WO2020168610A1 - 一种磁悬浮离心机组系统 - Google Patents

一种磁悬浮离心机组系统 Download PDF

Info

Publication number
WO2020168610A1
WO2020168610A1 PCT/CN2019/079628 CN2019079628W WO2020168610A1 WO 2020168610 A1 WO2020168610 A1 WO 2020168610A1 CN 2019079628 W CN2019079628 W CN 2019079628W WO 2020168610 A1 WO2020168610 A1 WO 2020168610A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
unit system
output end
bypass circuit
compressor
Prior art date
Application number
PCT/CN2019/079628
Other languages
English (en)
French (fr)
Inventor
刘乾坤
张洪亮
徐志强
谢吉培
李林
赵雷
张捷
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2020168610A1 publication Critical patent/WO2020168610A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators

Definitions

  • the present disclosure relates to the technical field of refrigeration equipment, for example, to a magnetic levitation centrifugal unit system.
  • the magnetic levitation centrifugal unit system operates under high load and high pressure ratio.
  • a bypass circuit is set at the input end of the exhaust check valve of the compressor and the upper end of the cylinder, and the bypass flow of exhaust is controlled by an electronic expansion valve. It will cause the compressor to have liquid suction and damage the compressor bearings.
  • the embodiment of the present disclosure provides a magnetic levitation centrifugal unit system to solve the problem that the compressor in the prior art has suction and liquid and damages the compressor bearing.
  • a brief summary is given below. This summary is not a general review, nor is it intended to identify key/important elements or describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simple form as a prelude to the detailed description that follows.
  • a magnetic levitation centrifugal unit system including a compressor and an evaporator.
  • the unit system is provided with a bypass circuit, wherein the input end of the bypass circuit is connected with the output end of the compressor, and the bypass circuit is The output end communicates with the inside of the evaporator through the bottom of the cylinder.
  • the bypass circuit includes a first bypass circuit and a second bypass circuit; the output end of the compressor is provided with an exhaust check valve;
  • the input end of the first bypass circuit is communicated with the input end of the exhaust check valve
  • the input end of the second bypass circuit is connected with the output end of the exhaust check valve
  • the bottom of the cylinder is provided with a mounting hole, and the output end of the first bypass loop and the output end of the second bypass loop communicate with the inside of the evaporator through the mounting hole.
  • the number of mounting holes is one or two;
  • the first bypass loop and the second bypass loop are merged into one loop, which is communicated with the evaporator through the mounting hole;
  • the first bypass circuit and the second bypass circuit are respectively communicated with the evaporator through the two mounting holes.
  • it further includes a condenser, the input end of the condenser is in communication with the output end of the exhaust check valve, and the output end of the condenser is in communication with the inside of the evaporator.
  • the output end of the condenser communicates with the refrigerant inlet at the center of the length direction of the cylinder.
  • the evaporator is provided with an equalizing plate inside, and the distance between the equalizing plate and the bottom of the cylinder is 0.1-0.3 times the diameter of the cylinder.
  • the length L1 of the liquid equalizing plate and the length L of the cylinder satisfy 0.7L ⁇ L1 ⁇ 0.95L.
  • the equalizing plate is provided with equalizing holes, the equalizing holes are arranged in a partial area of the equalizing plate, and the equalizing plate located above the mounting hole is not provided with equalizing holes within a preset distance. .
  • the preset distance is 1.8-2.2 times the diameter of the mounting hole, and the center of the preset distance is on the same vertical line as the center of the mounting hole.
  • the preset distance is twice the diameter of the mounting hole, and the center of the preset distance is on the same vertical line as the center of the mounting hole.
  • the embodiments of the present disclosure provide that by connecting the input end of the bypass circuit with the output end of the compressor, and the output end communicates with the inside of the evaporator through the bottom of the cylinder, the high-speed refrigerant gas in the bypass circuit can be removed from the cylinder.
  • the bottom enters the inside of the evaporator, which overcomes the fact that the high-speed refrigerant gas in the bypass circuit is directly blown on the refrigerant liquid surface inside the evaporator, which causes the refrigerant to vibrate violently, which causes the compressor to suck in liquid and damage the compressor. Bearing problem.
  • Fig. 1 is a schematic structural diagram of a magnetic levitation centrifuge unit system according to an exemplary embodiment
  • Fig. 2 is a schematic structural diagram of a liquid homogenizing plate according to the exemplary embodiment shown in Fig. 1;
  • Fig. 3 is a schematic structural diagram of a magnetic levitation centrifugal unit system according to another exemplary embodiment
  • Fig. 4 is a schematic structural diagram of a liquid homogenizing plate according to the exemplary embodiment shown in Fig. 3;
  • the term “plurality” means two or more.
  • A/B means: A or B.
  • FIG. 1 is a schematic structural diagram of a magnetic levitation centrifugal unit system according to an exemplary embodiment.
  • the unit system includes a compressor 1 and an evaporator 5.
  • the unit system is provided with a bypass loop, where the input end of the bypass loop is connected to the output end of the compressor 1, the evaporator 5 includes a cylinder, and the output end of the bypass loop passes through the bottom of the cylinder and the inside of the evaporator 5 Connected.
  • the input end of the bypass loop is connected with the output end of the compressor 1, and the output end of the bypass loop is communicated with the inside of the evaporator 5 through the bottom of the cylinder, so that the high-speed refrigerant gas in the bypass loop It enters the inside of the evaporator 5 from the bottom of the cylinder, which overcomes the fact that the high-speed refrigerant gas in the bypass circuit is directly blown on the refrigerant liquid surface inside the evaporator 5, which causes the refrigerant to vibrate violently, which results in the suction zone of the compressor 1 The problem of damaging the bearings of the compressor.
  • the evaporator 5 is a flooded evaporator with a high heat transfer coefficient and convenient operation and management.
  • the bypass loop includes a first bypass loop and a second bypass loop; the output end of the compressor 1 is provided with an exhaust check valve 2;
  • the input end of the first bypass circuit is communicated with the input end of the exhaust check valve 2; the input end of the second bypass circuit is communicated with the output end of the exhaust check valve 2.
  • the input end of the first bypass circuit is connected to the input end of the exhaust check valve 2
  • the input end of the second bypass circuit is connected to the output end of the exhaust check valve 2
  • the first bypass A second control valve 6 is provided on the circuit
  • a third control valve 7 is provided on the second bypass circuit.
  • the first bypass circuit when the unit system is turned on, the second control valve 6 is opened, and the exhaust gas of the compressor 1 can be directly bypassed to the evaporator 5.
  • the rotation speed of the compressor 1 is sufficiently high, When the refrigerant flow rate is sufficient to open the exhaust check valve 2, the compressor 1 realizes the smooth opening of the exhaust check valve 2, avoiding the failure of the compressor 1 to open the exhaust check valve 2 during the initial startup period.
  • the bearing of compressor 1 is malfunctioning.
  • the first bypass circuit when the unit system is shut down under high load and high pressure ratio, the first bypass circuit and the second control valve 6 are opened. At this time, the high temperature and high pressure refrigerant gas passes through the second control valve 6. Bypass to the bottom of the evaporator 5, which effectively solves the problem of compressor 1 suction and liquid caused by the direct blowing of high-speed refrigerant gas on the refrigerant liquid surface. At the same time, it reduces the shutdown pressure ratio of the unit system and makes the unit system at a smaller Shut down under safe pressure ratio.
  • the second bypass circuit when the unit system is operating under high load and high pressure ratio, or when the compression ratio of the unit system exceeds the limit value, the third control valve 7 is opened, and the second bypass circuit is connected At this time, the high-temperature and high-pressure refrigerant gas is bypassed to the bottom of the evaporator 5 through the third control valve 7, which effectively solves the problem of the suction of the compressor 1 caused by the direct blowing of the high-speed refrigerant gas on the refrigerant liquid surface. At the same time, the operating compression ratio of the unit system is reduced, so that the compression ratio of the unit system is controlled within the allowable range, and the unit system can operate normally.
  • the second bypass loop can be used to unload the unit when the unit system is operating at low load. For example, when the customer load is relatively small (for example, only 80kW of cooling capacity), the unit has been unloaded to the minimum capacity (120kW), but still When unloading is required, the third control valve 7 is opened and the second bypass circuit is connected. The unit system can continue to unload until the capacity of the unit system is consistent with the customer's demand. If it is not unloaded, the capacity of the unit system is higher than the customer's demand, which will cause Frequent startup and shutdown of the unit system will increase the risk of compressor 1 failure and shorten the life of compressor 1.
  • the unit system can be adjusted according to needs under different working conditions, thereby increasing the adaptability range of the unit system.
  • the bottom of the cylinder of the evaporator 5 is provided with a mounting hole 51, and the output end of the first bypass loop and the output end of the second bypass loop communicate with the inside of the evaporator 5 through the mounting hole 51 .
  • the number of mounting holes 51 is one or two.
  • the number of mounting holes 51 in FIG. 1 is two
  • the first bypass circuit and the second bypass circuit are respectively connected to the evaporator 5 through two mounting holes 51
  • the number of mounting holes in FIG. 3 is one.
  • the first bypass loop and the second bypass loop are respectively connected to the evaporator 5 through one mounting hole 51, wherein, when the number of the mounting holes 51 is one, the first bypass loop and the second bypass loop merge into one
  • the circuit for example, a three-way pipe can be used to combine the first bypass circuit and the second bypass circuit into one circuit, and communicate with the evaporator 5 through the mounting hole 51.
  • it further includes a condenser 3.
  • One end of the condenser 3 is connected with the output end of the exhaust check valve 2, and the other end is connected with the inside of the evaporator 5, where the condenser 3 is a group of heat exchanges. Device.
  • the unit system further includes a fan 8 installed on one side or in the middle of the condenser 3 for heat dissipation.
  • a first control valve 4 is provided on the pipeline where the condenser 3 is located, and the first control valve 4 is an electronic expansion valve.
  • the flow of the refrigerant on the pipeline can be controlled by the first control valve 4.
  • a refrigerant inlet 52 is provided in the middle of the length of the cylinder of the evaporator 5, and the pipeline where the condenser 3 is located communicates with the inside of the evaporator 5 through the refrigerant inlet 52, as shown in the direction of the arrow in FIG. It is a schematic diagram of the flow direction of the refrigerant.
  • the evaporator 5 is provided with an equalizing plate 9 inside, and the distance between the equalizing plate 9 and the bottom of the cylinder of the evaporator 5 is 0.1-0.3 times the diameter of the cylinder of the evaporator 5.
  • the fluid flow through the evaporator 5 can be stabilized, and the vibration of the liquid refrigerant can be reduced.
  • the distance between the equalizing plate 9 and the bottom of the cylinder of the evaporator 5 can be the diameter of the cylinder 0.1-0.3 times, can make the liquid homogenizing effect of the liquid homogenizing plate 9 better.
  • the position of the refrigerant inlet 52 corresponds to the middle position in the length direction of the liquid equalizing plate 9 so that the refrigerant can pass through the liquid equalizing plate 9 evenly.
  • the first bypass loop and the second bypass loop are merged into a pipeline through the three-way pipe, and connected to the cylinder through the mounting hole 51, so that only one is provided on the cylinder.
  • the mounting hole 51 can simplify the processing technology of the evaporator 5 and make the installation simple.
  • the length L1 of the liquid equalizing plate and the length L of the cylinder satisfy 0.7L ⁇ L1 ⁇ 0.95L.
  • the distance between the mounting hole 51 and the refrigerant inlet 52 is L2, where 0.2L1 ⁇ L2 ⁇ 0.4L1, where the condenser 3
  • the pipeline is connected to the middle position of the evaporator 5 in the longitudinal direction, and the bypass circuit is located at the left L2 of the pipeline where the condenser 3 is located and the refrigerant inlet 52 at the evaporator 5, that is, the bypass circuit is at the length of the evaporator 5.
  • the suction pipe of the compressor 1 at the top of the evaporator 5 and the suction pipe of the compressor 1 at the top of the evaporator 5 are located at the left and right sides of the refrigerant inlet 52 respectively to avoid the mutual influence of the pipelines during the connection process.
  • the arrow direction in Figure 3 is Schematic diagram of the flow direction of the refrigerant.
  • the liquid equalizing plate 9 can be provided above the refrigerant inlet 52.
  • the equalizing plate 9 is provided with equalizing holes 91, the equalizing holes 91 are arranged in a partial area of the equalizing plate 9, and the equalizing plate 9 located above the mounting hole 51 is within a preset distance range. There is no liquid equalization hole 91 inside.
  • FIG. 2 is a schematic structural diagram of a liquid equalization plate according to the exemplary embodiment shown in FIG. 1.
  • the number of mounting holes 51 is two, and the area directly above the mounting holes 51 is not provided.
  • the refrigerant in the body causes the refrigerant in the cylinder to fluctuate violently, causing the compressor 1 to suck in liquid.
  • FIG. 4 is a schematic structural diagram of a liquid leveling plate according to the exemplary embodiment shown in FIG. 3. As shown in FIG. 4, the area directly above the mounting hole 51 is not provided with a liquid leveling hole. 91.
  • the length L5 of the liquid equalizing hole 91 is not set to be 1.8-2.2 times the diameter of the mounting hole 51, and optionally 2 times.
  • the preset distance is the center position of the length of L5 and the center of the liquid equalizing hole 91 It is located on the same vertical line to avoid that the length of the non-equalizing hole 91 is too long to affect the passage of the refrigerant, and it can also be avoided that the length of the non-equating hole 91 is too short to cause the refrigerant to blow directly through the equalizing hole 91
  • On the refrigerant refrigerant in the cylinder prevent the high-speed refrigerant refrigerant from directly blowing on the refrigerant refrigerant in the cylinder through the liquid equalization hole 91, causing the refrigerant refrigerant in the cylinder to fluctuate sharply, causing the compressor 1 to suck in the air. Case.
  • the liquid equalization plate 9 located above the refrigerant inlet 52 is not provided with the liquid equalization hole 91 within a predetermined distance, where the predetermined distance is 1.8-2.2 times the diameter of the refrigerant inlet 52, optionally
  • the center position of the predetermined distance, that is, the center position of the length, and the center of the refrigerant inlet 52 are located on the same vertical line, to prevent the high-speed refrigerant from being blown directly into the cylinder through the equalizing hole 91
  • the refrigerant in the cylinder fluctuates violently, causing the compressor 1 to suck in liquid.
  • the unit system further includes a liquid storage tank 10 and an economizer 11.
  • the liquid storage tank 10 is used to store the refrigerant condensed by the condenser 3 to support the liquid injection of the compressor 1
  • the cooling is normal, the temperature of the cavity and parts of the compressor 1 is maintained within the normal range, and the refrigerant passing through the liquid storage tank 10 is divided into three routes, of which one refrigerant passes through the economizer main circuit and after the first control valve 4 , Enters the inside of the evaporator 5, and the other refrigerant enters the air supply port of the compressor 1 through the economizer auxiliary circuit.
  • the economizer auxiliary circuit is provided with a fourth control valve 12 to control the superheat of the outlet in the economizer auxiliary circuit To adjust the opening degree of the fourth control valve 12 to make the economizer 11 play a role, improve the economy and stability of the unit system operation, and there is a channel of refrigerant directly connected with the liquid injection cooling port of the compressor 1.
  • the supercooling degree of the refrigerant can be increased, and the performance of the unit system can be improved.
  • the first control valve 4 is an electronic expansion valve
  • the second control valve 6 and the third control valve 7 can be solenoid valves, electronic expansion valves, or electric valves, etc.
  • the fourth control valve 12 is an electronic expansion valve. Valves or thermal expansion valves, through these control valves to adjust the pipeline flow of the unit system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本公开实施例公开了一种磁悬浮离心机组系统,属于制冷设备技术领域。机组系统包括压缩机和蒸发器,机组系统中设有旁通回路,其中旁通回路的输入端与压缩机的输出端连通,旁通回路的输出端通过筒体的底部与蒸发器的内部连通。本公开实施例通过将旁通回路的输入端与压缩机的输出端连通,输出端通过筒体的底部与蒸发器的内部连通,可使得旁通回路中的高速冷媒气体从筒体的底部进入蒸发器的内部,克服了由于旁通回路中高速冷媒气体直接吹在蒸发器内部的冷媒液面上,导致冷媒出现剧烈震荡,从而出现压缩机吸气带液的情况,损坏压缩机轴承的问题。

Description

一种磁悬浮离心机组系统
本申请基于申请号为201910120583.4、申请日为2019.02.18的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及制冷设备技术领域,例如涉及一种磁悬浮离心机组系统。
背景技术
磁悬浮离心机组系统在高负荷、高压比下运行,目前采用在压缩机的排气单向阀的输入端和筒体的上端设置旁通回路,通过电子膨胀阀来控制排气的旁通量,将会导致压缩机出现吸气带液的情况,损坏压缩机轴承。
发明内容
本公开实施例提供了一种磁悬浮离心机组系统,以解决现有技术中压缩机出现吸气带液的情况,损坏压缩机轴承的问题。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本公开实施例,提供了一种磁悬浮离心机组系统,包括压缩机和蒸发器,机组系统中设有旁通回路,其中旁通回路的输入端与压缩机的输出端连通,旁通回路的输出端通过筒体的底部与蒸发器的内部连通。
在一些可选实施例中,旁通回路包括第一旁通回路和第二旁通回路;压缩机的输出端设有排气单向阀;
第一旁通回路的输入端和排气单向阀的输入端连通;
第二旁通回路的输入端和排气单向阀的输出端连通;
筒体的底部设有安装孔,第一旁通回路的输出端和第二旁通回路的输出端通过安装孔与蒸发器的内部连通。
在一些可选实施例中,安装孔的数量为一个或者两个;
其中,当安装孔的数量为一个时,第一旁通回路和第二旁通回路汇合成为一个回路,并通过安装孔与蒸发器连通;
当安装孔的数量为两个时,第一旁通回路和第二旁通回路分别通过两个安装孔与蒸发器连通。
在一些可选实施例中,还包括冷凝器,冷凝器的输入端与排气单向阀的输出端连通,冷凝器的输出端与蒸发器的内部连通。
在一些可选实施例中,冷凝器的输出端与筒体的长度方向的中心位置的冷媒入口连通。
在一些可选实施例中,蒸发器的内部设有均液板,均液板与筒体的底部的距离为 筒体直径的0.1-0.3倍。
在一些可选实施例中,均液板的长度L1与筒体的长度L满足0.7L≤L1≤0.95L。
在一些可选实施例中,均液板上设有均液孔,均液孔在均液板上的部分区域布置,位于安装孔上方的均液板在预设距离范围内不设置均液孔。
在一些可选实施例中,预设距离为安装孔直径的1.8-2.2倍,预设距离的中心与安装孔的中心位于同一竖直线上。
在一些可选实施例中,预设距离为安装孔直径的2倍,预设距离的中心与安装孔的中心位于同一竖直线上。
本公开实施例提供的技术方案可以包括以下有益效果:
本公开实施例提供了通过将旁通回路的输入端与压缩机的输出端连通,输出端通过筒体的底部与蒸发器的内部连通,可使得旁通回路中的高速冷媒气体从筒体的底部进入蒸发器的内部,克服了由于旁通回路中高速冷媒气体直接吹在蒸发器内部的冷媒液面上,导致冷媒出现剧烈震荡,从而导致压缩机出现吸气带液的情况,损坏压缩机轴承的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种磁悬浮离心机组系统的结构示意图;
图2是根据图1所示的示例性实施例示出的一种均液板的结构示意图;
图3是根据另一示例性实施例示出的一种磁悬浮离心机组系统的结构示意图;
图4是根据图3所示的示例性实施例示出的一种均液板的结构示意图;
附图标记说明:
1、压缩机;2、排气单向阀;3、冷凝器;4、第一控制阀;5、蒸发器;51、安装孔;52、冷媒入口;6、第二控制阀;7、第三控制阀;8、风机;9、均液板;91、均液孔;10、储液罐;11、经济器;12、第四控制阀。
具体实施方式
以下描述和附图充分地示出本文的具体实施方案,以使本领域的技术人员能够实践它们。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本文的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。本文中,术语“第一”、“第二”等仅被用来将一个元素与另一个元素区分开来,而不要求或者暗示这些元素之间存在任何实际的关系或者顺序。实际上第一元素也能够被称为第二元素,反之亦然。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的结构、装置或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种结构、装置或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的结构、装置或者设备中还存在另外的相同要素。 本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中的术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本文和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。在本文的描述中,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
本文中,除非另有说明,术语“多个”表示两个或两个以上。
本文中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
本公开实施例公开了一种磁悬浮离心机组系统,图1是根据一示例性实施例示出的一种磁悬浮离心机组系统的结构示意图,如图1所示,机组系统包括压缩机1和蒸发器5,机组系统中设有旁通回路,其中旁通回路的输入端与压缩机1的输出端连通,蒸发器5包括筒体,旁通回路的输出端通过筒体的底部与蒸发器5的内部连通。
本公开实施例通过将旁通回路的输入端与压缩机1的输出端连通,旁通回路的输出端通过筒体的底部与蒸发器5的内部连通,可使得旁通回路中的高速冷媒气体从筒体的底部进入蒸发器5的内部,克服了由于旁通回路中高速冷媒气体直接吹在蒸发器5内部的冷媒液面上,导致冷媒出现剧烈震荡,从而导致压缩机1出现吸气带液的情况,损坏压缩机轴承的问题。
在一些可选实施例中,蒸发器5为满液式蒸发器,传热系数较高,操作管理方便。
在一些可选实施例中,旁通回路包括第一旁通回路和第二旁通回路;压缩机1的输出端设有排气单向阀2;
第一旁通回路的输入端和排气单向阀2的输入端连通;第二旁通回路的输入端和排气单向阀2的输出端连通。
图1中,第一旁通回路的输入端与排气单向阀2的输入端连通,第二旁通回路的输入端与排气单向阀2的输出端连通,其中,第一旁通回路上设有第二控制阀6,第二旁通回路上设有第三控制阀7。
本公开实施例中,第一旁通回路,在机组系统开机时,第二控制阀6打开,压缩机1的排气可以直接旁通到蒸发器5中,待压缩机1的转速足够高,制冷剂冷媒流量足以冲开排气单向阀2时,压缩机1实现平稳的冲开排气单向阀2,避免因开机初期压缩机1由于无法冲开排气单向阀2,而导致压缩机1的轴承出现故障。
另外,第一旁通回路,当机组系统在高负荷,高压比下停机时,第一旁通回路,第二控制阀6打开,此时高温高压的制冷剂冷媒气体,通过第二控制阀6旁通到蒸发器5的底部,有效的解决了高速冷媒气体直接吹在冷媒液面上引起的压缩机1吸气带液问题,同时降低了机组系统停机压比,使机组系统在较小的安全压比下停机。
本公开实施例中,第二旁通回路,当机组系统在高负荷,高压比下运行时,或者当机组系统的压缩比超过限制值时,第三控制阀7打开,第二旁通回路连通,此时高温高压的制冷剂冷媒气体,通过第三控制阀7旁通到蒸发器5的底部,有效地解决了高速冷媒气体直接吹在冷媒液面上引起的压缩机1的吸气带液问题,同时,降低了机 组系统的运行压缩比,使机组系统的压缩比控制在允许范围内,机组系统可以正常运行。
另外,第二旁通回路可对机组系统处于低负荷运行时进行工况卸载,如:在客户负荷比较小(例如只有80kW的冷量需求),机组已经卸载到最小能力(120kW),但还需要继续卸载时,第三控制阀7打开,第二旁通回路连通,机组系统可以继续卸载,直到机组系统的能力和客户需求一致,如果不卸载,机组系统的能力高于客户需求,会导致机组系统频繁启停机,会增加压缩机1出故障的风险,缩短压缩机1的寿命。
本公开实施例通过设计两条旁通回路,可使得机组系统在不同的工况条件下,根据需要对机组系统进行调整,调高了机组系统的适应范围。
在一些可选实施例中,蒸发器5的筒体的底部设有安装孔51,第一旁通回路的输出端和第二旁通回路的输出端通过安装孔51与蒸发器5的内部连通。
在一些可选实施例中,安装孔51的数量为一个或者两个。
其中,图1中的安装孔51的数量为两个,第一旁通回路和第二旁通回路分别通过两个安装孔51与蒸发器5连通,图3中的安装孔数量为1个,第一旁通回路和第二旁通回路分别通过1个安装孔51与蒸发器5连通,其中,当安装孔51的数量为一个时,第一旁通回路和第二旁通回路汇合成为一个回路,如可采用三通管件将第一旁通回路和第二旁通回路汇合成一个回路,并通过安装孔51与蒸发器5连通。
在一些可选实施例中,还包括冷凝器3,冷凝器3的一端与排气单向阀2的输出端连通,另一端与蒸发器5的内部连通,其中冷凝器3为多组换热器。
在一些可选实施例中,机组系统还包括风机8,风机8安装于冷凝器3的一侧或中间,用于散热。
在一些可选实施例中,冷凝器3所在管路上设有第一控制阀4,第一控制阀4为电子膨胀阀。
通过在冷凝器3所在管路上设置第一控制阀4,可通过第一控制阀4控制管路上的制冷剂冷媒流量。
在一些可选实施例中,蒸发器5的筒体的长度方向的中间位置设有冷媒入口52,冷凝器3所在管路通过冷媒入口52与蒸发器5的内部连通,图1中的箭头方向为制冷剂冷媒的流动方向示意图。
在一些可选实施例中,蒸发器5的内部设有均液板9,均液板9与蒸发器5的筒体的底部的距离为蒸发器5的筒体直径的0.1-0.3倍。
通过设置均液板9,可使得通过蒸发器5的流体流动稳定,降低液体制冷剂冷媒的振动,通过将均液板9与蒸发器5的筒体的底部的距离设定为筒体直径的0.1-0.3倍,可使得均液板9的均液效果更好。
在一些可选实施例中,冷媒入口52的位置与均液板9的长度方向上的中间位置相对应,使得制冷剂冷媒能够均衡地从均液板9通过。
其中,当安装孔51的数量为一个时,第一旁通回路和第二旁通回路通过三通管件汇合成一个管路,通过安装孔51与筒体连接,可使得筒体上只设置一个安装孔51,可简化蒸发器5的加工工艺,且使得安装简单。
在一些可选实施例中,均液板的长度L1与筒体的长度L满足0.7L≤L1≤0.95L。
在一些可选实施例中,当安装孔51的数量为一个时,如图3所示,安装孔51与 冷媒入口52的距离为L2,其中0.2L1≤L2≤0.4L1,其中,冷凝器3所在的管路连接于蒸发器5的长度方向中间位置,旁通回路位于冷凝器3所在的管路和蒸发器5处的冷媒入口52的左侧L2处,即旁通回路在蒸发器5长度方向的中间偏左L2处,和蒸发器5顶部的压缩机1的吸气管分别位于冷媒入口52的左侧和右侧,避免管路在连接过程中互相影响,图3中的箭头方向为制冷剂冷媒的流动方向示意图。
通过将安装孔51与冷媒入口52的距离L2设定为0.2L1≤L2≤0.4L1,可使得冷媒入口52的上方设置有均液板9。
在一些可选实施例中,均液板9上设有均液孔91,均液孔91在均液板9上的部分区域布置,位于安装孔51上方的均液板9在预设距离范围内不设置均液孔91。
在一些可选实施例中,图2是根据图1所示的示例性实施例示出的一种均液板的结构示意图,安装孔51的数量为两个,安装孔51的正上方区域未设置均液孔91,其中未设置均液孔91的长度L3和L4均为安装孔51的直径长度的1.8-2.2倍,可选的为2倍,且该预设距离,即L3长度的中心位置与相应的安装孔51的中心位于同一竖直线上,L4长度的中心位置与相应的安装孔51的中心位于同一竖直线上,防止高速的制冷剂冷媒通过均液孔91直接吹在筒体内的制冷剂冷媒上,导致筒体内的制冷剂冷媒剧烈波动,使得压缩机1出现吸气带液的情况。
在一些可选实施例中,图4是根据图3所示的示例性实施例示出的一种均液板的结构示意图,如图4所示,安装孔51的正上方区域未设置均液孔91,其中未设置均液孔91的长度L5为安装孔51的直径长度的1.8-2.2倍,可选的为2倍,该预设距离,即L5长度的中心位置与均液孔91的中心位于同一竖直线上,避免未设置均液孔91的长度过长影响制冷剂冷媒的通过,也可以避免未设置均液孔91的长度过短而导致制冷剂冷媒通过均液孔91直接吹在筒体内的制冷剂冷媒上,防止高速的制冷剂冷媒通过均液孔91直接吹在筒体内的制冷剂冷媒上,导致筒体内的制冷剂冷媒剧烈波动,使得压缩机1出现吸气带液的情况。
在一些可选实施例中,位于冷媒入口52上方的均液板9在以预定距离范围内不设置均液孔91,其中该预定距离为冷媒入口52的直径长度的1.8-2.2倍,可选的为2倍,且该预定距离的中心位置,即长度的中心位置与冷媒入口52的中心位于同一竖直线上,防止高速的制冷剂冷媒通过均液孔91直接吹在筒体内的制冷剂冷媒上,导致筒体内的制冷剂冷媒剧烈波动,使得压缩机1出现吸气带液的情况。
在一些可选实施例中,如图1所示,机组系统还包括储液罐10和经济器11,储液罐10用于储存冷凝器3冷凝的制冷剂冷媒,以支持压缩机1喷液冷却正常,维持压缩机1的腔体及零部件温度在正常范围内,通过储液罐10的制冷剂冷媒,分为三路,其中,一路冷媒经过经济器主回路,第一控制阀4后,进入蒸发器5的内部,另一路冷媒经过经济器辅助回路进入压缩机1的补气口中,其中经济器辅助回路上设有第四控制阀12,通过控制经济器辅助回路中出口的过热度来调节第四控制阀12的开度,使经济器11发挥作用,提高机组系统运行的经济性和稳定性,还有一路冷媒直接与压缩机1的喷液冷却口连通。
通过设置经济器11,可增加制冷剂冷媒的过冷度,提高机组系统的性能。
在一些可选实施例中,第一控制阀4为电子膨胀阀、第二控制阀6和第三控制阀7可为电磁阀、电子膨胀阀或者电动阀等,第四控制阀12为电子膨胀阀或者热力膨胀阀,通过这些控制阀对机组系统的管路流量进行调整。
本公开并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种磁悬浮离心机组系统,包括压缩机和蒸发器,其特征在于,所述机组系统中设有旁通回路,其中所述旁通回路的输入端与所述压缩机的输出端连通,所述蒸发器包括筒体,所述旁通回路的输出端通过所述筒体的底部与所述蒸发器的内部连通。
  2. 根据权利要求1所述的磁悬浮离心机组系统,其特征在于,所述旁通回路包括第一旁通回路和第二旁通回路;所述压缩机的输出端设有排气单向阀;
    所述第一旁通回路的输入端和所述排气单向阀的输入端连通;
    所述第二旁通回路的输入端和所述排气单向阀的输出端连通;
    所述筒体的底部设有安装孔,所述第一旁通回路的输出端和所述第二旁通回路的输出端通过所述安装孔与所述蒸发器的内部连通。
  3. 根据权利要求2所述的磁悬浮离心机组系统,其特征在于,所述安装孔的数量为一个或者两个;
    其中,当所述安装孔的数量为一个时,所述第一旁通回路和所述第二旁通回路汇合成为一个回路,并通过所述安装孔与所述蒸发器连通;
    当所述安装孔的数量为两个时,所述第一旁通回路和所述第二旁通回路分别通过两个所述安装孔与所述蒸发器连通。
  4. 根据权利要求2所述的磁悬浮离心机组系统,其特征在于,还包括冷凝器,所述冷凝器的输入端与所述排气单向阀的输出端连通,所述冷凝器的输出端与所述蒸发器的内部连通。
  5. 根据权利要求4所述的磁悬浮离心机组系统,其特征在于,所述冷凝器的输出端与所述筒体的长度方向的中心位置的冷媒入口连通。
  6. 根据权利要求2或者3所述的磁悬浮离心机组系统,其特征在于,所述蒸发器的内部设有均液板,所述均液板与所述筒体的底部的距离为所述筒体直径的0.1-0.3倍。
  7. 根据权利要求6所述的磁悬浮离心机组系统,其特征在于,所述均液板的长度L1与所述筒体的长度L满足0.7L≤L1≤0.95L。
  8. 根据权利要求6所述的磁悬浮离心机组系统,其特征在于,所述均液板上设有均液孔,所述均液孔在所述均液板上的部分区域布置,位于所述安装孔上方的所述均液板在预设距离范围内不设置所述均液孔。
  9. 根据权利要求8所述的磁悬浮离心机组系统,其特征在于,所述预设距离为所述安装孔直径的1.8-2.2倍,所述预设距离的中心与所述安装孔的中心位于同一竖直线上。
  10. 根据权利要求8所述的磁悬浮离心机组系统,其特征在于,所述预设距离为所述安装孔直径的2倍,所述预设距离的中心与所述安装孔的中心位于同一竖直线上。
PCT/CN2019/079628 2019-02-18 2019-03-26 一种磁悬浮离心机组系统 WO2020168610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910120583.4A CN109855318A (zh) 2019-02-18 2019-02-18 一种磁悬浮离心机组系统
CN201910120583.4 2019-02-18

Publications (1)

Publication Number Publication Date
WO2020168610A1 true WO2020168610A1 (zh) 2020-08-27

Family

ID=66898150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079628 WO2020168610A1 (zh) 2019-02-18 2019-03-26 一种磁悬浮离心机组系统

Country Status (2)

Country Link
CN (1) CN109855318A (zh)
WO (1) WO2020168610A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113137691A (zh) * 2021-03-04 2021-07-20 青岛海尔空调电子有限公司 磁悬浮空调机组的控制方法
CN113465234A (zh) * 2021-06-08 2021-10-01 青岛海尔空调电子有限公司 换热器、制冷系统
CN114618692A (zh) * 2022-03-11 2022-06-14 海门海立电子科技有限公司 磁悬浮离心机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114857761B (zh) * 2022-06-02 2023-11-28 青岛海信日立空调系统有限公司 空调系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563939A (zh) * 2012-02-17 2012-07-11 青岛海尔空调电子有限公司 风冷冷水机组
CN103673421A (zh) * 2013-12-08 2014-03-26 合肥天鹅制冷科技有限公司 具有双功能备份的制冷系统及备份方法
CN105135728A (zh) * 2015-10-10 2015-12-09 天津商业大学 一种低温风冷热泵系统
CN106766302A (zh) * 2017-02-20 2017-05-31 英得艾斯(上海)冷冻空调有限公司 一种冷水机组及其控制方法
CN108489128A (zh) * 2018-05-18 2018-09-04 德州亚太集团有限公司 一种新型双级压缩离心式水冷冷(热)水机组

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3210955A (en) * 1963-07-22 1965-10-12 Carrier Corp Refrigeration apparatus
CN203550349U (zh) * 2013-09-18 2014-04-16 麦克维尔空调制冷(武汉)有限公司 一种可在高压差下启动的冷水机组
CN204494791U (zh) * 2015-02-26 2015-07-22 毛友根 一种无霜空气源热泵热水机
CN204665747U (zh) * 2015-03-17 2015-09-23 睿能太宇(沈阳)能源技术有限公司 一种防蒸发器冻裂的热泵机组制冷装置
CN105387652B (zh) * 2015-11-26 2018-03-20 珠海格力电器股份有限公司 满液式蒸发器的均液板和满液式蒸发器
CN108709340A (zh) * 2018-08-07 2018-10-26 南京冷德节能科技有限公司 一种满液式蒸发器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563939A (zh) * 2012-02-17 2012-07-11 青岛海尔空调电子有限公司 风冷冷水机组
CN103673421A (zh) * 2013-12-08 2014-03-26 合肥天鹅制冷科技有限公司 具有双功能备份的制冷系统及备份方法
CN105135728A (zh) * 2015-10-10 2015-12-09 天津商业大学 一种低温风冷热泵系统
CN106766302A (zh) * 2017-02-20 2017-05-31 英得艾斯(上海)冷冻空调有限公司 一种冷水机组及其控制方法
CN108489128A (zh) * 2018-05-18 2018-09-04 德州亚太集团有限公司 一种新型双级压缩离心式水冷冷(热)水机组

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113137691A (zh) * 2021-03-04 2021-07-20 青岛海尔空调电子有限公司 磁悬浮空调机组的控制方法
CN113465234A (zh) * 2021-06-08 2021-10-01 青岛海尔空调电子有限公司 换热器、制冷系统
CN114618692A (zh) * 2022-03-11 2022-06-14 海门海立电子科技有限公司 磁悬浮离心机

Also Published As

Publication number Publication date
CN109855318A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
WO2020168610A1 (zh) 一种磁悬浮离心机组系统
CN102472543B (zh) 制冷剂控制系统和方法
CN205561324U (zh) 一种制冷系统
WO2019128278A1 (zh) 空调器系统
WO2020192087A1 (zh) 多联机空调及其控制方法
CN211372806U (zh) 一种半导体温控装置系统
WO2020164212A1 (zh) 冷媒循环系统及其控制方法和空调器
EP3115715B1 (en) Refrigeration cycle system
KR102108241B1 (ko) 이중 헬륨 압축기
CN105987535A (zh) 一种超远距离输送制冷剂的大容量多联式空调热泵机组
CN111365906A (zh) 冷媒循环系统
WO2020042457A1 (zh) 空调系统、压缩供油装置及其控制方法
CN109110098B (zh) 舰船封闭式桅杆内空调系统
WO2023273495A1 (zh) 制冷系统和冰箱
KR100927391B1 (ko) 반도체 공정설비용 칠러 장치 및 그 제어방법
CN113418328B (zh) 用于冷藏冷冻机组的控制方法及冷藏冷冻机组
CN205245597U (zh) 一种双压缩机式制冷系统
KR100258235B1 (ko) 터보냉동기의 서징 방지장치
CN104422065B (zh) 空调系统及其控制方法
CN114198949A (zh) 压缩机供液系统
CN114198950A (zh) 压缩机的供液系统
WO2020257966A1 (zh) 压缩机和换热系统
CN114198922A (zh) 压缩机的供液系统
WO2020164210A1 (zh) 空调系统
US20060090505A1 (en) Refrigerant cycle with tandem compressors for multi-level cooling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916023

Country of ref document: EP

Kind code of ref document: A1