WO2020168738A1 - 一种振荡水翼潮流能发电装置 - Google Patents

一种振荡水翼潮流能发电装置 Download PDF

Info

Publication number
WO2020168738A1
WO2020168738A1 PCT/CN2019/113874 CN2019113874W WO2020168738A1 WO 2020168738 A1 WO2020168738 A1 WO 2020168738A1 CN 2019113874 W CN2019113874 W CN 2019113874W WO 2020168738 A1 WO2020168738 A1 WO 2020168738A1
Authority
WO
WIPO (PCT)
Prior art keywords
rocker arm
angle
oscillating hydrofoil
energy
oscillating
Prior art date
Application number
PCT/CN2019/113874
Other languages
English (en)
French (fr)
Inventor
田新亮
吴夏
王鹏
张显涛
杨建民
李欣
胡智焕
江志昊
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2020168738A1 publication Critical patent/WO2020168738A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/20Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" wherein both members, i.e. wom and rem are movable relative to the sea bed or shore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/76Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism using auxiliary power sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/60Control system actuates through
    • F05B2270/602Control system actuates through electrical actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to the field of ocean energy development and utilization, in particular to an oscillating hydrofoil tidal energy power generation device.
  • tidal current energy can be used by converting the huge kinetic energy contained in ocean tidal current energy into electric energy through energy conversion device.
  • tidal current energy resources have high energy density, good load stability, strong predictability and little influence by meteorological conditions, and can ensure continuous and stable current output. It has obvious advantages in grid-connected power generation.
  • tidal current power generation devices can be divided into three types: horizontal axis type, vertical axis type and swing hydrofoil. At present, the horizontal axis type is the most, the vertical axis type is the second, and the swing wing can be counted. Although the horizontal shaft type and the vertical shaft type have higher energy conversion efficiency, they have high requirements for blade design and are difficult.
  • the swinging hydrofoil tidal current power generation device has lower energy conversion efficiency, it has the following advantages compared with the former two: no rotating machinery, avoiding damage to aquatic organisms; low noise, eco-friendly; simple structure, High reliability; low construction cost, suitable for large-scale side-by-side deployment; low starting water head, naturally adapting to low-speed water flow and other advantages. Therefore, the swing hydrofoil has unique application potential.
  • the current swing hydrofoil type power generation devices are basically fixed, that is, they are fixed to the seabed by the device's own gravity or by a supporting structure in the form of a jacket, and the whole is submerged in water, although it is not affected by the sea surface.
  • the cost of installation and maintenance is high, and it cannot be moved. Once a failure occurs, the maintenance cost is high.
  • the tidal current flow rate is slow, which limits the performance of the swing hydrofoil power generation device.
  • the technical problem to be solved by the present invention is to provide a structure that can effectively reduce the fixed load of the structure and increase the stability of the system; the structure is simple, the reliability is high, the maintenance is convenient, and the maintenance cost is reduced; Tidal current power generation device.
  • the present invention provides an oscillating hydrofoil tidal energy power generation device, which includes a floating energy-absorbing power generation assembly and a cable assembly; wherein
  • the floating energy-absorbing power generation component includes
  • the energy absorbing device that converts tidal energy into mechanical energy.
  • the energy absorbing device includes an oscillating hydrofoil at least partially submerged in water and a rocker arm connected to the oscillating hydrofoil at one end, and the other end of the rocker arm is connected to a generator ;and
  • the generator that converts the mechanical energy into electrical energy
  • the cable assembly is configured to moor the energy absorbing device and the generator on the seabed.
  • the power generation device works on the sea surface, which provides convenience for the movement, installation and maintenance of the power generation device; working on the sea surface can capture the high-velocity tidal energy on the sea surface; working on the sea surface makes the operation and maintenance cost of the power generation device very low.
  • rocker arm is arranged to be exposed to the water surface. Avoid the resistance of the rocker arm moving in the water and reduce the power generation efficiency.
  • the oscillating hydrofoil is configured to provide buoyancy to the floating energy-absorbing power generation component.
  • it further includes a pontoon in which the generator is arranged, and the pontoon is arranged to provide buoyancy to the floating energy-absorbing power generation assembly.
  • the pontoon and the oscillating hydrofoil provide buoyancy at the same time; there are at least two buoyancy points to make the entire power generation device float more balanced; at the same time the pontoon and the hydrofoil provide buoyancy to make the rocker close to a parallel horizontal plane, and the rocker rotates more smoothly, avoiding fixed rocking
  • One end of the arm is subjected to the bending moment in the vertical direction, which improves the service life of the rocker arm.
  • the number of energy absorbing devices is set to two.
  • the two energy absorbing devices can work independently of each other without interfering with each other. When one energy absorbing device fails to work, the other can continue to work; when the two energy absorbing devices work at the same time, the symmetrical swing can offset the lateral force.
  • the energy absorbing device includes a first rocker arm, a first oscillating hydrofoil connected to the first end of the first rocker arm, a second rocker arm, and a first end connected to the second rocker arm The second oscillating hydrofoil;
  • the second end of the first rocker arm and the second end of the second rocker arm are respectively connected to the generator;
  • the first rocker arm and the second rocker arm are arranged to swing staggeredly without interfering with each other.
  • first end of the first rocker arm and the first end of the second rocker arm both pass through the first axis, and the length from the first end of the first rocker arm to the second end is greater than that of the second end.
  • the length from the first end of the second rocker arm to the second end thereof, and the first rocker arm is arranged above the second rocker arm.
  • first rocker arm and the second rocker arm are respectively set to be able to rotate 360° around the first axis, and automatically adapt to the flow direction of the environment.
  • first end of the first rocker arm is hinged with the first oscillating hydrofoil.
  • first end of the second rocker arm is hinged with the second oscillating hydrofoil.
  • first end of the first rocker arm is hinged with the first oscillating hydrofoil
  • first end of the second rocker arm is hinged with the second oscillating hydrofoil
  • first oscillating hydrofoil The angle of attack of and the angle of attack of the second oscillating hydrofoil are respectively set to perform angle switching according to the included angle of the first rocker arm and the second rocker arm.
  • an angle control system configured to control the attack of the first oscillating hydrofoil according to the set value of the included angle between the first rocker arm and the second rocker arm. Angle and the angle of attack of the second oscillating hydrofoil.
  • the angle control system includes an angle measuring instrument for measuring the included angle between the first rocker arm and the second rocker arm, and a first oscillating hydrofoil that provides power for switching the angle of attack of the first oscillating hydrofoil.
  • angle measuring instrument is arranged between the lower surface of the first rocker arm and the upper surface of the second rocker arm.
  • the first driving device includes a first motor.
  • the second driving device includes a second motor.
  • the set value of the included angle between the first rocker arm and the second rocker arm is 80°.
  • angle range of the angle of attack of the first oscillating hydrofoil and the angle of attack of the second oscillating hydrofoil are both -45° to 45°.
  • the present invention also provides another preferred embodiment of the oscillating hydrofoil tidal energy power generation device.
  • This power generation device can work on the sea surface with high flow velocity, and can also be set to work close to the seabed surface, including converting tidal current energy into An energy absorbing device for mechanical energy, a generator that converts the mechanical energy into electrical energy;
  • the energy absorbing device includes a first rocker arm, a first oscillating hydrofoil hinged to the first end of the first rocker arm, a second rocker arm, and a second rocker arm that is hinged to the first end of the second rocker arm. Oscillating hydrofoil
  • the second end of the first rocker arm and the second end of the second rocker arm are respectively connected to the generator;
  • the first rocker arm and the second rocker arm are arranged to swing staggeredly without interfering with each other.
  • first end of the first rocker arm and the first end of the second rocker arm both pass through the first axis, and the length from the first end of the first rocker arm to the second end is greater than that of the second end.
  • the length from the first end of the second rocker arm to the second end thereof, and the first rocker arm is arranged above the second rocker arm.
  • the angle of attack of the first oscillating hydrofoil and the angle of attack of the second oscillating hydrofoil are respectively set to be based on the angle setting value of the first rocker arm and the second rocker arm. Switch.
  • an angle control system configured to control the attack of the first oscillating hydrofoil according to the set value of the included angle between the first rocker arm and the second rocker arm. Angle and the angle of attack of the second oscillating hydrofoil.
  • the angle control system includes an angle measuring instrument for measuring the angle between the first rocker arm and the second rocker arm along the tidal current direction, and switching the angle of attack of the first oscillating hydrofoil
  • a first driving device that provides power
  • a second driving device that provides power for switching the angle of attack of the second oscillating hydrofoil
  • an angle controller that provides power for switching the angle of attack of the second oscillating hydrofoil
  • an angle controller the angle controller and the angle measuring instrument
  • the first driving device and the second 2. Electrical connection of driving device.
  • the power generation device of a preferred embodiment of the present invention uses floating energy-absorbing power generation components, so that the power generation works on the offshore surface, which can capture higher tidal energy; the sea surface work is the movement of the device and the cost of routine maintenance is reduced; At the same time, the sea surface operation reduces the working load of the fixed components, which is beneficial to the stability and reliability of the power generation device.
  • the two energy absorbing devices are arranged in a staggered manner, and they do not interfere with each other during swinging power generation.
  • Two energy absorbing devices can generate electricity independently. When one energy absorbing device stops working, the other can continue to swing and generate electricity.
  • the angle control system controls the first hydrofoil and the second hydrofoil respectively according to the angle setting value of the first rocker arm and the second rocker arm.
  • the angle of attack of the wing is used to ensure the swing of the first rocker arm and the second rocker arm; at the same time, the control of the angle of attack can ensure higher power generation efficiency.
  • Fig. 1 is a schematic structural diagram of an oscillating hydrofoil tidal current power generation device according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic top view of the structure of the embodiment in FIG. 1;
  • Figure 3 is a perspective view of an oscillating hydrofoil
  • Figure 4 is a cross-sectional view of the oscillating hydrofoil shown in Figure 3;
  • FIG. 5 is a schematic diagram of the first state of the work flow of the embodiment shown in FIG. 1;
  • FIG. 6 is a schematic diagram of the second state of the work flow of the embodiment shown in FIG. 1;
  • FIG. 7 is a schematic diagram of the third state of the work flow of the embodiment shown in FIG. 1;
  • FIG. 8 is a schematic diagram of the fourth state of the work flow of the embodiment shown in FIG. 1;
  • FIG. 9 is a schematic diagram of the fifth state of the work flow of the embodiment shown in FIG. 1;
  • FIG. 10 is a schematic diagram of the sixth state of the work flow of the embodiment shown in FIG. 1;
  • Figure 11 is a structural schematic diagram of the oscillating hydrofoil tidal current energy generating device of a preferred embodiment of the present invention after the flow direction of the tidal current is changed by 180°;
  • the basic working principle of the oscillating hydrofoil tidal energy power generation device of the present invention is that the oscillating hydrofoil drives the rocker arm to swing under the action of the tidal current, and the swing of the rocker arm drives the generator to work through the transmission device to generate electric energy.
  • the oscillating hydrofoil tidal energy power generation device includes a floating energy-absorbing power generation component and a cable assembly; wherein the floating energy-absorbing power generation component includes an energy absorbing device that converts tidal energy into mechanical energy
  • the energy absorbing device includes an oscillating hydrofoil at least partially submerged in water and a rocker arm connected to the oscillating hydrofoil at one end, and the other end of the rocker arm is connected to a generator; and a device that converts the mechanical energy into electrical energy
  • the generator; the cable assembly is configured to park the energy absorbing device and the generator on the seabed.
  • the cable assembly connects the energy absorbing device and the generator to the seabed by mooring, mooring or other methods, so that the energy absorbing device and the generator are fixedly connected to a certain position on the seabed.
  • Floating energy-absorbing power generation components work on the sea surface and can be towed to any water area where they can be operated.
  • the installation and subsequent maintenance of all electromechanical equipment can be completed on the water surface, enabling the movement and daily maintenance of floating energy-absorbing power generation components
  • the cost is reduced; the sea has a high-velocity tidal current, and the operation on the sea is conducive to capturing higher tidal energy and improving the power generation efficiency; at the same time, the working on the sea reduces the working load of the fixed components, which is beneficial to the stability of the floating energy-absorbing power generation components And reliability.
  • the rocker arm is set to be exposed to the surface of the water.
  • the rocker arm is moved in the water by water resistance and reduces the power generation efficiency.
  • the oscillating hydrofoil is configured to provide buoyancy.
  • a floating tank is also provided, and the floating tank is configured to provide buoyancy.
  • the pontoon and the hydrofoil provide buoyancy at the same time; there are at least two buoyancy points to make the entire power generation device float more balanced; at the same time, the pontoon and the hydrofoil provide buoyancy to make the rocker close to the parallel horizontal plane.
  • the arm rotates more smoothly, avoiding the vertical bending moment at one end of the fixed rocker arm, and improving the service life of the rocker arm.
  • the energy absorbing device can be set to one or more.
  • the oscillating hydrofoil tidal energy power generation device works in the offshore area, including two energy absorbing devices, which can be independent
  • the tidal current energy is converted into mechanical energy without interference with each other, that is, when one energy absorbing device stops working, the other energy absorbing device can work normally.
  • the energy absorbing device includes a first rocker arm 7, a first oscillating hydrofoil 2 connected to a first end of the first rocker arm 7, a second rocker arm 8, and a first end connected to the second rocker arm 8.
  • the second oscillating hydrofoil 1; the second end of the first rocker arm 7 and the second end of the second rocker arm 8 are respectively connected to the generator, and the first rocker arm 7 and the second rocker arm 8 are arranged to alternately swing each other Do not interfere.
  • the power generation device further includes a floating tank 19 that provides buoyancy, and the floating tank 19 is connected to one end of the anchor chain 20, and the other end of the anchor chain 20 is anchored to the seabed.
  • the first rocker arm 7 and the second rocker arm 8 are arranged to work out of the water; both the first oscillating hydrofoil 2 and the second oscillating hydrofoil 1 are at least partially submerged in water and provide buoyancy for the power generation device.
  • first end of the first rocker arm 7 and the first end of the second rocker arm 8 both pass through the first axis C, and the first end of the first rocker arm 7 extends toward its second end.
  • the length is greater than the length from the first end of the second rocker arm 8 to the second end thereof, and the first rocker arm 7 is arranged above the second rocker arm 8.
  • first rocker arm 7 and the second rocker arm 8 are respectively set to be able to rotate 360° around the first axis C to automatically adapt to the flow direction of the environment.
  • the first end of the first rocker arm 7 is hinged to the first oscillating hydrofoil 2, preferably connected by the first oscillating hydrofoil shaft 4; the first end of the second rocker arm 8 is connected to The second oscillating hydrofoil 1 is hinged, preferably, connected by a second oscillating hydrofoil shaft 3; the angle of attack of the first oscillating hydrofoil 2 and the angle of attack of the second oscillating hydrofoil 1 are respectively set according to the first rocker arm The angle between 7 and the second rocker arm 8 is switched.
  • A1 is the cross-sectional symmetry line of the second oscillating hydrofoil
  • A2 is the cross-sectional symmetry line of the first oscillating hydrofoil.
  • the angle of attack of the oscillating hydrofoil refers to the cross-sectional symmetry of the oscillating hydrofoil.
  • the angle between the line (such as A1, A2) and the tidal current direction D is positive when located above the tidal current direction D, and negative when located below the tidal current direction D; in Figure 2, the angle of attack b of the second oscillating hydrofoil is negative.
  • the angle of attack b of the first oscillating hydrofoil is a positive value; the angle between the first rocker arm 7 and the second rocker arm 8 mentioned here refers to the first rocker arm 7 and the second rocker arm along the tidal current direction D The angle between 8 a.
  • the angle control system which is configured to control the first oscillating hydrofoil 2 according to the set value of the included angle between the first rocker arm 7 and the second rocker arm 8.
  • the angle control system includes an angle measuring instrument 22 for measuring the angle between the first rocker arm 7 and the second rocker arm 8.
  • the angle measuring instrument 22 is arranged on the lower surface of the first rocker arm 7 and the upper surface of the second rocker arm 8. Between the surfaces.
  • the angle control system also includes a first drive device that provides power for switching the angle of attack of the first oscillating hydrofoil 2, that is, a first motor 5; a second drive device that provides power for switching the angle of attack of the second oscillating hydrofoil 1, That is, the second motor 6; the angle controller 21.
  • the angle controller 21 is electrically connected to the angle measuring instrument 22, the first motor 5, and the second motor 6.
  • the set value of the included angle between the first rocker arm 7 and the second rocker arm 8 is 80°.
  • the angle of attack of the first oscillating hydrofoil 2 and the angle of attack of the second oscillating hydrofoil 1 are both in the range of -45° ⁇ 45°.
  • a transmission gear device is also provided.
  • the two energy absorbing devices respectively transmit the mechanical energy of the first rocker arm 7 and the second rocker arm 8 to the generator through the transmission gear device, and the generator transfers it to the generator. Mechanical energy is converted into electrical energy.
  • the transmission gear device includes a first transmission gear and a second transmission gear that work independently.
  • the transmission gear devices work independently, which can ensure that when one of the transmission gear devices stops working, the other can continue to work, and the work of the two is not interfered, which can ensure the stability of power generation.
  • the first transmission gear is used to transmit the mechanical energy of the first rocker arm 7 to the generator
  • the second transmission gear is used to transmit the mechanical energy of the second rocker arm 8 to the generator.
  • the generator includes a stator 11 and a rotor 10.
  • the first transmission gear includes a first driving wheel 15 and a first driven wheel 12 meshing with the first driving wheel 15; the first driving wheel 15 is connected to the second end of the first rocker arm 7 and is configured as the first rocker arm 7 When rotating around the first axis C, the first driving wheel 15 is driven to rotate, and the first driving wheel 15 engages and drives the first driven wheel 12 to rotate; the rotation of the first driven wheel 12 drives the stator 11 of the generator fixedly connected to the generator relative to the generator The rotor 10 rotates to generate electricity.
  • the second transmission gear includes a second driving wheel 16 and a second driven wheel 9 meshing with the second driving wheel; the second driving wheel 16 is connected to the second end of the second rocker arm 8 and is arranged to surround the second rocker arm 8
  • the rotation of the first axis C drives the second driving wheel 16 to rotate, and the second driving wheel 16 engages and drives the second driven wheel 9 to rotate; the rotation of the second driven wheel 9 drives the rotor 10 of the generator fixedly connected to it relative to the generator
  • the stator 11 rotates to generate electricity.
  • the second end of the first rocker arm 7, the second end of the second rocker arm 8, the second driving wheel 16, and the first driving wheel 15 are arranged in sequence from top to bottom, and pass through the first main shaft 18.
  • the first main shaft 18 is supported by the strong support 14 to the inner surface of the bottom surface of the pontoon 19.
  • the second driven wheel 9, the rotor 10 of the generator, the stator 11 of the generator, and the first driven wheel 12 are arranged in sequence and connected in series through a fixed shaft 13, and the end of the fixed shaft is supported on the bottom surface of the pontoon 19 On the inner surface.
  • the second end of the second rocker arm 8 is fixedly connected to the second driving wheel 16 through the second main shaft 17, and the axis of the second main shaft 17 and the rotation axis of the second driving wheel 16 coincide with the first axis C; the second main shaft 17 Pass through the top of the pontoon 19 from above and extend into the pontoon 19.
  • the first bearing is matched with the pontoon; the second main shaft 17 is provided with a through hole, The axis of the hole coincides with the first axis C.
  • the second end of the first rocker arm 7 is fixedly connected to the first driving wheel 15 through the first main shaft 18.
  • the axis of the first main shaft 18 and the rotation axis of the first driving wheel 15 coincide with the first axis C.
  • the first main shaft 18 It extends from the second end of the first rocker arm 7 through the through hole of the second main shaft 17 to the bottom of the pontoon 19; when the first main shaft 18 passes through the through hole of the second main shaft 17, the second bearing engages.
  • the second main shaft 17 is supported on the pontoon 19 by the first bearing and the second bearing.
  • the transmission gear device and the rotor and stator of the generator are all arranged in the floating tank 19.
  • both the first oscillating hydrofoil 2 and the second oscillating hydrofoil 1 are arranged in a wing shape.
  • the power generating device can work either at a position close to the sea surface or at a position close to the sea surface.
  • An oscillating hydrofoil tidal energy power generation device including an energy absorbing device that converts tidal energy into mechanical energy, and a generator that converts mechanical energy into electrical energy;
  • the energy absorbing device includes a first rocker 7 and a first rocker 7
  • the second ends of are respectively connected to the generator; the first rocker arm 7 and the second rocker arm 8 are set to swing staggered without disturbing each other.
  • the first oscillating hydrofoil 2 and the second oscillating hydrofoil 1 are respectively flexibly connected, so that it is convenient to change the angle of attack.
  • the following arrangement is preferably adopted.
  • the first end of the first rocker arm 7 and the first end of the second rocker arm 8 both pass through the first axis C, and the length from the first end of the first rocker arm 7 to its second end is greater than that of the second rocker arm 8
  • the first rocker arm 7 is arranged above the second rocker arm 8.
  • the angle of attack of the first oscillating hydrofoil 2 and the angle of attack of the second oscillating hydrofoil 1 are respectively set to be based on the set value of the included angle of the first rocker arm 7 and the second rocker arm 8. Angle switch.
  • the power generating device further includes an angle control system configured to control the first oscillating water according to the set value of the included angle between the first rocker arm 7 and the second rocker arm 8.
  • the angle control system includes an angle measuring instrument 22 for measuring the included angle between the first rocker arm 7 and the second rocker arm 8 along the tidal current direction, and a first oscillating hydrofoil 7 that provides power for switching the angle of attack.
  • a driving device, a second driving device that provides power for switching the attack angle of the second oscillating hydrofoil 8, an angle controller 21, and the angle controller 21 are electrically connected to the angle measuring instrument 22, the first driving device, and the second driving device.
  • the basic working principle of the power generating device is: the first oscillating hydrofoil and the second oscillating hydrofoil drive the first rocker arm and the second rocker arm respectively under the action of the tidal current.
  • the swing of the rocker arm, the swing of the first rocker arm and the second rocker arm respectively drive the first driving wheel and the second driving wheel in the pontoon to rotate, thereby respectively transmitting to the first driven wheel and the second driven wheel fixed on the generator , Make the generator work to generate electricity;
  • the power generation systems of the first rocker arm and the second rocker arm are independent and will not interfere with each other, that is, when one of them fails and does not move, the other can be normal Work to drive the rotor or stator that emits electrons to rotate and generate electricity. Specifically, it will be specifically described with reference to the flow diagrams of FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG. 9 and FIG. 10.
  • Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9 and Fig. 10 are diagrams of the working process of the power generating device when there are two energy absorbing devices; in these 6 pictures, the first rocker arm 7 is the longer rocker arm (Located at the bottom of Fig. 5), the first oscillating hydrofoil 2 is connected to its right end, the second rocker arm 8 (located at the top of Fig. 5) is shorter, and the second oscillating hydrofoil 1 is connected to its right end.
  • the first rocker arm 7 (located below Figure 5) and the second rocker arm 8 (located above Figure 5) are in a position parallel to the tide direction D, and the first oscillating hydrofoil 2
  • the angle of attack of the second oscillating hydrofoil 1 is adjusted to -45°, and the angle of attack of the second oscillating hydrofoil 1 is adjusted to 45°; under the action of the tidal current, the first oscillating hydrofoil 2 receives a force to make the first rocker arm 7 go around the first axis C rotates counterclockwise, the first main shaft 18 fixed to the second end of the first rocker arm 7 rotates and drives the second driving wheel 15 to rotate.
  • the first driving wheel 15 drives the first driven wheel 12 to rotate, which can make the 12
  • the fixed generator stator 11 rotates relative to the generator rotor 10, so that the generator generates electricity
  • the second oscillating hydrofoil 1 receives a force to make the second rocker arm 8 rotate around the first axis C
  • the second main shaft 17 fixedly connected to the second end of the second rocker arm 8 rotates and drives the second driving wheel 16 to rotate.
  • the second driving wheel 16 drives the second driven wheel 9 to rotate, so that it can be connected to the second driven wheel 9
  • the fixed generator rotor 10 rotates relative to the generator stator 11 so that the generator generates electricity. As shown in Fig.
  • the angle controller 21 in the pontoon 19 will receive the signal from the angle measuring instrument 22 and output Signals are sent to the first motor 5 and the second motor 6 to adjust the angle of attack of the first hydrofoil 2 to 45°, and the angle of attack of the second hydrofoil 1 to -45°, as shown in Figure 7, which will The opposite movement occurs, the first rocker arm 7 rotates clockwise around the first axis C, and the second rocker arm 8 rotates counterclockwise around the first axis C, as shown in Figures 8, 9 and 10; Perform periodic motion according to the sequence of Figure 5-Figure 6- Figure 7- Figure 8- Figure 9- Figure 10- Figure 5, which realizes that the present invention captures tidal energy through the hydrofoil, converts it into mechanical energy and then converts it into electrical energy for storage.
  • Figure 11 shows the relative position of the power generation device after the tidal current direction D has changed 180° with respect to Figure 1. Realize the independent adaptation and adjustment to different flow directions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种振荡水翼潮流能发电装置,包括漂浮式吸能发电组件和线缆组件。其中,漂浮式吸能发电组件包括将潮流能转换成机械能的吸能装置,吸能装置包括至少部分浸没于水中的振荡水翼(1,2)和一端与所述振荡水翼(1,2)相连的摇臂(7,8),摇臂(7,8)的另一端与发电机(5,6)连接,及将所述机械能转化为电能的发电机(7,8);线缆组件被设置为用于将吸能装置和发电机系泊于海底。该发电装置结构简单、可靠性高,可有效降低结构固定载荷,增加系统稳定性,降低维护成本。

Description

一种振荡水翼潮流能发电装置
技术领域
本发明涉及海洋能源开发利用领域,具体涉及一种振荡水翼潮流能发电装置。
背景技术
随着世界经济的发展,能源消费需求持续攀升。传统的化石能源数量既有限又存在环境污染问题,为解决资源短缺问题,发展可再生能源已经成为全球共识。海洋中蕴藏着巨大的能量,包括波浪能、潮汐能、潮流能、温差能等。潮流能作为海洋可再生能源的一种,通过能量转化装置,可将海洋潮流能中蕴藏的巨大动能转化为电能加以利用。相比于其它形式可再生能源,潮流能资源能量密度高,载荷稳定性好,可预测性强受气象条件影响小,可以保证持续稳定的电流输出,在并网发电方面具有明显优势。
潮流能发电装置根据发电原理可以分为水平轴式、竖轴式和摆动水翼三种。目前水平轴式最多,垂直轴式次之,摆动翼屈指可数。水平轴式和竖轴式,虽然有较高的能量转化效率,但其对叶片设计要求高,难度大。摆动水翼式潮流能发电装置虽然能量转化效率较低,但相比于前两者,它具有如下优点:无旋转机械,避免对水生物的伤害;噪声小,对生态环境友好;结构简单,可靠性高;建造成本低,适合大规模并排部署;启动水头低,自然适应低速水流等优点。因此摆动水翼拥有独特的应用潜力。但是,目前的摆动水翼式发电装置采用的基本上都是固定式的,即通过装置自身重力或通过导管架等形式的支撑结构固定于海底,整体浸没在水中,虽然不受海面情况影响,但是安装、维护成本高,且不可移动,一旦发生故障,维修成本很高。而且由于靠近海底,潮流流速慢,限制了摆动水翼式发电装置性能的发挥。
因此,本领域的技术人员致力于开发一种振荡水翼潮流能发电装置,其可有效降低结构固定载荷,增加系统稳定性;结构简单、可靠性高、维护方便,降低了维护成本;环境友好。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种可有效降低结构固定载荷,增加系统稳定性;结构简单、可靠性高、维护方便,降低了维护成本;环境友好的潮流能发电装置。
为实现上述目的,本发明提供了一种振荡水翼潮流能发电装置,包括漂浮式吸能发电组件和线缆组件;其中
所述漂浮式吸能发电组件包括
将潮流能转换成机械能的吸能装置,所述吸能装置包括至少部分浸没于水中的振荡水翼和一端与所述振荡水翼相连的摇臂,所述摇臂的另一端与发电机连接;及
将所述机械能转化为电能的所述发电机;
所述线缆组件被设置为将所述吸能装置和发电机泊于海底。
发电装置在海面上工作,为发电装置的移动、安装维护提供便捷性;海面上工作可以俘获海面上高流速的潮流能;在海面上工作使发电装置的运行维护成本很低。
进一步地,所述摇臂被设置为露出水面。避免摇臂在水中运动受到水的阻力而降低发电效率。
进一步地,所述振荡水翼被设置为给所述漂浮式吸能发电组件提供浮力。
进一步地,还包括浮箱,所述发电机被设置在所述浮箱之内,所述浮箱被设置为给所述漂浮式吸能发电组件提供浮力。
浮箱和振荡水翼同时提供浮力;至少有2个浮力点,使得整个发电装置漂浮较为平衡;同时浮箱和水翼提供浮力使得摇臂接近平行水平面,摇臂转动时更加顺畅,避免固定摇臂的一端受到竖直方向弯矩的作用,提高摇臂的使用寿命。
本发明的另一个较佳实施例中,所述吸能装置被设置为2个。2个吸能装置彼此之间可以独立工作,互不干扰,当其中一个吸能装置无法工作时,另一个还可以继续工作;当2个吸能装置同时工作时,对称摆动可以抵消横向力。
进一步地,所述吸能装置包括第一摇臂、与所述第一摇臂的第一端连接的第一振荡水翼、第二摇臂、与所述第二摇臂的第一端连接的第二振荡水翼;
所述第一摇臂的第二端和所述第二摇臂的第二端分别连接到所述发电机上;
所述第一摇臂和所述第二摇臂被设置为交错摆动互不干扰。
进一步地,所述第一摇臂的第一端和所述第二摇臂的第一端均通过第一轴线,所述第一摇臂的第一端向其第二端延伸的长度大于所述第二摇臂的第一端向其第二端延伸的长度,所述第一摇臂被设置为位于所述第二摇臂的上方。
进一步地,所述第一摇臂和所述第二摇臂分别被设置为可绕所述第一轴线进行360°旋转,自动适应环境流向。
进一步地,所述第一摇臂的第一端与所述第一振荡水翼铰接。
进一步地,所述第二摇臂的第一端与所述第二振荡水翼铰接。
进一步地,所述第一摇臂的第一端与所述第一振荡水翼铰接,所述第二摇臂的第一端与所述第二振荡水翼铰接,所述第一振荡水翼的攻角和所述第二振荡水翼的攻角分别被设置为依据所述第一摇臂和所述第二摇臂的夹角进行角度切换。
进一步地,还包括角度控制系统,所述角度控制系统被设置为依据所述第一摇臂和所述第二摇臂之间的夹角设定值分别控制所述第一振荡水翼的攻角和所述第二振荡水翼的攻角的角度值。
进一步地,所述角度控制系统包括用于测量所述第一摇臂和所述第二摇臂的夹角的角度测量仪、为所述第一振荡水翼的攻角切换提供动力的第一驱动装置、为所述第二振荡水翼的攻角切换提供动力的第二驱动装置、角度控制器,所述角度控制器与所述角度测量仪、第一驱动装置、第二驱动装置电气连接。
进一步地,所述角度测量仪被设置于所述第一摇臂的下表面和所述第二摇臂的上表面之间。
进一步地,所述第一驱动装置包括第一电机。
进一步地,所述第二驱动装置包括第二电机。
进一步地,所述第一摇臂和所述第二摇臂之间的夹角设定值为80°。
进一步地,所述第一振荡水翼的攻角和所述第二振荡水翼的攻角的角度范围均为-45°~45°。
本发明还提供了另一种较佳实施例的振荡水翼潮流能发电装置,此发电装置可以在高流速的海面工作,也可以被设置在接近海底面的位置工作,包括将潮流能转换成机械能的吸能装置,将所述机械能转化为电能的发电机;
所述吸能装置包括第一摇臂、与所述第一摇臂的第一端铰接的第一振荡水翼、第二摇臂、与所述第二摇臂的第一端铰接的第二振荡水翼;
所述第一摇臂的第二端和所述第二摇臂的第二端分别连接到所述发电机上;
所述第一摇臂和所述第二摇臂被设置为交错摆动互不干扰。
进一步地,所述第一摇臂的第一端和所述第二摇臂的第一端均通过第一轴线,所述第一摇臂的第一端向其第二端延伸的长度大于所述第二摇臂的第一端向其第二端延伸的长度,所述第一摇臂被设置为位于所述第二摇臂的上方。
进一步地,所述第一振荡水翼的攻角和所述第二振荡水翼的攻角分别被设置为依据所述第一摇臂和所述第二摇臂的夹角设定值进行角度切换。
进一步地,还包括角度控制系统,所述角度控制系统被设置为依据所述第一摇臂和所述第二摇臂之间的夹角设定值分别控制所述第一振荡水翼的攻角和所述第二振荡水翼的攻角的角度值。
进一步地,所述角度控制系统包括用于测量所述第一摇臂和所述第二摇臂之间的沿潮流方向夹角的角度测量仪、为所述第一振荡水翼的攻角切换提供动力的第一驱动装置、为所述第二振荡水翼的攻角切换提供动力的第二驱动装置、角度控制器,所述角度控制器与所述角度测量仪、第一驱动装置、第二驱动装置电气连接。
有益的技术效果:
1)本发明的一个较佳实施例的发电装置采用漂浮式吸能发电组件,使得发电工作在近海面工作,可以俘获较高的潮流能;海面工作为装置的移动、日常维护的成本降低;同时海面工作使得降低固定构件的工作载荷,有利于发电装置的稳定性和可靠性。
2)本发明的发电装置,在吸能装置为2个的实施例中,两个吸能装置交错布置,其在摆动发电时互不干扰。
3)2个吸能装置可以独立发电,当其中一个吸能装置停止工作时,另一个可以继续进行摆动发电。
4)在吸能装置为2个的实施例中,较佳的情况时,角度控制系统根据第一摇臂和第二摇臂的夹角设定值来分别控制第一水翼和第二水翼的攻角,以此来保证第一摇臂和第二摇臂的来回摆动;同时攻角的控制可以保证较高的发电效率。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的一个较佳实施例的振荡水翼潮流能发电装置的结构示意图;
图2是图1实施例的俯视结构示意图;
图3是振荡水翼的立体图;
图4是图3所示的振荡水翼的截面图;
图5是图1所示实施例的工作流程之第一状态示意图;
图6是图1所示实施例的工作流程之第二状态示意图;
图7是图1所示实施例的工作流程之第三状态示意图;
图8是图1所示实施例的工作流程之第四状态示意图;
图9是图1所示实施例的工作流程之第五状态示意图;
图10是图1所示实施例的工作流程之第六状态示意图;
图11是本发明的一个较佳实施例的振荡水翼潮流能发电装置潮流的流向改变180°后结构示意图;
其中,1-第二振荡水翼,2-第一振荡水翼,3-第二振荡水翼轴,4-第一振荡水翼轴,5-第一电机,6-第二电机,7-第一摇臂,8-第二摇臂,9-第二从动轮,10-发电机的转子,11-发电机的定子,12-第一从动轮,13-固定轴,14-强支撑件,15-第一主动轮,16-第二主动轮,17-第二主轴,18-第一主轴,19-浮箱,20-锚链,21-角度控制器,22-角度测量仪。
具体实施方式
以下参考说明书附图介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
本发明的一种振荡水翼潮流能发电装置,基本工作原理是振荡水翼在潮流的作用下带动摇臂摆动,摇臂的摆动通传动装置驱动发电机工作,从而产生电能。
在本发明的一个较佳实施例中的振荡水翼潮流能发电装置,包括漂浮式吸能发电组件和线缆组件;其中,漂浮式吸能发电组件包括将潮流能转换成机械能的吸能装置,所述吸能装置包括至少部分浸没于水中的振荡水翼和一端与所述振荡水翼相连的摇臂,所述摇臂的另一端与发电机连接;及将所述机械能转化为电能的所述发电机;所述线缆组件被设置为将所述吸能装置和发电机泊于海底。线缆组件将所述吸能装置和发电机通过锚泊、系泊或是其他方式泊于海底,使得吸能装置和发电机固定连接在海底的一定位置。漂浮式吸能发电组件在海面上工作,可以被拖至任意可以作业的水域,在水面上就可完成所有机电设备的安装和后期的维护工作,使得漂浮式吸能发电组件的移动、日常维护的成本降低;海面上具有高流速的潮流,海面上作业有利于俘获较高的潮流能,提高发电效率;同时海面工作使得降低固定构件的工作载荷,有利于漂浮式吸能发电组件的稳定性和可靠性。
在本发明的较佳实施例中,优选地,将摇臂设置为露出水面,当发电装置工作时,避免摇臂在水中运动受到水的阻力而降低发电效率。
在本发明的较佳实施例中,优选地,振荡水翼被设置为提供浮力。
在本发明的较佳实施例中,优选地,还设置有浮箱,浮箱被设置为提供浮力。
在本发明的较佳实施例中,浮箱和水翼同时提供浮力;至少有2个浮力点,使得整个发电装置漂浮较为平衡;同时浮箱和水翼提供浮力使得摇臂接近平行水平面,摇臂转动时更加顺畅,避免固定摇臂的一端受到竖直方向弯矩的作用,提高摇臂的使用寿命。
吸能装置可以被设置为1个或多个。如图1和图2所示,在本发明的另一个较佳实施例中,振荡水翼潮流能发电装置在近海面区域工作,包括2个吸能装置,2个吸能装置是可以独立的将潮流能转化为机械能,彼此之间并不受干扰,也即,当一个吸能装置停止工作时,另一个吸能装置可以正常工作。2个吸能装置同时对称摆动发电时,可以抵消发电装置的横向力。 吸能装置包括第一摇臂7、与所述第一摇臂7的第一端连接的第一振荡水翼2、第二摇臂8、与所述第二摇臂8的第一端连接的第二振荡水翼1;第一摇臂7的第二端和第二摇臂8的第二端分别连接到发电机上,第一摇臂7和第二摇臂8被设置为交错摆动互不干扰。发电装置还包括提供浮力的浮箱19,浮箱19与锚链20的一端相连,锚链20的另一端锚定于海底。
第一摇臂7和第二摇臂8被设置为露出水面工作;第一振荡水翼2和第二振荡水翼1均至少部分浸没于水中,且为发电装置提供浮力。
在本较佳实施例中,第一摇臂7的第一端和第二摇臂8的第一端均通过第一轴线C,第一摇臂7的第一端向其第二端延伸的长度大于第二摇臂8的第一端向其第二端延伸的长度,第一摇臂7被设置为位于所述第二摇臂8的上方。这样的布置的方式,可以实现第一摇臂7和第二摇臂8为交错摆动互不干扰。
在本较佳实施例中,第一摇臂7和第二摇臂8分别被设置为可绕第一轴线C进行360°旋转,以自动适应环境流向。
在本较佳实施例中,第一摇臂7的第一端与第一振荡水翼2铰接,优选地,通过第一振荡水翼轴4进行连接;第二摇臂8的第一端与第二振荡水翼1铰接,优选地,通过第二振荡水翼轴3进行连接;第一振荡水翼2的攻角和第二振荡水翼1的攻角分别被设置为依据第一摇臂7和第二摇臂8的夹角进行角度切换。如图2所示,A1是第二振荡水翼的截面对称线,A2是第一振荡水翼截面对称线,在本发明中所说振荡水翼的攻角指的是振荡水翼的截面对称线(如A1、A2)与潮流方向D的夹角,位于潮流方向D上方为正值,位于潮流方向D下方为负值;如图2中第二振荡水翼的攻角b为负值,第一振荡水翼的攻角b为正值;这里所说的第一摇臂7和第二摇臂8之间的夹角指的是沿潮流方向D第一摇臂7和第二摇臂8之间的角度a。
在本较佳实施例中,还包括角度控制系统,所述角度控制系统被设置为依据第一摇臂7和第二摇臂8之间的夹角设定值分别控制第一振荡水翼2的攻角和第二振荡水翼1的攻角的角度值。角度控制系统包括用于测量第一摇臂7和第二摇臂8的夹角的角度测量仪22,角度测量仪22被设置于第一摇臂7的下表面和第二摇臂8的上表面之间。角度控制系统还包括为第一振荡水翼2的攻角切换提供动力的第一驱动装置,也即第一电机5;为第二振荡水翼1的攻角切换提供动力的第二驱动装置,也即第二电机6;角度控制器21。角度控制器21与角度测量仪22、第一电机5、第二电机6电气连接。在本发明的较佳实施例中,第一摇臂7和第二摇臂8之间的夹角设定值为80°。第一振荡水翼2的攻角和第二振荡水翼1的攻角的角度范围均为-45°~45°。
在本发明的较佳实施例中,还提供了传动齿轮装置,2个吸能装置分别通过传动齿轮装置将第一摇臂7和第二摇臂8的机械能传递给发电机,发电机将其机械能转化为电能。
在本发明的较佳实施例中,传动齿轮装置包括各自独立工作的第一传动齿轮和第二传动齿轮。传动齿轮装置各自独立工作,可以保证当其中一个传动齿轮装置停止工作时,另一个可以继续进行工作,两者工作并不受干扰,能保证发电的稳定性。第一传动齿轮用来将第一摇臂7的机械能传递给发电机,第二传动齿轮用来将第二摇臂8的机械能传递给发电机。其中,发电机包括定子11和转子10。
第一传动齿轮包括第一主动轮15、与第一主动轮15啮合的第一从动轮12;第一主动轮15与第一摇臂7的第二端连接,被设置为第一摇臂7围绕第一轴线C转动时带动第一主动轮15转动,第一主动轮15啮合驱动第一从动轮12转动;第一从动轮12的转动带动与其固连的发电机的定子11相对于发电机的转子10转动发电。
第二传动齿轮包括第二主动轮16、与第二主动轮啮合的第二从动轮9;第二主动轮16与第二摇臂8的第二端连接,被设置为第二摇臂8围绕第一轴线C的转动时带动第二主动轮16转动,第二主动轮16啮合驱动第二从动轮9转动;第二从动轮9的转动带动与其固连的发电机的转子10相对于发电机的定子11转动发电。
如图1所示,从上到下第一摇臂7的第二端、第二摇臂8的第二端、第二主动轮16、第一主动轮15依次布置,并通过第一主轴18进行串连,第一主轴18由强支撑件14支撑到浮箱19底面的内表面上。从上到下第二从动轮9、发电机的转子10、发电机的定子11、第一从动轮12依次布置并通过固定轴13进行串联,并由固定轴的末端支撑在浮箱19底面的内表面上。
第二摇臂8的第二端通过第二主轴17与第二主动轮16固定连接,第二主轴17的轴线和第二主动轮16的旋转轴线均与第一轴线C重合;第二主轴17从上面穿过浮箱19的顶部并伸入浮箱19内,第二主轴17穿过浮箱19顶部时通过第一轴承与浮箱进行配合;第二主轴17内设置有通孔,此通孔的轴线与第一轴线C重合。
第一摇臂7的第二端通过第一主轴18与第一主动轮15固定连接,第一主轴18的轴线和第一主动轮15的旋转轴线均与第一轴线C重合,第一主轴18从第一摇臂7的第二端延伸穿过第二主轴17的通孔到浮箱19底部;第一主轴18穿过第二主轴17的通孔时通过第二轴承配合。
第二主轴17由第一轴承和第二轴承支撑在浮箱19上。
在本发明的较佳实施例中,传动齿轮装置和发电机的转子和定子均被设置在浮箱19内。
如图3和图4所示,在本发明的较佳实施例中,第一振荡水翼2和第二振荡水翼1均被设置为翼形。
在本发明的又一个较佳实施例中,与图1和图2所示的实施例相似,所以零部件标号也采用图1和图2中相同的标号。本实施例与前面的实施例的区别在于,本发电装置既可以在接近海底面的位置工作也可以在在接近海面的位置工作。一种振荡水翼潮流能发电装置,包括将潮流能转换成机械能的吸能装置,将机械能转化为电能的发电机;吸能装置包括第一摇臂7、与第一摇臂7的第一端铰接的第一振荡水翼2、第二摇臂8、与第二摇臂8的第一端铰接的第二振荡水翼1;第一摇臂7的第二端和第二摇臂8的第二端分别连接到发电机上;第一摇臂7和第二摇臂8被设置为交错摆动互不干扰。第一振荡水翼2和第二振荡水翼1分别柔性连接,这样方便改变其攻角的角度。
再一个较佳实施例中,为实现第一摇臂7和第二摇臂8交错摆动互不干扰,优选的采用如下布置。第一摇臂7的第一端和第二摇臂8的第一端均通过第一轴线C,第一摇臂7的第一端向其第二端延伸的长度大于第二摇臂8的第一端向其第二端延伸的长度,第一摇臂7被设置为位于所述第二摇臂8的上方。
再一个较佳实施例中,第一振荡水翼2的攻角和第二振荡水翼1的攻角分别被设置为依据第一摇臂7和第二摇臂8的夹角设定值进行角度切换。
再一个较佳实施例中,发电装置还包括角度控制系统,所述角度控制系统被设置为依据第一摇臂7和第二摇臂8之间的夹角设定值分别控制第一振荡水翼2的攻角和第二振荡水翼1的攻角的角度值。进一步地,角度控制系统包括用于测量第一摇臂7和第二摇臂8之间的沿潮流方向夹角的角度测量仪22、为第一振荡水翼7的攻角切换提供动力的第一驱动装置、为第二振荡水翼8的攻角切换提供动力的第二驱动装置、角度控制器21,角度控制器21与角度测量仪22、第一驱动装置、第二驱动装置电气连接。
本发明的较佳实施例中,当吸能装置为2个时的发电装置基本工作原理为:第一振荡水翼和第二振荡水翼在潮流的作用下分别带动第一摇臂和第二摇臂的摆动,第一摇臂和第二摇臂的摆动各自带动浮箱内第一主动轮和第二主动轮转动,从而分别传动给固定在发电机上的第一从动轮和第二从动轮,使发电机工作,从而产生电能;需要说明的是,第一摇臂和第二摇臂的发电系统是独立的,不会相互干扰,即当其中一个出现故障不动时,另外也可以正常工作,带动发电子的转子或定子转动发电。具体地,结合图5、图6、图7、图8、图9和图10流程简图具体进行说明。
图5、图6、图7、图8、图9和图10是吸能装置为2个时,发电装置的工作流程状态图;在这6张图中,第一摇臂7为较长的摇臂(位于图5的下方),与其右端相连的为第一振荡水翼2,另外较短的为第二摇臂8(位于图5的上方),与其右端相连的为第二振荡水翼1。如图5所示,在启动位置时,第一摇臂7(位于图5下方)和第二摇臂8(位于图5的上方)处于与潮流方向D平行的位置,第一振荡水翼2的攻角调至-45°,第二振荡水翼1的攻角调至45°;在潮流的作用下,第一振荡水翼2受到力的作用,使第一摇臂7绕第一轴线C逆时针旋转,固连在第一摇臂7第二端的第一主轴18旋转并带动第二主动轮15转动,第一主动轮15驱动第一从动轮12转动,可以使得与第一从动轮12固连的发电机定子11相对于发电机转子10转动,从而使发电机发电;在潮流的作用下,第二振荡水翼1受到力的作用,使第二摇臂8绕第一轴线C顺时针旋转,固连在第二摇臂8第二端的第二主轴17旋转并带动第二主动轮16转动,第二主动轮16驱动第二从动轮9转动,可以使得与第二从动轮9固连的发电机转子10相对于发电机定子11转动,从而使发电机发电。如图6所示,当第一摇臂7和第二摇臂8摆动至它们的夹角至80°时,浮箱19内的角度控制器21会接受到角度测量仪22的信号,从而输出信号给第一电机5和第二电机6,分别使第一水翼2的攻角调至45°,第二水翼1的攻角调至-45°,如图7所示,这样就会发生与之前相反的运动方式,第一摇臂7绕第一轴线C顺时针旋转,第二摇臂8绕第一轴线C逆时针旋转,如图8、图9和图10所示;之后就按照图5-图6-图7-图8-图9-图10-图5的顺序做周期运动,实现了本发明通过水翼俘获潮流能,将其转化为机械能后再转化为电能储存起来。周期运动过程中,第一摇臂7和第二摇臂8运动始终是相对的,从而发电机的定子11与转子10运动也始终是相对的,当其中一个摇臂发电系统不工作时,另外一个可以继续发电。
如图11所示,当流向发生变化时,第一摇臂7和第二摇臂8会根据流向围绕第一轴线C旋转至于流向平行的位置处,再继续重复前述的运动发电。图11表示了相对于图1潮流流向D转变180°后的发电装置相对位置。实现了对不同流向的自主适应调节。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (23)

  1. 一种振荡水翼潮流能发电装置,其特征在于,包括漂浮式吸能发电组件和线缆组件;其中
    所述漂浮式吸能发电组件包括
    将潮流能转换成机械能的吸能装置,所述吸能装置包括至少部分浸没于水中的振荡水翼和一端与所述振荡水翼相连的摇臂,所述摇臂的另一端与发电机连接;及
    将所述机械能转化为电能的所述发电机;
    所述线缆组件被设置为将所述吸能装置和所述发电机泊于海底。
  2. 如权利要求1所述的振荡水翼潮流能发电装置,其特征在于,所述摇臂被设置为露出水面。
  3. 如权利要求1所述的振荡水翼潮流能发电装置,其特征在于,所述振荡水翼被设置为给所述漂浮式吸能发电组件提供浮力。
  4. 如权利要求3所述的振荡水翼潮流能发电装置,其特征在于,还包括浮箱,所述发电机被设置在所述浮箱之内,所述浮箱被设置为给所述漂浮式吸能发电组件提供浮力。
  5. 如权利要求1所述的振荡水翼潮流能发电装置,其特征在于,所述吸能装置被设置为2个。
  6. 如权利要求5所述的振荡水翼潮流能发电装置,其特征在于,所述吸能装置包括第一摇臂、与所述第一摇臂的第一端连接的第一振荡水翼、第二摇臂、与所述第二摇臂的第一端连接的第二振荡水翼;
    所述第一摇臂的第二端和所述第二摇臂的第二端分别连接到所述发电机上;
    所述第一摇臂和所述第二摇臂被设置为交错摆动互不干扰。
  7. 如权利要求6所述的振荡水翼潮流能发电装置,其特征在于,所述第一摇臂的第一端和所述第二摇臂的第一端均通过第一轴线,所述第一摇臂的第一端向其第二端延伸的长度大于所述第二摇臂的第一端向其第二端延伸的长度,所述第一摇臂被设置为位于所述第二摇臂的上方。
  8. 如权利要求7所述的振荡水翼潮流能发电装置,其特征在于,所述第一摇臂和所述第二摇臂分别被设置为可绕所述第一轴线进行360°旋转。
  9. 如权利要求6所述的振荡水翼潮流能发电装置,其特征在于,所述第一摇臂的第一端与所述第一振荡水翼铰接。
  10. 如权利要求6所述的振荡水翼潮流能发电装置,其特征在于,所述第二摇臂的第一端与所述第二振荡水翼铰接。
  11. 如权利要求6所述的振荡水翼潮流能发电装置,其特征在于,所述第一摇臂的第一端与所述第一振荡水翼铰接,所述第二摇臂的第一端与所述第二振荡水翼铰接,所述第一振荡水翼的攻角和所述第二振荡水翼的攻角分别被设置为依据所述第一摇臂和所述第二摇臂的夹角进行角度切换。
  12. 如权利要求11所述的振荡水翼潮流能发电装置,其特征在于,还包括角度控制系统,所述角度控制系统被设置为依据所述第一摇臂和所述第二摇臂之间的夹角设定值分别控制所述第一振荡水翼的攻角和所述第二振荡水翼的攻角的角度值。
  13. 如权利要求12所述的振荡水翼潮流能发电装置,其特征在于,所述角度控制系统包括用于测量所述第一摇臂和所述第二摇臂的夹角的角度测量仪、为所述第一振荡水翼的攻角切换提供动力的第一驱动装置、为所述第二振荡水翼的攻角切换提供动力的第二驱动装置、角度控制器,所述角度控制器与所述角度测量仪、所述第一驱动装置、所述第二驱动装置电气连接。
  14. 如权利要求13所述的振荡水翼潮流能发电装置,其特征在于,所述角度测量仪被设置于所述第一摇臂的下表面和所述第二摇臂的上表面之间。
  15. 如权利要求13所述的振荡水翼潮流能发电装置,其特征在于,所述第一驱动装置包括第一电机。
  16. 如权利要求13所述的振荡水翼潮流能发电装置,其特征在于,所述第二驱动装置包括第二电机。
  17. 如权利要求13所述的振荡水翼潮流能发电装置,其特征在于,所述第一摇臂和所述第二摇臂之间的夹角设定值为80°。
  18. 如权利要求13所述的振荡水翼潮流能发电装置,其特征在于,所述第一振荡水翼的攻角和所述第二振荡水翼的攻角的角度范围均为-45°~45°。
  19. 一种振荡水翼潮流能发电装置,其特征在于,包括将潮流能转换成机械能的吸能装置,将所述机械能转化为电能的发电机;
    所述吸能装置包括第一摇臂、与所述第一摇臂的第一端铰接的第一振荡水翼、第二摇臂、与所述第二摇臂的第一端铰接的第二振荡水翼;
    所述第一摇臂的第二端和所述第二摇臂的第二端分别连接到所述发电机上;
    所述第一摇臂和所述第二摇臂被设置为交错摆动互不干扰。
  20. 如权利要求19所述的振荡水翼潮流能发电装置,其特征在于,所述第一摇臂的第一端和所述第二摇臂的第一端均通过第一轴线,所述第一摇臂的第一端向其第二端延伸的长度大于所述第二摇臂的第一端向其第二端延伸的长度,所述第一摇臂被设置为位于所述第二摇臂的上方。
  21. 如权利要求19所述的振荡水翼潮流能发电装置,其特征在于,所述第一振荡水翼的攻角和所述第二振荡水翼的攻角分别被设置为依据所述第一摇臂和所述第二摇臂的夹角设定值进行角度切换。
  22. 如权利要求21所述的振荡水翼潮流能发电装置,其特征在于,还包括角度控制系统,所述角度控制系统被设置为依据所述第一摇臂和所述第二摇臂之间的夹角设定值分别控制所述第一振荡水翼的攻角和所述第二振荡水翼的攻角的角度值。
  23. 如权利要求22所述的振荡水翼潮流能发电装置,其特征在于,所述角度控制系统包括用于测量所述第一摇臂和所述第二摇臂之间的沿潮流方向夹角的角度测量仪、为所述第一振荡水翼的攻角切换提供动力的第一驱动装置、为所述第二振荡水翼的攻角切换提供动力的第二驱动装置、角度控制器,所述角度控制器与所述角度测量仪、所述第一驱动装置、所述第二驱动装置电气连接。
PCT/CN2019/113874 2019-02-19 2019-10-29 一种振荡水翼潮流能发电装置 WO2020168738A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910121423.1A CN109798221A (zh) 2019-02-19 2019-02-19 一种振荡水翼潮流能发电装置
CN201910121423.1 2019-02-19

Publications (1)

Publication Number Publication Date
WO2020168738A1 true WO2020168738A1 (zh) 2020-08-27

Family

ID=66561080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113874 WO2020168738A1 (zh) 2019-02-19 2019-10-29 一种振荡水翼潮流能发电装置

Country Status (2)

Country Link
CN (2) CN109798221A (zh)
WO (1) WO2020168738A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798221A (zh) * 2019-02-19 2019-05-24 上海交通大学 一种振荡水翼潮流能发电装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101545467A (zh) * 2009-04-27 2009-09-30 浙江大学 小型便携式手动和海流综合发电装置
CN201730734U (zh) * 2010-07-15 2011-02-02 大连理工大学 直叶片垂直轴摆动式潮流能转换装置
JP2012237268A (ja) * 2011-05-13 2012-12-06 Yasuo Ueno 水力発電装置
CN105781886A (zh) * 2016-01-27 2016-07-20 上海交通大学 海上风力波浪一体化发电装置
CN106014842A (zh) * 2016-07-04 2016-10-12 西北工业大学 一种小型漂浮式浮杆波浪能发电装置
CN206816431U (zh) * 2016-09-27 2017-12-29 李贯武 一种水力发电船
CN108035841A (zh) * 2018-01-10 2018-05-15 王启先 一种鱼尾式潮流能发电装置
CN207420777U (zh) * 2017-10-10 2018-05-29 宝沃汽车(中国)有限公司 波浪发电装置和波浪供电系统
CN109798221A (zh) * 2019-02-19 2019-05-24 上海交通大学 一种振荡水翼潮流能发电装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110255971A1 (en) * 2008-08-18 2011-10-20 Bas Goris DBA Oscillating Foul Development Apparatus for oscillating a foil in a fluid
FR3037621B1 (fr) * 2015-06-19 2020-02-14 Manuel Villeneuve Dispositif capteur, avantageusement du genre eolienne ou hydrolienne, pour capter l'energie cinetique d'un flux de fluide
CN106337777B (zh) * 2016-09-21 2018-07-17 西安交通大学 一种全被动双扑翼吸能装置
CN107725261A (zh) * 2017-11-18 2018-02-23 中国海洋大学 一种振荡水翼潮流能发电装置及发电方法
CN208310949U (zh) * 2018-06-19 2019-01-01 三峡大学 一种鱼尾形水翼潮流能发电装置
CN212272432U (zh) * 2019-02-19 2021-01-01 上海交通大学 一种振荡水翼潮流能发电装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101545467A (zh) * 2009-04-27 2009-09-30 浙江大学 小型便携式手动和海流综合发电装置
CN201730734U (zh) * 2010-07-15 2011-02-02 大连理工大学 直叶片垂直轴摆动式潮流能转换装置
JP2012237268A (ja) * 2011-05-13 2012-12-06 Yasuo Ueno 水力発電装置
CN105781886A (zh) * 2016-01-27 2016-07-20 上海交通大学 海上风力波浪一体化发电装置
CN106014842A (zh) * 2016-07-04 2016-10-12 西北工业大学 一种小型漂浮式浮杆波浪能发电装置
CN206816431U (zh) * 2016-09-27 2017-12-29 李贯武 一种水力发电船
CN207420777U (zh) * 2017-10-10 2018-05-29 宝沃汽车(中国)有限公司 波浪发电装置和波浪供电系统
CN108035841A (zh) * 2018-01-10 2018-05-15 王启先 一种鱼尾式潮流能发电装置
CN109798221A (zh) * 2019-02-19 2019-05-24 上海交通大学 一种振荡水翼潮流能发电装置

Also Published As

Publication number Publication date
CN109798221A (zh) 2019-05-24
CN111577520A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CA2830891C (en) Wave energy converter with asymmetrical float
WO2012115456A2 (ko) 파력 발전 장치
KR101309124B1 (ko) 평행사변형 사절기구와 와유기진동에 의한 양력발전장치
ATE370328T1 (de) Schwimmende offshore-windkraftanlage
WO2020168738A1 (zh) 一种振荡水翼潮流能发电装置
CN113428310B (zh) 一种基于悬挂式减振装置的漂浮式风机平台
CN215672545U (zh) 一种偏航系统和漂浮式海上风力发电机
Bostrom et al. Study of a wave energy converter connected to a nonlinear load
JPH06280732A (ja) 圧電素子撓曲型波力発電装置
CN111874159B (zh) 一种波浪能发电浮标
JP2005120959A (ja) 複合発電システム
CN103199675A (zh) 挂帘式风力及振动能发电装置
KR20130010258A (ko) 압전소자를 이용한 해류 발전장치
CN102146682B (zh) 一种螃蟹式的海洋潮流能发电海底固定装置及方法
CN212272432U (zh) 一种振荡水翼潮流能发电装置
CN203548051U (zh) 一种海上发电系统
CN105736224A (zh) 并联式波浪能转化装置
CN213867608U (zh) 一种拼装式发电消波浮堤
US20210372361A1 (en) Drive Assembly
CN211448881U (zh) 一种全封闭式波浪发电机
RU192257U1 (ru) Генератор с гидроприводом от морского прилива
CN102322389A (zh) 浮体-摇杆直驱式波浪能透平发电机
GB2461090A (en) Bottom hinged plate wave energy converter with floats to increase rotational stiffness
CN104612887B (zh) 一种海上发电系统
KR102192399B1 (ko) 부유식 발전기의 계류장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915775

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19915775

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19915775

Country of ref document: EP

Kind code of ref document: A1