WO2020169064A1 - 油浆过滤器、包含其的油浆过滤单元以及油浆过滤系统和油浆过滤方法 - Google Patents

油浆过滤器、包含其的油浆过滤单元以及油浆过滤系统和油浆过滤方法 Download PDF

Info

Publication number
WO2020169064A1
WO2020169064A1 PCT/CN2020/076016 CN2020076016W WO2020169064A1 WO 2020169064 A1 WO2020169064 A1 WO 2020169064A1 CN 2020076016 W CN2020076016 W CN 2020076016W WO 2020169064 A1 WO2020169064 A1 WO 2020169064A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
filtration
unit
slurry
filtering
Prior art date
Application number
PCT/CN2020/076016
Other languages
English (en)
French (fr)
Inventor
胡志海
韩勇
牛传峰
王灵萍
刘法
陈坦
邵志才
肖锦山
邓中活
李莎莎
戴立顺
叶巍
方强
徐文静
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
上海上阳流体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910125364.5A external-priority patent/CN111589223A/zh
Priority claimed from CN201910125079.3A external-priority patent/CN111592908B/zh
Priority claimed from CN201910127842.6A external-priority patent/CN111592909B/zh
Priority claimed from CN201910132300.8A external-priority patent/CN111603845B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院, 上海上阳流体科技有限公司 filed Critical 中国石油化工股份有限公司
Priority to US17/432,719 priority Critical patent/US20220152534A1/en
Priority to SG11202109133RA priority patent/SG11202109133RA/en
Priority to KR1020217030361A priority patent/KR20210134678A/ko
Publication of WO2020169064A1 publication Critical patent/WO2020169064A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/005Filters specially adapted for use in internal-combustion engine lubrication or fuel systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • B01D39/04Organic material, e.g. cellulose, cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • B01D39/06Inorganic material, e.g. asbestos fibres, glass beads or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • B01D39/083Filter cloth, i.e. woven, knitted or interlaced material of organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2003Glass or glassy material
    • B01D39/2017Glass or glassy material the material being filamentary or fibrous
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/18Filters characterised by the openings or pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/0208Single-component fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0613Woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0622Melt-blown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0627Spun-bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1208Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/13Supported filter elements
    • B01D29/23Supported filter elements arranged for outward flow filtration
    • B01D29/27Filter bags

Definitions

  • the present invention relates to an oil slurry filter, a filtration unit containing the oil slurry filter, a multi-filter system containing the oil slurry filter, and a multi-stage filtration system containing the oil slurry filter.
  • the invention also relates to the use of the The slurry filtering method of the slurry filter.
  • Catalytic cracking is an important process technology for the production of gasoline and diesel from heavy oil to light. It is one of the most important and widely used technologies in the refining field.
  • catalytic cracking will by-produce oil slurry (heavy oil), especially at present Catalytic cracking mostly uses hydrogenated residual oil or wax oil blended with residual oil as a raw material, which leads to a higher slurry yield, generally around 5%, and even higher yields can reach 8%.
  • the oil slurry is rich in polycyclic aromatic hydrocarbons, which can be used as raw materials for the production of ship fuel or carbon black, carbon fiber, etc., so the by-produced oil slurry can be effectively used.
  • the by-produced oil slurry usually contains about 1 to 6 g/L of catalytic cracking catalyst particles and other impurities, which cannot meet the raw material index requirements for the production of ship fuel, carbon black, and carbon fiber. Therefore, the effective use of the oil slurry is still in the industry. Technical issues to be resolved.
  • the solid particles and other impurities in the oil slurry must be removed first.
  • various methods such as sedimentation, flocculation, centrifugation, etc.
  • oil slurry it contains asphaltenes and has a high viscosity, which is even semi-solid at room temperature. shape. In this case, if the above-mentioned conventional purification method is used, the purification efficiency of the oil slurry will be very low.
  • filtration is also one of the methods to remove solid particles in the oil slurry, but there are still various problems such as low filtration accuracy, poor filtration effect, easy wear of the filter material, and low regeneration efficiency of the filter.
  • multi-stage filtration methods are usually used, but multi-stage filtration will not solve the above-mentioned problems and usually affect the purification efficiency of the oil slurry.
  • CN102002385A discloses a device and method for separating residues from catalytic cracking oil slurry, which comprises at least two filter groups, each filter group is composed of a pre-filter and a fine filter, and the pre-filter is a wedge-shaped metal
  • the winding wire filter element has a filtration accuracy of 2-10 microns.
  • the fine filter is an asymmetric metal powder sintered filter element with a filtration accuracy of 0.2-1.0 microns.
  • CN103865571A discloses a method for removing solid particles from heavy oil, wherein the filtration system includes at least one pre-filter and at least two fine filters.
  • the filtration accuracy of the fine filter is better than that of the pre-filter.
  • the pre-filter and the fine filter In series, the heavy oil is filtered through the pre-filter and then passed through the fine filter, so that a filter cake is formed on the fine filter, and the original heavy oil to be filtered is not directly filtered through the fine filter.
  • the prior art generally uses a filter group consisting of a low-precision pre-filter and a high-precision fine filter with different precisions for filtering, which is complicated to produce and the cost of the fine filter is high.
  • the asphaltenes in the oil slurry will adhere to the filter material and enter the filter element material, causing deformation, causing the filter element to block, making it difficult to backwash and regenerate, and this will further aggravate the wear of the filter. , Shorten the service life of the filter.
  • the purpose of the present invention is to provide an oil slurry filter, which can solve the above-mentioned technical problems in the prior art, simplify the filtering operation, improve the filtering effect and filtering efficiency of the filter, and reduce the wear of the filter and extend the filter In addition, it can make the backwash treatment of filter residue more convenient and improve the regeneration efficiency of the filter. Furthermore, the object of the present invention is to provide an oil slurry filtration unit including the oil slurry filter, a multi-filter system including the oil slurry filter, a multi-stage filtration system including the oil slurry filter, and the use of the oil slurry Slurry filtration method of the filter.
  • the inventor of the present invention has conducted in-depth research and found that the above technical problems can be solved by using the slurry filter of the present invention including a filter assembly of a specific flexible material, thus completing the present invention.
  • the flexible filter assembly includes a specific layer, or the flexible filter assembly is provided with a specific filter aid filter cake layer, which can achieve excellent filtration efficiency and filtering effect. It solves the problems that the filter material is easily blocked by high-viscosity colloidal impurities, the regeneration efficiency of the filter is poor and the filtration efficiency is low, and the backwash treatment of the filter residue can be more convenient and the regeneration efficiency of the filter can be improved.
  • An oil slurry filtering unit in which at least one filter is arranged, and an oil slurry inlet pipeline, a filtered oil outlet pipeline and a filter residue discharge pipeline are respectively connected to each filter;
  • the filter is provided with a pinhole-free filter bag made of a flexible filter material;
  • the flexible filter material is selected from polypropylene, polyethylene, nylon, polyester, polyphenylene sulfide, polyimide, polytetrafluoroethylene, and aramid One or more of, polyurethane, glass fiber, or a combination of any two or more of the above materials;
  • the filtering precision of the flexible filter material is 2-15 microns; the grammage of the flexible filter material is 520-660g/m 2 ; the flexible filter material is provided with at least a release layer and a base cloth layer, and the pores of the release layer The rate is 85% to 98%, and the porosity of the base fabric layer is 30% to 40%.
  • An oil slurry filtration system includes a filter unit and a filter aid buffer tank.
  • the filter unit is provided with at least one filter, and an oil slurry inlet pipeline, a filtered oil outlet pipeline, and a filter residue respectively connected to each filter Discharge pipeline, the outlet of the filter aid buffer tank is connected with the slurry inlet of the filter;
  • the filter is provided with a pinhole-free filter bag made of a flexible filter material;
  • the flexible filter material is selected from polypropylene, polyethylene, nylon, polyester, polyphenylene sulfide, polyimide, polytetrafluoroethylene, and aramid One or more of, polyurethane, glass fiber, vinylon, or a combination of any two or more of the above;
  • the filtering precision of the flexible filtering material is 3-25 microns; the porosity of the flexible filtering material is 85%-98%, and the grammage is 300-1000 g/m 2 .
  • a multi-filter oil slurry filtration system which includes: a filtration unit and a control system;
  • the filtering unit is provided with at least two filters, and an oil slurry inlet pipeline, a filtered oil outlet pipeline, a purge medium inlet pipeline, and a filter residue discharge pipeline that are respectively connected to each filter;
  • the filter is provided with a pinhole-free filter bag made of flexible filter material;
  • the flexible filter material is selected from one or more of polypropylene, polyethylene, nylon, polyester, polyphenylene sulfide, polyimide, polytetrafluoroethylene, aramid, polyurethane, and glass fiber, or any of the above Material made of more than two kinds of compound;
  • the control system includes an online pressure difference monitoring module, a filter control module, and a purge control module.
  • the online pressure difference monitoring module is used to monitor the pressure difference of the online filter
  • the filter control module is used to control a single filter.
  • the filter cuts into and out of the filter system, and the purging control module is used to control the purging process of the filter.
  • a multi-stage oil slurry filtration system including a first-stage filtration unit, a second-stage filtration unit and/or a third-stage filtration unit;
  • At least one first filter is provided in the primary filter unit, and an oil slurry inlet pipeline, a filtered oil outlet pipeline, and a filter residue discharge pipeline are respectively connected to each filter.
  • a flexible filter material is provided in the first filter.
  • a pinhole-free filter bag, the flexible filter material is selected from one of polypropylene, polyethylene, nylon, polyester, polyphenylene sulfide, polyimide, polytetrafluoroethylene, aramid, polyurethane, glass fiber, or Several, or a combination of any two or more of the above materials; the grammage of the flexible filter material is 520 ⁇ 660g/m 2 ;
  • An automatic backwashing filter device with a driving mechanism is provided in the secondary filter unit;
  • At least one second filter is arranged in the three-stage filter unit, and a pinhole-free filter bag made of a flexible filter material is arranged in the second filter, and the flexible filter material is selected from polypropylene, polyethylene, nylon, polyester, poly One or more of phenylene sulfide, polyimide, polytetrafluoroethylene, aramid, polyurethane, glass fiber, vinylon, or a combination of any two or more of the above;
  • the filtration accuracy of the filter material of the primary filter unit is 2-15 microns
  • the filter accuracy of the filter material of the secondary filter unit is less than that of the filter material of the first filter unit
  • the filter accuracy of the filter material of the third filter unit is less than that of the first filter unit.
  • the filtered oil outlet pipeline of the primary filter unit is respectively connected with the inlet pipeline of the secondary filter unit and the inlet pipeline of the tertiary filter unit.
  • An oil slurry filtration method adopts the above-mentioned filtration system, which includes:
  • the oil slurry enters the filter through an oil slurry inlet pipeline connected with the filter for filtering, and the filter is provided with a pinhole-free filter bag made of flexible filtering material, and the filtered oil is drawn out from the filtered oil outlet pipeline; It is a liquid hydrocarbon with particulate impurities.
  • An oil slurry filtration method which includes:
  • the oil slurry enters the filter through the oil slurry inlet pipeline connected with the filter for filtration.
  • the filter is provided with a pinhole-free filter bag made of flexible filtering material, and the filtered oil is drawn out from the filtered oil outlet pipeline.
  • the oil slurry is liquid hydrocarbon with particulate impurities.
  • An oil slurry filtering method adopts the multi-filter oil slurry filtering system, including:
  • At least two filters are provided in the filter unit, and the oil slurry enters at least one in-line filter for filtration through an oil slurry inlet pipeline connected to the filter, and the filter is provided with a pinhole-free filter bag made of flexible filter material , The filtered oil is drawn from the filtered oil outlet pipeline;
  • the control system includes an online pressure difference monitoring module, a filter control module, and a purge control module.
  • the online pressure difference monitoring module is used to monitor the pressure difference of the online filter
  • the filter control module is used to control the cut-in of a single filter.
  • the purge control module is used to control the back purge process of the filter;
  • the backup filter is cut into the filter system through the filter control module, and the pressure difference reaches or exceeds the set value of the filter Cut out the filter system, use the purge medium to unload and back-purge the filter of the cut out filter system through the purge control module;
  • the oil slurry is liquid hydrocarbon with particulate impurities.
  • An oil slurry filtering method adopts the multi-filter oil slurry filtering system, including:
  • At least two filters are provided in the filter unit, and the oil slurry enters at least one in-line filter for filtration through an oil slurry inlet pipeline connected to the filter, and the filter is provided with a pinhole-free filter bag made of flexible filter material , The filtered oil is drawn from the filtered oil outlet pipeline;
  • the control system includes an online pressure difference monitoring module, a filter control module, and a purge control module.
  • the online pressure difference monitoring module is used to monitor the pressure difference of the online filter
  • the filter control module is used to control the cut-in of a single filter.
  • the purge control module is used to control the back purge process of the filter;
  • the backup filter is cut into the filter system through the filter control module.
  • the filter cake is formed on the non-porous filter bag of the backup filter, the The on-line filter with the pressure difference reaching or higher than the set value cuts out the filter system, and the filter of the cut out filter system is unloaded and back purged through the purge control module;
  • the oil slurry is liquid hydrocarbon with particulate impurities.
  • An oil slurry filtration method adopts the multi-stage oil slurry filtration system, which includes:
  • the oil slurry enters the first filter of the needle-free filter bag with flexible filter material through the oil slurry inlet pipeline connected with the primary filter unit for filtration, and the filtered oil is extracted from the filtered oil outlet pipeline and enters the secondary filter unit And/or three-stage filter unit for re-filtering;
  • An automatic backwashing filter device with a driving mechanism is provided in the secondary filter unit;
  • At least one second filter with a pinhole-free filter bag with a flexible filter material is provided in the three-stage filter unit;
  • the oil slurry is liquid hydrocarbon with particulate impurities.
  • the filter including the filter assembly of flexible material of the present invention the excellent effects of strong particle interception, high filtering precision and good material strength can be achieved.
  • flexible material filter components due to the use of flexible material filter components, it overcomes the shortcomings of hard filter components that are easily stuck by fine solid particles, improves filtration efficiency and extends the operating cycle of the slurry filter.
  • the filter including the filter assembly of flexible material of the present invention can reduce the wear of the filter, extend the service life of the filter, and can facilitate the backwashing of the filter residue and improve the regeneration efficiency of the filter.
  • the filter cake layer of the filter aid on the flexible material filter assembly of the present invention, the filtering effect of the filter can be improved, and the service life of the filter can be prolonged.
  • the filter of the present invention can realize the long-term stable operation of the filtration process of the high-concentration colloidal viscous catalyst material-containing oil slurry, which solves the problem that the filter material is easily blocked by the high viscous colloidal impurities and the regeneration efficiency of the filter Poor and low filtration efficiency.
  • the slag unloading method of the filter of the present invention is flexible, which effectively solves the problem of environmental pollution caused by catalyst organic materials.
  • a two-stage filtration unit and/or a three-stage filtration unit are arranged downstream of the first-stage unit, which further improves the filtration accuracy of the entire filtration system and improves the filtration effect.
  • filtering operations can be performed alternately, and the filtering efficiency of oil slurry can be further improved.
  • Fig. 1 is a schematic diagram of an embodiment of the slurry filtration unit of the present invention.
  • Fig. 2 is a schematic diagram of another embodiment of the slurry filtration unit of the present invention.
  • Fig. 3 is a schematic diagram of another embodiment of the slurry filtration unit of the present invention.
  • Fig. 4 is a schematic diagram of another embodiment of the slurry filtration unit of the present invention.
  • Figure 5 is a schematic diagram of another embodiment of the multiple filter system of the present invention.
  • Figure 6 is a schematic diagram of another embodiment of the multiple filter system of the present invention.
  • Fig. 7 is a schematic diagram of the structure of the multi-stage filtration system of the present invention.
  • Fig. 8 is a schematic diagram of an embodiment of the one-stage filtration unit of the multi-stage filtration system of the present invention.
  • Fig. 9 is a schematic diagram of another embodiment of the one-stage filtration unit of the multi-stage filtration system of the present invention.
  • the present invention provides an oil slurry filter, which includes at least one filter assembly made of flexible material.
  • the filter assembly (sometimes referred to as the filter material in the present invention) is used to filter the oil slurry so that impurities such as catalyst particles in the oil slurry can be filtered out.
  • the oil slurry is a liquid hydrocarbon containing particulate impurities, preferably the oil slurry is a liquid hydrocarbon including a catalytic cracking oil slurry and/or coal tar.
  • the filter assembly made of flexible material is formed by a pinhole-free filter material of flexible material (hereinafter also referred to as flexible filter material).
  • the flexible filter material of the present invention has excellent chemical stability, good wear resistance and fatigue resistance, and has the characteristics of strong interception of particles, high filtration precision, and good material strength.
  • the present invention by adopting the filter assembly of flexible material, the shortcoming that the hard filter material is easily stuck by fine solid particles is overcome, the filtration efficiency is improved, the operation period of the slurry filter is prolonged, and the wear of the filter is reduced. Extend the service life of the filter.
  • the manner in which a pinhole-free filter material of a flexible material (flexible filter material) forms a filter assembly is not particularly limited, as long as it can achieve filtration.
  • the flexible filter material may be formed into a flat membrane, hemispherical, bag-like shape, etc., so as to be used in a filter assembly. From the perspectives of filtration efficiency, filtration effect, subsequent treatment of filter residues, filter regeneration efficiency, etc., it is preferably bag-shaped.
  • the form of the filter assembly of the present invention can be a pinhole-free filter bag of flexible material (hereinafter also referred to as It is a flexible filter bag).
  • a raw material for a pinhole-free filter material (flexible filter material) that can be made into a flexible material
  • it can be selected from polypropylene, polyethylene, nylon, nylon, polyester, polypropylene, and polyphenylene sulfide. At least one material selected from ether, polyimide, polytetrafluoroethylene, aramid, polyurethane, glass fiber, and vinylon.
  • the raw material of the flexible filter material may be a composite of any two or more of the aforementioned materials.
  • the filtration accuracy of the flexible filter material is 0.1-25 microns, preferably 0.1-15 microns, and more preferably 0.1-10 microns. In one embodiment of the present invention, the filtering accuracy of the flexible filter material is 2-25 microns. In an embodiment of the present invention, the filtration accuracy of the flexible filter material is 2-15 microns, preferably 2-10 microns.
  • the inventor found that when the filtration accuracy of the flexible filter material is less than 2 microns, compared with the case where the filtration accuracy is more than 2 microns, not only the filtration efficiency of the filter is improved, but also more A high removal rate can be achieved quickly, that is, solid particles can be removed efficiently without forming a filter cake or forming a very thin filter cake. Therefore, in an embodiment of the present invention, the filtration accuracy of the flexible filter material may be 0.1 to less than 2 microns.
  • Filtration accuracy refers to the size of the largest particle allowed to pass when a solution containing impurities passes through the filter material of the filter.
  • the smaller the filtering precision that is, the smaller the numerical value of the filtering precision, the smaller the solid particles that can be filtered and intercepted, the better the filtering precision.
  • the grammage of the flexible filter material is 300-1000 g/m 2 , preferably 520-660 g/m 2 .
  • the warp breaking strength of the flexible filter material is 850N/5cm ⁇ 9000N/5cm, and the weft breaking strength is 1000N/5cm ⁇ 11000N/5cm.
  • the warp breaking strength is 1000N/5cm ⁇ 2400N/5cm
  • weft breaking strength is 1200N/5cm ⁇ 2600N/5cm.
  • the thickness of the flexible filter material is 0.5-3.4 mm, preferably 0.5-3.0 mm, more preferably 1.8-2.9 mm.
  • the thickness of the flexible filter material is 0.5 to 3.4 mm, preferably 0.5 to 3.0 mm.
  • the pressure difference (the pressure difference when the filtered oil starts to be collected) is 0.01-0.5 MPa.
  • the lower limit of the use pressure difference can be 0.02MPa and 0.04MPa; the upper limit of the use pressure difference can be 0.4MPa and 0.30MPa.
  • the pressure difference is lower than 0.01 MPa, the filtered oil slurry cannot form an effective filter cake on the filter material, and an excellent filtering effect cannot be achieved.
  • the pressure difference is higher than 0.5 MPa, it will cause damage to the flexible filter material, resulting in a decrease in the efficiency of the flexible filter material in subsequent filtration and a shortened service life.
  • the slurry filter of the present invention includes at least one flexible filter material.
  • the flexible filter material in the filter of the present invention may be a single layer (single) or multiple layers (two or more).
  • a multilayer flexible filter material is laminated. At this time, there are no restrictions on the number of laminated layers and the arrangement between the layers.
  • the slurry filter includes 1, 2, 3, 4, 5, 6, or 7 flexible filter materials.
  • the flexible filter bag is prepared by a method known in the art, preferably by a stitching process, and the stitched pores are sealed with an acid sealant material.
  • the flexible filter material at least includes a release layer and a base fabric layer.
  • the base fabric layer is obtained by weaving the above-mentioned raw materials that can be made into a flexible filter material using a weaving technique known in the art. There are no restrictions on the weaving technology, including but not limited to spunlace, thermal, wet weaving, spunbond, meltblown, needle punch, stitch, hot rolling, etc.
  • the release layer is formed on the base fabric layer by using methods known in the art such as hot pressing, film coating, and hot rolling using the above-mentioned raw materials that can be made into a flexible filter material.
  • the release layer and the base fabric layer of the present invention can be separately prepared one after the other, or can be prepared integrally.
  • the flexible filter material of the present invention including at least a release layer and a base cloth layer can be prepared by methods known in the art, or commercially available products can also be used.
  • the porosity of the release layer is 25% to 98%. In an embodiment of the present invention, the porosity of the release layer is 85% to 98%. In an embodiment of the present invention, the porosity of the release layer is 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80% Or 90%. In one embodiment of the present invention, the porosity of the release layer is any combination of the above-mentioned values. In one embodiment of the present invention, when the filtration accuracy of the flexible filter material is 0.1 to less than 2 microns, the porosity of the release layer is 25% to 70%, preferably 30% to 65%.
  • the porosity of the base fabric layer is 30%-40%.
  • the filtering effect of the filtering material can be further improved, and the service life of the filter can be prolonged.
  • the base fabric layer is made of polytetrafluoroethylene and/or polyphenylene sulfide. That is, the material of the base fabric layer is PTFE alone, or phenylsulfide alone, or a composite material of these two materials. In one embodiment of the present invention, the base fabric layer is processed by polytetrafluoroethylene filament fibers.
  • the desolidification layer is made of polytetrafluoroethylene having a three-dimensional void structure.
  • the flexible filter material includes at least a release layer and a base cloth layer, but it is not limited to this, and can be changed and derived on this basis. For example, on the basis of the release layer and the base fabric layer of the present invention, other layers can be further included without adversely affecting the effect of the present invention.
  • the release layer and the base fabric layer are arranged adjacently.
  • the flexible filter material only includes a release layer and a base fabric layer.
  • the desolidification layer is preferably a surface layer, that is, when the flexible filter material is used in an oil slurry filter, the oil slurry to be filtered first contacts and desolidifies Floor.
  • a flexible filter material is made of the above-mentioned release layer, the above-mentioned base fabric layer and optional other layers. That is, the flexible filter material itself can be divided into a base cloth layer, a release layer and optional other layers.
  • the flexible filter material further includes an inner layer. That is, the flexible filter material of the present invention includes at least 3 layers, which are the release layer, the base fabric layer and the inner layer in sequence.
  • the inner layer is on the base fabric layer on the side opposite to the release layer by a method known in the art (for example, acupuncture method or spunlace method, etc.) from a fineness of 1 to Made of 3D fibers.
  • the raw materials used to make the fibers of the inner layer may be selected from the above-mentioned raw materials that can be made into flexible filter materials.
  • the raw material used to make the inner fiber is selected from polyethylene, nylon, polyester, polypropylene, polyphenylene sulfide, polyimide, polytetrafluoroethylene, aramid, polyurethane
  • One or more of glass fiber preferably one or more selected from polyimide, polytetrafluoroethylene, polyphenylene sulfide, and glass fiber.
  • the inner layer of the present invention is preferably made of high-strength fibers, which can further improve the strength of the flexible filter material and reduce the plastic deformation of the flexible filter material under long-term continuous load. The risk of prolonging the operation cycle of the slurry filter and extending the service life of the filter.
  • the flexible filter material when the flexible filter material includes at least a release layer, a base cloth layer and an inner layer, the release layer and the base cloth layer are the same as the above description of the release layer and the base cloth layer of the present invention. Consistent.
  • the flexible filter material may further include other layers without adversely affecting the effect of the present invention.
  • the flexible filter material only includes a release layer, a base fabric layer and an inner layer.
  • a flexible filter material is made of the aforementioned release layer, base fabric layer, inner layer, and optional other layers. That is, the flexible filter material itself can be divided into a base cloth layer, a base cloth layer, an inner layer, and optional other layers.
  • the desolidification layer is preferably a surface layer, that is, when the flexible filter material is used in an oil slurry filter, the oil slurry is to be filtered first Contact the release layer.
  • the flexible filter material of the present invention including at least a release layer, a base fabric layer and an inner layer can be prepared by a method known in the art, or it can be a commercially available product.
  • the flexible filter material of the present invention further includes a precision layer and an inner layer. That is, the flexible filter material of the present invention includes at least 4 layers, which are the release layer, the precision layer, the base fabric layer and the inner layer in this order.
  • the precision layer is on the base fabric layer between the release layer and the base fabric layer by a method known in the art (for example, acupuncture method or spunlace method, etc.) from a fineness of 0.2 to Made of 0.3D microfiber.
  • the raw material of the ultrafine fibers used to make the precision layer can be selected from the above-mentioned raw materials that can be made into a flexible filter material.
  • the raw material of the ultrafine fibers used to make the precision layer is selected from polyethylene, nylon, polyester, polypropylene, polyphenylene sulfide, polyimide, polytetrafluoroethylene, aramid One or more of polyurethane and glass fiber; preferably one or more selected from polyimide, polytetrafluoroethylene, polyphenylene sulfide, and glass fiber.
  • the precision layer is made of ultrafine fibers having a fineness smaller than that of the inner layer.
  • the inventor of the present invention believes that due to the interaction between these ultra-fine fibers to form a three-dimensional structure, the filtration efficiency and filtration accuracy of the flexible filter material can be further improved.
  • the surface contact area and surface tension can be enlarged, making the bond between the release layer and the precision layer, and between the release layer and the base fabric layer stronger, and avoid falling off , Thereby further extending the life cycle of the flexible filter material.
  • the flexible filter material when the flexible filter material includes at least a release layer, a precision layer, a base cloth layer, and an inner layer, the release layer, the base cloth layer and the inner layer are the same as the above-mentioned release layer of the present invention. , The description of the base fabric layer and the inner layer are the same.
  • the release layer is a surface layer, that is, when the flexible filter material is used in an oil slurry filter, it needs to be filtered
  • the oil slurry first contacts the desolidified layer.
  • the flexible filter material is made of the above-mentioned release layer, precision layer, base fabric layer and inner layer. That is, the flexible filter material itself can be divided into a release layer, a precision layer, a base fabric layer and an inner layer.
  • the flexible filter material of the present invention can be further optional Land includes other layers.
  • the flexible filter material only includes a release layer, a precision layer, a base fabric layer and an inner layer.
  • the flexible filter material of the present invention including at least a release layer, a precision layer, a base fabric layer and an inner layer can be prepared by a method known in the art, or it can be a commercially available product.
  • the filter assembly includes a filter cake layer formed of a filter aid (hereinafter, sometimes referred to as filter aid filter cake layer) provided on the filter assembly.
  • filter aid filter cake layer formed of a filter aid
  • a filter cake layer formed of a filter aid may be provided on the pinhole-free filter material. In one embodiment of the present invention, in the filter assembly, a filter cake layer formed of a filter aid may be provided on the flexible filter material.
  • the filter aid is one or more mixtures selected from the group consisting of diatomaceous earth, cellulose, perlite, talc, activated clay, filter residue obtained from a filter, and spent catalytic cracking catalyst .
  • the filtration accuracy of the flexible filter material is 3-25 microns.
  • the grammage of the flexible filter material is 300-1000 g/m 2 .
  • the thickness of the flexible filter material is 0.5-3.0 mm.
  • the warp breaking strength of the flexible filter material is 1000N/5cm ⁇ 9000N/5cm, and the weft fracture The strength is 1000N/5cm ⁇ 11000N/5cm.
  • the thickness of the filter cake layer formed by the filter aid is 0.1-10 mm.
  • the pressure difference of the filter assembly is 0.01 to 0.07 MPa.
  • the pressure difference is lower than 0.01MPa, an effective filter cake layer cannot be formed on the filter material, and an excellent filtering effect cannot be achieved or the filter service life cannot be prolonged.
  • the pressure difference is greater than 0.07MPa, the filter In terms of the pressure difference of the filter, the reserved pressure difference rising space is reduced, resulting in a shortening of the effective time of slurry filtration.
  • the filter assembly of the present invention includes a filter cake layer formed of a filter aid provided on the above-mentioned flexible filter bag.
  • the filter assembly of the present invention includes a filter cake layer formed of a filter aid on the above-mentioned flexible filter material including at least a release layer and a base cloth layer.
  • the filter assembly of the present invention includes a filter cake layer formed of a filter aid on the above-mentioned flexible filter material including at least a release layer, a base fabric layer and an inner layer.
  • the filter assembly of the present invention includes a filter cake layer formed of a filter aid on the flexible filter material including at least a release layer, a precision layer, a base fabric layer and an inner layer.
  • the filter assembly of the present invention includes a filter material formed by a filter aid on the above-mentioned flexible filter material including at least a release layer, a precision layer, a base fabric layer, an inner layer and optional other layers. Filter cake layer.
  • the filter of the present invention further includes an oil slurry inlet and a filtered oil outlet. In one embodiment of the present invention, the filter of the present invention further includes an oil slurry inlet, a filtered oil outlet, and a filter residue outlet. In one embodiment of the present invention, the filter of the present invention is an upflow filter, that is, an oil slurry inlet is provided at the lower part of the filter, and a filtered oil outlet is provided at the upper part of the filter, and if necessary, the lower part of the filter and / Or set the filter residue outlet at the bottom.
  • the filter of the present invention is a downflow filter, that is, an oil slurry inlet is provided at the upper part of the filter, a filtered oil outlet is provided at the lower part of the filter, and the upper part of the filter and / Or set the filter residue outlet on the top.
  • the filter is preferably an upflow filter, that is, an oil slurry inlet is provided at the lower part of the filter, and a filtered oil outlet is provided at the upper part of the filter, and Set up filter residue outlets at the bottom and/or bottom of the filter as required.
  • the filter of the present invention further includes a purge medium inlet.
  • a purge medium inlet is provided on the top and/or upper part of the filter.
  • a purge medium inlet is provided at the bottom and/or lower part of the filter.
  • the filter is an upflow filter, and a purge medium inlet is provided on the top and/or upper part of the filter.
  • the filter of the present invention further includes a filter aid inlet.
  • a filter aid inlet when the filter is an upflow filter, a filter aid inlet is provided at the lower part of the filter.
  • a filter aid inlet when the filter is a downflow filter, a filter aid inlet is provided on the upper part of the filter.
  • the filter aid inlet is the oil slurry inlet, that is, the oil slurry inlet is also used as the filter aid inlet.
  • the slurry inlet, the filter aid inlet, and the filter residue outlet are all located in the filter upstream of the filter assembly; the filtered oil outlet, The purge medium inlets are all located in the filter downstream relative to the filter assembly.
  • the present invention provides an oil slurry filter unit (hereinafter sometimes referred to as a filter unit), which includes at least one oil slurry filter of the present invention.
  • a filter unit which includes at least one oil slurry filter of the present invention.
  • the slurry filtering unit may include one filter, or may include more than two filters.
  • the present invention has no limitation on the connection form of the filters.
  • two or more filters may be arranged in parallel.
  • two or more filters may be arranged in series.
  • two or more filters can be switched in parallel and in series.
  • the filters can be mixed in parallel and in series.
  • the two or more filters may be filters with the same filtering accuracy, filters with inconsistent filtering accuracy, or filters with partly consistent and partly inconsistent filtering accuracy .
  • the filtering accuracy of the filtering unit is the filtering accuracy of the entire filtering unit itself. That is, it is the size of the largest particle allowed by the filter unit when the solution containing impurities passes through the filter unit.
  • the slurry filtration unit of the present invention further includes a slurry inlet pipeline and a filtered oil outlet pipeline that are respectively connected to each filter.
  • the slurry filtration unit of the present invention further includes a slurry inlet pipeline, a filtered oil outlet pipeline, and a filter residue discharge pipeline that are respectively connected to each filter.
  • the slurry inlet pipeline, the filtered oil outlet pipeline, and the filter residue discharge pipeline as required are respectively connected to the slurry inlet, the filtered oil outlet, and the filter residue provided in the above-mentioned filter of the present invention. Export connection.
  • the slurry filtration unit of the present invention further includes a purge medium inlet line, and the purge medium inlet line is respectively connected with each filter.
  • the purge medium inlet line is connected to the purge medium inlet provided in the above-mentioned filter of the present invention.
  • the slurry filtration unit of the present invention further includes a purge medium buffer tank, the outlet of the purge medium buffer tank and the purge medium inlet of each filter pass through the purge medium inlet line Connected.
  • the purge medium buffer tank is filled with a purge medium known in the art that can be used for filter residue reverse purging.
  • the purge medium in the oil slurry filtration method of the present invention, may be inert gas and/or flushing oil.
  • the inert gas is a gas that does not react with the oil slurry and particulate matter in the filtration system, and is preferably nitrogen.
  • the purge medium is fuel gas.
  • the flushing oil is filtered oil, preferably filtered oil processed by the slurry filtering method of the present invention.
  • the slurry filtration unit of the present invention further includes a filter aid buffer tank, and the outlet of the filter aid buffer tank is in communication with the filter aid inlet on each filter.
  • the outlet of the filter aid buffer tank is connected with the filter aid inlet on each filter through a filter aid inlet pipeline.
  • the outlet of the filter aid buffer tank is connected with the slurry inlet on the filter through a filter aid inlet pipeline.
  • the outlet of the filter aid buffer tank is connected with the slurry inlet on the filter through a slurry inlet pipeline.
  • a stirring member is provided in the filter aid buffer tank.
  • the stirring member is a rotatable blade member.
  • the filter aid buffer tank is filled with a filter aid and a mixed medium.
  • the filter aid is one or more mixtures selected from the group consisting of diatomaceous earth, cellulose, perlite, talc, activated clay, filter residue obtained from a filter, and spent catalytic cracking catalyst .
  • the mixing medium is not limited in any way, as long as it does not adversely affect the filtration system, does not dissolve the filter aid, and can make the filter aid into a slurry state.
  • the mixed medium is liquid hydrocarbons, more preferably filtered oil.
  • the filter aid buffer tank includes a mixed medium inlet.
  • the mixed medium inlet of the filter aid buffer tank is in communication with the filtered oil outlet of the filter.
  • the communication between the inlet of the mixed medium and the outlet of the filtered oil includes direct communication and indirect communication.
  • the case of direct communication means that the inlet of the mixed medium and the outlet of filtered oil are directly connected through a pipeline, and the case of indirect communication means the inlet of the mixed medium.
  • the pipeline between the filtered oil outlet and the filtered oil outlet is provided with a filtered oil collecting device, a filtered oil further processing device and other devices commonly used in the art.
  • the present invention provides a multi-filter system for oil slurry filtration, including: a filtration system and a control system;
  • the filtering system includes the aforementioned oil slurry filtering unit of the present invention, and the filtering unit includes at least two aforementioned oil slurry filters of the present invention;
  • the control system includes an online pressure difference monitoring module, a filter control module, and a purge control module.
  • the online pressure difference monitoring module is used to monitor the pressure difference of the online filter
  • the filter control module is used to control the filter.
  • Cutting in and out of the filter system, the purging control module is used to control the back purging process of the filter.
  • the filtering unit in the filtering system includes at least two filters of the present invention.
  • the filter unit includes 3, 4, 5, 6 or more filters of the present invention.
  • the filter unit in the multi-filter system of the present invention, includes an oil slurry inlet pipeline, a filtered oil outlet pipeline, a purging medium inlet pipeline, and a filter residue that are respectively connected to each filter.
  • Discharge pipeline the filter includes a slurry inlet connected to the slurry inlet pipeline, a filtered oil outlet connected to the filtered oil outlet pipeline, a purging medium inlet connected to the purging medium inlet pipeline, and a filter residue discharge pipeline connected Filter residue outlet.
  • the filtering accuracy of the filtering system including more than two filters of the present invention is the filtering accuracy of the entire filtering system itself. That is, when the solution containing impurities passes through the filter system, the size of the largest particle allowed by the filter system.
  • the online pressure difference monitoring module includes a pressure gauge or a pressure difference gauge arranged on the slurry inlet pipeline and the filtered oil outlet pipeline of each filter.
  • the filter control module includes a control valve provided on the slurry inlet line, the filtered oil outlet line, and the filter residue discharge line of each filter.
  • the purge control module includes a control valve provided on the purge medium inlet line of each filter.
  • the filter unit in the multi-filter system of the present invention may further include a purge medium buffer tank, and the outlet of the purge medium buffer tank is in communication with the purge medium inlet of each filter through a purge medium inlet line.
  • the purge medium in the multi-filter system of the present invention is consistent with the above description of the purge medium.
  • the filter unit in the multi-filter system of the present invention may further include a filter aid buffer tank, and the outlet of the filter aid buffer tank is in communication with the filter aid inlet on each filter.
  • the outlet of the filter aid buffer tank is connected to the slurry inlet on the filter through a filter aid inlet pipeline.
  • the outlet of the filter aid buffer tank is connected to the slurry inlet on the filter through a slurry inlet pipeline.
  • the description of the filter aid and the filter aid buffer tank is consistent with the above.
  • the present invention provides a multi-stage filtration system for oil slurry filtration, which includes a primary filtration unit and a secondary filtration unit and/or a three-stage filtration unit;
  • the primary filtration unit includes a first filtration system, the first filtration system includes the above-mentioned oil slurry filtration unit of the present invention, and the filtration unit includes at least one above-mentioned oil slurry filter of the present invention;
  • the secondary filter unit includes an automatic backwashing filter device with a driving mechanism
  • the three-stage filter unit includes a second filter system, and the second filter system includes at least one filter;
  • the filtering accuracy of the secondary filtering unit is less than the filtering accuracy of the primary filtering unit, and the filtering accuracy of the tertiary filtering unit is less than the filtering accuracy of the primary filtering unit and less than the filtering accuracy of the secondary filtering unit;
  • the filtered oil outlet of the primary filter unit is respectively communicated with the inlet of the secondary filter unit and/or the inlet of the tertiary filter unit.
  • the filtering accuracy of the primary filter unit of the present invention is the overall filtering accuracy of the primary filter unit;
  • the filtering accuracy of the secondary filter unit of the present invention is the overall filtering accuracy of the secondary filter unit;
  • the filtering accuracy is the overall filtering accuracy of the three-stage filter unit itself. That is, it is the size of the largest particle allowed to pass through each filter unit when a solution containing impurities passes through each filter unit.
  • the multi-stage oil slurry filtration system of the present invention includes a primary filtration unit and a secondary filtration unit. At this time, the filtered oil outlet of the primary filtration unit is in communication with the inlet of the secondary filtration unit.
  • the multi-stage oil slurry filtration system of the present invention includes a first-stage filtration unit and a third-stage filtration unit. At this time, the filtered oil outlet of the first-stage filtration unit is in communication with the inlet of the third-stage filtration unit.
  • the multi-stage oil slurry filtration system of the present invention includes a primary filtration unit, a secondary filtration unit, and a tertiary filtration unit. At this time, the filtered oil outlet of the primary filtration unit and the secondary filtration unit are respectively The inlet of the filter unit is connected with the inlet of the three-stage filter unit.
  • the multi-stage oil slurry filtration system of the present invention when the multi-stage oil slurry filtration system of the present invention includes a first-stage filtration unit, a second-stage filtration unit, and a third-stage filtration unit, the filtered oil outlet of the second-stage filtration unit and the third-stage filtration unit The entrance is connected.
  • the multi-stage oil slurry filtration system of the present invention includes a primary filtration unit, a secondary filtration unit, and a tertiary filtration unit. At this time, the filtered oil outlet of the primary filtration unit and the secondary filtration unit The inlet of the unit is connected, and the filtered oil outlet of the two-stage filter unit is connected with the inlet of the three-stage filter unit.
  • the filtration unit in the first filtration system of the multi-stage filtration system of the present invention, further includes an oil slurry inlet line and a filtered oil outlet line respectively communicating with each filter. In one embodiment of the present invention, in the first filtration system of the multi-stage filtration system of the present invention, the filtration unit further includes an oil slurry inlet line, a filtered oil outlet line, and a filter residue that are respectively connected to each filter. Drain the pipeline.
  • the filter includes an oil slurry inlet connected to an oil slurry inlet pipeline, a filtered oil outlet connected to a filtered oil outlet pipeline, and a filtered oil outlet connected to the filter residue as required The filter residue outlet of the discharge pipeline.
  • the filtration unit further includes an oil slurry inlet pipeline, a filtered oil outlet pipeline, and a blower which are respectively connected to each filter.
  • the filter includes an oil slurry inlet connected to the slurry inlet pipeline, a filtered oil outlet connected to the filtered oil outlet pipeline, a purging medium inlet connected to the purging medium inlet pipeline, and Connect to the filter residue outlet of the filter residue discharge pipeline.
  • the filtration unit may further include a purge medium buffer tank, and the outlet of the purge medium buffer tank is connected to each filter
  • the purging medium inlet of the device is connected through the purging medium inlet pipeline.
  • the description of the purging medium is consistent with the above.
  • the filtration unit may further include a filter aid buffer tank, and the outlet of the filter aid buffer tank is connected to each filter
  • the filter aid inlet on the filter is connected.
  • the slurry inlet of the filter can be used as the filter aid inlet.
  • the outlet of the filter aid buffer tank and the slurry inlet on the filter pass through the filter aid inlet pipeline Connected.
  • the outlet of the filter aid buffer tank is connected with the slurry inlet on the filter through a slurry inlet pipeline.
  • the first filter system of the multi-stage filter system of the present invention may include one filter of the present invention, or may include two or more filters of the present invention.
  • the connection mode of the two or more filters is not limited in any way.
  • two or more filters may be arranged in parallel.
  • two or more filters may be arranged in series.
  • two or more filters can be switched in parallel and in series.
  • the filters when there are more than two filters, the filters may be arranged in a mixed manner in parallel and in series.
  • the two or more filters may be filters with the same filtering accuracy, filters with inconsistent filtering accuracy, or filters with partly consistent and partly inconsistent filtering accuracy .
  • the filtration accuracy of the primary filtration unit is 0.1-25 microns, preferably 0.1-15 microns, and more preferably 0.1-10 microns. In an embodiment of the present invention, the filtration accuracy of the primary filtration unit is 2-25 microns. In an embodiment of the present invention, the filtration accuracy of the primary filtration unit is 2-15 microns, more preferably 2-10 microns. In addition, in an embodiment of the present invention, the filtration accuracy of the primary filtration unit may be 0.1 to less than 2 microns.
  • the secondary filter unit of the multi-stage oil slurry filtration system of the present invention includes an automatic backwashing filter device with a driving mechanism.
  • the filtering device for automatic backwashing may be a filtering device for automatic backwashing with a driving mechanism known in the art.
  • the filter device includes a cylindrical shell, a cylindrical filter screen, a residue unloading mechanism, a flushing oil inlet, and a residue filter outlet.
  • the residue unloading mechanism is arranged on the cylindrical filter screen.
  • the inner side is connected with the drive mechanism.
  • the filter device can automatically perform backwashing of the filter screen by monitoring the pressure difference.
  • the slag unloading mechanism located inside the filter screen is driven to rotate by a motor, and the inside of the rotating slag unloading mechanism is connected to the external low-pressure tank through a pipeline, and the flushing oil enters through the slag unloading mechanism and the local contact part of the filter screen. Go to the low pressure area of the unloading mechanism, and use the flushing oil to backwash the filter screen. Because the slag unloading mechanism is rotating, the backwashing and regeneration of the whole filter screen is completed after each rotation.
  • the material of the filter screen of the filter device in the secondary filter unit there is no limitation on the material of the filter screen of the filter device in the secondary filter unit, and materials known in the art that can be used as a filter screen can be used.
  • the material of the filter it can be at least one selected from polypropylene, polyethylene, nylon, polyester, polypropylene, polyphenylene sulfide, polyimide, polytetrafluoroethylene, aramid, polyurethane, and glass fiber.
  • the filtering accuracy of the secondary filter unit is smaller than that of the primary filter unit.
  • the filtration accuracy of the secondary filter unit is 0.1-7 microns, preferably 1-5 microns.
  • the filtration area of the secondary filtration unit is 1/20 to 1/10 times the filtration area of the primary filtration unit.
  • the three-stage filtration unit includes a second filtration system, and the second filtration system includes at least one filter.
  • the filters in the three-stage filtration unit can use filters known in the art, as long as the filtration accuracy of the three-stage filtration unit is smaller than that of the first-stage filtration unit and smaller than that of the second-stage filtration. The filter accuracy of the unit is sufficient.
  • the raw material used as the material for the filter mesh of the filter in the three-stage filter unit may be selected from polypropylene, polyethylene, nylon, nylon, polyester, polypropylene, and polystyrene. At least one material selected from sulfide, polyimide, polytetrafluoroethylene, aramid, polyurethane, glass fiber, and vinylon.
  • the porosity of the filter mesh of the filter in the three-stage filter unit is 85% to 98%.
  • the weight of the filter mesh of the filter in the three-stage filter unit is 300-1000 g/m 2 .
  • the thickness of the filter screen of the filter in the three-stage filter unit is 0.5-3.0 mm.
  • the longitudinal breaking strength of the filter in the three-stage filter unit is 1000N/5cm to 9000N/5cm, and the weft breaking strength is 1000N/5cm to 11000N/5cm.
  • the filter in the three-stage filtration unit is the above-mentioned oil slurry filter of the present invention.
  • the filtration precision in the three-stage filtration unit is smaller than the filtration precision of the first-stage filtration unit and smaller than the filtration precision of the two-stage filtration unit.
  • the filtration accuracy of the three-stage filtration unit is 0.1-1.0 microns.
  • the filter area of the filter in the three-stage filter unit is larger than the filter area of the filter in the first-stage filter unit. In an embodiment of the present invention, the filtration area of the three-stage filtration unit is 1.5-20 times the filtration area of the first-stage filtration unit.
  • the present invention also provides an oil slurry filtering method, which includes: making the oil slurry enter the above-mentioned oil slurry filter of the present invention for filtering (filtration step).
  • the oil slurry in the oil slurry filtering method of the present invention, the oil slurry enters the filter through the slurry inlet pipeline, and the filtered oil is taken out from the filtered oil outlet pipeline.
  • the oil slurry is a liquid hydrocarbon containing particulate impurities, and preferably the oil slurry is a liquid hydrocarbon including a catalytic cracking oil slurry and/or coal tar.
  • the filtration temperature in the filter is 30 to 250°C, more preferably 50 to 240°C, and still more preferably 60 to 180°C.
  • the filter uses a pressure difference (the pressure difference when the filtered oil starts to be collected) of 0.01 to 0.5 MPa.
  • the lower limit of the use pressure difference can be 0.02MPa and 0.04MPa; the upper limit of the use pressure difference can be 0.4MPa and 0.30MPa.
  • the pressure difference is lower than 0.01 MPa, the filtered oil slurry cannot form an effective filter cake on the filter material, and an excellent filtering effect cannot be achieved.
  • the pressure difference is higher than 0.5 MPa, it will cause damage to the flexible filter material, resulting in a decrease in the efficiency of the flexible filter material in subsequent filtration and a shortened service life.
  • the used filter in the slurry filtration method of the present invention, is back-purged with a purge medium.
  • the purge medium enters the filter through the purge medium inlet line to perform back purging (back purge step).
  • the filtered filter residue is discharged from the filter residue discharge line.
  • the purge medium is a purge medium known in the art that can be used for filter residue reverse purging.
  • the purge medium may be inert gas and/or flushing oil.
  • the inert gas is a gas that does not react with the oil slurry and particulate matter in the filtration system, and is preferably nitrogen.
  • the purge medium is fuel gas.
  • the flushing oil is filtered oil, preferably filtered oil processed by the slurry filtering method of the present invention.
  • back-purge actually refers to back-purge and back-elution, and its purpose is to purge and remove the filter residue in the filter.
  • the filter aid in the oil slurry filtration method of the present invention, before the oil slurry enters the oil slurry filter, the filter aid is allowed to enter the filter to form a filter aid filter on the filter assembly of the filter.
  • Cake layer filter cake layer forming step
  • slurry filtration The description of the filter aid and filter cake layer is consistent with the above description of the filter aid and filter cake layer of the present invention.
  • the description about the forming steps of the filter aid filter cake layer is consistent with the above description of the invention about the forming steps of the filter aid filter cake layer.
  • the thickness of the filter cake layer formed by the filter aid in the filter cake layer forming step, is 0.1-10 mm.
  • the pressure difference of the filter is 0.01 to 0.07 MPa, and when the pressure difference is lower than 0.01 MPa, If an effective filter cake is not formed on the filter material, the excellent filtering effect cannot be achieved or the service life of the filter cannot be prolonged.
  • the pressure difference is greater than 0.07MPa, it is reserved for the use pressure difference of the filter The pressure difference rises space is reduced, resulting in shortening the effective time of oil slurry filtration.
  • the filter aid is one or more mixtures selected from the group consisting of diatomaceous earth, cellulose, perlite, talc, activated clay, filter residue obtained from a filter, and spent catalytic cracking catalyst .
  • the pressure difference of the filter is monitored to control the thickness of the filter aid cake layer.
  • at least a part of the filtered oil is returned to the filter aid buffer tank.
  • the filtered oil outlet pipeline of the filter is connected to the raw material buffer tank, or is connected to the unqualified filtered oil pipeline .
  • the temperature of the filter in the cake layer forming step, is 30 to 250°C, preferably 50 to 180°C.
  • the filter aid in the filter cake layer forming step, enters the filter through the filter aid inlet line. In one embodiment of the present invention, in the filter cake layer forming step, the filter aid enters the filter through the slurry inlet line.
  • the filter aid and the mixing medium are first fully mixed in the filter aid buffer tank, and then they are allowed to enter the filter.
  • the mixed medium is liquid hydrocarbons, more preferably filtered oil.
  • the oil slurry filtration method of the present invention in the oil slurry filtration method of the present invention, at least a part of the filtered oil is returned to the filter aid buffer tank.
  • one of the above-mentioned filters of the present invention can be used. In one embodiment of the present invention, in the oil slurry filtration method of the present invention, two or more of the above-mentioned filters of the present invention may be used.
  • the operation when one filter is used, the operation can be performed in a way that the filtration mode and the purge mode are alternately performed. In one embodiment of the present invention, in the oil slurry filtration method of the present invention, when more than two filters are used, the operation can be performed by alternately switching between the online filter and the backup filter. Specifically, when the pressure difference of the on-line filter reaches or exceeds the set value, the spare filter can be cut into the filtration system, and the on-line filter can be cut out of the filtration system, and it can be back purged and unloaded. And according to need, the filter aid is introduced to form a filter cake layer of the filter aid.
  • the filter residue discharged as a liquid mixture has good fluidity and can be discharged from the filtering system.
  • the filter residue can also be stabilized and dried in the filter, and then discharged from the filtration system as a completely solidified filter residue.
  • the present invention also provides a method for filtering oil slurry, which uses the above-mentioned multi-filter system of the present invention, which includes:
  • the filter control module cuts the other parts of the filter into the filtering system, enters the above filtering step, and changes the pressure difference
  • the online filter that reaches the set value I cuts out the filtration system, and the set value I is in the range of 0.01 ⁇ 0.5 MPa,
  • the purge medium is used to unload and back purge the filter cut out of the filter system.
  • the filtration temperature in the in-line filter is 30 to 250°C, preferably 50 to 240°C, and more preferably 60 to 180°C.
  • the filter control module cuts the filters of other parts of the filter into the filter system, and enters
  • the online pressure difference monitoring module detects that the pressure difference of the cut-in online filter reaches the set value III
  • the online filter whose pressure difference reaches or exceeds the set value II is cut out of the filtration system, and the set value III ⁇ setting value II ⁇ setting value I;
  • the setting value II and the setting value III are in the range of 0.01 to 0.5 MPa.
  • the operating pressure difference of the in-line filter is 0.01-0.5 MPa.
  • the lower limit of the use pressure difference can be 0.02 MPa and 0.04 MPa; the upper limit of the use pressure difference can be 0.4 MPa and 0.30 MPa.
  • the pressure difference setting value I monitored by the online pressure difference monitoring module is within the range of the use pressure difference.
  • the pressure difference is less than 0.01 MPa, the filtered oil slurry cannot form an effective filter cake on the filter material, and it cannot achieve excellent The filtering effect.
  • the pressure difference is higher than 0.5 MPa, it will damage the flexible filter material, resulting in a lower efficiency of the flexible filter material in subsequent filtration and a shortened service life. Therefore, the in-line filter needs to be cut out of the filtration system.
  • the present invention also provides a method for filtering oil slurry, which uses the above-mentioned multi-filter system of the present invention, wherein, before (1) the filtering step, it further comprises:
  • the filter aid enter at least two of the above-mentioned oil slurry filters of the present invention in the filtering system to form a filter cake layer of the filter aid in the filter (filter cake layer forming step);
  • the oil slurry enters the filter where the filter cake layer of the filter aid is formed (filtration step);
  • the filter control module cuts the filter cake layer formed into the filter step for oil slurry filtration.
  • the set value IV is in the range of 0.01 ⁇ 0.07MPa.
  • the filter in the filtering method using a multi-filter system of the present invention, after the filter is cut into the filtering system, the filter passes through the filter before forming a filter cake layer on the filter assembly of the filter.
  • the control module connects the filtered oil outlet pipeline of the filter with the raw material buffer tank, or with the unqualified filtered oil pipeline.
  • the description of the filter aid and filter cake layer is consistent with the above description of the filter aid and filter cake layer of the present invention.
  • the description about the forming steps of the filter aid filter cake layer is consistent with the above description of the invention about the forming steps of the filter aid filter cake layer.
  • the set value IV of the filter pressure difference in the range of 0.01 to 0.07 MPa.
  • the filter aid is one or more mixtures selected from the group consisting of diatomaceous earth, cellulose, perlite, talc, activated clay, filter residue obtained from a filter, and spent catalytic cracking catalyst .
  • the pressure difference of the filter is monitored to control the thickness of the filter aid cake layer.
  • at least a part of the filtered oil is returned to the filter aid buffer tank.
  • the present invention also provides an oil slurry filtration method, which uses the above-mentioned multi-stage filtration system of the present invention, which includes:
  • the step of causing the oil slurry to enter the primary filtration unit for filtering to obtain the primary filtration slurry (the primary filtration step), the primary filtration unit includes a first filtration system, and the first filtration system includes the above-mentioned slurry filtration of the present invention Unit, the filtering unit includes at least one slurry filter of the present invention; and
  • the secondary filter unit includes an automatic backwashing filter device with a driving mechanism
  • the three-stage filter unit includes a second filter system, and the second filter system includes at least one filter
  • the filtering accuracy of the secondary filtering unit is less than the filtering accuracy of the filter in the primary filtering unit, and the filtering accuracy of the tertiary filtering unit is less than the filtering accuracy of the primary filtering unit and the filtering accuracy of the secondary filtering unit.
  • the description of the multi-stage filtration system is consistent with the description of the above-mentioned multi-stage filtration system.
  • the primary filtered oil slurry enters the secondary filtering unit to obtain filtered oil (secondary filtering step).
  • the first-stage filtered oil slurry enters the third-stage filtration unit to obtain filtered oil (three-stage filtration step).
  • the first-stage filtered oil slurry enters the second-stage filter unit to obtain the second-stage filtered oil slurry, and then the second-stage filtered oil slurry enters the third-stage filter unit to obtain the filtered oil (third-stage Filtering step).
  • the step of causing the oil slurry to enter the primary filtration unit for filtering to obtain the primary filtration slurry can be the same as the above-mentioned filtration step of the present invention.
  • the filtration temperature of the filter in the first filtration system is 30 to 250°C, preferably 50 to 240°C, and more preferably 60 to 180°C.
  • the pressure difference of the filter in the first filtration system is 0.01-0.5 MPa.
  • the lower limit of the use pressure difference can be 0.02MPa and 0.04MPa; the upper limit of the use pressure difference can be 0.4MPa and 0.30MPa.
  • the pressure difference is lower than 0.01 MPa, the filtered oil slurry cannot form an effective filter cake on the filter material, and an excellent filtering effect cannot be achieved.
  • the use pressure difference is higher than 0.5 MPa, it will cause damage to the flexible filter material, resulting in a decrease in the efficiency of the flexible filter material in subsequent filtration and a shortened service life.
  • the filtration temperature in the filter in the second filtration system is 30 to 250°C, preferably 60 to 180°C.
  • the filter in the second filtration system in the filtration method using the multi-stage filtration system of the present invention, is not back purged. In one embodiment of the present invention, the filter in the second filtering system adopts an inside-out filtering mode, and the impurities are completely placed inside the filter.
  • the filter aid in the filtration method using a multi-stage filtration system of the present invention, before the one-stage filtration step, the filter aid is introduced into the filter to form a filter aid filter on the filter assembly of the filter.
  • Cake layer filter cake layer forming step
  • a one-stage filtration step The description of the filter aid and filter cake layer is consistent with the above description of the filter aid and filter cake layer of the present invention.
  • the description of the steps and conditions for forming the filter cake layer of the filter aid is consistent with the description of the steps and conditions for forming the filter aid filter cake layer of the present invention.
  • the pressure difference of the filter in the cake layer forming step, is set to 0.01 ⁇ 0.07MPa.
  • the filter aid is one or more mixtures selected from the group consisting of diatomaceous earth, cellulose, perlite, talc, activated clay, filter residue obtained from a filter, and spent catalytic cracking catalyst .
  • the pressure difference of the filter is monitored to control the thickness of the filter aid cake layer.
  • at least a part of the filtered oil is returned to the filter aid buffer tank.
  • Fig. 1 is a schematic diagram of an embodiment of the slurry filtration unit of the present invention.
  • the oil slurry filtering unit includes an oil slurry filter 11, an oil slurry inlet pipeline 13 communicating with the filter 11, a filtered oil outlet pipeline 14 and a filter residue discharge pipeline 15.
  • the filter 11 is provided with a filter assembly 12 (flexible filter bag) made of flexible material.
  • An oil slurry inlet is provided at the lower part of the filter 11, a filtered oil outlet is provided at the upper part of the filter 11, and a residue outlet is provided at the bottom of the filter 11.
  • a purge medium inlet is provided at the top and upper part of the filter 11 and communicates with the purge medium inlet pipeline 16.
  • Fig. 2 is a schematic diagram of another embodiment of the slurry filtration unit of the present invention.
  • the oil slurry filter unit includes an oil slurry filter 21 and an oil slurry filter 23, an oil slurry inlet pipeline 25 communicating with the filter 21, a filtered oil outlet pipeline 27, and a filter residue discharge pipeline 29; and the filter 23, the slurry inlet pipeline 26, the filtered oil outlet pipeline 28, and the filter residue discharge pipeline 210 are connected.
  • the filter 21 is provided with a filter assembly 22 (flexible filter bag) made of a flexible material;
  • the filter 23 is provided with a filter assembly 24 (flexible filter bag) made of a flexible material.
  • a purge medium inlet is provided on the top of the filter 21 and communicated with the purge medium inlet line 211; the upper part of the filter 21 is provided with a purge medium inlet and communicates with the purge medium inlet line 213.
  • a purge medium inlet is provided on the top of the filter 23 and communicates with the purge medium inlet line 212; the upper part of the filter 23 is provided with a purge medium inlet and communicates with the purge medium inlet line 214.
  • a communication line 215 is provided between the filtered oil outlet of the filter 21 and the slurry inlet of the filter 23.
  • the filter 21 and the filter 23 can be used in parallel, can be used in series, or can be switched.
  • the filter 23 is back-purged at the same time or in a standby state; or when the filter 23 is in-line filtering, the filter 21 is back-purged at the same time or in a standby state.
  • FIG. 3 is a schematic diagram of another embodiment of the oil slurry filtration unit of the present invention.
  • the oil slurry filtration unit includes an oil slurry filter 31 and a filter aid buffer tank 36, and the oil slurry communicates with the filter 31
  • the inlet pipeline 33, the filtered oil outlet pipeline 34, the filter residue discharge pipeline 35, and the outlet of the filter aid buffer tank 36 are in communication with the oil slurry inlet pipeline 38 of the filter.
  • a purge medium inlet is provided at the top and upper part of the filter 31 and communicates with the purge medium inlet pipeline 310.
  • the mixed medium inlet of the filter aid buffer tank 36 is in communication with the inlet pipeline 37, and the mixed medium inlet of the filter aid buffer tank 36 is in communication with the filtered oil outlet pipeline of the filter through a pipeline 39.
  • FIG 4 is a schematic diagram of another embodiment of the oil slurry filter unit of the present invention.
  • the oil slurry filter unit includes an oil slurry filter 41, an oil slurry filter 43 and a filter aid buffer tank 416, and The slurry inlet pipeline 45, the filtered oil outlet pipeline 47, and the filter residue discharge pipeline 49 communicated with the filter 41; the slurry inlet pipeline 46, the filtered oil outlet pipeline 48, and the filter residue discharge pipeline 410 connected with the filter 43.
  • a purge medium inlet is provided on the top of the filter 41 and communicates with the purge medium inlet line 411; the upper part of the filter 41 is provided with a purge medium inlet and communicates with the purge medium inlet line 413.
  • a purge medium inlet is provided on the top of the filter 43 and communicates with the purge medium inlet line 412; the upper part of the filter 43 is provided with a purge medium inlet and communicates with the purge medium inlet line 414.
  • a communication line 415 is provided between the filtered oil outlet of the filter 41 and the slurry inlet of the filter 43.
  • the outlet of the filter aid buffer tank 416 is in communication with the filter 41 and the slurry inlet of the filter 43 with a pipeline 418.
  • the mixed medium inlet of the filter aid buffer tank 416 is in communication with the inlet pipeline 417, and the mixed medium inlet of the filter aid buffer tank 416 is in communication with the filtered oil outlet pipelines of the filter 41 and the filter 43 through a pipeline 419.
  • the filter 41 and the filter 43 can be used in parallel, can be used in series, or can be switched.
  • the filter 43 is simultaneously back-purged to form a filter cake layer of filter aid or is in a standby state; or when the filter 43 is online-filtered, the filter 41 is simultaneously back-purged, The formation of filter aid filter cake layer or standby state.
  • Fig. 5 is a schematic diagram of an embodiment of the multiple filter system of the present invention.
  • the multi-filter system of the present invention includes a filtration system and a control system.
  • the filtration system includes an oil slurry filter 51, an oil slurry filter 53, an oil slurry inlet line 55 connected to the filter 51, and a filter
  • a purge medium inlet is provided on the top of the filter 51 and communicated with the purge medium inlet line 511; the upper part of the filter 51 is provided with a purge medium inlet and communicates with the purge medium inlet line 513.
  • a purge medium inlet is provided on the top of the filter 53 and communicated with the purge medium inlet line 512; the upper part of the filter 53 is provided with a purge medium inlet and communicates with the purge medium inlet line 514.
  • the control system includes an online pressure difference monitoring module, a filter control module 516, and a purge control module 517.
  • the online pressure difference monitoring module is used to monitor the pressure difference of the online filter
  • the filter control module 516 is used for A single filter is controlled to cut into and out of the filtering system
  • the purging control module 517 is used to control the purging process of the filter.
  • the filter for filtering and back-purge switching can be realized by controlling the valve switch of the control system.
  • the valves are named after each pipeline number with V. Take the two filters in parallel in Figure 5 to illustrate the operation of the filter.
  • Valve V55 and valve V57 are opened through the filter control module 516, and the other valves are closed.
  • the filter 51 first performs the filtering operation.
  • the online pressure difference monitoring module detects the filtering
  • the valve V55 and valve V57 are closed through the filter control module 516 to cut out the filter 51
  • the valve 56 and valve 58 are opened to cut the filter 53 into the filter system.
  • the sweep control module 517 opens the valve V513 and the valve V59 to use inactive gas or filtered oil for the filter 51 to perform reverse purging.
  • the online pressure difference monitoring module detects that the pressure difference between the inlet and outlet of the filter 53 reaches the set value, close the valve V56 and the valve V58, cut out the filter 53, open the valve V55 and the valve V57, and use the purged filter
  • the filter 51 performs a filtering operation.
  • the valve V514 and the valve V510 are opened through the purge control module 517, and the filter 53 is back purged with inert gas or distillate oil; and so on.
  • FIG. 6 is a schematic diagram of an embodiment of the multiple filter system of the present invention.
  • FIG. 6 is a connection line 615 between the filtered oil outlet of the slurry filter 61 and the slurry inlet of the slurry filter 63 added on the basis of FIG. 5.
  • the filter 61 and the filter 63 can be used in parallel, can be used in series, or can be switched.
  • the filter 63 is simultaneously purged or is in a standby state; or when the filter 63 is online filtering, the filter 61 is simultaneously purging or is in a standby state.
  • the valves V65, V67, V615, V66, and V68 are opened and other valves are closed, a series filtering operation with the filter 61 in front and the filter 63 in the back can be performed.
  • Fig. 7 is a schematic diagram of the structure of the multi-stage filtration system of the present invention.
  • the multi-stage filtration system of the present invention includes a primary filtration unit 71, a secondary filtration unit 72 and a three-stage filtration unit 73.
  • At least one oil slurry filter is provided in the primary filter unit 71, and the oil slurry filter includes a filter assembly made of flexible material.
  • the secondary filter unit 72 is provided with an automatic backwashing filter device with a driving mechanism.
  • At least one filter is provided in the three-stage filter unit 73, and a filter assembly made of flexible material is provided in the filter.
  • the primary filtration unit 71 further includes an oil slurry inlet pipeline 74 and a filter residue outlet pipeline 710.
  • the filtered oil outlet pipeline 75 of the primary filtration unit 71 communicates with the inlet of the secondary filtration unit 72, and the filtered oil outlet of the primary filtration unit 71
  • the pipeline 76 communicates with the inlet of the three-stage filter unit 73.
  • the secondary filter unit 72 includes a filter residue outlet pipeline 711 and a filtered oil outlet pipeline 77.
  • the filtered oil outlet of the secondary filter unit 72 is connected to the inlet of the tertiary filter unit 73 via a pipeline 79.
  • the three-stage filter unit also includes a filtered oil outlet line 78.
  • FIG. 8 is a schematic diagram of an embodiment of the first-stage filtration unit of the multi-stage filtration system of the present invention.
  • the first-stage filtration unit includes an oil slurry filter 81, and the oil slurry communicated with the first filter 81 The inlet line 83, the filtered oil outlet line 84 and the filter residue discharge line 85.
  • the filter 81 is provided with a filter assembly 82 (flexible filter bag) made of flexible material.
  • An oil slurry inlet is provided at the lower part of the filter 81, a filtered oil outlet is provided at the upper part of the filter 81, and a residue outlet is provided at the bottom of the filter 81.
  • Purge medium inlets are provided at the top and upper part of the filter 81 and communicate with the purge medium inlet line 86.
  • FIG. 9 is a schematic diagram of an embodiment of the primary filtration unit of the multi-stage filtration system of the present invention.
  • the primary filtration unit includes an oil slurry filter 91, an oil slurry filter 93, and a filter 91
  • the slurry inlet pipeline 95, the filtered oil outlet pipeline 97 and the filter residue discharge pipeline 99 are connected; the slurry inlet pipeline 96, the filtered oil outlet pipeline 98 and the filter residue discharge pipeline 910 are connected with the filter 93.
  • the filter 91 is provided with a filter assembly 92 (flexible filter bag) made of a flexible material;
  • the first filter 93 is provided with a filter assembly 94 (flexible filter bag) of a flexible material.
  • a purge medium inlet is provided at the top of the filter 91 and communicates with the purge medium inlet line 911; the upper part of the filter 91 is provided with a purge medium inlet and communicates with the purge medium inlet line 913.
  • a purge medium inlet is provided at the top of the filter 93 and communicates with the purge medium inlet line 912; the upper part of the filter 93 is provided with a purge medium inlet and communicates with the purge medium inlet line 914.
  • a communication line 915 is provided between the filtered oil outlet of the filter 91 and the slurry inlet of the filter 93.
  • the filter 91 and the filter 93 can be used in parallel, can be used in series, or can be switched.
  • the filter 93 is simultaneously back purged or in a standby state; or when the filter 93 is in online filtering, the filter 91 is simultaneously back purged or in a standby state.
  • oil slurry A, C, D, F, G, I are catalytic cracking oil slurry
  • oil slurry B is a mixture of catalytic cracking oil slurry and a small amount of catalytically cracked light cycle oil (LCO)
  • oil slurry E is catalytic cracking oil slurry A mixture with a small amount of FCC light cycle oil (LCO) and a small amount of FCC heavy cycle oil.
  • Slurry H is a mixture of FCC oil slurry and a small amount of FCC heavy cycle oil (HCO).
  • the oil slurry filtering unit shown in Fig. 1 is adopted, wherein a single filter is provided, and a flexible filter bag is provided in the filter.
  • the flexible filter bag includes a release layer and a base cloth layer, and its specific property parameters are shown in Table I-1.
  • the oil slurry filtering unit shown in Fig. 2 is adopted, in which two identical filters are arranged, and flexible filter bags are arranged in both filters.
  • the flexible filter bag includes a release layer, a base cloth layer and an inner layer, and its specific property parameters are shown in Table I-2.
  • the oil slurry filtering unit shown in Fig. 1 is adopted, wherein a single filter is provided, and a flexible filter bag is provided in the filter.
  • the flexible filter bag includes a release layer, a precision layer, a base cloth layer and an inner layer, and its specific property parameters are shown in Table I-3, Table I-4, and Table I-5.
  • This set of examples is used to illustrate the method of filtering the oil slurry using the oil slurry filtering unit of Example I-1-1-3.
  • the slurry A enters the filter described in Example I-1 through the slurry inlet pipeline connected to the filter for filtration, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtration temperature of the filter is 100°C, and the filtration is set to a pressure difference of 0.12 MPa for back blowing.
  • the pressure difference of the filter is 0.04 MPa
  • the filtered oil is collected.
  • the pressure difference reaches 0.12 MPa
  • the feeding is stopped, the filtered oil is stopped, and the 100°C nitrogen is used for back-blowing.
  • the collected filtered oil was analyzed, and the solid particle content was 262 ⁇ g/g.
  • Example I-10 the slurry B enters the filter described in Example I-2 through the slurry inlet pipeline connected to the filter for filtration, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtration temperature of the filter is 180°C, and the filtration is set to a pressure difference of 0.30 MPa for back blowing.
  • the pressure difference of the filter is 0.04 MPa
  • the filtered oil is collected.
  • the pressure difference reaches 0.30 MPa
  • the feeding is stopped, and the collected oil is stopped, and the pressure is reversed with 180°C nitrogen.
  • the collected filtered oil was analyzed, and the solid particle content was 481 ⁇ g/g.
  • Example I-11 the slurry C enters the filter described in Example I-3 through the slurry inlet pipeline connected with the filter for filtering, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtration temperature of the filter is 250°C, and the filtration is set to a pressure difference of 0.45MPa for back blowing.
  • the pressure difference of the filter is 0.05 MPa
  • the filtered oil will be collected.
  • the pressure difference reaches 0.45 MPa
  • the feeding will be stopped, and the collected oil will be stopped, and it will be blown back with nitrogen at 250°C.
  • the collected filtered oil was analyzed, and the content of solid particles was 1106 ⁇ g/g.
  • This set of embodiments is used to illustrate the method for filtering the slurry using the slurry filtering unit of the embodiment I-4-I-5, wherein the two filters in the filtering unit are switched for use.
  • Example I-12 coal tar A enters the filter described in Example I-4 through the slurry inlet pipeline connected with the filter for filtering, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtration temperature of the filter is 60°C, and the filtration is set to a pressure difference of 0.30 MPa for back blowing.
  • the pressure difference of the filter is 0.04MPa
  • the filtered oil starts to be collected.
  • the pressure difference reaches 0.30MPa
  • the feeding is stopped, and the filtered oil collection is stopped, and the normal temperature nitrogen is used for back-blowing.
  • the collected filtered oil was analyzed, and the solid particle content was 487 ⁇ g/g.
  • coal tar B enters the filter described in Example I-5 through the slurry inlet pipeline connected to the filter for filtration, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtration temperature of the filter is 80°C, and the filtration is set to a pressure difference of 0.35 MPa for back blowing.
  • the pressure difference of the filter is 0.04 MPa
  • the filtered oil is collected.
  • the pressure difference reaches 0.35 MPa
  • the feeding is stopped, and the collected oil is stopped, and the back-blowing is performed with nitrogen at 80°C.
  • the collected filtered oil was analyzed, and the solid particle content was 765 ⁇ g/gh.
  • This set of examples is used to illustrate the method for filtering the oil slurry using the oil slurry filtering unit of the embodiments I-6-I-8.
  • Example I-14 the slurry A enters the filter described in Example I-6 through the slurry inlet pipeline connected with the filter for filtration, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtration temperature of the filter is 130°C, and the filtration is set to a pressure difference of 0.25 MPa for back blowing.
  • the pressure difference of the filter is 0.05 MPa
  • the filtered oil is collected.
  • the pressure difference reaches 0.25 MPa
  • the feeding is stopped, and the filtered oil collection is stopped, and the nitrogen is used for back-blowing at 130°C.
  • the collected filtered oil was analyzed, and the solid particle content was 155 ⁇ g/g.
  • Example I-15 the slurry B enters the filter described in Example I-7 through the slurry inlet pipeline connected to the filter for filtration, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtration temperature of the filter is 150°C, and the filtration is set to a pressure difference of 0.18 MPa for back blowing.
  • the pressure difference of the filter is 0.04MPa
  • the filtered oil starts to be collected.
  • the pressure difference reaches 0.18MPa
  • the feeding is stopped, and the filtered oil collection is stopped, and the nitrogen is used for back-blowing at 150°C.
  • the collected filtered oil was analyzed, and the solid particle content was 356 ⁇ g/g.
  • Example I-16 the slurry C enters the filter described in Example I-8 through the slurry inlet pipeline connected to the filter for filtering, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtration temperature of the filter is 180°C, and the filtration is set to a pressure difference of 0.40MPa for back blowing.
  • the pressure difference of the filter is 0.04MPa
  • the filtered oil starts to be collected.
  • the pressure difference reaches 0.40MPa
  • the feeding is stopped, the filtered oil collection is stopped, and nitrogen is used for back-blowing at 150°C.
  • the collected filtered oil was analyzed, and the content of solid particles was 983 ⁇ g/g.
  • the oil slurry filtering unit shown in Fig. 1 is adopted, wherein a single filter is provided, and a flexible filter bag is provided in the filter.
  • the flexible filter bag includes a release layer, a precision layer, a base cloth layer and an inner layer, and its specific property parameters are shown in Table I-6 and Table I-7.
  • This set of examples is used to illustrate the method of filtering oil slurry using the oil slurry filtering unit of Examples I-17 to I-18.
  • Example I-19 the slurry A enters the filter described in Example I-17 through the slurry inlet pipeline connected to the filter for filtration, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtration temperature of the filter is 120°C, and the filtration is set to a pressure difference of 0.10 MPa for back blowing.
  • the pressure difference of the filter is 0.01 MPa
  • the filtered oil is collected.
  • the pressure difference reaches 0.10 MPa
  • the feeding is stopped, and the filtered oil collection is stopped, and the 120°C nitrogen is used for back-blowing.
  • the collected filtered oil was analyzed, and the content of solid particles was 148 ⁇ g/g.
  • Example I-20 the slurry B enters the filter described in Example I-18 through the slurry inlet pipeline connected with the filter for filtration, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtration temperature of the filter is 125°C, and the filtration is set to a pressure difference of 0.13 MPa for back blowing.
  • the pressure difference of the filter is 0.02 MPa
  • the filtered oil is collected.
  • the pressure difference reaches 0.20 MPa
  • the feeding is stopped, and the collection of the filtered oil is stopped, and the nitrogen is used for back-blowing at 125°C.
  • the collected filtered oil was analyzed, and the content of solid particles was 335 ⁇ g/g.
  • Examples I-19 and I-20 illustrate that by using a filter assembly with a smaller precision, the filtrate product can be collected when the pressure difference is small, which can improve the efficiency of the filter. In addition, the filtering effect is excellent.
  • This set of comparative examples adopts the slurry filtration unit of Example I-1-I-2.
  • Example I-1 filtration was performed in the same manner as in Example I-9, except that the filtered oil was collected while the pressure difference of the filter was 0.005 MPa to 0.01 MPa, and the filtered oil was collected. Analyzing the filtered oil collected during the filter pressure difference between 0.005MPa and 0.01MPa, the solid particulate matter content was 908 ⁇ g/g.
  • Example I-2 filtration was performed in the same manner as in Example I-10 except that the filtered oil was collected from the beginning of the filtration to the pressure difference of the filter at 0.01 MPa, and the filtered oil was collected. Analyzing the filtered oil collected from the beginning of the filtration to the filter pressure difference of 0.01 MPa, the solid particle content was 2463 ⁇ g/g.
  • Comparative Example I-1 and Comparative Example I-2 illustrate that when the pressure difference of the filter is lower than 0.01 MPa, the filtering effect is poor.
  • the oil slurry filter unit shown in Fig. 3 is adopted, wherein a single oil slurry filter is provided, and a flexible filter bag is provided in the filter.
  • the specific property parameters of the flexible filter bag are shown in Table II-1.
  • the filter aid buffer tank is filled with a filter aid and a mixed medium.
  • the mixed medium is filtered oil.
  • the filter aid in Example II-1 and Example II-2 is diatomaceous earth, as in Example II-3
  • the filter aid in is the filter residue obtained from filtration.
  • Example II-3 Material Polyester Polytetrafluoroethylene Polypropylene Porosity 85% 87% 90% Weight 940 ⁇ 5%g/m 2 550 ⁇ 5%g/m 2 900 ⁇ 5%g/m 2 Warp breaking strength 3480N/5cm 2200N/5cm 8006N/5cm Zonal breaking strength 5760N/5cm 2200N/5cm 10398N/5cm thickness 1.5 ⁇ 10%mm 1.0 ⁇ 10%mm 0.9 ⁇ 10%mm Filtration accuracy 5 ⁇ m 8 ⁇ m 10 ⁇ m
  • the oil slurry filter unit shown in Fig. 4 is adopted, in which two identical oil slurry filters are provided, and flexible filter bags are provided in the two filters.
  • the specific property parameters of the flexible filter bag are shown in Table II-2.
  • Example II-5 Material Vinylon Polypropylene+polyester Porosity 95% 98% Weight 560 ⁇ 5%g/m 2 950 ⁇ 5%g/m 2 Warp breaking strength 2200N/5cm 7500N/5cm Zonal breaking strength 4500N/5cm 10650N/5cm thickness 1.6 ⁇ 10%mm 1.3 ⁇ 10%mm Filtration accuracy 20 ⁇ m 15 ⁇ m
  • Example II-6 the slurry filtration unit of Example II-1 was used.
  • the filter aid diatomaceous earth and the mixed medium are added to the filter through the slurry inlet pipeline connected with the filter.
  • the addition of the filter aid to the filter is stopped.
  • the oil slurry A enters the filter forming the filter cake layer of the filter aid through the slurry inlet pipeline connected with the filter for filtration, and the filtered oil is drawn out from the filtered oil outlet pipeline.
  • the temperature of the filter is 150°C, and when the pressure difference of the filter is 0.05 MPa, stop the injection of the filter aid.
  • the thickness of the formed filter cake layer is 4 ⁇ 0.5mm.
  • the filter temperature is 150°C, and the filter is set to a pressure difference of 0.40MPa for back-blowing.
  • the pressure difference of the filter is 0.06 MPa
  • the filtered oil is collected.
  • the pressure difference reaches 0.40 MPa
  • the feeding is stopped, and the collection of the filtered oil is stopped, and the nitrogen is used for back-blowing at 150°C.
  • the collected filtered oil was analyzed and the content of solid particles was 86 ⁇ g/g.
  • Example II-7 the slurry filtration unit of Example II-2 was used.
  • the filter aid diatomaceous earth and the mixed medium are added to the filter through the oil slurry inlet pipeline connected with the filter.
  • the addition of the filter aid is stopped.
  • the slurry B enters the filter forming the filter cake layer of the filter aid through the slurry inlet pipeline connected with the filter for filtering, and the filtered oil is drawn out from the filtered oil outlet pipeline.
  • the temperature of the filter is 120°C, and when the pressure difference of the filter is 0.05 MPa, stop the injection of the filter aid.
  • the thickness of the formed filter cake layer is 2 ⁇ 0.5mm.
  • the filter temperature is 120°C, and the filter is set to a pressure difference of 0.35MPa for back blowing.
  • the pressure difference of the filter is 0.06 MPa
  • the filtered oil is collected.
  • the pressure difference reaches 0.35 MPa
  • the feeding is stopped, and the collection of the filtered oil is stopped, and the 120°C nitrogen is used for back-blowing.
  • the collected filtered oil was analyzed, and the solid particle content was 135 ⁇ g/g.
  • Example II-8 the slurry filtration unit of Example II-3 was used.
  • the filter aid is the filter residue obtained from the filter.
  • the filter aid and the mixed medium are added to the filter through the slurry inlet pipeline connected with the filter.
  • the addition of the filter aid is stopped.
  • the oil slurry C enters the filter forming the filter cake layer through the slurry inlet pipeline connected with the filter for filtering, and the filtered oil is drawn out from the filtered oil outlet pipeline.
  • the temperature of the filter is 220°C, and when the pressure difference of the filter is 0.05 MPa, stop the injection of the filter aid.
  • the thickness of the formed filter cake layer is 7 ⁇ 0.5mm.
  • the filter temperature is 220°C, and the filter is set to a pressure difference of 0.45MPa for back-blowing.
  • the pressure difference of the filter is 0.06 MPa
  • the filtered oil is collected.
  • the pressure difference reaches 0.45 MPa
  • the feeding is stopped, and the collection of the filtered oil is stopped, and back-blowing is performed with nitrogen at 180°C.
  • the collected filtered oil was analyzed, and the content of solid particles was 275 ⁇ g/g.
  • This set of embodiments is used to illustrate the method for filtering oil slurry using the slurry filter unit of embodiment II-4-II-5, wherein the two filters in the filter unit are switched for use.
  • Example II-9 the slurry filtration unit of Example II-4 was used.
  • the filter aid cellulose and the mixed medium are added to the filter through the slurry inlet pipeline connected with the filter.
  • the addition of the filter aid is stopped.
  • the coal tar A enters the aforementioned filter forming the filter cake layer through the slurry inlet pipeline connected with the filter for filtering, and the filtered oil is drawn out from the filtered oil outlet pipeline.
  • the temperature of the filter is 60°C, and when the pressure difference of the filter is 0.05 MPa, stop the injection of the filter aid.
  • the thickness of the formed filter cake layer is 2 ⁇ 0.5mm.
  • the filter temperature is 60°C, and the filter is set to a pressure difference of 0.40MPa for back-blowing.
  • the pressure difference of the filter is 0.06 MPa
  • the filtered oil is collected, and when the pressure difference reaches 0.40 MPa, the feeding is stopped, and the collection of the filtered oil is stopped, and the normal temperature nitrogen is used for back-blowing.
  • the collected filtered oil was analyzed, and the solid particles content was 185 ⁇ g/g.
  • Example II-10 the slurry filtration unit of Example II-5 was used.
  • the filter aid is the filter residue obtained from the filter.
  • the filter aid and the mixed medium are added to the filter through the slurry inlet pipeline connected with the filter.
  • the addition of the filter aid is stopped.
  • the coal tar B enters the aforementioned filter forming the filter cake layer through the slurry inlet pipeline connected with the filter for filtering, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the temperature of the filter is 90°C, and when the pressure difference of the filter is 0.05 MPa, stop the injection of the filter aid.
  • the thickness of the formed filter cake layer is 5 ⁇ 0.5mm.
  • the filter temperature is 90°C, and the filter is set to a pressure difference of 0.45MPa for back-blowing.
  • the pressure difference of the filter is 0.06 MPa
  • the filtered oil is collected.
  • the pressure difference reaches 0.45 MPa
  • the feeding is stopped, and the collection of the filtered oil is stopped, and the nitrogen is used for back-blowing at 90°C.
  • the collected filtered oil was analyzed, and the solid particles content was 252 ⁇ g/g.
  • the multi-filter system shown in Fig. 5 is adopted, in which two identical filters are provided, and flexible filter bags are provided in the two filters.
  • the flexible filter bag includes a release layer and a base cloth layer, and its specific property parameters are shown in Table III-1.
  • the multi-filter system shown in Fig. 6 is adopted, in which two identical filters are arranged, and flexible filter bags are arranged in both filters.
  • the flexible filter bag includes a release layer, a base cloth layer and an inner layer, and its specific property parameters are shown in Table III-2.
  • the multi-filter system shown in Fig. 6 is adopted, in which two identical filters are provided, and a flexible filter bag is provided in the filters.
  • the flexible filter bag includes a release layer, a precision layer, a base fabric layer and an inner layer, and its specific property parameters are shown in Table III-3, Table III-4, and Table III-5.
  • Example III-9 the slurry D enters the filtering system described in Example III-1 through the slurry inlet pipeline connected with the filter for filtering, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtration temperature of the filter is 100°C.
  • the online pressure difference monitoring module detects the pressure difference of the filter used online, and when the pressure difference is set to 0.12 MPa, the filter is switched and the cut filter is back blown, with 100 °C nitrogen for back blow, two filters The device takes turns to operate.
  • the filtered oil was collected when the pressure difference of the filter was 0.04 MPa, and the collected filtered oil was analyzed, and the solid particle content was 253 ⁇ g/g.
  • Example III-10 the slurry E enters the filter described in Example III-2 through the slurry inlet pipeline connected to the filter for filtration, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtration temperature of the filter is 180°C.
  • the pressure difference of the online filter is detected by the online pressure difference monitoring module. When the pressure difference is set to 0.30MPa, the filter is switched and the cut filter is blown back to 180°C. Nitrogen is blown back, and the two filters are operated in turn. When the pressure difference of the filter is 0.04MPa, the filtered oil is collected. The collected filtered oil was analyzed, and the solid particle content was 456 ⁇ g/g.
  • Example III-11 the slurry F enters the filter described in Example III-3 through the slurry inlet pipeline connected with the filter for filtration, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtration temperature of the filter is 250°C.
  • the pressure difference of the online filter is detected by the online pressure difference monitoring module. When the pressure difference is set to 0.45MPa, the filter will be switched and the cut filter will be back blown at 250°C. Nitrogen is blown back, and the two filters are operated in turn.
  • the filtered oil was collected when the pressure difference of the filter was 0.05 MPa, and the collected filtered oil was analyzed, and the solid particle content was 1038 ⁇ g/g.
  • coal tar C enters the filter described in Example III-4 through the slurry inlet pipeline connected with the filter for filtering, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtering temperature of the filter is 60°C
  • the pressure difference of the online filter is detected by the online pressure difference monitoring module, and when the pressure difference is set to 0.3MPa, the backup filter will be cut into the filtration system, when the pressure difference of the cut backup filter is At 0.04 MPa, cut out the filter system with the previous on-line filter with a pressure difference of 0.3 MPa, and perform back-blowing, with normal temperature nitrogen for back-blowing, and the two filters are operated in turn.
  • the filtered oil was collected when the pressure difference of the filter was 0.04 MPa, and the collected filtered oil was analyzed, and the solid particle content was 463 ⁇ g/g.
  • coal tar D enters the filter described in Example III-5 through the slurry inlet pipeline connected to the filter for filtering, and the filtered oil is drawn out from the filtered oil outlet pipeline.
  • the filter temperature of the filter is 80°C
  • the pressure difference of the online filter is detected by the online pressure difference monitoring module.
  • the pressure difference is set to 0.35MPa
  • the filter is switched and the cut filter is blown back to 80°C. Nitrogen is blown back.
  • the two filters are operated in turn.
  • the filtered oil was collected when the pressure difference of the filter was 0.04 MPa, and the collected filtered oil was analyzed.
  • the solid particle content was 706 ⁇ g/g.
  • Example III-14 the slurry D enters the filter described in Example III-6 through the slurry inlet pipeline connected with the filter for filtration, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtration temperature of the filter is 130°C, and the valve V615 is always closed.
  • Detect the pressure difference of the online filter through the online pressure difference monitoring module and when the pressure difference is set to 0.35MPa, the filter will be switched and the cut filter will be back blown, with 130°C nitrogen for back blow, two filters
  • the device takes turns to operate.
  • the filtered oil was collected when the pressure difference of the filter was 0.05 MPa, and the collected filtered oil was analyzed, and the solid particle content was 146 ⁇ g/g.
  • Example III-15 the slurry E enters the filter described in Example III-7 through the slurry inlet pipeline connected with the filter for filtering, and the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtration temperature of the filter is 150°C, and the valve V615 is always closed.
  • the online pressure difference monitoring module detects the pressure difference of the filter used online, and when the pressure difference is set to 0.18MPa, the filter is switched and the cut filter is back blown, with 150 °C nitrogen for back blow, two filters The device takes turns to operate.
  • the filtered oil was collected when the pressure difference of the filter was 0.04 MPa, and the collected filtered oil was analyzed, and the solid particle content was 331 ⁇ g/g.
  • Example III-16 the slurry F enters the filter described in Example III-8 through the slurry inlet pipeline connected to the filter for filtration.
  • Valves V65, V67, V615, V66, V68 are opened, and the other valves are closed ,
  • the two filters are changed to a series state in which the filter 61 is before the filter 63 and the latter.
  • the filtered oil is drawn from the filtered oil outlet pipeline.
  • the filtering temperature of the filter is 180°C, and the pressure difference of the online filter is detected through the online pressure difference monitoring module.
  • the filter is set to a total pressure difference of 0.45MPa, two filters are cut out and the cut out two filters are separately performed Backflush, respectively with 150°C nitrogen for backflush.
  • the filtered oil is collected, and when the total pressure difference reaches 0.45MPa, the feeding is stopped and the filtered oil is stopped.
  • the collected filtered oil was analyzed, and the solid particle content was 875 ⁇ g/g.
  • the multi-stage oil slurry filtration system includes a primary filtration unit, a secondary filtration unit and a tertiary filtration unit.
  • the filtered oil outlet of the primary filtration unit is connected to the inlet of the secondary filtration unit, and the filtered oil outlet of the secondary filtration unit is connected to The inlet of the three-stage filter unit is connected.
  • the first-level filter unit is provided with a filter unit as shown in FIG. 8, which includes a filter in which a flexible filter bag is provided.
  • the flexible filter bag includes a release layer and a base cloth layer, and its specific property parameters are shown in Table IV-1.
  • An automatic backwashing filter device with a drive mechanism is installed in the secondary filter unit, the filter material has a filtration accuracy of 1.5 microns, and the filter area is 1/20 times the filter area of the filter of the primary filter unit.
  • a single filter is provided in the three-stage filtration unit, and the filter is provided with a flexible filter bag, and its specific property parameters are shown in Table IV-1.
  • the filtration area of the filter in the three-stage filtration unit is 4.5 times the filtration area of the filter in the one-stage filtration unit.
  • the multi-stage oil slurry filtration system includes a first-stage filtration unit and a third-stage filtration unit.
  • the filtered oil outlet of the first-stage filtration unit is connected with the inlet of the third-stage filtration unit.
  • the flexible filter bag includes a release layer and a base cloth layer, and its specific property parameters are shown in Table IV-2.
  • a single filter is provided in the three-stage filtration unit, and the filter is provided with a flexible filter bag, and its specific property parameters are shown in Table IV-2.
  • the filtration area of the filter in the three-stage filtration unit is 6 times the filtration area of the filter in the one-stage filtration unit.
  • the multi-stage oil slurry filtration system includes a primary filtration unit, a secondary filtration unit and a tertiary filtration unit.
  • the filtered oil outlet of the primary filtration unit is connected to the inlet of the secondary filtration unit, and the filtered oil outlet of the secondary filtration unit is connected to The inlet of the three-stage filter unit is connected.
  • the flexible filter bag includes a release layer, a precision layer, a base fabric layer and an inner layer, and its specific property parameters are shown in Table IV-3.
  • the secondary filter unit is equipped with an automatic backwashing filter device with a drive mechanism, the filter material has a filtration accuracy of 1 micron, and the filter area is 1/15 times the filter area of the filter of the primary filter unit.
  • a single filter is provided in the three-stage filtration unit, and the filter is provided with a flexible filter bag, and its specific property parameters are shown in Table IV-3.
  • the filtration area of the filter in the three-stage filtration unit is 8 times the filtration area of the filter in the one-stage filtration unit.
  • the multi-stage oil slurry filtration system includes a primary filtration unit and a secondary filtration unit, and the filtered oil outlet of the primary filtration unit is connected with the inlet of the secondary filtration unit.
  • the flexible filter bag includes a release layer, a base fabric layer and an inner layer, and its specific property parameters are shown in Table IV-4.
  • An automatic backwashing filter device with a driving mechanism is installed in the secondary filter unit, the filter material has a filtration accuracy of 2 microns, and the filter area is 1/15 times the filter area of the filter of the primary filter unit.
  • the multi-stage oil slurry filtration system includes a first-stage filtration unit and a third-stage filtration unit.
  • the filtered oil outlet of the first-stage filtration unit is connected with the inlet of the third-stage filtration unit.
  • a single filter as shown in FIG. 8 is provided in the primary filter unit, and a flexible filter bag is provided in the filter.
  • the flexible filter bag includes a release layer, a precision layer, a base cloth layer and an inner layer, and its specific property parameters are shown in Table IV-5.
  • Two identical filters are provided in the three-stage filtration unit, and the filters are provided with flexible filter bags. The specific property parameters are shown in Table IV-5.
  • the filter area of the filter of the three-stage filter unit is 10 times that of the filter of the first-stage filter unit.
  • Example IV-6 the oil slurry G enters the multi-stage oil slurry filtration system described in Example IV-1 for filtration.
  • the oil slurry G enters the primary filter unit and is filtered in the filter therein, and the obtained filtered oil enters the secondary filter unit and the tertiary filter unit in turn for filtering to obtain the final filtered oil.
  • the filtration temperature of the filter in the primary filtration unit is 100°C
  • the filtration is set to a pressure difference of 0.12MPa for back blowing
  • 100°C nitrogen is used for back blowing. It monitors the filter pressure difference between the inlet and outlet of the secondary filter unit, and the slag unloading mechanism is driven by the motor to rotate one circle, which takes 3 seconds.
  • the filter temperature of the filter in the three-stage filter unit is 80°C, and no back-flushing is performed.
  • the collected final filtered oil was analyzed, and the solid particle content was 48 ⁇ g/g.
  • Example IV-7 the oil slurry H enters the multi-stage oil slurry filtration system described in Example IV-2 for filtration.
  • the oil slurry H enters the first-stage filter unit and is filtered in the filter therein, and the obtained filtered oil sequentially enters the filter of the third-stage filter unit for filtration to obtain the final filtered oil.
  • the filtration temperature of the filter in the primary filtration unit is 140°C
  • the filtration is set to a pressure difference of 0.20MPa for back blowing
  • 140°C nitrogen is used for back blowing.
  • the filter temperature of the filter in the three-stage filter unit is 120°C, and no back-flushing is performed.
  • the collected final filtered oil was analyzed, and the solid particle content was 77 ⁇ g/g.
  • Example 8 the oil slurry I enters the multi-stage oil slurry filtration system described in Example IV-3 for filtration.
  • the oil slurry I enters the first-stage filter unit and is filtered in the filter therein, and the obtained filtered oil enters the second-stage filter unit and the third-stage filter unit in turn for filtering, to obtain the final filtered oil.
  • the filtration temperature of the filter in the primary filtration unit is 200°C
  • the filtration is set to a pressure difference of 0.30MPa for back blowing
  • 200°C nitrogen is used for back blowing. It monitors the filter pressure difference between the inlet and outlet of the secondary filter unit, and the slag unloading mechanism is driven by the motor to rotate one circle, which takes 3 seconds.
  • the filter temperature of the filter in the three-stage filter unit is 160°C, and no back-flushing is performed.
  • the collected final filtered oil was analyzed, and the solid particle content was 185 ⁇ g/g.
  • coal tar E enters the multi-stage oil slurry filtration system described in Example IV-4 for filtration.
  • the coal tar E enters the primary filter unit for filtration in the filter therein, and the obtained filtered oil enters the secondary filter unit for filtration to obtain the final filtered oil.
  • the filtration temperature of the filter in the primary filtration unit is 70°C
  • the filtration is set to a pressure difference of 0.3 MPa for back blowing
  • normal temperature nitrogen is used for back blowing. It monitors the filter pressure difference between the inlet and outlet of the secondary filter unit, and the slag unloading mechanism is driven by the motor to rotate one circle, which takes 3 seconds.
  • the collected final filtered oil was analyzed, and the solid particle content was 151 ⁇ g/g.
  • coal tar F enters the multi-stage oil slurry filtration system described in Example IV-5 for filtration.
  • the coal tar F enters the first-stage filtration unit for filtration in the filter therein, and the obtained filtered oil enters the filter of the third-stage filtration unit for filtration to obtain the final filtered oil.
  • the filtration temperature of the filter in the primary filtration unit is 90°C
  • the filtration is set to a pressure difference of 0.35MPa for back blowing
  • 90°C nitrogen is used for back blowing.
  • the filter temperature of the filter in the three-stage filter unit is 90°C, and no back-flushing is performed.
  • the collected final filtered oil was analyzed, and the solid particle content was 192 ⁇ g/g.
  • the oil slurry filter of the present invention can reduce the wear of the filter and extend the service life of the filter by using the filter assembly of flexible material, can make the backwash treatment of the filter residue more convenient, improve the regeneration efficiency of the filter, and extend the oil The operating cycle of the slurry filter.
  • the slurry filtering method of the slurry filter of the present invention the long-term stable operation of the slurry filtering process can be ensured, and the problem that the filter material is easily blocked by high-viscosity colloidal impurities, poor regeneration efficiency and low removal efficiency problem.

Abstract

本发明提供一种油浆过滤器,包含该油浆过滤器的过滤单元,包含该油浆过滤器的多过滤器系统以及包含该油浆过滤器的多级过滤系统。本发明的油浆过滤器通过使用柔性材质的过滤组件,解决了过滤材质易被高黏性胶质杂质堵塞、过滤器的再生效率差和过滤效率低的问题,并且可以使滤渣的反冲洗处理更为便利、提高过滤器的再生效率。本发明还提供使用该油浆过滤器的过滤方法,以确保油浆过滤过程的长期稳定运行。

Description

油浆过滤器、包含其的油浆过滤单元以及油浆过滤系统和油浆过滤方法 技术领域
本发明涉及一种油浆过滤器、包含该油浆过滤器的过滤单元、包含该油浆过滤器的多过滤器系统以及包含该油浆过滤器的多级过滤系统,本发明还涉及使用该油浆过滤器的油浆过滤方法。
背景技术
催化裂化是重油轻质化生产汽柴油等各类油品的重要工艺技术,是目前炼油领域最重要并且应用最广的技术之一,但是催化裂化会副产油浆(重油),特别是目前催化裂化多采用加氢后的渣油或掺炼渣油的蜡油作为原料,这导致油浆产率较高,一般为5%左右,产率更高者甚至达到8%。油浆富含多环芳烃,多环芳烃可以作为生产船燃或碳黑、碳纤维等的原料,因此可以对副产的油浆加以有效利用。但副产的油浆中通常含有1~6g/L左右的催化裂化催化剂颗粒物等各类杂质,无法达到生产船燃或碳黑、碳纤维等的原料指标要求,因此油浆的有效利用仍然是业内待解决的技术问题。
为了提高油浆的利用价值,必须首先脱除油浆中的固体颗粒物等杂质。在现有技术中,为了脱除液相中的固体颗粒物,存在例如沉降、絮凝、离心等多种方法,但是对于油浆来说,其含有沥青质,且黏度大,常温下甚至呈半固体状。这种情况下,若采用上述常规的提纯方法,则油浆的纯化效率会非常低。另外,过滤也是脱除油浆中固体颗粒物方法之一,但是仍然存在过滤精度低、过滤效果差、过滤器的滤材易磨损、过滤器的再生效率低下等各种问题。另外,为了提高过滤精度,通常采用多级过滤方法,但多级过滤不会解决上述问题,并且通常又会影响油浆的提纯效率。
CN102002385A公开了一种从催化裂化油浆中分离残余物的装置和方法,其中包含至少两个过滤器组,每个过滤器组由预过滤器和精过滤器组成,预过滤器为锲形金属缠绕丝滤芯,过滤精度2~10微米,精过滤器为不对称金属粉末烧结滤芯,过滤精度为0.2~1.0微米。
CN103865571A公开了重油脱除固体颗粒物的方法,其中过滤系统 包含至少一个预过滤器,至少两个精过滤器,精过滤器的过滤精度优于预过滤器的过滤精度,预过滤器与精过滤器串联,将重油通过预过滤器过滤后再通过精过滤器,使精过滤器上形成滤饼,而不使原始待过滤重油直接通过精过滤器进行过滤。
如上所述,现有技术普遍采用精度不同的低精度预过滤器与高精度精过滤器组成的过滤器组进行过滤,制作复杂,且精过滤器费用较高。并且,在过滤油浆时,油浆中的沥青质会粘附在过滤材料上,进入到滤芯材料内部,产生变形,造成滤芯堵塞,难以进行反冲洗再生,并且这会进一步加剧过滤器的磨损,缩短过滤器的使用寿命。
发明内容
本发明的目的在于提供一种油浆过滤器,其可以解决上述现有技术中存在的技术问题,简化过滤操作,提高过滤器的过滤效果、过滤效率,并且降低过滤器的磨损、延长过滤器的使用寿命,另外可以使滤渣的反冲洗处理更为便利、提高过滤器的再生效率。进而,本发明的目的在于提供包括该油浆过滤器的油浆过滤单元,包含该油浆过滤器的多过滤器系统、包含该油浆过滤器的多级过滤系统,及其使用该油浆过滤器的油浆过滤方法。
本发明的发明人经过深入地研究,结果发现,通过使用本发明的包括特定的柔性材质的过滤组件的油浆过滤器,可以解决上述技术问题,从而完成了本发明。具体而言,本发明的发明人发现,对于油浆过滤器,通过柔性过滤组件包含特定层,或者在柔性过滤组件上设置特定的助滤剂滤饼层,可以实现优异的过滤效率和过滤效果,解决了过滤材质易被高黏性胶质杂质堵塞、过滤器的再生效率差和过滤效率低的问题,并且可以使滤渣的反冲洗处理更为便利、提高过滤器的再生效率。
本发明中,可以提供以下的实施方式。
一种油浆过滤单元,所述过滤单元中设置至少一个过滤器,以及分别与每个过滤器连通的油浆入口管线、滤后油出口管线和滤渣排出管线;
所述过滤器中设置柔性过滤材质的无针孔滤袋;所述柔性过滤材质选自聚丙烯、聚乙烯、尼龙、涤纶、聚苯硫醚、聚酰亚胺、聚四氟 乙烯、芳纶、聚氨酯、玻璃纤维中的一种或几种,或上述任意两种以上复合而成的材质;
所述柔性过滤材质的过滤精度为2~15微米;柔性过滤材质的克重为520~660g/m 2;所述柔性过滤材质至少设置脱固层和基布层,所述脱固层的孔隙率为85%~98%,所述基布层的孔隙率为30%~40%。
一种油浆过滤系统,其包括过滤单元和助滤剂缓冲罐,所述过滤单元中设置至少一个过滤器,以及分别与每个过滤器连通的油浆入口管线、滤后油出口管线、滤渣排出管线,助滤剂缓冲罐的出口与过滤器的油浆入口连通;
所述过滤器中设置柔性过滤材质的无针孔滤袋;所述柔性过滤材质选自聚丙烯、聚乙烯、锦纶、涤纶、聚苯硫醚、聚酰亚胺、聚四氟乙烯、芳纶、聚氨酯、玻璃纤维、维纶中的一种或几种,或上述任意两种以上复合而成的材质;
所述柔性过滤材质的过滤精度为3~25微米;柔性过滤材质的孔隙率为85%~98%,克重为300~1000g/m 2
一种多过滤器油浆过滤系统,其包括:过滤单元和控制系统;
所述过滤单元设置至少两个过滤器,以及分别与每个过滤器连通的油浆入口管线、滤后油出口管线、吹扫介质入口管线和滤渣排出管线;
所述过滤器中设置柔性过滤材质的无针孔滤袋;
所述柔性过滤材质选自聚丙烯、聚乙烯、尼龙、涤纶、聚苯硫醚、聚酰亚胺、聚四氟乙烯、芳纶、聚氨酯、玻璃纤维中的一种或几种,或上述任意两种以上复合而成的材质;
所述控制系统包括在线压差监测模块、过滤器控制模块和吹扫控制模块,所述在线压差监测模块用于监测在线使用过滤器的压差,所述过滤器控制模块用于控制单个过滤器切入和切出过滤系统,所述吹扫控制模块用于控制过滤器的吹扫过程。
一种多级油浆过滤系统,包括一级过滤单元,以及二级过滤单元和/或三级过滤单元;
所述一级过滤单元中设置至少一个第一过滤器,以及分别与每个过滤器连通的油浆入口管线、滤后油出口管线、滤渣排出管线,在第一过滤器中设置柔性过滤材质的无针孔滤袋,所述柔性过滤材质选自 聚丙烯、聚乙烯、锦纶、涤纶、聚苯硫醚、聚酰亚胺、聚四氟乙烯、芳纶、聚氨酯、玻璃纤维中的一种或几种,或上述任意两种以上复合而成的材质;柔性过滤材质的克重为520~660g/m 2
所述二级过滤单元中设置具有驱动机构的自动反冲洗的过滤装置;
所述三级过滤单元中设置至少一个第二过滤器,在第二过滤器中设置柔性过滤材质的无针孔滤袋,所述柔性过滤材质选自聚丙烯、聚乙烯、锦纶、涤纶、聚苯硫醚、聚酰亚胺、聚四氟乙烯、芳纶、聚氨酯、玻璃纤维、维纶中的一种或几种,或上述任意两种以上复合而成的材质;
一级过滤单元过滤材质的过滤精度为2~15微米,二级过滤单元过滤材质的过滤精度小于一级过滤单元过滤材质的过滤精度,三级过滤单元过滤材质的过滤精度小于一级过滤单元过滤材质的过滤精度;
一级过滤单元的滤后油出口管线分别与二级过滤单元的入口管线和三级过滤单元的入口管线连通。
一种油浆过滤方法,采用上述过滤系统,其包括:
油浆通过与过滤器连通的油浆入口管线进入过滤器中进行过滤,所述过滤器中设置柔性过滤材质的无针孔滤袋,滤后油从滤后油出口管线抽出;所述油浆为带有颗粒物杂质的液体烃。
一种油浆过滤方法,其包括:
(1)助滤剂和混合介质在助滤剂缓冲罐充分混合后,通过与过滤器连通的油浆入口管线加入过滤器中,当柔性过滤材质的无针孔滤袋的表面形成滤饼后,停止助滤剂的加入;
(2)油浆通过与过滤器连通的油浆入口管线进入过滤器中进行过滤,所述过滤器中设置柔性过滤材质的无针孔滤袋,滤后油从滤后油出口管线抽出,所述油浆为带有颗粒物杂质的液体烃。
一种油浆过滤方法,采用所述多过滤器油浆过滤系统,包括:
(1)在过滤单元设置至少两个过滤器,油浆通过与过滤器连通的油浆入口管线进入至少一个在线过滤器中进行过滤,所述过滤器中设置柔性过滤材质的无针孔滤袋,滤后油从滤后油出口管线抽出;
(2)所述控制系统包括在线压差监测模块、过滤器控制模块和吹扫控制模块,在线压差监测模块用于监测在线过滤器的压差,过滤器控制模块用于控制单个过滤器切入和切出过滤系统,吹扫控制模块用于 控制过滤器的反吹扫过程;
当在线压差监测模块监测到在线过滤器的压差达到或高于设定值时,通过过滤器控制模块将备用过滤器切入过滤系统,并将压差达到或高于设定值的过滤器切出过滤系统,通过吹扫控制模块用吹扫介质对切出过滤系统的过滤器进行卸渣和反吹扫;
所述油浆为带有颗粒物杂质的液体烃。
一种油浆过滤方法,采用所述多过滤器油浆过滤系统,包括:
(1)在过滤单元设置至少两个过滤器,油浆通过与过滤器连通的油浆入口管线进入至少一个在线过滤器中进行过滤,所述过滤器中设置柔性过滤材质的无针孔滤袋,滤后油从滤后油出口管线抽出;
(2)所述控制系统包括在线压差监测模块、过滤器控制模块和吹扫控制模块,在线压差监测模块用于监测在线过滤器的压差,过滤器控制模块用于控制单个过滤器切入和切出过滤系统,吹扫控制模块用于控制过滤器的反吹扫过程;
当在线压差监测模块监测到在线过滤器的压差达到设定值时,通过过滤器控制模块将备用过滤器切入过滤系统,当该备用过滤器的无孔过滤袋上形成滤饼后,将压差达到或高于设定值的在线过滤器切出过滤系统,通过吹扫控制模块对切出过滤系统的过滤器进行卸渣和反吹扫;
所述油浆为带有颗粒物杂质的液体烃。
一种油浆过滤方法,采用所述多级油浆过滤系统,其包括:
油浆通过与一级过滤单元连通的油浆入口管线进入具有柔性过滤材质的无针孔滤袋的第一过滤器中进行过滤,滤后油从滤后油出口管线抽出,进入二级过滤单元和/或三级过滤单元进行再次过滤;
所述二级过滤单元中设置具有驱动机构的自动反冲洗的过滤装置;
所述三级过滤单元中设置至少一个具有柔性过滤材质的无针孔滤袋的第二过滤器;
所述油浆为带有颗粒物杂质的液体烃。
发明效果
通过本发明的包括柔性材质的过滤组件的过滤器,可以实现对颗粒物拦截性强、过滤精度高、材料强度好的优异效果。另外,由于采 用了柔性材质的过滤组件,克服了硬质过滤组件易被细小固体颗粒物卡住的缺点,提高了过滤效率并延长油浆过滤器的运行周期。
另外,通过本发明的包括柔性材质的过滤组件的过滤器,可以降低过滤器的磨损、延长过滤器的使用寿命,并且可以使滤渣的反冲洗处理更为便利、提高过滤器的再生效率。
另外,通过在本发明的柔性材质的过滤组件上设置助滤剂滤饼层,可以提高过滤器的过滤效果,并且延长过滤器的使用寿命。
进而,通过本发明的过滤器,能实现高浓度含胶质黏性催化剂物料的油浆的过滤过程的长期稳定运行,解决了过滤材质易被高黏性胶质杂质堵塞、过滤器的再生效率差和过滤效率低的问题。并且,本发明的过滤器的卸渣方式灵活,有效解决了催化剂有机物料对环境造成污染的问题。
通过本发明的多级过滤系统,在一级单元的下游设置二级过滤单元和/或三级过滤单元,进一步提高了过滤系统整体的过滤精度,并且改善了过滤效果。
通过本发明的多过滤器系统,可以交替地进行过滤操作,可以进一步提高油浆的过滤效率。
附图说明
图1是本发明的油浆过滤单元的一个实施方式的示意图。
图2是本发明的油浆过滤单元的另一个实施方式的示意图。
图3是本发明的油浆过滤单元的另一个实施方式的示意图。
图4是本发明的油浆过滤单元的另一个实施方式的示意图。
图5是本发明的多过滤器系统的另一个实施方式的示意图。
图6是本发明的多过滤器系统的另一个实施方式的示意图。
图7是本发明的多级过滤系统的结构示意图。
图8是本发明的多级过滤系统的一级过滤单元的一个实施方式的示意图。
图9是本发明的多级过滤系统的一级过滤单元的另一个实施方式的示意图。
具体实施方式
下面结合具体实施方式,对本发明作进一步说明,但以下的实施方式不构成对本发明的限制。即,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域技术人员公知”、“本领域公知”、“现有技术”或其同义词来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用的那些,但也包括目前还不常用,却将变成本领域公认为适用于类似目的的那些。
在本说明书的上下文中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此而形成的技术方案或技术思想均视为本发明原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合是明显不合理的。
在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比率等都是以重量为基准的,除非以重量为基准时不符合本领域技术人员的常规认识。
在实践或试验本发明中,能用类似于或等同于本文所述方法和材料,但适用的方法和材料已描述在本文中。
油浆过滤器
本发明提供一种油浆过滤器,该油浆过滤器包括至少一个柔性材质的过滤组件。过滤组件(本发明中有时也称为滤材)用于过滤油浆,使得油浆中的催化剂颗粒物等杂质得以被滤除。本发明中,所述油浆为包含颗粒物杂质的液体烃,优选油浆为包括催化裂化油浆和/或煤焦油的液体烃。本发明中,所述柔性材质的过滤组件由柔性材质的无针孔滤材(以下也称为柔性滤材)形成。
本发明的柔性滤材具有优异的化学稳定性、良好的耐磨性及耐疲劳性质,具有对颗粒物拦截性强、过滤精度高、材料强度好的特点。另外,本发明中,通过采用柔性材质的过滤组件,克服了硬质过滤材 质易被细小固体颗粒物卡住的缺点,提高过滤效率并延长油浆过滤器的运行周期,并且降低过滤器的磨损,延长了过滤器的使用寿命。
本发明中,柔性材质的无针孔滤材(柔性滤材)形成过滤组件的方式没有特别限定,只要可以实现过滤即可。在本发明一个实施方式中,所述柔性滤材可以形成为平面膜状、半球状、袋状等的形状,从而用于过滤组件。从过滤效率、过滤效果、滤渣的后续处理、过滤器的再生效率等角度考虑,优选为袋状,此时,本发明的过滤组件的形式可以为柔性材质的无针孔滤袋(以下也称为柔性滤袋)。
在本发明的一个实施方式中,作为可制成柔性材质的无针孔滤材(柔性滤材)的原料,可以为选自聚丙烯、聚乙烯、尼龙、锦纶、涤纶、丙纶、聚苯硫醚、聚酰亚胺、聚四氟乙烯、芳纶、聚氨酯、玻璃纤维、维纶中的至少一种材料。在本发明的一个实施方式中,所述柔性滤材的原料可以为上述任意两种以上材料复合而成的材料。
在本发明的一个实施方式中,所述柔性滤材的过滤精度为0.1~25微米,优选为0.1~15微米,进一步优选为0.1~10微米。在本发明的一个实施方式中,所述柔性滤材的过滤精度为2~25微米。在本发明的一个实施方式中,所述柔性滤材的过滤精度为2~15微米,优选为2~10微米。另外,不受任何理论限定,本发明人发现,在柔性滤材的过滤精度小于2微米时,与过滤精度为2微米以上的情况相比,不但过滤器的过滤效率有所改善,还可以更快达到高脱除率、即不需要形成滤饼或在形成很薄滤饼的情况下就可高效率脱除固体颗粒物。因此,在本发明的一个实施方式中,所述柔性滤材的过滤精度可以为0.1~小于2微米。
过滤精度是指包含杂质的溶液通过过滤器的滤材时,允许通过的最大颗粒的尺寸。在本发明中,过滤精度越小,即过滤精度的数值越小,则表明能过滤拦截的固体颗粒越小,过滤精度越优异。
在本发明的一个实施方式中,柔性滤材的克重为300~1000g/m 2,优选为520~660g/m 2
在本发明的一个实施方式中,所述柔性滤材的经向断裂强力为850N/5cm~9000N/5cm,纬向断裂强力为1000N/5cm~11000N/5cm,优选的是,经向断裂强力为1000N/5cm~2400N/5cm,纬向断裂强力为1200N/5cm~2600N/5cm。在本发明的一个实施方式中,柔性滤材的厚 度为0.5~3.4mm,优选为0.5~3.0mm,更优选为1.8~2.9mm。在本发明的一个实施方式中,所述柔性滤材的过滤精度为0.1~小于2微米时,柔性滤材的厚度为0.5~3.4mm,优选为0.5~3.0mm。
本发明中,柔性滤材用于油浆过滤器时,使用压差(开始收集滤后油时的压差)为0.01~0.5MPa。使用压差的下限可以为0.02MPa、0.04MPa;使用压差的上限可以为0.4MPa、0.30MPa。当使用压差低于0.01MPa时,所过滤的油浆无法在滤材上形成有效的滤饼,则无法实现优异的过滤效果。另一方面,当压差高于0.5MPa时,则对柔性滤材造成损害,导致柔性滤材在以后的过滤中效率降低,使用寿命缩减。
本发明的油浆过滤器包括至少一个柔性滤材。在本发明的一个实施方式中,本发明的过滤器中的柔性滤材可以为单层(单个),也可以为多层(两个以上)。当为多层形式时,将多层柔性滤材进行层叠而成,此时,对所层叠的层数和层之间的排列方式没有任何限制。在本发明的一个实施方式中,所述油浆过滤器包括1个、2个、3个、4个、5个、6个或7个柔性滤材。
在本发明的一个实施方式中,所述柔性滤袋采用本领域公知的方法进行制备,优选采用缝合工艺进行制备,其缝合孔隙用酸性密封胶材料进行密封。
在本发明的一个实施方式中,所述柔性滤材至少包括脱固层和基布层。所述基布层是将上述可制成柔性滤材的原料利用本领域公知的织造技术进行织造而得的。对所述织造技术没有任何限定,包括但不限于水刺法、热合法、湿法织造法、纺粘法、熔喷法、针刺法、缝编法、热轧法等。所述脱固层是通过例如热压法、覆膜法、热轧法等本领域公知的方法,使用上述可制成柔性滤材的原料,在基布层上形成的。本发明的脱固层和基布层可以各自独立地先后进行制备,也可以一体化地进行制备。本发明的至少包括脱固层和基布层的柔性滤材可以通过本领域公知的方法进行制备,也可以采用市售品。
在本发明的一个实施方式中,所述脱固层的孔隙率为25%~98%。在本发明的一个实施方式中,所述脱固层的孔隙率为85%~98%。在本发明的一个实施方式中,所述脱固层的孔隙率为30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%或90%。在本发明的一个实施方式中,所述脱固层的孔隙率是上述这些值的任意组合。在本发明 的一个实施方式中,所述柔性滤材的过滤精度为0.1~小于2微米时,所述脱固层的孔隙率为25%~70%,优选为30%~65%。
在本发明的一个实施方式中,所述基布层的孔隙率为30%~40%。本发明中,通过在基布层上形成脱固层,可以进一步提高过滤材质的过滤效果,延长过滤器的使用寿命。
在本发明的一个实施方式中,所述基布层由聚四氟乙烯和/或聚苯硫醚制成。即制成基布层的材料为单独聚四氟乙烯,或者单独聚苯硫醚,或者这两种材料的复合材料。在本发明的一个实施方式中,所述基布层由聚四氟乙烯长丝纤维加工而成。
在本发明的一个实施方式中,为了达到更好的油浆过滤效果,所述脱固层由具有三维空隙结构聚四氟乙烯制成。
在本发明的一个实施方式中,柔性滤材至少包括脱固层和基布层,但不限于此,可以在此基础上进行变化和衍生。例如,在本发明的脱固层和基布层基础上,在不对本发明效果造成不良影响的基础上,可以进一步包括其他层。在本发明的一个实施方式中,所述脱固层和基布层相邻设置。在本发明的一个实施方式中,柔性滤材只包含脱固层和基布层。
对于本发明的包括脱固层和基布层的柔性滤材而言,优选脱固层为表面层,即所述柔性滤材在用于油浆过滤器时,待过滤油浆首先接触脱固层。
在本发明的一个实施方式中,由上述脱固层和上述基布层以及任选的其他层制成柔性滤材。即,柔性滤材本身可以划分为基布层、脱固层和任选的其他层。
在本发明的一个实施方式中,在上述脱固层和基布层的基础上,所述柔性滤材进一步包括里层。即本发明的柔性滤材至少包括3层,依次为脱固层、基布层和里层。
在本发明的一个实施方式中,所述里层在与脱固层相反的一侧的基布层上通过本领域公知的方法(例如针刺法或水刺法等)由细度为1~3D的纤维制成。在本发明的一个实施方式中,用于制成里层的纤维的原料可以选自上述可制成柔性滤材的原料。在本发明的一个实施方式中,用于制成里层的纤维的原料为选自聚乙烯、尼龙、涤纶、丙纶、聚苯硫醚、聚酰亚胺、聚四氟乙烯、芳纶、聚氨酯、玻璃纤维中的一 种或几种;优选为选自聚酰亚胺、聚四氟乙烯、聚苯硫醚、玻璃纤维中的一种或几种。
在本发明的一个实施方式中,本发明的里层优选由强度高的纤维制成,由此能进一步提高柔性滤材的强度,并且降低在长时间连续载荷作用下柔性滤材发生的塑性变形的风险,延长油浆过滤器的运行周期,并且延长过滤器的使用寿命。
在本发明的一个实施方式中,当柔性滤材至少包括脱固层、基布层和里层时,所述脱固层和基布层与本发明上述关于脱固层和基布层的描述一致。
在本发明的一个实施方式中,在脱固层、基布层和里层基础上,在不对本发明效果造成不良影响的基础上,柔性滤材可以进一步包括其他层。在本发明的一个实施方式中,柔性滤材只包含脱固层、基布层和里层。
在本发明的一个实施方式中,由上述脱固层、基布层和里层以及任选的其他层制成柔性滤材。即,柔性滤材本身可以划分为基布层、基布层和里层以及任选的其他层。
对于本发明的包括脱固层、基布层和里层的柔性滤材而言,优选脱固层为表面层,即所述柔性滤材在用于油浆过滤器时,待过滤油浆首先接触脱固层。
本发明的至少包括脱固层、基布层和里层的柔性滤材可以通过本领域公知的方法进行制备,也可以为市售品。
在本发明的一个实施方式中,在上述脱固层和基布层的基础上,本发明的柔性滤材还包括精度层和里层。即,本发明的柔性滤材至少包括4层,依次为脱固层、精度层、基布层和里层。
在本发明的一个实施方式中,所述精度层在脱固层和基布层之间的基布层上通过本领域公知的方法(例如针刺法或水刺法等)由细度0.2~0.3D的超细纤维制成。在本发明的一个实施方式中,用于制成精度层的超细纤维的原料可以选自上述可制成柔性滤材的原料。在本发明的一个实施方式中,用于制成精度层的超细纤维的原料为选自聚乙烯、尼龙、涤纶、丙纶、聚苯硫醚、聚酰亚胺、聚四氟乙烯、芳纶、聚氨酯、玻璃纤维中的一种或几种;优选为选自聚酰亚胺、聚四氟乙烯、聚苯硫醚、玻璃纤维中的一种或几种。
在本发明的一个实施方式中,所述精度层由细度比里层的细度更小的超细纤维制成。不受任何理论限定地,本发明的发明人认为,由于这些超细纤维间相互作用,形成立体三维结构,可进一步提高柔性滤材的过滤效率及过滤精度。另一方面,通过使用细度更小的超细纤维,可以扩大表面接触面积及表面张力,使得脱固层与精度层之间、脱固层与基布层之间的结合更加牢固,避免脱落,从而进一步延长了柔性滤材的使用周期。
在本发明的一个实施方式中,当柔性滤材至少包括脱固层、精度层、基布层和里层时,所述脱固层、基布层和里层与本发明上述关于脱固层、基布层和里层的描述一致。
对于本发明的包括脱固层、精度层、基布层和里层的柔性滤材而言,优选脱固层为表面层,即所述柔性滤材在用于油浆过滤器时,待过滤油浆首先接触脱固层。
在本发明的一个实施方式中,由上述脱固层、精度层、基布层和里层制成柔性滤材。即,柔性滤材本身可以划分为脱固层、精度层、基布层和里层。
在本发明的一个实施方式中,在不对本发明效果造成不良影响的基础上,在上述脱固层、精度层、基布层和里层的基础上,本发明的柔性滤材可以进一步任选地包括其他层。在本发明的一个实施方式中,柔性滤材只包含脱固层、精度层、基布层和里层。
本发明的至少包括脱固层、精度层、基布层和里层的柔性滤材可以通过本领域公知的方法进行制备,也可以为市售品。
在本发明的一个实施方式中,所述过滤组件包括在所述过滤组件上设置的由助滤剂形成的滤饼层(以下,有时也称为助滤剂滤饼层)。
在本发明的一个实施方式中,所述过滤组件中,可以在所述无针孔滤材上设置由助滤剂形成的滤饼层。在本发明的一个实施方式中,所述过滤组件中,可以在所述柔性滤材上设置由助滤剂形成的滤饼层。
在本发明的一个实施方式中,所述助滤剂为选自硅藻土、纤维素、珍珠岩、滑石粉、活性白土、过滤器所得滤渣、废催化裂化催化剂中的一种或多种混合物。
在本发明的一个实施方式中,在柔性滤材上设置由助滤剂形成的滤饼层的情况下,所述柔性滤材的过滤精度为3~25微米。在本发明的 一个实施方式中,在柔性滤材上设置由助滤剂形成的滤饼层的情况下,所述柔性滤材的克重为300~1000g/m 2。在本发明的一个实施方式中,在柔性滤材上设置由助滤剂形成的滤饼层的情况下,所述柔性滤材的厚度为0.5~3.0mm。在本发明的一个实施方式中,在柔性滤材上设置由助滤剂形成的滤饼层的情况下,所述柔性滤材的经向断裂强力为1000N/5cm~9000N/5cm,纬向断裂强力为1000N/5cm~11000N/5cm。
在本发明的一个实施方式中,所述由助滤剂形成的滤饼层的厚度为0.1~10mm。
在本发明的一个实施方式中,在所述过滤组件上设置由助滤剂形成的滤饼层后,过滤组件的压差为0.01~0.07MPa。当压差低于0.01MPa时,无法在滤材上形成有效的助滤剂滤饼层,则无法实现优异的过滤效果或者无法延长过滤器使用寿命,当压差大于0.07MPa时,则对于过滤器的使用压差而言预留的压差上升空间减少,导致油浆过滤的有效时间缩短。
在本发明的一个实施方式中,本发明的过滤组件包括在上述柔性滤袋上设置由助滤剂形成的滤饼层。
在本发明的一个实施方式中,本发明的过滤组件包括在上述至少包括脱固层和基布层的柔性滤材上设置由助滤剂形成的滤饼层。
在本发明的一个实施方式中,本发明的过滤组件包括在上述至少包括脱固层、基布层和里层的柔性滤材上设置由助滤剂形成的滤饼层。
在本发明的一个实施方式中,本发明的过滤组件包括在上述至少包括脱固层、精度层、基布层和里层的柔性滤材上设置由助滤剂形成的滤饼层。
在本发明的一个实施方式中,本发明的过滤组件包括在上述至少包括脱固层、精度层、基布层、里层和任选的其他层的柔性滤材上设置由助滤剂形成的滤饼层。
在本发明的一个实施方式中,本发明过滤器进一步包括油浆入口、滤后油出口。在本发明的一个实施方式中,本发明过滤器进一步包括油浆入口、滤后油出口、和滤渣出口。在本发明的一个实施方式中,本发明过滤器为上流式过滤器,即在过滤器的下部设置油浆入口,过滤器的上部设置滤后油出口,和根据需要的在过滤器的下部和/或底部设置滤渣出口。在本发明的一个实施方式中,本发明过滤器为下流式 过滤器,即在过滤器的上部设置油浆入口,过滤器的下部设置滤后油出口,和根据需要的在过滤器的上部和/或顶部设置滤渣出口。从过滤效果、过滤效率、滤渣后处理、过滤器再生效率等角度考虑,过滤器优选为上流式过滤器,即在过滤器的下部设置油浆入口,过滤器的上部设置滤后油出口,和根据需要的在过滤器的下部和/或底部设置滤渣出口。
在本发明的一个实施方式中,本发明过滤器进一步包括吹扫介质入口。在本发明的一个实施方式中,过滤器为上流式过滤器时,在过滤器的顶部和/或上部设置吹扫介质入口。在本发明的一个实施方式中,过滤器为下流式过滤器时,在过滤器的底部和/或下部设置吹扫介质入口。在本发明的优选的实施方式中,过滤器为上流式过滤器,在过滤器的顶部和/或上部设置吹扫介质入口。通过本发明的柔性滤材和上流式过滤的方式,可以高效简易地进行卸渣后处理和过滤器再生,由此可以有效地除去滤渣,提高柔性滤材的再生效果。
在本发明的一个实施方式中,本发明过滤器进一步包括助滤剂入口。在本发明的一个实施方式中,过滤器为上流式过滤器时,在过滤器的下部设置助滤剂入口。在本发明的一个实施方式中,过滤器为下流式过滤器时,在过滤器的上部设置助滤剂入口。在本发明的一个实施方式中,助滤剂入口为所述油浆入口,即油浆入口也用作助滤剂入口。
在本发明中,不论是上流式过滤器还是下流式过滤器,所述油浆入口、助滤剂入口、滤渣出口均位于过滤器中相对于过滤组件的上游位置;所述滤后油出口、吹扫介质入口均位于过滤器中相对于过滤组件的下游位置。
油浆过滤单元
本发明提供一种油浆过滤单元(以下有时也成为过滤单元),所述油浆过滤单元包括至少一个本发明上述油浆过滤器。
在本发明中,所述油浆过滤单元中可包括一个过滤器,也可以包括两个以上的过滤器。当包括两个以上过滤器时,对于过滤器的连接形式,本发明没有任何限制。在本发明的一个实施方式中,两个以上的过滤器可以并联设置。在本发明的一个实施方式中,两个以上的过滤器可以串联设置。在本发明的一个实施方式中,两个以上的过滤器 可以并联和串联切换使用。在本发明的一个实施方式中,过滤器超过2个时,过滤器可以为并联和串联混合设置。当包括两个以上的过滤器时,该两个以上过滤器可以为过滤精度一致的过滤器,也可以为过滤精度不一致的过滤器,还可以为部分过滤精度一致、部分过滤精度不一致的过滤器。本发明的过滤单元中包括两个以上过滤器时,过滤单元的过滤精度为过滤单元本身整体的过滤精度。即,为包含杂质的溶液通过过滤单元时,过滤单元所允许通过的最大颗粒的尺寸。
在本发明的一个实施方式中,本发明的油浆过滤单元中,进一步包括分别与每个过滤器连通的油浆入口管线、滤后油出口管线。在本发明的一个实施方式中,本发明的油浆过滤单元中,进一步包括分别与每个过滤器连通的油浆入口管线、滤后油出口管线和滤渣排出管线。在本发明的一个实施方式中,该油浆入口管线、滤后油出口管线和根据需要的滤渣排出管线分别与本发明上述过滤器中设置的油浆入口、滤后油出口和根据需要的滤渣出口连接。
在本发明的一个实施方式中,本发明的油浆过滤单元中,进一步包括吹扫介质入口管线,所述吹扫介质入口管线分别与每个过滤器连通。在本发明的一个实施方式中,该吹扫介质入口管线与本发明上述过滤器中设置的吹扫介质入口连接。在本发明的一个实施方式中,本发明的油浆过滤单元中,进一步包括吹扫介质缓冲罐,该吹扫介质缓冲罐的出口与每个过滤器的吹扫介质入口通过吹扫介质入口管线连通。
在本发明的一个实施方式中,吹扫介质缓冲罐中装填有本领域公知的可用于滤渣反吹扫的吹扫介质。在本发明的一个实施方式中,本发明的油浆过滤方法中,所述吹扫介质可以为不活性气体和/或冲洗油。所述不活性气体为对过滤体系中的油浆和颗粒物都不产生反应的气体,优选为氮气。在本发明的一个实施方式中,所述吹扫介质为燃料气。在本发明的一个实施方式中,所述冲洗油为滤后油,优选为经本发明的油浆过滤方法处理后的滤后油。
在本发明的一个实施方式中,本发明的油浆过滤单元中,进一步包括助滤剂缓冲罐,所述助滤剂缓冲罐的出口与每个过滤器上的助滤剂入口连通。在本发明的一个实施方式中,所述助滤剂缓冲罐的出口与每个过滤器上的助滤剂入口通过助滤剂入口管线连通。在本发明的一个实施方式中,所述油浆入口用作助滤剂入口时,所述助滤剂缓冲 罐的出口与过滤器上的油浆入口通过助滤剂入口管线连通。在本发明的一个实施方式中,所述助滤剂缓冲罐的出口与过滤器上的油浆入口通过油浆入口管线连通。
在本发明的一个实施方式中,所述助滤剂缓冲罐内设置搅拌部件。对于所述搅拌部件的具体形式没有任何限制,任何能使助滤剂和混合介质均匀混合的搅拌部件均包括在本发明的范围内。在本发明的一个实施方式中,所述搅拌部件为可旋转叶片部件。
在本发明的一个实施方式中,在所述助滤剂缓冲罐中装填有助滤剂和混合介质。在本发明的一个实施方式中,所述助滤剂为选自硅藻土、纤维素、珍珠岩、滑石粉、活性白土、过滤器所得滤渣、废催化裂化催化剂中的一种或多种混合物。所述混合介质没有任何限定,只要是不会对过滤体系带来不良影响、不溶解助滤剂、能够使所述助滤剂形成浆液状的介质即可。在本发明的一个实施方式中,所述混合介质为液体烃类,进一步优选为滤后油。
在本发明的一个实施方式中,所述助滤剂缓冲罐包括混合介质入口。在本发明的一个实施方式中,所述助滤剂缓冲罐的混合介质入口与过滤器的滤后油出口连通。这种情况下,混合介质入口与滤后油出口的连通包括直接连通和间接连通,直接连通的情况是指混合介质入口与滤后油出口通过管线直接连通,间接连通的情况是指混合介质入口与滤后油出口之间的管线设置有滤后油收集装置、滤后油进一步处理装置等本领域常用的装置。
多过滤器系统
本发明提供一种用于油浆过滤的多过滤器系统,包括:过滤系统和控制系统;
所述过滤系统包括本发明上述油浆过滤单元,所述过滤单元包括至少两个本发明上述油浆过滤器;
所述控制系统包括在线压差监测模块、过滤器控制模块和吹扫控制模块,所述在线压差监测模块用于监测在线使用过滤器的压差,所述过滤器控制模块用于控制过滤器切入和切出过滤系统,所述吹扫控制模块用于控制过滤器的反吹扫过程。
如上所述,在本发明的多过滤器系统中,所述过滤系统中的过滤单元包括至少两个本发明上述过滤器。在本发明的一个实施方式中, 过滤单元包括3个、4个、5个、6个或更多个本发明上述过滤器。
在本发明的一个实施方式中,在本发明的多过滤器系统中,所述过滤单元包括分别与每个过滤器连通的油浆入口管线、滤后油出口管线、吹扫介质入口管线和滤渣排出管线;所述过滤器包括连接于油浆入口管线的油浆入口、连接滤后油出口管线的滤后油出口、连接于吹扫介质入口管线的吹扫介质入口和连接于滤渣排出管线的滤渣出口。
在本发明的多过滤器系统中,两个以上的本发明上述过滤器的连接方式没有任何限定。在本发明的一个实施方式中,两个以上的过滤器可以并联设置。在本发明的一个实施方式中,两个以上的过滤器可以串联设置。在本发明的一个实施方式中,两个以上的过滤器可以并联和串联切换使用。在本发明的一个实施方式中,过滤器超过两个时,过滤器可以为并联和串联混合设置。当包括两个以上的过滤器时,该两个以上过滤器可以为过滤精度一致的过滤器,也可以为过滤精度不一致的过滤器,还可以为部分过滤精度一致、部分过滤精度不一致的过滤器。本发明的包括两个以上过滤器的过滤系统的过滤精度为过滤系统本身整体的过滤精度。即,为包含杂质的溶液通过过滤系统时,过滤系统所允许通过的最大颗粒的尺寸。
在本发明的一个实施方式中,所述在线压差监测模块包括设置在每个过滤器的油浆入口管线和滤后油出口管线上的压力表或压差表。在本发明的一个实施方式中,所述过滤器控制模块包括设置在每个过滤器的油浆入口管线、滤后油出口管线和滤渣排出管线上的控制阀。在本发明的一个实施方式中,所述吹扫控制模块包括设置在每个过滤器的吹扫介质入口管线上的控制阀。
在本发明的多过滤器系统中的过滤单元中,可以进一步包括吹扫介质缓冲罐,所述吹扫介质缓冲罐的出口与每个过滤器的吹扫介质入口通过吹扫介质入口管线连通。在本发明的多过滤器系统中的吹扫介质与上述关于吹扫介质的描述一致。
在本发明的多过滤器系统中的过滤单元中,可以进一步包括助滤剂缓冲罐,所述助滤剂缓冲罐的出口与每个过滤器上的助滤剂入口连通。在本发明的一个实施方式中,所述油浆入口用作助滤剂入口时,所述助滤剂缓冲罐的出口与过滤器上的油浆入口通过助滤剂入口管线连通。在本发明的一个实施方式中,所述助滤剂缓冲罐的出口与过滤 器上的油浆入口通过油浆入口管线连通。
在本发明的多过滤器系统中包括助滤剂缓冲罐时,关于助滤剂、助滤剂缓冲罐的描述与上述一致。
多级过滤系统
本发明提供一种用于油浆过滤的多级过滤系统,其包括一级过滤单元和、二级过滤单元和/或三级过滤单元;
所述一级过滤单元包括第一过滤系统,所述第一过滤系统包括本发明上述油浆过滤单元,所述过滤单元包括至少一个本发明上述油浆过滤器;
所述二级过滤单元包括具有驱动机构的自动反冲洗的过滤装置;
所述三级过滤单元包括第二过滤系统,所述第二过滤系统包括至少一个过滤器;
所述二级过滤单元的过滤精度小于一级过滤单元的过滤精度,所述三级过滤单元的过滤精度小于一级过滤单元的过滤精度且小于所述二级过滤单元的过滤精度;
所述一级过滤单元的滤后油出口分别与所述二级过滤单元的入口和/或所述三级过滤单元的入口连通。
本发明的一级过滤单元的过滤精度为一级过滤单元本身整体的过滤精度;本发明的二级过滤单元的过滤精度为二级过滤单元本身整体的过滤精度;本发明的三级过滤单元的过滤精度为三级过滤单元本身整体的过滤精度。即,为包含杂质的溶液通过各级过滤单元时,各级过滤单元所允许通过的最大颗粒的尺寸。
在本发明的一个实施方式中,本发明的多级油浆过滤系统包括一级过滤单元和二级过滤单元,此时,一级过滤单元的滤后油出口与二级过滤单元的入口连通。
在本发明的一个实施方式中,本发明的多级油浆过滤系统包括一级过滤单元和三级过滤单元,此时,一级过滤单元的滤后油出口与三级过滤单元的入口连通。
在本发明的一个实施方式中,本发明的多级油浆过滤系统包括一级过滤单元、二级过滤单元和三级过滤单元,此时,一级过滤单元的滤后油出口分别与二级过滤单元的入口和三级过滤单元的入口连通。在本发明的一个实施方式中,本发明的多级油浆过滤系统包括一级过 滤单元、二级过滤单元和三级过滤单元时,二级过滤单元的滤后油出口与三级过滤单元的入口连通。
在本发明的一个实施方式中,本发明的多级油浆过滤系统包括一级过滤单元、二级过滤单元和三级过滤单元,此时,一级过滤单元的滤后油出口与二级过滤单元的入口连通,二级过滤单元的滤后油出口与三级过滤单元的入口连通。
在本发明的一个实施方式中,在本发明的多级过滤系统的第一过滤系统中,所述过滤单元进一步包括分别与每个过滤器连通的油浆入口管线、滤后油出口管线。在本发明的一个实施方式中,在本发明的多级过滤系统的第一过滤系统中,所述过滤单元进一步包括分别与每个过滤器连通的油浆入口管线、滤后油出口管线和滤渣排出管线。在本发明的多级过滤系统的第一过滤系统中,所述过滤器包括连接于油浆入口管线的油浆入口、连接滤后油出口管线的滤后油出口、和根据需要的连接于滤渣排出管线的滤渣出口。
在本发明的一个实施方式中,在本发明的多级过滤系统的第一过滤系统中,所述过滤单元进一步包括分别与每个过滤器连通的油浆入口管线、滤后油出口管线、吹扫介质入口管线和滤渣排出管线;所述过滤器包括连接于油浆入口管线的油浆入口、连接滤后油出口管线的滤后油出口、连接于吹扫介质入口管线的吹扫介质入口和连接于滤渣排出管线的滤渣出口。
在本发明的一个实施方式中,在本发明的多级过滤系统的第一过滤系统中,所述过滤单元可以进一步包括吹扫介质缓冲罐,所述吹扫介质缓冲罐的出口与每个过滤器的吹扫介质入口通过吹扫介质入口管线连通。本发明中多级过滤系统中,关于吹扫介质的描述与上述一致。
在本发明的一个实施方式中,在本发明的多级过滤系统的第一过滤系统中,所述过滤单元可以进一步包括助滤剂缓冲罐,所述助滤剂缓冲罐的出口与每个过滤器上的助滤剂入口连通。在本发明的一个实施方式中,所述过滤器的油浆入口可用作助滤剂入口,此时所述助滤剂缓冲罐的出口与过滤器上的油浆入口通过助滤剂入口管线连通。在本发明的一个实施方式中,所述助滤剂缓冲罐的出口与过滤器上的油浆入口通过油浆入口管线连通。
在本发明的多级过滤系统的第一过滤系统中,可以包括一个本发 明上述过滤器,也可以包括两个以上本发明上述过滤器。包括两个以上本发明上述过滤器时,该两个以上过滤器的连接方式没有任何限定。在本发明的一个实施方式中,两个以上的过滤器可以并联设置。在本发明的一个实施方式中,两个以上的过滤器可以串联设置。在本发明的一个实施方式中,两个以上的过滤器可以并联和串联切换使用。在本发明的一个实施方式中,过滤器超过两个时,过滤器可以为并联和串联混合设置。当包括两个以上的过滤器时,该两个以上过滤器可以为过滤精度一致的过滤器,也可以为过滤精度不一致的过滤器,还可以为部分过滤精度一致、部分过滤精度不一致的过滤器。
在本发明的多级过滤系统的一个实施方式中,一级过滤单元的过滤精度为0.1~25微米,优选为0.1~15微米,进一步优选为0.1~10微米。在本发明的一个实施方式中,所述一级过滤单元的过滤精度为2~25微米。在本发明的一个实施方式中,所述一级过滤单元的过滤精度为2~15微米,进一步优选为2~10微米。另外,在本发明的一个实施方式中,所述一级过滤单元的过滤精度可以为0.1~小于2微米。
在本发明的一个实施方式中,本发明的多级油浆过滤系统的二级过滤单元中包括具有驱动机构的自动反冲洗的过滤装置。该自动反冲洗的过滤装置可以为本领域中公知的具有驱动机构的自动反冲洗的过滤装置。在本发明的一个实施方式中,所述过滤装置包括圆筒状壳体、圆筒状滤网、卸渣机构、冲洗油入口、滤渣出口,所述卸渣机构设置在圆筒状滤网的内侧并与驱动机构连接。在本发明的一个实施方式中,所述过滤装置能够通过监控压差,自动进行滤网的反冲洗。具体而言,启动反冲洗时,通过电机驱动位于滤网内侧的卸渣机构进行旋转,旋转着的卸渣机构内部通过管线连通外部低压罐,冲洗油通过卸渣机构与滤网局部接触部位进入到卸渣机构的低压区,利用冲洗油对滤网进行反冲洗。由于卸渣机构是旋转着的,每旋转一圈即完成对全滤网的反冲洗再生。
在本发明中,对于所述二级过滤单元中的过滤装置的滤网的材料,没有任何限定,可以使用本领域中公知的可作为滤网的材料。作为所述滤网的材料,可以为选自聚丙烯、聚乙烯、尼龙、涤纶、丙纶、聚苯硫醚、聚酰亚胺、聚四氟乙烯、芳纶、聚氨酯、玻璃纤维中的至少一种材料。本发明中,所述二级过滤单元的过滤精度小于一级过滤单 元的过滤精度。在本发明的一个实施方式中,所述二级过滤单元的过滤精度为0.1~7微米,优选为1~5微米。
在本发明的一个实施方式中,所述二级过滤单元的过滤面积为一级过滤单元的过滤面积的1/20~1/10倍。
本发明的多级过滤系统中,所述三级过滤单元中包括第二过滤系统,所述第二过滤系统包括至少一个过滤器。本发明的多级过滤系统中,所述三级过滤单元中的过滤器可以使用本领域公知的过滤器,只要该三级过滤单元的过滤精度小于一级过滤单元的过滤精度且小于二级过滤单元的过滤精度即可。在本发明的一个实施方式中,作为制成所述三级过滤单元中的过滤器的滤网的材料的原料,可以为选自聚丙烯、聚乙烯、尼龙、锦纶、涤纶、丙纶、聚苯硫醚、聚酰亚胺、聚四氟乙烯、芳纶、聚氨酯、玻璃纤维、维纶中的至少一种材料。
在本发明的一个实施方式中,所述三级过滤单元中的过滤器的滤网的孔隙率为85%~98%。在本发明的一个实施方式中,所述三级过滤单元中的过滤器的滤网的克重为300~1000g/m 2。在本发明的一个实施方式中,所述三级过滤单元中的过滤器的滤网的厚度为0.5~3.0mm。在本发明的一个实施方式中,所述三级过滤单元中的过滤器的经向断裂强力为1000N/5cm~9000N/5cm,纬向断裂强力为1000N/5cm~11000N/5cm。在本发明的一个实施方式中,所述三级过滤单元中的过滤器为本发明的上述油浆过滤器。
本发明的多级过滤系统中,所述三级过滤单元中的过滤精度小于所述一级过滤单元的过滤精度且小于二级过滤单元的过滤精度。在本发明的一个实施方式中,所述三级过滤单元的过滤精度为0.1~1.0微米。
在本发明的一个实施方式中,所述三级过滤单元中的过滤器的过滤面积大于所述一级过滤单元中的过滤器的过滤面积。在本发明的一个实施方式中,所述三级过滤单元的过滤面积为一级过滤单元的过滤面积的1.5~20倍。
油浆过滤方法
本发明还提供一种油浆过滤方法,其包括:使油浆进入本发明上述的油浆过滤器进行过滤(过滤步骤)。
在本发明的一个实施方式中,本发明的油浆过滤方法中,使油浆通过油浆入口管线进入过滤器,使滤后油从滤后油出口管线取出。
在本发明中,所述油浆为包含颗粒物杂质的液体烃,优选所述油浆为包括催化裂化油浆和/或煤焦油的液体烃。
在本发明的一个实施方式中,过滤步骤中,过滤器中过滤温度为30~250℃,更优选为50~240℃,进一步优选为60~180℃。
在本发明的一个实施方式中,过滤步骤中,过滤器使用压差(开始收集滤后油时的压差)为0.01~0.5MPa。使用压差的下限可以为0.02MPa、0.04MPa;使用压差的上限可以为0.4MPa、0.30MPa。当使用压差低于0.01MPa时,所过滤的油浆无法在滤材上形成有效的滤饼,则无法实现优异的过滤效果。另一方面,当压差高于0.5MPa时,则对柔性滤材造成损害,导致柔性滤材在以后的过滤中效率降低,使用寿命缩减。
在本发明的一个实施方式中,本发明的油浆过滤方法中,将使用后的过滤器用吹扫介质进行反吹扫。在本发明的一个实施方式中,本发明的油浆过滤方法中,使吹扫介质经由吹扫介质入口管线进入过滤器,进行反吹扫(反吹扫步骤)。
在本发明的一个实施方式中,本发明的油浆过滤方法中,将过滤的滤渣从滤渣排出管线排出。
本发明的油浆过滤方法中,所述吹扫介质为本领域公知的可用于滤渣反吹扫的吹扫介质。在本发明的一个实施方式中,本发明的油浆过滤方法中,所述吹扫介质可以为不活性气体和/或冲洗油。所述不活性气体为对过滤体系中的油浆和颗粒物都不产生反应的气体,优选为氮气。在本发明的一个实施方式中,所述吹扫介质为燃料气。在本发明的一个实施方式中,所述冲洗油为滤后油,优选为经本发明的油浆过滤方法处理后的滤后油。在本发明中,反吹扫实际上是指反吹扫和反洗脱,其目的都是对过滤器中的滤渣进行吹扫去除。
在本发明的一个实施方式中,本发明的油浆过滤方法中,在使油浆进入油浆过滤器之前,使助滤剂进入过滤器,以在过滤器的过滤组件上形成助滤剂滤饼层(滤饼层形成步骤),然后再进行油浆过滤。关于助滤剂、助滤剂滤饼层的描述与本发明上述关于助滤剂、助滤剂滤饼层的描述一致。关于助滤剂滤饼层的形成步骤描述与本发明上述关于助滤剂滤饼层的形成步骤的描述一致。在本发明的一个实施方式中,滤饼层形成步骤中,所述由助滤剂形成的滤饼层的厚度为0.1~10mm。在本发明的一个实施方式中,在所述过滤组件上形成所述由助滤剂形 成的滤饼层后,过滤器的压差为0.01~0.07MPa,当压差低于0.01MPa时,所无法在滤材上形成有效的助滤剂滤饼,则无法实现优异的过滤效果或者无法延长过滤器使用寿命,当压差大于0.07MPa时,则对于过滤器的使用压差而言预留的压差上升空间减少,导致油浆过滤的有效时间缩短。在本发明的一个实施方式中,所述助滤剂为选自硅藻土、纤维素、珍珠岩、滑石粉、活性白土、过滤器所得滤渣、废催化裂化催化剂中的一种或多种混合物。在本发明的一个实施方式中,本发明的油浆过滤方法中,形成助滤剂滤饼层时,通过监控过滤器压差以控制助滤剂滤饼层的厚度。在本发明的一个实施方式中,本发明的油浆过滤方法中,使滤后油的至少一部分返回助滤剂缓冲罐。
在本发明的一个实施方式中,在该过滤器的过滤组件上形成助滤剂滤饼层前,该过滤器的滤后油出口管线与原料缓冲罐连通,或者与不合格滤后油管线连通。
在本发明的一个实施方式中,滤饼层形成步骤中,过滤器的温度为30~250℃,优选为50~180℃。
在本发明的一个实施方式中,在滤饼层形成步骤中,使助滤剂通过助滤剂入口管线进入过滤器。在本发明的一个实施方式中,在滤饼层形成步骤中,使助滤剂通过油浆入口管线进入过滤器。
在本发明的一个实施方式中,在滤饼层形成步骤中,首先将助滤剂和混合介质在助滤剂缓冲罐充分混合后,再使其进入过滤器。本发明的过滤方法中,对于混合介质没有任何限定,只要是不会对过滤体系带来不良影响、不溶解助滤剂、能够使所述助滤剂形成浆液状的介质即可。在本发明的一个实施方式中,所述混合介质为液体烃类,进一步优选为滤后油。
在本发明的一个实施方式中,本发明的油浆过滤方法中,将滤后油的至少一部分返回至助滤剂缓冲罐中。
在本发明的一个实施方式中,本发明的油浆过滤方法中,可以使用一个本发明上述过滤器。在本发明的一个实施方式中,本发明的油浆过滤方法中,可以使用两个以上本发明上述过滤器。
在本发明的一个实施方式中,本发明的油浆过滤方法中,使用一个过滤器时,可以采用过滤模式和吹扫模式交替进行的方式进行操作。在本发明的一个实施方式中,本发明的油浆过滤方法中,当使用两个 以上过滤器时,可以采用在线过滤器和备用过滤器轮流切换的方式进行操作。具体而言,当在线过滤器的压差达到或高于设定值时,可以将备用的过滤器切入过滤体系,并将在线过滤器切出过滤体系,对其进行反吹扫和卸渣,以及根据需要引入助滤剂而形成助滤剂滤饼层。
以液体混合物的形式排出的滤渣具有良好的流动性,可以排出过滤体系。也可以在过滤器中对滤渣进行稳定、干燥后,以完全固体化的滤渣形式排出过滤体系。
本发明还提供一种油浆过滤方法,其使用本发明上述的多过滤器系统,其包括:
(1)使油浆进入过滤系统中的至少两个本发明上述油浆过滤器中的一部分过滤器(过滤步骤);
(2)控制系统中,使在线压差监测模块监测在线过滤器的压差,使过滤器控制模块控制过滤器切入和切出过滤系统,使吹扫控制模块控制过滤器的反吹扫过程(控制步骤);和
(3)使用吹扫介质对于切出过滤系统的过滤器进行反吹扫(反吹扫步骤),其中,
当在线压差监测模块监测到在线过滤器的压差达到设定值I时,通过过滤器控制模块将上述过滤器中的其他部分的过滤器切入过滤系统,进入上述过滤步骤,并将压差达到设定值I的在线过滤器切出过滤系统,所述设定值I在0.01~0.5MPa的范围,
通过吹扫控制模块用吹扫介质对切出过滤系统的过滤器进行卸渣和反吹扫。
在本发明的一个实施方式中,在线过滤器中过滤温度为30~250℃,优选为50~240℃,进一步优选为60~180℃。
在本发明的一个实施方式中,当在线压差监测模块监测到在线过滤器的压差达到设定值II时,通过过滤器控制模块将过滤器中的其他部分的过滤器切入过滤系统,进入过滤步骤,当在线压差监测模块监测到后切入的在线过滤器的压差达到设定值III时,将压差达到或超过设定值II的在线过滤器切出过滤系统,设定值III<设定值II<设定值I;所述设定值II和设定值III在0.01~0.5MPa的范围。
在本发明的一个实施方式中,在线过滤器的使用压差为0.01~0.5MPa。使用压差的下限可以为0.02MPa、0.04MPa;使用压差 的上限可以为0.4MPa、0.30MPa。在线压差监测模块监测的压差设定值I在使用压差的范围内,当压差低于0.01MPa时,所过滤的油浆无法在滤材上形成有效的滤饼,则无法实现优异的过滤效果。另一方面,当压差高于0.5MPa时,则对柔性滤材造成损害,导致柔性滤材在以后的过滤中效率降低,使用寿命缩减,因此需要将在线过滤器切出过滤系统。
本发明还提供一种油浆过滤方法,其使用本发明上述的多过滤器系统,其中,在(1)过滤步骤之前,进一步包括:
(1′)使助滤剂进入过滤系统中的至少两个本发明上述油浆过滤器中的一部分过滤器,以在过滤器中形成助滤剂滤饼层(滤饼层形成步骤);
在过滤步骤中,使油浆进入形成了助滤剂滤饼层的过滤器(过滤步骤);
在线压差监测模块监测到滤饼层形成步骤中的过滤器的压差达到设定值IV时,通过过滤器控制模块将该形成了滤饼层的过滤器切入过滤步骤进行油浆过滤,所述设定值IV在0.01~0.07MPa的范围。
在本发明的一个实施方式中,本发明的使用多过滤器系统的过滤方法中,将过滤器切入过滤系统后,在该过滤器的过滤组件上形成助滤剂滤饼层前,通过过滤器控制模块将该过滤器的滤后油出口管线与原料缓冲罐连通,或者与不合格滤后油管线连通。关于助滤剂、助滤剂滤饼层的描述与本发明上述关于助滤剂、助滤剂滤饼层的描述一致。关于助滤剂滤饼层的形成步骤描述与本发明上述关于助滤剂滤饼层的形成步骤的描述一致。在本发明的一个实施方式中,滤饼层形成步骤中,过滤器的压差的设定值IV在0.01~0.07MPa的范围,当压差低于0.01MPa时,所无法在滤材上形成有效的助滤剂滤饼,则无法实现优异的过滤效果或者无法延长过滤器使用寿命,当压差大于0.07MPa时,则对于过滤器的使用压差而言预留的压差上升空间减少,导致油浆过滤的有效时间缩短。在本发明的一个实施方式中,所述助滤剂为选自硅藻土、纤维素、珍珠岩、滑石粉、活性白土、过滤器所得滤渣、废催化裂化催化剂中的一种或多种混合物。在本发明的一个实施方式中,本发明的油浆过滤方法中,形成助滤剂滤饼层时,通过监控过滤器压差以控制助滤剂滤饼层的厚度。在本发明的一个实施方式中,本发明的使用多过滤器系统的过滤方法中,使滤后油的至少一部分返回助滤 剂缓冲罐。
本发明还提供一种油浆过滤方法,其使用上述本发明的多级过滤系统,其包括:
使油浆进入一级过滤单元进行过滤得到一级过滤油浆的步骤(一级过滤步骤),所述一级过滤单元包括第一过滤系统,所述第一过滤系统包括本发明上述油浆过滤单元,所述过滤单元包括至少一个本发明上述油浆过滤器;和
使一级过滤油浆进入二级过滤单元和/或三级过滤单元进行过滤;
所述二级过滤单元包括具有驱动机构的自动反冲洗的过滤装置;
所述三级过滤单元包括第二过滤系统,所述第二过滤系统包括至少一个过滤器
所述二级过滤单元的过滤精度小于一级过滤单元中的过滤器的过滤精度,所述三级过滤单元的过滤精度小于一级过滤单元的过滤精度且小于二级过滤单元的过滤精度。
本发明的使用多级过滤系统的过滤方法中,关于多级过滤系统的描述与上述多级过滤系统的描述一致。
在本发明的一个实施方式中,使一级过滤油浆进入二级过滤单元,得到滤后油(二级过滤步骤)。在本发明的一个实施方式中,使一级过滤油浆进入三级过滤单元,得到滤后油(三级过滤步骤)。在本发明的一个实施方式中,使一级过滤油浆进入二级过滤单元,得到二级过滤油浆后,再使二级过滤油浆后进入三级过滤单元,得到滤后油(三级过滤步骤)。
本发明的使用多级过滤系统的过滤方法中,使油浆进入一级过滤单元进行过滤得到一级过滤油浆的步骤可以与本发明上述的过滤步骤相同。
在本发明的一个实施方式中,第一过滤系统中的过滤器的过滤温度为30~250℃,优选为50~240℃,更优选为60~180℃。
在本发明的一个实施方式中,第一过滤系统中的过滤器的使用压差为0.01~0.5MPa。使用压差的下限可以为0.02MPa、0.04MPa;使用压差的上限可以为0.4MPa、0.30MPa。当使用压差低于0.01MPa时,所过滤的油浆无法在滤材上形成有效的滤饼,则无法实现优异的过滤效果。另一方面,当使用压差高于0.5MPa,则对柔性滤材造成损害, 导致柔性滤材在以后的过滤中效率降低,使用寿命缩减。
在本发明的一个实施方式中,本发明的使用多级过滤系统的过滤方法中,第二过滤系统中的过滤器中的过滤温度为30~250℃,优选为60~180℃。
在本发明的一个实施方式中,本发明的使用多级过滤系统的过滤方法中,第二过滤系统中的过滤器不进行反吹扫。在本发明的一个实施方式中,第二过滤系统中的过滤器采用内进外出的过滤模式,将杂质完全置于过滤器内部。
在本发明的一个实施方式中,本发明的使用多级过滤系统的过滤方法中,在一级过滤步骤之前,使助滤剂进入过滤器,以在过滤器的过滤组件上形成助滤剂滤饼层(滤饼层形成步骤),然后再进行一级过滤步骤。关于助滤剂、助滤剂滤饼层的描述与本发明上述关于助滤剂、助滤剂滤饼层的描述一致。关于助滤剂滤饼层的形成步骤和条件描述与本发明上述关于助滤剂滤饼层的形成步骤和条件的描述一致。在本发明的一个实施方式中,滤饼层形成步骤中,过滤器的压差的设定值为0.01~0.07MPa,当压差低于0.01MPa时,所无法在滤材上形成有效的助滤剂滤饼,则无法实现优异的过滤效果或者无法延长过滤器使用寿命,当压差大于0.07MPa时,则对于过滤器的使用压差而言预留的压差上升空间减少,导致油浆过滤的有效时间缩短。在本发明的一个实施方式中,所述助滤剂为选自硅藻土、纤维素、珍珠岩、滑石粉、活性白土、过滤器所得滤渣、废催化裂化催化剂中的一种或多种混合物。在本发明的一个实施方式中,本发明的油浆过滤方法中,形成助滤剂滤饼层时,通过监控过滤器压差以控制助滤剂滤饼层的厚度。在本发明的一个实施方式中,本发明的使用多级过滤系统的过滤方法中,使滤后油的至少一部分返回助滤剂缓冲罐。
以下结合附图对本发明进行进一步的说明,但这些附图仅仅为了更具体地阐述本发明,本发明的实施方式并不限于此。
图1是本发明的油浆过滤单元的一个实施方式的示意图。如图1所示,油浆过滤单元包括油浆过滤器11,与过滤器11连通的油浆入口管线13、滤后油出口管线14和滤渣排出管线15。所述过滤器11中设置柔性材质的过滤组件12(柔性滤袋)。在过滤器11的下部设置油浆入口,在过滤器11的上部设置滤后油出口,在过滤器11的底部设置滤 渣出口。在过滤器11顶部和上部设置吹扫介质入口,并与吹扫介质入口管线16连通。
图2是本发明的油浆过滤单元的另一个实施方式的示意图。如图2所示,油浆过滤单元包括油浆过滤器21和油浆过滤器23,与过滤器21连通的油浆入口管线25、滤后油出口管线27和滤渣排出管线29;与过滤器23连通的油浆入口管线26、滤后油出口管线28、和滤渣排出管线210。所述过滤器21中设置柔性材质的过滤组件22(柔性滤袋);所述过滤器23中设置柔性材质的过滤组件24(柔性滤袋)。在过滤器21顶部设置吹扫介质入口,并与吹扫介质入口管线211连通;过滤器21的上部设置吹扫介质入口,并与吹扫介质入口管线213连通。在过滤器23顶部设置吹扫介质入口,并与吹扫介质入口管线212连通;过滤器23的上部设置吹扫介质入口,并与吹扫介质入口管线214连通。在过滤器21的滤后油出口和过滤器23的油浆入口之间设置连通管线215。
采用如图2所示的过滤系统进行过滤时,过滤器21和过滤器23可以并联使用,可以串联使用,也可以切换使用。当切换使用时,过滤器21在线过滤时,过滤器23同时进行反吹扫、或为备用状态;或者过滤器23在线过滤时,过滤器21同时进行反吹扫或为备用状态。
图3是本发明的油浆过滤单元的另一个实施方式的示意图,如图3所示,油浆过滤单元包括油浆过滤器31和助滤剂缓冲罐36,与过滤器31连通的油浆入口管线33、滤后油出口管线34、滤渣排出管线35,助滤剂缓冲罐36的出口与过滤器的油浆入口管线38连通。在过滤器31顶部和上部设置吹扫介质入口,并与吹扫介质入口管线310连通。助滤剂缓冲罐36的混合介质入口与入口管线37连通,助滤剂缓冲罐36的混合介质入口与过滤器的滤后油出口管线通过管线39连通。
图4是本发明的油浆过滤单元的另一个实施方式的示意图,如图4所示,油浆过滤单元包括油浆过滤器41、油浆过滤器43和助滤剂缓冲罐416,与过滤器41连通的油浆入口管线45、滤后油出口管线47和滤渣排出管线49;与过滤器43连通的油浆入口管线46、滤后油出口管线48、和滤渣排出管线410。在过滤器41顶部设置吹扫介质入口,并与吹扫介质入口管线411连通;过滤器41的上部设置吹扫介质入口,并与吹扫介质入口管线413连通。在过滤器43顶部设置吹扫介质入口,并与吹扫介质入口管线412连通;过滤器43的上部设置吹扫介质入口, 并与吹扫介质入口管线414连通。在过滤器41的滤后油出口和过滤器43的油浆入口之间设置连通管线415。助滤剂缓冲罐416的出口与过滤器41和过滤器43的油浆入口用管线418进行连通。助滤剂缓冲罐416的混合介质入口与入口管线417连通,助滤剂缓冲罐416的混合介质入口与过滤器41和过滤器43的滤后油出口管线通过管线419进行连通。
采用如图4所示的过滤系统进行过滤时,过滤器41和过滤器43可以并联使用,可以串联使用,也可以切换使用。当切换使用时,过滤器41在线过滤时,过滤器43同时进行反吹扫、形成助滤剂滤饼层或为备用状态;或者过滤器43在线过滤时,过滤器41同时进行反吹扫、形成助滤剂滤饼层或为备用状态。
图5是本发明的多过滤器系统的一个实施方式的示意图。如图5所示,本发明多过滤器系统包括过滤系统和控制系统,所述过滤系统包括油浆过滤器51、油浆过滤器53,与过滤器51连通的油浆入口管线55、滤后油出口管线57和滤渣排出管线59;与过滤器53连通的油浆入口管线56、滤后油出口管线58、和滤渣排出管线510。在过滤器51顶部设置吹扫介质入口,并与吹扫介质入口管线511连通;过滤器51的上部设置吹扫介质入口,并与吹扫介质入口管线513连通。在过滤器53顶部设置吹扫介质入口,并与吹扫介质入口管线512连通;过滤器53的上部设置吹扫介质入口,并与吹扫介质入口管线514连通。所述控制系统包括在线压差监测模块、过滤器控制模块516和吹扫控制模块517,所述在线压差监测模块用于监测在线使用过滤器的压差,所述过滤器控制模块516用于控制单个过滤器切入和切出过滤系统,所述吹扫控制模块517用于控制过滤器的吹扫过程。
本发明的多过滤器系统中,过滤器进行过滤以及反吹扫的切换可通过控制系统控制阀门开关实现。图5中,以各管线号前加V来命名各阀门。以图5中两个过滤器并联来说明过滤器的操作,通过过滤器控制模块516打开阀门V55和阀门V57,其余阀门关闭,过滤器51首先进行过滤操作,当在线压差监测模块监测到过滤器51入口与出口压力差达到设定值时,通过过滤器控制模块516关闭阀门V55和阀门V57,以切出过滤器51,打开阀门56和阀门58将过滤器53切入过滤系统,同时通过吹扫控制模块517打开阀门V513和阀门V59对过滤器51采 用不活性气体或采用滤后油进行反吹扫。当在线压差监测模块检测到过滤器53入口与出口压力差达到设定值时,关闭阀门V56和阀门V58,切出过滤器53,打开阀门V55和阀门V57,投用已经吹扫完成的过滤器51进行过滤操作。通过吹扫控制模块517打开阀门V514和阀门V510,对过滤器53采用不活性气体或采用馏分油进行反吹扫;如此反复。
图6是本发明的多过滤器系统的一个实施方式的示意图。图6是在图5的基础上增加了在油浆过滤器61的滤后油出口和油浆过滤器63的油浆入口之间的连通管线615。
采用如图6所示的过滤系统进行过滤时,过滤器61和过滤器63可以并联使用,可以串联使用,也可以切换使用。当切换使用时,过滤器61在线过滤时,过滤器63同时进行吹扫或为备用状态;或者过滤器63在线过滤时,过滤器61同时进行吹扫或为备用状态。如图6所示,当打开阀门V65、V67、V615、V66、V68并关闭其它阀门时,可进行过滤器61在前、过滤器63在后的串联过滤操作。
图7是本发明的多级过滤系统的结构示意图。如图7所示,本发明的多级过滤系统包括一级过滤单元71、二级过滤单元72和三级过滤单元73。所述一级过滤单元71中设置至少一个油浆过滤器,在该油浆过滤器中包括柔性材质的过滤组件。所述二级过滤单元72中设置具有驱动机构的自动反冲洗的过滤装置。所述三级过滤单元73中设置至少一个过滤器,在该过滤器中设置柔性材质的过滤组件。一级过滤单元71进一步包括油浆入口管线74和滤渣出口管线710,一级过滤单元71的滤后油出口管线75与二级过滤单元72的入口连通,一级过滤单元71的滤后油出口管线76与三级过滤单元73的入口连通。二级过滤单元72包括滤渣出口管线711和滤后油出口管线77,二级过滤单元72的滤后油出口经管线79与三级过滤单元73的入口连通。三级过滤单元还包括滤后油出口管线78。
图8是本发明的多级过滤系统的一级过滤单元的一个实施方式的示意图,如图8所示,一级过滤单元中包括油浆过滤器81,与第一过滤器81连通的油浆入口管线83、滤后油出口管线84和滤渣排出管线85。所述过滤器81中设置柔性材质的过滤组件82(柔性滤袋)。在过滤器81的下部设置油浆入口,在过滤器81的上部设置滤后油出口,在过滤器81的底部设置滤渣出口。在过滤器81顶部和上部设置吹扫介 质入口,并与吹扫介质入口管线86连通。
图9是本发明的多级过滤系统的一级过滤单元的一个实施方式的示意图,如图9所示,一级过滤单元中包括油浆过滤器91、油浆过滤器93,与过滤器91连通的油浆入口管线95、滤后油出口管线97和滤渣排出管线99;与过滤器93连通的油浆入口管线96、滤后油出口管线98和滤渣排出管线910。所述过滤器91中设置柔性材质的过滤组件92(柔性滤袋);所述第一过滤器93中设置柔性材质的过滤组件94(柔性滤袋)。在过滤器91顶部设置吹扫介质入口,并与吹扫介质入口管线911连通;过滤器91的上部设置吹扫介质入口,并与吹扫介质入口管线913连通。在过滤器93顶部设置吹扫介质入口,并与吹扫介质入口管线912连通;过滤器93的上部设置吹扫介质入口,并与吹扫介质入口管线914连通。在过滤器91的滤后油出口和过滤器93的油浆入口之间设置连通管线915。
采用如图9所示的一级过滤单元进行过滤时,过滤器91和过滤器93可以并联使用,可以串联使用,也可以切换使用。当切换使用时,过滤器91在线过滤时,过滤器93同时进行反吹扫或为备用状态;或者过滤器93在线过滤时,过滤器91同时进行反吹扫或为备用状态。
实施例
下面结合实施例对本发明作进一步的说明,但本发明不限于这些实施例。
实施例中所使用的煤焦油的物性如下所示。
  煤焦油A 煤焦油B
密度(g/cm 3) 1.15 1.20
100℃黏度(mm 2/s) 2.8 3.2
固体颗粒物含量(μg/g) 5522 8765
  煤焦油C 煤焦油D
密度(g/cm 3) 1.13 1.17
100℃黏度(mm 2/s) 2.6 3.1
固体颗粒物含量(μg/g) 5357 9018
  煤焦油E 煤焦油F
密度(g/cm 3) 1.21 1.29
100℃黏度(mm 2/s) 3.0 3.6
固体颗粒物含量(μg/g) 5900 9200
实施例中所使用的油浆的物性如下所示。
其中,油浆A、C、D、F、G、I为催化裂化油浆,油浆B为催化裂化油浆和少量催化裂化轻循环油(LCO)的混合物,油浆E为催化裂化油浆与少量催化裂化轻循环油(LCO)、少量催化裂化重循环油的混合物,油浆H为催化裂化油浆和少量催化裂化重循环油(HCO)的混合物。
  油浆A 油浆B 油浆C
密度(g/cm 3) 1.135 1.093 1.141
100℃黏度(mm 2/s) 41 32 67
固体颗粒物含量(μg/g) 1782 3735 10330
  油浆D 油浆E 油浆F
密度(g/cm 3) 1.139 1.086 1.148
100℃黏度(mm 2/s) 42 31 65
固体颗粒物含量(μg/g) 1902 3866 9893
  油浆G 油浆H 油浆I
密度(g/cm 3) 1.126 1.115 1.158
100℃黏度(mm 2/s) 39 28 75
固体颗粒物含量(μg/g) 2352 3520 11200
实施例I-1-I-3
采用图1所示的油浆过滤单元,其中设置单个过滤器,所述过滤器中设置有柔性滤袋。所述柔性滤袋包括脱固层和基布层,其具体的性质参数如表I-1所示。
表I-1
Figure PCTCN2020076016-appb-000001
Figure PCTCN2020076016-appb-000002
实施例I-4-I-5
采用图2所示的油浆过滤单元,其中设置两个相同的过滤器,所述两个过滤器中均设置有柔性滤袋。所述柔性滤袋包括脱固层、基布层和里层,其具体的性质参数如表I-2所示。
表I-2
Figure PCTCN2020076016-appb-000003
实施例I-6-I-8
采用图1所示的油浆过滤单元,其中设置单个过滤器,所述过滤器中设置有柔性滤袋。所述柔性滤袋包括脱固层、精度层、基布层和里层,其具体的性质参数如表I-3、表I-4、表I-5所示。
表I-3
Figure PCTCN2020076016-appb-000004
表I-4
Figure PCTCN2020076016-appb-000005
表I-5
Figure PCTCN2020076016-appb-000006
实施例I-9-I-11
本组实施例用于说明采用实施例I-1-1-3的油浆过滤单元的油浆过滤方法。
在实施例1-9中,油浆A通过与过滤器连通的油浆入口管线进入实施例I-1所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度100℃,过滤设定到压差0.12MPa进行反吹。在过滤器的压差为0.04MPa时开始收集滤后油,当压差达到0.12MPa时停止进料,停止滤后油收集,利用100℃氮气进行反吹。对所收集的滤后油进行分析,固体颗粒物含量为262μg/g。
在实施例I-10中,油浆B通过与过滤器连通的油浆入口管线进入实施例I-2所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度180℃,过滤设定到压差0.30MPa进行反吹。在过滤器的压差为0.04MPa时开始收集滤后油,压差达到0.30MPa时停止进料,停止滤后油收集,利用180℃氮气进行反吹。对所收集的滤后油进行分析,固体颗粒物含量为481μg/g。
在实施例I-11中,油浆C通过与过滤器连通的油浆入口管线进入实施例I-3所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度250℃,过滤设定到压差0.45MPa进行反吹。在过滤器 的压差为0.05MPa时开始收集滤后油,当压差达到0.45MPa时停止进料,停止滤后油收集,利用250℃氮气进行反吹。对所收集的滤后油进行分析,固体颗粒物含量为1106μg/g。
实施例I-12-I-13
本组实施例用于说明采用实施例I-4-I-5的油浆过滤单元的油浆过滤方法,其中,过滤单元中的2个过滤器切换使用。
在实施例I-12中,煤焦油A通过与过滤器连通的油浆入口管线进入实施例I-4所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度60℃,过滤设定到压差0.30MPa进行反吹。在过滤器的压差为0.04MPa时开始收集滤后油,当压差达到0.30MPa时停止进料,停止滤后油收集,利用常温氮气进行反吹。对所收集的滤后油进行分析,固体颗粒物含量为487μg/g。
在实施例I-13中,煤焦油B通过与过滤器连通的油浆入口管线进入实施例I-5所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度80℃,过滤设定到压差0.35MPa进行反吹。在过滤器的压差为0.04MPa时开始收集滤后油,当压差达到0.35MPa时停止进料,停止滤后油收集,利用80℃氮气进行反吹。对所收集的滤后油进行分析,固体颗粒物含量为765μg/gh。
实施例I-14-I-16
本组实施例用于说明采用实施例I-6-I-8的油浆过滤单元的油浆过滤方法。
在实施例I-14中,油浆A通过与过滤器连通的油浆入口管线进入实施例I-6所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度130℃,过滤设定到压差0.25MPa进行反吹。在过滤器的压差为0.05MPa时开始收集滤后油,当压差达到0.25MPa时停止进料,停止滤后油收集,利用130℃氮气进行反吹。对所收集的滤后油进行分析,固体颗粒物含量为155μg/g。
在实施例I-15中,油浆B通过与过滤器连通的油浆入口管线进入实施例I-7所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度150℃,过滤设定到压差0.18MPa进行反吹。在过滤器的压差为0.04MPa时开始收集滤后油,当压差达到0.18MPa时停止进料,停止滤后油收集,利用150℃氮气进行反吹。对所收集的滤后油进 行分析,固体颗粒物含量为356μg/g。
在实施例I-16中,油浆C通过与过滤器连通的油浆入口管线进入实施例I-8所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度180℃,过滤设定到压差0.40MPa进行反吹。在过滤器的压差为0.04MPa时开始收集滤后油,当压差达到0.40MPa时停止进料,停止滤后油收集,利用150℃氮气进行反吹。对所收集的滤后油进行分析,固体颗粒物含量为983μg/g。
实施例I-17-I-18
采用图1所示的油浆过滤单元,其中设置单个过滤器,所述过滤器中设置有柔性滤袋。所述柔性滤袋包括脱固层、精度层、基布层和里层,其具体的性质参数如表I-6、表I-7所示。
表I-6
Figure PCTCN2020076016-appb-000007
表I-7
Figure PCTCN2020076016-appb-000008
实施例I-19-I-20
本组实施例用于说明采用实施例I-17-I-18的油浆过滤单元的油浆过滤方法。
在实施例I-19中,油浆A通过与过滤器连通的油浆入口管线进入实施例I-17所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度120℃,过滤设定到压差0.10MPa进行反吹。在过滤器的压差为0.01MPa时开始收集滤后油,当压差达到0.10MPa时停止进料,停止滤后油收集,利用120℃氮气进行反吹。对所收集的滤后油进行分析,固体颗粒物含量为148μg/g。
在实施例I-20中,油浆B通过与过滤器连通的油浆入口管线进入实施例I-18所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度125℃,过滤设定到压差0.13MPa进行反吹。在过滤器的压差为0.02MPa时开始收集滤后油,当压差达到0.20MPa时停止进料,停止滤后油收集,利用125℃氮气进行反吹。对所收集的滤后油进行分析,固体颗粒物含量为335μg/g。
实施例I-19和I-20说明,采用精度更小的过滤组件,可以在压差较小时就可以开始收集滤液产品,可以提高过滤器使用效率。并且,过滤效果优异。
比较例I-1-I-2
本组比较例采用实施例I-1-I-2的油浆过滤单元。
在比较例I-1中,除了在过滤器的压差为0.005MPa~0.01MPa期间收集滤后油之外,与实施例I-9同样地进行过滤,收集滤后油。对过滤器压差在0.005MPa~0.01MPa期间所收集的滤后油进行分析,固体颗粒物含量为908μg/g。
在比较例I-2中,除了从过滤一开始到过滤器的压差0.01MPa期间收集滤后油之外,与实施例I-10同样地进行过滤,收集滤后油。对从过滤一开始到过滤器的压差0.01MPa期间所收集的滤后油进行分析,固体颗粒物含量为2463μg/g。
比较例I-1和比较例I-2说明,过滤器的使用压差低于0.01MPa的情况下,过滤效果差。
实施例II-1-II-3
采用图3所示的油浆过滤单元,其中设置单个油浆过滤器,所述过滤器中设置有柔性滤袋。所述柔性滤袋的具体的性质参数如表II-1所示。
在助滤剂缓冲罐中装填助滤剂和混合介质,所述混合介质为滤后油,实施例II-1和实施例II-2中的助滤剂为硅藻土,实施例II-3中的助滤剂为过滤所得滤渣。
表II-1
  实施例II-1 实施例II-2 实施例II-3
材质 涤纶 聚四氟乙烯 丙纶
孔隙率 85% 87% 90%
克重 940±5%g/m 2 550±5%g/m 2 900±5%g/m 2
经向断裂强力 3480N/5cm 2200N/5cm 8006N/5cm
纬向断裂强力 5760N/5cm 2200N/5cm 10398N/5cm
厚度 1.5±10%mm 1.0±10%mm 0.9±10%mm
过滤精度 5μm 8μm 10μm
实施例II-4-II-5
采用图4所示的油浆过滤单元,其中设置两个相同的油浆过滤器,所述两个过滤器中设置有柔性滤袋。所述柔性滤袋具体的性质参数如表II-2所示。
表II-2
  实施例II-4 实施例II-5
材质 维纶 丙纶+涤纶
孔隙率 95% 98%
克重 560±5%g/m 2 950±5%g/m 2
经向断裂强力 2200N/5cm 7500N/5cm
纬向断裂强力 4500N/5cm 10650N/5cm
厚度 1.6±10%mm 1.3±10%mm
过滤精度 20μm 15μm
实施例II-6-II-8
本组实施例用于说明采用实施例II-1-II-3的油浆过滤单元的油浆过滤方法。
在实施例II-6中,采用实施例II-1的油浆过滤单元。助滤剂硅藻土和混合介质通过与过滤器连通的油浆入口管线加入过滤器中,当柔性滤袋的表面形成滤饼层后,停止助滤剂向过滤器的加入。油浆A通过与过滤器连通的油浆入口管线进入上述的形成助滤剂滤饼层的过滤器中进行过滤,滤后油从滤后油出口管线抽出。
助滤剂在形成滤饼层时,过滤器的温度为150℃,当过滤器的压差为0.05MPa时,停止注入助滤剂。所形成的滤饼层厚度为4±0.5mm。
油浆过滤时,过滤器的过滤温度150℃,过滤设定到压差0.40MPa进行反吹。在过滤器的压差为0.06MPa时开始收集滤后油,当压差达到0.40MPa时停止进料,并停止滤后油收集,利用150℃氮气进行反吹。对所收集的滤后油进行分析,固体颗粒物含量为86μg/g。
在实施例II-7中,采用实施例II-2的油浆过滤单元。助滤剂硅藻土和混合介质通过与过滤器连通的油浆入口管线加入过滤器中,当柔性滤袋的表面形成滤饼层后,停止助滤剂的加入。油浆B通过与过滤器连通的油浆入口管线进入上述的形成助滤剂滤饼层的过滤器中进行过滤,滤后油从滤后油出口管线抽出。
助滤剂在形成滤饼层时,过滤器的温度为120℃,当过滤器的压差为0.05MPa时,停止注入助滤剂。所形成的滤饼层厚度为2±0.5mm。
油浆过滤时,过滤器的过滤温度120℃,过滤设定到压差0.35MPa 进行反吹。在过滤器的压差为0.06MPa时开始收集滤后油,当压差达到0.35MPa时停止进料,并停止滤后油收集,利用120℃氮气进行反吹。对所收集的滤后油进行分析,固体颗粒物含量为135μg/g。
在实施例II-8中,采用实施例II-3的油浆过滤单元。助滤剂为过滤器所得的滤渣,助滤剂与混合介质通过与过滤器连通的油浆入口管线加入过滤器中,当柔性滤袋的表面形成滤饼层后,停止助滤剂的加入。油浆C通过与过滤器连通的油浆入口管线进入上述的形成滤饼层的过滤器中进行过滤,滤后油从滤后油出口管线抽出。
助滤剂在形成滤饼层时,过滤器的温度为220℃,当过滤器的压差为0.05MPa时,停止注入助滤剂。所形成的滤饼层厚度为7±0.5mm。
油浆过滤时,过滤器的过滤温度220℃,过滤设定到压差0.45MPa进行反吹。在过滤器的压差为0.06MPa时开始收集滤后油,当压差达到0.45MPa时停止进料,并停止滤后油收集,利用180℃氮气进行反吹。对所收集的滤后油进行分析,固体颗粒物含量为275μg/g。
实施例II-9-II-10
本组实施例用于说明采用实施例II-4-II-5的油浆过滤单元的油浆过滤方法,其中,过滤单元中的2个过滤器切换使用。
在实施例II-9中,采用实施例II-4的油浆过滤单元。助滤剂纤维素和混合介质通过与过滤器连通的油浆入口管线加入过滤器中,当柔性滤袋的表面形成滤饼层后,停止助滤剂的加入。煤焦油A通过与过滤器连通的油浆入口管线进入上述的形成滤饼层的过滤器中进行过滤,滤后油从滤后油出口管线抽出。
助滤剂在形成滤饼层时,过滤器的温度为60℃,当过滤器的压差为0.05MPa时,停止注入助滤剂。所形成的滤饼层厚度为2±0.5mm。
油浆过滤时,过滤器的过滤温度60℃,过滤设定到压差0.40MPa进行反吹。在过滤器的压差为0.06MPa时开始收集滤后油,当压差达到0.40MPa时停止进料,并停止滤后油收集,利用常温氮气进行反吹。对所收集的滤后油进行分析,固体颗粒物含量为185μg/g。
在实施例II-10中,采用实施例II-5的油浆过滤单元。助滤剂为过滤器所得的滤渣,助滤剂与混合介质通过与过滤器连通的油浆入口管线加入过滤器中,当柔性滤袋的表面形成滤饼层后,停止助滤剂的加入。煤焦油B通过与过滤器连通的油浆入口管线进入上述的形成滤饼 层的过滤器中进行过滤,滤后油从滤后油出口管线抽出。
助滤剂在形成滤饼层时,过滤器的温度为90℃,当过滤器的压差为0.05MPa时,停止注入助滤剂。所形成的滤饼层厚度为5±0.5mm。
油浆过滤时,过滤器的过滤温度90℃,过滤设定到压差0.45MPa进行反吹。在过滤器的压差为0.06MPa时开始收集滤后油,当压差达到0.45MPa时停止进料,并停止滤后油收集,利用90℃氮气进行反吹。对所收集的滤后油进行分析,固体颗粒物含量为252μg/g。
实施例III-1-III-3
采用图5所示的多过滤器系统,其中设置两个相同过滤器,所述两个过滤器中设置有柔性滤袋。所述柔性滤袋包括脱固层和基布层,其具体的性质参数如表III-1所示。
表III-1
Figure PCTCN2020076016-appb-000009
实施例III-4-III-5
采用图6所示的多过滤器系统,其中设置两个相同的过滤器,所述两个过滤器中均设置有柔性滤袋。所述柔性滤袋包括脱固层、基布层和里层,其具体的性质参数如表III-2所示。
表III-2
Figure PCTCN2020076016-appb-000010
实施例III-6-III-8
采用图6所示的多过滤器系统,其中设置两个相同的过滤器,所述过滤器中设置有柔性滤袋。所述柔性滤袋包括脱固层、精度层、基布层和里层,其具体的性质参数如表III-3、表III-4、表III-5所示。
表III-3
Figure PCTCN2020076016-appb-000011
表III-4
Figure PCTCN2020076016-appb-000012
表III-5
Figure PCTCN2020076016-appb-000013
实施例III-9-III-11
本组实施例用于说明采用实施例III-1-III-3的多过滤器系统的油浆过滤方法。
在实施例III-9中,油浆D通过与过滤器连通的油浆入口管线进入 实施例III-1所述过滤系统中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度100℃。通过在线压差监测模块检测在线使用过滤器的压差,并设定到压差0.12MPa时进行过滤器切换并对切出的过滤器进行反吹,用100℃氮气进行反吹,两个过滤器轮流进行操作。在过滤器的压差为0.04MPa时开始收集滤后油,对所收集的滤后油进行分析,固体颗粒物含量为253μg/g。
在实施例III-10中,油浆E通过与过滤器连通的油浆入口管线进入实施例III-2所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度180℃,通过在线压差监测模块检测在线使用过滤器的压差,并设定到压差0.30MPa时进行过滤器切换并对切出的过滤器进行反吹,用180℃氮气进行反吹,两个过滤器轮流进行操作。在过滤器的压差为0.04MPa时开始收集滤后油。对所收集的滤后油进行分析,固体颗粒物含量为456μg/g。
在实施例III-11中,油浆F通过与过滤器连通的油浆入口管线进入实施例III-3所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度250℃,通过在线压差监测模块检测在线使用过滤器的压差,并设定到压差0.45MPa时进行过滤器切换并对切出的过滤器进行反吹,用250℃氮气进行反吹,两个过滤器轮流进行操作。在过滤器的压差为0.05MPa时开始收集滤后油,对所收集的滤后油进行分析,固体颗粒物含量为1038μg/g。
实施例III-12-III-13
本组实施例用于说明采用实施例III-4-III-5的多过滤器系统的油浆过滤方法。
在实施例III-12中,煤焦油C通过与过滤器连通的油浆入口管线进入实施例III-4所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度60℃,通过在线压差监测模块检测在线使用过滤器的压差,并设定到压差0.3MPa时将备用过滤器切入过滤系统,当切入的备用过滤器的压差为0.04MPa时,将之前压差达到0.3MPa的在线过滤器切出过滤系统,并进行反吹,用常温氮气进行反吹,两个过滤器轮流进行操作。在过滤器的压差为0.04MPa时开始收集滤后油,对所收集的滤后油进行分析,固体颗粒物含量为463μg/g。
在实施例III-13中,煤焦油D通过与过滤器连通的油浆入口管线 进入实施例III-5所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度80℃,通过在线压差监测模块检测在线使用过滤器的压差,并设定到压差0.35MPa时进行过滤器切换并对切出的过滤器进行反吹,用80℃氮气进行反吹。两个过滤器轮流进行操作。在过滤器的压差为0.04MPa时开始收集滤后油,对所收集的滤后油进行分析,固体颗粒物含量为706μg/g。
实施例III-14-III-16
本组实施例用于说明采用实施例III-6-III-8的多过滤器系统的油浆过滤方法。
在实施例III-14中,油浆D通过与过滤器连通的油浆入口管线进入实施例III-6所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度130℃,阀门V615始终关闭。通过在线压差监测模块检测在线使用过滤器的压差,并设定到压差0.35MPa时进行过滤器切换并对切出的过滤器进行反吹,用130℃氮气进行反吹,两个过滤器轮流进行操作。在过滤器的压差为0.05MPa时开始收集滤后油,对所收集的滤后油进行分析,固体颗粒物含量为146μg/g。
在实施例III-15中,油浆E通过与过滤器连通的油浆入口管线进入实施例III-7所述过滤器中进行过滤,滤后油从滤后油出口管线抽出。过滤器的过滤温度150℃,阀门V615始终关闭。通过在线压差监测模块检测在线使用过滤器的压差,并设定到压差0.18MPa时进行过滤器切换并对切出的过滤器进行反吹,用150℃氮气进行反吹,两个过滤器轮流进行操作。在过滤器的压差为0.04MPa时开始收集滤后油,对所收集的滤后油进行分析,固体颗粒物含量为331μg/g。
在实施例III-16中,油浆F通过与过滤器连通的油浆入口管线进入实施例III-8所述过滤器中进行过滤,阀门V65、V67、V615、V66、V68打开,其余阀门关闭,两个过滤器改为过滤器61在前过滤器63在后的串联状态。滤后油从滤后油出口管线抽出。过滤器的过滤温度180℃,通过在线压差监测模块检测在线使用过滤器的压差,过滤设定到总压差0.45MPa时切出两个过滤器并对切出的两个过滤器分别进行反吹,用150℃氮气分别进行反吹。在过滤器的总压差为0.06MPa时开始收集滤后油,当总压差达到0.45MPa时停止进料停止滤后油收集。对所收集的滤后油进行分析,固体颗粒物含量为875μg/g。
实施例IV-1
多级油浆过滤系统包括一级过滤单元、二级过滤单元和三级过滤单元,一级过滤单元的滤后油出口与二级过滤单元的入口连通,二级过滤单元的滤后油出口与三级过滤单元的入口连通。
在一级过滤单元中设置如图8所示的过滤单元,其包括一个过滤器,所述过滤器中设置有柔性滤袋。所述柔性滤袋包括脱固层和基布层,其具体的性质参数如表IV-1所示。在二级过滤单元中设置具有驱动机构的自动反冲洗的过滤装置,过滤材质的过滤精度为1.5微米,过滤面积是一级过滤单元的过滤器的过滤面积的1/20倍。在三级过滤单元中设置单个过滤器,所述过滤器中设置有柔性滤袋,其具体的性质参数如表IV-1所示。
三级过滤单元中的过滤器的过滤面积是一级过滤单元中的过滤器的过滤面积的4.5倍。
表IV-1
Figure PCTCN2020076016-appb-000014
实施例IV-2
多级油浆过滤系统包括一级过滤单元和三级过滤单元,一级过滤单元的滤后油出口与三级过滤单元的入口连通。
在一级过滤单元中设置如图9所示的两个相同的过滤器,所述过滤器中设置有柔性滤袋。所述柔性滤袋包括脱固层和基布层,其具体的性质参数如表IV-2所示。在三级过滤单元中设置单个过滤器,所述过滤器中设置有柔性滤袋,其具体的性质参数如表IV-2所示。
三级过滤单元中的过滤器的过滤面积是一级过滤单元中的过滤器的过滤面积的6倍。
表IV-2
Figure PCTCN2020076016-appb-000015
实施例IV-3
多级油浆过滤系统包括一级过滤单元、二级过滤单元和三级过滤单元,一级过滤单元的滤后油出口与二级过滤单元的入口连通,二级过滤单元的滤后油出口与三级过滤单元的入口连通。
在一级过滤单元中设置如图9所示的两个相同的过滤器,所述过滤器中设置柔性滤袋。所述柔性滤袋包括脱固层、精度层、基布层和里层,其具体的性质参数如表IV-3所示。在二级过滤单元中设置具有驱动机构的自动反冲洗的过滤装置,过滤材质的过滤精度为1微米,过滤面积是一级过滤单元的过滤器的过滤面积的1/15倍。在三级过滤单元中设置单个过滤器,所述过滤器中设置有柔性滤袋,其具体的性质参数如表IV-3所示。
三级过滤单元中的过滤器的过滤面积是一级过滤单元中的过滤器的过滤面积的8倍。
表IV-3
Figure PCTCN2020076016-appb-000016
实施例IV-4
多级油浆过滤系统包括一级过滤单元和二级过滤单元,一级过滤单元的滤后油出口与二级过滤单元的入口连通。
在一级过滤单元中设置如图9所示的两个相同的过滤器,所述过滤器中设置有柔性滤袋。所述柔性滤袋包括脱固层、基布层和里层,其具体的性质参数如表IV-4所示。在二级过滤单元中设置具有驱动机构的自动反冲洗的过滤装置,过滤材质的过滤精度为2微米,过滤面积是一级过滤单元的过滤器的过滤面积的1/15倍。
表IV-4
Figure PCTCN2020076016-appb-000017
实施例IV-5
多级油浆过滤系统包括一级过滤单元和三级过滤单元,一级过滤单元的滤后油出口与三级过滤单元的入口连通。
在一级过滤单元中设置如图8所示的单个过滤器,所述过滤器中设置有柔性滤袋。所述柔性滤袋包括脱固层、精度层、基布层和里层,其具体的性质参数如表IV-5所示。在三级过滤单元中设置有两个相同的过滤器,所述过滤器中设置有柔性滤袋,其具体的性质参数如表IV-5所示。
三级过滤单元的过滤器的过滤面积是一级过滤单元的过滤器的过滤面积的10倍。
表IV-5
Figure PCTCN2020076016-appb-000018
实施例IV-6-IV-8
本组实施例用于说明采用实施例IV-1-IV-3的多级油浆过滤系统的油浆过滤方法。
在实施例IV-6中,油浆G进入实施例IV-1所述多级油浆过滤系统中进行过滤。油浆G进入一级过滤单元在其中的过滤器中进行过滤,所得滤后油依次进入二级过滤单元和三级过滤单元进行过滤,得到最终的滤后油。一级过滤单元中的过滤器的过滤温度100℃、过滤设定到压差0.12MPa进行反吹,采用100℃氮气进行反吹。监测二级过滤单元进出口的过滤压差,通过电机驱动启动卸渣机构,旋转一圈,耗时3s。三级过滤单元中的过滤器的过滤温度80℃,不进行反吹。对所收集的最终的滤后油进行分析,固体颗粒物含量为48μg/g。
在实施例IV-7中,油浆H进入实施例IV-2所述多级油浆过滤系统中进行过滤。油浆H进入一级过滤单元在其中的过滤器中进行过滤, 所得滤后油依次进入三级过滤单元的过滤器进行过滤,得到最终的滤后油。一级过滤单元中的过滤器的过滤温度140℃、过滤设定到压差0.20MPa进行反吹,采用140℃氮气进行反吹。三级过滤单元中的过滤器的过滤温度120℃,不进行反吹。对所收集的最终的滤后油进行分析,固体颗粒物含量为77μg/g。
在实施例8中,油浆I进入实施例IV-3所述多级油浆过滤系统中进行过滤。油浆I进入一级过滤单元在其中的过滤器中进行过滤,所得滤后油依次进入二级过滤单元和三级过滤单元进行过滤,得到最终的滤后油。一级过滤单元中的过滤器的过滤温度200℃、过滤设定到压差0.30MPa进行反吹,采用200℃氮气进行反吹。监测二级过滤单元进出口的过滤压差,通过电机驱动启动卸渣机构,旋转一圈,耗时3s。三级过滤单元中的过滤器的过滤温度160℃,不进行反吹。对所收集的最终的滤后油进行分析,固体颗粒物含量为185μg/g。
实施例IV-9-IV-10
本组实施例用于说明采用实施例IV-4-IV-5多级油浆过滤系统的油浆过滤方法。
在实施例IV-9中,煤焦油E进入实施例IV-4所述多级油浆过滤系统中进行过滤。煤焦油E进入一级过滤单元在其中的过滤器中进行过滤,所得滤后油进入二级过滤单元进行过滤,得到最终的滤后油。一级过滤单元中的过滤器的过滤温度70℃、过滤设定到压差0.3MPa进行反吹,采用常温氮气进行反吹。监测二级过滤单元进出口的过滤压差,通过电机驱动启动卸渣机构,旋转一圈,耗时3s。对所收集的最终的滤后油进行分析,固体颗粒物含量为151μg/g。
在实施例IV-10中,煤焦油F进入实施例IV-5所述多级油浆过滤系统中进行过滤。煤焦油F进入一级过滤单元在其中的过滤器中进行过滤,所得滤后油进入三级过滤单元的过滤器进行过滤,得到最终的滤后油。一级过滤单元中的过滤器的过滤温度90℃、过滤设定到压差0.35MPa进行反吹,采用90℃氮气进行反吹。三级过滤单元中的过滤器的过滤温度90℃,不进行反吹。对所收集的最终的滤后油进行分析,固体颗粒物含量为192μg/g。
产业实用性
本发明的油浆过滤器通过使用柔性材质的过滤组件,可以降低过滤器的磨损、延长过滤器的使用寿命,可以使滤渣的反冲洗处理更为便利、提高过滤器的再生效率,并且延长油浆过滤器的运行周期。
进而,通过使用本发明的油浆过滤器的油浆过滤方法,可以确保油浆过滤过程的长期稳定运行,解决了过滤材质易被高黏性胶质杂质堵塞、再生效率差和去除效率低的问题。

Claims (32)

  1. 油浆过滤器,其包括至少一个柔性材质的过滤组件,所述柔性材质的过滤组件由柔性滤材形成,优选的是,所述柔性滤材由选自聚丙烯、聚乙烯、尼龙、锦纶、涤纶、丙纶、聚苯硫醚、聚酰亚胺、聚四氟乙烯、芳纶、聚氨酯、玻璃纤维、维纶中的至少一种材料制成。
  2. 根据权利要求1所述的油浆过滤器,其中,所述柔性材质的过滤组件为柔性滤袋的形式,所述柔性滤袋采用缝合工艺进行制备,其缝合孔隙用酸性密封胶材料进行密封。
  3. 根据权利要求1或2所述的油浆过滤器,其中所述柔性滤材的过滤精度为0.1~25微米,优选为0.1~15微米;或者
    柔性滤材的过滤精度为2~15微米,优选为2~10微米;或者
    柔性滤材的过滤精度为3~25微米;或者
    柔性滤材的过滤精度为0.1~小于2微米。
  4. 根据权利要求1-3任一项所述的油浆过滤器,其中所述柔性滤材的克重为300~1000g/m 2,优选为520~660g/m 2;经向断裂强力为850N/5cm~9000N/5cm,纬向断裂强力为1000N/5cm~11000N/5cm;优选经向断裂强力为1000N/5cm~2400N/5cm,优选纬向断裂强力为1200N/5cm~2600N/5cm;厚度为0.5~3.4mm,优选为0.5~3.0mm,更优选为1.8~2.9mm。
  5. 根据权利要求1-4任一项所述的油浆过滤器,油浆过滤器的使用压差为0.01~0.5MPa。
  6. 根据权利要求1-5任一项所述的油浆过滤器,其中所述柔性滤材至少包括脱固层和基布层;所述脱固层的孔隙率为25%~98%;所述基布层的孔隙率为30%~40%;
    优选的是,柔性滤材的过滤精度为2~25微米时,所述脱固层的孔隙率为85%~98%;
    优选的是,柔性滤材的过滤精度为0.1~小于2微米时,所述脱固层的孔隙率为25%~70%;
    优选的是,所述脱固层和所述基布层相邻设置;
    优选的是,所述基布层由聚四氟乙烯和/或聚苯硫醚制成;所述脱固层由具有三维空隙结构聚四氟乙烯制成。
  7. 根据权利要求6所述的油浆过滤器,其中所述柔性滤材至少包括脱固层、基布层和里层,所述里层位于与脱固层相反的一侧的基布层上,由细度为1~3D的纤维制成;优选的是,制成所述里层的纤维的原料为选自聚乙烯、尼龙、涤纶、丙纶、聚苯硫醚、聚酰亚胺、聚四氟乙烯、芳纶、聚氨酯、玻璃纤维中的一种或几种。
  8. 根据权利要求7所述的油浆过滤器,其中所述柔性滤材至少包括脱固层、精度层、基布层和里层,所述精度层位于脱固层和基布层之间,由细度0.2~0.3D的超细纤维制成;优选的是,制成所述精度层的纤维的原料为选自聚乙烯、尼龙、涤纶、丙纶、聚苯硫醚、聚酰亚胺、聚四氟乙烯、芳纶、聚氨酯、玻璃纤维中的一种或几种。
  9. 根据权利要求1-8任一项所述的油浆过滤器,其中过滤组件包括在所述过滤组件上设置的由助滤剂形成的滤饼层;所述助滤剂为选自硅藻土、纤维素、珍珠岩、滑石粉、活性白土、过滤器所得滤渣、废催化裂化催化剂中的一种或多种混合物;由助滤剂形成的滤饼层的厚度为0.1~10mm。
  10. 根据权利要求1-9任一项所述的油浆过滤器,其中所述过滤器为上流式过滤器或下流式过滤器;所述油浆过滤器包括油浆入口和滤后油出口;优选进一步包括滤渣出口;优选进一步包括吹扫介质入口;优选进一步包括助滤剂入口。
  11. 油浆过滤单元,其包括至少一个权利要求1-10任一项所述的油浆过滤器;优选的是,包括至少两个油浆过滤器,所述油浆过滤器串联连接和/或并联连接。
  12. 根据权利要求11所述的油浆过滤单元,其包括分别与每个过滤器连通的油浆入口管线、滤后油出口管线;优选进一步包括分别与每个过滤器连通的滤渣排出管线;优选进一步包括吹扫介质缓冲罐和分别与每个过滤器连通的吹扫介质入口管线;优选进一步包括助滤剂缓冲罐和分别与每个过滤器连通的助滤剂入口管线。
  13. 根据权利要求12所述的油浆过滤单元,其中,所述吹扫介质为不活性气体和/或冲洗油,优选吹扫介质为选自氮气、燃料气、滤后油中的至少一种;所述助滤剂为选自硅藻土、纤维素、珍珠岩、滑石粉、活性白土、过滤器所得滤渣、废催化裂化催化剂中的一种或多种混合物;优选的是,在助滤剂缓冲罐中装填有助滤剂和混合介质,所 述混合介质为液体烃类,进一步优选为滤后油。
  14. 一种用于油浆过滤的多过滤器系统,其包括:过滤系统和控制系统;
    所述过滤系统包括权利要求11-13任一项所述的油浆过滤单元,所述过滤单元包括至少两个油浆过滤器;
    所述控制系统包括在线压差监测模块、过滤器控制模块和吹扫控制模块,所述在线压差监测模块用于监测在线使用过滤器的压差,所述过滤器控制模块用于控制过滤器切入和切出过滤系统,所述吹扫控制模块用于控制过滤器的反吹扫过程。
  15. 权利要求14所述的多过滤器系统,其中所述在线压差监测模块包括设置在每个过滤器的油浆入口管线和滤后油出口管线上的压力表或压差表,所述过滤器控制模块包括设置在每个过滤器的油浆入口管线、滤后油出口管线和滤渣排出管线上的控制阀,所述吹扫控制模块包括设置在每个过滤器的吹扫介质入口管线上的控制阀。
  16. 一种用于油浆过滤的多级过滤系统,其包括一级过滤单元和、二级过滤单元和/或三级过滤单元;
    所述一级过滤单元包括第一过滤系统,所述第一过滤系统包括权利要求11-13任一项所述的油浆过滤单元,所述过滤单元包括至少一个油浆过滤器;
    所述二级过滤单元包括具有驱动机构的自动反冲洗的过滤装置;
    所述三级过滤单元包括第二过滤系统,所述第二过滤系统包括至少一个过滤器;
    所述二级过滤单元的过滤精度小于一级过滤单元的过滤精度,所述三级过滤单元的过滤精度小于所述一级过滤单元的过滤精度且小于所述二级过滤单元的过滤精度;
    所述一级过滤单元的滤后油出口分别与所述二级过滤单元的入口和/或所述三级过滤单元的入口连通。
  17. 根据权利要求16所述的多级过滤系统,其中,多级油浆过滤系统包括一级过滤单元和二级过滤单元时,一级过滤单元的滤后油出口与二级过滤单元的入口连通;或者
    多级油浆过滤系统包括一级过滤单元和三级过滤单元时,一级过滤单元的滤后油出口与三级过滤单元的入口连通;或者
    多级油浆过滤系统包括一级过滤单元、二级过滤单元和三级过滤单元时,一级过滤单元的滤后油出口分别与二级过滤单元的入口和三级过滤单元的入口连通,优选二级过滤单元的滤后油出口与三级过滤单元的入口连通;或者
    多级油浆过滤系统包括一级过滤单元、二级过滤单元和三级过滤单元时,一级过滤单元的滤后油出口与二级过滤单元的入口连通,二级过滤单元的滤后油出口与三级过滤单元的入口连通。
  18. 根据权利要求16或17所述的多级过滤系统,其中,所述一级过滤单元的过滤精度为0.1~25微米,优选为2~15微米,进一步优选为2~10微米;所述二级过滤单元的过滤精度为0.1~7微米,优选为1~5微米;所述三级过滤单元的过滤精度为0.1~1.0微米。
  19. 根据权利要求16-18任一项所述的多级过滤系统,其中,所述二级过滤单元的过滤面积为一级过滤单元的过滤面积的1/20~1/10倍;所述三级过滤单元的过滤面积为一级过滤单元的过滤面积的1.5~20倍。
  20. 一种油浆过滤方法,其包括过滤步骤:使油浆进入权利要求1-10任一项所述的油浆过滤器进行过滤。
  21. 权利要求20所述的油浆过滤方法,其中,所述过滤器使用压差为0.01~0.5MPa;过滤温度为30~250℃,优选为50~240℃,进一步优选为60~180℃。
  22. 权利要求20或21所述的油浆过滤方法,其进一步包括反吹扫步骤:使用吹扫介质对过滤器进行反吹扫;优选的是,所述吹扫介质为不活性气体和/或冲洗油,更优选吹扫介质为选自氮气、燃料气、滤后油中的至少一种。
  23. 权利要求20-22任一项所述的油浆过滤方法,其进一步包括滤饼层形成步骤:在过滤步骤之前,使助滤剂进入过滤器,以在过滤器的过滤组件上形成助滤剂滤饼层;优选的是,所述助滤剂为选自硅藻土、纤维素、珍珠岩、滑石粉、活性白土、过滤器所得滤渣、废催化裂化催化剂中的一种或多种混合物;优选的是,所述助滤剂形成步骤中,过滤器的压差为0.01~0.07MPa;过滤温度为30~250℃,优选为50~180℃;优选的是,所述助滤剂以与混合介质形成浆料的形式进入过滤器,所述混合介质为液体烃类,优选为滤后油。
  24. 一种油浆过滤方法,其包括:
    (1)过滤步骤:使油浆进入至少两个权利要求1-10任一项所述的油浆过滤器中的一部分过滤器;
    (2)控制步骤:使在线压差监测模块监测在线过滤器的压差,使过滤器控制模块控制过滤器切入和切出过滤系统,使吹扫控制模块控制过滤器的反吹扫过程;和
    (3)反吹扫步骤:使用吹扫介质对于切出过滤系统的过滤器进行反吹扫,其中,
    当在线压差监测模块监测到在线过滤器的压差达到设定值I时,通过过滤器控制模块将上述过滤器中的其他部分的过滤器切入过滤系统,进入上述过滤步骤,并将压差达到设定值I的在线过滤器切出过滤系统,所述设定值I在0.01~0.5MPa的范围,
    通过吹扫控制模块用吹扫介质对切出过滤系统的过滤器进行卸渣和反吹扫,
    优选的是,在线过滤器中过滤温度为30~250℃,优选为50~240℃,进一步优选为60~180℃。
  25. 根据权利要求24所述的油浆过滤方法,其中,当在线压差监测模块监测到在线过滤器的压差达到设定值II时,通过过滤器控制模块将过滤器中的其他部分的过滤器切入过滤系统,进入过滤步骤,当在线压差监测模块监测到后切入的在线过滤器的压差达到设定值III时,将压差达到或超过设定值II的在线过滤器切出过滤系统;条件是;设定值III<设定值II<设定值I;所述设定值II和设定值III在0.01~0.5MPa的范围。
  26. 根据权利要求24或25所述的油浆过滤方法,其中,在(1)过滤步骤之前,进一步包括:
    (1′)滤饼层形成步骤:使助滤剂进入至少两个权利要求1-10任一项所述的油浆过滤器中的一部分过滤器,以在过滤器中形成助滤剂滤饼层;
    在过滤步骤中,使油浆进入形成了助滤剂滤饼层的过滤器;
    在线压差监测模块监测到滤饼层形成步骤中的过滤器的压差达到设定值IV时,通过过滤器控制模块将该形成了滤饼层的过滤器切入过滤步骤进行油浆过滤,所述设定值IV在0.01~0.07MPa的范围。
  27. 根据权利要求24-26任一项所述的油浆过滤方法,其中,使用 权利要求14或15所述的多过滤器系统。
  28. 一种油浆过滤方法,其包括:
    一级过滤步骤:使油浆进入一级过滤单元进行过滤得到一级过滤油浆,所述一级过滤单元包括第一过滤系统,所述第一过滤系统包括权利要求11-13任一项所述的油浆过滤单元,所述过滤单元包括至少一个油浆过滤器;和
    使一级过滤油浆进入二级过滤单元和/或三级过滤单元进行过滤;
    所述二级过滤单元包括具有驱动机构的自动反冲洗的过滤装置;
    所述三级过滤单元包括第二过滤系统,所述第二过滤系统包括至少一个过滤器;
    所述二级过滤单元的过滤精度小于一级过滤单元中的过滤器的过滤精度,所述三级过滤单元的过滤精度小于一级过滤单元的过滤精度且小于二级过滤单元的过滤精度。
  29. 根据权利要求28所述的油浆过滤方法,其中,所述一级过滤单元的过滤精度为0.1~25微米,优选为2~15微米,进一步优选为2~10微米;所述二级过滤单元的过滤精度为0.1~7微米,优选为1~5微米;所述三级过滤单元的过滤精度为0.1~1.0微米。
  30. 根据权利要求28或29所述的油浆过滤方法,其中,第一过滤系统中的过滤器的过滤温度为30~250℃,优选为50~240℃,更优选为60~180℃;第一过滤系统中的过滤器的使用压差为0.01~0.5MPa;第二过滤系统中的过滤器中的过滤温度为30~250℃,优选为60~180℃。
  31. 根据权利要求28-30任一项所述的油浆过滤方法,其中,使用权利要求16-19任一项所述的多级过滤系统。
  32. 权利要求1-10任一项所述的油浆过滤器、权利要求11-13任一项所述的油浆过滤单元、权利要求14或15所述的多过滤器系统、权利要求16-19任一项所述的多级过滤系统在过滤包含颗粒物杂质的液体烃中的用途,优选过滤包括催化裂化油浆和/或煤焦油的液体烃。
PCT/CN2020/076016 2019-02-20 2020-02-20 油浆过滤器、包含其的油浆过滤单元以及油浆过滤系统和油浆过滤方法 WO2020169064A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/432,719 US20220152534A1 (en) 2019-02-20 2020-02-20 Oil slurry filter, oil slurry filter unit and oil slurry filter system containing the same, and oil slurry filtering process
SG11202109133RA SG11202109133RA (en) 2019-02-20 2020-02-20 Oil slurry filter, oil slurry filter unit and oil slurry filter system containing the same, and oil slurry filtering process
KR1020217030361A KR20210134678A (ko) 2019-02-20 2020-02-20 오일 슬러리 필터, 오일 슬러리 필터 유닛 및 이를 포함하는 오일 슬러리 필터 시스템 및 오일 슬러리 여과 방법

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201910125364.5A CN111589223A (zh) 2019-02-20 2019-02-20 一种多级油浆过滤系统和油浆过滤方法
CN201910127842.6 2019-02-20
CN201910125079.3A CN111592908B (zh) 2019-02-20 2019-02-20 一种油浆过滤系统和油浆过滤方法
CN201910125079.3 2019-02-20
CN201910127842.6A CN111592909B (zh) 2019-02-20 2019-02-20 油浆过滤系统及其油浆过滤方法
CN201910125364.5 2019-02-20
CN201910132300.8A CN111603845B (zh) 2019-02-22 2019-02-22 一种用于油浆的过滤系统和过滤方法
CN201910132300.8 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020169064A1 true WO2020169064A1 (zh) 2020-08-27

Family

ID=72143924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076016 WO2020169064A1 (zh) 2019-02-20 2020-02-20 油浆过滤器、包含其的油浆过滤单元以及油浆过滤系统和油浆过滤方法

Country Status (5)

Country Link
US (1) US20220152534A1 (zh)
KR (1) KR20210134678A (zh)
SG (1) SG11202109133RA (zh)
TW (1) TW202108751A (zh)
WO (1) WO2020169064A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112604375A (zh) * 2020-12-28 2021-04-06 宜宾丝丽雅股份有限公司 一种浸渍碱液深度清洁的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115253486B (zh) * 2022-08-16 2023-06-13 朗天科技股份有限公司 一种高耐磨性除尘滤料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206034A (en) * 1977-02-17 1980-06-03 Exxon Research & Engineering Co. Wax separation process
GB1599483A (en) * 1977-02-17 1981-10-07 Exxon Research Engineering Co Wax separation process
CN2489853Y (zh) * 2001-07-02 2002-05-08 汪荣丽 一种过滤装置
CN103865571A (zh) * 2012-12-10 2014-06-18 品孚罗特过滤设备(北京)有限公司 催化裂化装置的油浆过滤系统
CN104877708A (zh) * 2015-04-30 2015-09-02 茂名市凯跃特种油剂有限公司 催化裂化油浆脱除灰分及铝、硅元素的方法
CN105087051A (zh) * 2014-05-13 2015-11-25 张雷 一种新型油浆过滤系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1650998A (en) * 1926-09-04 1927-11-29 Hiram T Nones Parachute fabric
US10434445B2 (en) * 2016-02-11 2019-10-08 Willacoochee Industrial Fabrics, Inc. Woven geotextile filtration fabrics including core-sheath spun yarns
US11098453B2 (en) * 2019-05-03 2021-08-24 First Quality Tissue, Llc Absorbent structures with high absorbency and low basis weight

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206034A (en) * 1977-02-17 1980-06-03 Exxon Research & Engineering Co. Wax separation process
GB1599483A (en) * 1977-02-17 1981-10-07 Exxon Research Engineering Co Wax separation process
CN2489853Y (zh) * 2001-07-02 2002-05-08 汪荣丽 一种过滤装置
CN103865571A (zh) * 2012-12-10 2014-06-18 品孚罗特过滤设备(北京)有限公司 催化裂化装置的油浆过滤系统
CN105087051A (zh) * 2014-05-13 2015-11-25 张雷 一种新型油浆过滤系统
CN104877708A (zh) * 2015-04-30 2015-09-02 茂名市凯跃特种油剂有限公司 催化裂化油浆脱除灰分及铝、硅元素的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112604375A (zh) * 2020-12-28 2021-04-06 宜宾丝丽雅股份有限公司 一种浸渍碱液深度清洁的方法

Also Published As

Publication number Publication date
US20220152534A1 (en) 2022-05-19
TW202108751A (zh) 2021-03-01
SG11202109133RA (en) 2021-09-29
KR20210134678A (ko) 2021-11-10

Similar Documents

Publication Publication Date Title
WO2020169064A1 (zh) 油浆过滤器、包含其的油浆过滤单元以及油浆过滤系统和油浆过滤方法
FR2660322A1 (fr) Procede d'hydrotraitement d'un residu petrolier ou d'une huile lourde en vue de les raffiner et de les convertir en fractions plus legeres.
CN114106878B (zh) 一种处理含固原料油的系统、方法及其加氢滤后油的用途
CN111603845B (zh) 一种用于油浆的过滤系统和过滤方法
US20130313196A1 (en) Processes and filters for desalination of water
AU655726B2 (en) Method of removing catalyst
CN104592036B (zh) 一种硝基苯、二硝基苯催化剂回收装置及其回收方法
WO2014154664A1 (de) Öl- und kraftstofffilteranlage
CN111592909B (zh) 油浆过滤系统及其油浆过滤方法
CN114073871B (zh) 一种过滤系统和过滤方法
CN111171857A (zh) 一种催化裂化油浆净化系统及工艺
CN211111877U (zh) 一种适于长周期运行的催化油浆过滤装置
CN114075455B (zh) 一种催化裂化和渣油加氢联合处理系统和方法
CN114106877B (zh) 一种生产低硫船用燃料油的系统和方法
CN111592908B (zh) 一种油浆过滤系统和油浆过滤方法
CN209081814U (zh) 一种催化裂化油浆净化装置
CN111589223A (zh) 一种多级油浆过滤系统和油浆过滤方法
CN102732307A (zh) 石脑油加氢精制方法及除焦罐
CN105727623A (zh) 一种用于油品过滤的两级一体化复合滤芯
CN204246917U (zh) 多层折叠滤芯
CN112708457B (zh) 油浆加氢处理系统及其处理方法
CN110669546A (zh) 一种适于长周期运行的催化油浆过滤装置和方法
CN110734782B (zh) 一种劣质重油的加氢处理方法
CN110627237A (zh) 轻烃裂解工艺水净化装置与方法
CN109207193A (zh) 一种催化裂化油浆净化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217030361

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20759457

Country of ref document: EP

Kind code of ref document: A1