WO2020168747A1 - 基于高精地图的人机交互方法和装置 - Google Patents

基于高精地图的人机交互方法和装置 Download PDF

Info

Publication number
WO2020168747A1
WO2020168747A1 PCT/CN2019/116372 CN2019116372W WO2020168747A1 WO 2020168747 A1 WO2020168747 A1 WO 2020168747A1 CN 2019116372 W CN2019116372 W CN 2019116372W WO 2020168747 A1 WO2020168747 A1 WO 2020168747A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
precision map
addition request
map
precision
Prior art date
Application number
PCT/CN2019/116372
Other languages
English (en)
French (fr)
Inventor
王月
吴泽琳
薛晶晶
刘颖楠
饶文龙
龚伟
Original Assignee
北京百度网讯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京百度网讯科技有限公司 filed Critical 北京百度网讯科技有限公司
Priority to EP19897571.6A priority Critical patent/EP3731190A4/en
Priority to US16/958,650 priority patent/US20210325203A1/en
Publication of WO2020168747A1 publication Critical patent/WO2020168747A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3605Destination input or retrieval
    • G01C21/3614Destination input or retrieval through interaction with a road map, e.g. selecting a POI icon on a road map
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3635Guidance using 3D or perspective road maps
    • G01C21/3638Guidance using 3D or perspective road maps including 3D objects and buildings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • G01C21/32Structuring or formatting of map data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3605Destination input or retrieval
    • G01C21/3608Destination input or retrieval using speech input, e.g. using speech recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3667Display of a road map
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3667Display of a road map
    • G01C21/367Details, e.g. road map scale, orientation, zooming, illumination, level of detail, scrolling of road map or positioning of current position marker
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3856Data obtained from user input
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models

Definitions

  • the embodiments of the present application relate to the field of computer technology, in particular to the field of electronic map technology, and in particular to a human-computer interaction method and device based on a high-precision map.
  • a high-precision map refers to a high-precision electronic map with an absolute coordinate accuracy of centimeters.
  • the absolute coordinate accuracy here refers to the deviation between the coordinates of a target on the map and the real coordinates of things in the outside world corresponding to the target, usually expressed in length measurement units.
  • high-precision maps contain more information.
  • high-precision maps can include various road markings and traffic signs.
  • High-precision maps can be used in the field of unmanned driving, which can provide a large amount of driving assistance information to unmanned vehicles, such as the geometric structure of the road surface, the relative position of road markings, and the model of the surrounding road environment.
  • the absolute coordinate accuracy of ordinary navigation electronic maps is about 10 meters, and this accuracy can be used to assist the driver in navigation. But in the field of unmanned driving, unmanned vehicles need to know exactly where they are on the road. Usually, the distance between the vehicle and the obstacle beside the road, as well as the distance between the vehicle and the next lane is about ten centimeters, or even a few centimeters. Using ordinary electronic navigation maps, due to its accuracy limitations, it is impossible to accurately judge unmanned driving. The distance between the vehicle and the obstacle, as well as the relationship between the driverless vehicle and the side lane, therefore, ordinary navigation electronic maps are far from meeting the needs of driverless vehicles.
  • map collection vehicles driven by technicians to collect environmental data around the vehicles.
  • the map collection vehicle can be equipped with collection equipment such as lidar, industrial camera, global positioning receiver, inertial measurement unit, etc., to collect the surrounding environment data of the area passed by the map collection vehicle, and perform fusion processing on the various collected data Generate electronic maps with colors.
  • the embodiment of the present application proposes a human-computer interaction method and device based on a high-precision map.
  • an embodiment of the present application provides a human-computer interaction method based on a high-precision map.
  • the method includes: obtaining a pre-generated high-precision map; in response to receiving an information addition request, parsing the information addition request; The addition information indicated by the information addition request is added to the above-mentioned pre-generated high-precision map to generate an updated high-precision map.
  • the method further includes: in response to receiving the route addition request, presenting the planned route indicated by the route addition request in the updated high-precision map.
  • parsing the information addition request includes: extracting semantic information of the information addition request; and determining the map element indicated by the information addition request based on the semantic information.
  • adding the addition information indicated by the information addition request to the pre-generated high-precision map to generate an updated high-precision map includes: according to the location information indicated by the information addition request, The three-dimensional model of the above-mentioned map elements is generated in the pre-generated high-precision map.
  • the method further includes: in response to receiving the location query request, determining a map element corresponding to the location query request; and displaying the above-mentioned map element in a high-precision map.
  • an embodiment of the present application provides a human-computer interaction device based on a high-precision map.
  • the device includes: an acquiring unit configured to acquire a pre-generated high-precision map; and a parsing unit configured to respond to receiving The information addition request analyzes the information addition request; the generating unit is configured to add the addition information indicated by the information addition request to the pre-generated high-precision map to generate an updated high-precision map.
  • the apparatus further includes a presentation unit, and the foregoing presentation unit is configured to: in response to receiving a path addition request, present the planned path indicated by the foregoing path addition request in the updated high-precision map.
  • the parsing unit is further configured to: extract semantic information of the information addition request; and extract the map element indicated by the addition request based on the semantic information.
  • the generating unit is further configured to generate the three-dimensional model of the map element in the high-precision map generated in advance according to the location information indicated by the information addition request.
  • the foregoing display unit is further configured to: in response to receiving the location query request, determine a map element corresponding to the location query request; and display the foregoing map element in a high-precision map.
  • an embodiment of the present application provides an electronic device, which includes: one or more processors; a storage device, on which one or more programs are stored, when the above one or more programs are When executed by or multiple processors, the above one or more processors implement the method described in any implementation manner in the first aspect.
  • an embodiment of the present application provides a computer-readable medium on which a computer program is stored, where the computer program is executed by a processor to implement the method described in any implementation manner in the first aspect.
  • the human-computer interaction method and device based on the high-precision map obtained a pre-generated high-precision map, and then in response to receiving an information addition request, analyze the information addition request, and finally add the information addition request
  • the indicated addition information is added to the pre-generated high-precision map to generate an updated high-precision map.
  • Fig. 1 is an exemplary system architecture diagram in which a human-computer interaction method based on a high-precision map of an embodiment of the present application can be applied;
  • Figure 2 is a flowchart of an embodiment of a human-computer interaction method based on a high-precision map according to the present application
  • Fig. 3 is a schematic diagram of an application scene of the human-computer interaction method based on a high-precision map according to the present application;
  • FIG. 4 is a flowchart of another embodiment of a human-computer interaction method based on a high-precision map according to the present application;
  • FIG. 5 is a schematic structural diagram of an embodiment of a human-computer interaction device based on a high-precision map according to the present application
  • Fig. 6 is a schematic structural diagram of a computer system suitable for implementing an electronic device according to an embodiment of the present application.
  • FIG. 1 shows an exemplary system architecture 100 in which a human-computer interaction method based on a high-precision map of an embodiment of the present application can be applied.
  • the system architecture 100 may include terminal devices 101, 102, 103, a network 104, and a server 105.
  • the network 104 is used to provide a medium for communication links between the terminal devices 101, 102, 103 and the server 105.
  • the network 104 may include various connection types, such as wired, wireless communication links, or fiber optic cables.
  • the user can use the terminal devices 101, 102, 103 to interact with the server 105 through the network 104 to receive or send messages and so on.
  • Various client applications may be installed on the terminal devices 101, 102, 103, such as web browser application search applications, instant messaging tools, map collection and display applications, and so on.
  • the terminal devices 101, 102, and 103 may be hardware or software.
  • the terminal devices 101, 102, 103 can be various electronic devices that have a display screen and support web browsing, including but not limited to cameras, smart phones, tablets, e-book readers, and laptop computers And desktop computers and so on.
  • the terminal devices 101, 102, 103 are software, they can be installed in the electronic devices listed above. It can be implemented as multiple software or software modules (for example, software or software modules used to provide distributed services), or as a single software or software module. There is no specific limitation here.
  • the server 105 may be a server that provides various services, for example, receiving information sent by the terminal devices 101, 102, 103, processing the information, and adding information processing results on a preset high-precision map.
  • the server 105 may feed back the high-precision map with the information processing result added to the terminal devices 101, 102, 103.
  • the server 105 may be hardware or software.
  • the server 105 can be implemented as a distributed server cluster composed of multiple servers, or as a single server.
  • the server 105 is software, it can be implemented as multiple software or software modules (for example, software or software modules for providing distributed services), or as a single software or software module. There is no specific limitation here.
  • the human-computer interaction method based on the high-precision map provided in the embodiments of the present application is generally executed by the server 105. Accordingly, the human-computer interaction device based on the high-precision map is generally set in the server 105.
  • terminal devices, networks, and servers in FIG. 1 are merely illustrative. According to implementation needs, there can be any number of terminal devices, networks and servers.
  • FIG. 2 it shows a process 200 of an embodiment of a human-computer interaction method based on a high-precision map according to the present application.
  • the human-computer interaction method based on high-precision maps includes the following steps:
  • Step 201 Obtain a pre-generated high-precision map.
  • the execution body of the human-computer interaction method based on the high-precision map can obtain the pre-generated high-precision map in various ways.
  • High-precision maps can be used for driverless cars, for car driving simulation, etc.
  • the aforementioned high-precision map may include multiple original map elements generated in advance.
  • Map elements can include lane lines, turns, red street lights, obstacles, signs and symbols of various roads in the lane, signs on the roadside, bridges, etc.
  • the above-mentioned high-precision map may be generated based on data collected in advance by sensors such as cameras and lidars.
  • the above-mentioned pre-generated high-precision map may be stored in the above-mentioned execution body, or may be stored in an electronic device that is communicatively connected with the above-mentioned execution body.
  • Step 202 In response to receiving the information addition request, parse the information addition request.
  • the execution subject may display the high-precision map.
  • the high-definition map is displayed on the display screen connected to the execution subject.
  • the above-mentioned execution subject may send the above-mentioned pre-generated high-definition map to a terminal device (for example, the terminal devices 101, 102, 103 shown in FIG. 1), so that the terminal device displays the above-mentioned high-definition map on its display screen.
  • the user can click the edit control to enter the information to be added.
  • the user can send an information addition request to the executive body through the displayed high-precision map interface. Then, the user can select the area to be added in the high-precision map by clicking and other selection operations on the page. Alternatively, the user can specify the area to be added in the added information.
  • the execution subject may directly receive the information addition request input by the user.
  • the execution subject may receive the information addition request from the electronic device through a wired or wireless connection.
  • the information addition request may be input by the user through text or voice input by the user.
  • the information addition request may also be added by the user through the selection operation of the selection items of the map elements provided on the interactive page of the high-precision map.
  • the selection items of the above-mentioned map elements may include lane lines, slope options, curve options, and so on.
  • the above-mentioned execution subject can parse the information addition request according to various methods.
  • the above information addition request is an information addition request in text form.
  • parsing the information addition request may include extracting semantic information of the information addition request; and determining the map element indicated by the information addition request based on the semantic information.
  • the above-mentioned execution subject may perform semantic analysis on the above-mentioned information addition request through a semantic analysis method. For example, perform word segmentation on the information addition request, perform part-of-speech tagging on the word segmentation result, extract keywords, and determine the semantic information of the information addition request according to the keywords. Or determine the semantic information of the information addition request according to a preset semantic analysis model.
  • the aforementioned semantic analysis model can be various supervised machine learning models or various unsupervised machine learning models.
  • the addition information indicated by the information addition request is determined based on the semantic information.
  • the aforementioned information addition request may be an information addition request in the form of voice.
  • the semantic information of the aforementioned extraction information addition request may include: converting the voice information into text information, and then performing semantic analysis on the text information to obtain the additional information.
  • the aforementioned additional information may include, for example, various map elements, station site identification, parking space information, user annotation information, and so on.
  • the above-mentioned user annotation information may be, for example, prompt information for prompting the driving failure rate.
  • Step 203 Add the addition information indicated by the information addition request to a pre-generated high-precision map to generate an updated high-precision map.
  • the execution subject of the human-computer interaction method based on the high-precision map can add the addition information indicated by the information addition request to the pre-generated high-precision map to generate an updated high-precision map.
  • the above-mentioned added information may be map elements, such as station sites, lane lines, slopes, obstacles, and so on.
  • the adding the additional information indicated by the information addition request to the pre-generated high-precision map to generate the updated high-precision map includes: according to the location information indicated by the information addition request, A three-dimensional model of map elements is generated in the pre-generated high-precision map. For example, add three-dimensional models of stations, slopes, obstacles, etc. at the location indicated by the information addition request.
  • the location information indicated by the information addition request may be, for example, location information determined by the user through selection operations such as clicking on a page displaying a high-definition map; or location information specified in the user's information addition request.
  • FIG. 3 is a schematic diagram 300 of an application scenario of the human-computer interaction method based on a high-precision map according to this embodiment.
  • a high-precision map can be displayed on the display screen of the terminal device 302.
  • the user can input and add information on the page displaying the high-precision map.
  • the terminal device 302 may generate a new addition request 304 according to the addition information input by the user, and send the information addition request to the server 305 through wired or wireless communication.
  • the server 305 may obtain the high-precision map 306 generated in advance.
  • the high-precision map parses the information addition request 307 in response to receiving the information addition request.
  • the server 305 may add the addition information indicated by the information addition request to the pre-generated high-precision map, thereby generating an updated high-precision map 308, and the server 305 may send the updated high-precision map to the terminal device 302.
  • the method provided by the foregoing embodiment of the present application obtains a pre-generated high-precision map, in response to receiving an information addition request, analyzes the information addition request, and adds the addition information indicated by the information addition request to the pre-generated high-precision map, Generate updated high-precision maps.
  • FIG. 4 shows a process 400 of another embodiment of a human-computer interaction method based on a high-precision map.
  • the process 400 of the high-precision map-based human-computer interaction method includes the following steps:
  • Step 401 Obtain a pre-generated high-precision map.
  • step 401 may be the same as or similar to step 201 in the embodiment shown in FIG. 2, and will not be repeated here.
  • Step 402 in response to receiving the information addition request, parse the information addition request.
  • step 402 may be the same as or similar to step 202 in the embodiment shown in FIG. 2, and will not be repeated here.
  • Step 403 Add the addition information indicated by the information addition request to the pre-generated high-precision map to generate an updated high-precision map.
  • step 403 may be the same as or similar to step 203 in the embodiment shown in FIG. 2, and will not be repeated here.
  • Step 404 in response to receiving the route addition request, present the planned route indicated by the route addition request in the updated high-precision map.
  • the execution subject of the human-computer interaction method based on the high-precision map (for example, the server shown in FIG. 1), in response to receiving the route addition request, presents the information indicated by the route addition request in the updated high-precision map Plan the path.
  • the above-mentioned execution subject may display the above-mentioned updated high-precision map on the display screen connected to it.
  • the above-mentioned execution subject may also send the updated high-definition map to an electronic device (such as the terminal device shown in FIG. 1) connected thereto, and the display screen of the above-mentioned electronic device displays the updated high-definition map.
  • the user can enter a path addition request on the page displaying the updated high-precision map.
  • the aforementioned route addition request may include a planned route.
  • the above-mentioned planned route may include, for example, the start station, intermediate station, and end station of the route.
  • the user can select a location by clicking and other selection operations on the page displaying the high-precision map, and set it as the starting site, and then generate a three-dimensional site model and the starting site identification on the high-precision map. Then select other locations by clicking and other selection operations in the high-precision map, and set them as intermediate sites or destination sites.
  • the process 400 of the human-computer interaction method based on the high-precision map in this embodiment highlights that in response to receiving a path addition request, the updated high The planned route indicated by the route addition request is presented on the fine map, so that the route setting of the unmanned vehicle and the route planning of the unmanned vehicle are set according to the high-precision map.
  • the human-computer interaction method based on the high-precision map of the embodiment shown in FIG. 2 and the embodiment shown in FIG. 4 can be further Including: in response to receiving the location query request, determining the map element corresponding to the location query request; displaying the map element in the high-precision map.
  • the location query request input by the user can be received.
  • the user location query request may include a specific station site name, for example.
  • the above-mentioned execution subject may analyze the query request to determine the map element corresponding to the query request.
  • the map elements indicated by the query request such as station name and parking space information, are matched in the high-precision map, and the above-mentioned map elements are displayed in the high-precision map according to the matching result.
  • this application provides an embodiment of a human-computer interaction device based on a high-precision map, which is similar to the method embodiment shown in FIG.
  • the device can be specifically applied to various electronic devices.
  • the human-computer interaction apparatus 500 based on a high-precision map of this embodiment includes: an acquisition unit 501, an analysis unit 502, and a generation unit 503.
  • the acquiring unit 501 is configured to acquire a pre-generated high-precision map
  • the parsing unit 502 is configured to parse the information addition request in response to receiving the information addition request
  • the generating unit 503 is configured to transmit the information addition request indicated The added information of is added to the pre-generated high-precision map to generate an updated high-precision map.
  • step 201 the specific processing of the acquisition unit 501, the analysis unit 502, and the generation unit 503 of the human-computer interaction device 500 based on the high-precision map and the technical effects brought about can be referred to step 201 in the embodiment corresponding to FIG. 2 respectively.
  • step 202 and step 203 The related descriptions of step 202 and step 203 will not be repeated here.
  • the human-computer interaction apparatus 500 based on a high-precision map further includes a display unit 504.
  • the presentation unit 504 is configured to: in response to receiving the route addition request, present the planned route indicated by the route addition request in the updated high-precision map.
  • the parsing unit 502 is further configured to: extract the semantic information of the information addition request; and extract the map element indicated by the addition request based on the semantic information.
  • the generating unit 503 is further configured to generate a three-dimensional model of the map element in the pre-generated high-precision map according to the location information indicated by the information addition request .
  • the display unit 504 is further configured to: in response to receiving the location query request, determine the map element corresponding to the location query request; and display the map element in the high-precision map.
  • FIG. 6 shows a schematic structural diagram of a computer system 600 suitable for implementing the electronic device of the embodiments of the present application.
  • the computer system shown in FIG. 6 is only an example, and should not bring any limitation to the function and scope of use of the embodiments of the present application.
  • the computer system 600 includes a processor 601, which can be loaded into a random access memory (RAM, Random Access Memory) according to a program stored in a read only memory (ROM, Read Only Memory) 602 or from a storage part 608.
  • the program in 603 executes various appropriate actions and processing.
  • the RAM 603 also stores various programs and data required for the operation of the system 600.
  • the processor 601, the ROM 602, and the RAM 603 are connected to each other through a bus 604.
  • An input/output (I/O, Input/Output) interface 605 is also connected to the bus 604.
  • the following components are connected to the I/O interface 605: a storage part 606 including a hard disk and the like; and a communication part 607 including a network interface card such as a LAN (Local Area Network) card, a modem, and the like.
  • the communication section 607 performs communication processing via a network such as the Internet.
  • the driver 608 is also connected to the I/O interface 605 as needed.
  • the process described above with reference to the flowchart can be implemented as a computer software program.
  • the embodiments of the present application include a computer program product, which includes a computer program carried on a computer-readable medium, and the computer program contains program code for executing the method shown in the flowchart.
  • the computer program may be downloaded and installed from the network through the communication part 607, and/or installed from the removable medium 609.
  • the computer program executes the above-mentioned functions defined in the method of the present application.
  • the computer-readable medium described in this application may be a computer-readable signal medium or a computer-readable storage medium or any combination of the two.
  • the computer-readable storage medium may be, for example, but not limited to, an electric, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination of the above. More specific examples of computer-readable storage media may include, but are not limited to: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable Programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • the computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in a baseband or as a part of a carrier wave, and a computer-readable program code is carried therein.
  • This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to: wireless, wire, optical cable, RF, etc., or any suitable combination of the above.
  • the computer program code used to perform the operations of this application can be written in one or more programming languages or a combination thereof.
  • the programming languages include object-oriented programming languages—such as Java, Smalltalk, C++, and also include conventional procedures. Programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user’s computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to pass Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider for example, using an Internet service provider to pass Internet connection.
  • each block in the flowchart or block diagram can represent a module, program segment, or part of code, and the module, program segment, or part of code contains one or more for realizing the specified logical function Executable instructions.
  • the functions marked in the block may also occur in a different order from the order marked in the drawings. For example, two blocks shown in succession can actually be executed substantially in parallel, or they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or operations Or it can be realized by a combination of dedicated hardware and computer instructions.
  • the units involved in the embodiments described in the present application can be implemented in software or hardware.
  • the described unit may also be provided in the processor, for example, it may be described as: a processor includes an acquisition unit, an analysis unit, and a generation unit. Among them, the names of these units do not constitute a limitation on the unit itself under certain circumstances.
  • the acquiring unit can also be described as "a unit for acquiring a pre-generated high-precision map".
  • the present application also provides a computer-readable medium, which may be included in the device described in the above-mentioned embodiments; or it may exist alone without being assembled into the device.
  • the above-mentioned computer-readable medium carries one or more programs.
  • the device obtains a pre-generated high-precision map; and parses the information in response to receiving an information addition request Adding request; adding the added information indicated by the information adding request to the pre-generated high-precision map to generate an updated high-precision map.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Artificial Intelligence (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Computer Graphics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Navigation (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Instructional Devices (AREA)

Abstract

一种基于高精地图的人机交互方法和装置。该方法包括:获取预先生成的高精地图(201);响应于接收到信息添加请求,解析所述信息添加请求(202);将所述信息添加请求所指示的添加信息添加至所述预先生成的高精地图中,生成更新后的高精地图(203)。该方法便于用户在高精地图上添加地图元素,有利于实现高精地图的进一步完善,以及对交通场景的模拟。

Description

基于高精地图的人机交互方法和装置
本专利申请要求于2019年02月19日提交的、申请号为201910122624.3、申请人为北京百度网讯科技有限公司、发明名称为“基于高精地图的人机交互方法和装置”的中国专利申请的优先权,该申请的全文以引用的方式并入本申请中。
技术领域
本申请实施例涉及计算机技术领域,具体涉及电子地图技术领域,尤其涉及基于高精地图的人机交互方法和装置。
背景技术
高精地图是指绝对坐标精度在厘米级的高精度电子地图。这里的绝对坐标精度指的是地图上某个目标的坐标和该目标对应的外部世界的事物的真实坐标之间的偏差,通常以长度计量单位表示。相对于普通的导航电子地图而言,高精地图包含的信息更为丰富,例如高精地图可以包括各种道路标线、交通标志等。
高精地图可以用于无人驾驶领域,可以向无人驾驶车辆提供大量行车辅助信息,例如路面的几何结构、道路标识线的相对位置、周边道路环境的模型等。
普通的导航电子地图的绝对坐标精度约在10米左右,这样的精度,可以用来辅助驾驶员做导航使用。但是在无人驾驶领域,无人驾驶车需要精确的知道自己在路上的位置。通常,车辆与马路旁边的障碍物,以及车辆与旁边的车道之间的距离在十几厘米,甚至几厘米左右,使用普通的导航电子地图,由于其精度的限制,无法准确的判断无人驾驶车辆与障碍物之间的距离,以及无人驾驶车辆与旁边车道之间的关系,因此,普通的导航电子地图远远不能满足无人驾驶车的需求。
现有的高精地图通常是由技术人员驾驶地图采集车,采集车辆周围的环境数据。地图采集车上例如可以设置有激光雷达、工业照相机、 全球定位接收机、惯性测量单元等采集设备,采集地图采集车所经过区域的周围环境数据,并对所采集的各种数据进行融合处理后生成带有颜色的电子地图。
发明内容
本申请实施例提出了一种基于高精地图的人机交互方法和装置。
第一方面,本申请实施例提供了一种基于高精地图的人机交互方法,该方法包括:获取预先生成的高精地图;响应于接收到信息添加请求,解析上述信息添加请求;将上述信息添加请求所指示的添加信息添加至上述预先生成的高精地图中,生成更新后的高精地图。
在一些实施例中,该方法还包括:响应于接收到路径添加请求,在上述更新后的高精地图中呈现上述路径添加请求所指示的规划路径。
在一些实施例中,上述响应于接收到信息添加请求,解析上述信息添加请求,包括:提取信息添加请求的语义信息;基于上述语义信息确定上述信息添加请求指示的地图元素。
在一些实施例中,上述将上述信息添加请求所指示的添加信息添加至上述预先生成的高精地图中,生成更新后的高精地图,包括:根据上述信息添加请求指示的位置信息,在上述预先生成的高精地图中生成上述地图元素的三维模型。
在一些实施例中,该方法还包括:响应于接收到位置查询请求,确定位置查询请求对应的地图元素;在高精地图中展示上述地图元素。
第二方面,本申请实施例提供了一种基于高精地图的人机交互装置,该装置包括:获取单元,被配置成获取预先生成的高精地图;解析单元,被配置成响应于接收到信息添加请求,解析上述信息添加请求;生成单元,被配置成将上述信息添加请求所指示的添加信息添加至上述预先生成的高精地图中,生成更新后的高精地图。
在一些实施例中,该装置还包括展现单元,上述展现单元被配置成:响应于接收到路径添加请求,在上述更新后的高精地图中呈现上述路径添加请求所指示的规划路径。
在一些实施例中,上述解析单元进一步被配置成:提取信息添加请求的语义信息;基于上述语义信息提取添加请求所指示的地图元素。
在一些实施例中,上述生成单元进一步被配置成:根据上述信息添加请求指示的位置信息,在上述预先生成的高精地图中生成上述地图元素的三维模型。
在一些实施例中,上述展现单元进一步被配置成:响应于接收到位置查询请求,确定位置查询请求对应的地图元素;在高精地图中展示上述地图元素。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括:一个或多个处理器;存储装置,其上存储有一个或多个程序,当上述一个或多个程序被上述一个或多个处理器执行时,使得上述一个或多个处理器实现如第一方面中任一实现方式描述的方法。
第四方面,本申请实施例提供了一种计算机可读介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如第一方面中任一实现方式描述的方法。
本申请实施例提供的基于高精地图的人机交互方法和装置,通过获取预先生成的高精地图,而后响应于接收到信息添加请求,解析所述信息添加请求,最后将所述信息添加请求所指示的添加信息添加至所述预先生成的高精地图中,生成更新后的高精地图。实现了根据上述交互方式,方便用户在高精地图上添加地图元素,有利于实现高精地图的进一步完善,以及对交通场景的模拟。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1是本申请的一个实施例的基于高精地图的人机交互方法可以应用于其中的示例性系统架构图;
图2是根据本申请的基于高精地图的人机交互方法的一个实施例的流程图;
图3是根据本申请的基于高精地图的人机交互方法的一个应用场 景的示意图;
图4是根据本申请的基于高精地图的人机交互方法的又一个实施例的流程图;
图5是根据本申请的基于高精地图的人机交互装置的一个实施例的结构示意图;
图6是适于用来实现本申请实施例的电子设备的计算机系统的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
图1示出了本申请的一个实施例的基于高精地图的人机交互方法可以应用于其中的示例性系统架构100。
如图1所示,系统架构100可以包括终端设备101、102、103,网络104和服务器105。网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。
用户可以使用终端设备101、102、103通过网络104与服务器105交互,以接收或发送消息等。终端设备101、102、103上可以安装有各种客户端应用,例如网页浏览器应用搜索类应用、即时通信工具、地图采集展示类应用等。
终端设备101、102、103可以是硬件,也可以是软件。当终端设备101、102、103为硬件时,其可以是具有显示屏并且支持网页浏览的各种电子设备,包括但不限于摄像机、智能手机、平板电脑、电子书阅读器、膝上型便携计算机和台式计算机等等。当终端设备101、 102、103为软件时,其可以安装在上述所列举的电子设备中。其可以实现成多个软件或软件模块(例如用来提供分布式服务的软件或软件模块),也可以实现成单个软件或软件模块。在此不做具体限定。
服务器105可以是提供各种服务的服务器,例如接收终端设备101、102、103发送的信息,对信息进行处理,在预设高精地图上添加信息处理结果。服务器105可以将添加了信息处理结果的高精地图反馈给终端设备101、102、103。
需要说明的是,服务器105可以是硬件,也可以是软件。当服务器105为硬件时,其可以实现成多个服务器组成的分布式服务器集群,也可以实现成单个服务器。当服务器105为软件时,其可以实现成多个软件或软件模块(例如用来提供分布式服务的软件或软件模块),也可以实现成单个软件或软件模块。在此不做具体限定。
需要说明的是,本申请实施例所提供的基于高精地图的人机交互方法一般由服务器105执行,相应地,基于高精地图的人机交互装置一般设置于服务器105中。
应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。
继续参考图2,其示出了根据本申请的基于高精地图的人机交互方法的一个实施例的流程200。该基于高精地图的人机交互方法,包括以下步骤:
步骤201,获取预先生成的高精地图。
在本实施例中,基于高精地图的人机交互方法的执行主体(例如图1所示的服务器105)可以通过各种方式获取预先生成的高精地图。高精地图可以用于无人驾驶车、用于汽车驾驶仿真等。
上述高精地图中可以包括预先生成的多个原始地图元素。地图元素可以包括车道线、转弯、红路灯、障碍物、车道上各种道路的标识、符号、路边的牌子、桥梁等。上述高精地图可以是根据预先由摄像头、激光雷达等传感器所采集的数据生成的。
上述预先生成的高精地图可以存储在上述执行主体中,也可以存在与上述执行主体实现通信连接的电子设备中。
步骤202,响应于接收到信息添加请求,解析信息添加请求。
在本实施例中,在步骤201中获取到预先生成的高精地图之后,上述执行主体可以展示上述高精地图。例如,在上述执行主体所连接的显示屏上展示上述高精地图。或者,上述执行主体可以将上述预先生成的高精地图发送给终端设备(例如图1所示的终端设备101、102、103),以使终端设备在其显示屏上显示上述高精地图。
在展示高精地图的页面中,可以设置高精地图编辑控件。用户可以点击编辑控件以输入待添加信息。用户可以通过所展示的高精地图的界面向执行主体发送信息添加请求。接着,用户可以在页面中通过点击等选择操作在高精地图中选择待添加信息的区域。或者,用户可以在添加信息中指定待添加信息的区域。
当高精地图是由上述执行主体的显示屏显示时,上述执行主体可以直接接收用户输入的信息添加请求。当高精地图是由与上述执行主体连接的电子设备的显示屏显示时,上述执行主体可以通过有线或者无线连接方式从上述电子设备接收上述信息添加请求。
信息添加请求可以是用户通过文字输入的,也可以是用户通过语音输入的。此外,信息添加请求还可以是用户通过展示在高精地图的交互页面中所提供的地图元素的选择项的选择操作添加的。上述地图元素的选择项,例如可以包括车道线、坡度选项、弯道选项等。
上述执行主体可以根据各种方法对信息添加请求进行解析。
在一些应用场景中,上述信息添加请求是以文字形式的信息添加请求。上述响应于接收到信息添加请求,解析信息添加请求可以包括提取信息添加请求的语义信息;基于语义信息确定信息添加请求指示的地图元素。上述执行主体可以通过语义分析方法对上述信息添加请求进行语义分析。例如对信息添加请求进行分词、对分词结果进行词性标注、提取关键词,根据关键词确定信息添加请求的语义信息。或者根据预设语义分析模型来确定信息添加请求的语义信息。上述语义分析模型可以是各种有监督机器学习模型,或者各种无监督机器学习模型。此外,基于语义信息确定信息添加请求指示的添加信息。
在一些应用场景中,上述信息添加请求可以是以语音形式的信息 添加请求。上述提取信息添加请求的语义信息可以包括:将语音信息转换成文字信息,再对文字信息执行语义分析,从而得到添加信息。
上述添加信息例如可以包括各种地图元素、车站站点标识、停车位信息、用户标注信息等。上述用户标注信息例如可以为用于提示行车故障率的提示信息等。
步骤203,将信息添加请求所指示的添加信息添加至预先生成的高精地图中,生成更新后的高精地图。
在本实施例中,基于高精地图的人机交互方法的执行主体上可以将信息添加请求所指示的添加信息添加至预先生成的高精地图中,生成更新后的高精地图。
在本实施例的一些可选的实现方式中,上述添加信息可以是地图元素,例如车站站点、车道线、坡度、障碍物等。在这些可选的实现方式中,所述将信息添加请求所指示的添加信息添加至预先生成的高精地图中,生成更新后的高精地图,包括:根据信息添加请求指示的位置信息,在预先生成的高精地图中生成地图元素的三维模型。例如在信息添加请求指示的位置处添加车站、坡度、障碍物的三维模型等。上述信息添加请求指示的位置信息例如可以是用户在显示高精地图的页面中通过点击等选择操作而确定的位置信息;或者,是用户的信息添加请求中指定的位置信息等。
继续参见图3,图3是根据本实施例的基于高精地图的人机交互方法的应用场景的一个示意图300。在图3的应用场景中,终端设备302的显示屏中可以显示高精地图。用户可以在显示高精地图的页面中输入添加信息。终端设备302可以根据用户输入的添加信息生成新添加请求304,并将信息添加请求通过有线或无线通信方式发送给服务器305。服务器305可以获取预先生成的高精地图306。然后,高精地图响应于接收到信息添加请求,解析信息添加请求307。之后,服务器305可以将信息添加请求所指示的添加信息添加至预先生成的高精地图中,从而生成更新后的高精地图308,服务器305可以将更新后的高精地图发送给终端设备302。
本申请的上述实施例提供的方法通过获取预先生成的高精地图, 响应于接收到信息添加请求,解析信息添加请求,将信息添加请求所指示的添加信息添加至预先生成的高精地图中,生成更新后的高精地图。根据上述交互方式,可以方便用户在高精地图上添加地图元素,有利于实现高精地图的进一步完善,以及对交通场景的模拟。
进一步参考图4,其示出了基于高精地图的人机交互方法的又一个实施例的流程400。该基于高精地图的人机交互方法的流程400,包括以下步骤:
步骤401,获取预先生成的高精地图。
在本实施例中,步骤401可以与图2所示实施例的步骤201相同或相似,此处不赘述。
步骤402,响应于接收到信息添加请求,解析所述信息添加请求。
在本实施例中,步骤402可以与图2所示实施例的步骤202相同或相似,此处不赘述。
步骤403,将所述信息添加请求所指示的添加信息添加至所述预先生成的高精地图中,生成更新后的高精地图。
在本实施例中,步骤403可以与图2所示实施例的步骤203相同或相似,此处不赘述。
步骤404,响应于接收到路径添加请求,在更新后的高精地图中呈现路径添加请求所指示的规划路径。
在本实施例中,基于高精地图的人机交互方法的执行主体(例如图1所示的服务器)响应于接收到路径添加请求,在更新后的高精地图中呈现路径添加请求所指示的规划路径。
在步骤403中生成更新后的高精地图之后,上述执行主体可以在与其连接的显示屏中展示上述更新后的高精地图。上述执行主体也可以将更新后的高精地图发送给与其连接的电子设备(例如图1所示的终端设备),由上述电子设备的显示屏展示上述更新后的高精地图。
用户可以在显示上述更新后的高精地图的页面中输入路径添加请求。上述路径添加请求可以包括规划路径。上述规划路径例如可以包括路径的起始站点、中间站点以及终点站点。例如用户可以通过在显示高精地图的页面中通过点击等选择操作选中某一地点,并将其设置 成起始站点,然后在高精地图中生成三维站点模型以及起始站点标识。然后通过点击等选择操作在高精地图中通过点击等选择操作选择其他地点,并将其设置成中间站点,或者终点站点。
从图4中可以看出,与图2对应的实施例相比,本实施例中的基于高精地图的人机交互方法的流程400突出了响应于接收到路径添加请求,在更新后的高精地图中呈现路径添加请求所指示的规划路径,从而实现了根据高精地图设置无人驾驶车的路径设置,以及无人驾驶车的路径规划。
在本申请的基于高精地图的人机交互方法各实施例的一些可选的实现方式中,图2所示实施例和图4所示实施例的基于高精地图的人机交互方法可以进一步包括:响应于接收到位置查询请求,确定位置查询请求对应的地图元素;在高精地图中展示地图元素。
在这些可选的实现方式中,在上述展示高精地图的界面中,可以接收用户输入的位置查询请求。用户位置查询请求例如可以包括具体的车站站点名称。上述执行主体可以对查询请求进行分析,以确定查询请求对应的地图元素。并对查询请求所指示的地图元素例如车站名称、停车位信息在高精地图中进行匹配,根据匹配结果在高精地图中展示上述地图元素。
进一步参考图5,作为对上述各图所示方法的实现,本申请提供了一种基于高精地图的人机交互装置的一个实施例,该装置实施例与图2所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。
如图5所示,本实施例的基于高精地图的人机交互装置500包括:获取单元501、解析单元502和生成单元503。其中,获取单元501,被配置成获取预先生成的高精地图;解析单元502,被配置成响应于接收到信息添加请求,解析信息添加请求;生成单元503,被配置成将信息添加请求所指示的添加信息添加至预先生成的高精地图中,生成更新后的高精地图。
在本实施例中,基于高精地图的人机交互装置500的获取单元501、解析单元502和生成单元503的具体处理及其所带来的技术效果 可分别参考图2对应实施例中步骤201、步骤202和步骤203的相关说明,在此不再赘述。
在本实施例的一些可选的实现方式中,基于高精地图的人机交互装置500还包括展现单元504。展现单元504被配置成:响应于接收到路径添加请求,在更新后的高精地图中呈现路径添加请求所指示的规划路径。
在本实施例的一些可选的实现方式中,解析单元502进一步被配置成:提取信息添加请求的语义信息;基于语义信息提取添加请求所指示的地图元素。
在本实施例的一些可选的实现方式中,生成单元503进一步被配置成:根据所述信息添加请求指示的位置信息,在所述预先生成的高精地图中生成所述地图元素的三维模型。
在本实施例的一些可选的实现方式中,展现单元504进一步被配置成:响应于接收到位置查询请求,确定位置查询请求对应的地图元素;在高精地图中展示地图元素。
下面参考图6,其示出了适于用来实现本申请实施例的电子设备的计算机系统600的结构示意图。图6示出的计算机系统仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图6所示,计算机系统600包括处理器601,其可以根据存储在只读存储器(ROM,Read Only Memory)602中的程序或者从存储部分608加载到随机访问存储器(RAM,Random Access Memory)603中的程序而执行各种适当的动作和处理。在RAM 603中,还存储有系统600操作所需的各种程序和数据。处理器601、ROM 602以及RAM 603通过总线604彼此相连。输入/输出(I/O,Input/Output)接口605也连接至总线604。
以下部件连接至I/O接口605:包括硬盘等的存储部分606;以及包括诸如LAN(局域网,Local Area Network)卡、调制解调器等的网络接口卡的通信部分607。通信部分607经由诸如因特网的网络执行通信处理。驱动器608也根据需要连接至I/O接口605。可拆卸介质609,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在 驱动器608上,以便于从其上读出的计算机程序根据需要被安装入存储部分606。
特别地,根据本申请的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本申请的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分607从网络上被下载和安装,和/或从可拆卸介质609被安装。在该计算机程序被处理器601执行时,执行本申请的方法中限定的上述功能。需要说明的是,本申请所述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本申请中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请的操作的计算机程序代码,程序设计语言包括面向对象的程序设计语 言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本申请各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本申请实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元也可以设置在处理器中,例如,可以描述为:一种处理器包括获取单元、解析单元和生成单元。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定,例如,获取单元还可以被描述为“获取预先生成的高精地图的单元”。
作为另一方面,本申请还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的装置中所包含的;也可以是单独存在,而未装配入该装置中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该装置执行时,使得该装置:获取预先生成的高精地图;响应于接收到信息添加请求,解析所述信息 添加请求;将所述信息添加请求所指示的添加信息添加至所述预先生成的高精地图中,生成更新后的高精地图。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (12)

  1. 一种基于高精地图的人机交互方法,包括:
    获取预先生成的高精地图;
    响应于接收到信息添加请求,解析所述信息添加请求;
    将所述信息添加请求所指示的添加信息添加至所述预先生成的高精地图中,生成更新后的高精地图。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    响应于接收到路径添加请求,在所述更新后的高精地图中呈现所述路径添加请求所指示的规划路径。
  3. 根据权利要求1所述的方法,其中,所述响应于接收到信息添加请求,解析所述信息添加请求,包括:
    提取信息添加请求的语义信息;
    基于所述语义信息确定所述信息添加请求指示的地图元素。
  4. 根据权利要求3所述的方法,其中,所述将所述信息添加请求所指示的添加信息添加至所述预先生成的高精地图中,生成更新后的高精地图,包括:
    根据所述信息添加请求指示的位置信息,在所述预先生成的高精地图中生成所述地图元素的三维模型。
  5. 根据权利要求2所述的方法,其中,所述方法还包括:
    响应于接收到位置查询请求,确定位置查询请求对应的地图元素;
    在高精地图中展示所述地图元素。
  6. 一种基于高精地图的人机交互装置,包括:
    获取单元,被配置成获取预先生成的高精地图;
    解析单元,被配置成响应于接收到信息添加请求,解析所述信息 添加请求;
    生成单元,被配置成将所述信息添加请求所指示的添加信息添加至所述预先生成的高精地图中,生成更新后的高精地图。
  7. 根据权利要求6所述的装置,其中,所述装置还包括展现单元,所述展现单元被配置成:
    响应于接收到路径添加请求,在所述更新后的高精地图中呈现所述路径添加请求所指示的规划路径。
  8. 根据权利要求6所述的装置,其中,所述解析单元进一步被配置成:
    提取信息添加请求的语义信息;
    基于所述语义信息提取添加请求所指示的地图元素。
  9. 根据权利要求8所述的装置,其中,所述生成单元进一步被配置成:
    根据所述信息添加请求指示的位置信息,在所述预先生成的高精地图中生成所述地图元素的三维模型。
  10. 根据权利要求7所述的装置,其中,所述展现单元进一步被配置成:
    响应于接收到位置查询请求,确定位置查询请求对应的地图元素;
    在高精地图中展示所述地图元素。
  11. 一种电子设备,包括:
    一个或多个处理器;
    存储装置,其上存储有一个或多个程序,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-5中任一所述的方法。
  12. 一种计算机可读介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如权利要求1-5中任一所述的方法。
PCT/CN2019/116372 2019-02-19 2019-11-07 基于高精地图的人机交互方法和装置 WO2020168747A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19897571.6A EP3731190A4 (en) 2019-02-19 2019-11-07 METHOD AND DEVICE FOR HUMAN-MACHINE INTERACTION BASED ON A HIGH PRECISION MAP
US16/958,650 US20210325203A1 (en) 2019-02-19 2019-11-07 High-precision map-based human-machine interaction method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910122624.3A CN109872392B (zh) 2019-02-19 2019-02-19 基于高精地图的人机交互方法和装置
CN201910122624.3 2019-02-19

Publications (1)

Publication Number Publication Date
WO2020168747A1 true WO2020168747A1 (zh) 2020-08-27

Family

ID=66918817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116372 WO2020168747A1 (zh) 2019-02-19 2019-11-07 基于高精地图的人机交互方法和装置

Country Status (4)

Country Link
US (1) US20210325203A1 (zh)
EP (1) EP3731190A4 (zh)
CN (1) CN109872392B (zh)
WO (1) WO2020168747A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109872392B (zh) * 2019-02-19 2023-08-25 阿波罗智能技术(北京)有限公司 基于高精地图的人机交互方法和装置
CN112272285B (zh) * 2020-09-30 2022-04-15 浙江鼎胜环保技术有限公司 一种智能运维系统、软件设备及装置
US20220122456A1 (en) * 2020-10-20 2022-04-21 Here Global B.V. Explanation of erratic driving behavior
CN112632205A (zh) * 2020-12-22 2021-04-09 北京大唐高鸿数据网络技术有限公司 地图制作方法、装置及系统
CN112632211A (zh) * 2020-12-30 2021-04-09 上海思岚科技有限公司 用于移动机器人的语义信息处理方法与设备
CN113254336B (zh) * 2021-05-24 2022-11-08 公安部道路交通安全研究中心 自动驾驶汽车交通法规符合性仿真测试方法及系统
CN113961589A (zh) * 2021-12-22 2022-01-21 中经未来(北京)传媒科技有限责任公司 一种互联网信息收集处理方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971589A (zh) * 2013-01-28 2014-08-06 腾讯科技(深圳)有限公司 将地图的兴趣点信息添加于街景图像中的处理方法及装置
CN105631773A (zh) * 2014-11-24 2016-06-01 三星电子株式会社 用于提供地图服务的电子设备和方法
US20170330034A1 (en) * 2016-05-11 2017-11-16 Baidu Usa Llc System and method for providing augmented virtual reality content in autonomous vehicles
CN108062864A (zh) * 2016-11-09 2018-05-22 奥迪股份公司 一种用于车辆的交通场景可视化系统和方法及车辆
CN109059946A (zh) * 2018-06-26 2018-12-21 上汽通用汽车有限公司 车辆路径获取方法、存储介质及电子设备
CN109872392A (zh) * 2019-02-19 2019-06-11 北京百度网讯科技有限公司 基于高精地图的人机交互方法和装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010034686A1 (en) * 1997-12-10 2001-10-25 Eder Jeff Scott Method of and system for defining and measuring the real options of a commercial enterprise
US7654826B2 (en) * 2004-10-04 2010-02-02 Solid Terrain Modeling Three-dimensional cartographic user interface system
US8626440B2 (en) * 2005-04-18 2014-01-07 Navteq B.V. Data-driven 3D traffic views with the view based on user-selected start and end geographical locations
WO2011016819A1 (en) * 2009-08-03 2011-02-10 Tele Atlas North America Method of verifying attribute information of a digital transport network database using interpolation and probe traces
US20160196747A1 (en) * 2012-12-21 2016-07-07 Parkopedia Limited System and Method for Locating Available Parking Spaces
US9672240B2 (en) * 2013-11-21 2017-06-06 Here Global B.V. Apparatus and method to update geographic database
US9803985B2 (en) * 2014-12-26 2017-10-31 Here Global B.V. Selecting feature geometries for localization of a device
CN106610986A (zh) * 2015-10-21 2017-05-03 深圳市赛格导航科技股份有限公司 一种多目的地路线规划方法及系统
US10054460B2 (en) * 2016-03-28 2018-08-21 Microsoft Technology Licensing, Llc Processing map-related user input to detect route requests
CN107305134B (zh) * 2016-04-22 2020-05-08 高德信息技术有限公司 在电子地图上显示预定形状的导航路线的方法和装置
CN107560626A (zh) * 2016-06-30 2018-01-09 上海博泰悦臻网络技术服务有限公司 路况信息获取提示的方法和系统、及其导航装置和服务器
CN106250387A (zh) * 2016-07-13 2016-12-21 百度在线网络技术(北京)有限公司 一种用于无人驾驶车辆测试的高精地图的编辑方法和装置
CN106352868B (zh) * 2016-08-13 2019-05-07 广东美嘉欣创新科技股份有限公司 移动终端获取导航图的方法
CN106643774B (zh) * 2016-12-30 2021-05-18 宇龙计算机通信科技(深圳)有限公司 一种导航路线生成方法及终端
US10429194B2 (en) * 2016-12-30 2019-10-01 DeepMap Inc. High definition map updates with vehicle data load balancing
CN108540677A (zh) * 2017-03-05 2018-09-14 北京智驾互联信息服务有限公司 语音处理方法及系统
KR102305123B1 (ko) * 2017-03-14 2021-09-28 삼성전자주식회사 위치 기반 서비스를 제공하는 방법 및 그 전자 장치
CN107356261B (zh) * 2017-06-14 2019-09-06 Oppo广东移动通信有限公司 导航方法及相关产品
CN107284544A (zh) * 2017-07-30 2017-10-24 福州大学 一种多功能的通用移动机器人底盘及其应用方法
CN107665269B (zh) * 2017-08-11 2021-01-08 山东师范大学 基于地理信息的快速人群疏散仿真方法和装置
US10002407B1 (en) * 2017-08-11 2018-06-19 Intermap Technologies Inc. Method and apparatus for enhancing 3D model resolution
CN107590484A (zh) * 2017-09-29 2018-01-16 百度在线网络技术(北京)有限公司 用于呈现信息的方法和装置
CN108132054A (zh) * 2017-12-20 2018-06-08 百度在线网络技术(北京)有限公司 用于生成信息的方法和装置
CN108595420A (zh) * 2018-04-13 2018-09-28 畅敬佩 一种优化人机交互的方法与系统
CN108592938A (zh) * 2018-06-11 2018-09-28 百度在线网络技术(北京)有限公司 导航路线规划方法、装置及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971589A (zh) * 2013-01-28 2014-08-06 腾讯科技(深圳)有限公司 将地图的兴趣点信息添加于街景图像中的处理方法及装置
CN105631773A (zh) * 2014-11-24 2016-06-01 三星电子株式会社 用于提供地图服务的电子设备和方法
US20170330034A1 (en) * 2016-05-11 2017-11-16 Baidu Usa Llc System and method for providing augmented virtual reality content in autonomous vehicles
CN108062864A (zh) * 2016-11-09 2018-05-22 奥迪股份公司 一种用于车辆的交通场景可视化系统和方法及车辆
CN109059946A (zh) * 2018-06-26 2018-12-21 上汽通用汽车有限公司 车辆路径获取方法、存储介质及电子设备
CN109872392A (zh) * 2019-02-19 2019-06-11 北京百度网讯科技有限公司 基于高精地图的人机交互方法和装置

Also Published As

Publication number Publication date
CN109872392A (zh) 2019-06-11
EP3731190A4 (en) 2022-01-26
EP3731190A1 (en) 2020-10-28
CN109872392B (zh) 2023-08-25
US20210325203A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2020168747A1 (zh) 基于高精地图的人机交互方法和装置
CN109141464B (zh) 导航变道提示方法和装置
CN103335657B (zh) 一种基于图像捕获和识别技术增强导航功能的方法和系统
US20210225171A1 (en) Vehicle-to-Infrastructure Cooperation Information Processing Method, Apparatus, Device and Autonomous Vehicle
EP3812867A1 (en) Vehicle control method and device
CN113341935A (zh) 一种车辆测试方法、装置、测试设备、系统及存储介质
WO2017215164A1 (zh) 导航方法、装置、系统及服务器
CN115240157B (zh) 道路场景数据持久化方法、装置、设备和计算机可读介质
CN101779206B (zh) 提供三维地图服务的方法和地理信息系统
CN112539754B (zh) 一种基于rds-tmc的高精度地图与传统地图路径匹配方法及装置
CN111859597A (zh) 一种自动驾驶算法的评估方法和系统
JP7483781B2 (ja) 情報をプッシュするための方法、装置、電子機器、コンピュータ可読記憶媒体及びコンピュータプログラム
WO2022083487A1 (zh) 生成高精度地图的方法、装置和计算机可读存储介质
CN112905849A (zh) 一种车辆数据处理的方法及装置
CN114485690A (zh) 导航地图的生成方法、装置、电子设备及存储介质
CN113237490A (zh) Ar导航方法、系统、电子设备和存储介质
CN115339453A (zh) 车辆换道决策信息生成方法、装置、设备和计算机介质
CN110487289A (zh) 无固定车道区域导航方法及导航设备
US20210088348A1 (en) Method and apparatus for acquiring information
KR102145882B1 (ko) 경로안내 영상 제공 시스템 및 방법, 그리고 이를 위한 장치 및 컴퓨터 프로그램이 기록된 기록매체
CN112414416A (zh) 一种基于四级自动驾驶高精度的adas地图数据系统
US20230029628A1 (en) Data processing method for vehicle, electronic device, and medium
JP7212709B2 (ja) モデリングルートの検証方法、装置、無人車両及び記憶媒体
JP2022130575A (ja) 道路案内方法、装置、電子機器及び記憶媒体
CN114397829A (zh) 用于构建自动驾驶仿真场景的方法、装置、设备及介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019897571

Country of ref document: EP

Effective date: 20200629

NENP Non-entry into the national phase

Ref country code: DE