WO2020169116A1 - 一种干法制备真空隔热板芯材的方法 - Google Patents
一种干法制备真空隔热板芯材的方法 Download PDFInfo
- Publication number
- WO2020169116A1 WO2020169116A1 PCT/CN2020/078332 CN2020078332W WO2020169116A1 WO 2020169116 A1 WO2020169116 A1 WO 2020169116A1 CN 2020078332 W CN2020078332 W CN 2020078332W WO 2020169116 A1 WO2020169116 A1 WO 2020169116A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vacuum insulation
- filaments
- raw materials
- core material
- glass fiber
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01G—PRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
- D01G21/00—Combinations of machines, apparatus, or processes, e.g. for continuous processing
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4209—Inorganic fibres
- D04H1/4218—Glass fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/44—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
- D04H1/46—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
- D04H1/48—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
- D04H1/485—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation in combination with weld-bonding
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
Definitions
- the application relates to a method for preparing a core material of a vacuum insulation board by a new dry method.
- Vacuum insulation board (VIP for short) is a new type of thermal insulation material, with low thermal conductivity, good thermal insulation effect, small proportion of space occupied, energy saving, low carbon, environmental protection, safety and many other advantages, and it is widely used It is used in home appliance insulation, wall insulation, biological refrigerated transportation, logistics cold chain transportation, automobile insulation and other fields. With the improvement of energy saving and environmental protection requirements, higher requirements are put forward for the thermal insulation capacity of the core material of the vacuum insulation board.
- Traditional glass fiber paper is formed by wet method.
- the patent application document with application number 201310213164.8 discloses a method for preparing glass fiber vacuum insulation board core material by wet method.
- the glass fiber chopped strands are pulped, dispersed, and dehydrated. Dry to obtain the desired core material.
- the thickness of wet-molded core material is usually between 0.5-1mm and the thermal conductivity is 2.1-2.3mw/m.k, which cannot meet the current requirements.
- wet-process core materials also have the disadvantages of high energy waste, high comprehensive production cost, and large environmental impact.
- the technical problem solved by the present application is to overcome the above technical defects and provide a method for preparing a core material of a vacuum insulation board by a dry method.
- the technical solution adopted by the present application to solve the above-mentioned technical problems is a method for preparing a core material of a vacuum insulation board by a dry method, which includes the following steps:
- Step 1 Put the raw materials into the bale opener.
- the raw materials are glass fiber filaments and recycled materials.
- the length of filaments ranges from 7-25cm, and the length of short filaments The range is 3-7cm, and the bag opening machine can mix the filament with the short filament and the return material according to a certain ratio;
- Step 2 The raw materials with a good ratio in step 1 are put into the rough opener, and the rough opener is initially broken up;
- Step 3 The raw materials scattered by the rough opener in Step 2 are put into the mixing box for preliminary mixing, and the raw materials are sucked into the mixing box through the fan;
- Step 4 The raw materials after preliminary mixing are sent to the fine opener through the inclined curtain to be broken up again;
- Step 5 Put the scattered raw materials into the cotton storage box for storage, and the scattered raw materials are sucked into the cotton storage box by the fan;
- Step 6 Use an electronic scale to weigh a certain amount of raw materials from the cotton storage box and put them into the carding machine to comb out a single-layer net product;
- Step 7 The single-layer net-like product after carding by the carding machine is sent to the net-laying machine through the conveyor belt to obtain the multi-layer net-like product.
- the multi-layer net-like product has a width of 500-5000mm and the number of layers is 2 -150 layers, the thickness of the net measured by a thickness gauge with a pressure of 100kpa is 5-35mm;
- Step 8 The multi-layer net-like product after the netting is subjected to two upper and lower needle punching, preferably, the upper and lower needle punching depth is 1-3 mm, and the needle punching mode is surface needle punching without needle punching in the middle.
- Step 9 The acupuncture multi-layer mesh product is hot pressed at 550-780°C for 3-20 minutes to obtain the core material of the vacuum insulation board.
- the filament, short filament, and glass fiber recycled materials are proportioned according to the following proportions, where the filament ratio is 2-50%, the short filament ratio is 48-95%, and the recycled material ratio is 2-50%.
- the diameter of the glass fiber filaments is 1 ⁇ m or more.
- the weight of the multi-layer mesh product is 100-8000g/m2;
- the density of pinholes during surface needling is 100,000-1 million needles/m2.
- the bulkiness of the core material of the vacuum insulation board is 10% or more.
- the glass fiber is preliminarily laid and formed, and then the preliminarily laid glass fiber needled felt is fed into the machine at 550-780°C by means of a roller. During the conveying process, the needle The barbed glass fiber is subjected to the external temperature and pressure to form the final core material for vacuum insulation panels.
- the beneficial effect of the present application is that the present application adopts dry method to prepare glass fiber vacuum insulation board core material without needle punching, heats the glass fiber to a certain temperature, applies appropriate pressure and maintains it for a period of time A semi-molten colloidal compound is formed on the surface of the rear glass fiber.
- the semi-molten colloidal compound makes the glass fiber filaments cross-link and overlap each other, and finally cools to obtain a new glass fiber vacuum insulation board core with high strength and low thermal conductivity. material.
- Figure 1 is a block diagram of the application workflow.
- a method for preparing a core material of a vacuum insulation board by a dry method includes the following steps:
- Step 1 Put the raw materials into the bale opening machine.
- the raw materials are glass fiber filaments and glass fiber recycled materials.
- the diameter of the glass fiber filaments is more than 1 ⁇ m.
- the proportion of filaments, short filaments and recycled materials are proportioned according to a certain ratio.
- the proportion of filaments is 2-50%
- the proportion of short filaments is 48-95%
- the proportion of glass fiber recycled materials is 2-50%.
- the length of the filament is in the range of 7-25cm
- the length of the staple is in the range of 3-7cm.
- the bag opening machine includes the bag opening machine 1, the bag opening machine 2, and the bag opening machine 3, which are used to open the bag filaments. , Short yarn, glass fiber return material;
- Step 2 The raw materials with a good ratio in step 1 are put into the rough opener, and the rough opener is initially broken up;
- Step 3 The raw materials scattered by the rough opener in Step 2 are put into the mixing box for preliminary mixing, and the raw materials are sucked into the mixing box through the fan;
- Step 4 The raw materials after preliminary mixing are sent to the fine opener through the inclined curtain to be broken up again;
- Step 5 Put the scattered raw materials into the cotton storage box for storage, and the scattered raw materials are sucked into the cotton storage box by the fan;
- Step 6 Weigh a certain amount of raw materials from the cotton storage box with an electronic scale and put them into the carding machine to comb out a single-layer net product;
- Step 7 The products combed by the carding machine are sent to the netting machine through the conveyor belt for netting.
- the width of the net (multi-layer net product width) is 500-5000mm, the number of netting layers is 2-150, and the pressure is 100kpa
- the thickness of the net measured by the thickness gauge is 5-35mm, and the weight of the multilayer net product is 100-8000g/m2;
- Step 8 The glass fiber (multi-layer mesh product) after laying the net is subjected to two needle punching, preferably, the depth of the upper and lower needle punching is 1-3mm, the needle punching form is surface needle punching, without needle punching in the middle, and needle punching density 100,000-1 million needles/m2.
- Step 9 The acupuncture multi-layer mesh product is hot pressed at 550-780°C for 3-20 minutes to obtain the core material of the vacuum insulation board with a bulkiness of more than 10%.
- the multilayer mesh product in step 9 of this application can also be attached with glass fiber mat or glass fiber cloth on the upper and lower sides and then hot pressed at 550-780°C for 3-20 minutes to obtain the core material of the vacuum insulation board and the multilayer mesh product
- the method of attaching glass fiber mat or glass fiber cloth on the upper and lower sides can adopt the existing technology, for example, the multi-layer mesh product is clamped and conveyed forward by the clamping and conveying mechanism, and at the same time, the upper and lower unwinders move up and down the multi-layer mesh product.
- the glass fiber mat or glass fiber cloth is attached on both sides and then formed by hot pressing together.
- the needle punching method of the glass fiber needle felt (multi-layer mesh product) laid before hot pressing in this application is surface needle punching without needle punching in the middle, that is, the upper and lower sides of the multilayer mesh product are needle punched, but the middle part is not Needling, which means that the sum of the depth of needle penetration on the upper and lower sides of the multilayer net product is less than the thickness of the multilayer net product, so that at least a part of the multilayer net product in the thickness direction will not be needled or needled
- the thickness is generally not less than 1 mm.
- the upper and lower needle penetration (total) depth is generally between 1-3 mm, and the thickness to ensure that it is not needled is not less than 1 mm.
- the advantage of this design is that on the one hand, the thermal conductivity can be reduced, and no needling in the middle can effectively reduce heat convection, thereby reducing the thermal conductivity.
- the original thermal conductivity is 2.0mW/mk, and the thermal conductivity can be reduced to 1.8mW/mk or less without needle punching; the second aspect is that if all the needles are not needle punched, the felt will be fluffy and unstretched. Strength, easy to break during subsequent processing, so the method of upper and lower needle punching without needle punching can improve the tensile strength and facilitate the subsequent processing, and reduce the thermal conductivity.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Nonwoven Fabrics (AREA)
Abstract
一种干法制备真空隔热板芯材的方法,首先对玻璃纤维进行初步铺网成型,然后将初步铺网成型的玻璃纤维针刺毡通过滚轴带动的方式送入550-780℃的机器中,在传送过程中,初步铺网的针刺玻璃纤维受到外界温度、压力的作用下形成最终的真空隔热板用芯材。本方法将针刺玻璃纤维加热至一定温度、施加适当的压力,在传送过程中玻璃纤维表面形成半熔态的胶状化合物,该半熔态的胶状化合物使得玻璃纤维丝相互交联搭接,最终冷却获得具有高强度、低导热率的新型真空隔热板芯材。
Description
本申请涉及一种新型干法制备真空隔热板芯材的方法。
真空隔热板(简称VIP)是一种新型的保温绝热材料,具有导热系数低、绝热保温效果好、所占的空间比例小,具有节能、低碳、环保、安全等多项优点,广泛应用于家电保温、墙体保温、生物冷藏运输、物流冷链运输、汽车保温等领域。随着节能环保要求的提高,对真空隔热板芯材的绝热能力提出了更高的要求。
传统的玻璃纤维纸采用湿法成型,例如申请号为201310213164.8的专利申请文件公开了一种采用湿法成型制备玻璃纤维真空隔热板芯材的方法,玻璃纤维短切丝经过制浆分散、脱水干燥得到所需芯材。然而湿法成型的芯材厚度通常介于0.5-1mm,导热系数为2.1-2.3mw/m.k,不能满足现在的使用要求。另外,湿法芯材还存在能源浪费大,综合生产成本高,环境影响大的缺点。
本申请解决的技术问题是克服上述技术缺陷,提供一种干法制备真空隔热板芯材的方法。
本申请解决上述技术问题所采用的技术方案是,一种干法制备真空隔热板芯材的方法,包括以下步骤:
步骤1:原料投放到开包机内,原料为玻璃纤维丝与回料,所述玻璃纤维丝主要有两种,包括长丝与短丝,长丝的长度范围为7-25cm,短丝的长度范围为3-7cm,开包机可以将长丝与短丝以及回料按照一定比例配比;
步骤2:步骤1中配比好的原料放入粗开松机内,经过粗开松机初步打散;
步骤3:经过步骤2粗开松机打散的原料放入混棉箱内进行初步混合,原料是经过风机吸入混棉箱的;
步骤4:初步混合后的原料再经过斜帘送入精开松机,进行再次的打散;
步骤5:再次打散的原料放入到储棉箱内储存,再次打散的原料是经过风机吸入储棉箱内的;
步骤6:通过电子秤从储棉箱称取一定量的原料放入梳理机中梳理出单层网状产品;
步骤7:经过梳理机梳理后的单层网状产品经过传送带送至铺网机进行铺网得到多层网状产品,优选地,多层网状产品幅宽500-5000mm,铺网层数2-150层,通过100kpa压强的测厚仪测得网的厚度为5-35mm;
步骤8:铺网后的多层网状产品经过上下两道针刺,优选地,上下针刺深度1-3mm,针刺形式为表面针刺,中间无针刺。
步骤9:针刺后的多层网状产品在550-780℃条件下热压3-20min即得到真空隔热板芯材。
其中,将长丝、短丝、玻璃纤维回料按照下述比例配比,其中长丝比例为2-50%、短丝比例为48-95%、回料的比例为2-50%,所述玻璃纤维丝径1μm以上。
其中,多层网状产品的克重为100-8000g/㎡;
其中,表面针刺时针孔密度为10-100万针/㎡。
其中,真空隔热板芯材的蓬松度为10%以上。
本申请首先对玻璃纤维进行初步铺网成型,然后将初步铺网成型的玻璃纤维针刺毡通过滚轴带动的方式送入550-780℃的机器中,在传送过程中,初步铺网的针刺玻璃纤维受到外界温度、压力的作用下形成最终的真空隔热板用芯材。
与现有技术相比,本申请的有益效果是:本申请采用干法中间无针刺成型制备玻璃纤维真空隔热板芯材,将玻璃纤维加热至一定温度、施加适当的压力并维持一段时间后玻璃纤维表面形成半熔态的胶状化合物,该半熔态的胶状化合物使得玻璃纤维丝相互交联搭接,最终冷却获得具有高强度、低导热率的新型玻璃纤维真空隔热板芯材。
图1为本申请工作流程框图。
参见图1,一种干法制备真空隔热板芯材的方法,包括以下步骤:
步骤1:原料投放到开包机内,原料为玻璃纤维丝与玻璃纤维回料,本申请中玻璃纤维丝径1μm以上,玻璃纤维丝主要有两种,包括长丝与短丝,开包机可以将长丝与短丝以及回料按照一定比例配比,优选地,长丝比例为2-50%、短丝比例为48-95%、玻璃纤维回料的比例为2-50%,本申请中,优选地,长丝的长度范围为7-25cm,短丝的长度范围为3-7cm,本申请中,开包机包括开包机1、开包机2、开包机3,分别用来开包长丝、短丝、玻璃纤维回料;
步骤2:步骤1中配比好的原料放入粗开松机内,经过粗开松机初步打散;
步骤3:经过步骤2粗开松机打散的原料放入混棉箱内进行初步混合,原料是经过风机吸入混棉箱的;
步骤4:初步混合后的原料再经过斜帘送入精开松机,进行再次的打散;
步骤5:再次打散的原料放入到储棉箱内储存,再次打散的原料是经过风机吸入储棉箱内的;
步骤6:通过电子秤从储棉箱称取获取一定量的原料放入梳理机中梳理出单层网状产品;
步骤7:经过梳理机梳理出的产品经过传送带送至铺网机进行铺网,网的宽幅(多层网状产品幅宽)500-5000mm,铺网层数2-150层,通过100kpa压强的测厚仪测得网的厚度为5-35mm,多层网状产品的克重为100-8000g/㎡;
步骤8:铺网后的玻璃纤维(多层网状产品)经过上下两道针刺,优选地,上下针刺深度1-3mm,针刺形式为表面针刺,中间无针刺,针刺密度10-100万针/㎡。
步骤9:针刺后的多层网状产品在550-780℃条件下热压3-20min即得到真空隔热板芯材,蓬松度10%以上。
本申请步骤9的多层网状产品还可以上下两面貼附玻璃纤维毡或玻璃纤维布后在550-780℃条件下热压3-20min,得到真空隔热板芯材,多层网状产品上下两面貼附玻璃纤维毡或玻璃纤维布的方法可以采用现有技术,例如通过夹持传送机构夹持多层网状产品向前输送,同时上下两个放卷机向多层网状产品上下两面貼附玻璃纤维毡或玻璃纤维布后一起通过热压机热压成型。
本申请热压前所铺玻璃纤维针刺毡(多层网状产品)的针刺方式为表面针刺,中间无针刺,即多层网状产品上下两面被针刺,但中间部分不被针刺,也就是说多层网状产品上下两面被针刺深度之和小于多层网状产品厚度,使得起码有一部分厚度方向的多层网状产品不会被针刺,不被针刺的厚度一般不小于1毫米,例如多层网状产品厚度为5mm时,上下针刺(总)深度一般在1-3mm之间,保证不被针刺的厚度不小于1毫米。该设计的好处是一方面可以降低导热系数,中间不针刺可以有效减少热对流,从而降低导热系数。如制作成真空隔热板后,原来导热系数是2.0mW/m.k,中间不针刺导热系数可以降低为1.8mW/m.k以下;第二方面如果全部不针刺而会造成毡蓬松且无拉伸强度,后道加工时容易断裂,所以通过上下针刺中间不针刺这种方法来提高拉伸强度和方便后道加工,且降低导热系数。
下表是本申请一些最佳实施例的数据,其中原料比例依次为长丝/短丝/回料,第3列至第8列均指多层网状产品参数,参数单位如上:
本申请所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
Claims (5)
- 一种干法制备真空隔热板芯材的方法,其特征在于:包括以下步骤:步骤1:原料投放到开包机内,原料为玻璃纤维丝和玻璃纤维回料,所述玻璃纤维丝包括长丝与短丝,长丝的长度范围为7-25cm,短丝的长度范围为3-7cm;步骤2:步骤1中配比好的原料放入粗开松机内,经过粗开松机初步打散;步骤3:经过步骤2粗开松机打散的原料经过风机吸入混棉箱内进行初步混合;步骤4:初步混合后的原料再经过斜帘送入精开松机,进行再次的打散;步骤5:再次打散的原料经过风机吸入储棉箱内储存;步骤6:通过电子秤从储棉箱称取一定量的原料放入梳理机中梳理出单层网状产品;步骤7:经过梳理机梳理后的单层网状产品经过传送带送至铺网机进行铺网得到多层网状产品,幅宽500-5000mm,铺网层数2-150层,通过100kpa压强的测厚仪测得网的厚度为5-35mm;步骤8:铺网后的多层网状产品经过上下两道针刺,上下针刺深度1-3mm,针刺形式为表面针刺,中间无针刺;步骤9:针刺后的多层网状产品在550-780℃条件下热压3-20min即得到真空隔热板芯材。
- 根据权利要求1所述干法制备真空隔热板芯材的方法,其特征在于:将长丝、短丝、玻璃纤维回料按照下述比例配比,其中长丝比例为2-50%、短丝比例为48-95%、回料的比例为2-50%,所述玻璃纤维丝径1μm以上。
- 根据权利要求1所述干法制备真空隔热板芯材的方法,其特征在于:多层网状产品的克重为100-8000g/㎡。
- 根据权利要求1所述干法制备真空隔热板芯材的方法,其特征在于:表面针刺时针孔密度10-100万针/㎡。
- 根据权利要求1所述干法制备真空隔热板芯材的方法,其特征在于:真空隔热板芯材蓬松度为10%以上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910129900.9A CN109825946A (zh) | 2019-02-21 | 2019-02-21 | 一种干法制备真空隔热板芯材的方法 |
CN201910129900.9 | 2019-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020169116A1 true WO2020169116A1 (zh) | 2020-08-27 |
Family
ID=66864082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/078332 WO2020169116A1 (zh) | 2019-02-21 | 2020-03-07 | 一种干法制备真空隔热板芯材的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109825946A (zh) |
WO (1) | WO2020169116A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109825946A (zh) * | 2019-02-21 | 2019-05-31 | 浙江华恒复合材料有限公司 | 一种干法制备真空隔热板芯材的方法 |
CN110822219B (zh) * | 2019-09-19 | 2021-06-08 | 滁州银兴新材料科技有限公司 | 一种新式干燥法制备冰箱真空隔热板的加工工艺 |
CN110792879B (zh) * | 2019-09-26 | 2021-01-26 | 安徽百特新材料科技有限公司 | 一种不惧表面破损真空绝热板材的加工工艺 |
CN110792880B (zh) * | 2019-09-26 | 2021-01-26 | 安徽百特新材料科技有限公司 | 一种有安装孔且不惧表面破损真空绝热板材的加工工艺 |
WO2021127804A1 (zh) * | 2019-12-23 | 2021-07-01 | 滁州银兴新材料科技有限公司 | 一种保温板材的制造方法及其应用的保温板材及保温墙 |
CN114438662B (zh) * | 2022-01-25 | 2023-04-07 | 天台海风滤材有限公司 | 纳米静电过滤棉生产设备、工艺及其应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0312090A2 (en) * | 1987-10-15 | 1989-04-19 | Mitsubishi Yuka Badische Co., Ltd. | Fibrous laminate and process of producing the same |
JP2003293754A (ja) * | 2002-03-29 | 2003-10-15 | Nichias Corp | 触媒コンバーター用保持材 |
CN101012600A (zh) * | 2007-01-30 | 2007-08-08 | 李洪贤 | 超厚玻璃纤维针刺毡及其制造方法 |
CN101219306A (zh) * | 2007-09-27 | 2008-07-16 | 上海博格工业用布有限公司 | 机械加固与水射流加固结合的非织造过滤材料及制作方法 |
US8647557B2 (en) * | 2010-12-30 | 2014-02-11 | Korea Institute Of Energy Research | Method for producing sheets including fibrous aerogel |
CN107953496A (zh) * | 2017-12-08 | 2018-04-24 | 刘军 | 一种真空绝热板芯材及其制备工艺 |
CN109024096A (zh) * | 2018-08-20 | 2018-12-18 | 海宁睿诚科技股份有限公司 | 干法无针刺玻璃纤维真空绝热板芯材制备方法及其产品 |
CN109162026A (zh) * | 2018-10-31 | 2019-01-08 | 海宁睿诚科技股份有限公司 | 一种新型玻璃纤维真空绝热板芯材的制备方法 |
CN109825946A (zh) * | 2019-02-21 | 2019-05-31 | 浙江华恒复合材料有限公司 | 一种干法制备真空隔热板芯材的方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2700782B1 (fr) * | 1993-01-26 | 1995-04-14 | Libeltex Nv Sa | Procédé de fabrication d'un non-tissé et non-tissé obtenu par ce procédé. |
DE10007556C2 (de) * | 1999-07-28 | 2003-07-03 | Sandler Ag | Trägerkomponente für Formteile |
DE102006045069A1 (de) * | 2006-09-21 | 2008-04-03 | Sandler Ag | Mehrlagiges Vliesverbundmaterial und Verfahren zur Herstellung eines mehrlagigen Vliesverbundmaterials |
FR2916208B1 (fr) * | 2007-05-15 | 2009-07-03 | Gilbert Chomarat | Armature textile de renforcement et son procede de realisation. |
CN103244793B (zh) * | 2013-05-31 | 2015-12-09 | 重庆再升科技股份有限公司 | 一种新型玻璃纤维真空绝热板芯材及制备方法 |
CN103590195A (zh) * | 2013-11-08 | 2014-02-19 | 丹阳市超超服饰有限公司 | 一种异形表面针刺棉的制备方法 |
CN109162021B (zh) * | 2017-09-21 | 2020-04-14 | 东北大学 | 高铁用高效低阻纤维层空气过滤材料的制造方法 |
CN108705830A (zh) * | 2018-03-16 | 2018-10-26 | 苏州申博汽车零部件有限公司 | 一种密度梯度分布的吸音棉及其制备方法 |
-
2019
- 2019-02-21 CN CN201910129900.9A patent/CN109825946A/zh active Pending
-
2020
- 2020-03-07 WO PCT/CN2020/078332 patent/WO2020169116A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0312090A2 (en) * | 1987-10-15 | 1989-04-19 | Mitsubishi Yuka Badische Co., Ltd. | Fibrous laminate and process of producing the same |
JP2003293754A (ja) * | 2002-03-29 | 2003-10-15 | Nichias Corp | 触媒コンバーター用保持材 |
CN101012600A (zh) * | 2007-01-30 | 2007-08-08 | 李洪贤 | 超厚玻璃纤维针刺毡及其制造方法 |
CN101219306A (zh) * | 2007-09-27 | 2008-07-16 | 上海博格工业用布有限公司 | 机械加固与水射流加固结合的非织造过滤材料及制作方法 |
US8647557B2 (en) * | 2010-12-30 | 2014-02-11 | Korea Institute Of Energy Research | Method for producing sheets including fibrous aerogel |
CN107953496A (zh) * | 2017-12-08 | 2018-04-24 | 刘军 | 一种真空绝热板芯材及其制备工艺 |
CN109024096A (zh) * | 2018-08-20 | 2018-12-18 | 海宁睿诚科技股份有限公司 | 干法无针刺玻璃纤维真空绝热板芯材制备方法及其产品 |
CN109162026A (zh) * | 2018-10-31 | 2019-01-08 | 海宁睿诚科技股份有限公司 | 一种新型玻璃纤维真空绝热板芯材的制备方法 |
CN109825946A (zh) * | 2019-02-21 | 2019-05-31 | 浙江华恒复合材料有限公司 | 一种干法制备真空隔热板芯材的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109825946A (zh) | 2019-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020169116A1 (zh) | 一种干法制备真空隔热板芯材的方法 | |
CN100500970C (zh) | 一种针刺法制备连续纤维增强热塑性塑料毡类预混体的方法 | |
Miao et al. | Highly aligned flax/polypropylene nonwoven preforms for thermoplastic composites | |
JP5185370B2 (ja) | 補強用繊維補強材及び当該補強用繊維補強材の製造方法 | |
CN103550985B (zh) | 一种高透气量非织造布覆膜滤料、其制备方法及其所用的覆膜装置 | |
US20050130538A1 (en) | Insulation containing a mixed layer of textile fibers and of rotary and/or flame attenuated fibers, and process for producing the same | |
US20030044566A1 (en) | Insulation containing a mixed layer of textile fibers and of natural fibers, and process for producing the same | |
CN109162026A (zh) | 一种新型玻璃纤维真空绝热板芯材的制备方法 | |
CN113862901A (zh) | 一种纤维毡及其制作工艺 | |
CN1990927A (zh) | 一种缝编法制备纤维增强热塑性塑料毡类预混体的方法 | |
CN107415399B (zh) | 一种玻纤高温针刺复合毡 | |
CN103361883B (zh) | 玻璃纤维/聚苯硫醚纤维复合板材及其制备方法和用途 | |
TW202035813A (zh) | 天然纖維與化學纖維複合板材成型物件的製造方法 | |
CN101524239B (zh) | 环保型无纺针刺地毯及其制造方法 | |
CN111575906A (zh) | 可生物降解的棉杆纤维无纺布制备方法 | |
CN109853137A (zh) | 一种干法无针刺制备真空绝热板芯材的方法及生产设备 | |
CN115161872A (zh) | 一种玄武岩超长晶纤维针刺法非织造棉毡的生产工艺 | |
JPH06257051A (ja) | 繊維複合体 | |
JPH10310964A (ja) | 繊維シート | |
US20060169397A1 (en) | Insulation containing a layer of textile, rotary and/or flame attenuated fibers, and process for producing the same | |
CN219117713U (zh) | 一种制备碳碳复合材料针刺用网胎的梳理机 | |
CN104175976A (zh) | 一种吸音棉的加工方法 | |
CN219526974U (zh) | 一种热熔胶短纤加工装置 | |
JP3020922B1 (ja) | 不織布 | |
KR950006863B1 (ko) | 화섬판재의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20760055 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20760055 Country of ref document: EP Kind code of ref document: A1 |