WO2020168836A1 - 一种核磁共振通话设备 - Google Patents

一种核磁共振通话设备 Download PDF

Info

Publication number
WO2020168836A1
WO2020168836A1 PCT/CN2020/000034 CN2020000034W WO2020168836A1 WO 2020168836 A1 WO2020168836 A1 WO 2020168836A1 CN 2020000034 W CN2020000034 W CN 2020000034W WO 2020168836 A1 WO2020168836 A1 WO 2020168836A1
Authority
WO
WIPO (PCT)
Prior art keywords
air duct
magnetic resonance
nuclear magnetic
section
communication module
Prior art date
Application number
PCT/CN2020/000034
Other languages
English (en)
French (fr)
Inventor
诸爱道
Original Assignee
诸爱道
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诸爱道 filed Critical 诸爱道
Priority to DE212020000505.2U priority Critical patent/DE212020000505U1/de
Priority to JP2021548652A priority patent/JP7295258B2/ja
Priority to EP20759577.8A priority patent/EP3930345A4/en
Priority to US17/431,935 priority patent/US11936414B2/en
Publication of WO2020168836A1 publication Critical patent/WO2020168836A1/zh
Priority to IL285659A priority patent/IL285659A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/385Transceivers carried on the body, e.g. in helmets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3692Electrical details, e.g. matching or coupling of the coil to the receiver involving signal transmission without using electrically conductive connections, e.g. wireless communication or optical communication of the MR signal or an auxiliary signal other than the MR signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/385Transceivers carried on the body, e.g. in helmets
    • H04B2001/3866Transceivers carried on the body, e.g. in helmets carried on the head
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication

Definitions

  • the embodiment of the present invention relates to the field of medical equipment, in particular to a nuclear magnetic resonance communication device.
  • the subject When performing MRI or CT testing, the subject is in the scanning room, and the operator controls the equipment in the control room to scan the subject.
  • the scanning room and the control room are completely isolated, which results in the subject and the operator The problem of inability to communicate between personnel.
  • this kind of communication device is usually one-way, which can only transmit the sound in the control room to the scanning room, so that the subject can listen to the operator.
  • the operator in the control room speaks to the subject, the speaker is installed at a high place, and the subject is often unclear due to the high intensity noise of nuclear magnetic resonance.
  • the subject in the scanning room cannot actively talk to the operator in the control room.
  • the operator in the control room cannot be notified to carry out emergency treatment. Make the MRI detection or CT detection false detection, reduce the accuracy and reliability of the MRI detection or CT detection.
  • an embodiment of the present invention provides a nuclear magnetic resonance communication device to realize two-way communication between scanning room personnel and control room personnel in nuclear magnetic resonance detection.
  • the embodiment of the present invention provides a nuclear magnetic resonance communication device, and the nuclear magnetic resonance communication device is provided with a control room communication module and a scan room communication module;
  • the scanning room communication module includes a receiver, which inputs the received first sound wave signal into the first air duct;
  • the control room communication module includes a first sounding device, and the first sound wave signal is amplified by the first sounding device and then broadcast.
  • control room communication module further includes a second sounding device
  • scanning room communication module further includes a headset
  • the second sound wave signal emitted by the second sounding device is input into the second air duct, and the headset passes through the first The two air ducts receive the second sound wave signal to produce sound.
  • the first sound generating device includes: an amplifier port, a microphone, a first amplifier, and a first speaker, the amplifier port includes a large end and a small end, the microphone is provided at the large end of the amplifier port, and the The first speaker, the first amplifier, and the microphone are sequentially connected by wires, and the small end of the amplifier port is connected with the first air duct;
  • the second sound generating device includes: a microphone, a second amplifier, a second speaker, and a first sound wave concentrator, the first sound wave concentrator includes a big end and a small end, the microphone, the second amplifier and The second loudspeakers are sequentially connected by wires, the second loudspeaker is arranged at the large end of the first sound wave concentrator, and the small end of the first sound wave concentrator is connected to the second air duct;
  • the earphone includes: a left earmuff, a right earmuff and a three-way connector, the left earmuff is provided with a left ear voice output port, and the right earmuff is provided with a right ear voice output port, so
  • the three-way connector includes an input port, a first output port, and a second output port.
  • the left ear voice output port is connected to the first output port of the three-way connector through a left ear air duct.
  • the output port is connected to the second output port of the three-way connector through the right ear air duct, and the input port of the three-way connector is connected to the second air duct;
  • the receiver includes: a sound collector, a second acoustic wave concentrator, a transmission arm and a four-way connector, the second acoustic wave concentrator includes a big end and a small end, and the four-way connector is arranged on the left earmuff Inside, the four-way connector includes a first interface and a second interface, the sound collector is provided with a diaphragm, the diaphragm is arranged at the large end of the second sound wave concentrator, and the second sound wave
  • the small end of the concentrator is connected to the first interface of the four-way connector through a third air duct, and the second interface of the four-way connector is connected to the first air duct, wherein the third air duct Set in the transmission arm.
  • a switching device is provided between the control room communication module and the scan room communication module;
  • the first air duct includes a first section and a second section, the first section of the first air duct connects the first sounding device and the adapter device, and the second section of the first air duct connects The switching device and the receiver;
  • the second air duct includes a first section and a second section, the first section of the second air duct connects the second sounding device and the adapter device, and the second section of the second air duct connects The adapter device and the earphone.
  • the switching device includes a first switching part and a second switching part, and the first switching part and the second switching part are used for pluggable and through-connecting the first air The first section and the second section of the duct; and/or the first adapter part and the second adapter part are used for pluggable connection between the first section and the second section of the second air duct segment.
  • first adapter part includes a first hole core and a second hole core
  • second adapter part includes a first socket and a second socket
  • the first section of the first air duct is connected to the first hole core, the second section of the first air duct is connected to the first insertion hole, and the first section of the second air duct is connected to the The second hole core is connected, and the second section of the second air duct is connected to the second insertion hole;
  • the first hole core is connected to the first insertion hole
  • the second hole core is connected to the second insertion hole.
  • control room communication module is set in the control room of nuclear magnetic resonance detection
  • scanning room communication module is set in the scanning room of nuclear magnetic resonance detection
  • control room and the scanning room are separated by a shielding wall.
  • An opening is provided on the wall, and the opening is used to provide a passage for the first air duct and the second air duct;
  • the opening is provided with a shielding device
  • the shielding device includes a first flange connection part and a second flange connection part, the first flange connection part and the second flange connection part are connected by screws, A section of the first flange connection portion facing the second flange connection portion is provided with a matching groove, an electromagnetic shielding layer is provided in the matching groove, and the first flange connection portion is connected to the second flange
  • the part has a central hole of the same size and a cylinder of the same size, and an air duct is sleeved on the cylinder, and the aperture of the central hole is the same as the inner diameter of the sleeved air duct.
  • control room communication module further includes a filter device, the filter device includes a first path and a second path, the second speaker is connected to the second amplifier through the first path of the filter device, so The microphone is connected to the first amplifier through the second path of the filter device.
  • the nuclear magnetic resonance communication device transmits the first sound wave signal emitted by the receiver to the first sounding device through the first air duct and broadcasts it, and transmits the second sound wave signal emitted by the second sounding device through the second air duct It is transmitted to the earphone and broadcast, so that the control room and the scanning room can realize two-way free communication.
  • the examinee in the scanning room can transmit voice information to the control room operator through the receiver, which is beneficial to deal with the emergency situation in the scanning room.
  • the examinee in the scanning room can also receive the voice from the operator in the control room by wearing a headset.
  • the transmission of voice information is more accurate and the examinee can hear it more clearly.
  • the use of air ducts for sound wave signal transmission ensures the normal progress of nuclear magnetic resonance detection, and is not affected by the electromagnetic field of the audio signal of the voice call during nuclear magnetic resonance scanning.
  • Figure 1 is a schematic diagram of the structure of a dual-channel full-air duct headset
  • Figure 2 is a schematic diagram of the control room speech and hearing and voice amplification and the full air duct entering the scanning room 49D and the control room 50D;
  • Figure 3 is a schematic diagram of the internal and external structure of the bottom bracket of the full air duct earphone
  • Figure 4 is a schematic diagram of 49D1 and 50D1 devices in the control room where the control machine and audio signals are connected to the scanning room;
  • 5 and 6 are schematic diagrams of the shielding device of the air duct microphone
  • FIG. 7 and 8 are schematic diagrams of the shape of the shielding layer
  • FIGS. 9 and 10 are schematic diagrams of a shielding device that combines the shielding device of the speaker 24D and the air duct microphone into one body;
  • Figure 11 is a schematic diagram of the installation position of the shielding device
  • FIG. 12 is a schematic structural diagram of a nuclear magnetic resonance communication device according to Embodiment 12 of the present invention.
  • FIG. 13 is a schematic structural diagram of a nuclear magnetic resonance communication device according to Embodiment 13 of the present invention.
  • Embodiment 14 is a schematic structural diagram of a scan room call module provided by Embodiment 14 of the present invention.
  • FIG. 15 is a partial schematic diagram of a nuclear magnetic resonance communication device according to Embodiment 16 of the present invention.
  • first”, “second”, etc. may be used herein to describe various directions, actions, steps or elements, etc., but these directions, actions, steps or elements are not limited by these terms. These terms are only used to distinguish a first direction, action, step or element from another direction, action, step or element.
  • the first air duct may be referred to as the second air duct
  • the second air duct may be referred to as the first air duct.
  • Both the first air duct and the second air duct are air ducts, but they are not the same air duct.
  • the terms “first”, “second”, etc. cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • “multiple” and “batch” mean at least two, such as two, three, etc., unless otherwise specifically defined.
  • a non-magnetic dual-channel communication device and shielded air duct microphone which is characterized by:
  • the control room is equipped with a receiving device:
  • the special microphone set has a wire connected to the amplifier circuit on the circuit board. After the signal is amplified by the amplifier circuit, it is connected to one end of the speaker through the wire. The other end of the speaker is installed to the big end of the sound wave concentrator, and the small end of the sound wave concentrator is double-clicked One end of the air duct and the other end of the air duct are connected to a core hole in the socket.
  • the socket is movably connected to the plug of the air duct earphone, one hole of the plug is connected to one end of an air duct, the other end of the air duct is connected to the inlet end of the tee, and the outlet of the tee is divided into two.
  • One end of an air duct is connected to each, the other end of the two air ducts is connected to a voice output port, and the voice output interface is installed in two earmuffs for two ears to listen.
  • the air duct earphone described in the first embodiment is provided with a receiver 4D, the receiver is provided with a diaphragm, and the diaphragm is installed at the large end of the sound wave concentrator, and the small end of the sound wave concentrator is connected to one end of the air duct,
  • the air duct is installed on a transmission arm 25D that can be bent freely to adjust the position, and the transmission arm 25D is made of plastic.
  • the other end of the air duct is connected to one of the four-way 2D interfaces in the earmuffs, the other interface of the four-way 2D2 is connected to one end of the air duct 26D, and the other end of the air duct 26D is connected to the air duct
  • the other hole of the earphone plug, the earphone plug 10D of the hollow tube is movably connected to the socket.
  • the other core with a hole of the socket is connected to an air duct.
  • the other end of the air duct is connected to the small end of the small amplifying port 14D.
  • the large end of the small amplifying port 14D is equipped with a microphone 14D1, and the wire of the microphone 14D2 is connected to
  • the line amplifier 16D after amplifying the signal, is connected to the speaker 17D with a wire, and the speech of the scanned person in the scanning room is provided for the control personnel to listen to.
  • the two air ducts 12D and 13D connected from the socket 11D to the speaker housing are installed in parallel, and the length of the two parallel air ducts is determined according to the distance between the scanned person and the control room.
  • a hard tube 48D1 is installed on one side of the tee.
  • the transmission arm 25D described in embodiment 2 is made of 316L stainless steel, and the hard tube 48D1 is combined and set on the three-way 48D, that is, the three-way 48D is set as a five-way, and the added two-way is used instead of the hard tube.
  • the other settings are the same as the second embodiment.
  • the three-way stiffening pipe described in the third embodiment is a bottom bracket configured as a whole bottom bracket, and a hafur coat 7D is provided on the outside to increase the firmness and appearance.
  • the other settings are the same as in the second embodiment.
  • the audio signal of the special microphone 42D of the control machine is passed, and the wire 41D is connected to the amplified audio signal output of the amplifier circuit 44D on the circuit board, and is connected to one of the channels of the filter 37D through the metal shielded audio wire 38D. Cut off the radio waves that have an impact on the sweep room, and then connect it to the speaker 29D through the audio signal line 33D-1.
  • the speaker 31D is installed at the large end of the sound wave concentrator 28D, and the small end of the sound wave concentrator 28D is connected to it through an air duct. In the corresponding core through hole in the jack 27D of the socket 26D,
  • the other core through hole of the jack 27D is connected to the small end of the amplifier port 30D by a hose 32D.
  • the large end of the amplifier port 30D is equipped with a microphone 31D, which is connected to another channel of the filter 37D through an audio wire 33D. After passing through the filter 37D, it is connected to the amplifier 45D on the circuit board through the audio wire 39D to amplify the signal, and then the audio wire is sent to the speaker 46D to emit sound for the control room personnel to listen.
  • the filter 37D is a special filter required by the scanning room of magnetic resonance or CT.
  • the audio signal line in this example adopts an optical fiber cable, and the other settings are the same as in the fifth embodiment.
  • piezoelectric ceramic speakers are used in the speaker scanning room, and moving coil speakers are used in the control room.
  • the air duct microphone is installed at the position 100D in FIG. 11 on the vertical surface of the air duct between the front of the small microphone and the sound wave concentrator, that is, the shielding device is set at the shielding wall 48D.
  • One end of the shielding device is a vertebral body connector 103D
  • the vertebral end of the connector 103D is provided with a through hole
  • the diameter of the through hole is the same as the inner diameter of the air duct
  • the other end is provided with a cone slightly larger than the inner diameter of the air duct
  • a cylindrical hole in the cylindrical hole the shielding layer 102D is installed in the cylindrical hole, and the shielding layer 102D is provided with uniformly distributed holes on the plane, and the total cross-sectional area of the holes is equal to the cross-sectional area of the inner diameter of the air duct, as shown in Figs. 7 and 8.
  • the mounting hole of the shielding layer and the inner hole of the vertebral body end are connected with a tapered hole to form a bell
  • the large end of the vertebral body connector 103D is provided with a flange connector 101D.
  • the flange of the flange connector 101D is mounted to the vertebral body connector 103D with screws 108D.
  • the vertebral body connector 103D and The flange connector 101D is provided with a rubber gasket 109D for sealing.
  • the taper bell mouth and inner hole of the inner hole of the flange connector 101D are symmetrical with the taper bell mouth and inner hole of the vertebral body connector.
  • the connector 103D, the flange connector 101D and the shielding layer 102D constitute a shielding device for the air duct microphone. As shown in Figures 5 and 6, the two ends of the shielding device are covered with air ducts. It constitutes a shielded air duct microphone.
  • the shielding device can isolate the active microphone and other active circuits and components from the passive part of the air duct microphone, without interfering with each other, and achieving good sound wave transmission.
  • an air duct shielding device is cut and installed at 100D of the speaker air duct 12D.
  • the shielding device has the same structure as the shielding device of claim 5, as shown in FIGS. 5 and 6, the speaker
  • the sounding end of the 24D is connected to the vertebra connector 103D1, and the socket section of the air duct is connected to the flange connector 101D1 to form a shielding device for the speaker air duct, which isolates the speaker and its circuit without interfering with all the equipment in the isolation board.
  • the air duct shielding device of the air duct microphone and the air duct shielding device of the loudspeaker are combined into an integrated installation, and the flange is oval as shown in Figs. 9 and 10.
  • the material of all shielding devices is set to be the same as that of the original shielding layer of magnetic resonance.
  • FIG. 12 is a schematic structural diagram of a nuclear magnetic resonance communication device according to Embodiment 12 of the present invention.
  • the nuclear magnetic resonance communication equipment provided by the embodiment of the present invention includes: a control room communication module 100 and a scanning room communication module 200.
  • the nuclear magnetic resonance communication equipment also includes a scanning gun, a scanning bed, a control panel, etc.
  • the structure and working principle of these modules are not limited in this embodiment.
  • the control room communication module 100 is arranged in the control room 300, and the scanning room communication module 200 is arranged in the scanning room 400, and the control room 300 and the scanning room 400 are separated by a shielding wall 500.
  • the control room communication module 100 includes a second sounding device 110 and a first sounding device 120.
  • the scanning room communication module 200 includes an earphone 210 and a receiver 220.
  • the second sounding device 110 and the earphone 210 are connected through a second air duct 610.
  • the first sounding device 120 and the receiver 220 are connected through the first air duct 620.
  • the working process of the embodiment of the present invention is: when the detected person in the scanning room 400 has an emergency and needs to inform the operator in the control room 300, the detected person in the scanning room 400 sends out the first voice message through the receiver 220, and the receiver 220 220 converts the first voice information into a first sound wave signal, and inputs the first sound wave signal into the first air duct 620, and the first air duct continues to transmit the first sound wave signal to the first sound emitting device In 120, after receiving the first sound wave signal, the first sounding device 120 performs processing such as amplification and restoration, and converts the first sound wave signal into the first voice information emitted by the detected person and emits sound to make the control room 300 The operator of can listen to the first voice message.
  • the operator in the control room 300 When the operator in the control room 300 needs to issue an instruction or prompt information to the detected person in the scanning room 400, the operator in the control room 300 sends a second voice message to the second sounding device 110, and the second sounding device 110 will The second voice information is converted into a second sound wave signal, and the second sound wave signal is input into the second air duct 610, and the second air duct 610 continues to transmit the first voice signal to the earphone 210, and the earphone 210 receives After the second sound wave signal is amplified and restored, the second sound wave signal is converted into the second voice information sent by the operator and the sound is emitted, so that the detected person wearing the headset 400 in the scanning room 400 can listen to the second sound wave signal. voice message.
  • the air duct (generally refers to all the air ducts in this embodiment) is longer, the transmission distance of the sound wave signal in the air duct is also longer. In order to reduce the loss of the sound wave signal, the diameter of the air duct should also be larger.
  • the nuclear magnetic resonance communication equipment transmits the second sound wave signal emitted by the second sounding device to the earphone through the second air duct and broadcasts it, and transmits the first sound wave signal emitted by the receiver to the second air duct through the first air duct.
  • a sounding device is broadcasted, enabling two-way free communication between the control room and the scanning room.
  • the examinee in the scanning room receives the voice from the operator in the control room by wearing a headset.
  • the transmission of voice information is more accurate and the examinee can hear more It is clear that the use of air ducts for the transmission of acoustic signals ensures the normal progress of nuclear magnetic resonance detection and is not affected by the electromagnetic field of audio signals of voice calls during nuclear magnetic resonance scanning.
  • FIG. 13 is a schematic structural diagram of a nuclear magnetic resonance communication device according to Embodiment 13 of the present invention.
  • This embodiment is a further optimization of the foregoing embodiment.
  • the nuclear magnetic resonance communication equipment provided by the embodiment of the present invention further adds a switching device 700 between the control room communication module 100 and the scan room communication module 200.
  • the second air duct 610 includes a first section 611 and a second section 612.
  • the first air duct 620 includes a first section 621 and a second section 622.
  • the first section 611 of the second air duct is connected to the second sound The device 110 and the adapter device 700
  • the second section 612 of the second air duct connects the adapter device 700 and the earphone 210
  • the first section 621 of the first air duct connects the first sounding device 120 and the adapter device 700
  • the second section 622 of the catheter connects the adapter 700 and the receiver 220.
  • the switching device 700 includes a first switching part 710 and a second switching part 720, and the first switching part 710 and the second switching part 720 are pluggable connections, for example, the first switching part 720
  • the part 710 is a socket
  • the second adapter part 720 is a plug.
  • the first adapter portion 710 and the second adapter portion 720 are connected, the first section 611 and the second section 612 of the second air duct 610 can be connected through, and the first section 621 and the second section 621 of the first air duct 620 can be connected through.
  • the segment 622 may be connected through.
  • the nuclear magnetic resonance communication equipment provided by the embodiment of the present invention installs a switching device between the control room communication module and the scan room communication module, so that the control room communication module and the scan room communication module can form two independent modules, the control room communication module
  • the connection with the scanning room communication module can be controlled by a switching device, which improves the convenience of using the control room communication module and the scanning room communication module.
  • FIG. 14 is a schematic structural diagram of a scanning room communication module according to Embodiment 14 of the present invention.
  • the scanning room communication module provided by the embodiment of the present invention includes: left earmuff 1D1, right earmuff 1D2, three-way connector 48D, sound collector 4D, second sound wave concentrator, transmission arm 25D, four Through connector 2D2 and plug 10D, left earmuff 1D1 is provided with left ear voice output port 2D1, right earmuff 1D2 is provided with right ear voice output port 2D, and the outer sleeve of three-way connector 48D is provided with a hafur jacket 7D, the structure of the three-way connector 48D is shown in Figure 10.
  • the three-way connector 48D includes an input port, a first output port and a second output port.
  • the ear voice output port 2D1 is connected to the first output port of the tee connector 48D through the left ear air duct 5D
  • the right ear voice output port 2D is connected to the second output port of the tee connector 48D through the right ear air duct 3D.
  • the input port of the through connector 48D is connected to the second air duct 8D
  • the second air duct 8D is connected to the second socket of the plug 10D.
  • the second air duct 8D of the scanning room communication module is connected to the second air duct in the control room communication module through the second jack of the plug 10D, receives the second sound wave signal transmitted by the control room, and transmits the second sound wave signals respectively To the left ear air duct 5D and the right ear air duct 3D, the left ear air duct 5D transmits the second sound wave signal to the left ear voice output port 2D1, and the right ear air duct 3D transmits the second sound wave signal to the right ear voice output port 2D, the user can receive the second voice message from the control room communication module by matching the left earmuff 1D1 and right earmuff 1D2.
  • the second acoustic wave concentrator includes a big end and a small end.
  • the four-way connector 2D2 is provided in the left earmuff 1D1.
  • the four-way connector 2D2 includes a first interface and a second interface.
  • the sound collector 4D is provided with a diaphragm,
  • the membrane is arranged at the large end of the second acoustic wave concentrator, and the small end of the second acoustic wave concentrator is connected to the first interface of the four-way connector 2D2 through the third air duct, and the second interface of the four-way connector 2D2 is connected to the first air Conduit connection,
  • the first air conduit includes an upper half and a lower half in the scanning room communication module.
  • the upper half 6D of the first air conduit is the part between the second interface of the four-way connector 2D2 and the three-way connector 48D , It is arranged side by side with the left ear air duct 5D, the lower part of the first air duct is the part between the three-way connector 48D and the first insertion hole of the plug 10D, which is arranged side by side with the second air duct 8D.
  • the third air duct is provided in the transmission arm 25D, and the second sound wave concentrator is provided in the housing of the sound collector 25D, neither of which is shown in the figure.
  • the detected person in the scanning room sends the first voice information to the sound collector 4D.
  • the sound collector 4D converts the first voice information into a first sound wave signal and transmits it to the first air duct through the third air duct.
  • the air duct continues to transmit the first voice information to the control room communication module, so that the operator in the control room can receive the first voice information sent by the scan room communication module.
  • Embodiment 15 of the present invention provides a schematic structural diagram of a control room communication module.
  • this embodiment is a further refinement of the control room communication module in the foregoing embodiment.
  • the control room communication module provided by Embodiment 15 of the present invention includes: a microphone 23D, a second amplifier 15D, a second speaker 24D, a first sound wave concentrator 18D, an amplifier port 14D, a microphone 14D1, and a first amplifier 16D and the first speaker 17D.
  • the first sound wave concentrator 18D includes a big end and a small end.
  • the microphone 23D, the second amplifier 15D, and the second speaker 24D are sequentially connected by wires.
  • the second speaker 24D is arranged at the big end of the first sound wave concentrator 18D.
  • the small end of the acoustic wave concentrator 18D is connected to the second air duct 12D, and the second air duct 12D is connected to the second core of the socket 11D.
  • the operator in the control room 50D sends a first voice signal to the microphone 23D.
  • the microphone 23D converts the first voice signal into a second sound wave signal and transmits it to the second air duct 12D in the communication module of the control room 50D (ie, the second The first section of the air duct), the second hole core of the socket 11D and the second jack of the plug 10D are pluggably connected through the second air duct 12D in the communication module of the control room 50D and the communication module of the scanning room 49D
  • the second air duct 8D (that is, the second section of the second air duct) enables the second air duct 8D in the communication module of the scanning room 49D to receive the second sound wave signal, and finally enables the subject in the scanning room 49D to receive To the second voice message.
  • the amplifier port 14D includes a big end and a small end.
  • the microphone 14D1 is located at the big end of the amplifier port 14D.
  • the first speaker 17D, the first amplifier 16D and the microphone 14D1 are connected in turn by wires.
  • the small end of the amplifier port 14D is connected to the first air duct 13D. Connected, the first air duct 13D is connected to the first core of the socket 11D.
  • the pluggable connection between the first hole core of the socket 11D and the first jack of the plug 10D enables the first air duct 13D (that is, the first section of the first air duct) of the communication module of the control room 50D and the communication module of the scanning room 49D
  • the lower part 9D of the first air duct (that is, the second section of the first air duct) is connected in a through manner.
  • the first air duct 13D of the communication module of the control room 50D can receive the first sound wave signal transmitted by the communication module of the scanning room 49D, and finally The first voice information corresponding to the first sound wave signal is broadcast through the first speaker 17D, so that the operator in the control room 50D can hear it.
  • FIG. 15 is a partial schematic diagram of a nuclear magnetic resonance communication device provided by Embodiment 16 of the present invention.
  • This embodiment is a further optimization of the foregoing embodiment.
  • the nuclear magnetic resonance communication equipment provided by the embodiment of the present invention further includes a shielding device 60D.
  • the control room communication module and the scan room communication module included in this embodiment are the same as those in the foregoing embodiment. No longer.
  • the control room 50D and the scanning room 49D are separated by a shielding wall 48D.
  • the shielding wall 48D is provided with an opening.
  • the second air duct 12D and the first air duct 13D pass through the shielding wall 48D through the opening.
  • a shielding device 60D is provided at the opening, and the second air duct 12D and/or the first air duct 13D need to be connected to the shielding device 60D when passing through the shielding wall 48D.
  • the structural schematic diagram of the shielding device 60D is shown in FIGS. 5 and 6.
  • the shielding device 60D includes a first flange connection part 103D and a second flange connection part 101D.
  • the first flange connection part 103D and the second flange connection part 101D are connected by a screw 100D.
  • the first flange connection part 103D faces the second flange connection part.
  • a section of the second flange connection part 101D is provided with a matching groove, and an electromagnetic shielding layer 102D is provided in the matching groove.
  • the first flange connection part 103D and the second flange connection part 101D have the same size central hole and the same size cylinder ,
  • the cylinder is sleeved with air ducts, that is, the first air duct or the second air duct is sleeved on the cylinders of the first flange connection part 103D and the second flange connection part 101D.
  • the inner diameter of the air duct is the same.
  • FIG. 7 is an axial cross-sectional view of the electromagnetic shielding layer 102D
  • FIG. 8 is a top view of the electromagnetic shielding layer 102D.
  • the electromagnetic shielding layer 102D is provided with a plurality of uniformly distributed through holes, and the total cross-sectional area of the plurality of through holes is equal to or slightly larger than the inner diameter cross-sectional area of the air duct.
  • the control room communication module provided by the embodiment of the present invention includes: a microphone 42D, a second amplifier 44D, a second speaker 29D, a first sound wave concentrator 28D, an amplifier port 30D, a microphone 31D, and a first amplifier 45D , The first speaker 46D and the filter device 37D, wherein the microphone 42D, the second amplifier 44D, the second speaker 29D, the first sound wave concentrator 28D, the amplifier port 30D, the microphone 31D, the first amplifier 45D and the first speaker 46D and
  • the functions of the corresponding components of the control room communication module in the above embodiment are the same, and will not be repeated here.
  • the filter device 37D includes a first path and a second path.
  • the second speaker 29D is connected to the second amplifier 44D through the first path of the filter device 37D
  • the microphone 31D is connected to the first amplifier 45D through the second path of the filter device 37D.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明实施例公开了一种核磁共振通话设备,所述核磁共振通话设备设有控制室通话模块和扫描室通话模块;所述扫描室通话模块包括受话器,所述受话器将接收到的第一声波信号输入第一空气导管;所述控制室通话模块包括第一发声装置,所述第一声波信号经第一发声装置放大后播出。本发明实施例使得控制室和扫描室实现了双向自由通话,受话器能够向控制室操作人员传递语音信息,有利于处理扫描室内发声的紧急情况,使用空气导管进行声波信号的传输,保证了核磁共振检测的正常进行,在进行核磁共振扫描时不受语音通话的音频信号电磁场的影响。

Description

一种核磁共振通话设备 技术领域
本发明实施例涉及医疗设备领域,尤其涉及一种核磁共振通话设备。
背景技术
随着医疗技术的发展,核磁共振检测和CT检测已是医疗领域所必不可少的项目。
在进行核磁共振检测或CT检测时,被检测者在扫描室内,操作人员在控制室内操控设备对被检测者进行扫描,扫描室和控制室是完全隔离的,那么就造成了被检测者与操作人员之间不能进行沟通的问题。虽然现有核磁共振设备或CT设备在控制室内设置了通话装置,但是这种通话装置通常是单向的,其只能将控制室内的声音传递到扫描室内,使被检测者能够听从操作人员的指令而动作,且控制室的操作人员对被检测者讲话时用扬声器安装在高处,因受核磁共振的高强度噪音的影响被检测者常听不清楚。此外,扫描室内的被检测者还无法主动向控制室内的操作人员进行通话,当被检测者在扫描室内出现紧急情况或不适用情况时,就无法告知控制室内的操作人员进行应急处理,从而可能使得核磁共振检测或CT检测误检测,降低核磁共振检测或CT检测的精确性和可靠性。
发明内容
有鉴于此,本发明实施例提供一种核磁共振通话设备,以实现核磁共振检测的扫描室人员和控制室人员的双向通话。
本发明实施例提供一种核磁共振通话设备,所述核磁共振通话设备设有控制室通话模块和扫描室通话模块;
所述扫描室通话模块包括受话器,所述受话器将接收到的第一声波信号输入第一空气导管;
所述控制室通话模块包括第一发声装置,所述第一声波信号经第一发声装置放大后播出。
进一步的,所述控制室通话模块进一步包括第二发声装置,所述扫描室通话模块进一步包括耳机,所述第二发声装置发出的第二声波信号输入第二空气导管内,所述耳机通过第二空气导管接收所述第二声波信号以发声。
进一步的,所述第一发声装置包括:放大口、麦克风、第一放大器和第一扬声器,所述放大口包括大端和小端,所述麦克风设于所述放大口的大端,所述第一扬声器、所述第一放大器和所述麦克风依次通过导线连接,所述放大口的小端与所述第一空气导管连接;
所述第二发声装置包括:话筒、第二放大器、第二扬声器和第一声波集中器,所述第一声波集中器包括大端和小端,所述话筒、所述第二放大器和所述第二扬声器依次通过导线连接,所述第二扬声器设于所述第一声波集中器的大端,所述第一声波集中器的小端与所述第二空气导管连接;
进一步的,所述耳机包括:左耳罩、右耳罩和三通连接器,所述左耳罩内设有左耳语音输出口,所述右耳罩内设有右耳语音输出口,所述三通连接器包括输入口、第一输出口和第二输出口,所述左耳语音输出口通过左耳空气导管与所述三通连接器的第一输出口连接,所述右耳语音输出口通过右耳空气导管与所述三通连接器的第二输出口连接,所述三通连接器的输入口与所述第二空 气导管连接;
所述受话器包括:集音器、第二声波集中器、传输臂和四通连接器,所述第二声波集中器包括大端和小端,所述四通连接器设于所述左耳罩内,所述四通连接器包括第一接口和第二接口,所述集音器上设有振膜,所述振膜设于所述第二声波集中器的大端,所述第二声波集中器的小端通过第三空气导管与所述四通连接器的第一接口连接,所述四通连接器的第二接口与所述第一空气导管连接,其中,所述第三空气导管设于所述传输臂中。
进一步的,所述控制室通话模块和所述扫描室通话模块之间设有转接装置;
所述第一空气导管包括第一段和第二段,所述第一空气导管的第一段连接所述第一发声装置和所述转接装置,所述第一空气导管的第二段连接所述转接装置和所述受话器;
所述第二空气导管包括第一段和第二段,所述第二空气导管的第一段连接所述第二发声装置和所述转接装置,所述第二空气导管的第二段连接所述转接装置和所述耳机。
进一步的,所述转接装置包括第一转接部分和第二转接部分,所述第一转接部分和所述第二转接部分用于可插拔式的贯通连接所述第一空气导管的第一段和第二段;和/或所述第一转接部分和所述第二转接部分用于可插拔式的贯通连接所述第二空气导管的第一段和第二段。
进一步的,所述第一转接部分包括第一孔芯和第二孔芯,所述第二转接部分包括第一插孔和第二插孔;
所述第一空气导管的第一段与所述第一孔芯连接,所述第一空气导管的第二段与所述第一插孔连接,所述第二空气导管的第一段与所述第二孔芯连接, 所述第二空气导管的第二段与所述第二插孔连接;
当所述第一转接部分和所述第二转接部分连接时,所述第一孔芯与所述第一插孔贯通连接,所述第二孔芯与所述第二插孔贯通连接。
进一步的,所述第一空气导管或第二空气导管的长度越长,其直径越大。
进一步的,所述控制室通话模块设于核磁共振检测的控制室内,所述扫描室通话模块设于核磁共振检测的扫描室内,所述控制室与所述扫描室通过屏蔽墙隔离,所述屏蔽墙上设有开孔,所述开孔用于为所述第一空气导管和所述第二空气导管提供通道;
所述开孔处设有屏蔽装置,所述屏蔽装置包括第一法兰连接部和第二法兰连接部,所述第一法兰连接部和所述第二法兰连接部通过螺丝连接,所述第一法兰连接部的朝向第二法兰连接部的一段设有配合槽,所述配合槽内设有电磁屏蔽层,所述第一法兰连接部和所述第二法兰连接部具有相同大小的中心孔和相同大小的筒体,所述筒体上均套设空气导管,所述中心孔的孔径与所述套设的空气导管的内径相同。
进一步的,所述控制室通话模块还包括滤波装置,所述滤波装置包括第一通路和第二通路,所述第二扬声器通过所述滤波装置的第一通路与所述第二放大器连接,所述麦克风通过所述滤波装置的第二通路与所述第一放大器连接。
本发明实施例提供的核磁共振通话设备通过第一空气导管将受话器发出的第一声波信号传输到第一发声装置并播出,通过第二空气导管将第二发声装置发出的第二声波信号传输到耳机并播出,使得控制室和扫描室实现了双向自由通话,扫描室内的被检测者通过受话器能够向控制室操作人员传递语音信息,有利于处理扫描室内发声的紧急情况。扫描室内的被检测者还能通过佩戴耳机 接收控制室操作人员发出的语音,语音信息的传递更加准确,被检测者听的更加清楚。使用空气导管进行声波信号的传输,保证了核磁共振检测的正常进行,在进行核磁共振扫描时不受语音通话的音频信号电磁场的影响。
附图说明
图1是双路通话全空气导管耳机的结构示意图;
图2是控制室讲话和听话及话音的放大及全空气导管进入扫描室49D,控制室50D的示意图;
图3是全空气导管耳机的五通的内外结构示意图;
图4控制机及音频信号接入扫描室的49D1,控制室50D1装置示意图;
图5和图6是空气导管麦克风的屏蔽装置结构示意图;
图7和图8是屏蔽层的形状示意图;
图9和图10是将扬声器24D和空气导管麦克风的屏蔽装置联合为一体的屏蔽装置示意图;
图11为屏蔽装置的安装位置的示意图;
图12为本发明实施例12提供的一种核磁共振通话设备的结构示意图;
图13为本发明实施例13提供的一种核磁共振通话设备的结构示意图;
图14为本发明实施例14提供的一种扫描室通话模块的结构示意图;
图15为本发明实施例16提供的一种核磁共振通话设备的局部示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此 处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或耳机。虽然流程图将各步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,各步骤的顺序可以被重新安排。当其操作完成时处理可以被终止,但是还可以具有未包括在附图中的附加步骤。处理可以对应于耳机、函数、规程、子例程、子程序等等。
此外,术语“第一”、“第二”等可在本文中用于描述各种方向、动作、步骤或元件等,但这些方向、动作、步骤或元件不受这些术语限制。这些术语仅用于将第一个方向、动作、步骤或元件与另一个方向、动作、步骤或元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一空气导管称为第二空气导管,且类似地,可将第二空气导管称为第一空气导管。第一空气导管和第二空气导管两者都是空气导管,但其不是同一空气导管。术语“第一”、“第二”等而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”、“批量”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
实施例1
一种无磁双路通话设备及屏蔽层空气导管麦克风,其特征在于:
控制室内设有受送话装置:
设置的特种话筒有导线连接到线路板上的放大电路,通过放大电路放大信号后通过导线连接到扬声器的一端,扬声器的另一端安装到声波集中器的大端,声波集中器的小端连按空气导管的一端,空气导管的另一端连接插座中的一个芯子孔。插座活动连接空气导管耳机的插头,插头的一孔连接一条空气导管的一端,所述的空气导管的另一端连接三通的入口端,三通的出口分为两个。各接上一条空气导管的一端,所述的该两条空气导管的另一端连接语音输出按口,所述的语音输出接口分别安装在两个耳罩内,供两个耳朵听。
实施例2
如实施例1所述的空气导管耳机上设有受话器4D,所述的受话器上设有振膜,振膜安装在声波集中器大端,所述的声波集中器小端连接空气导管的一端,所述的空气导管,安装在可自由弯曲调节位置的传输臂25D,所述的传输臂25D是用塑料制成。所述的空气导管的另一端接到耳罩内的四通2D中的一个接口,四通2D2的相通的另一个接口连接空气导管26D的一端,所述的空气导管26D的另一端连接空气导管耳机插头的另一个孔,所述的空导管的耳机的插头10D活动连接插座。
插座另一个带孔的芯心连接空气导管,所述的此空气导管的另一端连接小放大口14D的小端,所述的小放大口14D的大端安装麦克风14D1,麦克风14D2的导线接到线路的放大器16D,放大信号后用导线连接到扬声器17D,将扫描室內被扫描人的讲话,提供给控制人员听。从插座11D接到扬声器外壳的两条空气导管12D、13D设置平行安装,所述的两条平行的空气导管其长度根据被扫描人员与控制室的距离确定。
所述的三通一边安装有一条硬管48D1。
实施例3
如实施例2所述的传输臂25D是用316L材质的不锈钢制成,并且将硬管48D1合并设置到三通48D上,即将三通48D设置为五通,增加的二通取代硬管使用,其余设置与实施例2一样。
实施例4
本例将实施例3中所述的三通加硬管为五通设置为整体的五通,外面均设置哈呋的外套7D,以增加牢固度和美观,其余设置均与实施例2一样。
实施例5
本例中将控制机的特别麦克风42D的音频信号通过,导线41D连接到线路板上的放大电路44D放大后的音频信号输出,经过金属屏蔽音频导线38D接到滤波器37D的其中一个通路,滤掉对扫频室有影响的电波,再经过音频信号线33D-1连接到扬声器29D,所述的扬声器31D安装在声波集中器28D的大端,声波集中器28D的小端通空气导管接到插座26D的插孔27D内相应的一条芯子通孔内,
所述的插孔27D的另一条芯子通孔由软管32D连接到放大口30D小端,放大口30D的大端安装麦克风31D,麦克风31D通过音频导线33D连接到滤波器37D的另一个通路,经过所述的滤波器37D后再经过音频导线39D连接到线路板上的放大器45D放大信号后用音频导线送到扬声器46D发出声音供控制室人员听。
所述的滤波器37D是磁共振或CT的扫描室要求的专用滤波器。
实施例6
本例中的音频信号线采用光纤电缆,其余设置均与实施例5一样。
实施例7
本例中扬声器扫描室内采用压电陶瓷扬声器,控制室采用动圈扬声器。
实施例8
本例将空气导管麦克风在小麦克风之前与声波集中器之间的空气导管的垂直面安装图11的100D位置,即是屏蔽墙48D处设置屏蔽装置。所述的屏蔽装置的一端是椎体型连接器103D,所述的连接器103D椎体端设通孔,通孔的孔径相同于空气导管内径,另一端设有一个比空气导管的内径稍大的一个圆柱孔,该圆柱孔内安装屏蔽层102D,所述的屏蔽层102D平面上设置均布的多孔,多孔的总截面积等于空气导管的内径截面积,如图7和图8所示。所述的此屏蔽层安装孔与椎体端的内孔用锥孔连接构成一喇叭口,
所述的椎体连接器103D的大端设置了法兰连接器101D,所述的法兰连接器101D法兰上用螺丝108D安装到椎体连接器103D,所述的椎体连接器103D和法兰连接器101D之间设有橡胶垫109D密封,法兰连接器101D的内孔的锥度喇叭口及内孔与椎体连接器的锥度喇叭口及内孔设置为对称的,所述的锥度连接器103D和法兰连接器101D及屏蔽层102D构成了空气导管麦克风的屏蔽装置。如图5和图6所示,所述的屏蔽装置的两端均套上空气导管。构成了加屏蔽装置的空气导管麦克风。
此屏蔽装置能将有源的麦克风及有源的其他电路及元器件与空气导管麦克风的无源部分隔离开,互不干扰,又达到声波良好的传递。
实施例9
本例在扬声器空气导管12D的100D处剪断安装一个空气导管的屏蔽装置, 所述的此屏蔽装置与权利要求5所述的屏蔽装置的结构是相同的,如图5和图6所示,扬声器的24D的发声端连接到椎体连接器103D1,空气导管的插座段连接法兰连接器101D1构成了扬声器空气导管的屏蔽装置,隔离了扬声器及其电路不干扰隔离板内的所有设备。
实施例10
本例将空气导管麦克风的空气导管屏蔽装置和扬声器的空气导管的屏蔽装置来联合设置为一体安装,法兰为椭圆形的如图9和图10所示。
实施例11
本例中所有的屏蔽装置的材料设为与磁共振的原屏蔽层的材质相同。
实施例12
图12为本发明实施例12提供的一种核磁共振通话设备的结构示意图,本实施例可适用于进行核磁共振检测的场景。如图12所示,本发明实施例提供的核磁共振通话设备包括:控制室通话模块100和扫描室通话模块200,需要说明的是,核磁共振通话设备还包括扫描枪、扫描床、控制面板等其他工作模块,对于这些模块的结构和工作原理本实施例中不做限定。
控制室通话模块100设于控制室300内,扫描室通话模块200设于扫描室400内,控制室300和扫描室400之间由屏蔽墙500隔离。控制室通话模块100包括第二发声装置110和第一发声装置120,扫描室通话模块200包括耳机210和受话器220,第二发声装置110和耳机210通过第二空气导管610连接,第一发声装置120和受话器220通过第一空气导管620连接。
本发明实施例的工作过程为:当扫描室400内的被检测人员有紧急情况需要告知控制室300内的操作人员时,扫描室400内的被检测人员通过受话器220 发出第一语音信息,受话器220将该第一语音信息转化为第一声波信号,并将该第一声波信号输入到第一空气导管620中,第一空气导管继续讲该第一声波信号传输到第一发声装置120中,第一发声装置120接收到该第一声波信号之后进行放大还原等处理,将该第一声波信号转化为被检测人员发出的第一语音信息并发出声音,使控制室300内的操作人员能够收听到该第一语音信息。
当控制室300内的操作人员需要对扫描室400内的被检测人员发出指令或提示信息时,控制室300内的操作人员对第二发声装置110发出第二语音信息,第二发声装置110将该第二语音信息转化成第二声波信号,并将该第二声波信号输入到第二空气导管610中,第二空气导管610继续将该第一语音信号传输到耳机210中,耳机210接收到该第二声波信号之后进行放大还原等处理,将该第二声波信号转化为操作人员发出的第二语音信息并发出声音,使扫描室400内佩戴耳机400的被检测人员能够收听到该第二语音信息。
进一步的,当空气导管(泛指本实施例中所有的空气导管)越长,声波信号在空气导管中传输的距离也越长,为了降低声波信号的损耗,空气导管的直径也应该越大。
本发明实施例提供的核磁共振通话设备通过第二空气导管将第二发声装置发出的第二声波信号传输到耳机并播出,通过第一空气导管将受话器发出的第一声波信号传输到第一发声装置并播出,使得控制室和扫描室实现了双向自由通话,扫描室内的被检测者通过佩戴耳机接收控制室操作人员发出的语音,语音信息的传递更加准确,被检测者听的更加清楚,使用空气导管进行声波信号的传输,保证了核磁共振检测的正常进行,在进行核磁共振扫描时不受语音通话的音频信号电磁场的影响。
实施例13
图13为本发明实施例13提供的一种核磁共振通话设备的结构示意图,本实施例是对上述实施例的进一步优化。如图13所示,在上述实施例的基础上,本发明实施例提供的核磁共振通话设备在控制室通话模块100和扫描室通话模块200之间还增加了转接装置700,由于增加了转接装置700,故第二空气导管610包括第一段611和第二段612,第一空气导管620包括第一段621和第二段622,第二空气导管的第一段611连接第二发声装置110和转接装置700,第二空气导管的第二段612连接转接装置700和耳机210,第一空气导管的第一段621连接第一发声装置120和转接装置700,第一空气导管的第二段622连接转接装置700和受话器220。
进一步的,转接装置700包括第一转接部分710和第二转接部分720,第一转接部分710和第二转接部分720之间为可插拔式连接,例如,第一转接部分710为插座,第二转接部分720为插头。当第一转接部分710和第二转接部分720连接时,使得第二空气导管610的第一段611和第二段612可以贯通连接,第一空气导管620的第一段621和第二段622可以贯通连接。
本发明实施例提供的核磁共振通话设备通过在控制室通话模块和扫描室通话模块之间安装转接装置,使得控制室通话模块和扫描室通话模块可以形成两个独立的模块,控制室通话模块和扫描室通话模块之间的连接可以通过转接装置来控制,提高了控制室通话模块和扫描室通话模块使用的方便性。
实施例14
图14为本发明实施例14提供的一种扫描室通话模块的结构示意图,本实施例是对上述实施例中的扫描室通话模块的进一步细化。如图14所示,本发明实施例提供的扫描室通话模块包括:左耳罩1D1、右耳罩1D2、三通连接器48D、集音器4D、第二声波集中器、传输臂25D、四通连接器2D2和插头10D,左耳罩1D1内设有左耳语音输出口2D1,右耳罩1D2内设有右耳语音输出口2D,三通连接器48D的外围套设有哈呋的外套7D,三通连接器48D的结构如图10所示,三通连接器48D的一边还安装有一条硬管48D1,三通连接器48D包括输入口、第一输出口和第二输出口,左耳语音输出口2D1通过左耳空气导管5D与三通连接器48D的第一输出口连接,右耳语音输出口2D通过右耳空气导管3D与三通连接器48D的第二输出口连接,三通连接器48D的输入口与第二空气导管8D连接,第二空气导管8D连接到插头10D的第二插孔中。
扫描室通话模块的第二空气导管8D通过插头10D的第二插孔与控制室通话模块中的第二空气导管连接,接收由控制室传输的第二声波信号,并将第二声波信号分别传输到左耳空气导管5D和右耳空气导管3D中,左耳空气导管5D将第二声波信号传输到左耳语音输出口2D1,右耳空气导管3D将第二声波信号传输到右耳语音输出口2D,用户通过配到左耳罩1D1和右耳罩1D2就可以接收到控制室通话模块发出的第二语音信息。
第二声波集中器包括大端和小端,四通连接器2D2设于左耳罩1D1内,四通连接器2D2包括第一接口和第二接口,集音器4D上设有振膜,振膜设于第二声波集中器的大端,第二声波集中器的小端通过第三空气导管与四通连接器2D2的第一接口连接,四通连接器2D2的第二接口与第一空气导管连接,第一空气导管在扫描室通话模块中包括上半部分和下半部分,第一空气导管上半部 分6D为四通连接器2D2的第二接口到三通连接器48D之间的部分,其与左耳空气导管5D并列设置,第一空气导管下半部分为三通连接器48D到插头10D的第一插孔之间的部分,其与第二空气导管8D并列设置。其中,第三空气导管设于传输臂25D中,第二声波集中器设置在集音器25D的外壳内,图中均未示出。
扫描室内的被检测人员向集音器4D发出第一语音信息,集音器4D将第一语音信息转化为第一声波信号并经过第三空气导管传输到第一空气导管中,由第一空气导管继续向控制室通话模块传输第一语音信息,使控制室的操作人员能够接收到扫描室通话模块发出的第一语音信息。
实施例15
本发明实施例15提供的一种控制室通话模块的结构示意图参考图2,本实施例是对上述实施例中的控制室通话模块的进一步细化。如图2所示,本发明实施例15提供的控制室通话模块包括:话筒23D、第二放大器15D、第二扬声器24D、第一声波集中器18D、放大口14D、麦克风14D1、第一放大器16D和第一扬声器17D。第一声波集中器18D包括大端和小端,话筒23D、第二放大器15D和第二扬声器24D依次通过导线连接,第二扬声器24D设于第一声波集中器18D的大端,第一声波集中器18D的小端与第二空气导管12D连接,第二空气导管12D连接到插座11D的第二孔芯。
控制室50D内操作人员向话筒23D发出第一语音信号,话筒23D将第一语音信号转化为第二声波信号并将其传输到控制室50D通话模块中的第二空气导管12D中(即第二空气导管的第一段),插座11D的第二孔芯与插头10D的第 二插孔可插拔式的贯通连接控制室50D通话模块中的第二空气导管12D和扫描室49D通话模块中的第二空气导管8D(即第二空气导管的第二段),使得扫描室49D通话模块中的第二空气导管8D能够接收该第二声波信号,最终使得扫描室49D内的被检测者能够接收到第二语音信息。
放大口14D包括大端和小端,麦克风14D1设于放大口14D的大端,第一扬声器17D、第一放大器16D和麦克风14D1依次通过导线连接,放大口14D的小端与第一空气导管13D连接,第一空气导管13D连接到插座11D的第一孔芯。
插座11D的第一孔芯与插头10D的第一插孔的可插拔式连接使控制室50D通话模块的第一空气导管13D(即第一空气导管第一段)和扫描室49D通话模块的第一空气导管(即第一空气导管第二段)下半部分9D贯通式连接,控制室50D通话模块的第一空气导管13D能够接收扫描室49D通话模块传输的第一声波信号,并最终通过第一扬声器17D将第一声波信号对应的第一语音信息播出,使控制室50D的操作人员能够听见。
实施例16
图15为本发明实施例16提供的一种核磁共振通话设备的局部示意图,本实施例是对上述实施例的进一步优化。在上述实施例的基础上,本发明实施例提供的核磁共振通话设备还包括屏蔽装置60D,本实施例中所包括的控制室通话模块和扫描室通话模块与上述实施例中的相同,在此不再赘述。
控制室50D和扫描室49D之间通过屏蔽墙48D隔离,屏蔽墙48D上开设有开孔,第二空气导管12D和第一空气导管13D通过该开孔穿过屏蔽墙48D。
开孔处设有屏蔽装置60D,第二空气导管12D和/或第一空气导管13D在穿过屏蔽墙48D时需要连接屏蔽装置60D。屏蔽装置60D的结构示意图如图5和图6所示。屏蔽装置60D包括第一法兰连接部103D和第二法兰连接部101D,第一法兰连接部103D和第二法兰连接部101D通过螺丝100D连接,第一法兰连接部103D的朝向第二法兰连接部101D的一段设有配合槽,配合槽内设有电磁屏蔽层102D,第一法兰连接部103D和第二法兰连接部101D具有相同大小的中心孔和相同大小的筒体,筒体上均套设空气导管,即第一空气导管或第二空气导管套设到第一法兰连接部103D和第二法兰连接部101D的筒体上,中心孔的孔径与套设的空气导管的内径相同。
图7为电磁屏蔽层102D的轴向剖视图,图8为电磁屏蔽层102D的俯视图。如图7和图8所示,电磁屏蔽层102D上设有均布的多个通孔,该多个通孔的总截面积等于或稍大于空气导管的内径截面积。
实施例17
本发明实施例17提供的一种控制室通话模块的结构示意图参考图4,本实施例是对上述实施例的进一步优化。如图4所示,本发明实施例提供的控制室通话模块包括:话筒42D、第二放大器44D、第二扬声器29D、第一声波集中器28D、放大口30D、麦克风31D、第一放大器45D、第一扬声器46D和滤波装置37D,其中,话筒42D、第二放大器44D、第二扬声器29D、第一声波集中器28D、放大口30D、麦克风31D、第一放大器45D和第一扬声器46D与上述实施例中的控制室通话模块的各对应的元器件的功能相同,在此不再赘述。
滤波装置37D包括第一通路和第二通路,第二扬声器29D通过滤波装置 37D的第一通路与第二放大器44D连接,麦克风31D通过滤波装置37D的第二通路与第一放大器45D连接。通过滤波装置的滤波作用,可以滤除第一声波信号和第二声波信号中对扫描室有影响的电波信号,降低控制室通话模块和扫描室通话模块之间的通信对核磁共振检测的影响。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种核磁共振通话设备,其特征在于,所述核磁共振通话设备设有控制室通话模块和扫描室通话模块;
    所述扫描室通话模块包括受话器,所述受话器将接收到的第一声波信号输入第一空气导管;
    所述控制室通话模块包括第一发声装置,所述第一声波信号经第一发声装置放大后播出。
  2. 如权利要求1所述的核磁共振通话设备,其特征在于,所述控制室通话模块进一步包括第二发声装置,所述扫描室通话模块进一步包括耳机,所述第二发声装置发出的第二声波信号输入第二空气导管内,所述耳机通过第二空气导管接收所述第二声波信号以发声。
  3. 如权利要求2所述的核磁共振通话设备,其特征在于,所述第一发声装置包括:放大口、麦克风、第一放大器和第一扬声器,所述放大口包括大端和小端,所述麦克风设于所述放大口的大端,所述第一扬声器、所述第一放大器和所述麦克风依次通过导线连接,所述放大口的小端与所述第一空气导管连接;
    所述第二发声装置包括:话筒、第二放大器、第二扬声器和第一声波集中器,所述第一声波集中器包括大端和小端,所述话筒、所述第二放大器和所述第二扬声器依次通过导线连接,所述第二扬声器设于所述第一声波集中器的大端,所述第一声波集中器的小端与所述第二空气导管连接。
  4. 如权利要求3所述的核磁共振通话设备,其特征在于,所述耳机包括:左耳罩、右耳罩和三通连接器,所述左耳罩内设有左耳语音输出口,所述右耳罩内设有右耳语音输出口,所述三通连接器包括输入口、第一输出口和第二输出口,所述左耳语音输出口通过左耳空气导管与所述三通连接器的第一输出口 连接,所述右耳语音输出口通过右耳空气导管与所述三通连接器的第二输出口连接,所述三通连接器的输入口与所述第二空气导管连接;
    所述受话器包括:集音器、第二声波集中器、传输臂和四通连接器,所述第二声波集中器包括大端和小端,所述四通连接器设于所述左耳罩内,所述四通连接器包括第一接口和第二接口,所述集音器上设有振膜,所述振膜设于所述第二声波集中器的大端,所述第二声波集中器的小端通过第三空气导管与所述四通连接器的第一接口连接,所述四通连接器的第二接口与所述第一空气导管连接,其中,所述第三空气导管设于所述传输臂中。
  5. 如权利要求2所述的核磁共振通话设备,其特征在于,所述控制室通话模块和所述扫描室通话模块之间设有转接装置;
    所述第一空气导管包括第一段和第二段,所述第一空气导管的第一段连接所述第一发声装置和所述转接装置,所述第一空气导管的第二段连接所述转接装置和所述受话器;
    所述第二空气导管包括第一段和第二段,所述第二空气导管的第一段连接所述第二发声装置和所述转接装置,所述第二空气导管的第二段连接所述转接装置和所述耳机。
  6. 如权利要求5所述的核磁共振通话设备,其特征在于,所述转接装置包括第一转接部分和第二转接部分,所述第一转接部分和所述第二转接部分用于可插拔式的贯通连接所述第一空气导管的第一段和第二段;和/或所述第一转接部分和所述第二转接部分用于可插拔式的贯通连接所述第二空气导管的第一段和第二段。
  7. 如权利要求6所述的核磁共振通话设备,其特征在于,所述第一转接部 分包括第一孔芯和第二孔芯,所述第二转接部分包括第一插孔和第二插孔;
    所述第一空气导管的第一段与所述第一孔芯连接,所述第一空气导管的第二段与所述第一插孔连接,所述第二空气导管的第一段与所述第二孔芯连接,所述第二空气导管的第二段与所述第二插孔连接;
    当所述第一转接部分和所述第二转接部分连接时,所述第一孔芯与所述第一插孔贯通连接,所述第二孔芯与所述第二插孔贯通连接。
  8. 如权利要求2所述的核磁共振通话设备,其特征在于,所述第一空气导管或第二空气导管的长度越长,其直径越大。
  9. 如权利要求2所述的核磁共振通话设备,其特征在于,所述控制室通话模块设于核磁共振检测的控制室内,所述扫描室通话模块设于核磁共振检测的扫描室内,所述控制室与所述扫描室通过屏蔽墙隔离,所述屏蔽墙上设有开孔,所述开孔用于为所述第一空气导管和所述第二空气导管提供通道;
    所述开孔处设有屏蔽装置,所述屏蔽装置包括第一法兰连接部和第二法兰连接部,所述第一法兰连接部和所述第二法兰连接部通过螺丝连接,所述第一法兰连接部的朝向第二法兰连接部的一段设有配合槽,所述配合槽内设有电磁屏蔽层,所述第一法兰连接部和所述第二法兰连接部具有相同大小的中心孔和相同大小的筒体,所述筒体上均套设空气导管,所述中心孔的孔径与所述套设的空气导管的内径相同。
  10. 如权利要求2所述的核磁共振通话设备,其特征在于,所述控制室通话模块还包括滤波装置,所述滤波装置包括第一通路和第二通路,所述第二扬声器通过所述滤波装置的第一通路与所述第二放大器连接,所述麦克风通过所述滤波装置的第二通路与所述第一放大器连接。
PCT/CN2020/000034 2019-02-18 2020-02-20 一种核磁共振通话设备 WO2020168836A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE212020000505.2U DE212020000505U1 (de) 2019-02-18 2020-02-20 Kernspinresonanz-Kommunikationsgerät
JP2021548652A JP7295258B2 (ja) 2019-04-17 2020-02-20 核磁気共鳴通話デバイス
EP20759577.8A EP3930345A4 (en) 2019-02-18 2020-02-20 NUCLEAR RESONANCE COMMUNICATIONS DEVICE
US17/431,935 US11936414B2 (en) 2019-02-18 2020-02-20 MRI communication device
IL285659A IL285659A (en) 2019-02-18 2021-08-16 Nuclear magnetic resonance imaging

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910143605 2019-02-18
CN201910143605.9 2019-02-18
CN201910332123.8 2019-04-17
CN201910332123 2019-04-17

Publications (1)

Publication Number Publication Date
WO2020168836A1 true WO2020168836A1 (zh) 2020-08-27

Family

ID=72144282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/000034 WO2020168836A1 (zh) 2019-02-18 2020-02-20 一种核磁共振通话设备

Country Status (6)

Country Link
US (1) US11936414B2 (zh)
EP (1) EP3930345A4 (zh)
CN (1) CN111654303B (zh)
DE (1) DE212020000505U1 (zh)
IL (1) IL285659A (zh)
WO (1) WO2020168836A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090141924A1 (en) * 2007-11-29 2009-06-04 Hong-Ching Her Earpiece Device with Microphone
CN101707504A (zh) * 2009-10-28 2010-05-12 天津大学 一种光纤对讲装置
CN202353778U (zh) * 2011-08-03 2012-07-25 诸爱道 防辐射蓝牙耳机
CN203563171U (zh) * 2012-03-01 2014-04-23 诸爱道 一种空气导管耳机
CN204425632U (zh) * 2013-08-25 2015-06-24 诸爱道 防辐射的蓝牙耳机

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313945A (en) * 1989-09-18 1994-05-24 Noise Cancellation Technologies, Inc. Active attenuation system for medical patients
US5412419A (en) * 1991-02-11 1995-05-02 Susana Ziarati Magnetic resonance imaging compatible audio and video system
JPH10216101A (ja) * 1997-01-31 1998-08-18 Shimadzu Corp 核磁気共鳴検査装置
US6463316B1 (en) * 2000-04-07 2002-10-08 The United States Of America As Represented By The Secretary Of The Air Force Delay based active noise cancellation for magnetic resonance imaging
GB2362057A (en) * 2000-05-04 2001-11-07 Martin Paul Davidson Wire-less link accessory for mobile telephones
CN2466758Y (zh) * 2001-01-22 2001-12-19 黄奇 一种新型传音装置
CN2479692Y (zh) * 2001-04-27 2002-02-27 邱虹云 避免电磁辐射的手机耳机及话筒
CN2854979Y (zh) * 2005-12-06 2007-01-03 邱洋 空气传导防辐射手机耳机
CN2877162Y (zh) * 2006-03-24 2007-03-07 虞荃 便携式电话聚声隔音保密装置
US8085942B2 (en) * 2006-11-22 2011-12-27 Nordicneurolab As Audio apparatus and method for use in proximity to a magnetic resonance imaging system
CN201127044Y (zh) * 2007-12-18 2008-10-01 谢暖冬 无辐射语音传送装置
US20120013525A1 (en) * 2009-03-13 2012-01-19 K-Space Llc Interactive mri system
CN202455506U (zh) * 2012-01-13 2012-09-26 宁波隆兴电信设备制造有限公司 防辐射耳机
US9264793B2 (en) * 2012-05-18 2016-02-16 Neocoil, Llc MRI compatible headset
WO2014121402A1 (en) * 2013-02-07 2014-08-14 Sunnybrook Research Institute Systems, devices and methods for transmitting electrical signals through a faraday cage
CN103369424A (zh) * 2013-07-30 2013-10-23 无锡市永动电子科技有限公司 环保无辐射耳机装置
JP6258089B2 (ja) * 2014-03-18 2018-01-10 株式会社東芝 スピーカシステム
US10032446B2 (en) * 2014-09-29 2018-07-24 Keith Kropf Underwater voice communication devices and associated methods
US10091574B2 (en) * 2015-11-25 2018-10-02 Neocoil, Llc Method and apparatus for delivering audio signals and providing hearing protection during medical imaging
CN107094273A (zh) * 2017-05-23 2017-08-25 诸爱道 安全的耳机
CN107770677A (zh) * 2017-09-09 2018-03-06 湖北阳超机电科技有限公司 一种电影院简易语音通话装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090141924A1 (en) * 2007-11-29 2009-06-04 Hong-Ching Her Earpiece Device with Microphone
CN101707504A (zh) * 2009-10-28 2010-05-12 天津大学 一种光纤对讲装置
CN202353778U (zh) * 2011-08-03 2012-07-25 诸爱道 防辐射蓝牙耳机
CN203563171U (zh) * 2012-03-01 2014-04-23 诸爱道 一种空气导管耳机
CN204425632U (zh) * 2013-08-25 2015-06-24 诸爱道 防辐射的蓝牙耳机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3930345A4 *

Also Published As

Publication number Publication date
EP3930345A1 (en) 2021-12-29
EP3930345A4 (en) 2022-10-12
CN111654303A (zh) 2020-09-11
IL285659A (en) 2021-09-30
US11936414B2 (en) 2024-03-19
CN111654303B (zh) 2022-02-08
DE212020000505U1 (de) 2021-08-17
US20210384934A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
CN109379654B (zh) 一种降噪空气导管麦克风、降噪安全耳机及降噪安全蓝牙耳机
US8085942B2 (en) Audio apparatus and method for use in proximity to a magnetic resonance imaging system
US5313945A (en) Active attenuation system for medical patients
WO2018214894A1 (zh) 安全的耳机
KR20200083446A (ko) 신체의 청진
US11741931B2 (en) Electronic stethoscope device with noise cancellation
CN103634729A (zh) 音响器具和带听筒的耳件
JPH07194578A (ja) 通信装置を有する磁気共鳴画像化装置
CN107547962A (zh) 增强从耳机的听筒传送的麦克风信号的方法及装置
US20040064028A1 (en) Head-fixing device for an imaging medical examination device, and examination device using same
WO2020168836A1 (zh) 一种核磁共振通话设备
WO2019184537A1 (zh) 降噪防辐射耳机
US20230099287A1 (en) Active Noise Reduction Earbud
JP7295258B2 (ja) 核磁気共鳴通話デバイス
US20230353921A1 (en) Sound device
US20220284878A1 (en) Hearing device comprising an active emission canceller
JP7289133B2 (ja) 両面試聴イヤホン
US8755551B2 (en) Hearing apparatus having a special sound channel
CN110267137A (zh) 传导设备以及医学系统
WO1990002513A1 (en) Active attenuation system for medical patients
US20230421971A1 (en) Hearing aid comprising an active occlusion cancellation system
CN220776077U (zh) 传音组件、耳机装置和核磁共振设备
CN213097964U (zh) 一种无线蓝牙听诊器
US20240164739A1 (en) Systems and methods for electronic stethoscope with active headset
CN211959489U (zh) 一种重低音游戏专用耳机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548652

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020759577

Country of ref document: EP

Effective date: 20210920