WO2020168916A1 - 终端天线结构及终端 - Google Patents

终端天线结构及终端 Download PDF

Info

Publication number
WO2020168916A1
WO2020168916A1 PCT/CN2020/074374 CN2020074374W WO2020168916A1 WO 2020168916 A1 WO2020168916 A1 WO 2020168916A1 CN 2020074374 W CN2020074374 W CN 2020074374W WO 2020168916 A1 WO2020168916 A1 WO 2020168916A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
radiator
antenna
frequency band
parasitic
Prior art date
Application number
PCT/CN2020/074374
Other languages
English (en)
French (fr)
Inventor
余冬
熊鹏
龚贻文
吴鹏飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020168916A1 publication Critical patent/WO2020168916A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a terminal antenna structure and a terminal.
  • the aperture of the antenna may become smaller, so that the bandwidth covered by the antenna is reduced, and the distance between the multiple antennas arranged in the smaller space is smaller. It may cause the problem of antenna co-frequency isolation, which seriously affects the communication quality.
  • the embodiments of the present application provide a terminal antenna structure and a terminal, which can improve communication quality.
  • a terminal antenna structure in a first aspect, includes: a first radiator for transmitting signals in a first frequency band, wherein at least some frequency bands in the first frequency band are higher than the predetermined frequency. Set the frequency; the second radiator, the second radiator is used to transmit signals in the second frequency band, and the second frequency band and the first frequency band have overlapping frequency bands; the parasitic stub, the parasitic stub is set in the first A radiator and the second radiator are used to reduce the current coupled by the second radiator due to the operation of the first radiator in the coincident frequency band, and the fundamental mode frequency of the parasitic branch is not The frequency of N times higher than the preset frequency and/or the parasitic branch node is higher than the preset frequency, where N is greater than or equal to 2.
  • the parasitic branch is arranged between the first radiator and the second radiator, and the fundamental mode frequency of the parasitic branch or the N-multiplier resonance can be used to improve the co-frequency of the first radiator and the second radiator. Isolation can also broaden the bandwidth of the first radiator, thereby improving the communication quality of the terminal device.
  • the first frequency band transmitted by the first radiator and the second frequency band of the second radiator have overlapping frequency bands.
  • the resonance of the parasitic stubs in the overlapping frequency band can be used to change the current distribution of the first radiator to reduce the second radiator.
  • the current coupled because the first radiator works in the coincident frequency band, thereby increasing the isolation between the first radiator and the second radiator in the coincident frequency band; set the fundamental mode frequency of the parasitic stub to not higher than the preset frequency And/or the N-multiplier frequency of the parasitic stub is set higher than the preset frequency, and the fundamental mode frequency resonance of the parasitic stub and/or the N-multiplied frequency resonance of the parasitic stub can broaden the bandwidth of the first radiator, thereby in the antenna layout space In a limited environment, more antennas can be deployed and communication quality can be improved.
  • the preset frequency may be determined according to the first frequency band actually transmitted by the first radiator, and may be a frequency value between multiple frequency bands in the first frequency band.
  • it further includes: a third radiator, where the third radiator is adjacent to the second radiator and not adjacent to the first radiator, so The second radiator is arranged opposite to the open end of the third radiator; a first switch is arranged on the second radiator; a second switch is arranged on the third radiator.
  • the third radiator is used to transmit low-frequency signals.
  • the first switch and the second switch are set The opening and closing state of, changes the resonance mode of the second radiator, and is used to improve the isolation between the first radiator and the second radiator in the coincident frequency band.
  • the first switch and the second switch are set The switching and switching connection matching states are used to change the resonance mode of the second radiator.
  • the first switch when the first radiator and the second radiator transmit signals of the coincident frequency band, the first switch is set to be off, and the first The second switch is set to closed.
  • the resonance of the second radiator can be changed Mode, so that the second radiator does not resonate in the coincident frequency band, and the same frequency isolation between the first radiator and the second radiator is improved.
  • the length of the parasitic stub is the same or approximately the same as a quarter of the wavelength corresponding to the fundamental mode frequency of the parasitic stub.
  • the length of the parasitic stub is N quarters of the wavelength corresponding to the frequency N times the fundamental mode frequency of the parasitic stub. The same or approximately the same.
  • the length of the parasitic stub is three-quarters of the wavelength corresponding to a frequency that is three times the fundamental mode frequency of the parasitic stub. The same or approximately the same.
  • the length of the parasitic stub is the same as one-half of the wavelength corresponding to the fundamental mode frequency of the parasitic stub Or approximately the same.
  • the length of the parasitic stub is equal to the wavelength corresponding to N times the fundamental mode frequency of the parasitic stub. N-half the same or nearly the same.
  • the method further includes: a first feeding point and a second feeding point that are coupled and fed with the first radiator.
  • the first feeding point is used for feeding at least part of the frequency band higher than a preset frequency in the first frequency band; the second feeding point is used for Feeding the frequency bands in the first frequency band except for at least part of the frequency bands higher than the preset frequency.
  • the first feeding point is used for feeding at least part of the frequency band higher than a preset frequency in the first frequency band; the second feeding point is used for Feeding at least part of the frequency band that is not higher than the preset frequency in the first frequency band.
  • a feed point is further included for feeding all frequency bands in the first frequency band.
  • At least part of the frequency bands higher than the preset frequency in the first frequency band are used for high-frequency communication; Some frequency bands outside the frequency band are used for wifi communication or medium and high frequency bandwidth MHB communication.
  • At least part of the frequency band higher than the preset frequency in the first frequency band is used for high-frequency communication; at least part of the frequency band not higher than the preset frequency in the first frequency band Used for wifi communication or MHB communication with medium and high frequency bandwidth.
  • the first frequency band includes the wifi frequency band and the N77N79 frequency band
  • the second frequency band includes the MHB frequency band.
  • the first frequency band includes the MHB frequency band and the N77N79 frequency band
  • the second frequency band includes the MHB frequency band.
  • the parasitic branch node is linear or includes at least one bent portion.
  • the parasitic branches are L-shaped, L-shaped inwardly folded, L-shaped outwardly folded, or U-shaped.
  • a band-pass filter which is used to pass other frequency bands in the first frequency band except at least part of the frequency band higher than the preset frequency, which is equivalent to filtering out the first frequency band. At least part of the frequency bands higher than the preset frequency.
  • a band stop filter for filtering out other frequency bands in the first frequency band except for the at least part of the frequency band higher than the preset frequency, which is equivalent to passing At least part of the frequency bands higher than the preset frequency in the first frequency band.
  • the dual-fed antenna structure of the common body can simultaneously realize the coverage of multiple sub-bands of the first frequency band.
  • the first frequency band includes the wifi frequency band and the N77N79 frequency band
  • the technical solution of this application can simultaneously achieve coverage of the wifi frequency band and the N77N79 frequency band.
  • the two antennas are isolated by a series band pass filter and a parallel band pass filter.
  • a terminal having the terminal antenna structure of the first aspect or any one of the possible implementation manners of the first aspect.
  • Fig. 1 is a schematic structural diagram of a terminal antenna arrangement according to an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a terminal antenna structure according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a terminal antenna structure according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a terminal antenna structure according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram of dual-port matching of the antenna formed by the first radiator in an embodiment of the present application.
  • Fig. 6 is a schematic diagram of performance simulation of an antenna according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of performance simulation of an antenna according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of antenna current distribution according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of performance simulation of an antenna according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of performance simulation of an antenna according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of performance simulation of an antenna according to another embodiment of the present application.
  • FIG. 12 is a schematic diagram of performance simulation of an antenna according to another embodiment of the present application.
  • FIG. 13 is a schematic diagram of performance simulation of an antenna according to another embodiment of the present application.
  • FIG. 14 is a schematic diagram of performance simulation of an antenna according to another embodiment of the present application.
  • WIFI Wireless fidelity
  • Wi-Fi wireless fidelity
  • WiFi wireless fidelity
  • Wiifi Wireless fidelity
  • Terminal devices that can support wifi connection need to set up a wifi antenna for receiving and sending signals.
  • the working frequency band of wifi antenna includes 2.4GHz ⁇ 2.5GHz.
  • the wifi running in the 5GHz frequency band is called wifi 5G, sometimes also called 5G wifi, which adopts the 802.11ac protocol standard.
  • N77, N78 and N79 are currently designated 5G new radio (NR) frequency bands by the 3rd generation partner project (3GPP).
  • the working frequency band of the N77 antenna includes 3.3GHz ⁇ 4.2GHz, N78
  • the working frequency band of the antenna includes 3.3 GHz to 4.8 GHz
  • the working frequency band of the N79 antenna includes 4.4 GHz to 5.0 GHz.
  • the N77N79 frequency band involved in the embodiment of the present application includes the N77 frequency band, the N78 frequency band, and the N79 frequency band.
  • Middle high-band (MHB) antennas and low-band (LB) antennas are used for terminals in the second generation (2G), third generation (3G), and fourth generation , 4G) and other communication network antennas for wireless communication.
  • the working frequency band of the MHB antenna includes 1.7GHz ⁇ 2.7GHz
  • the working frequency band of the LB antenna includes 690MHz ⁇ 960MHz.
  • Co-frequency isolation the main transmission path of electromagnetic interference between radio systems is the coupling between antennas. Isolation is often used to quantitatively characterize the strength of this coupling. In a system, in order to ensure the normal operation of each antenna, the isolation of the antenna must meet certain requirements, otherwise the interference between the antennas will suppress the useful signal, so that the system cannot work normally.
  • the transmission power of the transmitting antenna is The ratio of the power received by the other antenna is defined as the antenna isolation.
  • Co-frequency isolation can be understood as the ratio of the transmitting power of the transmitting antenna to the power received by the other antenna when the transmitting antenna and another receiving antenna work at the same operating frequency. Generally speaking, the greater the co-frequency isolation, the smaller the interference between antennas.
  • a bandpass filter is a device that allows waves of a specific frequency band to pass while shielding other frequency bands, or is a device that can pass frequency components in a certain frequency range but attenuate frequency components in other ranges to the extreme Low-level filter.
  • Band stop filters are filters that can pass most frequency components, but attenuate certain ranges of frequency components to an extremely low level, as opposed to the concept of band pass filters.
  • the notch filter is a special band-stop filter, and its stop-band range is extremely small.
  • a wavetrap is a filtering effect that can quickly attenuate the input signal at a certain frequency point to block the passage of this frequency signal.
  • the notch filter is a kind of band stop filter, the stop band is very narrow, that is, the point stop filter.
  • Scatter parameter also called S parameter
  • S parameter is an important parameter in microwave transmission.
  • the two-port network has four S parameters.
  • Sij represents the energy injected from port j and the energy measured at port i.
  • S11 represents the reflection coefficient of port 1 when port 2 is matched
  • S22 represents port 1 When matching, the reflection coefficient of port 2
  • S12 represents the reverse transmission coefficient of port 2 to port 1 when port 1 is matched
  • S21 represents the forward transmission coefficient of port 1 to port 2 when port 2 is matched.
  • a single transmission line can be equivalent to a two-port network, one end inputs the signal, the other end outputs the signal, if port 1 (port1) is used as the signal input port, and port 2 (port2) is the signal output port, then S11 means the output
  • the reflection coefficient of the input end in the case of end termination is usually called return loss (return loss), that is, how much energy is reflected back to the source end (port1).
  • S11 is generally expressed in decibels, between 0dB and negative infinity The greater the absolute value, the better the matching, 0dB means total reflection, and negative infinity means full-weight matching;
  • S21 means the forward transmission gain (coefficient) when the output end is terminated, usually called insertion loss (inset loss), that is, how much energy is transmitted to the destination (port2). The larger the value of S21, the better. The ideal value is 1, which is 0dB. The larger the S21, the higher the transmission efficiency; S22 means that the input terminal is matched The reflection coefficient of the output end under the condition; S12 represents the reverse transmission gain (coefficient) under the condition that the input end is terminated and matched.
  • the resonance of the antenna is determined by the structure of the antenna and is an inherent characteristic.
  • the frequency band range in which electrical performance (such as return loss) can meet the requirements of use near the resonance frequency of the antenna can be called the bandwidth of the antenna.
  • the radiation efficiency of an antenna is used to measure the effectiveness of the antenna in converting high-frequency current or guided wave energy into radio wave energy. It is the ratio of the total power radiated by the antenna to the net power obtained by the antenna from the feeder. The radiation efficiency of the antenna is generally not considered. Wave loss.
  • the working frequency range (or frequency bandwidth) of an antenna refers to whether it is a transmitting antenna or a receiving antenna, it always works within a certain frequency range (bandwidth).
  • Fig. 1 shows a schematic structural diagram of a terminal antenna arrangement according to an embodiment of the present application.
  • the area 10 is used to arrange the terminal antenna.
  • Other components are arranged in and around the area 10.
  • a side button can be set at the position of the dashed frame 11 to perform key operations on the terminal device;
  • a battery can be set at the position of the dashed frame 12 to supply power to the terminal device so that various components inside the terminal It can work normally;
  • a shielding cover can be set at the position of the dashed frame 13 to shield external interference or prevent the antenna from causing interference to the outside; some components can be set at the position of the dashed frame 14 when the height of the components is higher than that of the antenna At this time, higher components will block the antenna, thereby affecting the antenna’s radiation and receiving performance;
  • the position of the solid line frame 15 and the dotted frame 16 can be used for antenna design and layout,
  • the spectrum resources used in wireless communication are increasing. For example, in 5G mobile communication technology, multiple new frequency bands can be used for wireless communication.
  • the number of antennas used by the terminal device also needs to be increased simultaneously, or the terminal device needs to cover a wider frequency band and more antennas.
  • the terminal 100 of the embodiment of the present application may transmit and receive signals through an antenna.
  • the terminal can also be called terminal equipment, or user equipment (UE), access terminal, terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal , Wireless network equipment, user agent or user device.
  • UE user equipment
  • the terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smart phone, a wireless local loop (wireless local loop, WLL) station, and a personal digital processing (personal digital) assistant, PDA), handheld devices with wireless communication functions, computing devices or other devices connected to wireless modems, in-vehicle devices, wearable devices, drone devices or the Internet of Things, terminals in the Internet of Vehicles, and any of the future networks
  • PLMN public land mobile network
  • the embodiment of the application does not limit this.
  • the terminal devices with the above-mentioned terminal antenna structures are collectively referred to as terminals, and in some embodiments, they may also be referred to as terminal devices.
  • the embodiment of the present application provides a terminal antenna structure, which can arrange more antennas in a limited space environment of the terminal device, solve the problem of insufficient antenna efficiency bandwidth, and improve the antenna's co-frequency isolation, thereby improving communication quality .
  • Fig. 2 shows a schematic diagram of a terminal antenna structure according to an embodiment of the present application. The following describes the terminal antenna structure in detail with reference to FIG. 2.
  • the terminal antenna structure arranged in the area 200 includes a first radiator 210, a second radiator 220 and a parasitic branch 230.
  • the first radiator 210 is used to transmit a signal in a first frequency band, wherein at least part of the frequency band in the first frequency band is higher than a preset frequency.
  • At least part of the frequency band in the first frequency band is higher than the preset frequency.
  • the first radiator can transmit signals in two or more sub-bands. For example, if two antennas share the first radiator, one of the antennas will work
  • the frequency band can be higher than the preset frequency.
  • the preset frequency mentioned here may be the highest frequency in the first frequency band except for the at least part of the frequency band, or the lowest frequency of at least part of the frequency band in the first frequency band, or it may be another one that meets the antenna structure design requirements
  • the preset frequency is 3.3GHz, 5GHz, etc., so that at least part of the frequency bands in the first frequency band higher than the preset frequency (for example, 3.3GHz, 5GHz) can be called high-frequency bands, which can be used for high-frequency communication, such as The working frequency band of N77, N78 or N79 antenna, or the working frequency band of wifi 5G, etc.
  • the preset frequency may also be a preset frequency band range.
  • the preset frequency may be determined according to the first frequency band actually transmitted by the first radiator.
  • the preset frequency is included in the first frequency band, or the first radiator may transmit a signal of the preset frequency; the preset frequency may also be The frequency value between the sub-frequency bands in the first frequency band, for example, the first frequency band includes a high frequency frequency band and a low frequency frequency band, and the preset frequency may be a certain frequency value between the high frequency frequency band and the low frequency frequency band.
  • the second radiator 220 is used to transmit signals in a second frequency band, where the second frequency band and the first frequency band have overlapping frequency bands.
  • the first frequency band and the second frequency band have overlapping frequency bands. It can be understood that the first radiator 210 and the second radiator 220 have the same frequency isolation problem. In other words, the working frequency band of the antenna formed by the first radiator 210 and the working frequency band of the antenna formed by the second radiator 220 overlap, which may cause the antenna formed by the first radiator 210 and the second radiator 220 to form The same frequency isolation problem of the antenna.
  • the first frequency band and the second frequency band have overlapping frequency bands.
  • the first frequency band may partially overlap the second frequency band.
  • the first frequency band includes the second frequency band, or the second frequency band includes the first frequency band, or the first frequency band.
  • Part of the frequency band overlaps with part of the second frequency band; or the first frequency band and the second frequency band are completely overlapped, that is, the first frequency band is the same as the second frequency band.
  • the first frequency band may include the working frequency band of a wifi antenna (such as 2.4 GHz), and the second frequency band may include the working frequency band of a medium and high frequency antenna (such as 1.7 GHz ⁇ 2.7 GHz); or both the first frequency band and the second frequency band may include medium and high frequencies.
  • the working frequency band of the frequency antenna such as 1.7GHz ⁇ 2.7GHz
  • the first frequency band and the second frequency band both have overlapping frequency bands.
  • the same frequency isolation between the first radiator 210 and the second radiator 220 may be reduced, so that the first radiator 210 and the second radiator 220 The interference between the two radiators 220 increases, which affects the communication quality.
  • the parasitic stub 230 is disposed between the first radiator 210 and the second radiator 220.
  • the parasitic stub 230 will resonate in the overlapping frequency band of the first frequency band and the second frequency band, which can reduce the second radiator 220 due to the first radiation.
  • the current coupled by the body 210 working in the coincident frequency band improves the isolation between the first radiator 210 and the second radiator 220 in the coincident frequency band.
  • the fundamental mode frequency of the parasitic stub 230 is not higher than the preset frequency and/or the N multiplication frequency of the parasitic stub is higher than the preset frequency, where N is greater than or equal to 2.
  • the parasitic branch 230 is disposed between the first radiator 210 and the second radiator 22.
  • the first radiator 210 is disposed above the parasitic branch 230
  • the second radiator 220 is disposed below the parasitic branch 230, mainly It is used to change the current distribution of the first radiator 210 when operating in the coincident frequency band.
  • the parasitic branch 230 can attract the current on the first radiator 210 to the parasitic branch 230 itself, thereby reducing the ports of the second radiator 220
  • the current coupled due to the operation of the first radiator 210 in the coincident frequency band further achieves the purpose of improving the same frequency isolation between the first radiator 210 and the second radiator 220.
  • the fundamental mode frequency of the parasitic stub 230 is not higher than the preset frequency, which can be understood as the design frequency of the fundamental mode frequency of the parasitic stub 230 is equal to or lower than the preset frequency; the N multiplication frequency of the parasitic stub is higher than the preset frequency, which can be understood as The N-multiplier frequency of the parasitic stub is included in at least part of the frequency band higher than the preset frequency in the first frequency band, and is equivalent to at least part of the N-multiplied frequency of the parasitic stub 230 in the first frequency band higher than the preset frequency In the frequency band, in this way, the parasitic stub 230 can resonate at the N-fold frequency, thereby supplementing the resonance of the antenna whose working frequency band is higher than the preset frequency, and broadening the bandwidth.
  • the parasitic stub fundamental mode frequency resonance and N-doubled frequency resonance can play a role in broadening the bandwidth of the first radiator.
  • the parasitic stub 230 may be grounded at one end, for example, the start end 231 of the parasitic stub 230 may be grounded; the parasitic stub 230 may also be grounded at both ends, for example, the start end 231 and the open end 232 of the parasitic stub 230 are both grounded; The branch 230 may not be grounded.
  • the length of the parasitic stub 230 is the same or approximately the same as a quarter of the wavelength corresponding to the fundamental mode frequency of the parasitic stub 230, and/or the length of the parasitic stub 230 The length is the same or approximately the same as N quarters of the wavelength corresponding to the frequency N times the fundamental mode frequency of the parasitic stub 230.
  • the length of the parasitic stub 230 may be the same or approximately the same as three-quarters of the wavelength corresponding to the frequency of three times the fundamental mode frequency of the parasitic stub 230, or the length of the parasitic stub 230 may be Two-quarters (ie, one-half) of the wavelength corresponding to twice the frequency of the fundamental mode frequency of the parasitic stub 230 is the same or approximately the same.
  • the N multiplier of the parasitic branch can also be 4 multipliers, 5 multipliers or higher multipliers.
  • the length of the parasitic stub 230 is the same or approximately the same as one-half of the wavelength corresponding to the fundamental mode frequency of the parasitic stub 230, and/ Or the length of the parasitic stub 230 is the same or approximately the same as N-half of the wavelength corresponding to the frequency N times the fundamental mode frequency of the parasitic stub 230.
  • both ends of the parasitic stub 230 are grounded, and the length of the parasitic stub 230 can be the same or approximately the same as three-half of the wavelength corresponding to the frequency of the fundamental mode frequency of the parasitic stub 230, or the length of the parasitic stub 230 It may be the same or approximately the same as two-half of the wavelength corresponding to the frequency twice the fundamental mode frequency of the parasitic stub 230 (that is, 1).
  • the N multiplier of the parasitic branch can also be 4 multipliers, 5 multipliers or higher multipliers.
  • the length of the parasitic stub is determined according to the fundamental mode frequency of the parasitic stub or the frequency multiplication of the parasitic stub, which can be determined according to the design requirements, and other requirements may also be considered.
  • the shape of the parasitic branch 230 may be a linear type or a bent type having a bent portion. Wherein, when the parasitic branch 230 has a bending part, the bending direction can be upward, downward, or bend toward the starting end.
  • the parasitic branch 230 when it has a bent portion, it may have one or more bent portions.
  • the shape of the parasitic branch 230 may be L-shaped, L-shaped inward fold, L-shaped outward fold, or U-shaped, which is not specifically limited in the embodiment of the present application.
  • the shape of the parasitic stub 230 may be determined according to the length of the parasitic stub and the size of the antenna arrangement space.
  • the terminal antenna structure further includes a first feeding point 211 and a second feeding point 212 that are coupled to the first radiator 210 for feeding.
  • the first feeding point 211 may be used to feed at least part of the frequency bands in the first frequency band higher than the preset frequency
  • the second feeding point 212 may be used to feed the frequency bands in the first frequency band except those higher than the preset frequency. At least part of the frequency is fed to other frequency bands outside of the frequency band.
  • the second feeding point 212 can feed the overlapping frequency band of the first frequency band and the second frequency band.
  • the working frequency band of antenna A is higher than the preset frequency
  • the working frequency band of antenna B is lower than the preset frequency
  • the working frequency band of antenna B is the same as that of the second radiator 220 If there is overlap, the first feeding point 211 can feed antenna A, and the second feeding point 212 can feed antenna B.
  • first feeding point 211 and the second feeding point 212 shown in FIG. 2 are only exemplary, and the positions of the two feeding points may also be in other positions of the first radiator 210. , The embodiments of this application do not make specific limitations.
  • the terminal antenna structure may also include only one feeding point, which is equivalent to using one feeding point to feed all frequency bands of the first frequency band. For example, if two antennas share the first radiator 210, the one feeding point can feed the two antennas.
  • the first radiator 210 may form two antennas through the first feeding point 211 and the second feeding point 212, such as antenna A and antenna B, where the working frequency band of antenna A is higher than the preset frequency, which is equivalent to At least part of the frequency band higher than the preset frequency in the first frequency band, and the working frequency band of the other antenna B is equivalent to the frequency band in the first frequency band except for at least part of the frequency band higher than the preset frequency.
  • the working frequency band of the antenna formed by the two radiators has coincident frequency bands, and the antenna formed by the antenna B and the second radiator may have the problem of the same frequency isolation, as if the frequency isolation is reduced.
  • the working frequency band of the first radiator can also be understood as the working frequency band of the antenna formed by the first radiator, and the working frequency band of the second radiator can also be understood as being formed by the second radiator.
  • the working frequency band of the antenna can also be understood as the working frequency band of the antenna formed by the first radiator, and the working frequency band of the second radiator can also be understood as being formed by the second radiator.
  • the frequency bands higher than the preset frequency in the first frequency band may be used for high-frequency communication.
  • the first frequency band may include N77, N78, N79, or 5G frequency bands.
  • other frequency bands in the first frequency band except for at least part of the frequency band higher than the preset frequency may be used for wifi communication or medium and high frequency bandwidth MHB communication.
  • the range of the sub-bands in the first frequency band may be overlapped or completely staggered.
  • the terminal antenna structure may further include a band pass filter and/or a band stop filter for port matching of the two antennas.
  • the band-pass filter may be used to pass other frequency bands in the first frequency band other than at least part of the frequency band higher than the preset frequency, which is equivalent to filtering out at least part of the frequency band higher than the preset frequency in the first frequency band,
  • the working frequency band of antenna A in the above example may be used to pass other frequency bands in the first frequency band other than at least part of the frequency band higher than the preset frequency, which is equivalent to filtering out at least part of the frequency band higher than the preset frequency in the first frequency band.
  • the band stop filter may be used to filter out other frequency bands in the first frequency band except for the at least part of the frequency band higher than the preset frequency, which is equivalent to filtering out the working frequency band of the antenna B in the foregoing example.
  • a ground point of the first radiator may also be provided on the first radiator 210, and the embodiment of the present application does not specifically limit the position of the ground point of the first radiator.
  • the ground point and the feeding point of the second radiator may also be provided on the second radiator 220, and the location of the ground point and the feeding point of the second radiator is not specifically limited in the embodiment of the present application.
  • the shape of the first radiator 210 may be linear, or have one or more branches on the main body, or grooves on the branches, which are not specifically limited in the embodiment of the present application.
  • the shape of the second radiator 220 may be linear, or have one or more branches on the main body, or may be grooved on the branches, which is not specifically limited in the embodiment of the present application.
  • the terminal antenna structure of the embodiment of the present application in detail with reference to specific non-limiting examples.
  • the embodiments of the present application are described by taking the design of a wifi antenna, an N77N79 antenna, and an MHB antenna in a terminal device as an example, where the N77N79 antenna and the wifi antenna are arranged above the MHB antenna.
  • the wifi antenna and the N77N79 antenna share the first radiator.
  • the working frequency band of the N77N79 antenna is higher than the preset frequency, and the working frequency band of the wifi antenna overlaps with the working frequency band of the MHB antenna, that is, the first frequency band includes the wifi antenna Working frequency band and the working frequency band of N77N79 antenna.
  • the preset frequency may be the highest frequency of the wifi frequency band or the lowest frequency of the N77N79 frequency band , Such as 2.5GHz or 3.3GHz, the frequency band greater than 2.5GHz or 3.3GHz is the N77N79 frequency band; the preset frequency can also be a frequency between the wifi frequency band and the N77N79 frequency band, such as 3GHz or 3.2GHz, greater than 3GHz or 3.2GHz.
  • the frequency band is the N77N79 frequency band; the preset frequency can also be a frequency band range, for example, 2.7-3.2 GHz, and the frequency band greater than 2.7-3.2 GHz is the N77N79 frequency band.
  • the working frequency band of the wifi antenna overlaps with the working frequency band of the MHB antenna, in other words, the working frequency range of the MHB includes the working frequency band of the wifi antenna. Therefore, if the distance between the wifi antenna and the MHB antenna is close, it will cause the wifi antenna and the MHB antenna The same frequency isolation is reduced, which increases the interference between the wifi antenna and the MHB antenna.
  • the embodiment of the application provides a terminal antenna structure, which can improve the co-frequency isolation of the wifi antenna and the MHB antenna, and can broaden the bandwidth of the N77N79 antenna.
  • the first radiator 310 may be disposed in the upper area of the area 300
  • the second radiator 320 may be disposed in the lower area of the area 300
  • the parasitic branch 330 may be disposed in the first radiator 310 and Between the second radiator 320.
  • the first radiator can form a wifi antenna and an N77N79 antenna, which means that the first radiator can be used to transmit signals in the working frequency band of the wifi antenna and signals in the working frequency band of the N77N79 antenna
  • the second radiator can form an MHB antenna, which means The second radiator can be used to transmit signals in the working frequency band of the MHB antenna.
  • the first radiator 310, the second radiator 320, and the parasitic stub 330 may all be arranged in the upper area of the area 300 or all in the lower area of the area 300 to ensure that the parasitic stub 330 is located between the first radiator 310 and Between the second radiators 320 is sufficient.
  • the first radiator 310 is coupled to the first feeding point 311 at position B to feed the N77N79 antenna; the first radiator 310 is coupled to the second feeding point 312 at position Z to feed the wifi antenna Electricity.
  • the position where the first radiator 310 couples with the two feeding points may also be at other positions of the first radiator 310, which is not specifically limited in the embodiment of the present application, and the position B and the position Z are only exemplary descriptions.
  • the first radiator 310 also includes a ground point A.
  • the second radiator 320 can be arranged longitudinally, and a third feeding point 321 and a ground point 322 of the second radiator can be provided on the second radiator 320.
  • the ground point 322 is located at the upper end of the second radiator 320.
  • the three feeding points 321 are arranged below the grounding point.
  • the positions of the third feeding point 321 and the grounding point 322 of the second radiating plate can also be other positions on the second radiator 320, which are not done in this embodiment of the application. Specific restrictions.
  • the parasitic stub 330 is arranged between the first radiator 310 and the second radiator 320.
  • a ground point 331 of the parasitic stub is provided at one end F of the parasitic stub 330.
  • the other end 332 of the parasitic stub 330 may be an open end or Ground the other end.
  • the shape of the parasitic branch 330 may be straight or curved.
  • the parasitic branch 330 may have one or more bending parts.
  • the parasitic branch 330 may be L-shaped, L-shaped inward fold, L-shaped outward fold, or U-shaped, which is not specifically limited in the embodiment of the present application.
  • the parasitic stub 330 takes an L-shaped inward fold as an example for illustration.
  • FIG. 3 shows an exemplary first radiator.
  • the first radiator 310 may include a plurality of branches, and the first radiator 310 can form a broadband coverage by constructing multiple compatible modes such as a magnetic pole and an electrode in a manner of slotting the branches.
  • the first radiator 310 in the figure may include BK branches, ED branches, LC branches, etc.
  • the first radiator 310 can also be described in the form of other branches.
  • the letters AN are marked on the figure, and the objects to be described can be It is expressed in letters and will not be listed here.
  • the second radiator 320 can include HI branches, and the parasitic branches 330 can include FG branches. Similarly, the second radiator 320 and the parasitic branches 330 can also be described in the form of other branches. The letters AN are marked on the figure. The described objects are expressed in letters and will not be listed here.
  • the branch FG or the branch GF can also be used to represent the parasitic branch 330
  • the branch HI can be used to represent the second radiator 320
  • a part of the second radiator 320 can be described as the branch HJ, the branch HN, etc., which are different here. Enumerate.
  • the first radiator 310 constructs multiple compatible modes, such as magnetic poles and electrodes, through branch slotting, so as to form broadband coverage.
  • the quarter mode of the AKC part is the electrode, which can cover the wifi frequency band; the DLC part
  • the slot mode is a magnetic pole, the three-quarter pattern electrode of the ADKC part, the three-quarter pattern electrode of the FG part, and the quarter pattern electrode of the BM part.
  • the above four parts can cover the N77N79 frequency band.
  • the parasitic stub 330 can be considered as a part of the wifi antenna, or as a part of the N77N79 antenna.
  • a parasitic stub 330 is provided between the first radiator 310 and the second radiator 320, and the parasitic stub 330 can be used as a trap to improve the co-frequency isolation of the wifi and MHB antenna.
  • the parasitic branch 330 when the parasitic branch 330 is arranged between the first radiator 310 and the second radiator 320, resonance can be generated in the overlapping frequency band of the wifi frequency band and the MHB frequency band, and the first radiator 310 can be attracted to the working frequency band of the wifi
  • the current on the lower board changes the current distribution on the first radiator 310, so that the second radiator 320 is coupled to the current due to the first radiator 310 working in the coincident frequency band (wifi frequency band in the embodiment of the application). Reduce, thereby improving the same frequency isolation of the wifi antenna and the MHB antenna.
  • the working frequency band of the MHB antenna includes the working frequency band of the wifi antenna, so the overlapping frequency band of the first radiator 310 and the second radiator 320 is the wifi frequency band.
  • the parasitic stub 330 can also be used as a part of the N77N79 antenna, and can be used as a resonance supplement of the N77N79up antenna to broaden the bandwidth.
  • N77N79 represents the antenna before the parasitic stub 330 expands the bandwidth
  • N77N79up represents the antenna after the parasitic stub 330 expands the bandwidth
  • the N77N79up antenna The bandwidth is wider than that of the N77N79 antenna.
  • the frequency multiplier of the parasitic stub 330 can be the operating frequency of the N77N79 antenna, or the length of the parasitic stub 330 is set to be the same as a quarter of the wavelength corresponding to the fundamental mode frequency of the parasitic stub 330 Or approximately the same, or the same or approximately the same as three-quarters of the wavelength corresponding to a frequency three times the fundamental mode frequency of the parasitic stub 330.
  • the frequency multiplication of the parasitic stub 330 may be 3 times or 2 times the frequency.
  • the frequency of 2 times of the parasitic stub 330 is 3 GHz
  • the frequency of the parasitic stub 330 is 3 times. It is 4.5GHz.
  • the frequency multiplication of the parasitic stub 330 may also be 4 times, 6 times or higher.
  • the length of the parasitic stub 330 can also be set to be the same or approximately the same as one-half of the wavelength corresponding to the frequency twice the fundamental mode frequency of the parasitic stub 330.
  • the parasitic stub 330 can resonate at the fundamental mode frequency or the doubled frequency. In the embodiment of the present application, the parasitic stub 330 can resonate at the doubled frequency, which is equivalent to broadening the bandwidth of the N77N79 antenna.
  • the parasitic stub arranged between the first radiator and the second radiator can improve the co-frequency isolation of the wifi antenna and the MHB antenna by using the fundamental mode frequency of the parasitic stub.
  • the frequency multiplication of the parasitic branch can broaden the bandwidth of the N77N79 antenna.
  • the radiation performance of the parasitic stub itself is poor. If the fundamental mode frequency of the parasitic stub is designed to be the working frequency of the wifi antenna at 2.4 GHz, the parasitic stub will affect the wifi antenna at 2.4 GHz. The operating frequency has a negative impact, so the fundamental mode frequency of the parasitic stub can be designed to be 1.5GHz.
  • the parasitic stub resonates at the fundamental mode frequency to improve the isolation between the wifi antenna and the MHB antenna at the same frequency.
  • the parasitic stub resonates at 3 times the frequency to expand The bandwidth of the N77N79 antenna.
  • the fundamental mode frequency of the parasitic stub can be designed to be the same frequency operating frequency of the antenna formed by the first radiator and the antenna formed by the second radiator
  • the fundamental mode frequency of the parasitic stub can also be designed as the working frequency of wifi 2.4GHz, so that the parasitic stub resonates at the 2 times frequency and can also broaden the bandwidth of the N77N79 antenna.
  • the performance analysis of the parasitic branch 330 for improving the same-frequency isolation of the wifi antenna and the MHB antenna and broadening the bandwidth of the N77N79 antenna will be described in conjunction with FIGS. 6 to 14, and will not be described in detail here.
  • the wifi antenna and the N77N79 antenna share a radiator, which can simultaneously achieve coverage of the wifi and N77N79 frequency bands.
  • the signal flow is shown in Figure 5 (a) (b). Since the wifi frequency band is staggered with the N77N79 frequency band, the two frequency bands can be isolated by using a band pass filter and a band stop filter.
  • the radio frequency energy N77N79 frequency band signal is input into the first radiator 310 from the first feeding point 311 through a band stop filter, and then transmitted; when receiving a signal, the signal is received by the first radiator 310 and then received
  • the received wifi frequency band and N77N79 frequency band signals are input by the first radiator 310 to the band stop filter connected in series with the first radiator and the radio frequency port.
  • the band stop filter filters the wifi frequency band
  • the N77N79 frequency band signals are input to the N77N79 At the RF port of the antenna, the N77N79 frequency band can be transmitted and received.
  • the radio frequency energy wifi band signal is input from the second feeding point 312 into the first radiator 310 and emitted; when receiving a signal, after the signal is received by the first radiator 310, the received wifi and N77N79 Among the signals in the frequency band, the signals in the N77N79 frequency band are led into the underground by the band-pass filter, pass through the wifi frequency band, and input to the radio frequency port of the wifi antenna, so that the wifi frequency band can be transmitted and received.
  • the above-mentioned band-pass filter and band-stop filter may also be constructed with lumped devices, or other filter components.
  • FIG. 4 shows a schematic structural diagram of a terminal antenna structure according to another embodiment of the present application.
  • the arrangement positions of the first radiator 310, the second radiator 320, and the parasitic stubs can adopt the same structure in the terminal antenna structure shown in FIG. 3, and the specific description can refer to the related description. For brevity, I won't repeat them here.
  • a third radiator 340 may also be provided in the area 400. The difference between the third radiator 340 and the second radiator 320 will be described in detail below.
  • the letters A-R are marked in the figure, which can be expressed in letter form according to the object to be described.
  • the third radiator 340 is disposed below the second radiator 320 and can form an LB antenna, which is equivalent to that the antenna designed in the terminal also includes the LB antenna.
  • the third radiator 340 may be arranged longitudinally, and a fourth feeding point 341 and a ground point 342 of the third radiator 340 may be provided on the third radiator 340.
  • the grounding point 342 is located at the lower end of the third radiator 340, and the fourth feeding point 341 is arranged above the grounding point.
  • the positions of the fourth feeding point 341 and the grounding point 342 of the third radiator can also be It is another position on the third radiator 340, which is not specifically limited in the embodiment of the present application.
  • the open end 324 of the second radiator 320 is opposite to the open end 344 of the third radiator 340.
  • a first switch 323 is provided on the second radiator 320, which can also be represented by SW1.
  • the first switch 323 can be provided under the ground point 322 and the third feeding point 321 of the second radiator, or can be provided at the second radiator.
  • a second switch 343 is provided on the third radiator, which can also be represented by SW2.
  • the second switch 343 can be provided above the ground point 342 and the fourth feeding point 341 of the third radiator, or can be provided on the third radiator. Between the ground point 342 of the radiator and the fourth feeding point 341.
  • first switch 323 described in the embodiment of the present application may be disposed below the ground point 322 and the third feeding point 321 of the second radiator, and it is only an exemplary description of the listed terminal antenna structure.
  • the relative positions of the first switch 323 and other components may also be other descriptions, which are not specifically limited in the embodiments of the present application.
  • the relative position of the second switch 343 is only an exemplary description, and does not impose any limitation on the embodiment of the present application.
  • the same frequency isolation of the wifi antenna and the MHB antenna can be improved.
  • the first switch 323 can be turned off to lower the fundamental mode resonance of the MHB antenna, so that the MHB antenna at 2.4 GHz (the first The current of the second radiator is reduced, and the second switch 343 is closed at the same time, and the low-frequency stub on the LB antenna (third radiator) is reused as a trap to improve the same frequency isolation of the wifi antenna and the MHB antenna.
  • turning off the first switch 323 can reduce the fundamental mode resonance frequency of the MHB antenna (such as the HI stub) so that it does not occur at the 2.4 GHz frequency. Resonance is equivalent to destroying the resonance mode of the MHB antenna at 2.4 GHz; at the same time, closing the second switch 343 can reuse the low frequency stub (for example, the OQ stub) to resonate at the 2.4 GHz frequency.
  • the fundamental mode resonance frequency of the MHB antenna such as the HI stub
  • the multiplexing low-frequency stub described here can be understood as the low-frequency stub can resonate at low frequencies and also resonate at 2.4GHz frequency, which is equivalent to transferring the resonance mode of the MHB antenna at 2.4GHz to the LB antenna on.
  • the way of setting switches on the second radiator and the third radiator can be used alone to improve the same frequency isolation between the wifi antenna and the MHB antenna, that is, in some embodiments, the terminal antenna structure can be It only includes setting switches on the second radiator and the third radiator, excluding parasitic branches.
  • SW1 is set to the off state, and it can also be replaced with a 2.4GHz band-stop filter or other filter components built by a lumped device.
  • the first frequency band where the first radiator works includes the wifi frequency band and the N77N79 frequency band
  • the second frequency band where the second radiator works includes the MHB frequency band. It should be understood that the embodiments of the present application are not limited thereto.
  • the first frequency band in the embodiment of the present application may include the MHB frequency band or part of the MHB frequency band and the N77N79 frequency band, and the second frequency band includes the MHB frequency band; or the first frequency band includes the wifi frequency band (or the MHB frequency band or the MHB frequency band in the The second frequency band includes other frequency bands that overlap with the wifi frequency band (or part of the MHB frequency band or part of the MHB frequency band).
  • the wifi antenna and the N77N79 antenna share the first radiator, which can simultaneously achieve coverage of the wifi and N77N79 frequency bands.
  • two feeding points are used to feed the wifi antenna and the N77N79 antenna respectively.
  • Figure 5 shows a schematic diagram of dual-port matching of the wifi antenna and the N77N79 antenna sharing the first radiator.
  • the first radiator 530, the band stop filter 510, and the radio frequency port 540 are connected in series, and the N77N79 frequency band can be output at the radio frequency port 540.
  • the band stop filter 510 here can prevent the wifi frequency band from passing through.
  • the radio frequency energy N77N79 frequency band signal when transmitting a signal, is input into the first radiator 310 from the first feeding point 311 through a band-stop filter, and then emitted; when receiving a signal, after the signal is received by the first radiator 310, The received signals in the wifi frequency band and the N77N79 frequency band are input by the first radiator 310 to the band stop filter connected in series with the first radiator and the radio frequency port.
  • the band stop filter filters the wifi frequency band and then the signal in the N77N79 frequency band is input to At the radio frequency port of the N77N79 antenna, the N77N79 frequency band can be transmitted and received.
  • the first radiator 530, the band pass filter 520 and the radio frequency port 550 are connected in parallel, and the wifi frequency band can be output at the radio frequency port.
  • the bandpass filter 520 here leads the energy of the N77N79 frequency band into the underground, and the wifi frequency band can pass.
  • the radio frequency energy wifi frequency band signal when transmitting a signal, is input into the first radiator 310 from the second feeding point 312 and transmitted; when receiving the signal, after the signal is received by the first radiator 310, the received wifi and Among the signals in the N77N79 frequency band, the signals in the N77N79 frequency band are led into the underground by a band-pass filter, pass through the wifi frequency band, and input to the radio frequency port of the wifi antenna, so that the wifi frequency band can be transmitted and received.
  • the two frequency band antennas (such as wifi antenna and N77N79 antenna) select the best impedance excitation point for each mode through the selection of frequency band, and then combine the optimization of their respective matching networks to obtain better impedance matching , So as to achieve the result of optimizing system efficiency.
  • a feeding point can be set on the first radiator to achieve coverage of wifi and N77N79 frequency bands at the same time, which is equivalent to the wifi antenna and N77N79 antenna sharing a radiator, or they can be fed from the same feeding point.
  • the simulation of the terminal antenna structure performance needs to be performed for a certain frequency band or a certain radiator structure.
  • the embodiments of this application only include the wifi frequency band, the N77N79 frequency band, the MHB frequency band, and the LB frequency band described above. Take the description as an example.
  • the simulation condition is: the fundamental mode frequency of the parasitic branch is designed to be 1.5GHz.
  • Fig. 6 shows a schematic diagram of performance simulation of an antenna according to an embodiment of the present application. Specifically, Fig. 6 shows the simulated reflection coefficient S11 and transmission coefficient S12 of the wifi antenna and the N77N79 antenna.
  • S44 drawn with a solid line represents S11 of the wifi antenna
  • S55 drawn with a dashed line represents S11 of the N77N79 antenna
  • S45 drawn with a dashed line represents the transmission coefficient S12 of the wifi antenna and the N77N79 antenna, where the transmission coefficient is inverted That is the isolation between the wifi antenna and the N77N79 antenna.
  • S44 represents the reflection coefficient S11 of the wifi antenna
  • S45 represents the transmission coefficient S12 of the wifi antenna and the N77N79 antenna (can also be considered as the isolation between the wifi antenna and the N77N79 antenna)
  • S55 represents the reflection coefficient S11 of the N77N79 antenna.
  • the wifi antenna can produce two resonances in its working frequency band, which is equivalent to two resonant modes of the wifi antenna, which are divided into A1 (resonant frequency about 1.5GHz) and A2 (resonant frequency about 2.5GHz) ,
  • A1 resonant frequency about 1.5GHz
  • A2 resonant frequency about 2.5GHz
  • the resonance mode at point A1 is the fundamental mode resonance of the parasitic stub itself, that is, the designed parasitic stub fundamental mode frequency
  • A2 is the resonance mode of the wifi antenna body (equivalent to the first radiator), that is, the wifi antenna and MHB
  • the working frequency band of the antenna has overlapping frequency bands, for example, the working frequency of a wifi antenna is about 2.4GHz.
  • the N77N79 antenna can produce five resonances in its working frequency band, which is equivalent to the five resonance modes of the N77N79 antenna, which are divided into B1 (resonant frequency of about 3.4GHz), B2 (resonant frequency of about 3.7GHz), B3 (resonant frequency of about 4.1 GHz), B4 (resonant frequency about 4.5GHz), B5 (resonant frequency about 5.0GHz).
  • B1 resonant frequency of about 3.4GHz
  • B2 resonant frequency of about 3.7GHz
  • B3 resonant frequency of about 4.1 GHz
  • B4 resonant frequency about 4.5GHz
  • B5 resonant frequency about 5.0GHz
  • the transmission coefficient curve drawn by the dotted line that the value of S12 is below -15dBa, which is equivalent to the isolation between the wifi antenna and the N77N79 antenna is greater than 15dBa. That is to say, when the wifi antenna and the N77N79 antenna share the first radiator, the coverage of the wifi and N77N79 frequency bands can be achieved at the same time, and 15dB isolation can be achieved.
  • FIG. 7 shows a schematic diagram of the performance simulation of the antenna according to an embodiment of the present application. Specifically, FIG. 7 shows the simulation efficiency of the wifi antenna and the N77N79 antenna. As shown in Figure 7, the solid line draws the system efficiency of the wifi antenna, the dotted line draws the radiation efficiency of the wifi antenna, the dot-dash line draws the system efficiency of the N77N79up antenna, and the double-dot chain line draws the radiation of the N77N79up antenna. Efficiency, the N77N79up antenna is the N77N79 antenna after bandwidth expansion.
  • the -4dBi efficiency bandwidth of the wifi antenna is about 150MHz, that is, the difference between the frequency at C2 and the frequency at C1 on the curve drawn by the solid line;
  • the -4dBi efficiency bandwidth of the N77N79up antenna is about 2500MHz, that is, the dotted line On the curve drawn by the line, the difference between the frequency at D2 and the frequency at D1. Because the parasitic stubs complement the resonance of the N77N79 antenna, the N77N79up antenna has sufficient efficiency bandwidth to provide better wireless transmission.
  • Figure 6 shows that there are 5 resonance modes of the N77N79 antenna. The current distribution of each resonance mode is described below in conjunction with Figure 8.
  • Figure 8 (a) describes the current distribution of the first radiator when the N77N79 antenna works at 3.4GHz.
  • the EDLC part of the first radiator has a current distribution, that is, the EDLC part of the first radiator is working, forming an EDLC Slot die.
  • (c) Describes the current distribution of the first radiator when the N77N79 antenna works at 4.1GHz.
  • the EDLC part, the ADKC part and the parasitic branch GF part on the first radiator have current distributions, that is, the first radiator
  • the EDLC part, the ADKC part and the GF part of the parasitic branch are working, forming the slot mode of EDLC, the three-quarter mode of ADKC and the three-quarter mode of GF respectively.
  • the parasitic branch GF part has a current distribution, that is, the parasitic branch GF part is working, forming a three-quarter mode of GF .
  • (e) describes the current distribution of the first radiator when the N77N79 antenna works at 5.0GHz.
  • the BM part of the first radiator has a current distribution, that is, the BM part of the first radiator is working, forming a BM The quarter mode.
  • FIG. 8 describes the current distribution of the first radiator when the wifi antenna works at 2.45 GHz.
  • the ADKC part of the first radiator has current distribution, and part of the current is also dispersed on the parasitic branch FG part, that is, the first radiation
  • the ADKC part of the body and the FG part of the parasitic branch are working, forming a quarter mode of ADKC.
  • Figure (f) also illustrates that the parasitic stub can improve the isolation between the wifi antenna and the MHB antenna at the same frequency.
  • the part of the current dispersed in the FG is equivalent to the current drawn by the parasitic stub from the first radiator, thus changing the current of the first radiator. Distribution, to achieve the purpose of improving the same frequency isolation of wifi antenna and MHB antenna.
  • the parasitic stub in the embodiment of this application can be used as a trap to improve the same frequency isolation of the wifi antenna and the MHB antenna, and can also be used as the resonance supplement of the N77N79 antenna to broaden the bandwidth.
  • the following two simulation results are implemented for the parasitic stub. The effect is shown for verification.
  • Figures 9 and 10 show schematic diagrams of performance simulation of an antenna according to another embodiment of the present application. Specifically, Figures 9 and 10 show schematic diagrams of improving the isolation of the wifi antenna and the MHB antenna by the parasitic stub.
  • the schematic diagram of Fig. 9 simulates the reflection coefficient S11 and the transmission coefficient S12 of the wifi antenna and the MHB antenna (the inverse of S12 is the isolation), and the schematic diagram of Fig. 10 simulates the efficiency of the wifi antenna and the MHB antenna.
  • S44 in the figure represents the reflection coefficient S11 of the wifi antenna
  • S24 represents the transmission coefficient S12 of the wifi antenna and the MHB antenna (it can also be considered as the isolation between the wifi antenna and the MHB antenna).
  • the curve drawn by the dashed line shows the S11 of the wifi antenna with parasitic stubs
  • the curve drawn by the solid line shows the S11 of the wifi antenna without parasitic stubs.
  • the GHz frequency E1 position in the figure
  • the system efficiency of the wifi antenna with parasitic stubs is compared with that of the wifi antenna without parasitic stubs
  • the system efficiency is reduced by 1.1dB (the difference between the efficiency of the F1 position and the F2 position in Fig. 10).
  • the system efficiency reduction at 2.4GHz resonance can be understood as the parasitic stub to suppress the 2.4GHz resonance.
  • the curve drawn by the dashed line in Figure 9 shows the S12 of the wifi antenna and the MHB antenna when there is no parasitic stub (the inverse is the isolation between the wifi antenna and the MHB antenna), and the curve drawn by the longer dashed line shows that there is parasitic S12 of the wifi antenna and the MHB antenna (the inversion is the isolation between the wifi antenna and the MHB antenna).
  • the isolation between the wifi antenna and the MHB antenna when there is a parasitic stub is improved by about 4.3dB, that is, the position of E2 and E3 in Figure 9
  • the difference between the ordinate of the wifi antenna and the MHB antenna is improved.
  • FIG. 11 and FIG. 12 show schematic diagrams of performance simulation of the antenna according to another embodiment of the present application. Specifically, FIG. 11 and FIG. 12 show schematic diagrams of increasing the bandwidth of the N77N79 antenna by the parasitic stub.
  • the schematic diagram of Fig. 11 simulates the reflection coefficient S11 of the N77N79 antenna
  • the schematic diagram of Fig. 12 simulates the efficiency of the N77N79 antenna.
  • S55 in the figure represents the reflection coefficient S11 of the N77N79 antenna.
  • the curve drawn in solid line shows the S11 of the N77N79 antenna with parasitic stubs
  • the curve drawn in solid line shows the S11 of the N77N79 antenna without parasitic stubs. It can be seen that when the parasitic stub GF is added, the N77N79 antenna is at 4.5GHz frequency (G1 position in the figure) produces resonance, which is equivalent to increasing the resonance mode.
  • the curve drawn by the solid line shows the system efficiency of the N77N79 antenna without parasitic stubs
  • the curve drawn by the dashed line shows the system efficiency of the N77N79 antenna with parasitic stubs. It can be seen that there are parasitic stubs.
  • the system efficiency of the stub N77N79 antenna is increased by about 1.5dB at the 4.5GHz frequency, which is the difference between the efficiency of the H2 position and the H1 position in Figure 12.
  • FIG. 13 and FIG. 14 show schematic diagrams of performance simulation of antennas according to another embodiment of the present application. Specifically, FIG. 13 and FIG. 14 show schematic diagrams of improving the isolation of the wifi antenna and the MHB antenna by the multiplexing OQ stub.
  • the schematic diagram of Fig. 13 simulates the reflection coefficient S11 and the transmission coefficient S12 of the wifi antenna and the MHB antenna
  • the schematic diagram of Fig. 14 simulates the efficiency of the wifi antenna and the MHB antenna.
  • S42 in the figure represents the transmission coefficient S12 of the wifi antenna and the MHB antenna (also can be considered as the isolation between the wifi antenna and the MHB antenna), and S22 represents the reflection coefficient S11 of the MHB antenna.
  • the dashed curve shows that after the first switch SW1 is opened and the second switch SW2 is closed, the S12 of the MHB antenna and the wifi antenna are reversed (that is, after the first switch SW1 is opened and the second switch SW2 is closed, The isolation between the MHB antenna and the wifi antenna);
  • the curve drawn by the solid line shows that when the first switch SW1 is closed and the second switch SW2 is opened, the S12 of the MHB antenna and the wifi antenna (the inverse is that the first switch SW1 is closed and the When the second switch SW2 is off, the isolation between the MHB antenna and the wifi antenna).
  • the curve drawn by the dashed line shows the S11 of the MHB antenna after the first switch SW1 is opened and the second switch SW2 is closed; the curve drawn by the short dashed line shows that when the first switch SW1 is closed and the second switch SW2 is opened, S11 for MHB antenna.
  • the isolation between the wifi antenna and the MHB antenna is improved by about 2.6dB, that is, the difference between the ordinates of the J1 position and the J2 position in Figure 13, and the isolation between the wifi antenna and the MHB antenna is improved , But the system efficiency is slightly reduced. Integrating the role of the LB antenna, the isolation between the wifi antenna and the MHB antenna can be improved by 2.6dB to 15.1dB.
  • the wifi antenna, N77N79 antenna, MHB antenna, or LB antenna listed in the embodiments of this application are only exemplary, and the terminal antenna structure of the embodiments of this application is also applicable to other antennas that meet the frequency band requirements in the embodiments of this application. In addition, the terminal antenna structure of the embodiment of the present application is also applicable to other frequency bands that meet the frequency band requirements in the embodiment of the present application.

Abstract

本申请提供了一种终端天线结构及终端,包括:第一辐射体,该第一辐射体用于传输第一频段的信号,其中,该第一频段中至少部分频段高于预设频率;第二辐射体,该第二辐射体用于传输第二频段的信号,该第二频段与该第一频段存在重合频段;寄生枝节,该寄生枝节设置于该第一辐射体与该第二辐射体之间,用于减少该第二辐射体因该第一辐射体在该重合频段下工作而耦合的电流,该寄生枝节的基模频率不高于该预设频率和/或该寄生枝节的N倍频高于该预设频率,其中N大于等于2。通过寄生枝节设置能够提升该第一辐射体和该第二辐射体在该重合频段下的隔离度,并利用寄生枝节的基模谐振和N倍频谐振展宽该第一辐射体的带宽,从而提高通信质量。

Description

终端天线结构及终端
本申请要求在2019年2月22日提交中国国家知识产权局、申请号为201910134016.4、发明名称为“终端天线结构及终端”的中国专利申请的优先权其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种终端天线结构及终端。
背景技术
随着移动通信技术的发展,无线通信使用的频谱资源日益增多,终端设备所使用的天线数量也需要同步增加。
在终端设备有限的空间环境下,若布置更多天线,可能会造成天线的口径变小,使得天线覆盖的带宽减少,并且,该较小空间内布置的多个天线之间的距离较小,可能引起天线同频隔离度问题,从而严重影响了通信质量。
发明内容
本申请实施例提供一种终端天线结构及终端,能够提高通信质量。
第一方面,提供一种终端天线结构,该终端结构包括:第一辐射体,所述第一辐射体用于传输第一频段的信号,其中,所述第一频段中至少部分频段高于预设频率;第二辐射体,所述第二辐射体用于传输第二频段的信号,所述第二频段与所述第一频段存在重合频段;寄生枝节,所述寄生枝节设置于所述第一辐射体与所述第二辐射体之间,用于减少所述第二辐射体因所述第一辐射体在所述重合频段下工作而耦合的电流,所述寄生枝节的基模频率不高于所述预设频率和/或所述寄生枝节的N倍频高于所述预设频率,其中N大于等于2。
本申请的技术方案,通过在第一辐射体与第二辐射体之间设置寄生枝节,利用寄生枝节的基模频率或N倍频谐振既可以改善第一辐射体与第二辐射体的同频隔离度,还可以展宽第一辐射体的带宽,从而提高了终端设备的通信质量。
具体地,第一辐射体传输的第一频段与第二辐射体的第二频段存在重合频段,可以利用寄生枝节在重合频段的谐振,改变第一辐射体的电流分布,以减少第二辐射体因第一辐射体在重合频段下工作而耦合的电流,进而提升第一辐射体与第二辐射体在该重合频段下的隔离度;将寄生枝节的基模频率设置为不高于预设频率和/或将寄生枝节的N倍频设置为高于预设频率,利用寄生枝节的基模频率谐振和/或寄生枝节的N倍频谐振可以展宽第一辐射体的带宽,从而在天线布置空间有限的环境下,既能够布置较多的天线,还可以提高通信质量。
应理解,所述预设频率可以根据第一辐射体实际传输的第一频段确定,可以是第一频段中的多个频段之间的频率值。
还应理解,第一频段与第二频段存在重合频段,可以理解为第一辐射体和第二辐射体在重合频段下工作时,存在同频隔离度问题。
结合第一方面,在一种可能的实现方式中,还包括:第三辐射体,所述第三辐射体与所述第二辐射体相邻且与所述第一辐射体不相邻,所述第二辐射体与所述第三辐射体的开放端相对设置;在所述第二辐射体上设置有第一开关;在所述第三辐射体上设置有第二开关。
结合第一方面,在一种可能的实现方式中,所述第三辐射体用于传输低频信号。
结合第一方面,在一种可能的实现方式中,当所述第一辐射体与所述第二辐射体传输所述重合频段的信号时,通过设置所述第一开关与所述第二开关的开合状态改变所述第二辐射体的谐振模式,用于提升所述第一辐射体和所述第二辐射体在所述重合频段下的隔离度。
结合第一方面,在一种可能的实现方式中,当所述第一辐射体与所述第二辐射体传输所述重合频段的信号时,设置所述第一开关与所述第二开关的开合以及开关连接匹配状态,用于改变所述第二辐射体的谐振模式。
结合第一方面,在一种可能的实现方式中,当所述第一辐射体与所述第二辐射体传输所述重合频段的信号时,所述第一开关设置为断开,所述第二开关设置为闭合。
通过设置在第二辐射体和第三辐射体上设置开关,并在第一辐射体与第二辐射体传输重合频段的信号时,改变开关的断开闭合状态,能够改变第二辐射体的谐振模式,从而使第二辐射体在重合频段不发生谐振,提升了第一辐射体与第二辐射体的同频隔离度。
结合第一方面,在一种可能的实现方式中,所述寄生枝节一端接地时,所述寄生枝节的长度与所述寄生枝节基模频率所对应的波长的四分之一相同或近似相同。
结合第一方面,在一种可能的实现方式中,所述寄生枝节一端接地时,所述寄生枝节的长度与所述寄生枝节的基模频率的N倍频率所对应的波长的四分之N相同或近似相同。
结合第一方面,在一种可能的实现方式中,所述寄生枝节一端接地时,所述寄生枝节的长度与所述寄生枝节的基模频率的3倍频率所对应的波长的四分之三相同或近似相同。
结合第一方面,在一种可能的实现方式中,所述寄生枝节两端接地或不接地时,所述寄生枝节的长度与所述寄生枝节基模频率所对应的波长的二分之一相同或近似相同。
结合第一方面,在一种可能的实现方式中,所述寄生枝节两端接地或不接地时,所述寄生枝节的长度与所述寄生枝节的基模频率的N倍频率所对应的波长的二分之N相同或近似相同。
结合第一方面,在一种可能的实现方式中,还包括:与所述第一辐射体耦合馈电的第一馈电点和第二馈电点。
结合第一方面,在一种可能的实现方式中,所述第一馈电点用于对所述第一频段中高于预设频率的至少部分频段进行馈电;所述第二馈电点用于对所述第一频段中除所述高于预设频率的至少部分频段外的频段进行馈电。
结合第一方面,在一种可能的实现方式中,所述第一馈电点用于对所述第一频段中高于预设频率的至少部分频段进行馈电;所述第二馈电点用于对所述第一频段中不高于所述预设频率的至少部分频段进行馈电。
结合第一方面,在一种可能的实现方式中,还包括一个馈电点,用于对第一频段中的 全部频段进行馈电。
结合第一方面,在一种可能的实现方式中,所述第一频段中高于预设频率的至少部分频段用于高频通信;所述第一频段中除所述高于预设频率的至少部分频段外的频段用于wifi通信或中高频带宽MHB通信。
结合第一方面,在一种可能的实现方式中,所述第一频段中高于预设频率的至少部分频段用于高频通信;所述第一频段中不高于预设频率的至少部分频段用于wifi通信或中高频带宽MHB通信。
结合第一方面,在一种可能实现方式中,第一频段包括wifi频段和N77N79频段,第二频段包括MHB频段。
结合第一方面,在一种可能实现方式中,第一频段包括MHB频段和N77N79频段,第二频段包括MHB频段。
结合第一方面,在一种可能的实现方式中,所述寄生枝节为直线型或包括至少一个弯折部。
结合第一方面,在一种可能的实现方式中,所述寄生枝节为L型、L型内折、L型外折或U型。
结合第一方面,在一种可能的实现方式中,还包括:带通滤波器,用于通过第一频段中的高于预设频率的至少部分频段外的其他频段,相当于滤除第一频段中的高于预设频率的至少部分频段。
结合第一方面,在一种可能的实现方式中,还包括:带阻滤波器,用于滤除第一频段中除高于预设频率的所述至少部分频段外的其他频段,相当于通过第一频段中的高于预设频率的至少部分频段。
本申请通过共体双馈的天线结构,可同时实现第一频段的多个子频段的覆盖。例如第一频段包括wifi频段和N77N79频段,本申请技术方案可以同时实现wifi频段和N77N79频段覆盖。两个天线之间通过串联带通滤波器和并联带通滤波器实现隔离。
第二方面,提供一种终端,所述终端具有第一方面或第一方面中的任一种可能的实现方式中的终端天线结构。
附图说明
图1是本申请实施例的终端天线布置的示意性结构图。
图2是本申请实施例的终端天线结构示意性结构图。
图3是本申请一个实施例的终端天线结构示意性结构图。
图4是本申请另一个实施例的终端天线结构示意性结构图。
图5是本申请实施例的第一辐射体的形成的天线的双端口匹配示意图。
图6是本申请一个实施例的天线的性能仿真示意图。
图7是本申请一个实施例的天线的性能仿真示意图。
图8是本申请实施例的天线电流分布示意图。
图9是本申请另一个实施例的天线的性能仿真示意图。
图10是本申请另一个实施例的天线的性能仿真示意图。
图11是本申请又一个实施例的天线的性能仿真示意图。
图12是本申请又一个实施例的天线的性能仿真示意图。
图13是本申请又一个实施例的天线的性能仿真示意图。
图14是本申请又一个实施例的天线的性能仿真示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
为方便理解,下面对本申请中涉及的技术术语进行解释和说明。
无线保真(wireless fidelity,WIFI),是一种将有线网络信号转换成无线信号的无线网络传输技术,供支持其技术的相关终端设备进行接收。WIFI也可以表示为“Wi-Fi”、“WiFi”、“Wifi”或“wifi”。能够支持wifi连接的终端设备需要设置wifi天线,用于收发信号。wifi天线的工作频段包括2.4GHz~2.5GHz。运行在5GHz频段上的wifi,称为wifi 5G,有时也可称为5G wifi,其采用802.11ac协议标准。
N77、N78与N79,是第三代合作伙伴计划(the 3rd generation partner project,3GPP)目前指定的5G新无线(new radio,NR)的频段,N77天线的工作频段包括3.3GHz~4.2GHz,N78天线的工作频段包括3.3GHz~4.8GHz,N79天线的工作频段包括4.4GHz~5.0GHz。本申请实施例中涉及的N77N79频段包括N77频段、N78频段和N79频段。
中高频(middle high band,MHB)天线与低频(low band,LB)天线是用于终端在第二代(second generation,2G)、第三代(third generation,3G)、第四代(fourth generation,4G)等通信网络下进行无线通信的天线。MHB天线的工作频段包括1.7GHz~2.7GHz,LB天线的工作频段包括690MHz~960MHz。
同频隔离度,无线电系统间电磁干扰主要传输途径是天线间的耦合,常用隔离度来定量表征这种耦合的强弱程度。在一个系统中,为保证每个天线正常工作,天线的隔离度必须满足一定的要求,否则天线间的干扰会压制住有用的信号,从而使系统无法正常工作,一般将发射天线的发射功率与另一天线所接收功率的比值定为天线隔离度。同频隔离度可以理解为当发射天线与另一接收天线工作在同一工作频率下时,发射天线的发射功率与另一天线所接收功率的比值。一般来讲,同频隔离度越大,天线间的干扰越小。
带通滤波器(band pass filter),是一个允许特定频段的波通过同时屏蔽其他频段的设备,或者是一种能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器。
带阻滤波器(band stop filters),是一种能通过大多数频率分量、但将某些范围的频率分量衰减到极低水平的滤波器,与带通滤波器的概念相对。其中点阻滤波器(notch filter)是一种特殊的带阻滤波器,它的阻带范围极小。
陷波器(wavetrap),是一种可以在某一个频率点迅速衰减输入信号,以达到阻碍此频率信号通过的滤波效果。陷波滤波器属于带阻滤波器的一种,阻带非常狭窄,即点阻滤波器。
散射(scatter)参数,也称为S参数,是微波传输中的一个重要参数。以二端口网络为例,二端口网络有四个S参数,Sij表示能量从j口注入,在i口测得的能量,如S11表示端口2匹配时,端口1的反射系数;S22表示端口1匹配时,端口2的反射系数;S12表示端口1匹配时,端口2到端口1的反向传输系数;S21表示端口2匹配时,端口1到 端口2的正向传输系数。单根传输线可以等效为一个二端口网络,一端输入信号,另一端输出信号,若以端口1(port1)作为信号的输入端口,端口2(port2)作为信号的输出端口,则S11表示在输出端端接匹配情况下的输入端反射系数,通常称之为回波损耗(return loss),即有多少能量被反射回源端(port1),S11一般以分贝值表示,在0dB到负无穷大之间,其绝对值越大表示匹配越好,0dB表示全反射,负无穷大表示全权匹配;S21表示在输出端端接匹配情况下的前向传输增益(系数),通常称之为插入损耗(inset loss),也就是有多少能量被传输到目的端(port2)了,S21的值越大越好,理想值是1,即0dB,S21越大传输的效率越高;S22表示在输入端端接匹配情况下的输出端反射系数;S12表示在输入端端接匹配情况下的反向传输增益(系数)。
天线的谐振是天线的结构决定的,是固有特性,在天线谐振频率附近,可使电气性能(例如回波损耗)满足使用要求的频带范围可以称为天线的带宽。
天线的辐射效率用于衡量天线将高频电流或导波能量转换为无线电波能量的有效程度,是天线辐射的总功率和天线从馈线得到的净功率之比,天线的辐射效率一般不考虑回波损耗。
天线的工作频率范围(或称频带宽度),是指无论是发射天线还是接收天线,总是在一定的频率范围(频带宽度)内工作的。
图1示出了本申请实施例的终端天线布置的示意性结构图。
如图1所示,在终端100内,区域10用于布置终端天线。在区域10的内部和周围还布置有其他元器件。例如,在虚线框11的位置可以设置侧键,用于对终端设备进行按键操作等;在虚线框12的位置可以设置电池,用于对终端设备进行电源供给,使得终端内部的各种元器件能够正常工作;在虚线框13的位置可以设置屏蔽罩,用于屏蔽外界干扰或者防止天线对外界造成干扰;虚线框14的位置可以设置一些元器件,当元器件的高度相对天线来说较高时,较高元器件对天线会形成遮挡作用,从而影响天线的辐射和接收性能;实线框15以及虚线框16的位置可以用于进行天线的设计和布局,
随着移动通信技术的发展,无线通信使用的频谱资源日益增多,例如5G移动通信技术中,多个新的频段可用于无线通信。对于终端来说,为了更好地进行使用频谱资源进行无线通信,终端设备所使用的天线数量也需要同步增加,或者说终端设备需要覆盖更宽的频段和更多的天线。
也就是说,在图1所示的区域10内,需要布置更多的天线。但是在终端设备有限的空间环境下,加上区域10周边设置的其他元器件例如电池、侧键及其他较高元器件的遮挡,若布置更多天线,可能会造成天线的口径变小,使得天线覆盖的带宽减少,并且,该较小空间内布置的多个天线之间的距离较小,可能引起天线同频隔离度问题,从而严重影响了通信质量。
本申请实施例的终端100,可以通过天线进行信号的收发。终端也可以称为终端设备,也可以称为用户设备(user equipment,UE)、接入终端、终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线网络设备、用户代理或用户装置。终端可以是蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、智能电话(smart phone)、无线本地环路(wireless localloop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计 算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备、无人机设备或物联网、车联网中的终端以及未来网络中的任意形态的终端、中继用户设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等。本申请实施例对此并不限定。为方便描述,在本申请实施例中,将上述布置终端天线结构的终端设备统称为终端,在一些实施例中,也可以称为终端设备。
本申请实施例提供一种终端天线结构,能够在终端设备有限的空间环境下,布置更多的天线,并能够解决天线效率带宽不够的问题,并提升天线的同频隔离度,从而提高通信质量。
图2示出了本申请一个实施例的终端天线结构示意图。下面结合图2对终端天线结构进行详细描述。
在区域200内布置的终端天线结构包括第一辐射体210、第二辐射体220和寄生枝节230。
第一辐射体210用于传输第一频段的信号,其中,第一频段中的至少部分频段高于预设频率。
第一频段中的至少部分频段高于预设频率,可以理解为第一辐射体可以传输两个或多个子频段的信号,例如,若两个天线共用第一辐射体,则其中一个天线的工作频段可以高于预设频率。
这里所述的预设频率可以是第一频段中除了所述至少部分频段外的频段的最高频率,也可以第一频段中的至少部分频段的最低频率,也可以是其他的满足天线结构设计要求的频率,例如预设频率为3.3GHz、5GHz等,这样第一频段中的高于预设频率(例如3.3GHz、5GHz)的至少部分频段可以称为高频频段,可用于高频通信,如N77、N78或N79天线的工作频段,或wifi 5G的工作频段等。
可选地,预设频率也可以是一个预设频段范围。
这里预设频率可以是根据第一辐射体实际传输的第一频段确定,例如预设频率包括在第一频段内,或者说第一辐射体可以传输预设频率的信号;预设频率也可以是第一频段中的子频段之间的频率值,例如第一频段中包括高频频段和低频频段,预设频率可以是高频频段与低频频段之间的某个频率值。
第二辐射体220用于传输第二频段的信号,其中第二频段与第一频段存在重合频段。
第一频段与第二频段存在重合频段,可以理解为第一辐射体210与第二辐射体220存在同频隔离度问题。换句话说,第一辐射体210形成的天线的工作频段与第二辐射体220形成的天线的工作频段有重合部分,则可能会造成第一辐射体210形成的天线与第二辐射体220形成的天线的同频隔离度问题。
本申请实施例中,第一频段与第二频段存在重合频段,可以是第一频段与第二频段部分重合,例如第一频段包括第二频段,或第二频段包括第一频段,或第一频段的部分频段与第二频段的部分频段重合;也可以是第一频段与第二频段完全重合,即第一频段与第二频段相同。
例如,第一频段可以包括wifi天线的工作频段(如2.4GHz),第二频段可以包括中高频天线的工作频段(如1.7GHz~2.7GHz);或者第一频段和第二频段均可以包括中高频天线的工作频段(如1.7GHz~2.7GHz),上述情况中第一频段与第二频段均是存在重 合频段的。当第一辐射体210与第二辐射体220工作在重合频段如2.4GHz时,第一辐射体210与第二辐射体220的同频隔离度可能会降低,从而使第一辐射体210和第二辐射体220之间的干扰增大,影响通信质量。
寄生枝节230设置于第一辐射体210与第二辐射体220之间,寄生枝节230在上述第一频段与第二频段的重合频段下会产生谐振,可以减少第二辐射体220因第一辐射体210在该重合频段下工作而耦合的电流,从而提升第一辐射体210与第二辐射体220在该重合频段下的隔离度。其中,寄生枝节230的基模频率不高于预设频率和/或寄生枝节的N倍频高于预设频率,其中N大于等于2。
寄生枝节230设置于第一辐射体210与第二辐射体22之间,例如第一辐射体210设置在寄生枝节230的上方位置,第二辐射体220设置在寄生枝节230的下方位置,主要是用于改变第一辐射体210在重合频段下工作时的电流分布,具体来说寄生枝节230可以吸引第一辐射体210上的电流到寄生枝节230自身上,从而减少第二辐射体220的端口因第一辐射体210在重合频段下工作而耦合的电流,进一步达到改善第一辐射体210与第二辐射体220的同频隔离度的目的。
寄生枝节230的基模频率不高于预设频率,可以理解为寄生枝节230的基模频率的设计频率等于或低于预设频率;寄生枝节的N倍频高于预设频率,可以理解为寄生枝节的N倍频包括在第一频段中的高于预设频率的至少部分频段内,相当于寄生枝节230的N倍频的设计频率在第一频段中的高于预设频率的至少部分频段内,这样寄生枝节230可以在N倍频产生谐振,从而对工作频段高于预设频率的天线起到谐振补充,展宽带宽的作用。寄生枝节基模频率谐振和N倍频谐振可以对第一辐射体起到展宽带宽的作用。
可选地,寄生枝节230可以一端接地,例如,可以是寄生枝节230的开始端231接地;寄生枝节230也可以两端均接地,例如寄生枝节230的开始端231和开放端232均接地;寄生枝节230也可以不接地。
在一种可能的实现方式中,若寄生枝节230的一端接地,寄生枝节230的长度与寄生枝节230基模频率所对应的波长的四分之一相同或近似相同,和/或寄生枝节230的长度与寄生枝节230的基模频率的N倍频率所对应的波长的四分之N相同或近似相同。示例性的,寄生枝节230一端接地时,寄生枝节230的长度可以与寄生枝节230的基模频率的3倍频率所对应的波长的四分之三相同或近似相同,或者寄生枝节230的长度可以与寄生枝节230的基模频率的2倍频率所对应的波长的四分之二(即二分之一)相同或近似相同。当然,寄生枝节N倍频还可以是4倍频、5倍频或更高倍频。
在另一种可能的实现方式中,若寄生枝节230的两端接地或不接地,寄生枝节230的长度与寄生枝节230基模频率所对应的波长的二分之一相同或近似相同,和/或寄生枝节230的长度与寄生枝节230的基模频率的N倍频率所对应的波长的二分之N相同或近似相同。示例性的,寄生枝节230的两端接地,寄生枝节230的长度可以与寄生枝节230的基模频率的3倍频率所对应的波长的二分之三相同或近似相同,或者寄生枝节230的长度可以与寄生枝节230的基模频率的2倍频率所对应的波长的二分之二(即1)相同或近似相同。当然,寄生枝节N倍频还可以是4倍频、5倍频或更高倍频。
寄生枝节的长度根据寄生枝节的基模频率确定还是根据寄生枝节的倍频确定,可以根据设计需求确定,同时还可以考虑其他要求。
需要说明的是,本申请实施例中对于寄生枝节倍频的选择不做具体地限定。
寄生枝节230的形状可以是直线型的,也可以是具有弯折部的弯折型。其中,当寄生枝节230具有弯折部时,弯折的方向可以向上,也可以向下,还可以向开始端弯折。
可选地,寄生枝节230具有弯折部时,可以具有一个或多个弯折部。
可选地,寄生枝节230的形状可以是L型、L型内折、L型外折或U型,本申请实施例不做具体限定。
应理解,寄生枝节230的形状可以根据寄生枝节的长度以及天线的布置空间大小确定。
可选地,终端天线结构还包括与第一辐射体210耦合馈电的第一馈电点211和第二馈电点212。
可选地,第一馈电点211可以用于对第一频段中高于预设频率的至少部分频段进行馈电,第二馈电点212可以用于对第一频段中的除了高于预设频率的至少部分频段外的其他频段进行馈电,当然,第二馈电点212可以对第一频段与第二频段的重合频段进行馈电。
例如,若两个天线共用第一辐射体210,其中天线A的工作频段高于预设频率,天线B的工作频段低于预设频率且天线B的工作频段与第二辐射体220的工作频段有重合,则第一馈电点211可以为天线A进行馈电,第二馈电点212可以为天线B进行馈电。
需要说明的是,图2中示出的第一馈电点211和第二馈电点212的位置仅仅是示例性的,两个馈电点的位置还可以在第一辐射体210的其他位置,本申请实施例不做具体限定。
可选地,终端天线结构也可以只包括一个馈电点,相当于用一个馈电点为第一频段的全部频段进行馈电。例如,若两个天线共用第一辐射体210,则该一个馈电点可以为该两个天线进行馈电。
可选地,第一辐射体210通过第一馈电点211和第二馈电点212可以形成两个天线,例如天线A和天线B,其中天线A的工作频段高于预设频率,相当于是第一频段中高于预设频率的至少部分频段,另外一个天线B的工作频段相当于是第一频段中除了高于预设频率的至少部分频段外的频段,其中,该天线B的工作频段与第二辐射体形成的天线的工作频段有重合频段,则该天线B与第二辐射体形成的天线可能存在同频隔离度的问题,如同频隔离度降低。
应理解,本申请实施例中,第一辐射体的工作频段,也可以理解是第一辐射体形成的天线的工作频段,第二辐射体的工作频段,也可以理解是第二辐射体形成的天线的工作频段。
可选地,第一频段中高于预设频率的至少部分频段可以用于高频通信,如第一频段可以包括N77、N78、N79或wifi 5G的频段等。可选地,第一频段中除了高于预设频率的至少部分频段外的其他频段可以用于wifi通信或中高频带宽MHB通信。
可选地,第一频段中的子频段范围可以是有重合的,也可以是完全错开的。
当第一辐射体形成的两个天线的工作频段可以错开时,该终端天线结构还可以包括带通滤波器和/或带阻滤波器,用于两个天线的端口匹配。
可选地,带通滤波器可以用于通过第一频段中的高于预设频率的至少部分频段外的其他频段,相当于滤除第一频段中的高于预设频率的至少部分频段,例如上述示例中的天线A的工作频段。
可选地,带阻滤波器可以用于滤除第一频段中除高于预设频率的所述至少部分频段外的其他频段,相当于滤除上述示例中的天线B的工作频段。
可选地,在第一辐射体210上还可以设置第一辐射体的接地点,本申请实施例对第一辐射体的接地点的位置不做具体限定。
可选地,在第二辐射体220上还可以设置第二辐射体的接地点和馈电点,本申请实施例对第二辐射体的接地点和馈电点的位置不做具体限定。
可选地,第一辐射体210的形状可以是直线型,或者是主体上具有一个或多个枝节的,还可以是在枝节上开槽的,本申请实施例不做具体限定。
可选地,第二辐射体220的形状可以是直线型,或者是主体上具有一个或多个枝节的,还可以是在枝节上开槽的,本申请实施例不做具体限定。
下面结合具体的非限制性的例子对本申请实施例的终端天线结构进行详细描述。为方便理解,本申请实施例以在终端设备内设计wifi天线、N77N79天线及MHB天线为例进行描述,其中N77N79天线和wifi天线布局在MHB天线的上方。
本申请实施例中,wifi天线与N77N79天线共用第一辐射体,N77N79天线的工作频段高于预设频率,wifi天线的工作频段与MHB天线的工作频段有重合,即第一频段包括wifi天线的工作频段和N77N79天线的工作频段。由于wifi频段包括2.4GHz~2.5GHz,N77N79频段包括3.3GHz~5.0GHz,MHB频段包括1.7GHz~2.7GHz,本申请实施例中,预设频率可以为wifi频段的最高频率或N77N79频段的最低频率,如2.5GHz或3.3GHz,大于2.5GHz或3.3GHz的频段即N77N79频段;预设频率也可以为wifi频段和N77N79频段之间的某个频率,如3GHz或3.2GHz,大于3GHz或3.2GHz的频段即N77N79频段;预设频率还可以是频段范围,例如2.7~3.2GHz,则大于2.7~3.2GHz的频段即N77N79频段。
由于wifi天线的工作频段与MHB天线的工作频段有重合,换句话说MHB的工作频段范围包括wifi天线的工作频段,因此若wifi天线与MHB天线的距离较近时,会导致wifi天线与MHB天线的同频隔离度降低,从而使wifi天线与MHB天线之间的干扰增大。本申请实施例提供一种终端天线结构,能够改善wifi天线和MHB天线的同频隔离度,又能够对N77N79天线进行展宽带宽。
在图3中所示的区域300中,第一辐射体310可以设置于区域300的上方区域,第二辐射体320可以设置于区域300的下方区域,寄生枝节330设置于第一辐射体310和第二辐射体320之间。第一辐射体可以形成wifi天线和N77N79天线,也就是说第一辐射体可用于传输wifi天线的工作频段的信号和N77N79天线的工作频段的信号;第二辐射体可以形成MHB天线,也就是说第二辐射体可用于传输MHB天线的工作频段的信号。
可选地,第一辐射体310、第二辐射体320、寄生枝节330也可以均设置于区域300的上方区域或均设置于区域300的下方区域,保证寄生枝节330位于第一辐射体310与第二辐射体320之间即可。
第一辐射体310在位置B与第一馈电点311耦合,用于对N77N79天线进行馈电;第一辐射体310在位置Z与第二馈电点312耦合,用于对wifi天线进行馈电。第一辐射体310与两个馈电点耦合的位置还可以在第一辐射体310的其他位置上,本申请实施例不做具体限定,位置B和位置Z仅仅是示例性的说明。
第一辐射体310还包括接地点A。
第二辐射体320可以进行纵向布置,第二辐射体320上可以设置第三馈电点321和第二辐射体的接地点322,图3中接地点322位于第二辐射体320的上端,第三馈电点321设置于接地点的下方,当然,第三馈电点321与第二辐射板的接地点322的位置还可以是第二辐射体320上的其他位置,本申请实施例不做具体限定。
寄生枝节330设置于第一辐射体310和第二辐射体320之间,在寄生枝节330的一端F处设置有寄生枝节的接地点331,寄生枝节330的另一端332可以为开放端,也可以将另一端接地。
寄生枝节330的形状可以是直的,也可以是弯的,例如寄生枝节330可以具有一个或多个弯折部。
例如,寄生枝节330可以是L型,可以是L型内折或L型外折,还可以是U型,本申请实施例不做具体限定。在图3示出的终端天线中,寄生枝节330以L型内折为例进行示例性说明。
本申请实施例对于第一辐射体310、第二辐射体320和寄生枝节330的形状不做具体限定,但为了便于理解和对寄生枝节330的性能验证,图3给出了示例性的第一辐射体310、第二辐射体320和寄生枝节330的形状。
示例性的,第一辐射体310可以包括多个枝节,第一辐射体310通过枝节开槽的方式构造磁极子和电极子等多种相容模式可以形成宽带覆盖。例如,图中第一辐射体310可以包括BK枝节、ED枝节、LC枝节等,第一辐射体310还可以以其他枝节组成的方式描述,图上标注了字母A-N,可以根据要描述的对象以字母形式表示,在此不再列举。
第二辐射体320可以包括HI枝节,寄生枝节330可以包括FG枝节,同理,第二辐射体320和寄生枝节330还可以以其他枝节组成的方式描述,图上标注了字母A-N,可以根据要描述的对象以字母形式表示,在此不再列举。当然,还可以用枝节FG或枝节GF来表示寄生枝节330,可以用枝节HI表示第二辐射体320可第二辐射体320上的一部分可以描述为枝节HJ、枝节HN等,在此不一一列举。
第一辐射体310通过枝节开槽方式构造磁极子和电极子等多种相容模式,从而形成宽带覆盖,例如,AKC部分的四分之一模是电极子,可以覆盖wifi频段;DLC部分的槽模是磁极子,ADKC部分的四分之三模式电极子,FG部分的四分之三模式电极子,BM部分的四分之一模式电极子,上述四个部分可以覆盖N77N79频段。
在本申请实施例的终端天线结构中,寄生枝节330可以认为是wifi天线的一部分,也可以认为是N77N79天线的一部分。本申请实施例中,在第一辐射体310与第二辐射体320之间设置寄生枝节330,寄生枝节330可以作为陷波器改善wifi和MHB天线的同频隔离度。具体而言,寄生枝节330设置于第一辐射体310和第二辐射体320之间时,可以在wifi频段与MHB频段的重合频段下产生谐振,可以吸引第一辐射体310在wifi的工作频段下的板上电流,从而改变了第一辐射体310上的电流分布,使得第二辐射体320因第一辐射体310在重合频段(本申请实施例中为wifi频段)下工作而耦合的电流减少,从而改善了wifi天线与MHB天线的同频隔离度。
应理解,本申请实施例中,MHB天线的工作频段包括wifi天线的工作频段,因此第一辐射体310与第二辐射体320的重合频段即是wifi频段。
本申请实施例中,寄生枝节330还可以作为N77N79天线的一部分,可以作为N77N79up天线的谐振补充,展宽带宽。需要说明的是,为区分寄生枝节330对N77N79天线作用后的天线,本申请实施例中以N77N79表示寄生枝节330展宽带宽前的天线,以N77N79up表示寄生枝节330展宽带宽后的天线,N77N79up天线的带宽相对N77N79天线的带宽较宽。具体而言,寄生枝节的一端接地时,寄生枝节330的倍频可以是N77N79天线的工作频率,或者寄生枝节330的长度设置为与寄生枝节330基模频率所对应的波长的四分之一相同或近似相同,或与寄生枝节330的基模频率的3倍频率所对应的波长的四分之三相同或近似相同。
可选地,寄生枝节330的倍频可以是3倍频或2倍频,例如,寄生枝节的基模频率为1.5GHz,则寄生枝节330的2倍频为3GHz,寄生枝节330的3倍频为4.5GHz。当然,寄生枝节330的倍频还可以是4倍频、6倍频或更高倍频。
可选地,寄生枝节的两端接地或不接地时,寄生枝节330的长度还可以设置为与寄生枝节330基模频率的2倍频率所对应的波长的二分之一相同或近似相同。
寄生枝节330在基模频率或倍频下能够发生谐振,在本申请实施例中,寄生枝节330在倍频下能够发生谐振,相当于展宽了N77N79天线的带宽。
因此,本申请实施例的终端天线结构中,通过设置在第一辐射体和第二辐射体之间的寄生枝节,利用寄生枝节的基模频率能够改善wifi天线和MHB天线的同频隔离度,利用寄生枝节的倍频能够展宽N77N79天线的带宽。
本申请实施例中,由于寄生枝节自身的环境较差,寄生枝节本身的辐射性能差,若将寄生枝节的基模频率设计为wifi天线的工作频率2.4GHz,寄生枝节会对wifi天线在2.4GHz工作频率有负面影响,因此寄生枝节的基模频率可以设计为1.5GHz,寄生枝节在基模频率发生谐振可以提升wifi天线和MHB天线的同频隔离度,寄生枝节在3倍频发生谐振可以展宽N77N79天线的带宽。但应理解,在一些其他的实施例中,若寄生枝节的辐射性能变好,寄生枝节的基模频率可以设计为第一辐射体形成的天线与第二辐射体形成的天线的同频工作频率,例如本申请实施例中,也可以将寄生枝节的基模频率设计为wifi的工作频率2.4GHz,这样寄生枝节在2倍频发生谐振也可以展宽N77N79天线的带宽。寄生枝节330对于提升wifi天线和MHB天线的同频隔离度以及展宽N77N79天线带宽的性能分析将结合图6至图14进行描述,在此暂不详述。
本申请实施例中wifi天线和N77N79天线共用一个辐射体,可以同时实现wifi和N77N79频段覆盖。信号流向参见图5所示的(a)(b)。由于wifi频段与N77N79频段错开,因此可以利用带通滤波器和带阻滤波器对两个频段进行隔离。
具体地,发射信号时,射频能量N77N79频段信号由第一馈电点311经过带阻滤波器输入到第一辐射体310中发射出去;接收信号时,信号经过第一辐射体310接收后,接收到的wifi频段和N77N79频段的信号由第一辐射体310输入到与第一辐射体和射频端口串联的带阻滤波器中,带阻滤波器滤除wifi频段后将N77N79频段的信号输入到N77N79天线的射频端口处,从而可以实现N77N79频段的发射和接收。
同理,发射信号时,射频能量wifi频段信号由第二馈电点312输入到第一辐射体310中发射出去;接收信号时,信号经过第一辐射体310接收后,接收到的wifi和N77N79频段的信号中,N77N79频段的信号被带通滤波器导入地下并通过wifi频段,输入到wifi天 线的射频端口处,从而可以实现wifi频段的发射和接收。
可选地,上述带通滤波器和带阻滤波器也可以是集总器件搭建,或者是其他滤波器件。
图4示出了本申请另一个实施例的终端天线结构示意性结构图。
在图4所示的区域400中,第一辐射体310、第二辐射体320以及寄生枝节的布置位置可以采用图3所示的终端天线结构中相同的结构,具体的描述可以参见相关描述,为简洁,在此不再赘述。在区域400中还可以设置有第三辐射体340,下面针对第三辐射体340和第二辐射体320的不同进行详细说明。图中标注了字母A-R,可以根据要描述的对象以字母形式表示。
第三辐射体340设置于第二辐射体320的下方,可以形成LB天线,相当于在终端中设计的天线还包括LB天线。
第三辐射体340可以进行纵向布置,第三辐射体340上可以设置第四馈电点341和第三辐射体的接地点342。图4中,接地点342位于第三辐射体340的下端,第四馈电点341设置于接地点的上方,当然,第四馈电点341与第三辐射板的接地点342的位置还可以是第三辐射体340上的其他位置,本申请实施例不做具体限定。
本申请实施例中,第二辐射体320的开放端324与第三辐射体340的开放端344相对设置。在第二辐射体320上设置有第一开关323,也可以用SW1表示,第一开关323可以设置于第二辐射体的接地点322和第三馈电点321的下方,也可以设置于第二辐射体的接地点322与第三馈电点321之间。在第三辐射体上设置有第二开关343,也可以用SW2表示,第二开关343可以设置于第三辐射体的接地点342和第四馈电点341的上方,也可以设置于第三辐射体的接地点342与第四馈电点341之间。
应理解,本申请实施例所述的第一开关323可以设置于第二辐射体的接地点322和第三馈电点321的下方,仅仅是针对列举的终端天线结构进行示例性的说明,在一些其他的实施例中,第一开关323与其他元器件的相对位置还可以是其他描述,本申请实施例不做具体限定。同理,对第二开关343的相对位置也仅仅是示例性的说明,不对本申请实施例造成任何限定。
本申请实施例通过在第二辐射体320和第三辐射体340上设置第一开关323和第二开关343,可以改善wifi天线与MHB天线的同频隔离度。具体而言,当wifi天线和MHB天线工作在同频的工作频率例如2.4GHz下时,将第一开关323断开,可以拉低MHB天线的基模谐振,使得2.4GHz时的MHB天线(第二辐射体)的电流减少,同时将第二开关343闭合,复用LB天线(第三辐射体)上的低频枝节作为陷波器改善wifi天线和MHB天线的同频隔离度。换句话说,当MHB天线和wifi天线工作在2.4GHz的工作频率下时,断开第一开关323,可以使MHB天线(例如HI枝节)的基模谐振频率降低,使其不在2.4GHz频率发生谐振,相当于破坏了MHB天线在2.4GHz时的谐振模式;同时闭合第二开关343,可以复用低频枝节(例如OQ枝节)在2.4GHz频率发生谐振。可以理解,这里所述的复用低频枝节可以理解为,低频枝节既可以在低频时发生谐振,还会在2.4GHz频率也发生谐振,相当于将MHB天线在2.4GHz的谐振模式转移到LB天线上。
可选地,在第二辐射体和第三辐射体上设置开关的方式可以单独用于改善wifi天线与MHB天线的同频隔离度,也就是说,在一些实施方式中,终端天线结构中可以只包括在第二辐射体和第三辐射体上设置开关,不包括寄生枝节。
可选地,SW1设置为断开状态,也可以替换为集总器件搭成的2.4GHz的带阻滤波器或其他滤波器件。
上述实施例中,第一辐射体工作的第一频段包括wifi频段和N77N79频段,第二辐射体工作的第二频段包括MHB频段,应理解,本申请实施例并不限于此。
可选地,本申请实施例中的第一频段可以包括MHB频段或MHB频段中的部分频段和N77N79频段,第二频段包括MHB频段;或者第一频段包括wifi频段(或MHB频段或MHB频段中的部分频段)和wifi 5G频段,第二频段包括与wifi频段(或MHB频段或MHB频段中的部分频段)存在重合频段的其他频段。
本申请实施例的终端天线结构中,wifi天线和N77N79天线共用第一辐射体,可以同时实现wifi和N77N79频段的覆盖。本申请实施例中采用了两个馈电点分别为wifi天线和N77N79天线进行馈电。
图5示出了共用第一辐射体的wifi天线和N77N79天线的双端口匹配示意图。
如图5中(a)所示,第一辐射体530、带阻滤波器510和射频端口540串联,可以在射频端口540输出N77N79频段。这里的带阻滤波器510可以阻止wifi频段通过。
示例性的,发射信号时,射频能量N77N79频段信号由第一馈电点311经过带阻滤波器输入到第一辐射体310中发射出去;接收信号时,信号经过第一辐射体310接收后,接收到的wifi频段和N77N79频段的信号由第一辐射体310输入到与第一辐射体和射频端口串联的带阻滤波器中,带阻滤波器滤除wifi频段后将N77N79频段的信号输入到N77N79天线的射频端口处,从而可以实现N77N79频段的发射和接收。
如图5中(b)所示,第一辐射体530、带通滤波器520和射频端口550并联,可以在射频端口输出wifi频段。这里的带通滤波器520将N77N79频段的能量导入地下,wifi频段可以通过。
示例性的,发射信号时,射频能量wifi频段信号由第二馈电点312输入到第一辐射体310中发射出去;接收信号时,信号经过第一辐射体310接收后,接收到的wifi和N77N79频段的信号中,N77N79频段的信号被带通滤波器导入地下并通过wifi频段,输入到wifi天线的射频端口处,从而可以实现wifi频段的发射和接收。
同时第一辐射体上,两个频段的天线(如wifi天线和N77N79天线)通过频段的选择,选取各模式最佳的阻抗激励点,再结合各自的匹配网络优化,可以获得更优的阻抗匹配,从而达到优化系统效率的结果。
可选地,可以在第一辐射体上设置一个馈电点以同时实现wifi和N77N79频段的覆盖,相当于wifi天线和N77N79天线共用一个辐射体,也可以共同由同一个馈电点进行馈电。
以上对终端天线的结构进行了详细的描述,下面结合图6至图13对所描述的终端天线结构的性能进行说明。
需要说明的是,对于终端天线结构性能的仿真需要针对确定的频段或确定的辐射体结构进行,为方便理解,本申请实施例仅以上文描述的wifi频段、N77N79频段以及MHB频段和LB频段等为例进行描述。其中仿真条件为:寄生枝节的基模频率设计为1.5GHz。
图6示出了本申请一个实施例的天线的性能仿真示意图,具体而言,图6示出了wifi天线和N77N79天线的仿真反射系数S11和传输系数S12。如图6中所示,实线绘制的S44表示wifi天线的S11,点划线绘制的S55表示N77N79天线的S11,虚线绘制的S45表示 wifi天线和N77N79天线的传输系数S12,其中传输系数取反即为wifi天线和N77N79天线的的隔离度。
图中的S44表示wifi天线的反射系数S11、S45表示wifi天线与N77N79天线的传输系数S12(也可以认为是wifi天线与N77N79天线的隔离度)、S55表示N77N79天线的反射系数S11。
从图中可以看出,wifi天线在其工作频段内可以产生两次谐振,相当于wifi天线有两个谐振模式,分为位于A1(谐振频率约1.5GHz)和A2(谐振频率约2.5GHz),其中A1点的谐振模式是寄生枝节自身的基模谐振,也就是设计的寄生枝节基模频率,A2是wifi天线本体(相当于第一辐射体)自身的谐振模式,也就是wifi天线与MHB天线的工作频段有重合的频段,如wifi天线的工作频率约为2.4GHz。
N77N79天线在其工作频段内可以产生五次谐振,相当于N77N79天线有五个谐振模式,分为位于B1(谐振频率约3.4GHz)、B2(谐振频率约3.7GHz)、B3(谐振频率约4.1GHz)、B4(谐振频率约4.5GHz)、B5(谐振频率约5.0GHz)。
由虚线绘制的传输系数曲线可以看出,S12的值均在-15dBa一下,相当于wifi天线与N77N79天线的隔离度大于15dBa。也就是说,在wifi天线与N77N79天线共用第一辐射体时,可以同时实现wifi和N77N79频段的覆盖并实现15dB的隔离。
图7示出了本申请一个实施例的天线的性能仿真示意图,具体而言,图7示出了wifi天线和N77N79天线的仿真效率。如图7所示,实线绘制的是wifi天线的系统效率,虚线绘制的是wifi天线的辐射效率,点划线绘制的是N77N79up天线的系统效率,双点划线绘制的是N77N79up天线的辐射效率,N77N79up天线即是N77N79天线进行带宽展宽后的天线。
从图中可以看出,wifi天线的-4dBi效率带宽约150MHz,即在实线绘制的曲线上C2位置的频率与C1位置的频率之差;N77N79up天线的-4dBi效率带宽约2500MHz,即点划线绘制的曲线上,D2位置的频率与D1位置的频率之差。由于寄生枝节对N77N79天线的谐振补充,使得N77N79up天线具有足够的效率带宽用于提供较好的无线传输。
应理解,这里所选的效率最低值-4dBi仅仅是示例性的,依据条件也可以选择其他的效率最低值。
图6中示出了N77N79天线的谐振模式共有5种,下面结合图8对每种谐振模式的电流分布进行描述。
图8中的(a)描述了N77N79天线工作在3.4GHz时,第一辐射体的电流分布。以本申请实施例给出的第一辐射体的结构为例,在3.4GHz的谐振频率下,第一辐射体上EDLC部分有电流分布,即第一辐射体的EDLC部分在工作,形成了EDLC的槽模。
(b)描述了N77N79天线工作在3.7GHz时,第一辐射体的电流分布。以本申请实施例给出的第一辐射体的结构为例,在3.7GHz的谐振频率下,第一辐射体上EDLC部分以及ADKC部分有电流分布,即第一辐射体的EDLC部分以及ADKC部分在工作,形成了EDLC的槽模以及ADKC的四分之三模。
(c)描述了N77N79天线工作在4.1GHz时,第一辐射体的电流分布。以本申请实施例给出的第一辐射体的结构为例,在4.1GHz的谐振频率下,第一辐射体上EDLC部分、ADKC部分以及寄生枝节GF部分有电流分布,即第一辐射体的EDLC部分、ADKC部分 和寄生枝节GF部分在工作,分别形成了EDLC的槽模、ADKC的四分之三模和GF的四分之三模。
(d)描述了N77N79天线工作在4.5GHz时,第一辐射体的电流分布。以本申请实施例给出的第一辐射体的结构为例,在4.5GHz的谐振频率下,寄生枝节GF部分有电流分布,即寄生枝节GF部分在工作,形成了GF的四分之三模。
(e)描述了N77N79天线工作在5.0GHz时,第一辐射体的电流分布。以本申请实施例给出的第一辐射体的结构为例,在5.0GHz的谐振频率下,第一辐射体的BM部分有电流分布,即第一辐射体的BM部分在工作,形成了BM的四分之一模。
图8中的(f)描述了wifi天线工作在2.45GHz时,第一辐射体的电流分布。以本申请实施例给出的第一辐射体的结构为例,在2.45GHz的谐振频率下,第一辐射体的ADKC部分有电流分布,寄生枝节FG部分上也分散部分电流,即第一辐射体的ADKC部分和寄生枝节FG部分在工作,形成了ADKC的四分之一模。图(f)也说明了寄生枝节对提升wifi天线和MHB天线同频隔离度,这里FG部分分散的部分电流相当于是寄生枝节从第一辐射体吸引的电流,从而改变了第一辐射体的电流分布,达到提升wifi天线和MHB天线同频隔离度的目的。
本申请实施例中的寄生枝节既可以作为陷波器提升wifi天线和MHB天线的同频隔离度,还可以作为N77N79天线的谐振补充,展宽带宽,下面结合仿真结果对寄生枝节所实现的两个效果进行验证示意。
图9和图10示出了本申请另一个实施例的天线的性能仿真示意图,具体而言,图9和图10示出了寄生枝节对wifi天线和MHB天线的隔离度提升的示意图。图9的示意图仿真了wifi天线和MHB天线的反射系数S11和传输系数S12(S12取反即为隔离度),图10的示意图仿真了wifi天线和MHB天线的效率。
图中的S44表示wifi天线的反射系数S11,S24表示wifi天线与MHB天线的传输系数S12(也可以认为是wifi天线与MHB天线的隔离度)。
如图9,虚线绘制的曲线示出了有寄生枝节的wifi天线的S11,实线绘制的曲线示出了没有寄生枝节的wifi天线的S11,可以看出,wifi天线增加寄生枝节GF,在1.5GHz频率(图中的E1位置)增加了谐振模式,会对2.4GHz谐振产生抑制,如图10中,在2.4GHz频率,有寄生枝节的wifi天线的系统效率相比没有寄生枝节的wifi天线的系统效率降低了1.1dB(图10中F1位置与F2位置的效率之差),这里在2.4GHz谐振时系统效率降低可以理解为寄生枝节对2.4GHz谐振产生抑制。
图9中点划线绘制的曲线示出了没有寄生枝节时,wifi天线和MHB天线的S12(取反即为wifi天线与MHB天线的隔离度),较长虚线绘制的曲线示出了有寄生枝节时,wifi天线和MHB天线的S12(取反即为wifi天线与MHB天线的隔离度)。从图9中可以看出,相比没有寄生枝节时wifi天线和MHB天线的隔离度,有寄生枝节时wifi天线和MHB天线的隔离度改善了约4.3dB,即图9中E2位置和E3位置的纵坐标之差,wifi天线和MHB天线的隔离度改善。
图11和图12示出了本申请又一个实施例的天线的性能仿真示意图,具体而言,图11和图12示出了寄生枝节对N77N79天线的带宽提升的示意图。图11的示意图仿真了N77N79天线的反射系数S11,图12的示意图仿真了N77N79天线的效率。
图中的S55表示N77N79天线的反射系数S11。
实线绘制的曲线示出了有寄生枝节的N77N79天线的S11,实线绘制的曲线示出了没有寄生枝节的N77N79天线的S11,可以看出,增加寄生枝节GF时,N77N79天线在4.5GHz频率(图中的G1位置)产生谐振,相当于增加了谐振模式。从图12中,实线绘制的曲线示出了没有寄生枝节时,N77N79天线的系统效率,点划线绘制的曲线示出了有寄生枝节时,N77N79天线的系统效率,可以看出,有寄生枝节的N77N79天线的系统效率相比没有寄生枝节的N77N79天线的系统效率在4.5GHz频率提升了约1.5dB,即图12中H2位置与H1位置的效率之差。
上文提到在第二辐射体和第三辐射体上设置开关,通过改变开关闭合的状态来改善wifi天线与MHB天线的同频隔离度。图13和图14示出了本申请又一个实施例的天线的性能仿真示意图,具体而言,图13和图14示出了复用OQ枝节对wifi天线和MHB天线的隔离度提升示意图。图13的示意图仿真了wifi天线和MHB天线的反射系数S11和传输系数S12,图14的示意图仿真了wifi天线和MHB天线的效率。
图中的S42表示wifi天线与MHB天线的传输系数S12(也可以认为是wifi天线与MHB天线的隔离度),S22表示MHB天线的反射系数S11。
如图13,虚线绘制的曲线示出了第一开关SW1断开、第二开关SW2闭合后,MHB天线和wifi天线的S12(取反即第一开关SW1断开、第二开关SW2闭合后,MHB天线和wifi天线的隔离度);实线绘制的曲线示出了第一开关SW1闭合、第二开关SW2断开时,MHB天线和wifi天线的S12(取反即第一开关SW1闭合、第二开关SW2断开时,MHB天线和wifi天线的隔离度)。点划线绘制的曲线示出了第一开关SW1断开、第二开关SW2闭合后,MHB天线的S11;短虚线绘制的曲线示出了第一开关SW1闭合、第二开关SW2断开时,MHB天线的S11。本申请实施例中,SW1闭合(示例性的设置为5pF)、SW2断开的状态下,从图13中可以看出,MHB天线的谐振在2.4GHz,和wifi天线的隔离度约为12.5dB(图中J1位置);SW1断开,SW2闭合(示例性的设置为1.7pF)的状态下,将MHB天线的谐振拉低,使MHB天线在2.4GHz不构成谐振条件,同时LB天线的OQ枝节使LB天线谐振在2.4GHz,起到陷波器的作用。可以看出,断开第一开关SW1后,wifi天线和MHB天线的隔离度改善了约2.6dB,即图13中J1位置和J2位置的纵坐标之差,wifi天线和MHB天线的隔离度改善,但系统效率略有降低。综合LB天线的作用,wifi天线和MHB天线的隔离度可以改善2.6dB至15.1dB。
应理解,本申请实施例中所列举的wifi天线、N77N79天线、MHB天线或LB天线仅仅示例性的,本申请实施例的终端天线结构对满足本申请实施例中频段要求的其他天线同样适用,另外本申请实施例的终端天线结构对满足本申请实施例中频段要求的其他频段同样适用。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (13)

  1. 一种终端天线结构,其特征在于,包括:
    第一辐射体,所述第一辐射体用于传输第一频段的信号,其中,所述第一频段中至少部分频段高于预设频率;
    第二辐射体,所述第二辐射体用于传输第二频段的信号,所述第二频段与所述第一频段存在重合频段;
    寄生枝节,所述寄生枝节设置于所述第一辐射体与所述第二辐射体之间,用于减少所述第二辐射体因所述第一辐射体在所述重合频段下工作而耦合的电流,所述寄生枝节的基模频率不高于所述预设频率和/或所述寄生枝节的N倍频高于所述预设频率,其中N大于等于2。
  2. 根据权利要求1所述的终端天线结构,其特征在于,还包括:
    第三辐射体,所述第三辐射体与所述第二辐射体相邻且与所述第一辐射体不相邻,所述第二辐射体与所述第三辐射体的开放端相对设置;
    在所述第二辐射体上设置有第一开关;
    在所述第三辐射体上设置有第二开关。
  3. 根据权利要求2所述的终端天线结构,其特征在于,所述第三辐射体用于传输低频信号。
  4. 根据权利要求2或3所述的终端天线结构,其特征在于,当所述第一辐射体与所述第二辐射体传输所述重合频段的信号时,设置所述第一开关与所述第二开关的开合以及开关连接匹配状态,用于改变所述第二辐射体的谐振模式。
  5. 根据权利要求1至4中任一项所述的终端天线结构,其特征在于,所述寄生枝节一端接地时,所述寄生枝节的长度与所述寄生枝节基模频率所对应的波长的四分之一相同或近似相同。
  6. 根据权利要求1至5中任一项所述的终端天线结构,其特征在于,所述寄生枝节一端接地时,所述寄生枝节的长度与所述寄生枝节的基模频率的N倍频率所对应的波长的四分之N相同或近似相同。
  7. 根据权利要求1至4中任一项所述的终端天线结构,其特征在于,所述寄生枝节两端接地或不接地时,所述寄生枝节的长度与所述寄生枝节基模频率所对应的波长的二分之一相同或近似相同。
  8. 根据权利要求1至5中任一项所述的终端天线结构,其特征在于,所述寄生枝节两端接地或不接地时,所述寄生枝节的长度与所述寄生枝节的基模频率的N倍频率所对应的波长的二分之N相同或近似相同。
  9. 根据权利要求1至8中任一项所述的终端天线结构,其特征在于,还包括:
    与所述第一辐射体耦合馈电的第一馈电点和第二馈电点。
  10. 根据权利要求9所述的终端天线结构,其特征在于,
    所述第一馈电点用于对所述第一频段中高于预设频率的至少部分频段进行馈电;
    所述第二馈电点用于对所述第一频段中除所述高于预设频率的至少部分频段外的频 段进行馈电。
  11. 根据权利要求9或10所述的终端天线结构,其特征在于,
    所述第一频段中高于预设频率的至少部分频段用于高频通信;
    所述第一频段中除所述高于预设频率的至少部分频段外的频段用于wifi通信或中高频带宽MHB通信。
  12. 根据权利要求1至11中任一项所述的终端天线结构,其特征在于,所述寄生枝节为直线型或包括至少一个弯折部。
  13. 一种终端,其特征在于,具有如权利要求1至12中任一项所述的终端天线结构。
PCT/CN2020/074374 2019-02-22 2020-02-06 终端天线结构及终端 WO2020168916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910134016.4 2019-02-22
CN201910134016.4A CN111613898B (zh) 2019-02-22 2019-02-22 终端天线结构及终端

Publications (1)

Publication Number Publication Date
WO2020168916A1 true WO2020168916A1 (zh) 2020-08-27

Family

ID=72143728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074374 WO2020168916A1 (zh) 2019-02-22 2020-02-06 终端天线结构及终端

Country Status (2)

Country Link
CN (1) CN111613898B (zh)
WO (1) WO2020168916A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201951A (zh) * 2020-09-28 2021-01-08 上海摩勤智能技术有限公司 一种天线支架的多天线布局结构及移动终端
CN112257247A (zh) * 2020-10-16 2021-01-22 昆山睿翔讯通通信技术有限公司 一种天线组件及其设计方法
CN112993550A (zh) * 2021-02-09 2021-06-18 维沃移动通信有限公司 天线模组及电子设备
CN114583454A (zh) * 2020-11-30 2022-06-03 华为技术有限公司 天线装置及电子设备
CN115051146A (zh) * 2022-06-16 2022-09-13 领翌技术(横琴)有限公司 天线和电子设备
WO2022233248A1 (zh) * 2021-05-06 2022-11-10 荣耀终端有限公司 一种天线解耦结构、mimo天线及终端
CN115882194A (zh) * 2023-02-22 2023-03-31 合肥联宝信息技术有限公司 天线结构及电子设备
CN115954654A (zh) * 2022-01-24 2023-04-11 荣耀终端有限公司 一种终端天线和电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690570A (zh) * 2021-08-23 2021-11-23 Oppo广东移动通信有限公司 天线装置、电子设备及天线装置的设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159430A1 (zh) * 2012-04-23 2013-10-31 中兴通讯股份有限公司 多天线终端
CN104795636A (zh) * 2014-01-22 2015-07-22 联想(北京)有限公司 天线装置、电子设备和用于设置天线装置的方法
CN108470978A (zh) * 2018-03-28 2018-08-31 信维创科通信技术(北京)有限公司 基于金属框的5g mimo天线系统
CN108767478A (zh) * 2018-08-01 2018-11-06 合肥联宝信息技术有限公司 一种电子设备的天线隔离装置及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9306276B2 (en) * 2011-07-13 2016-04-05 Qualcomm Incorporated Wideband antenna system with multiple antennas and at least one parasitic element
US9608331B1 (en) * 2011-09-08 2017-03-28 Ethertronics, Inc. SAR reduction architecture and technique for wireless devices
GB201610113D0 (en) * 2016-06-09 2016-07-27 Smart Antenna Tech Ltd An antenna system for a portable device
CN107221740A (zh) * 2017-05-23 2017-09-29 维沃移动通信有限公司 一种天线装置及移动终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159430A1 (zh) * 2012-04-23 2013-10-31 中兴通讯股份有限公司 多天线终端
CN104795636A (zh) * 2014-01-22 2015-07-22 联想(北京)有限公司 天线装置、电子设备和用于设置天线装置的方法
CN108470978A (zh) * 2018-03-28 2018-08-31 信维创科通信技术(北京)有限公司 基于金属框的5g mimo天线系统
CN108767478A (zh) * 2018-08-01 2018-11-06 合肥联宝信息技术有限公司 一种电子设备的天线隔离装置及电子设备

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201951B (zh) * 2020-09-28 2023-03-10 上海摩勤智能技术有限公司 一种天线支架的多天线布局结构及移动终端
CN112201951A (zh) * 2020-09-28 2021-01-08 上海摩勤智能技术有限公司 一种天线支架的多天线布局结构及移动终端
CN112257247A (zh) * 2020-10-16 2021-01-22 昆山睿翔讯通通信技术有限公司 一种天线组件及其设计方法
CN112257247B (zh) * 2020-10-16 2024-01-09 昆山睿翔讯通通信技术有限公司 一种天线组件及其设计方法
CN114583454A (zh) * 2020-11-30 2022-06-03 华为技术有限公司 天线装置及电子设备
CN112993550B (zh) * 2021-02-09 2023-07-25 维沃移动通信有限公司 天线模组及电子设备
CN112993550A (zh) * 2021-02-09 2021-06-18 维沃移动通信有限公司 天线模组及电子设备
WO2022233248A1 (zh) * 2021-05-06 2022-11-10 荣耀终端有限公司 一种天线解耦结构、mimo天线及终端
CN115954654A (zh) * 2022-01-24 2023-04-11 荣耀终端有限公司 一种终端天线和电子设备
CN115954654B (zh) * 2022-01-24 2023-12-22 荣耀终端有限公司 一种终端天线和电子设备
CN115051146A (zh) * 2022-06-16 2022-09-13 领翌技术(横琴)有限公司 天线和电子设备
CN115882194A (zh) * 2023-02-22 2023-03-31 合肥联宝信息技术有限公司 天线结构及电子设备
CN115882194B (zh) * 2023-02-22 2023-07-07 合肥联宝信息技术有限公司 天线结构及电子设备

Also Published As

Publication number Publication date
CN111613898A (zh) 2020-09-01
CN111613898B (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2020168916A1 (zh) 终端天线结构及终端
US11342651B2 (en) Antenna apparatus and terminal device
Heino et al. Design of wavetraps for isolation improvement in compact in-band full-duplex relay antennas
CN106785463A (zh) 一种单陷波超宽带单极子天线
CN109888478B (zh) 一种基于双极化磁电偶极子的多功能射频器件
CN109755703B (zh) 一种具有高选择性的差分双频带通滤波器
WO2013175903A1 (ja) アンテナ装置及びmimo無線装置
US9478854B2 (en) Devices and methods for reducing interference between closely collocated antennas
CN207038711U (zh) 一种三频滤波微带缝隙天线
CN113271070A (zh) 一种基于pin开关的可重构功率放大器及其设计方法
CN103094676B (zh) 带有t型结构和匹配枝节的具有带阻特性的超宽带天线
CN107221748A (zh) 一种三频滤波微带缝隙天线
KR20100113938A (ko) 광대역 MIMO(Multi - Input Multi- Output) 안테나
CN204067532U (zh) 一种基于缺陷微带线的双频带通滤波器
KR20100083074A (ko) 광대역 MIMO(Multi-Input Multi-Output) 안테나
CN103943950A (zh) 一种融合槽线超宽带滤波单元的一体化超宽带天线
CN109193163A (zh) 基于枝节加载谐振器的三频滤波天线、无线电系统射频前端
WO2022001740A1 (zh) 一种电子设备
Emadeddin et al. On direct matching and efficiency improvements for integrated array antennas
Rasilainen et al. Ground clearance in smartphone antennas
CN210129580U (zh) 一种新型多频宽带微带天线
Liao et al. Wideband miniaturized 8-element sub-6 GHz MIMO antenna system for mobile handset applications
Grau et al. A distributed antenna tuning unit using a frequency reconfigurable PIXEL-antenna
Qian et al. Quadruplex Slot Antenna for Dual-standard Operation with Small Frequency Ratio
Rasilainen et al. Carrier aggregation compatible MIMO antenna for LTE handset

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759754

Country of ref document: EP

Kind code of ref document: A1