not occurred. It can be grasped as the fluorescence amount of the fluorescent molecule 21.
  • the fluorescence amount of the donor fluorescent molecule 11 and the fluorescence amount of the acceptor fluorescent molecule 11 before and after the hybridization reaction are measured, and the offset light amount is calculated from the fluorescence amounts of the donor fluorescent molecule 11 and the acceptor fluorescent molecule 21. You can Therefore, it is possible to more accurately calculate the number of hybridized molecules before and after the hybridization reaction.
  • the target 30 in the sample 50 is hybridized with at least one of the donor fluorescent probe and the quenching probe in the nucleic acid sequence measurement device (step (d)).
  • the target 30 in the sample 50 and the at least one of the donor fluorescent probe and the quenching probe in the device for measuring a nucleic acid sequence undergo a hybridization reaction
  • the target 30 binds to at least one of the donor fluorescent probe 10 and the quenching probe 20.
  • the bond between the donor fluorescent probe 10 and the quenching probe 20 is broken, and the distance between the acceptor fluorescent molecule 21 and the donor fluorescent molecule 11 is increased.
  • the energy transfer from the donor fluorescent molecule 11 to the acceptor fluorescent molecule 21 disappears, the fluorescence does not appear from the acceptor fluorescent molecule 21, and the donor fluorescent molecule 11 emits fluorescence when the donor fluorescent molecule 11 is irradiated with the excitation light. become.
  • the fluorescence amount of the donor fluorescent molecule (donor fluorescence amount) and the fluorescence amount of the acceptor fluorescent molecule (acceptor fluorescence amount) from the nucleic acid sequence measurement device are measured by the fluorescence reading device 60 ( Step (e)).
  • the fluorescence reader 60 With the fluorescence reader 60, the presence or absence of the target nucleic acid (target 30) in the sample can be confirmed by whether or not the donor fluorescent probe 10 exhibits fluorescence, and the hybridized target nucleic acid (target 30) can be quantified. You can Further, at this time, since the uncollected target 30 contained in the solution does not exhibit fluorescence, it does not need to be washed.
  • the solid phase surface 100 of the nucleic acid sequence measurement device can be observed through the solution. Therefore, it is possible to measure the amount of light in a state where the influence of washing is eliminated, and also possible to perform real-time measurement during hybridization. Further, by using the nucleic acid measuring device of the present invention described later as a fluorescence reading device, images before and after hybridization at the same coordinates can be obtained, and a donor fluorescence image and an acceptor fluorescence image separated at the same time wavelength can be obtained. can do. Moreover, the number of molecules of the target subjected to the hybridization reaction can be calculated by analyzing the donor fluorescence image and the acceptor fluorescence image.
  • the nucleic acid sequence measuring method of the present invention it is possible to calculate the number of target molecules 30 that have undergone the hybridization reaction from the fluorescence change amount of the donor fluorescent molecule 11 before and after the hybridization reaction.
  • a hybridization reaction was performed using a standard solution of target molecules 30 having a known number of molecules, and the amount of change in fluorescence of the donor fluorescent molecule 11 before and after the reaction was measured to show the relationship between the number of molecules and the amount of change in fluorescence.
  • Prepare a calibration curve in advance From this calibration curve and the amount of change in fluorescence of the donor fluorescent molecule 11 before and after the hybridization reaction using the sample, the number of target molecules 30 subjected to the hybridization reaction can be calculated.
  • the number of target molecules 30 that have not undergone the hybridization reaction can be calculated from the fluorescence change amount of the acceptor fluorescent molecule 21 before and after the hybridization reaction.
  • a hybridization reaction is performed using a standard solution of target molecules 30 having a known number of molecules, and the amount of change in fluorescence of the acceptor fluorescent molecule 21 before and after the reaction is measured to show the relationship between the number of molecules and the amount of change in fluorescence.
  • Prepare a calibration curve in advance From this calibration curve and the amount of change in fluorescence of the acceptor fluorescent molecule 21 before and after the hybridization reaction using the sample, the number of target molecules 30 that have not undergone the hybridization reaction can be calculated.
  • a coefficient for multiplying the fluorescence amount of the acceptor fluorescent molecule 21 is set so that the fluorescence amount of the acceptor fluorescent molecule 21 when the target molecule 30 does not exist becomes equal to the fluorescence amount of the donor fluorescent molecule 11, and the target molecule is set.
  • the corrected fluorescence amount can be calculated by subtracting the value obtained by multiplying the fluorescence amount of the 30 acceptor fluorescent molecules 21 by the set coefficient from the fluorescence amount of the donor fluorescent molecule 11.
  • a calibration curve showing the relationship between the number of molecules and the corrected fluorescence amount is created in advance. From this calibration curve and the corrected fluorescence amount of the hybridization reaction using the sample, the number of target molecules 30 subjected to the hybridization reaction can be calculated.
  • a nucleic acid sequence measuring device of the present invention is a nucleic acid sequence measuring device of the present invention, and a fluorescence reading device for measuring the fluorescence amount of a donor fluorescent molecule and the fluorescence amount of an acceptor fluorescent molecule from the nucleic acid sequence measuring device.
  • FIG. 5 is a block diagram showing a nucleic acid sequence measuring device 60 of the present invention.
  • the temperature control stage after acquiring the image before hybridization
  • the temperature of the DNA chip 40 is raised by 82 to allow the hybridization reaction to proceed, and the hybridized image is acquired while the temperature is lowered to room temperature again.
  • the temperature adjustment stage 82 preferably has a function of shaking, rotating the DNA chip 40, or stirring by a vortex mixer during the reaction between the target 30 and the probe. ..
  • the laser light emitted from the laser light source 61 is reflected by the dichroic mirror 74 via the mirror 73 and irradiates the DNA chip 40.
  • the irradiated light becomes excitation light for the donor fluorescent molecule on the DNA chip 40 and the wavelength of the laser light source 61 and the excitation wavelength of the donor fluorescent molecule 11 overlap, the donor fluorescent molecule 11 is in an excited state.
  • the donor fluorescent molecule 11 when the donor fluorescent probe 10 and the quenching probe 20 are bound, the donor fluorescent molecule 11 is quenched and the acceptor fluorescent molecule 21 exhibits fluorescence.
  • the target 30 is present and the bond between the donor fluorescent probe 10 and the quenching probe 20 is released, the donor fluorescent molecule 11 exhibits fluorescence and the acceptor fluorescent molecule 21 does not exhibit fluorescence.
  • the fluorescence emitted from the DNA chip 40 passes through the dichroic mirror 74 and is separated into two colors via the image splitting optical system 81 which is an image pickup optical system, and is separated by the wavelength on the detection element of the CCD camera 63. Images with the same coordinates are formed and detected separately. As a result, images before and after hybridization at the same coordinates can be acquired, and two images separated by the wavelength at the same time can be acquired. Further, it becomes possible to detect with one CCD camera 63.
  • FIG. 6 is a schematic diagram of two CCD camera images separated by wavelength.
  • the images obtained by the nucleic acid sequence measuring apparatus of the present invention can be obtained before and after the hybridization of the same spot. Therefore, it is not affected by variations in the light amount between chips and spots. Further, since the donor fluorescence image 101 and the fluorescence image (acceptor fluorescence image) 102 from the acceptor fluorescent molecule that are separated by wavelength can be acquired at the same time, there is no time lag and the images can be correctly correlated.
  • the fluorescence change amount can be calculated from the donor fluorescence image 101 before and after the hybridization reaction to calculate the number of molecules subjected to the hybridization reaction, and the fluorescence change amount can be calculated from the acceptor fluorescence image 102 before and after the hybridization reaction to obtain a high It is possible to calculate the number of molecules in which no hybridization reaction has occurred.
  • the calculation of the fluorescence change amount may use the average light amount of the entire spot, or may use the fluorescence change amount of each pixel of the spot image.
  • the nucleic acid sequence measuring device of the present invention may include a computer that controls the CCD camera 63, an arithmetic device that calculates the light amount of an image, and a recording device that stores the image and the light amount.
  • the scope of application of the present invention is not limited to the above embodiment.
  • INDUSTRIAL APPLICABILITY The present invention is widely applied to a nucleic acid sequence measuring device for measuring a target having a specific nucleic acid sequence contained in a sample by hybridization, a nucleic acid sequence measuring method and a nucleic acid sequence measuring device using the nucleic acid sequence measuring device. can do.
  • a DNA chip 40 in which a plurality of donor fluorescent probes 10 and quenching probes 20 are arranged on a substrate is prepared, and a target 30 is supplied to the DNA chip 40 and reacted at 60° C. for 30 minutes to remove donor fluorescent molecules from the DNA chip.
  • the fluorescence amount and the fluorescence amount of the acceptor fluorescent molecule from the quenching probe were measured. The result is shown in FIG. 7.
  • Cy3 was used as the donor fluorescent molecule 11 and Cy5 was used as the acceptor fluorescent molecule 25.
  • FIG. 7 shows the amount of donor fluorescence that is the fluorescence of the donor fluorescent molecule 11 of the donor fluorescent probe 10 and the fluorescence of the acceptor fluorescent molecule 21 of the quenching probe 20 when there is no target 30 and when the concentration of the target 30 is increased. It is the figure which showed the change of a certain acceptor fluorescence amount. As shown in FIG. 7, the fluorescence amount of the donor fluorescent molecule increased as the concentration of the target 30 increased. Further, the fluorescence amount of the acceptor fluorescent molecule decreased as the concentration of the target 30 increased. Next, in FIG. 7, when the target 30 is absent (when the target concentration is 0 nM in FIG. 7), the fluorescence amount of the acceptor fluorescent molecule is equal to that of the donor fluorescent molecule.
  • a coefficient for multiplying the amount of fluorescence was set.
  • the corrected light amount was calculated by subtracting the value obtained by multiplying the fluorescence amount of the acceptor fluorescent molecule at each concentration of each target 30 by the set coefficient from the fluorescence amount of the donor fluorescent molecule.
  • the result is shown in FIG.
  • the slope of the increase in the correction light amount is about 1.4 times the slope of the increase in the fluorescence amount of the donor fluorescent molecule with respect to the concentration of the target 30, and the sensitivity is improved. It was confirmed.
  • the corrected light amount is 0 when the corrected target 30 is not present.
  • the confidence interval of the lower detection limit depends on the variation in the correlation between the fluorescence amount of the donor fluorescent molecule and the fluorescence amount of the acceptor fluorescent molecule. It is determined. It is considered that the correlation between the fluorescence amount of the donor fluorescent molecule and the fluorescence amount of the acceptor fluorescent molecule has large variations in the order of chip difference, spot difference, and unevenness of the fixed amount of probe in the spot.
  • the nucleic acid sequence measuring device of the present invention can eliminate the influence of the difference between spots and the fixed amount of the probe in the spot, and can detect the light amount change amount in each pixel of the fluorescence image also regarding the unevenness of the fixed amount of the probe in the spot. A pixel having a high correlation is selected to calculate the fluorescent light amount. As a result, the nucleic acid sequence measuring apparatus of the present invention can suppress the variation to be small.
  • Donor fluorescent probe 11 Donor fluorescent molecule 12 X part (first binding part) 13 Detection sequence (detection unit) 14 Linker (first base end) 20 Quenching probe 21 Acceptor fluorescent molecule 22 Y part (second binding part) 23 Detection Sequence (Detection Unit) 24 Linker (second base end) 40 DNA chip (nucleic acid sequence measurement device) 50 samples 60 fluorescence reader (nucleic acid sequence measuring device) 61 laser light source 63 CCD camera 73 mirror 74 dichroic mirror 81 image splitting optical system 82 temperature control stage 100 solid phase surface 101 donor fluorescence image 102 acceptor fluorescence image 111 probe spot of donor fluorescence image 112 probe spot of acceptor fluorescence image

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Optics & Photonics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

ターゲット(30)が供給されない場合には、結合部を介する結合が維持されて、ドナー蛍光分子(11)を励起すると、ドナー蛍光分子(11)に接近したアクセプター蛍光分子(21)にエネルギーが移動し、アクセプター蛍光分子(21)が蛍光を呈する。ターゲット(30)が供給された場合には、検出部にターゲット(30)が結合して結合部を介する結合が解消され、アクセプター蛍光分子(21)がドナー蛍光分子(11)から離れることによりドナー蛍光分子11が蛍光を呈する。

Description

核酸配列計測用デバイス、核酸配列計測方法、および核酸配列計測装置
 本発明は、ハイブリダイゼーションによりサンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測用デバイス、核酸配列計測方法、および核酸配列計測装置に関する。
 DNAチップを用いて特定の核酸の有無や量を計測する核酸配列計測用デバイスが知られている(特許文献1)。この核酸配列計測用デバイスにおいて、互いに独立した蛍光プローブおよび消光プローブの結合が、結合部を介して維持されると、消光分子により蛍光分子の蛍光が消光される。一方、ターゲットが供給された場合には、検出部にターゲットが結合して結合部を介する結合が解消され、消光分子が蛍光分子から離れることにより蛍光分子が蛍光を呈する。
 また、光検出手段で取り込んだ光の光量を計測する光量計測装置において、前記光検出手段の出力信号に基づいて蛍光信号光の光量を算出する光量算出手段と、励起光を照射する励起光照射手段と、この励起光を照射することにより、基準となる蛍光信号を発生する基準蛍光信号発生手段と、前記基準となる蛍光信号により既知の光量の光を前記光検出手段に与えることで、前記光量算出手段により算出される光量を校正する校正手段と、を備える光量計測装置が知られている(特許文献2)。
特許第5928906号公報 特開2011-17721号公報
 しかし、特許文献1の方法では、蛍光プローブと消光プローブの結合による消光が不完全である場合、ターゲットが存在しないときの蛍光(オフセット光)が存在するため少量のターゲットによる蛍光分子の蛍光光量変化の検出下限の制約になっている。また、この方法では、蛍光プローブのみの蛍光光量変化を検出しているため検出感度が十分ではない。
 さらに、前記オフセット光は、ターゲットとのハイブリダイゼーションが生じていない場合の、蛍光プローブと消光プローブが結合している状態で、消光分子で消光されない、蛍光分子の蛍光である。ターゲットとのハイブリダイゼーションにより、蛍光プローブと消光プローブの結合が解消され、消光分子から離れた蛍光分子が増加すると、前記オフセット光は減少する。しかしながら、特許文献1の方法では、このオフセット光を測定することができない。
 一方、特許文献2の光量計測装置では、DNAチップのハイブリダイズ前後の光量を比較する際に、ターゲットが含まれないネガティブコントールとなるサンプルをハイブリダイゼーション反応させたDNAチップの画像と、ターゲットが含まれるサンプルをハイブリダイゼーション反応させたDNAチップの画像を取得する必要がある。そのためDNAチップの画像の検出光量を比較する際にチップ間、スポット間の光量にばらつきがあり、この光量のばらつきが検出下限の制約となっている。
 また、この光量計測装置では、同一チップのハイブリダイズ前後の光量を比較する際に、ハイブリダイズ前のDNAチップの画像を取得し、DNAチップを一度バイオチップ読取装置からインキュベーターに移してハイブリダイズ反応を促進した上で、再度この装置でDNAチップの画像を取得する必要があり作業が煩雑である。
 さらに、この光量計測装置を用いて、2色のレーザーの励起による蛍光物質の蛍光画像を取得しようとすると、それぞれの蛍光物質の蛍光画像を取得する際に装置の構成を変更する必要があるため、2色の蛍光画像の取得にタイムラグが生じ2色の蛍光画像の相関を正しく取ることができない。
 本発明の目的は、チップ間およびスポット間の光量のばらつきの影響を受けず、検出感度に優れる核酸配列計測用デバイス、核酸配列計測方法、及び核酸配列計測装置を提供することにある。
 上記の目的を達成するために、本発明は以下の構成を採用した。
[1] ハイブリダイゼーションによりサンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測用デバイスにおいて、
 第1結合部および第1基端を有し、かつ、ドナー蛍光分子が所定の位置に付加されたドナー蛍光プローブと、
 第2結合部および第2基端を有し、かつ、アクセプター蛍光分子が所定の位置に付加された消光プローブと、
 前記ドナー蛍光プローブの前記第1基端および前記消光プローブの前記第2基端がそれぞれ固定される固相面を有する基板と、
を備え、
 前記ドナー蛍光プローブの前記第1結合部と前記消光プローブの前記第2結合部とが、互いに相補的な配列を有し、
 前記ドナー蛍光プローブまたは前記消光プローブの少なくとも一方は、前記ターゲットの核酸配列と相補的な配列を有する検出部を有し、
 前記ドナー蛍光プローブおよび前記消光プローブは、前記ドナー蛍光分子に接近した前記アクセプター蛍光分子により前記ドナー蛍光分子の蛍光が消光される位置関係となるように、前記第1基端および前記第2基端が前記固相面に固定される、
ことを特徴とする核酸配列計測用デバイス。
[2] 前記ターゲットと前記検出部とのハイブリダイゼーションが生じていない場合、前記ドナー蛍光プローブの前記第1結合部と前記消光プローブとの結合が維持されることにより、前記ドナー蛍光分子に接近した前記アクセプター蛍光分子により前記ドナー蛍光分子の蛍光が消光され、前記アクセプター蛍光分子が蛍光を呈し、
 前記ターゲットと前記検出部とのハイブリダイゼーションが生じた場合、前記ドナー蛍光プローブの前記第1結合部と前記消光プローブの前記第2結合部との結合が解消されることにより、前記アクセプター蛍光分子から離れた前記ドナー蛍光分子が蛍光を呈することを特徴とする[1]に記載の核酸配列計測用デバイス。
[3] 前記ドナー蛍光プローブが、前記検出部を有することを特徴とする[1]または[2]に記載の核酸配列計測用デバイス。
[4] 前記消光プローブが、前記検出部を有することを特徴とする[1]または[2]に記載の核酸配列計測用デバイス。
[5] 前記基板が平板であり、前記固相面が、該平板の一平面であることを特徴とする[1]~[4]のいずれか1項に記載の核酸配列計測用デバイス。
[6] 前記ドナー蛍光プローブの前記第1結合部の少なくとも一部が前記検出部として機能することを特徴とする[1]~[3]および[5]のいずれか1項に記載の核酸配列計測用デバイス。
[7] 前記消光プローブの前記第2結合部の少なくとも一部が前記検出部として機能することを特徴とする[1]、[2]、[4]および[5]のいずれか1項に記載の核酸配列計測用デバイス。
[8] 前記ドナー蛍光分子が付加される前記所定の位置は、前記ドナー蛍光プローブの途中であることを特徴とする[1]~[7]のいずれか1項に記載の核酸配列計測用デバイス。
[9] 前記アクセプター蛍光分子が付加される前記所定の位置は、前記消光プローブの途中であることを特徴とする[1]~[7]のいずれか1項に記載の核酸配列計測用デバイス。
[10] 前記ドナー蛍光プローブおよび前記消光プローブの両方が、前記検出部を有する、[1]~[9]のいずれか1項に記載の核酸配列計測用デバイス。
[11] ハイブリダイゼーションによりサンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測方法であって、
 (a)前記ターゲットを含むサンプルを調製するステップ、
 (b)前記サンプルを核酸配列計測用デバイスに供給するステップ、
 (c)前記核酸配列計測用デバイスからの、ドナー蛍光分子の蛍光量とアクセプター蛍光分子の蛍光量とを測定するステップ、
 (d)前記サンプル中の前記ターゲットと前記核酸配列計測用デバイス中のドナー蛍光プローブまたは消光プローブの少なくとも一方とをハイブリダイゼーション反応させるステップ、および
 (e)前記反応後、前記核酸配列計測用デバイスからの、ドナー蛍光分子の蛍光量とアクセプター蛍光分子の蛍光量とを測定するステップ、
を含み、
 前記核酸配列計測用デバイスは、
 第1結合部および第1基端を有し、かつ、ドナー蛍光分子が所定の位置に付加されたドナー蛍光プローブと、
 第2結合部および第2基端を有し、かつ、アクセプター蛍光分子が所定の位置に付加された消光プローブと、
 前記ドナー蛍光プローブの前記第1基端および前記消光プローブの前記第2基端がそれぞれ固定される固相面を有する基板と、
を備え、
 前記ドナー蛍光プローブの前記第1結合部と前記消光プローブの前記第2結合部とが、互いに相補的な配列を有し、
 前記ドナー蛍光プローブまたは前記消光プローブの少なくとも一方は、前記ターゲットの核酸配列と相補的な配列を有する検出部を有し、
 前記ドナー蛍光プローブおよび前記消光プローブは、前記ドナー蛍光分子に接近した前記アクセプター蛍光分子により前記ドナー蛍光分子の蛍光が消光される位置関係となるように、前記第1基端および前記第2基端が前記固相面に固定される、
ことを特徴とする核酸配列計測方法。
[12] 前記ハイブリダイゼーション反応前後のドナー蛍光分子の蛍光量の変化から、ハイブリダイズしたターゲットの分子数を算出することを特徴とする[11]に記載の核酸配列計測方法。
[13] 前記ハイブリダイゼーション反応前後のアクセプター蛍光分子の蛍光量の変化から、ハイブリダイゼーション反応していないターゲットの分子数を算出することを特徴とする[11]に記載の核酸配列計測方法。
[14] [1]~[10]のいずれか1項に記載の核酸配列計測用デバイスと、
 前記核酸配列計測用デバイスからの、ドナー蛍光分子の蛍光量と、アクセプター蛍光分子の蛍光量とを測定する蛍光読取装置と、
を有する、核酸配列計測装置。
[15] 前記サンプルの存在下で、前記核酸配列計測用デバイスからの、ドナー蛍光分子の蛍光量と、アクセプター蛍光分子の蛍光量とを測定する、[14]に記載の核酸配列計測装置。
[16] 前記ターゲットと前記ドナー蛍光プローブまたは前記消光プローブとをハイブリダイズさせるための撹拌機能を備える、[14]または[15]に記載の核酸配列計測装置。
[17] 前記核酸配列計測用デバイスからの蛍光を2色に分離し、同時に蛍光を測定する機能を備える、[14]~[16]のいずれか1項に記載の核酸配列計測装置。
 本発明の核酸配列計測用デバイスによれば、アクセプター蛍光分子の蛍光を測定することで結合が維持されているプローブセットの量を計測することができる。また、ドナー蛍光分子の蛍光のオフセット光を、アクセプター蛍光分子の蛍光として検出し、定量することができる。そのため、アクセプター蛍光分子の蛍光により、ドナー蛍光分子のオフセット光を演算で減算することができ、ターゲットとのハイブリダイゼーションによるドナー蛍光分子の蛍光の変化を高精度に検出することができる。
 また、ターゲットとのハイブリダイゼーション反応の進行によるドナー蛍光分子の蛍光増加と負の相関があるアクセプター蛍光分子の蛍光減少を捉えることができ、相関を二重でとることができることにより、検出感度を向上させることができる。
 さらに、チップ間およびスポット間の光量のばらつきの影響を受けず、検出下限を下げることができる。
 本発明の核酸配列計測方法によれば、アクセプター蛍光分子の蛍光を測定することで結合が維持されているプローブセットの量を計測することができる。また、ドナー蛍光分子の蛍光のオフセット光を、アクセプター蛍光分子の蛍光として検出し、定量することができる。そのため、アクセプター蛍光分子の蛍光により、ドナー蛍光分子のオフセット光を演算で減算することができ、ターゲットとのハイブリダイゼーションによるドナー蛍光分子の蛍光の変化を高精度に検出することができる。
 また、ターゲットとのハイブリダイゼーション反応の進行によるドナー蛍光分子の蛍光増加と負の相関があるアクセプター蛍光分子の蛍光減少を捉えることができ、相関を二重でとることができることにより、検出感度を向上させることができる。
 さらに、チップ間およびスポット間の光量のばらつきの影響を受けず、検出下限を下げることができる。
 また、本発明の核酸配列計測方法によれば、ラべリング工程が不要なうえ、洗浄工程を省略することによってハイブリダイズの実験にかかる手間がさらに短縮され、作業時間とともにコストが削減される。さらに、洗浄工程の不備による性能悪化、光量低下、背景光上昇、あるいはバラつきの発生等を回避することが可能となる。従来の手法では、洗浄の仕方や、洗浄度、洗浄のムラなどに起因するシグナルや背景光の上昇とバラつきのリスクが発生するが、本発明によればこのようなリスクを回避できる。それによりアレイ面上でより均一な結果を得ることができ、検出の再現性も向上する。
 さらに、本発明の核酸配列計測方法によれば、ハイブリダイズのリアルタイム観察が可能となる。すなわち、DNAアレイに検出対象分子(ターゲット)を含む溶液を添加した状態のまま(ウェット状態)でのアレイ観察が可能となる。それにより洗浄の影響を排した状態の光量の確認やハイブリダイズのリアルタイム観察が可能となる。したがって、サンプル濃度が高く、ハイブリダイゼーションが早く進む場合など、状況によっては、より短時間でハイブリダイゼーションを終了させることが可能となる。
 本発明の核酸配列計測装置によれば、DNAチップのスポット中の同一の位置座標において、同時点のハイブリダイズ反応の前後の光量変化を演算により算出することができるため、スポット中の固定化されたプローブのばらつき及びハイブリダイゼーション反応のばらつきを詳細に把握することができる。また、蛍光画像中で、ドナー蛍光分子の蛍光量(以下、ドナー蛍光量ともいう)とアクセプター蛍光分子の蛍光量(以下、アクセプター蛍光量ともいう)の変化の相関が大きいピクセルを選択して、光量変化を演算で算出することができ、高精度な測定が可能となる。
 従来の核酸配列計測装置では、スポット全体の平均光量を演算で算出して光量変化を確認していたため、スポットの面分布でのプローブ分子の固定化量のむらやハイブリダイズ反応による光量変化のむらが存在する場合に、スポット中でハイブリダイズ反応による光量変化が認められる部位を見落としていた。本発明の核酸配列計測装置によれば、スポットの画像を取得することができるため、検出器の各ピクセルについて光量変化を確認することができ、詳細な光量変化を検出できる。また、ドナー蛍光量とアクセプター蛍光量の変化の相関が高いピクセルを選択することにより、ハイブリダイズ反応による光量変化の有無を正確に検出することができる。このため同一のタイミングで位置のずれがない、ドナー蛍光分子の蛍光画像(ドナー蛍光画像)と、アクセプター分子の蛍光画像(アクセプター蛍光画像)を取得することができ、より精度の高い解析が可能となる。
プローブの構成例を示す図である。 ターゲットを検出する原理を模式的に示す図である。 変形例を示す図であり、ドナー蛍光分子およびアクセプター蛍光分子がプローブの途中に位置している例を示す図である。 変形例を示す図であり、複数個所にドナー蛍光分子およびアクセプター蛍光分子が付加された例を示す図である。 変形例を示す図であり、ターゲットが消光プローブに結合する例を示す図である。 核酸配列計測装置を示す構成図である。 波長で分離されたドナー蛍光画像とアクセプター蛍光画像の模式図である。 濃度の異なるターゲットをハイブリダイズさせたときのハイブリダイゼーション反応の光量変化を示す図である。 ターゲットがないときのアクセプター蛍光分子の蛍光量がドナー蛍光分子の蛍光量と等量になるようにアクセプター蛍光分子の蛍光量に乗算する係数を設定し、濃度の異なるターゲットのアクセプター蛍光分子の蛍光量に設定した係数をかけた数値をドナー蛍光分子の蛍光量から減算した補正光量を示す図である。
 本発明の核酸配列計測用デバイスは、ハイブリダイゼーションによりサンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測用デバイスにおいて、
 第1結合部および第1基端を有し、かつ、ドナー蛍光分子が所定の位置に付加されたドナー蛍光プローブと、
 第2結合部および第2基端を有し、かつ、アクセプター蛍光分子が所定の位置に付加された消光プローブと、
 前記ドナー蛍光プローブの前記第1基端および前記消光プローブの前記第2基端がそれぞれ固定される固相面を有する基板と、
を備え、
 前記ドナー蛍光プローブの前記第1結合部と前記消光プローブの前記第2結合部とが、互いに相補的な配列を有し、
 前記ドナー蛍光プローブまたは前記消光プローブの少なくとも一方は、前記ターゲットの核酸配列と相補的な配列を有する検出部を有し、
 前記ドナー蛍光プローブおよび前記消光プローブは、前記ドナー蛍光分子に接近した前記アクセプター蛍光分子により前記ドナー蛍光分子の蛍光が消光される位置関係となるように、前記第1基端および前記第2基端が前記固相面に固定される、
ことを特徴とする。
 以下、本発明の核酸配列計測用デバイスの実施形態について説明する。
 図1は、プローブの構成例を示す図である。
 図1に示すように、本実施形態の核酸配列計測用デバイスは、基板などの固相面100に、検出対象となる核酸であるターゲット30の相補配列にドナー蛍光分子11を付加したドナー蛍光プローブ10と、アクセプター蛍光分子21を付加した消光プローブ20と、がそれぞれ固定されて構成される。本発明では、ドナー蛍光分子11からアクセプター蛍光分子21への蛍光共鳴エネルギー移動(FRET)の原理が用いられ、アクセプター蛍光分子21がドナー蛍光分子11に接近すると、ドナー蛍光分子11の励起により、ドナー蛍光分子11からアクセプター蛍光分子21へエネルギーが移動し、アクセプター蛍光分子が蛍光を呈するようになる。
 ドナー蛍光分子とアクセプター蛍光分子の組み合わせは、蛍光共鳴エネルギー移動が生じる組み合わせであれば特に制限はないが、蛍光共鳴エネルギー移動効率が高い、ドナー蛍光分子とアクセプター蛍光分子の組合せが好ましい。蛍光共鳴エネルギー移動効率が高いドナー蛍光分子とアクセプター蛍光分子の組合せを選択することにより、さらに感度を向上させることができる。エネルギー移動が生じる、ドナー蛍光分子とアクセプター蛍光分子の組み合わせの例と、それぞれの蛍光分子の励起波長と蛍光波長を表1に示す。下記の表1において、ドナー蛍光分子とアクセプター蛍光分子のそれぞれの列の左右2種類の蛍光分子の組み合わせが、ドナー蛍光分子とアクセプター蛍光分子の組み合わせの例を示している。
Figure JPOXMLDOC01-appb-T000001
 図1に示すように、ドナー蛍光プローブ10は、X部12と、検出配列13と、リンカー14とを備える。X部12は、3’末端から設けられ、ターゲット30の相補配列である数塩基分の部分である。検出配列13は、X部12に続いて設けられ、ターゲット30の相補配列である。リンカー14は、検出配列13に接続され5’末端まで続く。ドナー蛍光プローブ10の3’末端にドナー蛍光分子11が固定される。
 消光プローブ20は、Y部22と、検出配列23と、リンカー24とを備える。Y部22は、5’末端から設けられる数塩基分の部分である。検出配列23は、Y部22に続いて設けられ、ターゲット30の相補配列である。リンカー24は、検出配列23に接続され3’末端まで続く。消光プローブ20の5’末端にアクセプター蛍光分子21が固定される。
 ドナー蛍光プローブ10および消光プローブ20は、それぞれリンカー14およびリンカー24を介して固相面100に固定化される。また、ドナー蛍光プローブ10のX部12の配列と消光プローブ20のY部22の配列とは、互いに相補的とされる。また、ドナー蛍光プローブ10のX部12と消光プローブ20のY部22とが互いに結合可能な位置にドナー蛍光プローブ10および消光プローブ20が固定されるとともに、ドナー蛍光プローブ10のX部12と消光プローブ20のY部22とが結合したときに、アクセプター蛍光分子21がドナー蛍光分子11に接近し、ドナー蛍光分子に励起光が照射されると、ドナー蛍光分子11からアクセプター蛍光分子21にエネルギーが移動し、アクセプター蛍光分子が蛍光を呈するような位置関係が確保されている。
 なお、本発明において相補的であるとは、一方の核酸配列が、他方の核酸配列と2本鎖状態を形成することのできる核酸配列を持つことを意味し、必ずしも完全に相補的である必要はなく、いくつかのミスマッチ塩基対を含んでいてもよい。
 また、ドナー蛍光プローブ10とターゲット30との親和性を、X部12およびY部22によるドナー蛍光プローブ10と消光プローブ20との親和性よりも高く設計することが望ましい。
 次に、本発明の核酸配列計測用デバイスによりターゲット30を検出する原理について説明する。図2はターゲットを検出する原理を模式的に示す図である。
 図2に示すように、ターゲット30が存在しないときは、ドナー蛍光分子11が付加されたドナー蛍光プローブ10とアクセプター蛍光分子21が付加された消光プローブ20とが結合する。これにより、ドナー蛍光分子11とアクセプター蛍光分子21が接近した状態にある。この状態でドナー蛍光分子に励起光が照射されると、励起されたドナー蛍光分子11のエネルギーがアクセプター蛍光分子21に移動し、ドナー蛍光分子11は消光され、アクセプター蛍光分子21が蛍光を呈する。
 ターゲット30が存在すると、ターゲット30はドナー蛍光プローブ10と結合する。ターゲット30がドナー蛍光プローブ10と結合すると、ドナー蛍光プローブ10と消光プローブ20の結合が外れてアクセプター蛍光分子21とドナー蛍光分子11の距離が離れる。このため、ドナー蛍光分子からアクセプター蛍光分子へのエネルギー移動がなくなり、アクセプター蛍光分子からは蛍光は呈さなくなり、ドナー蛍光分子への励起光の照射によりドナー蛍光分子11が蛍光を呈するようになる。したがって、蛍光読取装置での固相面100の観察により、ドナー蛍光プローブ10が蛍光を呈するか否かでサンプル中の対象核酸(ターゲット30)の有無を確認することができる。
 本発明の核酸配列計測方法は上記実施形態に限定されず、以下のような種々の変形が可能である。
 ドナー蛍光分子を付加したドナー蛍光プローブとアクセプター蛍光分子を付加した消光プローブの存在比を変えてそれぞれを固定化することで、対象分子が存在していないときの蛍光量を制御することができる。例えば、消光プローブをドナー蛍光プローブよりも多くすると、カップリングされるドナー蛍光分子の確率が高まり、ドナー蛍光分子の蛍光量が減少する。それによって対象分子が存在していないときのドナー蛍光分子の蛍光(オフセット光)を低く抑えることができる。また、ドナー蛍光プローブを消光プローブよりも多くすると、アクセプター蛍光分子へのエネルギー移動が生じる確率が低くなり、対象物質検出後に呈する蛍光(ハイブリダイズ光量)がより強くなる。
 上記実施形態では、ドナー蛍光プローブ10のX部12の配列をターゲット30と相補的なものとしているが、ドナー蛍光プローブ10のX部12および消光プローブ20のY部22の配列をターゲットの種類に関わらず共通化した配列としてもよい。この場合、X部12およびY部22をターゲットの種類と無関係に同一の構造とし、検出配列13および検出配列23のみをターゲットの種類に応じて変えればよいため、設計が容易となる。また消光/発光の特性が検出対象によらず一定となる利点がある。
 また、ドナー蛍光プローブおよび消光プローブが固定される固相面は基板上の平面に限られない。ドナー蛍光プローブおよび消光プローブをビーズ表面に固定してもよい。ビーズの表面にドナー蛍光プローブおよび消光プローブを固定することにより、ドナー蛍光プローブおよび消光プローブがビーズを中心として放射状に広がった形状となる。この場合、プローブを固定する固相面の表面積が大きくなり、単位面積当たりのプローブ量を増やすことができる。また、検出対象分子を捕集したビーズをその大きさや磁気等で回収することで、検出対象分子の選択的な回収も可能となる。回収した分子は後工程における別の試験などに使用可能となる。
 ドナー蛍光分子もしくはアクセプター蛍光分子はプローブの先端についていなくてもよい。図3は、ドナー蛍光分子およびアクセプター蛍光分子がプローブの途中に位置している例を示している。図3の例では、ドナー蛍光分子11が、ドナー蛍光プローブ10Aの途中に付加され、アクセプター蛍光分子21が、消光プローブ20Aの途中に付加されている。ただし、ドナー蛍光分子11からアクセプター蛍光分子21へのエネルギー移動が生じるように、ドナー蛍光プローブ10Aおよび消光プローブ20Aが結合した状態において、アクセプター蛍光分子21がドナー蛍光分子11に接近するように互いに向き合う位置となるように設計することが望ましい。ドナー蛍光分子もしくはアクセプター蛍光分子をプローブの先端以外の位置に付加する場合には、プローブの先端にはさらに別の修飾が可能となる利点がある。
 ドナー蛍光分子とアクセプター蛍光分子はそれぞれ複数種類・複数個所に付加されてもよい。図4Aは、複数個所にドナー蛍光分子およびアクセプター蛍光分子が付加された例を示す図である。図4Aの例では、ドナー蛍光プローブ10Bにドナー蛍光分子11,11,11が付加され、消光プローブ20Bにアクセプター蛍光分子21,21,21が付加されている。複数のドナー蛍光分子およびアクセプター蛍光分子を1つのプローブに付加する場合、それぞれのドナー蛍光分子またはアクセプター蛍光分子の種類を異なるものとしてもよい。1つのプローブに複数のドナー蛍光分子およびアクセプター蛍光分子を付加した場合、ターゲット30が結合しない場合のアクセプター蛍光分子の蛍光量と、ターゲットが結合した際のドナー蛍光分子の蛍光量とが増加し、より高感度な検出が可能となる。また、対象分子が存在していないときのドナー蛍光分子の蛍光量が高く、アクセプター蛍光分子の蛍光検出のオフセット光となる場合には、ドナー蛍光分子の蛍光波長スペクトルのうちアクセプター蛍光分子の吸収波長スペクトルと被らない範囲の波長でありアクセプター蛍光分子の蛍光の検出波長の光を吸収するような分子をドナー蛍光分子としてドナー蛍光プローブに付加してもよい。この分子はアクセプター蛍光分子として消光プローブに付加してもよい。それによって対象分子が存在していないときのドナー蛍光分子の蛍光(オフセット光)を低く抑えることができる。また、対象分子が存在するときのアクセプター蛍光分子の蛍光量が高く、ドナー蛍光分子の蛍光検出のオフセット光となる場合には、励起光がアクセプター蛍光分子を直接励起しないように励起光源の範囲の波長の光を吸収するような分子をアクセプター蛍光分子として消光プローブに付加してもよい。それによって対象分子が存在するときのアクセプター蛍光分子の蛍光(オフセット光)を低く抑えることができる。
 上記実施形態ではドナー蛍光プローブ10の検出配列13だけでなく、消光プローブ20にも検出配列23を設けているが、ドナー蛍光プローブのみにターゲットと相補的な検出配列を設けてもよい。ただし、両者のプローブに検出配列を設けることにより、ターゲットの結合頻度を高めることができると考えられる。
 また、上記実施形態では、ターゲット30がドナー蛍光プローブ10に結合する設計としているが、ターゲットが消光プローブに結合する設計としてもよい。この場合、ターゲットが近接することによるドナー蛍光分子の特性の変化を回避できる。
 図4Bは、ターゲット30が消光プローブ20Cに結合する例を示す図である。図4Bの例のように、消光プローブ20Cにターゲット30に対してより親和性のある配列を与え、ターゲット30がドナー蛍光プローブ10Cではなく、消光プローブ20Cに結合するようにしてもよい。この場合、ドナー蛍光プローブ10Cにもターゲットと相補的な検出配列を設けてもよいし、設けなくてもよい。
 次に、本発明の核酸配列計測用デバイスの製造方法について説明する。
(1)溶液調製
 まず、ドナー蛍光プローブ10および消光プローブ20を混合したプローブ液を調製し、プローブ濃度を調整する。
(2)カップリング
 次に、プローブ液を加熱後、急冷し、ドナー蛍光プローブ10と消光プローブ20をカップリングさせる。これにより、X部12およびY部22を介してドナー蛍光プローブ10と消光プローブ20が結合される。ここでは、例えば、プローブ液を95℃に加熱後、5分間温度を保持し、その後、25℃に急冷することでドナー蛍光プローブ10と消光プローブ20をカップリングさせる。
(3)固相面への固定
 次に、ドナー蛍光プローブ10と消光プローブ20がカップリングした状態にあるプローブ液を固相面にスポットして、ドナー蛍光プローブ10と消光プローブ20を固相面100に固定化する。
(4)洗浄
 次に、固相面100を洗浄し、固定化されていない余剰のプローブを除去する。以上の手順により、DNAチップが製造される。
 このように、X部12およびY部22を介して互いに結合された状態で、ドナー蛍光プローブ10および消光プローブ20を固相面100に結合させる。これによって、ドナー蛍光プローブ10および消光プローブ20の位置関係を適切に管理でき、ドナー蛍光分子からアクセプター蛍光分子へのエネルギー移動を適切に発揮させることが可能となる。このため、検出感度を良好なものとすることができる。
 次に、本発明の核酸配列計測用デバイスを用いる核酸配列計測方法について説明する。
 本発明の核酸配列計測方法は、本発明の核酸配列計測用デバイスを用いる核酸配列計測方法であって、ハイブリダイゼーションによりサンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測方法である。
 本発明の核酸計測方法は、以下のステップ(a)~(e)を含む。
 (a)前記ターゲットを含むサンプルを調製するステップ、
 (b)前記サンプルを核酸配列計測用デバイスに供給するステップ、
 (c)本発明の前記核酸配列計測用デバイスからの、ドナー蛍光分子の蛍光量とアクセプター蛍光分子の蛍光量とを測定するステップ、
 (d)前記サンプル中の前記ターゲットと前記核酸配列計測用デバイス中のドナー蛍光プローブまたは消光プローブの少なくとも一方とをハイブリダイゼーション反応させるステップ、および
 (e)前記反応後、前記核酸配列計測用デバイスからの、ドナー蛍光分子の蛍光量とアクセプター蛍光分子の蛍光量とを測定するステップ。
 以下に上記各ステップについて説明する。
 まず、目的とする特定の核酸配列を有するターゲット30を含むサンプル50の調製を行う(ステップ(a))。サンプル50の調製において、特定の核酸配列を有する遺伝子(ターゲット30)の増幅を行ってもよい。
 遺伝子の増幅を行った段階で、遺伝子が増幅されたか否かを確認する試験を行い、遺伝子が増幅されている場合にのみ、後述するハイブリダイゼーション反応を行うようにしてもよい。
 なお、遺伝子の存在の有無を検査するタイミングは、増幅終了後に限定されず、増幅反応中であってもよい。検査の手法としては、電気泳動、抗原抗体反応、質量分析やリアルタイムPCR法などを適宜、利用することができる。
 また、核酸(ターゲット30)はタンパク質や糖鎖などに結合させても良い。この場合には、核酸(ターゲット30)に対するタンパク質や糖鎖などの相互作用が確認できる。
 次に、ターゲット30を含むサンプル50を前記核酸計測用デバイスの固相面100に供給する(ステップ(b))。その後、核酸配列計測用デバイスからの、ドナー蛍光分子の蛍光量とアクセプター蛍光分子の蛍光量とを測定する(ステップ(c))。
 前述したように、ターゲット30が存在しないときは、ドナー蛍光分子11が付加されたドナー蛍光プローブ10とアクセプター蛍光分子21が付加された消光プローブ20とが結合することにより、ドナー蛍光分子11とアクセプター蛍光分子21が接近した状態にある。この状態でドナー蛍光分子に励起光が照射されると、励起されたドナー蛍光分子11のエネルギーがアクセプター蛍光分子21に移動し、ドナー蛍光分子11は消光され、アクセプター蛍光分子21が蛍光を呈する。
 ただし、ドナー蛍光プローブ10と消光プローブ20が結合している状態でも、消光プローブ20のアクセプター蛍光分子21ではドナー蛍光プローブ10のドナー蛍光分子11の蛍光を完全に消光しきれない。この消光しきれない蛍光が、ドナー蛍光分子11のオフセット光となるが、このオフセット光は、ターゲット30とドナー蛍光プローブ10または消光プローブ20の少なくとも一方とのハイブリダイゼーション反応が生じていないときのアクセプター蛍光分子21の蛍光量として捉えることができる。そのため、ハイブリダイゼーション反応前後のドナー蛍光分子11の蛍光量とアクセプター蛍光分子の蛍光量を測定し、ドナー蛍光分子11の蛍光量とアクセプター蛍光分子21の蛍光量とから演算でオフセット光量を算出することができる。そのため、ハイブリダイゼーション反応前後でハイブリダイゼーションした分子数をより正確に算出することができる。
 次に、前記サンプル50中のターゲット30と、前記核酸配列計測用デバイス中のドナー蛍光プローブまたは消光プローブの少なくとも一方とをハイブリダイゼーション反応させる(ステップ(d))。
 前記サンプル50中のターゲット30と、前記核酸配列計測用デバイス中のドナー蛍光プローブまたは消光プローブの少なくとも一方とがハイブリダイゼーション反応すると、ターゲット30がドナー蛍光プローブ10または消光プローブ20の少なくとも一方と結合し、ドナー蛍光プローブ10と消光プローブ20の結合が外れてアクセプター蛍光分子21とドナー蛍光分子11の距離が離れる。これによって、ドナー蛍光分子11からアクセプター蛍光分子21へのエネルギー移動がなくなり、アクセプター蛍光分子21からは蛍光は呈さなくなり、ドナー蛍光分子11への励起光の照射によりドナー蛍光分子11が蛍光を呈するようになる。
 次に、ハイブリダイゼーション反応後、前記核酸配列計測用デバイスからの、ドナー蛍光分子の蛍光量(ドナー蛍光量)とアクセプター蛍光分子の蛍光量(アクセプター蛍光量)とを蛍光読取装置60で測定する(ステップ(e))。
 蛍光読取装置60で、ドナー蛍光プローブ10が蛍光を呈するか否かでサンプル中の対象核酸(ターゲット30)の有無を確認することができ、またハイブリダイズした対象核酸(ターゲット30)を定量することができる。またこの時、溶液中に含まれる捕集されていないターゲット30は蛍光を呈さないために、洗浄する必要がない。したがって、ターゲット溶液存在下で、溶液を通して核酸配列計測用デバイスの固相面100を観察することが可能である。このため、洗浄の影響を排した状態での光量が測定できるとともに、ハイブリダイゼーション中のリアルタイム測定も可能となる。
 また、蛍光読取装置として後述する本発明の核酸計測装置を用いることにより、同一座標のハイブリダイズ前後の画像が取得でき、また同時刻の波長で分離されたドナー蛍光画像と、アクセプター蛍光画像を取得することができる。また、ドナー蛍光画像及びアクセプター蛍光画像を解析することにより、ハイブリダイゼーション反応したターゲットの分子数を算出することもできる。
 また、本発明の核酸配列計測方法により、ハイブリダイゼーション反応前後のドナー蛍光分子11の蛍光変化量から、ハイブリダイゼーション反応したターゲット分子30の分子数を算出することができる。例えば、既知の分子数を有するターゲット分子30の標準液を用いてハイブリダイゼーション反応を行い、反応前後のドナー蛍光分子11の蛍光変化量を測定して、分子数と蛍光変化量の関係を示した検量線を予め作成しておく。この検量線と、サンプルを用いたハイブリダイゼーション反応前後のドナー蛍光分子11の蛍光変化量とから、ハイブリダイゼーション反応したターゲット分子30の分子数を算出することができる。
 同様に、ハイブリダイゼーション反応前後のアクセプター蛍光分子21の蛍光変化量から、ハイブリダイゼーション反応をしていないターゲット分子30の分子数を算出することもできる。例えば、既知の分子数を有するターゲット分子30の標準液を用いてハイブリダイゼーション反応を行い、反応前後のアクセプター蛍光分子21の蛍光変化量を測定して、分子数と蛍光変化量の関係を示した検量線を予め作成しておく。この検量線と、サンプルを用いたハイブリダイゼーション反応前後のアクセプター蛍光分子21の蛍光変化量とから、ハイブリダイゼーション反応していないターゲット分子30の分子数を算出することができる。
 また、ターゲット分子30が存在しないときのアクセプター蛍光分子21の蛍光量が、ドナー蛍光分子11の蛍光量と等量になるようにアクセプター蛍光分子21の蛍光量に乗算する係数を設定し、ターゲット分子30のアクセプター蛍光分子21の蛍光量に、設定した前記係数を乗じた数値を、ドナー蛍光分子11の蛍光量から減算することで、補正蛍光量を算出することができる。既知の分子数を有するターゲット分子30の標準液を用いて、分子数と補正蛍光量との関係を示した検量線を予め作成しておく。この検量線と、サンプルを用いたハイブリダイゼーション反応の補正蛍光量とから、ハイブリダイゼーション反応したターゲット分子30の分子数を算出することができる。
 次に、本発明の核酸配列計測装置について説明する。
 本発明の核酸配列計測装置は、本発明の核酸配列計測用デバイスと、前記核酸配列計測用デバイスからの、ドナー蛍光分子の蛍光量と、アクセプター蛍光分子の蛍光量とを測定する蛍光読取装置とを有する。
 図5は本発明の核酸配列計測装置60を示す構成図である。本発明の核酸配列計測装置はDNAチップ(核酸配列計測用デバイス)40のターゲット30がドナー蛍光プローブ10にハイブリダイズする前後の画像を取得するため、ハイブリダイズ前の画像を取得後、温調ステージ82によりDNAチップ40の温度を上昇させてハイブリダイゼーション反応を進行させ、再び常温に下げた状態でハイブリダイズ後の画像を取得する。
 温調ステージ82は、ターゲット30とプローブとのハイブリダイゼーションを促進するために、ターゲット30とプローブとの反応中に、振とうまたはDNAチップ40の回転、ボルテックスミキサー等による撹拌機能があることが好ましい。
 核酸配列計測装置60の光学系では、レーザー光源61から出射されたレーザー光はミラー73を介してダイクロイックミラー74で反射されDNAチップ40を照射する。照射された光がDNAチップ40上にあるドナー蛍光分子に対する励起光となり、レーザー光源61の波長とドナー蛍光分子11の励起波長が重なる場合、ドナー蛍光分子11が励起状態になる。
 前記したように、ドナー蛍光プローブ10と消光プローブ20が結合している場合にはドナー蛍光分子11は消光され、アクセプター蛍光分子21が蛍光を呈する。ターゲット30が存在し、ドナー蛍光プローブ10と消光プローブ20の結合が解かれた場合にはドナー蛍光分子11が蛍光を呈し、アクセプター蛍光分子21は蛍光を呈さなくなる。
 DNAチップ40から放出された蛍光は、ダイクロイックミラー74を透過し撮像光学系であるイメージスプリット光学系81を介して、2色に分離され、CCDカメラ63の検出素子上に波長で分離された2枚の同座標の画像が別々に結像し検出される。これにより同一座標のハイブリダイズ前後の画像が取得でき、また同時刻の波長で分離された2枚の画像を取得することができる。またCCDカメラ63一台での検出が可能となる。
 図6は波長で分離された2枚のCCDカメラ画像の模式図である。図6に示したように、本発明の核酸配列計測装置により得られる画像は、同一スポットのハイブリダイズ前後の画像を取得することができる。そのため、チップ間、スポット間の光量のばらつきの影響を受けない。
 また、波長で分離したドナー蛍光画像101とアクセプター蛍光分子からの蛍光画像(アクセプター蛍光画像)102を同時に取得できるためタイムラグがなく、画像の相関を正しくとることができる。
 また、ハイブリダイゼーション反応前後のドナー蛍光画像101から蛍光変化量を演算し、ハイブリダイゼーション反応した分子数を算出することができ、ハイブリダイゼーション反応前後のアクセプター蛍光画像102から蛍光変化量を演算し、ハイブリダイゼーション反応をしていない分子数を算出することができる。蛍光変化量の演算は、スポット全体の平均光量を使用してもよいし、スポット画像の各ピクセルの蛍光変化量を使用してもよい。
 本発明の核酸配列計測装置は、CCDカメラ63をコントロールするコンピュータと、画像の光量を計算する演算装置、画像と光量等を保存する記録装置を備えていてもよい。
 本発明の適用範囲は上記実施形態に限定されることはない。本発明は、ハイブリダイゼーションによりサンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測用デバイス、前記核酸配列計測用デバイスを用いた核酸配列計測方法及び核酸配列計測装置に対し、広く適用することができる。
 以下、実施例に基づき本発明を更に詳細に説明するが、本発明は以下の実施例により限定されるものではない。
 ドナー蛍光プローブ10および消光プローブ20を基板上に複数配置したDNAチップ40を作製し、ターゲット30を前記DNAチップ40に供給し、60℃で30分間反応させ、前記DNAチップからのドナー蛍光分子の蛍光量と、消光プローブからのアクセプター蛍光分子の蛍光量を測定した。その結果を図7に示す。なお、本実施例では、ドナー蛍光分子11としてCy3、アクセプター蛍光分子25としてCy5をそれぞれ用いた。
 図7は、ターゲット30がないとき、およびターゲット30の濃度を増加させたときのドナー蛍光プローブ10のドナー蛍光分子11の蛍光であるドナー蛍光量と、消光プローブ20のアクセプター蛍光分子21の蛍光であるアクセプター蛍光量の変化を示した図である。
 図7に示すように、ドナー蛍光分子の蛍光量は、ターゲット30の濃度が増加するにしたがって増加した。また、アクセプター蛍光分子の蛍光量は、ターゲット30の濃度が増加するにしたがって減少した。
 次に、図7において、ターゲット30がないとき(図7において、ターゲット濃度が0nMのとき)のアクセプター蛍光分子の蛍光量がドナー蛍光分子の蛍光量と等量になるように、アクセプター蛍光分子の蛍光量に乗算する係数を設定した。その後、各ターゲット30の各濃度でのアクセプター蛍光分子の蛍光量に設定した係数をかけた数値をドナー蛍光分子の蛍光量から減算することにより、補正光量を算出した。その結果を図8に示す。図8に示したように、ターゲット30の濃度に対するドナー蛍光分子の蛍光量の増加の傾きに対して前記補正光量の増加の傾きは1.4倍程度に増加しており感度が向上していることが確認された。
 図8では、補正後のターゲット30がない場合の補正光量は0となっているが、実際にはドナー蛍光分子の蛍光量とアクセプター蛍光分子の蛍光量の相関のばらつきによって検出下限の信頼区間が決定される。ドナー蛍光分子の蛍光量とアクセプター蛍光分子の蛍光量の相関はチップ間差、スポット間差、スポット内のプローブの固定量のむらの順にばらつきが大きいと考えられる。本発明の核酸配列計測装置は、スポット間差およびスポット内のプローブの固定量の影響を除去し、スポット内のプローブの固定量のむらに関しても蛍光画像の各ピクセルにおいて光量変化量を検出することができ相関が大きいピクセルを選択して蛍光光量を演算する。これによって、本発明の核酸配列計測装置は、ばらつきを小さく抑えることが可能となる。
 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 10  ドナー蛍光プローブ
 11  ドナー蛍光分子
 12  X部(第1結合部)
 13  検出配列(検出部)
 14  リンカー(第1基端)
 20  消光プローブ
 21  アクセプター蛍光分子
 22  Y部(第2結合部)
 23  検出配列(検出部)
 24  リンカー(第2基端)
 40  DNAチップ(核酸配列計測用デバイス)
 50  サンプル
 60  蛍光読取装置(核酸配列計測装置)
 61  レーザー光源
 63  CCDカメラ
 73  ミラー
 74  ダイクロイックミラー
 81  イメージスプリット光学系
 82  温調ステージ
 100 固相面
 101 ドナー蛍光画像
 102 アクセプター蛍光画像
 111 ドナー蛍光画像のプローブスポット
 112 アクセプター蛍光画像のプローブスポット

Claims (17)

  1.  ハイブリダイゼーションによりサンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測用デバイスにおいて、
     第1結合部および第1基端を有し、かつ、ドナー蛍光分子が所定の位置に付加されたドナー蛍光プローブと、
     第2結合部および第2基端を有し、かつ、アクセプター蛍光分子が所定の位置に付加された消光プローブと、
     前記ドナー蛍光プローブの前記第1基端および前記消光プローブの前記第2基端がそれぞれ固定される固相面を有する基板と、
    を備え、
     前記ドナー蛍光プローブの前記第1結合部と前記消光プローブの前記第2結合部とが、互いに相補的な配列を有し、
     前記ドナー蛍光プローブまたは前記消光プローブの少なくとも一方は、前記ターゲットの核酸配列と相補的な配列を有する検出部を有し、
     前記ドナー蛍光プローブおよび前記消光プローブは、前記ドナー蛍光分子に接近した前記アクセプター蛍光分子により前記ドナー蛍光分子の蛍光が消光される位置関係となるように、前記第1基端および前記第2基端が前記固相面に固定される、
    ことを特徴とする核酸配列計測用デバイス。
  2.  前記ターゲットと前記検出部とのハイブリダイゼーションが生じていない場合、前記ドナー蛍光プローブの前記第1結合部と前記消光プローブとの結合が維持されることにより、前記ドナー蛍光分子に接近した前記アクセプター蛍光分子により前記ドナー蛍光分子の蛍光が消光され、前記アクセプター蛍光分子が蛍光を呈し、
     前記ターゲットと前記検出部とのハイブリダイゼーションが生じた場合、前記ドナー蛍光プローブの前記第1結合部と前記消光プローブの前記第2結合部との結合が解消されることにより、前記アクセプター蛍光分子から離れた前記ドナー蛍光分子が蛍光を呈することを特徴とする請求項1に記載の核酸配列計測用デバイス。
  3.  前記ドナー蛍光プローブが、前記検出部を有することを特徴とする請求項1または2に記載の核酸配列計測用デバイス。
  4.  前記消光プローブが、前記検出部を有することを特徴とする請求項1または2に記載の核酸配列計測用デバイス。
  5.  前記基板が平板であり、前記固相面が、該平板の一平面であることを特徴とする請求項1~4のいずれか1項に記載の核酸配列計測用デバイス。
  6.  前記ドナー蛍光プローブの前記第1結合部の少なくとも一部が前記検出部として機能することを特徴とする請求項1~3および5のいずれか1項に記載の核酸配列計測用デバイス。
  7.  前記消光プローブの前記第2結合部の少なくとも一部が前記検出部として機能することを特徴とする請求項1、2、4および5のいずれか1項に記載の核酸配列計測用デバイス。
  8.  前記ドナー蛍光分子が付加される前記所定の位置は、前記ドナー蛍光プローブの途中であることを特徴とする請求項1~7のいずれか1項に記載の核酸配列計測用デバイス。
  9.  前記アクセプター蛍光分子が付加される前記所定の位置は、前記消光プローブの途中であることを特徴とする請求項1~7のいずれか1項に記載の核酸配列計測用デバイス。
  10.  前記ドナー蛍光プローブおよび前記消光プローブの両方が、前記検出部を有する、請求項1~9のいずれか1項に記載の核酸配列計測用デバイス。
  11.  ハイブリダイゼーションによりサンプルに含まれる特定の核酸配列を有するターゲットを計測する核酸配列計測方法であって、
     (a)前記ターゲットを含むサンプルを調製するステップ、
     (b)前記サンプルを核酸配列計測用デバイスに供給するステップ、
     (c)前記核酸配列計測用デバイスからの、ドナー蛍光分子の蛍光量とアクセプター蛍光分子の蛍光量とを測定するステップ、
     (d)前記サンプル中の前記ターゲットと前記核酸配列計測用デバイス中のドナー蛍光プローブまたは消光プローブの少なくとも一方とをハイブリダイゼーション反応させるステップ、および
     (e)前記反応後、前記核酸配列計測用デバイスからの、ドナー蛍光分子の蛍光量とアクセプター蛍光分子の蛍光量とを測定するステップ、を含み、
     前記核酸配列計測用デバイスは、
     第1結合部および第1基端を有し、かつ、ドナー蛍光分子が所定の位置に付加されたドナー蛍光プローブと、
     第2結合部および第2基端を有し、かつ、アクセプター蛍光分子が所定の位置に付加された消光プローブと、
     前記ドナー蛍光プローブの前記第1基端および前記消光プローブの前記第2基端がそれぞれ固定される固相面を有する基板と、
    を備え、
     前記ドナー蛍光プローブの前記第1結合部と前記消光プローブの前記第2結合部とが、互いに相補的な配列を有し、
     前記ドナー蛍光プローブまたは前記消光プローブの少なくとも一方は、前記ターゲットの核酸配列と相補的な配列を有する検出部を有し、
     前記ドナー蛍光プローブおよび前記消光プローブは、前記ドナー蛍光分子に接近した前記アクセプター蛍光分子により前記ドナー蛍光分子の蛍光が消光される位置関係となるように、前記第1基端および前記第2基端が前記固相面に固定される、
    ことを特徴とする核酸配列計測方法。
  12.  前記ハイブリダイゼーション反応前後のドナー蛍光分子の蛍光量の変化から、ハイブリダイズしたターゲットの分子数を算出することを特徴とする請求項11に記載の核酸配列計測方法。
  13.  前記ハイブリダイゼーション反応前後のアクセプター蛍光分子の蛍光量の変化から、ハイブリダイゼーション反応していないターゲットの分子数を算出することを特徴とする請求項11に記載の核酸配列計測方法。
  14.  請求項1~10のいずれか1項に記載の核酸配列計測用デバイスと、
     前記核酸配列計測用デバイスからの、ドナー蛍光分子の蛍光量と、アクセプター蛍光分子の蛍光量とを測定する蛍光読取装置と、
    を有する、核酸配列計測装置。
  15.  前記サンプルの存在下で、前記核酸配列計測用デバイスからの、ドナー蛍光分子の蛍光と、アクセプター蛍光分子の蛍光とを測定する、請求項14に記載の核酸配列計測装置。
  16.  前記ターゲットと前記ドナー蛍光プローブまたは前記消光プローブとをハイブリダイズさせるための撹拌機能を備える、請求項14または15に記載の核酸配列計測装置。
  17.  前記核酸配列計測用デバイスからの蛍光を2色に分離し、同時に蛍光を測定する機能を備える、請求項14~16のいずれか1項に記載の核酸配列計測装置。
PCT/JP2020/003856 2019-02-22 2020-02-03 核酸配列計測用デバイス、核酸配列計測方法、および核酸配列計測装置 WO2020170779A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/431,010 US20220136039A1 (en) 2019-02-22 2020-02-03 Nucleic acid sequence measurement device, nucleic acid sequence measurement method, and nucleic acid sequence measurement apparatus
EP20760137.8A EP3929276B1 (en) 2019-02-22 2020-02-03 Nucleic acid sequence measurement device, nucleic acid sequence measurement method, and nucleic acid sequence measurement apparatus
CN202080014016.1A CN113454201A (zh) 2019-02-22 2020-02-03 核酸序列检测用器具、核酸序列检测方法以及核酸序列检测装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019030752A JP7077992B2 (ja) 2019-02-22 2019-02-22 核酸配列計測用デバイス、核酸配列計測方法、および核酸配列計測装置
JP2019-030752 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020170779A1 true WO2020170779A1 (ja) 2020-08-27

Family

ID=72144664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003856 WO2020170779A1 (ja) 2019-02-22 2020-02-03 核酸配列計測用デバイス、核酸配列計測方法、および核酸配列計測装置

Country Status (5)

Country Link
US (1) US20220136039A1 (ja)
EP (1) EP3929276B1 (ja)
JP (1) JP7077992B2 (ja)
CN (1) CN113454201A (ja)
WO (1) WO2020170779A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928906B2 (ja) 1978-10-31 1984-07-17 富士ゼロックス株式会社 自動原稿搬送装置
US20040009514A1 (en) * 2000-02-28 2004-01-15 Frutos Anthony G. Assembly for label-free detection of hybridized nucleic targets
JP2004016132A (ja) * 2002-06-18 2004-01-22 Canon Inc 核酸の測定方法、及びその方法によって得られるデータ解析法
JP2011017721A (ja) 2010-09-24 2011-01-27 Yokogawa Electric Corp 光量計測装置および光量計測方法
US20110281740A1 (en) * 2008-06-30 2011-11-17 Joseph Beechem Methods for Real Time Single Molecule Sequencing
JP2013514803A (ja) * 2009-12-21 2013-05-02 シージーン アイエヌシー Tsgプライマーターゲット検出

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140051593A1 (en) * 2012-08-16 2014-02-20 NVS Technologies, Inc. Assay Methods and Systems
JP5928906B2 (ja) * 2013-08-27 2016-06-01 横河電機株式会社 核酸配列計測方法、核酸配列計測用デバイス、核酸配列計測用デバイスの製造方法および核酸配列計測装置
US10119161B2 (en) * 2015-12-10 2018-11-06 Roche Molecular Systems, Inc. Methods and kits for joining fragmented nucleic acids together

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928906B2 (ja) 1978-10-31 1984-07-17 富士ゼロックス株式会社 自動原稿搬送装置
US20040009514A1 (en) * 2000-02-28 2004-01-15 Frutos Anthony G. Assembly for label-free detection of hybridized nucleic targets
JP2004016132A (ja) * 2002-06-18 2004-01-22 Canon Inc 核酸の測定方法、及びその方法によって得られるデータ解析法
US20110281740A1 (en) * 2008-06-30 2011-11-17 Joseph Beechem Methods for Real Time Single Molecule Sequencing
JP2013514803A (ja) * 2009-12-21 2013-05-02 シージーン アイエヌシー Tsgプライマーターゲット検出
JP2011017721A (ja) 2010-09-24 2011-01-27 Yokogawa Electric Corp 光量計測装置および光量計測方法

Also Published As

Publication number Publication date
EP3929276A4 (en) 2022-11-30
EP3929276A1 (en) 2021-12-29
CN113454201A (zh) 2021-09-28
JP2020130094A (ja) 2020-08-31
EP3929276B1 (en) 2023-10-04
JP7077992B2 (ja) 2022-05-31
US20220136039A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
US6471916B1 (en) Apparatus and method for calibration of a microarray scanning system
US20100068714A1 (en) Multivariate detection of molecules in biossay
US6870166B2 (en) Maximum sensitivity optical scanning system
JP4431549B2 (ja) 蛍光分析装置
JP2003130875A (ja) 生化学物質微細配列チップの品質検査方法
WO2004023117A1 (ja) 生化学的検査用画像処理方法
WO2020170779A1 (ja) 核酸配列計測用デバイス、核酸配列計測方法、および核酸配列計測装置
US20080253409A1 (en) Multi-Channel Bio-Chip Scanner
WO2009098624A1 (en) Analysis system and method
JP4982523B2 (ja) 蛍光分析方法,蛍光分析装置及び画像検出方法
JP2012023988A (ja) 核酸解析方法、その方法を実施する装置、及び核酸解析用試薬セット
JP2003510600A (ja) 分子認識反応を検出するための方法及び装置
US7042565B2 (en) Fluorescent microarray analyzer
JP5372876B2 (ja) 核酸分析デバイス,核酸分析装置、及び核酸分析方法
EP3995827B1 (en) Accurate bulk fret
JP5581228B2 (ja) 蛍光検出装置
JP4321716B2 (ja) 蛍光画像補正方法および装置ならびにプログラム
JP7409354B2 (ja) 核酸計測デバイス、その設計方法、製造方法及び計測方法
Brunner et al. Novel calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control
JP2006166808A (ja) 塩基配列解析用プローブ及び塩基配列解析用固相化担体、並びに塩基配列解析方法
JP4538746B2 (ja) バイオチップおよび分析装置
WO2003083474A1 (fr) Piece d'essai servant a analyser une substance d'origine biologique, procede de fabrication et d'examen de cette piece d'essai comprenant la substance d'origine biologique
JP2006029953A (ja) 生体関連物質検出用固相化担体及びプローブの固相化方法、並びに生体関連物質解析方法
KR20230125053A (ko) 분광분석기반 샘플 내 타겟 분석물질 검출 방법 및장치
JP2006029954A (ja) 生体関連物質検出用プローブ及び生体関連物質検出用固相化担体、並びに生体関連物質検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20760137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020760137

Country of ref document: EP

Effective date: 20210922