WO2013159430A1 - 多天线终端 - Google Patents

多天线终端 Download PDF

Info

Publication number
WO2013159430A1
WO2013159430A1 PCT/CN2012/076721 CN2012076721W WO2013159430A1 WO 2013159430 A1 WO2013159430 A1 WO 2013159430A1 CN 2012076721 W CN2012076721 W CN 2012076721W WO 2013159430 A1 WO2013159430 A1 WO 2013159430A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
main board
antennas
terminal according
antenna terminal
Prior art date
Application number
PCT/CN2012/076721
Other languages
English (en)
French (fr)
Inventor
陈亚军
沈俊
程守刚
秦宇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013159430A1 publication Critical patent/WO2013159430A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas

Definitions

  • the present invention relates to the field of communications, and in particular to a multi-antenna terminal.
  • BACKGROUND With the development of 4G data services of Long Term Evolution (LTE), multi-antenna technology can provide rich communication services, but mutual interference and electromagnetic crosstalk exist between multiple antennas, so that the electromagnetic environment (Electro Magnetic Compatibility) , abbreviated as EMC) variation, causing the antenna efficiency to decrease, thereby affecting the communication quality of the mobile terminal.
  • EMC Electro Magnetic Compatibility
  • the space for the mobile terminal to give the antenna is less and less.
  • the current smart mobile terminal has a complicated head space, and whether it is placed on the top of a high-frequency voice or data antenna, it also faces the problem of the Head SAR.
  • these measures not only increase the size of the antenna, but also require partial control on the radio frequency lines, and increase the terminal.
  • Complexity At the same time, the introduction of lumped components increases the Q value and loss of terminal performance, resulting in a decrease in work efficiency, and is also not conducive to control costs.
  • a multi-antenna terminal for how to properly utilize multiple antennas in a limited space and how to prevent mutual interference between multiple antennas and electromagnetic crosstalk to reduce antenna efficiency.
  • a multi-antenna terminal including: a main board, a first antenna, and a second antenna, wherein the first antenna and the second antenna are respectively connected to the main board; the first antenna and the second antenna are perpendicular to each other not intersect.
  • the first antenna and the second antenna are disposed at the same end of the main board.
  • the pins of the first antenna and the pins of the second antenna are perpendicular to each other.
  • the multi-antenna terminal further includes: an isolated component, wherein the isolated component is disposed on the main board, and is located between the projection area of the first antenna on the main board and the projection area of the second antenna on the main board.
  • the above-mentioned isolated element is made of a metal material.
  • the above metal is copper.
  • the multi-antenna terminal further includes: a grounding component, wherein the grounding component is disposed on the main board, and is located on a projection area of the first antenna or the second antenna on the main board.
  • the above-mentioned grounding element is a directing structure having a wavelength of no more than a quarter.
  • the above-mentioned grounding member is made of a metal material.
  • the above metal is copper.
  • the multi-antenna terminal further includes: a grounding component, wherein the grounding component is disposed on the main board, and is located on a projection area of the first antenna or the second antenna on the main board.
  • the main board further includes: a slot provided between the isolated component and the grounded component.
  • the first antenna and the second antenna of the multi-antenna terminal are connected to the main board perpendicularly and non-intersectingly with each other, so that the first antenna and the second antenna are orthogonal to the radiation near field, and the multi-antenna terminal is effectively reduced.
  • the mutual interference between the antennas ensures the radiation performance of multiple antennas in the same frequency band, thus ensuring the communication quality of the multi-antenna terminals.
  • FIG. 1 is a schematic diagram of a multi-antenna terminal according to a first embodiment of the present invention
  • 2 is a schematic diagram of a preferred multi-antenna terminal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another preferred multi-antenna terminal according to an embodiment of the present invention
  • FIG. 4 is a further preferred embodiment according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram of a multi-antenna terminal according to a third embodiment of the present invention.
  • Figure 6 is a schematic diagram of a multi-antenna terminal according to a third embodiment of the present invention.
  • Figure 7 is a first antenna according to a third embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a second antenna return loss versus frequency curve according to Embodiment 3 of the present invention;
  • FIG. 9 is a first antenna and a second antenna according to Embodiment 3 of the present invention; The relationship between the isolation and the frequency change curve
  • Embodiment 1 According to an embodiment of the present invention, a multi-antenna terminal is provided.
  • the first antenna and the second antenna of the multi-antenna terminal are connected to the main board perpendicularly and non-intersectingly, so that the radiation of the first antenna and the second antenna are Near field orthogonality effectively reduces mutual interference between antennas of multiple antenna terminals.
  • 1 is a schematic diagram of a multi-antenna terminal according to a first embodiment of the present invention. As shown in FIG.
  • the multi-antenna terminal mainly includes: a main board 10, a first antenna 20, and a second antenna 30, wherein the first antenna 20 and the first antenna The two antennas 30 are respectively connected to the main board 30; the first antenna 20 and the second antenna 30 are perpendicular to each other and do not intersect.
  • the first antenna 20 and the second antenna 30 of the multi-antenna terminal are connected to the main board 10 perpendicularly and non-intersectingly with each other, so that the radiation near field of the first antenna 20 and the second antenna 30 are orthogonal, effective
  • the mutual interference between the antennas of the multi-antenna terminal is reduced, and the radiation performance of the multi-antenna terminal under the same frequency band is ensured, thereby ensuring the communication quality of the multi-antenna terminal.
  • the first antenna 20 and the second antenna 30 may be connected to the main board 10 through pins, and the antenna is substantially parallel to the plane of the main board 10.
  • the pins of the first antenna 20 and the pins of the second antenna 30 may be perpendicular to each other.
  • the feed of the first antenna 20 can be The electrical pin, the shorting pin and the feeding pin of the second antenna 30 and the shorting pin are vertically placed at a distance such that the surface electric field of the first antenna 20 and the second antenna 30 are opposite in direction, and the first antenna 20 is reduced.
  • Mutual coupling with the second antenna 30 The miniaturization and ultra-thinness of the mobile terminal make the space for the antenna given to the antenna less and less.
  • the first antenna 20 and the second antenna 30 may be disposed at the same end of the main board 10, in order to utilize the limited space of the mobile terminal to integrate multiple antennas in a limited space. Further, since the head space of the smart mobile terminal is complicated, the antenna is placed on the top of the multi-antenna terminal, and the problem of the Head SAR may be caused. Therefore, the first antenna 20 and the second antenna 30 may be disposed on the smart multi-antenna terminal board. The bottom end. When the first antenna 20 and the second antenna 30 are disposed at the same end of the main board 10, in order to further reduce the mutual coupling between the antennas, in a preferred embodiment of the embodiment of the present invention, as shown in FIG.
  • the isolated ground element 40 is provided, and the isolated ground element 40 can be mounted as a separate component on the main board 10 or on the main board 10.
  • the isolated ground element 40 is located between the projection area of the first antenna 20 on the main board 10 and the projection area of the second antenna 30 on the main board 10, and can serve as a coupling path of the two antennas, so that the first antenna 20 and the second antenna
  • the near electric field of the antenna 30 forms an inverse superposition on the isolated element regions, thereby further reducing mutual interference between the two antennas.
  • the isolated component 40 can be made of a metallic material.
  • the metal for fabricating the isolated component may be copper, so that a copper-clad area is formed between the projection area of the first antenna 20 on the main board 10 and the projection area of the second antenna 30 on the main board 10, and the first antenna 20 is raised.
  • the isolated element 40 has an area of 50 to 100 mm 2 . In a preferred embodiment of the present invention, as shown in FIG.
  • the multi-antenna terminal may further include: a grounding component 50, wherein the grounding component 50 is disposed on the main board, located at the first antenna 20 or The projection area of the two antennas 30 on the main board 10 causes the first antenna 20 or the second antenna 30 to achieve secondary coupling in the area leading to the ground element 50, improving the gain in the opposite direction of the antenna, and reducing the first antenna 20 and the The two antennas 30 are mutually coupled in the upper half space.
  • the above-mentioned ground-facing element 50 is a directing structure having a wavelength of not more than a quarter.
  • the above-described grounding member 50 may be made of a metal material.
  • the metal from which the grounding element 50 is made may be copper.
  • a copper-clad region is formed on the projection area of the second antenna 30 on the main board as a guiding structure having a quarter-wavelength, so that the second antenna 30 achieves secondary coupling in the region, thereby improving the gain in the opposite direction.
  • the mutual coupling of the second antenna 30 with the first antenna 20 in its upper half space is reduced.
  • the isolated ground element 40 and the grounding element 50 may be simultaneously disposed on the main board 10, thereby further reducing mutual interference and electromagnetic crosstalk between the two antennas.
  • the main board 10 may further include a slot groove 102 disposed between the isolating component 40 and the grounding component 50.
  • the above The width of the slit groove is 0.5 to 2 mm.
  • the slot slot 102 can irritate the current on the surface of the main board 10, increasing the current path between the two antenna feeds, thereby increasing the isolation of the two antennas.
  • Embodiment 2 According to an embodiment of the present invention, a multi-antenna terminal is provided, which adopts a novel spatial multiplexing antenna technology, suppresses mutual coupling and electromagnetic crosstalk through the design of the antenna itself and the routing rules, and adds the guiding ground and isolation.
  • the role of the ground achieves the coexistence of multiple antennas in the same frequency band, solves the electromagnetic interference and mutual interference problems of the LTE multi-antenna technology in the same frequency band, and ensures the radiation performance and communication quality of the antenna when multiple antennas are working in the same frequency band.
  • the first antenna 20 in the embodiment of the present invention is an antenna carrying voice
  • the second antenna 30 in the embodiment of the present invention, an antenna carrying data
  • the antennas are connected to the main board 10 (in the embodiment of the present invention, a radio frequency (RF) circuit board) to implement voice and 4G data services respectively.
  • the main body of the first antenna 20 and the second antenna 30 are located on the main board 10. The same end.
  • the feeding pin of the first antenna 20, the shorting pin and the feeding pin of the second antenna 30, and the shorting pin are vertically placed with a certain distance, and the feeding portion and the layout portion of the two antenna wires are in a vertical state.
  • the surface electric fields of the first antenna and the second antenna are oppositely oriented to reduce mutual coupling between the antennas.
  • the projection area of the second antenna has a copper-clad area (corresponding to the above-mentioned ground-facing element 50) drawn from the floor, and functions as a quarter-wavelength guide.
  • the structure causes the second antenna 30 to achieve secondary coupling there, thereby improving the gain in the opposite direction and reducing the mutual coupling between the upper half space and the first antenna 20.
  • Embodiment 3 In the embodiment of the present invention, as shown in FIG. 5 and FIG. 6, the first antenna 1 and the second antenna 2 are connected to a Printed Circuit Broard (PCB) floor through the RF leads 7 and 9. On 5, the data and voice functions are implemented separately.
  • PCB Printed Circuit Broard
  • the first antenna 1 can be attached to the bottom of the rear case by using a process such as In-Mold Decoration (IML) or fixed to the PCB floor 5 by heat-sealing on the support to realize CDMA800&PCS1900&AWS2100 band communication,
  • An antenna 1 may be a monopole, an inverted F planar antenna (IFA), or a loop antenna (loop antenna);
  • the second antenna 2 may be attached to the bottom of the rear case by an IML process or by thermal fusion to the mount.
  • the bracket is fixed to the PCB floor 5 to realize PCS1900 & AWS2100 band communication.
  • the first antenna 1 mainly includes a main body radiating area 6, and a feeding pin 7.
  • the second antenna 2 mainly comprises a main body radiating arm 8, a feed pin 9 and a shorting arm 6.
  • the PCB floor 5 includes an isolation floor 4 (corresponding to the above-described isolated ground element 40), and a guiding structure 3 (corresponding to the above-described grounding element 50).
  • the feed pin 7 of the first antenna 1 is placed perpendicular to the feed pin 9 of the second antenna 2, while the main body radiating portion 6 of the first antenna 1 and the main radiating portion of the second antenna 2 are 8
  • the lines are perpendicular to each other, so that the radiation of the two antennas is orthogonal to the near field, effectively reducing the mutual interference of the two antennas.
  • the isolation ground 4 protruding from the PCB floor 5 the area of the isolation ground 4 is 50-100 mm 2 , and when the first antenna 1 and the second antenna 2 are simultaneously radiated, the two antennas are isolated in isolation due to the reflection of the isolation ground 4 A relatively obvious eddy current efficiency is formed in the vicinity of 4, and the radiation near field is superimposed in the opposite direction to improve the isolation between the two; the protruding ground 3 of the PCB floor 5 is located in the projection area of the second antenna 2, through the fourth
  • the one-wavelength directing structure effectively reduces the mutual coupling effect of the two antennas in the upper half space.
  • the width is 0.5 ⁇ 2 mm.
  • the slot slot 10 acts as a spoiler on the surface current of the PCB floor 5, increasing The current path between the two antenna feeds increases the isolation of the two antennas.
  • the multi-antenna terminal provided by this embodiment is proved by experiments in the normal temperature environment by the Agilent E5515C, and the experimental results are shown in Figures 7, 8 and 9. Under the guaranteed working performance, the first antenna 1 and the second antenna 2 are The standing wave curve is less than -7dB in the working frequency band and the isolation between the two in the same frequency band PCS1900 & AWS2100 has reached -14dB or more.
  • the passive efficiency of the two antennas meets the efficiency of more than 45%, and the multi-antenna work coexists.
  • the isolation ground, the ground and the slot are increased, the mutual interference between the two antennas is reduced, and the electrical performance of the antenna is ensured.
  • the present invention achieves the following technical effects: 1) by setting the first antenna and the second antenna on the same side of the main board, the multiplexing rate of the space is improved; 2) passing the first antenna And the layout of the second antenna and the feeding, the placement of the short-circuit point controls the direction of the surface electric field; 3) the isolation between the two antennas Ground, so that the near-field region of the two antennas is inversely superimposed in the isolated region, improving the isolation of the two antennas; 4) effectively reducing the two antennas by guiding the grounding structure with a quarter-wavelength The mutual coupling effect of the half space.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明公开了一种多天线终端。该多天线终端包括:主板、第一天线和第二天线,其中,第一天线与第二天线分别与主板连接;第一天线与第二天线相互垂直且不相交。通过本发明,将多天线终端的第一天线与第二天线相互垂直且不相交的连接到主板上,使得第一天线与第二天线的辐射近场正交,有效的减少多天线终端的天线之间的互扰,保证了多天线终端在同频段工作下,多天线的辐射性能和通信质量。

Description

多天线终端 技术领域 本发明涉及通信领域, 具体而言, 涉及一种多天线终端。 背景技术 随着长期演进 (Long Term Evolution, 简称为 LTE) 4G数据业务的发展, 多天线 技术可以提供丰富的通信业务, 然而多天线之间存在互扰和电磁串扰, 使得电磁环境 (Electro Magnetic Compatibility, 简称为 EMC) 变差, 引起天线效率降低, 从而影响 移动终端的通信质量。 并且, 由于移动终端的微型化和超薄化, 使得移动终端给予天 线的空间越来越少。 如何合理的利用有限的空间中集成多个天线, 如何防止在多天线 工作状态多天线之间的互扰和电磁串扰引起天线效率的降低, 以满足联邦电信委员会 ( Federal Communications Commission , 简称为 FCC ) 电磁波吸收比值 ( Specific Absourption Rate, 简称为 SAR) 的标准要求, 成为多天线终端天线布局亟需解决的难 题。 现有的多天线技术主要是需要在较大可操作空间内实现, 譬如某些双模终端将双 天线置于主板两端, 通过拉开天线间的距离来抑制天线之间的互耦影响, 但是目前的 智能移动终端顶部空间复杂, 而且无论是将高频的语音或者数据天线放置于顶部, 同 样都面临着顶部 (Head) SAR的问题。 另外, 相关技术中通过加集总元器件来抑制天 线之间的表面电流流向, 或者改变安装角度等, 这些措施不仅增加了天线的体积, 需 要在射频走线上进行部分控制, 增加了终端的复杂性; 同时, 集总元器件的引入, 增 加了终端性能的 Q值和损耗, 造成工作效率的下降, 而且也不利于控制成本。 综上可知, 相关技术中如何合理的利用有限的空间中集成多个天线, 以及如何防 止多天线之间的互扰和电磁串扰引起天线效率降低的问题, 目前尚未提出有效的解决 方案。 发明内容 针对相关技术中如何合理的利用有限的空间中集成多个天线, 以及如何防止多天 线之间的互扰和电磁串扰引起天线效率降低的问题, 本发明实施例提供了一种多天线 终端, 以至少解决上述问题之一。 根据本发明实施例, 提供了一种多天线终端, 包括: 主板、 第一天线和第二天线, 其中,第一天线与第二天线分别与主板连接;第一天线与第二天线相互垂直且不相交。 优选地, 第一天线与第二天线设置在主板的同一端。 优选地, 第一天线的引脚与第二天线的引脚相互垂直。 优选地, 上述多天线终端还包括: 隔离地元件, 其中, 隔离地元件设置在主板上, 位于第一天线在主板上的投影区域与第二天线在主板上的投影区域之间的区域。 优选地, 上述隔离地元件由金属材料制成。 优选地, 上述金属为铜。 优选地, 上述多天线终端还包括: 引向地元件, 其中, 引向地元件设置在主板上, 位于第一天线或第二天线在主板上的投影区域。 优选地, 上述引向地元件为具有不大于四分之一波长的引向结构。 优选地, 上述引向地元件由金属材料制成。 优选地, 上述金属为铜。 优选地, 上述多天线终端还包括: 引向地元件, 其中, 引向地元件设置在主板上, 位于第一天线或第二天线在主板上的投影区域。 优选地, 上述主板还包括: 设置于隔离地元件与引向地元件之间的缝隙槽。 通过本发明实施例, 将多天线终端的第一天线与第二天线相互垂直且不相交的连 接到主板上, 使得第一天线与第二天线的辐射近场正交, 有效的减少多天线终端的天 线之间的互扰, 保证了多天线终端在同频段工作下多天线的辐射性能, 从而保证了多 天线终端的通信质量。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据本发明实施例一的多天线终端的示意图; 图 2是根据本发明实施例一优选的多天线终端的示意图; 图 3是根据本发明实施例一另一优选的多天线终端的示意图; 图 4是根据本发明实施例一又一优选的多天线终端的示意图; 图 5是根据本发明实施例三的多天线终端的示意图 图 6是根据本发明实施例三的多天线终端的示意图二; 图 7是根据本发明实施例三的第一天线回波损耗随频率变化曲线的示意图; 图 8是根据本发明实施例三的第二天线回波损耗随频率变化曲线的示意图; 图 9是根据本发明实施例三的第一天线和第二天线的隔离度随频率变化曲线的示
具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 实施例一 根据本发明实施例, 提供了一种多天线终端, 将多天线终端的第一天线与第二天 线相互垂直且不相交的连接到主板上, 使得第一天线与第二天线的辐射近场正交, 有 效的减少多天线终端的天线之间的互扰。 图 1是根据本发明实施例一的多天线终端的示意图, 如图 1所示, 该多天线终端 主要包括: 主板 10、 第一天线 20和第二天线 30, 其中, 第一天线 20与第二天线 30 分别与主板 30连接; 第一天线 20与第二天线 30相互垂直且不相交。 通过本发明实施例, 将多天线终端的第一天线 20与第二天线 30相互垂直且不相 交的连接到主板 10上, 使得第一天线 20与第二天线 30的辐射近场正交,有效的减少 多天线终端的天线之间的互扰,保证了多天线终端在同频段工作下多天线的辐射性能, 从而保证了多天线终端的通信质量。 在具体实施过程中, 第一天线 20和第二天线 30可以通过引脚连接到主板 10上, 天线与主板 10平面基本平行。为了进一步降低第一天线 20与第二天线 30的互扰,第 一天线 20的引脚与第二天线 30的引脚可以相互垂直。例如,可以将第一天线 20的馈 电引脚、 短路引脚和第二天线 30的馈电引脚、 短路引脚垂直放置, 相隔一定距离, 使 得第一天线 20和第二天线 30的表面电场走向相反, 减小第一天线 20与第二天线 30 的互耦。 移动终端的微型化和超薄化, 使得移动终端给予天线的空间越来越少。 为了合理 的利用移动终端有限的空间, 在有限的空间内集成多个天线, 在本发明实施例的一个 优选实施方式中,第一天线 20与第二天线 30可以设置在主板 10的同一端。进一步的, 由于智能移动终端顶部空间复杂, 将天线放置于多天线终端的顶部, 并且可能会导致 Head SAR的问题, 因此,可以将第一天线 20和第二天线 30设置在智能多天线终端主 板的底端。 第一天线 20与第二天线 30设置在主板 10的同一端时,为了进一步降低天线之间 的互耦, 在本发明实施例的一个优选实施方式中, 如图 2所示, 可以在主板上设置隔 离地元件 40, 隔离地元件 40可以作为独立元件, 安装到主板 10上, 也可以之间设置 在主板 10上。 该隔离地元件 40位于第一天线 20在主板 10上的投影区域与第二天线 30在主板 10上的投影区域之间的区域, 可以作为两天线的耦合通道, 使得第一天线 20与第二天线 30的近电场在隔离地元件区域形成反相叠加, 从而进一步的降低两天 线之间的互扰。 进一步的, 隔离地元件 40可以由金属材料制成。优选地, 制作隔离地元件的金属 可以为铜, 从而在第一天线 20在主板 10上的投影区域与第二天线 30在主板 10上的 投影区域之间形成铺铜区域, 提高第一天线 20与第二天线 30的隔离度。 优选地, 隔 离地元件 40的面积为 50~100mm2。 在本发明实施例的一个优选实施方式中, 如图 3所示, 多天线终端还可以包括: 引向地元件 50, 其中, 引向地元件 50设置在主板上, 位于第一天线 20或第二天线 30 在主板 10上的投影区域, 使得第一天线 20或第二天线 30在引向地元件 50的区域实 现二次耦合, 提高面向天线反方向的增益, 减小第一天线 20与第二天线 30在上半空 间的互耦。 进一步的, 上述引向地元件 50为具有不大于四分之一波长的引向结构。此外, 上 述引向地元件 50可以由金属材料制成。优选地, 制作引向地元件 50的金属可以为铜。 例如,在第二天线 30在主板上的投影区域形成铺铜区域, 作为具有四分之一波长的引 向结构, 使得第二天线 30在该区域实现二次耦合, 从而提高面向反方向的增益, 减少 第二天线 30在其上半空间与第一天线 20的互耦。 在具体实施过程中, 可以在主板 10上同时设置隔离地元件 40和引向地元件 50, 从而进一步的降低两天线之间的互扰和电磁串扰。 进一步的, 在本发明实施例的一个 优选实施方式中, 如图 4所示, 上述主板 10还可以包括设置于隔离地元件 40与引向 地元件 50之间的缝隙槽 102, 优选地, 上述缝隙槽的宽度为 0.5~2mm。 该缝隙槽 102 可以对主板 10表面的电流起到扰流作用,增加了两天线馈电间的电流路径, 从而增加 了两天线的隔离度。 实施例二 根据本发明实施例, 提供了一种多天线终端, 采用新型的空间复用天线技术, 通 过天线自身的设计以及走线规则来抑制互耦以及电磁串扰, 以及加入引向地和隔离地 的作用, 实现了多天线同频段工作共存, 解决了同频段 LTE多天线技术的电磁干扰和 互扰问题, 保证了多天线在同频段工作下时天线的辐射性能和通信质量。 在本发明实施例中, 如图 1所示, 第一天线 20 (在本发明实施例中为承载语音的 天线)和第二天线 30 (在本发明实施例中为承载数据的天线),两个天线与主板 10 (在 本发明实施例中为射频 (Radio Frequency, 简称为 RF) 电路板)相连, 分别实现语音 和 4G数据业务; 第一天线 20的主体和第二天线 30位于主板 10的同一端。 第一天线 20的馈电引脚、 短路引脚和第二天线 30的馈电引脚、 短路引脚垂直放置, 且有一定 距离, 两个天线走线的馈电部分及布局部分处于垂直状态, 使得第一天线和第二天线 的表面电场为相反走向, 减少天线之间的互耦。 在本发明实施例的一个优选实施方式中, 第一天线 20和第二天线 30之间存在一 块隔离地 (相当于上述隔离地元件 40), 作为两天线的耦合通道, 在隔离地所在区域 形成反相叠加。 在本发明实施例的另一个优选实施方式中, 第二天线的投影区域有由地板引出的 铺铜区域 (相当于上述引向地元件 50), 其作用为具有四分之一波长的引向结构, 使 得第二天线 30在该处实现二次耦合, 从而提高提高面向反方向的增益,减少其在上半 空间与第一天线 20的互耦。 实施例三 在本发明实施例中, 如图 5和图 6所示, 第一天线 1和第二天线 2通过射频引线 7和 9连接到印制电路板 (Printed Circuit Broard, 简称为 PCB) 地板 5上, 分别实现 数据和语音功能。 第一天线 1可以采用模内装饰技术 (In-Mold Decoration, 简称为 IML) 等工艺贴 装于后壳的底部或通过贴装热熔到支架上与 PCB 地板 5 固定, 实现 CDMA800&PCS1900&AWS2100频段通信, 第一天线 1可以为单极天线 (monopole)、 倒 F平面天线 (IFA)、 环天线 (loop天线); 第二天线 2可以采用 IML等工艺贴装于 后壳的底部或通过贴装热熔到支架上与 PCB地板 5 固定, 实现 PCS1900&AWS2100 频段通信。 如图 5和图 6所示, 第一天线 1主要包括主体辐射区 6、 馈电引脚 7。 第二天线 2 主要包括主体辐射臂 8、 馈电引脚 9和短路臂 6。 同时 PCB地板 5包括隔离地 4 (相 当于上述隔离地元件 40), 以及引向结构 3 (相当于上述引向地元件 50)。 在本实施例中, 第一天线 1的馈电引脚 7与第二天线 2的馈电引脚 9垂直摆放, 同时第一天线 1的主体辐射部分 6和第二天线 2的主体辐射部分 8走线相互垂直, 使 得两天线的辐射近场正交, 有效的减少两个天线的互扰。 通过 PCB地板 5上伸出的隔离地 4, 隔离地 4的面积在 50~100mm2, 第一天线 1 和第二天线 2同时辐射时, 由于隔离地 4的反射作用, 使得两天线在隔离地 4附近形 成了比较明显的涡流效率, 辐射近场在此反向叠加, 提高了两者之间的隔离度; PCB 地板 5伸出的引向地 3位于第二天线 2的投影区域, 通过四分之一波长的引向结构, 有效的减少两天线在上半空间的互耦影响。 在本发明实施例的一个优选实施方式中,引向地 3和隔离地 4之间存在缝隙槽 10, 宽度在 0.5~2mm, 缝隙槽 10对于 PCB地板 5的表面电流起到扰流作用, 增加了两天 线馈电间的电流路径, 从而增加了两天线的隔离度。 采用本实施例提供的多天线终端, 在常温环境下, 通过安捷伦 E5515C经实验证 明, 实验结果如图 7、 8和 9所示, 在保证工作性能下, 第一天线 1和第二天线 2的驻 波曲线在工作频段小于 -7dB 及两者在同频段 PCS1900&AWS2100 的隔离度达到了 -14dB以上, 两天线无源效率满足 45%以上的效率, 实现了多天线工作共存。 在本发明实施例中, 通过天线形式和走线设计以及馈电的摆放, 同时增加了隔离 地, 引向地和缝隙槽, 减少了两天线间的互扰, 保证了天线的电性能。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 1 )通过将第一天线和 第二天线设置在主板的同一侧, 提高了空间的复用率; 2)通过第一天线和第二天线的 走线布局以及馈电, 短路点的放置方式控制表面电场方向; 3 )通过两天线之间的隔离 地, 使得两天线的近场区域在隔离地区域实现反向叠加, 提高两天线的隔离度; 4)通 过具有四分之一波长的引向结构的引向地,有效的减少两天线在上半空间的互耦影响。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种多天线终端, 包括: 主板、 第一天线和第二天线, 其中,
所述第一天线与所述第二天线分别与所述主板连接;
所述第一天线与所述第二天线相互垂直且不相交。
2. 根据权利要求 1所述的多天线终端, 其中, 所述第一天线与所述第二天线设置 在所述主板的同一端。
3. 根据权利要求 1或 2所述的多天线终端, 其中, 所述第一天线的引脚与所述第 二天线的引脚相互垂直。
4. 根据权利要求 1或 2所述的多天线终端, 其中, 还包括: 隔离地元件, 其中, 所述隔离地元件设置在所述主板上, 位于所述第一天线在所述主板上的投 影区域与所述第二天线在所述主板上的投影区域之间的区域。
5. 根据权利要求 4所述的多天线终端, 其中, 所述隔离地元件由金属材料制成。
6. 根据权利要求 5所述的多天线终端, 其中, 所述金属为铜。
7. 根据权利要求 1或 2所述的多天线终端, 其中, 还包括: 引向地元件, 其中, 所述引向地元件设置在所述主板上, 位于所述第一天线或所述第二天线在 所述主板上的投影区域。
8. 根据权利要求 7所述的多天线终端, 其中, 所述引向地元件为具有不大于四分 之一波长的引向结构。
9. 根据权利要求 8所述的多天线终端, 其中, 所述引向地元件由金属材料制成。
10. 根据权利要求 9所述的多天线终端, 其中, 所述金属为铜。
11. 根据权利要求 4所述的多天线终端, 其中, 还包括: 引向地元件, 其中, 所述引向地元件设置在所述主板上, 位于所述第一天线或所述第二天线在 所述主板上的投影区域。
12. 根据权利要求 11所述的多天线终端, 其中, 所述主板还包括: 设置于所述隔离 地元件与所述引向地元件之间的缝隙槽。
PCT/CN2012/076721 2012-04-23 2012-06-11 多天线终端 WO2013159430A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210121299.7 2012-04-23
CN201210121299.7A CN102738570B (zh) 2012-04-23 2012-04-23 多天线终端

Publications (1)

Publication Number Publication Date
WO2013159430A1 true WO2013159430A1 (zh) 2013-10-31

Family

ID=46993625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076721 WO2013159430A1 (zh) 2012-04-23 2012-06-11 多天线终端

Country Status (2)

Country Link
CN (1) CN102738570B (zh)
WO (1) WO2013159430A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020057292A1 (zh) * 2018-09-17 2020-03-26 中兴通讯股份有限公司 一种天线调整方法、装置以及计算机存储介质
WO2020168916A1 (zh) * 2019-02-22 2020-08-27 华为技术有限公司 终端天线结构及终端

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI539672B (zh) 2012-11-16 2016-06-21 宏碁股份有限公司 通訊裝置
CN103855468B (zh) * 2012-12-04 2016-11-23 宏碁股份有限公司 通信装置
CN103887607B (zh) * 2012-12-20 2016-12-28 联想(北京)有限公司 用于天线的连接装置和连接方法
CN203339302U (zh) * 2013-01-28 2013-12-11 中兴通讯股份有限公司 一种天线系统
CN104300232A (zh) * 2013-07-16 2015-01-21 深圳富泰宏精密工业有限公司 无线通信装置
US10312583B2 (en) 2013-09-17 2019-06-04 Laird Technologies, Inc. Antenna systems with low passive intermodulation (PIM)
WO2015041768A1 (en) * 2013-09-17 2015-03-26 Laird Technologies, Inc. Antenna systems with low passive intermodulation (pim)
CN104134871B (zh) * 2014-07-22 2016-06-08 南京邮电大学 高隔离半槽缝隙天线阵列
CN105789818A (zh) * 2014-12-17 2016-07-20 联想(北京)有限公司 一种天线及电子设备
CN104566027B (zh) * 2014-12-26 2018-10-26 生迪光电科技股份有限公司 Led照明装置、系统及其天线布置方法
KR20160120650A (ko) * 2015-04-08 2016-10-18 삼성전기주식회사 안테나 장치
CN105872415A (zh) * 2015-12-14 2016-08-17 乐视致新电子科技(天津)有限公司 一种分体式电视及其主机单元
CN109698399B (zh) * 2017-10-20 2021-04-20 深圳天珑无线科技有限公司 电子设备及其天线组件
CN108987896A (zh) * 2018-07-27 2018-12-11 深圳市信维通信股份有限公司 一种mimo天线高隔离度终端手机
CN110931973A (zh) * 2018-09-20 2020-03-27 中兴通讯股份有限公司 终端
CN112751195B (zh) * 2019-10-31 2024-06-14 珠海市魅族科技有限公司 一种终端天线系统及移动终端
CN113517557B (zh) * 2020-04-10 2023-04-28 华为技术有限公司 一种电子设备
CN113224508A (zh) * 2021-04-08 2021-08-06 荣耀终端有限公司 天线装置、电子设备及电子设备组件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080036608A1 (en) * 2006-08-08 2008-02-14 Isao Sakama Rfid tag and method for reading the same
CN202058854U (zh) * 2010-12-08 2011-11-30 上海安费诺永亿通讯电子有限公司 一种实现多频高隔离度的mimo天线结构
CN102394348A (zh) * 2011-07-08 2012-03-28 上海安费诺永亿通讯电子有限公司 一种适用于lte标准的多频段手机mimo天线结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1652402A (zh) * 2005-03-10 2005-08-10 宏达国际电子股份有限公司 同频天线整合结构及方法
CN100372173C (zh) * 2005-07-01 2008-02-27 清华大学 用于多输入多输出无线通信终端的四平面反转f天线系统
CN201117823Y (zh) * 2007-11-06 2008-09-17 斯凯科斯电子(深圳)有限公司 一种用于无线上网卡的内置分集天线
CN101499562A (zh) * 2008-02-03 2009-08-05 和硕联合科技股份有限公司 双馈入平板天线
CN201298589Y (zh) * 2008-08-06 2009-08-26 比亚迪股份有限公司 手机天线模块
US8552913B2 (en) * 2009-03-17 2013-10-08 Blackberry Limited High isolation multiple port antenna array handheld mobile communication devices
CN201638932U (zh) * 2010-01-29 2010-11-17 浙江大学 一种用于无线通信终端的平面多输入多输出天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080036608A1 (en) * 2006-08-08 2008-02-14 Isao Sakama Rfid tag and method for reading the same
CN202058854U (zh) * 2010-12-08 2011-11-30 上海安费诺永亿通讯电子有限公司 一种实现多频高隔离度的mimo天线结构
CN102394348A (zh) * 2011-07-08 2012-03-28 上海安费诺永亿通讯电子有限公司 一种适用于lte标准的多频段手机mimo天线结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020057292A1 (zh) * 2018-09-17 2020-03-26 中兴通讯股份有限公司 一种天线调整方法、装置以及计算机存储介质
WO2020168916A1 (zh) * 2019-02-22 2020-08-27 华为技术有限公司 终端天线结构及终端

Also Published As

Publication number Publication date
CN102738570A (zh) 2012-10-17
CN102738570B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2013159430A1 (zh) 多天线终端
WO2022206237A1 (zh) 天线组件及电子设备
JP5162012B1 (ja) アンテナ装置とこのアンテナ装置を備えた電子機器
EP4030556A1 (en) Electronic apparatus
WO2018150202A1 (en) Triple wideband hybrid lte slot antenna
WO2018219112A1 (zh) 一种终端多天线结构及移动终端
KR20200135552A (ko) 안테나 시스템 및 단말 기기
JP5794312B2 (ja) アンテナ装置および電子機器
CN106450752B (zh) 一种用于智能手机实现高隔离度的mimo天线
JP2014533474A (ja) マルチモードブロードバンドアンテナモジュールおよびワイヤレス端末
CN111786091B (zh) 一种天线模组和终端
WO2021233250A1 (zh) 电子设备
WO2021203939A1 (zh) 一种电子设备
US20180287249A1 (en) Antenna apparatus and electronic device
US11196169B2 (en) Printed circuit board antenna
WO2020103314A1 (zh) 基于耦合式环形天线的5g宽频mimo天线系统及移动终端
CN105098371A (zh) 一种电子设备及其天线装置
WO2013004060A1 (zh) 一种天线
US20240106119A1 (en) Antenna and Electronic Device
CN112909541B (zh) 天线装置及电子设备
TWI724738B (zh) 天線結構及具有該天線結構之無線通訊裝置
CN220439877U (zh) 一种钢片天线
CN217656069U (zh) 双频天线、遥控器及无人机系统
CN215911585U (zh) 一种智慧屏
TWI724737B (zh) 天線結構及具有該天線結構之無線通訊裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874962

Country of ref document: EP

Kind code of ref document: A1