WO2020168879A1 - 极片、电芯以及电池 - Google Patents

极片、电芯以及电池 Download PDF

Info

Publication number
WO2020168879A1
WO2020168879A1 PCT/CN2020/072824 CN2020072824W WO2020168879A1 WO 2020168879 A1 WO2020168879 A1 WO 2020168879A1 CN 2020072824 W CN2020072824 W CN 2020072824W WO 2020168879 A1 WO2020168879 A1 WO 2020168879A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
conductive layer
active material
material layer
end surface
Prior art date
Application number
PCT/CN2020/072824
Other languages
English (en)
French (fr)
Inventor
李帅
余仕禧
张正德
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Publication of WO2020168879A1 publication Critical patent/WO2020168879A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of batteries, in particular to a pole piece, battery cell and battery.
  • lithium-ion battery structures mainly include winding type and laminated type. Considering that the production process of laminated batteries is complicated, the rate of excellence is low, and the cost is high, most of the batteries adopt the winding structure, the common winding structure
  • the battery requires a positive pole piece, a negative pole piece and two separators to be superimposed into a four-layer structure to be wound simultaneously, and it is difficult to control the dislocation of the wound pole pieces.
  • Common lithium-ion batteries use copper foil and aluminum foil as the current collector. Through the coating process, the negative electrode material is coated on both sides of the copper foil to prepare the negative pole piece, and the positive electrode material is coated on both sides of the aluminum foil to prepare the positive pole piece.
  • the disadvantages of common lithium-ion batteries are: battery energy density is low, isolation membrane and current collector occupy more space of lithium-ion battery; battery safety performance is poor, metal current collector cutting burrs are large, empty aluminum foil is exposed, and the battery is hot after short circuit
  • the risk of loss of control is high; the battery production cost is high, and the slitting and cutting blades are frequently changed; the winding equipment is complicated; the production yield is low and the quality is uneven.
  • one purpose of the present application is to provide a pole piece, which can reduce the misalignment of the sheet during winding, thereby improving the production qualification rate of the battery and also improving the quality and energy density of the battery.
  • This application further proposes a battery cell.
  • This application further proposes a battery.
  • the pole piece according to the present application includes: an insulating base, a first conductive layer, a second conductive layer, a first active material layer, and a second active material layer.
  • the insulating substrate includes a first surface and a second surface opposite to each other; the first conductive layer is disposed on the first surface; the second conductive layer is disposed on the second surface; the first active material layer Is disposed on the first conductive layer; the second active material layer is disposed on the second conductive layer, and the first active material layer and the second active material layer have opposite polarities.
  • the positive pole piece and the negative pole piece can be integrated on one pole piece through the coordination of the insulating substrate, the first conductive layer, the second conductive layer, the first active material layer, and the second active material layer. Reduce the requirements for battery winding equipment, and reduce the dislocation of pole pieces during winding, thereby improving the production yield rate of the battery. Moreover, by providing the first conductive layer and the second conductive layer on the insulating substrate, the poles can be reduced. The metal content of the sheet can improve the quality and energy density of the battery.
  • the thickness of the insulating substrate is 6-8 ⁇ m
  • the thickness of the first conductive layer and the second conductive layer are both 2-3 ⁇ m
  • the total thickness of the layer and the second conductive layer is 10-14 ⁇ m.
  • the insulating base in the length direction of the insulating base, includes a first end surface and a second end surface opposed to each other, and the minimum distance between the first conductive layer and the first end surface is L1
  • the minimum distance between the second conductive layer and the first end surface is L2, where L2 is greater than L1.
  • the minimum distance between the first active material layer and the first end surface is L1'; the second active material layer and the first The minimum distance of the end face is L2', where L2' is greater than L1'.
  • L1' is greater than L1
  • the first conductive layer includes a first uncoated area for arranging the first tab.
  • the distance between the first tab and the first end surface is L3, and L3 is smaller than L2.
  • the minimum distance between the first conductive layer and the second end surface is L4; the minimum distance between the second conductive layer and the second end surface The distance is L5, where L4 is greater than L5.
  • the minimum distance between the first active material layer and the second end surface is L4'; the second active material layer and the second The minimum distance of the end face is L5', where L4' is greater than L5'.
  • L5' is greater than L5
  • the second conductive layer includes a second uncoated area for arranging a second tab.
  • the distance between the second tab and the second end surface is L6, and L6 is smaller than L4.
  • the insulating matrix includes one or more of polyimide, polyethylene, polyvinylidene fluoride, and polytetrafluoroethylene.
  • the first conductive layer includes one or more of aluminum, titanium, stainless steel, aluminum alloy, and titanium alloy; the second conductive layer includes copper, titanium, nickel, copper alloy, One or more of nickel alloy and titanium alloy.
  • the first active material layer includes one or more of lithium cobaltate, lithium manganate, lithium titanate, lithium iron phosphate, and lithium nickel cobalt manganate;
  • the material layer includes one or more of graphite, silicon, and lithium titanate.
  • the battery cell according to the present application includes: an isolation film and a pole piece, the pole piece is the above-mentioned pole piece, and the pole piece and the isolation film are wound.
  • the battery according to the present application includes an electrolyte, a packaging shell and a battery cell, and the battery cell is the above-mentioned battery cell.
  • Figure 1 is a cross-sectional view of a pole piece according to an embodiment of the present application.
  • FIG. 2 is a schematic view of the stacking of the insulating substrate, the first conductive layer, the second conductive layer, the first active material layer, and the second active material layer of the pole piece according to an embodiment of the present application;
  • Figure 3 is a cross-sectional view of a battery according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a battery winding device according to an embodiment of the present application.
  • Insulating base 1 first surface 11; second surface 12; first end surface 13; second end surface 14;
  • First conductive layer 2 First uncoated area 21; first tab 22;
  • Second conductive layer 3 Second uncoated area 31; second tab 32;
  • Winding device 30 core 301; first roll 302; second roll 303;
  • Pole piece 10' Pole piece 10'; first active material 4'; second active material 5'.
  • the pole piece 10 of the embodiment of the present application includes: an insulating base 1, a first conductive layer 2, a second conductive layer 3, a first active material layer 4 and a second active material layer 5.
  • the insulating substrate 1 may include a first surface 11 and a second surface 12 oppositely disposed. It should be noted that, as shown in FIG. 1, the first conductive layer 2 is disposed on the first surface 11, and the second conductive layer 3 is disposed on the second surface. On the two surfaces 12, the first active material layer 4 is disposed on the first conductive layer 2, and the second active material layer 5 is disposed on the second conductive layer 3.
  • the first active material layer 4 and the second active material layer 5 have opposite polarities.
  • the first active material layer 4 is a positive electrode active material layer
  • the second active material layer 5 is a negative electrode active material layer.
  • the first active material layer 4 is a negative electrode active material layer
  • the second active material layer 5 is a positive electrode active material layer.
  • the positive pole piece and the negative pole piece can be integrated in one pole.
  • the pole piece 10 is made to take into account the characteristics of the positive pole piece and the negative pole piece.
  • the requirements on the battery winding equipment 30 can be reduced, and by integrating the positive pole piece and the negative pole piece, the relative position stability of the positive pole piece and the negative pole piece can be improved, and the separation of the positive electrode can be prevented.
  • the pole piece, the negative pole piece and the separator are misaligned during winding, which can improve the production qualification rate of the battery.
  • the quality of the current collector of the pole piece 10 can be made smaller than that of the conventional metal foil as the substrate, thereby improving the battery quality. Energy Density.
  • the thickness of the insulating substrate 1 can be set to 6-8 ⁇ m
  • the thickness of the first conductive layer 2 and the second conductive layer 3 can both be set to 2-3 ⁇ m
  • the insulating substrate 1 the first conductive layer
  • the total thickness of 2 and the second conductive layer 3 is 10-14 ⁇ m.
  • the first conductive layer 2 and the second conductive layer 3 can be respectively plated on the upper surface and the lower surface of the insulating substrate 1 with a thickness of 6-8 ⁇ m by means of magnetron sputtering.
  • Both the first conductive layer 2 and the second conductive layer 3 can be conductive metal.
  • Such a configuration can reduce the relative thickness of the pole piece 10 and the existing pole piece, and can increase the volume energy density of the battery.
  • the insulating base 1 in the length direction of the insulating base 1 (ie, the left and right directions in FIG. 1), may include a first end surface 13 and a second end surface 14 that are arranged oppositely, and a first conductive layer 2
  • the minimum distance between the second conductive layer 3 and the first end surface 13 is L1
  • the minimum distance between the second conductive layer 3 and the first end surface 13 is L2, and L2 is greater than L1.
  • the tab can be close The right end of the first conductive layer 2 is provided, so that the setting area of the tab and the second conductive layer 3 do not overlap in the vertical direction.
  • the welding burr pierces the insulating substrate 1, it can prevent the first conductive layer 2 and the second conductive layer
  • the two conductive layers 3 are conductive, so that the risk of short circuit of the pole piece 10 can be reduced, and the safety of the pole piece 10 can be improved.
  • the minimum distance between the first active material layer 4 and the first end surface 13 is L1', and the second active material layer 5 is The minimum distance of one end surface 13 is L2', and L2' is greater than L1'.
  • the first conductive layer 2 may include: a first uncoated area 21, and the first uncoated area 21 may be used to provide the first tab 22.
  • L1' is greater than L1
  • setting L2 to be greater than L1 at the same time can ensure that the second conductive layer 3 and the second active material layer 5 on the second surface 12 of the insulating base 1 opposite to the first tab 22 are not provided with the second conductive layer 3 and the second active material layer 5, which can prevent welding burrs from piercing the insulation
  • the internal short circuit of the pole piece 10 occurs after the substrate 1, so that the safety performance of the pole piece 10 can be improved.
  • the distance between the first tab 22 and the first end surface 13 can be set to L3, and L3 is smaller than L2, where the leftmost end of the first tab 22 and the first end surface
  • the distance of 13 can be set to L3. This setting can further ensure that the second surface 12 of the insulating substrate 1 opposite to the first tab 22 is not provided with the second conductive layer 3 and the second active material layer 5, which can better The internal short circuit of the pole piece 10 after the welding burr pierces the insulating base 1 is avoided, so that the safety performance of the pole piece 10 can be further improved.
  • the minimum distance between the first conductive layer 2 and the second end surface 14 can be set to L4, and the second conductive layer 3 and the second The minimum distance of the end surface 14 can be set to L5, and L4 is greater than L5.
  • the tab can be arranged close to the left end of the second conductive layer 3, so that the setting can make the setting area of the tab There is no overlap area with the first conductive layer 2 in the up and down direction. If the welding burr pierces the insulating substrate 1, the first conductive layer 2 and the second conductive layer 3 can be prevented from conducting, thereby reducing the risk of short circuit of the pole piece 10, and thus The use safety of the pole piece 10 can be improved.
  • the minimum distance between the first active material layer 4 and the second end surface 14 may be set to L4', and the second active material layer 5
  • the minimum distance from the second end surface 14 can be set to L5', and L4' is greater than L5'.
  • the second conductive layer 3 may include: a second uncoated area 31, and the second uncoated area 31 may be used to provide the second tab 32.
  • L5' is greater than L5. This arrangement can ensure that the second uncoated area 31 is formed on the left side of the second active material layer 5, and the welding position of the second tab 32 can be ensured.
  • the distance between the second tab 32 and the second end surface 14 can be set to L6, and L6 is smaller than L4, where L6 is the distance between the rightmost end of the second tab 32 and the second end surface 14.
  • This setting can further ensure that the first conductive layer 2 and the first active material layer 4 on the first surface 11 of the insulating base 1 opposite to the first tab 22 are not provided with the first conductive layer 2 and the first active material layer 4, which can better avoid welding burrs from piercing the insulation
  • the internal short circuit of the pole piece 10 occurs after the substrate 1, so that the safety performance of the pole piece 10 can be further improved.
  • the insulating base 1 may include one or more of polyimide, polyethylene, polyvinylidene fluoride, and polytetrafluoroethylene. Such a configuration can make the insulating base 1 a material In order to insulate the organic material, the metal content of the pole piece 10 can be further reduced, so that the lightweight design of the pole piece 10 can be realized, and the mass energy density of the pole piece 10 can be further improved.
  • the first conductive layer 2 when the first conductive layer 2 is a positive electrode conductive layer, the first conductive layer 2 may include one or more of aluminum, titanium, stainless steel, aluminum alloy, and titanium alloy, and the second conductive layer
  • the second conductive layer 3 When 3 is the negative conductive layer, the second conductive layer 3 may include one or more of copper, titanium, nickel, copper alloy, nickel alloy, and titanium alloy.
  • This arrangement can make the first conductive layer 2, the second conductive layer 3 The manufacturing materials are more reasonable, which can ensure the working performance of the first conductive layer 2 and the second conductive layer 3.
  • the first conductive layer 2 and the second conductive layer 3 are arranged on the insulating substrate 1 by means of thin film coating. The amount of metal materials can be reduced, and the mass energy density of the pole piece 10 can be better improved.
  • the first active material layer 4 when the first active material layer 4 is a positive electrode active material, the first active material layer 4 may include lithium cobaltate, lithium manganate, lithium titanate, lithium iron phosphate, and lithium nickel cobalt manganate.
  • the second active material layer 5 when the second active material layer 5 is a negative electrode active material, the second active material layer 5 may include one or more of graphite, silicon, and lithium titanate. Among them, by integrating the positive pole piece and the negative pole piece on one pole piece 10, this arrangement can increase the proportion of the active material in the pole piece 10, and can increase the volume energy density of the battery.
  • the cell 20 includes an isolation film 201 and a pole piece 10.
  • the pole piece 10 can be configured as the pole piece 10 of the above embodiment, and the pole piece 10 and the isolation film 201 are wound around. Among them, through a conventional winding process, one pole piece 10 and one isolation film 201 can be wound into a single cell 20, which can reduce the amount of isolation film 201, increase the proportion of active material, and increase the electrical power. The volumetric energy density of the core 20.
  • the pole piece 10 of the application has lower requirements on the winding equipment 30.
  • the pole piece 10 of the present application can improve the problem of misalignment of the positive pole piece and the negative pole piece during winding, and can improve the production yield and efficiency of the battery 20, thereby The production cost of the battery core 20 is reduced.
  • the length and width of the first conductive layer 2 and the second conductive layer 3 may be determined according to the welding position of the tab.
  • both the right and left ends of the first active material layer 4 may be provided with green glue 6, and the distance between the green glue 6 at the right end of the first active material layer 4 and the first end surface 13 is smaller than that of the first conductive layer 2.
  • the distance between the right end and the first end surface 13 is such that the green glue 6 can cover the first tab 22, which can prevent welding burrs from piercing the tab 10, thereby reducing the risk of thermal runaway of the battery core 20.
  • the left end of the second active material layer 5 may be provided with a green glue 6, where the distance between the green glue 6 and the second end surface 14 may be greater than the distance of the second conductive layer 3.
  • the distance of the second end surface 14 is set in such a way that the green glue 6 covers the second tab 32, thereby preventing welding burrs from piercing the pole piece 10, thereby reducing the risk of thermal runaway of the battery core 20.
  • the winding device 30 may include: a winding core 301, a first roller 302, and a second roller 303.
  • the first roller 302 may be an unwinding roller for the pole piece 10
  • the second roller 303 can be an unwinding roll of the isolation film 201.
  • the pole piece 10 and the isolation film 201 are wound into a single battery core 20 through the core 301 (as shown in Figure 3).
  • the misalignment is easy to control , Can reduce the yield loss caused by the dislocation of the positive pole piece and the negative pole piece, thereby improving the product yield and reducing the production cost of the battery core 20.
  • the battery according to the embodiment of the present application includes an electrolyte, a packaging case, and a battery core 20.
  • the battery core 20 can be configured as the battery core 20 of the above-mentioned embodiment. This configuration can increase the energy density of the battery, reduce the risk of short circuits in the battery, and improve the safety performance of the battery.
  • the metal plating layer can be avoided when the pole piece 10 is cut, and only the insulating substrate 1 is cut.
  • the cutting positions are made of insulating materials, avoiding the cutting of metal materials, which can effectively control cutting burrs, improve the K value of the battery, and improve the safety performance of the battery. What needs to be explained is: the cutting position refers to the area on the insulating substrate 1 that is not coated with any material, and the battery K value refers to the voltage drop of the battery per unit time, which is an indicator used to measure the self-discharge rate of the lithium battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种极片、电芯以及电池,极片(10)包括:绝缘基体(1)、第一导电层(2)、第二导电层(3)、第一活性物质层(4)和第二活性物质层(5)。绝缘基体(1)包括相对的第一表面(11)和第二表面(12);第一导电层(2)设置于第一表面(11);第二导电层(3)设置于第二表面(12);第一活性物质层(4)设置于第一导电层(2);第二活性物质层(5)设置于第二导电层(3)。由此,能够将正极极片和负极极片集成在一条极片上,可以降低对电池的卷绕设备的要求,也可以减少极片卷绕时错位,从而可以提升电池的生产合格率,并且,通过在绝缘基体(1)上设置第一导电层(2)、第二导电层(3),能够降低极片金属含量,可以提高电池质量能量密度。

Description

极片、电芯以及电池 技术领域
本申请涉及电池领域,尤其是涉及一种极片、电芯以及电池。
背景技术
目前,锂离子电池结构主要有卷绕式与叠片式,考虑到叠片式电池的生产工艺复杂,优率低,成本高,大部分电池均采用卷绕式结构,常见的卷绕式结构电池需要正极极片、负极极片和两条隔离膜叠加为四层结构同时卷绕,卷绕极片错位难控制。常见锂离子电池均使用铜箔、铝箔作为集流体,通过涂布工艺,在铜箔两面涂覆负极材料制备负极极片,铝箔两面涂覆正极材料制备正极极片,极片裁切时,毛刺较大,需保证切刀足够锋利,避免毛刺超标。常见锂离子电池极耳焊接位置均处于极片留白位置,因此在制备正、负极极片时,需预留部分空箔材区域,用于焊接极耳,造成金属铝外露较多,金属铝与满充负极接触,极易造成电池短路热失控。
常见锂离子电池的缺点为:电池能量密度低,隔离膜与集流体占据锂离子电池较多的空间;电池安全性能较差,金属集流体裁切毛刺大,空铝箔外露多,电池短路后热失控风险大;电池生产成本高,分条、裁切频换切刀;卷绕设备复杂;生产优率低,品质参差不齐。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种极片,该极片可以减少片卷绕时错位,从而可以提升电池的生产合格率,还可以提高电池质量能量密度。
本申请进一步地提出了一种电芯。
本申请进一步地提出了一种电池。
根据本申请的极片包括:绝缘基体、第一导电层、第二导电层、第一活性物质层和第二活性物质层。所述绝缘基体包括相对的第一表面和第二表面;所述第一导电层设置于所述第一表面;所述第二导电层设置于所述第二表面;所述第一活性物质层设置于所述第一导电层;所述第二活性物质层设置于所述第二导电层,所述第一活性物质层与所 述第二活性物质层极性相反。
根据本申请的极片,通过绝缘基体、第一导电层、第二导电层、第一活性物质层和第二活性物质层配合,能够将正极极片和负极极片集成在一条极片上,可以降低对电池的卷绕设备的要求,也可以减少极片卷绕时错位,从而可以提升电池的生产合格率,并且,通过在绝缘基体上设置第一导电层、第二导电层,能够降低极片金属含量,可以提高电池质量能量密度。
在本申请的一些示例中,所述绝缘基体的厚度为6-8μm,所述第一导电层和所述第二导电层的厚度均为2-3μm,所述绝缘基体、所述第一导电层和所述第二导电层的总厚度为10-14μm。
在本申请的一些示例中,在所述绝缘基体的长度方向上,所述绝缘基体包括相对的第一端面和第二端面,所述第一导电层与所述第一端面的最小距离为L1;所述第二导电层与所述第一端面的最小距离为L2,其中L2大于L1。
在本申请的一些示例中,在所述绝缘基体的长度方向上,所述第一活性物质层与所述第一端面的最小距离为L1’;所述第二活性物质层与所述第一端面的最小距离为L2’,其中L2’大于L1’。
在本申请的一些示例中,L1’大于L1,所述第一导电层包括第一未涂覆区,用于设置第一极耳。
在本申请的一些示例中,所述第一极耳与所述第一端面的距离为L3,L3小于L2。
在本申请的一些示例中,在所述绝缘基体的长度方向上,所述第一导电层与所述第二端面的最小距离为L4;所述第二导电层与所述第二端面的最小距离为L5,其中L4大于L5。
在本申请的一些示例中,在所述绝缘基体的长度方向上,所述第一活性物质层与所述第二端面的最小距离为L4’;所述第二活性物质层与所述第二端面的最小距离为L5’,其中L4’大于L5’。
在本申请的一些示例中,L5’大于L5,所述第二导电层包括第二未涂覆区,用于设置第二极耳。
在本申请的一些示例中,所述第二极耳与所述第二端面的距离为L6,L6小于L4。
在本申请的一些示例中,所述绝缘基体包括聚酰亚胺、聚乙烯、聚偏氟乙烯、聚四氟乙烯中的一种或多种。
在本申请的一些示例中,所述第一导电层包括铝、钛、不锈钢、铝合金和钛合金中的一种或多种;所述第二导电层包括铜、钛、镍、铜合金、镍合金和钛合金的一种或多 种。
在本申请的一些示例中,所述第一活性物质层包括钴酸锂、锰酸锂、钛酸锂、磷酸铁锂以及镍钴锰酸锂中的一种或多种;所述第二活性物质层包括石墨、硅、钛酸锂中的一种或多种。
根据本申请的电芯包括:隔离膜和极片,所述极片为上述的极片,所述极片与所述隔离膜卷绕设置。
根据本申请的电池包括:电解质、包装壳和电芯,所述电芯为上述的电芯。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的极片的剖视图;
图2是根据本申请实施例的极片的绝缘基体、第一导电层、第二导电层、第一活性物质层、第二活性物质层的层叠示意图;
图3是根据本申请实施例的电芯的剖视图;
图4是据本申请实施例的电池的卷绕设备的示意图。
附图标记:
极片10;
绝缘基体1;第一表面11;第二表面12;第一端面13;第二端面14;
第一导电层2;第一未涂覆区21;第一极耳22;
第二导电层3;第二未涂覆区31;第二极耳32;
第一活性物质层4;第二活性物质层5;绿胶6;
电芯20;隔离膜201;
卷绕设备30;卷芯301;第一辊302;第二辊303;
极片10’;第一活性物质4’;第二活性物质5’。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附 图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考图1-图4描述本申请实施例的极片10。
如图1和图2所示,本申请实施例的极片10包括:绝缘基体1、第一导电层2、第二导电层3、第一活性物质层4和第二活性物质层5。绝缘基体1可以包括相对设置的第一表面11和第二表面12,需要说明的是,如图1所示,第一导电层2设置于第一表面11上,第二导电层3设置于第二表面12上,第一活性物质层4设置于第一导电层2上,第二活性物质层5设置于第二导电层3上。第一活性物质层4与第二活性物质层5的极性相反,需要解释的是,如果第一活性物质层4为正极活性物质层,那么第二活性物质层5为负极活性物质层,如果第一活性物质层4为负极活性物质层,那么第二活性物质层5为正极活性物质层。
其中,通过将绝缘基体1、第一导电层2、第二导电层3、第一活性物质层4和第二活性物质层5层叠在一起,能够将正极极片和负极极片集成在一条极片10上,使极片10兼顾正极极片和负极极片特性。另外,还可以降低对电池的卷绕设备30的要求,并且,通过将正极极片和负极极片集成在一起,能够提升正极极片与负极极片的相对位置稳定性,可以防止分离的正极极片、负极极片以及隔膜在卷绕时错位,从而可以提升电池的生产合格率。同时,通过在绝缘基体1上设置第一导电层2、第二导电层3作为集流体,能够使极片10的相对于常规的金属箔作为基体的集流体的质量小,从而可以提高电池质量能量密度。
在本申请的一些实施例中,绝缘基体1的厚度可以设置为6-8μm,第一导电层2和第二导电层3的厚度都可以设置为2-3μm,绝缘基体1、第一导电层2和第二导电层3的总厚度为10-14μm。其中,可以通过磁控溅射的方法,在厚度6-8μm的绝缘基体1的上表面、下表面分别镀上第一导电层2、第二导电层3。第一导电层2、第二导电层3都可以为导电金属,如此设置能够使极片10与现有的极片相对厚度减小,可以提高电池的体积能量密度。
在本申请的一些实施例中,在绝缘基体1的长度方向上(即:图1中的左右方向),绝缘基体1可以包括相对设置的第一端面13和第二端面14,第一导电层2与第一端面13的最小距离为L1,第二导电层3与第一端面13的最小距离为L2,L2大于L1,其中,在第一导电层2上焊接极耳时,极耳可以靠近第一导电层2的右端设置,这样设置能够使极耳的设置区域与第二导电层3在上下方向上没有重合区域,如果焊接毛刺刺穿绝缘基体1,可以防止第一导电层2与第二导电层3导通,从而可以降低极片10短路的风险,进而可以提高极片10的使用安全性。
在本申请的一些实施例中,如图1所示,在绝缘基体1的长度方向上,第一活性物质层4与第一端面13的最小距离为L1’,第二活性物质层5与第一端面13的最小距离为L2’,L2’大于L1’。
在本申请的一些实施例中,如图1所示,第一导电层2可以包括:第一未涂覆区21,第一未涂覆区21可以用于设置第一极耳22。其中,L1’大于L1,这样设置能够保证在第一活性物质层4的右侧形成第一未涂覆区21,可以保证第一极耳22的焊接位置。并且,同时设置L2大于L1,能够保证绝缘基体1的第二表面12上与第一极耳22相对的区域未设置第二导电层3和第二活性物质层5,可以避免焊接毛刺刺穿绝缘基体1后造成极片10内部短路的情况发生,从而可以提高极片10的安全性能。
在本申请的一些实施例中,如图1所示,第一极耳22与第一端面13的距离可以设置为L3,L3小于L2,其中,第一极耳22的最左端与第一端面13的距离可以设置为L3,如此设置能够进一步保证绝缘基体1的第二表面12上与第一极耳22相对的区域未设置第二导电层3和第二活性物质层5,可以更好地避免焊接毛刺刺穿绝缘基体1后造成极片10内部短路的情况发生,从而可以进一步提高极片10的安全性能。
在本申请的一些实施例中,如图1所示,在绝缘基体1的长度方向上,第一导电层2与第二端面14的最小距离可以设置为L4,第二导电层3与第二端面14的最小距离可以设置为L5,L4大于L5,其中,在第二导电层3上焊接极耳时,极耳可以靠近第二导电层3的左端设置,这样设置能够使极耳的设置区域与第一导电层2在上下方向上没有重合区域,如果焊接毛刺刺穿绝缘基体1,可以防止第一导电层2与第二导电层3导通,从而可以降低极片10短路的风险,进而可以提高极片10的使用安全性。
在本申请的一些实施例中,如图1所示,在绝缘基体1的长度方向上,第一活性物质层4与第二端面14的最小距离可以设置为L4’,第二活性物质层5与第二端面14的最小距离可以设置为L5’,L4’大于L5’。
在本申请的一些实施例中,如图1所示,第二导电层3可以包括:第二未涂覆区31,第二未涂覆区31可以用于设置第二极耳32。其中,L5’大于L5,这样设置能够保证在第二活性物质层5的左侧形成第二未涂覆区31,可以保证第二极耳32的焊接位置。
在本申请的一些实施例中,第二极耳32与第二端面14的距离可以设置为L6,L6小于L4,其中,所述L6为第二极耳32的最右端与第二端面14的距离,如此设置能够进一步保证绝缘基体1的第一表面11上与第一极耳22相对的区域未设置第一导电层2和第一活性物质层4,可以更好地避免焊接毛刺刺穿绝缘基体1后造成极片10内部短路的情况发生,从而可以进一步提高极片10的安全性能。
在本申请的一些实施例中,绝缘基体1可以包括:聚酰亚胺、聚乙烯、聚偏氟乙烯、聚四氟乙烯中的一种或者多种,这样设置能够使绝缘基体1的制造材料为绝缘有机材料,可以进一步降低极片10的金属含量,从而可以实现极片10的轻量化设计,进而可以进一步提高极片10的质量能量密度。
在本申请的一些实施例中,第一导电层2为正极导电层时,第一导电层2可以包括铝、钛、不锈钢、铝合金和钛合金中的一种或者多种,第二导电层3为负极导电层时,第二导电层3可以包括铜、钛、镍、铜合金、镍合金和钛合金的一种或者多种,如此设置能够使第一导电层2、第二导电层3的制造材料更加合理,可以保证第一导电层2、第二导电层3的工作性能,并且,通过采用薄膜镀层的方式将第一导电层2、第二导电层3设置在绝缘基体1上,能够减少金属材料的用量,可以更好地提高极片10的质量能量密度。
在本申请的一些实施例中,第一活性物质层4为正极活性材料时,第一活性物质层4可以包括钴酸锂、锰酸锂、钛酸锂、磷酸铁锂以及镍钴锰酸锂中的一种或者多种,第二活性物质层5为负极活性材料时,第二活性物质层5可以包括石墨、硅、钛酸锂中的一种或者多种。其中,通过将正极极片和负极极片集成在一条极片10上,这样设置能够提高活性材料所占极片10的比例,可以提高电池的体积能量密度。
如图3所示,根据本申请实施例的电芯20包括:隔离膜201和极片10。极片10可以设置为上述实施例的极片10,极片10与隔离膜201卷绕设置。其中,通过常规的卷绕工艺,一条极片10与一个隔离膜201即可卷绕成单颗电芯20,能够减少隔离膜201的用量,可以使活性材料占比变高,从而可以提高电芯20的体积能量密度。并且,申请的极片10对卷绕设备30要求较低,本申请的极片10可改善卷绕时正极极片与负极极片错位问题,可以提高电芯20生产优率与效率,从而可以降低电芯20的生产成本。
在本申请的一些实施例中,第一导电层2和第二导电层3的长、宽尺寸可以根据极耳的焊接位置而定。如图1所示,第一活性物质层4的右端和左端均可以设置有绿胶6,位于第一活性物质层4右端的绿胶6距离第一端面13的距离小于第一导电层2的右端距离第一端面13的距离,如此设置可以使绿胶6覆盖住第一极耳22,从而可以防止焊接毛刺刺穿极片10,进而可以降低电芯20发生热失控的风险。
在本申请的一些实施例中,如图1所示,第二活性物质层5的左端可以设置有绿胶6,此处绿胶6距离第二端面14的距离可以大于第二导电层3距离第二端面14的距离,这样设置可以使绿胶6覆盖住第二极耳32,从而可以防止焊接毛刺刺穿极片10,进而可以降低电芯20发生热失控的风险。
在本申请的一些实施例中,如图4所示,卷绕设备30可以包括:卷芯301、第一辊302和第二辊303,第一辊302可以为极片10放卷辊,第二辊303可以为隔离膜201放卷辊,极片10和隔离膜201通过卷芯301卷绕成单颗电芯20(如图3所示),单条极片10卷绕时,错位容易控制,可减少因正极极片、负极极片错位造成的优率损失,从而可以提高产品优率,降低电芯20的生产成本。
根据本申请实施例的电池包括:电解质、包装壳和电芯20。电芯20可以设置为上述实施例的电芯20,如此设置可以提高电池的能量密度,也可以降低电池内短路的风险,还可以提高电池的安全性能。
在本申请的一些实施例中,由于第一导电层2和第二导电层3的长宽尺寸可控,在极片10裁切时可避开金属镀层,仅对绝缘基体1进行裁切即可,如图1所示,裁切位置均为绝缘材质,避开金属材质位置裁切,可有效控制裁切毛刺,可以改善电池K值,也可以提高电池的安全性能。需要解释的是:裁切位置是指绝缘基体1上未涂覆任何物质的区域,电池K值指的是单位时间内电池的电压降,是用来衡量锂电池自放电率的一种指标。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (15)

  1. 一种极片,其特征在于,包括:
    绝缘基体,包括相对的第一表面和第二表面;
    第一导电层,设置于所述第一表面;
    第二导电层,设置于所述第二表面;
    第一活性物质层,设置于所述第一导电层;
    第二活性物质层,设置于所述第二导电层,所述第一活性物质层与所述第二活性物质层极性相反。
  2. 根据权利要求1所述的极片,其特征在于,所述绝缘基体的厚度为6-8μm,所述第一导电层和所述第二导电层的厚度均为2-3μm,所述绝缘基体、所述第一导电层和所述第二导电层的总厚度为10-14μm。
  3. 根据权利要求1所述的极片,其特征在于,在所述绝缘基体的长度方向上,所述绝缘基体包括相对的第一端面和第二端面,所述第一导电层与所述第一端面的最小距离为L1;
    所述第二导电层与所述第一端面的最小距离为L2,其中L2大于L1。
  4. 根据权利要求3所述的极片,其特征在于,在所述绝缘基体的长度方向上,所述第一活性物质层与所述第一端面的最小距离为L1’;
    所述第二活性物质层与所述第一端面的最小距离为L2’,其中L2’大于L1’。
  5. 根据权利要求4所述的极片,其特征在于,L1’大于L1,所述第一导电层包括第一未涂覆区,用于设置第一极耳。
  6. 根据权利要求5所述的极片,其特征在于,所述第一极耳与所述第一端面的距离为L3,L3小于L2。
  7. 根据权利要求3所述的极片,其特征在于,在所述绝缘基体的长度方向上,所述第一导电层与所述第二端面的最小距离为L4;
    所述第二导电层与所述第二端面的最小距离为L5,其中L4大于L5。
  8. 根据权利要求7所述的极片,其特征在于,在所述绝缘基体的长度方向上,所述第一活性物质层与所述第二端面的最小距离为L4’;
    所述第二活性物质层与所述第二端面的最小距离为L5’,其中L4’大于L5’。
  9. 根据权利要求8所述的极片,其特征在于,L5’大于L5,所述第二导电层包括第二未涂覆区,用于设置第二极耳。
  10. 根据权利要求9所述的极片,其特征在于,所述第二极耳与所述第二端面的距离为L6,L6小于L4。
  11. 根据权利要求1所述的极片,其特征在于,所述绝缘基体包括聚酰亚胺、聚乙烯、聚偏氟乙烯和聚四氟乙烯中的一种或多种。
  12. 根据权利要求1所述的极片,其特征在于,所述第一导电层包括铝、钛、不锈钢、铝合金和钛合金中的一种或多种;
    所述第二导电层包括铜、钛、镍、铜合金、镍合金和钛合金的一种或多种。
  13. 根据权利要求1所述的极片,其特征在于,所述第一活性物质层包括钴酸锂、锰酸锂、钛酸锂、磷酸铁锂以及镍钴锰酸锂中的一种或多种;
    所述第二活性物质层包括石墨、硅、钛酸锂中的一种或多种。
  14. 一种电芯,包括:
    隔离膜;和
    极片,所述极片为根据权利要求1-13中任一项所述的极片,所述极片与所述隔离膜卷绕设置。
  15. 一种电池,包括:
    电解质;
    包装壳;和
    电芯,所述电芯为根据权利要求14所述的电芯。
PCT/CN2020/072824 2019-02-19 2020-01-17 极片、电芯以及电池 WO2020168879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910121886.8A CN111584823B (zh) 2019-02-19 2019-02-19 极片、电芯以及电池
CN201910121886.8 2019-02-19

Publications (1)

Publication Number Publication Date
WO2020168879A1 true WO2020168879A1 (zh) 2020-08-27

Family

ID=72110792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072824 WO2020168879A1 (zh) 2019-02-19 2020-01-17 极片、电芯以及电池

Country Status (2)

Country Link
CN (1) CN111584823B (zh)
WO (1) WO2020168879A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114586216A (zh) * 2020-09-22 2022-06-03 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置
CN114730973A (zh) * 2021-07-06 2022-07-08 宁德新能源科技有限公司 电化学装置及电子装置
CN114914549A (zh) * 2022-06-22 2022-08-16 上海兰钧新能源科技有限公司 电池
US11450857B2 (en) * 2019-03-29 2022-09-20 Ningde Amperex Technology Limited Current collector with insulating substrate and conductive layer, electrode plate using the same, and electrode assembly using the same
CN115810862A (zh) * 2022-01-27 2023-03-17 宁德时代新能源科技股份有限公司 电极组件的隔离膜、制备电极组件的隔离膜的方法和设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212659568U (zh) * 2020-07-28 2021-03-05 深圳市海鸿新能源技术有限公司 一种双极性集流体、极片、电芯和二次电池
CN114843519A (zh) * 2022-05-26 2022-08-02 东莞锂威能源科技有限公司 集流体、正极片、负极片、叠片电芯、电池及制备方法
CN218867151U (zh) * 2022-11-14 2023-04-14 宁德时代新能源科技股份有限公司 一种电极构件、电池单体、电池及用电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100646551B1 (ko) * 2005-11-03 2006-11-14 삼성에스디아이 주식회사 음극 및 양극 일체형 이차 전지 및 그 형성 방법
US20110183203A1 (en) * 2010-01-27 2011-07-28 Molecular Nanosystems, Inc. Polymer supported electrodes
CN204905336U (zh) * 2015-07-02 2015-12-23 宁德新能源科技有限公司 电极极片及采用该极片的电芯
CN108199094A (zh) * 2016-12-08 2018-06-22 乾碳国际公司 一种双极性非对称超级电容器储能装置及其双极性组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499525B (zh) * 2009-02-26 2010-09-08 上海交通大学 对置双极性电池
CN208173723U (zh) * 2018-04-16 2018-11-30 宁德新能源科技有限公司 电芯以及电池
CN108767262B (zh) * 2018-05-30 2020-09-25 中航锂电(洛阳)有限公司 集流体用塑料膜、集流体及其制备方法、极片、储能装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100646551B1 (ko) * 2005-11-03 2006-11-14 삼성에스디아이 주식회사 음극 및 양극 일체형 이차 전지 및 그 형성 방법
US20110183203A1 (en) * 2010-01-27 2011-07-28 Molecular Nanosystems, Inc. Polymer supported electrodes
CN204905336U (zh) * 2015-07-02 2015-12-23 宁德新能源科技有限公司 电极极片及采用该极片的电芯
CN108199094A (zh) * 2016-12-08 2018-06-22 乾碳国际公司 一种双极性非对称超级电容器储能装置及其双极性组件

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11450857B2 (en) * 2019-03-29 2022-09-20 Ningde Amperex Technology Limited Current collector with insulating substrate and conductive layer, electrode plate using the same, and electrode assembly using the same
CN114586216A (zh) * 2020-09-22 2022-06-03 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置
CN114730973A (zh) * 2021-07-06 2022-07-08 宁德新能源科技有限公司 电化学装置及电子装置
CN115810862A (zh) * 2022-01-27 2023-03-17 宁德时代新能源科技股份有限公司 电极组件的隔离膜、制备电极组件的隔离膜的方法和设备
CN114914549A (zh) * 2022-06-22 2022-08-16 上海兰钧新能源科技有限公司 电池

Also Published As

Publication number Publication date
CN111584823A (zh) 2020-08-25
CN111584823B (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2020168879A1 (zh) 极片、电芯以及电池
WO2018120388A1 (zh) 一种纽扣电池及其制造方法
WO2020078081A1 (zh) 叠片电芯及其制作方法、锂电池
CN112216842B (zh) 复合集流体及包括所述复合集流体的电极极片和电芯
JPWO2017163846A1 (ja) リチウムイオン二次電池、電極及びその製造方法
JP2014022116A (ja) 二次電池用極板及び二次電池用極板の製造方法
CN102428600B (zh) 层叠二次电池及其制造方法
JP2012212506A (ja) ラミネート形電池
CN101807725A (zh) 锂离子电池
WO2020200155A1 (zh) 区域化设计的极片及其电池
US20240097097A1 (en) Electrode plate and battery
EP3926716A1 (en) Current collector for electrode
EP4156354A1 (en) Cell, method for manufacturing cell, and battery
WO2023131049A1 (zh) 极片及电池
CN216436083U (zh) 卷芯及电池
US10693192B2 (en) Wound-type cell
CN208336372U (zh) 电极极片、电极组件及二次电池
CN109888404A (zh) 一种新型叠片电池及其制备方法
CN109888162A (zh) 具备内嵌式极耳的胶黏结构电芯及其制备方法与锂电池
JP5125438B2 (ja) リチウムイオン二次電池およびそれを用いた組電池
CN219497877U (zh) 多极耳电芯及多极耳电池
WO2020192651A1 (zh) 极片、电芯及电池
CN212587557U (zh) 卷绕式电芯及锂离子电池
CN114122325A (zh) 一种分段式间隔涂布极片及裸电芯
CN208690371U (zh) 一种安全锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759636

Country of ref document: EP

Kind code of ref document: A1