WO2020103314A1 - 基于耦合式环形天线的5g宽频mimo天线系统及移动终端 - Google Patents

基于耦合式环形天线的5g宽频mimo天线系统及移动终端 Download PDF

Info

Publication number
WO2020103314A1
WO2020103314A1 PCT/CN2019/070602 CN2019070602W WO2020103314A1 WO 2020103314 A1 WO2020103314 A1 WO 2020103314A1 CN 2019070602 W CN2019070602 W CN 2019070602W WO 2020103314 A1 WO2020103314 A1 WO 2020103314A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
coupling
antenna
coupling branch
bracket
Prior art date
Application number
PCT/CN2019/070602
Other languages
English (en)
French (fr)
Inventor
赵安平
任周游
Original Assignee
深圳市信维通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市信维通信股份有限公司 filed Critical 深圳市信维通信股份有限公司
Priority to US16/276,123 priority Critical patent/US10720705B2/en
Publication of WO2020103314A1 publication Critical patent/WO2020103314A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present invention relates to the technical field of antennas, and in particular, to a 5G broadband MIMO antenna system and mobile terminal based on a coupled loop antenna.
  • the fifth generation mobile communication technology will be commercialized on a large scale in 2020.
  • new mobile terminal antennas and base station antennas will have a broad application market.
  • 5G is divided into low frequencies below 6 GHz (Sub-6 GHz) and high frequencies above 24 GHz (this high frequency is also commonly referred to as 5G millimeter wave).
  • 5G has many advantages, such as high transmission rate, low delay time and high reliability.
  • MIMO technology In order to achieve the high transmission rate required by 5G, the multi-input multiple output (MIMO) technology will be used in the application of 5G Sub-6GHz.
  • MIMO antenna As an important device of MIMO wireless communication system, MIMO antenna has a decisive position.
  • MIMO technology is essentially to provide time diversity gain and spatial multiplexing gain for the system. Obtaining high space diversity gain can effectively improve channel reliability, reduce channel error rate, and finally achieve the purpose of increasing data rate.
  • the peak rate of 5G technology will be more than 20 times higher than that of 4G technology, so the MIMO antenna structure of 2 or 4 antennas used in 4G systems can no longer meet the transmission requirements of 5G systems. Requirements for speed and connection reliability.
  • a MIMO antenna structure with more antennas such as an 8-antenna MIMO antenna
  • the space occupied by the antenna is proportional to the number of antennas, how to place multiple antennas in the limited space of the handheld device is a problem that needs to be solved.
  • designing a MIMO antenna structure that meets antenna efficiency and isolation between antennas becomes more complicated.
  • 5G Sub-6GHz systems Another challenge that exists in the use of 5G Sub-6GHz systems is how to design a broadband antenna system to cover all 5G Sub-6GHz frequency band.
  • 3GPP announced three frequency bands for 5G Sub-6GHz: N77 3.3 ⁇ 4.2GHz, N78 3.3 ⁇ 3.8GHz and N79 4.4 ⁇ 5.0GHz.
  • countries can choose the specific frequency bands to use in the above three frequency bands according to the specific situation. For example, on November 9, 2017, the Ministry of Industry and Information Technology of China announced the following three frequency bands: 3.3GHz ⁇ 3.4GHz, 3.4 ⁇ 3.6GHz and 4.8
  • the GHz ⁇ 5GHz frequency band is the working frequency band of China's 5G system.
  • MIMO antenna system with multiple antennas (such as 8) that has good antenna performance and can cover all sub-6 GHz frequency bands in the 5G system (that is, from 3.3 to 5 GHz).
  • the technical problem to be solved by the present invention is to provide a 5G wideband MIMO antenna system and mobile terminal based on a coupled loop antenna, which can cover all 5G frequency bands below 6 GHz and have good antenna performance.
  • a 5G broadband MIMO antenna system based on a coupled loop antenna includes at least four antenna units, the antenna unit includes a bracket, a first coupling branch, a second coupling branch, a feeding branch and a grounding branch, the first The coupling branch, the second coupling branch, the feeding branch and the grounding branch are respectively fixedly arranged on the bracket, and one end of the first coupling branch and one end of the grounding branch are in the thickness direction or length direction of the bracket In the overlapping arrangement, one end of the second coupling branch and one end of the feeding branch are overlapped in the thickness direction or the length direction of the bracket.
  • an end of the first coupling branch remote from the ground branch and an end of the second coupling branch remote from the feed branch are overlapped in the thickness direction or height direction of the bracket.
  • the overlap generated when the coupling branches are distributed on two different surfaces of the bracket is called the overlap setting in the thickness direction; the overlap generated when the coupling branches are distributed on the same surface of the bracket is called the length or height direction.
  • Overlap setting That is to say, the overlapping arrangement may be caused by the coupling branches distributed on two different faces of the bracket, or by the coupling branches distributed on the same face of the bracket.
  • first coupling branch and the feeding branch are respectively arranged on one side of the bracket, and the second coupling branch and the ground branch are respectively arranged on the other side of the bracket; the first coupling One end of the branch and one end of the second coupling branch, the other end of the first coupling branch and one end of the grounding branch, and the other end of the second coupling branch and one end of the feeding branch are all located
  • the brackets are arranged overlapping in the thickness direction.
  • the shapes of the first coupling branch and the second coupling branch are both L-shaped, and the shape of the grounding branch is the same as the shape of the feeding branch.
  • an end of the ground branch remote from the first coupling branch is provided with a ground point
  • an end of the feed branch remote from the second coupling branch is provided with a feed point
  • the antenna unit further includes a microstrip line, and the microstrip line is electrically connected to the feeding point.
  • the length value of the overlapping part of the first coupling branch and the grounding branch and the length value of the overlapping part of the second coupling branch and the feeding branch are equal.
  • the material of the bracket is dielectric material.
  • the number of the antenna elements is eight.
  • the operating frequency range of the antenna unit is 3.3 ⁇ 5GHz.
  • a mobile terminal includes the 5G broadband MIMO antenna system based on the coupled loop antenna.
  • the beneficial effect of the present invention is that: one end of the first coupling branch is connected to one end of the grounding branch and one end of the second coupling branch is not directly connected to one end of the feeding branch, but the antenna unit forms three couplings by partially overlapping
  • the area can cover all 5G frequency bands below 6GHz, and has high antenna efficiency and good isolation. It is suitable for mobile terminals such as mobile phones.
  • the antenna system of the present invention has a simple structure, is easy to process and manufacture, and has a low vertical placement height, which is beneficial to the development of the mobile terminal toward lightness and thinness.
  • FIG. 1 is a schematic structural diagram of a mobile terminal of a 5G broadband MIMO antenna system including eight antenna units according to Embodiment 1 of the present invention
  • FIG. 2 is a side view of a mobile terminal including a MIMO antenna system according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural diagram of an antenna unit according to Embodiment 1 of the present invention.
  • FIG. 4 is an S-parameter diagram of a MIMO antenna system including 8 antenna elements according to Embodiment 1 of the present invention
  • FIG. 5 is a diagram of the total antenna efficiency of a MIMO antenna system including 8 antenna units according to Embodiment 1 of the present invention.
  • FIG. 6 is a simplified schematic diagram of an antenna unit according to Embodiment 1 of the present invention.
  • FIG. 7 is a simplified schematic diagram of a loop antenna unit coupled with only the upper horizontal portion
  • FIG. 8 is a simplified schematic diagram of a loop antenna unit with only two vertical parts coupled
  • FIG. 9 is a simplified schematic diagram of a conventional loop antenna unit
  • FIG. 10 is an S-parameter diagram of the antenna unit in FIGS. 6-9.
  • PCB board 2. Antenna unit; 21, bracket; 22, first coupling branch; 221, horizontal part; 222, vertical part; 23, second coupling branch; 24, feeding branch; 241, feeding point; 25. Grounding branch; 251. Grounding point; 26. Microstrip line; 3. First position; 4. Second position; 5. Third position; 6. Fourth position.
  • the most important concept of the present invention is to isolate the conventional loop antenna on both sides and the upper part and make the loop antenna form two or three coupling regions, which can cover all 5G frequency bands below 6 GHz.
  • the purpose of adding a coupling region on top of it after having two coupling regions on both sides is to better improve the performance of the antenna.
  • a 5G broadband MIMO antenna system based on a coupled loop antenna includes at least four antenna units 2, the antenna unit 2 includes a bracket 21, a first coupling branch 22, and a second coupling branch 23.
  • Feeding branch 24 and grounding branch 25, the first coupling branch 22, the second coupling branch 23, the feeding branch 24 and the grounding branch 25 are respectively fixedly arranged on the bracket 21, and the first coupling branch 22 And the grounding branch 25 are overlapped in the thickness direction or the length direction of the bracket 21, and the second coupling branch 23 and the feeding branch 24 are on the bracket 21 Overlay in the thickness direction or the length direction.
  • the beneficial effect of the present invention is that: one end of the first coupling branch is connected to one end of the grounding branch, and one end of the second coupling branch is not directly connected to one end of the feeder branch, but the ring is partially overlapped.
  • the antenna forms three coupling areas, which can cover all 5G frequency bands below 6GHz, and the antenna has high efficiency and good isolation, and is suitable for mobile terminals such as mobile phones.
  • the antenna system of the present invention has a simple structure, is easy to process and manufacture, and has a low vertical placement height, which is beneficial to the development of the mobile terminal toward lightness and thinness.
  • overlapping the antenna branches in the thickness direction means that the antenna branches are arranged on different surfaces of the bracket, and overlapping the antenna branches in the length direction means that the antenna branches are arranged on the same surface of the bracket.
  • an end of the first coupling branch 22 far away from the ground branch 25 and an end of the second coupling branch 23 far away from the feed branch 24 are overlapped in the thickness direction or height direction of the bracket 21.
  • the overlapping of one end of the first coupling branch and the second coupling branch can further improve the antenna performance.
  • the first coupling branch and the second coupling branch are rewritten in the thickness direction, it means that the two antenna branches are installed on the bracket On different surfaces, when the first coupling branch and the second coupling branch are arranged overlapping in the height direction, it means that the two antenna branches are arranged on the same surface of the bracket.
  • first coupling branch 22 and the feeding branch 24 are respectively disposed on one side of the bracket 21, and the second coupling branch 23 and the ground branch 25 are respectively disposed on the other side of the bracket 21 ;
  • Both ends of the feed branch 24 are overlapped in the thickness direction of the bracket 21.
  • the first coupling branch and the second coupling branch, the grounding branch and the feeding branch may be arranged on different planes.
  • first coupling branch 22 and the second coupling branch 23 are both L-shaped, and the shape of the ground branch 25 is the same as the shape of the feed branch 24.
  • first coupling branch and the second coupling branch can be designed to be completely the same.
  • the shapes of the first coupling branch and the second coupling branch are not limited to L-shapes, but can also be arc-shaped or the like.
  • the shape of the grounding branch 25 is the same as the shape of the feeding branch 24.
  • an end of the ground branch 25 away from the first coupling branch 22 is provided with a ground point 251
  • an end of the feed branch 24 away from the second coupling branch 23 is provided with a feed point 241.
  • the antenna unit 2 further includes a microstrip line 26, and the microstrip line 26 is electrically connected to the feeding point 241.
  • the length value of the overlapping portion of the first coupling branch 22 and the grounding branch 25 and the length value of the overlapping portion of the second coupling branch 23 and the feeding branch 24 are equal.
  • the material of the bracket 21 is a dielectric material.
  • the bracket may be an LDS bracket, ABS plastic, or PCB board.
  • the number of the antenna unit 2 is eight.
  • the operating frequency range of the antenna unit 2 is 3.3-5 GHz.
  • the antenna system can cover all 5G frequency bands below 6 GHz.
  • FIG. 1 Another technical solution involved in the present invention is:
  • a mobile terminal includes the 5G broadband MIMO antenna system based on the coupled loop antenna.
  • the first embodiment of the present invention is:
  • a mobile terminal as shown in FIG. 1, includes a 5G broadband MIMO antenna system based on a coupled loop antenna and a PCB board 1.
  • the MIMO antenna system includes at least four antenna units 2.
  • the antenna The number of units 2 is eight, and the shape of the mobile terminal is rectangular.
  • Eight antenna units 2 are provided on two long sides of the mobile terminal, and four antenna units 2 are provided on each long side, and each long side
  • the upper antenna unit 2 is arranged symmetrically with respect to the short side. As shown in FIG.
  • the antenna units 2 in the first position 3 and the second position 4 are arranged in the same direction
  • the antenna units 2 in the third position 5 and the fourth position 6 are arranged in the same direction
  • the second position 4 is the same as
  • the installation direction of the antenna unit 2 at the third position 5 is opposite
  • the antenna unit 2 at the second position 4 and the antenna unit 2 at the third position 5 are symmetrically arranged with respect to the midpoint of the long side
  • the antenna unit 2 at the first position 3 is
  • the antenna unit 2 in the fourth position 6 is also arranged symmetrically with respect to the midpoint of the long side.
  • the above placement method of the antenna unit 2 is only a preferred placement solution.
  • the isolation between the antenna units 2 can be optimized or optimized, and the placement method of the antenna unit 2 can be changed as needed.
  • the antenna unit 2 is arranged vertically with respect to the PCB board 1, and of course, it may be arranged at other angles.
  • the antenna unit 2 includes a bracket 21, a first coupling branch 22, a second coupling branch 23, a feeding branch 24, and a grounding branch 25, the first coupling branch 22, the second coupling branch 23,
  • the feeder branch 24 and the grounding branch 25 are respectively fixed on the bracket 21.
  • one end of the first coupling branch 22 and one end of the grounding branch 25 are overlapped in the thickness direction or length direction of the bracket 21, and one end of the second coupling branch 23 is One end of the feeding branch 24 is overlapped in the thickness direction or the length direction of the bracket 21.
  • an end of the first coupling branch 22 far away from the ground branch 25 and an end of the second coupling branch 23 far away from the feeding branch 24 are overlapped in the thickness direction or height direction of the bracket 21.
  • the first coupling branch 22 and the feeding branch 24 are respectively provided on one side of the bracket 21, and the second coupling branch 23 and the ground branch 25 are respectively provided on the other side of the bracket 21;
  • One end of the first coupling branch 22 and one end of the second coupling branch 23, the other end of the first coupling branch 22 and one end of the ground branch 25, and the other end of the second coupling branch 23 are One end of the feeding branch 24 is overlapped in the thickness direction of the bracket 21, and the material of the bracket 21 is plastic or other dielectric materials.
  • the shapes of the first coupling branch 22 and the second coupling branch 23 are both L-shaped, and the lengths of the first coupling branch 22 and the second coupling branch 23 are also the same.
  • the first coupling branch 22 and the second coupling branch 23 The second coupling branch 23 may also have other shapes, such as an arc.
  • the first coupling branch 22 and the second coupling branch 23 are L-shaped, the first coupling branch 22 and the second coupling branch 23 each include a horizontal portion 221 and a vertical portion 222, and the length of the overlapping portion of the two is smaller than the The length value of the horizontal portion 221 is described.
  • the shape of the grounding branch 25 is the same as the shape of the feeding branch 24.
  • the length of the overlapping portion of the first coupling branch 22 and the grounding branch 25 and the second coupling branch 23 and the The length value of the overlapping portion of the feeder branch 24 is equal, and the length value of the overlapping portion is smaller than the length of the vertical portion 222.
  • the two vertical portions 222 are located on the left and right sides of the horizontal portion 221 respectively. The length of the three overlapping portions is used to adjust the S11 impedance matching of the antenna unit 2 and can be set according to specific needs.
  • An end of the grounding branch 25 away from the first coupling branch 22 is provided with a grounding point 251
  • an end of the feeding branch 24 away from the second coupling branch 23 is provided with a feeding point 241
  • the antenna unit 2 further includes a microstrip line 26.
  • the microstrip line 26 is electrically connected to the feeding point 241, and the microstrip line 26 is fixedly disposed on the PCB board 1.
  • a performance test was performed on a MIMO antenna system containing 8 antenna elements, in which the size of the PCB board was 150 mm ⁇ 75 mm ⁇ 0.8 mm, the length of the horizontal portion was 21.5 mm, and the first coupling branch and the second coupling branch The length of the overlapping part is 10 mm, the length of the overlapping part of the first coupling branch and the grounding branch, and the second coupling branch and the feeding branch are both 1.5 mm, and the height of the antenna unit is 6 mm.
  • Fig. 4 is an S-parameter diagram of a MIMO antenna system with 8 antenna elements. Due to the symmetry of the antenna system, only the return loss curves of the antenna element at the first position and the antenna element at the second position are given, and Only the isolation between the antenna unit at the first position and the antenna unit at the second position, the antenna unit at the second position and the antenna unit at the third position is given. From the S11 and S22 curves in Figure 4, we can see that in the frequency range of 3.3 ⁇ 5GHz, the S parameter of the antenna meets the requirement of less than -6dB; at the same time, it can be seen from the curves of S21 and S32 that the antenna The worst isolation is better than 14.6dB.
  • Figure 5 shows the total efficiency of the antenna unit (antenna 1) at the first position and the antenna unit (antenna 2) at the second position in a MIMO antenna system with 8 antenna units.
  • FIGS. 6-9 are only simplified schematic diagrams of the antenna unit. In particular, FIG. 6 represents the simplified form of FIG. 3.
  • Fig. 10 is an S-parameter diagram of the above four different antenna systems. It can be seen from the figure that the loop antenna in Fig. 8 is in the original first resonance and second when the antenna vertical part is coupled compared to the conventional loop antenna. Between resonances, that is, a new resonance is generated at about 4GHz, that is, when the loop antenna is coupled in the vertical part, there will be three resonances below 5GHz, and the return loss of each resonance is below -6dB, which can meet Requirements for the use of mobile phone antennas. Since the loop antenna in FIG. 8 adds a third resonance (at 4 GHz) between the original first resonance and the second resonance, the antenna frequency band is significantly widened to achieve broadband performance.
  • the horizontal portion of the loop antenna is also coupled, that is, the situation in FIG. 6.
  • the return loss of the three resonances is greatly reduced, and the performance of the antenna is greatly improved.
  • the present invention generates a new resonance between the first resonance and the second resonance of the conventional loop antenna for the first time in the structure based on the conventional loop antenna. It is because of this extra resonance that the coupled loop antenna of the present invention has a wide frequency and covers 5G Sub-6GHz is possible in all frequency bands.
  • the antenna design principle of the present invention can also be extended to other working frequency bands and broadband MIMO antenna systems with other different numbers of antenna units.
  • any antenna-related deformation described in the solution of the present invention will be within the scope of protection of this case, for example, the coupling branches of the antenna are in the same horizontal plane, and are not limited to the first coupling branch and the second coupling branch of this embodiment In the case of different planes, as long as the traditional loop antenna is improved so that it has three coupling regions distributed in different positions, it falls within the protection scope of this case.
  • the present invention provides a 5G broadband MIMO antenna system and mobile terminal based on a coupled loop antenna.
  • the antenna system has high antenna efficiency, good isolation, simple structure, easy processing, and low vertical placement height. It is conducive to the development of mobile terminals towards thinness and thinness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明公开了一种基于耦合式环形天线的5G宽频MIMO天线系统及移动终端,天线系统包括至少四个的天线单元,所述天线单元包括支架、第一耦合分支、第二耦合分支、馈电分支和接地分支,所述第一耦合分支的一端与所述接地分支的一端在所述支架的厚度方向上或长度方向上重叠设置,所述第二耦合分支的一端与所述馈电分支的一端在所述支架的厚度方向上或长度方向上重叠设置。本发明使得传统的环形天线变成具有三处耦合区域的耦合式环形天线。该耦合式环形天线系统的天线效率高,隔离度好,且结构简单,易于加工制作,垂直放置高度低,有利于移动终端朝轻薄化方向发展。

Description

基于耦合式环形天线的5G宽频MIMO天线系统及移动终端 技术领域
本发明涉及天线技术领域,尤其涉及一种基于耦合式环形天线的5G宽频MIMO天线系统及移动终端。
背景技术
第五代移动通信技术(5G)将在2020年大规模商用,在未来几年中,新的移动终端天线和基站天线将有很广阔的应用市场。5G分为6GHz以下(Sub-6GHz)的低频和24GHz以上的高频(这个高频通常也被称为5G的毫米波)。与目前的4G相比,5G具有很多方面的优越性,比如高的传输速率,低的延迟时间和高的可靠性等。
为了达到5G所需要的高传输速率,在5G的Sub-6GHz的应用中将采用多进多出(MIMO)的技术。MIMO天线作为MIMO无线通信系统的重要器件,有着举足轻重的地位。MIMO技术实质上是为系统提供时间分集增益和空间复用增益,获取高空间分集增益可以有效提高信道的可靠性,降低信道误码率,最后达到提高数据速率的目的。根据目前各国的研究,5G技术相比4G技术来说,其峰值速率将有20倍以上的提升,所以4G系统中使用的2个或者4个天线的MIMO天线结构已经不能满足5G系统中对传输速率和连接可靠性的要求。在5G的Sub-6GHz系统中,具有更多天线个数的MIMO天线结构,比如8个天线的MIMO天线将被应用到手持设备。因为天线占据的空间和天线的个数成正比,所以如何将多个天线放置在手持设备的有限空间内是一个需要解决的问题。此外,在手持设备日渐趋于更薄,更窄的边框(全面屏)的大环境下,设计满足天线效率和天线相互之间隔离度的MIMO天线结构变得更加复杂。
在5G Sub-6GHz系统的用于中存在的另外一个挑战就是如何设计出宽频的天线系统使其能够覆盖所有5G Sub-6GHz频段。3GPP公布了5G Sub-6GHz的三个频段为:N77 3.3~4.2GHz,N78 3.3~3.8GHz以及N79 4.4~5.0GHz。各国可以根据具体情况在上述三个频段中选取各自要使用的具体频段,比如2017年11月9日,我国国家工信部就公布下述三个频段:3.3GHz~3.4GHz,3.4~3.6GHz和4.8GHz~5GHz频段为我国5G系统的工作频段。到目前为止,虽然存在很多含有不同天线个数的MIMO的天线设计,但是大多数都是只能覆盖一个或两个5G频段。因此,设计出一种天线性能良好且能够覆盖5G系统中的Sub-6GHz所有频段(也即从3.3~5GHz)的含有多个天线个数的(如8个)MIMO天线系统显得尤为重要。
技术问题
本发明所要解决的技术问题是:提供一种基于耦合式环形天线的5G宽频MIMO天线系统及移动终端,可以覆盖6GHz以下的所有5G频段,且天线性能好。
技术解决方案
为了解决上述技术问题,本发明采用的技术方案为:
一种基于耦合式环形天线的5G宽频MIMO天线系统,包括至少四个的天线单元,所述天线单元包括支架、第一耦合分支、第二耦合分支、馈电分支和接地分支,所述第一耦合分支、第二耦合分支、馈电分支和接地分支分别固定设置于所述支架上,所述第一耦合分支的一端与所述接地分支的一端在所述支架的厚度方向上或长度方向上重叠设置,所述第二耦合分支的一端与所述馈电分支的一端在所述支架的厚度方向上或长度方向上重叠设置。
进一步的,所述第一耦合分支远离接地分支的一端与所述第二耦合分支远离馈电分支的一端在所述支架的厚度方向上或高度方向上重叠设置。
这里,当耦合分支分布在支架两个不同的面上时产生的重叠称为厚度方向上的重叠设置;当耦合分支分布在支架一个相同的面上时产生的重叠称为长度或高度方向上的重叠设置。也就是说,重叠设置可以由耦合分支分布在支架的两个不同的面上产生,也可以由耦合分支分布在支架的同一个面上产生。
进一步的,所述第一耦合分支和馈电分支分别设置于所述支架的一侧面上,所述第二耦合分支和接地分支分别设置于所述支架的另一侧面上;所述第一耦合分支的一端与所述第二耦合分支的一端、所述第一耦合分支的另一端与所述接地分支的一端以及所述第二耦合分支的另一端与所述馈电分支的一端均在所述支架的厚度方向上重叠设置。
进一步的,所述第一耦合分支和第二耦合分支的形状均为L形,所述接地分支的形状与所述馈电分支的形状相同。
进一步的,所述接地分支远离第一耦合分支的一端设有接地点,所述馈电分支远离第二耦合分支的一端设有馈电点。
进一步的,所述天线单元还包括微带线,所述微带线与所述馈电点电气连接。
进一步的,所述第一耦合分支与所述接地分支重叠部分的长度值和所述第二耦合分支与所述馈电分支重叠部分的长度值相等。
进一步的,所述支架的材质电介质材料。
进一步的,所述天线单元的数目为八个。
进一步的,所述天线单元的工作频率范围是3.3~5GHz。
有益效果
本发明涉及的另一技术方案为:
一种移动终端,包括所述的基于耦合式环形天线的5G宽频MIMO天线系统。
本发明的有益效果在于:第一耦合分支的一端与接地分支的一端以及第二耦合分支的一端与馈电分支的一端并未直接相连,而是通过部分重叠的方式使得天线单元形成三个耦合区域,可以覆盖6GHz以下的5G所有频段,且天线效率高,隔离度好,适用于手机等移动终端。本发明的天线系统,其结构简单,易于加工制作,垂直放置高度低,有利于移动终端朝轻薄化方向发展。
附图说明
图1为本发明实施例一的含有8个天线单元的5G宽频MIMO天线系统的移动终端的结构示意图;
图2为本发明实施例一的含有MIMO天线系统的移动终端的侧视图;
图3为本发明实施例一的天线单元的结构示意图;
图4为本发明实施例一的含有8个天线单元的MIMO天线系统的S-参数图;
图5为本发明实施例一的含有8个天线单元的MIMO天线系统的天线总效率图;
图6为本发明实施例一的天线单元的简化示意图;
图7为只有上边水平部耦合的环形天线单元的简化示意图;
图8为只有两边垂直部耦合的环形天线单元的简化示意图;
图9为传统的环形天线单元的简化示意图;
图10为图6~图9中的天线单元的S-参数图。
标号说明:
1、PCB板;2、天线单元;21、支架;22、第一耦合分支;221、水平部;222、垂直部;23、第二耦合分支;24、馈电分支;241、馈电点;25、接地分支;251、接地点;26、微带线;3、第一位置;4、第二位置;5、第三位置;6、第四位置。
本发明的实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。
本发明最关键的构思在于:将传统的环形天线在其两侧和上部进行隔断并使得环形天线形成两个或三个耦合区域,可以覆盖6GHz以下的5G所有频段。特别,在其具有两侧的两个耦合区域后在其上部附加一个耦合区域的目的是为了更好地提升天线的性能。
请参照图2及图3,一种基于耦合式环形天线的5G宽频MIMO天线系统,包括至少四个的天线单元2,所述天线单元2包括支架21、第一耦合分支22、第二耦合分支23、馈电分支24和接地分支25,所述第一耦合分支22、第二耦合分支23、馈电分支24和接地分支25分别固定设置于所述支架21上,所述第一耦合分支22的一端与所述接地分支25的一端在所述支架21的厚度方向上或长度方向上重叠设置,所述第二耦合分支23的一端与所述馈电分支24的一端在所述支架21的厚度方向上或长度方向上重叠设置。
从上述描述可知,本发明的有益效果在于:第一耦合分支的一端与接地分支的一端以及第二耦合分支的一端与馈电分支的一端并未直接相连,而是通过部分重叠的方式使环形天线形成三个耦合区域,可以覆盖6GHz以下的5G所有频段,且天线效率高,隔离度好,适用于手机等移动终端。本发明的天线系统,其结构简单,易于加工制作,垂直放置高度低,有利于移动终端朝轻薄化方向发展。本发明中,天线分支在厚度方向上重叠设置表示天线分支设置在支架不同的面上,天线分支在长度方向上重叠设置表示天线分支设置在支架的同一个面上。
进一步的,所述第一耦合分支22远离接地分支25的一端与所述第二耦合分支23远离馈电分支24的一端在所述支架21的厚度方向上或高度方向上重叠设置。
由上述描述可知,第一耦合分支和第二耦合分支的一端重叠设置可以进一步提高天线性能,当第一耦合分支和第二耦合分支在厚度方向上重写设置时表示两个天线分支设置在支架不同的面上,当第一耦合分支和第二耦合分支在高度方向上重叠设置时表示两个天线分支设置在支架的同一个面上。
进一步的,所述第一耦合分支22和馈电分支24分别设置于所述支架21的一侧面上,所述第二耦合分支23和接地分支25分别设置于所述支架21的另一侧面上;所述第一耦合分支22的一端与所述第二耦合分支23的一端、所述第一耦合分支22的另一端与所述接地分支25的一端以及所述第二耦合分支23的另一端与所述馈电分支24的一端均在所述支架21的厚度方向上重叠设置。
由上述描述可知,第一耦合分支与第二耦合分支、接地分支与馈电分支可以设置在不同的平面上。
进一步的,所述第一耦合分支22和第二耦合分支23的形状均为L形,所述接地分支25的形状与所述馈电分支24的形状相同。
由上述描述可知,第一耦合分支和第二耦合分支的形状、大小可以设计为完全相同,第一耦合分支和第二耦合分支的形状不限于L形,还可以是弧形等形状。
进一步的,所述接地分支25的形状与所述馈电分支24的形状相同。
进一步的,所述接地分支25远离第一耦合分支22的一端设有接地点251,所述馈电分支24远离第二耦合分支23的一端设有馈电点241。
进一步的,所述天线单元2还包括微带线26,所述微带线26与所述馈电点241电气连接。
进一步的,所述第一耦合分支22与所述接地分支25重叠部分的长度值和所述第二耦合分支23与所述馈电分支24重叠部分的长度值相等。
进一步的,所述支架21的材质为电介质材料。
由上述描述可知,支架可以为LDS支架、ABS塑料或者PCB板等。
进一步的,所述天线单元2的数目为八个。
进一步的,所述天线单元2的工作频率范围是3.3~5GHz。
由上述描述可知,天线系统可以覆盖6GHz以下的5G所有频段。
请参照图1,本发明涉及的另一技术方案为:
一种移动终端,包括所述的基于耦合式环形天线的5G宽频MIMO天线系统。
请参照图1至图10,本发明的实施例一为:
一种移动终端,如图1所示,包括基于耦合式环形天线的5G宽频MIMO天线系统和PCB板1,所述MIMO天线系统包括至少四个的天线单元2,本实施例中,所述天线单元2的数目为八个,所述移动终端的形状为矩形,八个天线单元2设置在移动终端的两个长边上,每一个长边上设有四个天线单元2,每一个长边上的天线单元2相对于短边对称设置。如图2所示,优选地,第一位置3和第二位置4的天线单元2的设置方向相同,第三位置5和第四位置6的天线单元2的设置方向相同,第二位置4与第三位置5的天线单元2的设置方向相反,且第二位置4的天线单元2与第三位置5的天线单元2相对于长边的中点对称设置,第一位置3的天线单元2与第四位置6的天线单元2也相对于长边的中点对称设置。上述天线单元2的放置方法只是一种优选的放置方案,使用该方案时可以使得天线单元2之间的隔离度达到优化或最佳,也可以根据需要改变天线单元2的放置方式。本实施例中,所述天线单元2相对于所述PCB板1垂直设置,当然也可以设置成其他的角度。
如图3所示,所述天线单元2包括支架21、第一耦合分支22、第二耦合分支23、馈电分支24和接地分支25,所述第一耦合分支22、第二耦合分支23、馈电分支24和接地分支25分别固定设置于所述支架21上。本实施例中,所述第一耦合分支22的一端与所述接地分支25的一端在所述支架21的厚度方向上或长度方向上重叠设置,所述第二耦合分支23的一端与所述馈电分支24的一端在所述支架21的厚度方向上或长度方向上重叠设置。优选的,所述第一耦合分支22远离接地分支25的一端与所述第二耦合分支23远离馈电分支24的一端在所述支架21的厚度方向上或高度方向上重叠设置。进一步优选所述第一耦合分支22和馈电分支24分别设置于所述支架21的一侧面上,所述第二耦合分支23和接地分支25分别设置于所述支架21的另一侧面上;所述第一耦合分支22的一端与所述第二耦合分支23的一端、所述第一耦合分支22的另一端与所述接地分支25的一端以及所述第二耦合分支23的另一端与所述馈电分支24的一端均在所述支架21的厚度方向上重叠设置,所述支架21的材质为塑料或其它电介质材料。本实施例中,所述第一耦合分支22和第二耦合分支23的形状均为L形,且第一耦合分支22和第二耦合分支23的长度也相同,当然第一耦合分支22和第二耦合分支23也可以是其他的形状,如弧形等。当第一耦合分支22和第二耦合分支23均为L形时,所述第一耦合分支22和第二耦合分支23均包括水平部221和垂直部222,二者重叠部分的长度值小于所述水平部221的长度值。所述接地分支25的形状与所述馈电分支24的形状相同,优选的,所述第一耦合分支22与所述接地分支25重叠部分的长度值和所述第二耦合分支23与所述馈电分支24重叠部分的长度值相等,且重叠部分的长度值小于所述垂直部222的长度。本实施例中,两个垂直部222分别位于水平部221的左右两侧,三个重叠部分的长度是用于调节天线单元2的S11阻抗匹配的,可以根据具体的需要进行设置。所述接地分支25远离第一耦合分支22的一端设有接地点251,所述馈电分支24远离第二耦合分支23的一端设有馈电点241,所述天线单元2还包括微带线26,所述微带线26与所述馈电点241电气连接,微带线26固定设置于所述PCB板1上。
本实施例中,对含有8个天线单元的MIMO天线系统进行了性能测试,其中PCB板的尺寸为150mm×75mm×0.8mm,水平部的长度为21.5mm,第一耦合分支与第二耦合分支重叠部分的长度值为10mm,第一耦合分支与接地分支以及第二耦合分支与馈电分支重叠部分的长度值均为1.5mm,天线单元的高度为6mm。
图4为含有8个天线单元的MIMO天线系统的S-参数图,由于天线系统具有对称性,因此,只给出第一位置的天线单元与第二位置的天线单元的回波损耗曲线,以及只给出第一位置的天线单元与第二位置的天线单元、第二位置的天线单元与第三位置的天线单元之间的隔离度。从图4中的S11和S22曲线中我们可以看出在3.3~5GHz的频率范围内,该天线的S参数满足小于-6dB的要求;同时从S21和S32的曲线中可以看出,天线之间的最差隔离度均优于14.6dB。
图5为含有8个天线单元的MIMO天线系统中第一位置的天线单元(天线1)与第二位置的天线单元(天线2)的总效率,从图中可以看出,在整个3.3~5GHz的范围内,天线1和天线2的总效率均优于45%。
从图4和图5我们可以看出本发明的含有8个天线单元的MIMO天线系统完全满足工作在3.3~5GHz的5G MIMO天线的带宽和隔离度的技术指标要求。
为了更好地说明本发明的天线系统的工作原理,我们以第一位置的天线单元(天线1)为例对如下四种天线类型进行比较:(1)本发明的耦合式环形天线(如图6所示);(2)只有水平部耦合的环形天线(如图7所示);(3)只有垂直部耦合的环形天线(如图8所示);(4)传统的环形天线(如图9所示)。值得注意的是,图6-图9只是天线单元的简化示意图,特别的,图6代表的就是图3的简化形式。
图10为上述四种不同天线系统的S-参数图,从图中可知,与传统的环形天线相比,当天线垂直部耦合时,图8中的环形天线在原有的第一谐振和第二谐振之间,也就是在4GHz左右产生一个新的谐振,也即在环形天线进行垂直部耦合时,在5GHz以下会有三个谐振,且每一个谐振的回波损耗均在-6dB以下,可以满足手机天线的使用需求。由于图8中的环形天线在原有的第一谐振和第二谐振之间增加了一个第三谐振(4GHz处),使得天线频带明显变宽,实现宽频性能。为了进一步改善天线的性能,使环形天线的水平部也进行耦合,即图6中的情况。从图10的结果可以看出,当一个水平部与两个垂直部同时进行耦合时,三个谐振的回波损耗均大大降低,天线的性能大大提高。
本发明在基于传统环形天线的结构中首次产生了在传统环形天线的第一个谐振和第二个谐振之间的一个新的谐振。正是由于这个额外谐振的产生,使得本发明的耦合式环形天线具有宽频和覆盖5G Sub-6GHz所有频段的可能。
本发明的天线设计原理也可以扩展到其它的工作频段以及具有其它不同数目的天线单元的宽频MIMO天线系统中。同时,任何对本发明方案描述的天线相关的变形都将在本案的保护范围之内,例如天线的耦合分支均在同一个水平面内,而不限于本实施例的第一耦合分支和第二耦合分支在不同的平面内的情况,只要是对传统的环形天线进行改进使其具有三个分布在不同位置的耦合区域都属于本案的保护范围之内。
综上所述,本发明提供的一种基于耦合式环形天线的5G宽频MIMO天线系统及移动终端,天线系统的天线效率高,隔离度好,且结构简单,易于加工制作,垂直放置高度低,有利于移动终端朝轻薄化方向发展。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种基于耦合式环形天线的5G宽频MIMO天线系统,包括至少四个的天线单元,其特征在于,所述天线单元包括支架、第一耦合分支、第二耦合分支、馈电分支和接地分支,所述第一耦合分支、第二耦合分支、馈电分支和接地分支分别固定设置于所述支架上,所述第一耦合分支的一端与所述接地分支的一端在所述支架的厚度方向上或长度方向上重叠设置,所述第二耦合分支的一端与所述馈电分支的一端在所述支架的厚度方向上或长度方向上重叠设置。
  2. 根据权利要求1所述的基于耦合式环形天线的5G宽频MIMO天线系统,其特征在于,所述第一耦合分支远离接地分支的一端与所述第二耦合分支远离馈电分支的一端在所述支架的厚度方向上或高度方向上重叠设置。
  3. 根据权利要求2所述的基于耦合式环形天线的5G宽频MIMO天线系统,其特征在于,所述第一耦合分支和馈电分支分别设置于所述支架的一侧面上,所述第二耦合分支和接地分支分别设置于所述支架的另一侧面上;所述第一耦合分支的一端与所述第二耦合分支的一端、所述第一耦合分支的另一端与所述接地分支的一端以及所述第二耦合分支的另一端与所述馈电分支的一端均在所述支架的厚度方向上重叠设置。
  4. 根据权利要求1所述的基于耦合式环形天线的5G宽频MIMO天线系统,其特征在于,所述第一耦合分支和第二耦合分支的形状均为L形,所述接地分支的形状与所述馈电分支的形状相同。
  5. 根据权利要求1所述的基于耦合式环形天线的5G宽频MIMO天线系统,其特征在于,所述接地分支远离第一耦合分支的一端设有接地点,所述馈电分支远离第二耦合分支的一端设有馈电点。
  6. 根据权利要求4所述的基于耦合式环形天线的5G宽频MIMO天线系统,其特征在于,所述天线单元还包括微带线,所述微带线与所述馈电点电气连接。
  7. 根据权利要求1所述的基于耦合式环形天线的5G宽频MIMO天线系统,其特征在于,所述第一耦合分支与所述接地分支重叠部分的长度值和所述第二耦合分支与所述馈电分支重叠部分的长度值相等。
  8. 根据权利要求1所述的基于耦合式环形天线的5G宽频MIMO天线系统,其特征在于,所述支架的材质为电介质材料。
  9. 根据权利要求1所述的基于耦合式环形天线的5G宽频MIMO天线系统,其特征在于,所述天线单元的工作频率范围是3.3~5GHz。
  10. 一种移动终端,其特征在于,包括权利要求1-9任意一项所述的基于耦合式环形天线的5G宽频MIMO天线系统。
PCT/CN2019/070602 2018-11-19 2019-01-07 基于耦合式环形天线的5g宽频mimo天线系统及移动终端 WO2020103314A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/276,123 US10720705B2 (en) 2018-11-19 2019-02-14 5G wideband MIMO antenna system based on coupled loop antennas and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811374186.1 2018-11-19
CN201811374186.1A CN109509965B (zh) 2018-11-19 2018-11-19 基于耦合式环形天线的5g宽频mimo天线系统及移动终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/276,123 Continuation US10720705B2 (en) 2018-11-19 2019-02-14 5G wideband MIMO antenna system based on coupled loop antennas and mobile terminal

Publications (1)

Publication Number Publication Date
WO2020103314A1 true WO2020103314A1 (zh) 2020-05-28

Family

ID=65748988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070602 WO2020103314A1 (zh) 2018-11-19 2019-01-07 基于耦合式环形天线的5g宽频mimo天线系统及移动终端

Country Status (2)

Country Link
CN (1) CN109509965B (zh)
WO (1) WO2020103314A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904628B (zh) * 2019-04-17 2021-04-02 华东交通大学 一种智能终端天线阵列
CN111864350B (zh) 2019-04-29 2021-08-24 北京小米移动软件有限公司 天线和终端
US20210313697A1 (en) * 2020-04-02 2021-10-07 Star Systems International Limited Patch antenna

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202121074U (zh) * 2011-06-16 2012-01-18 国民技术股份有限公司 一种用于rfid阅读器的天线及rfid阅读器
WO2016138650A1 (en) * 2015-03-04 2016-09-09 Huawei Technologies Co.,Ltd. Multiple input multiple output wireless antenna structures and communication device
CN106169653A (zh) * 2016-08-22 2016-11-30 南京信息工程大学 手持终端8天线mimo系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202121074U (zh) * 2011-06-16 2012-01-18 国民技术股份有限公司 一种用于rfid阅读器的天线及rfid阅读器
WO2016138650A1 (en) * 2015-03-04 2016-09-09 Huawei Technologies Co.,Ltd. Multiple input multiple output wireless antenna structures and communication device
CN106169653A (zh) * 2016-08-22 2016-11-30 南京信息工程大学 手持终端8天线mimo系统

Also Published As

Publication number Publication date
CN109509965A (zh) 2019-03-22
CN109509965B (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
KR101166089B1 (ko) 다중 대역 mimo안테나
CN108565544B (zh) 一种超宽带5g mimo天线结构
TWI662741B (zh) 天線結構及具有該天線結構的無線通訊裝置
TWI420743B (zh) 用於電子裝置之雙頻印刷電路天線
US9748661B2 (en) Antenna for achieving effects of MIMO antenna
TWI476989B (zh) 多頻天線
KR20200135552A (ko) 안테나 시스템 및 단말 기기
US10720705B2 (en) 5G wideband MIMO antenna system based on coupled loop antennas and mobile terminal
CN101388494B (zh) 多天线整合模组
CN104134856A (zh) 一种双极化宽频天线振子单元以及宽频双极化天线
CN109904628B (zh) 一种智能终端天线阵列
WO2014106465A1 (zh) 印刷电路板天线和印刷电路板
WO2020103314A1 (zh) 基于耦合式环形天线的5g宽频mimo天线系统及移动终端
CN109841943B (zh) 应用于5g通信的三频mimo天线系统及移动终端
TWI446626B (zh) 寬頻行動通訊天線
CN113193360A (zh) 基于电磁耦合抵消的自解耦mimo天线
CN104157969A (zh) 一种基于调节阻抗匹配技术的宽频带mimo双天线
CN112117539A (zh) 一种高隔离度5g宽带mimo天线系统
TW201407881A (zh) 通訊裝置
US8860621B2 (en) Dipole antenna and mobile communication terminal
WO2020147172A1 (zh) 5g mimo 天线系统及手持设备
TWM551355U (zh) 具有多個接地共振器之可撓性聚合物天線
EP3407423A1 (en) Antenna structure
TWI707500B (zh) 雙頻天線結構
US11342669B2 (en) Antenna structure and wireless communication device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888194

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/09/2021)