WO2020168574A1 - 传输信息的方法、终端设备和网络设备 - Google Patents

传输信息的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020168574A1
WO2020168574A1 PCT/CN2019/075958 CN2019075958W WO2020168574A1 WO 2020168574 A1 WO2020168574 A1 WO 2020168574A1 CN 2019075958 W CN2019075958 W CN 2019075958W WO 2020168574 A1 WO2020168574 A1 WO 2020168574A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback information
information
terminal device
transmission resource
uplink
Prior art date
Application number
PCT/CN2019/075958
Other languages
English (en)
French (fr)
Inventor
赵振山
卢前溪
林晖闵
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/075958 priority Critical patent/WO2020168574A1/zh
Priority to CN202111076395.XA priority patent/CN113783663B/zh
Priority to CN201980089562.9A priority patent/CN113316906A/zh
Priority to BR112021016569A priority patent/BR112021016569A2/pt
Priority to EP19915834.6A priority patent/EP3920446A4/en
Priority to CA3131039A priority patent/CA3131039A1/en
Priority to JP2021549576A priority patent/JP7412437B2/ja
Publication of WO2020168574A1 publication Critical patent/WO2020168574A1/zh
Priority to US17/408,373 priority patent/US11647503B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • H04L1/0069Puncturing patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1664Details of the supervisory signal the supervisory signal being transmitted together with payload signals; piggybacking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the embodiments of the present application relate to the field of communications, and specifically relate to a method, terminal device, and network device for transmitting information.
  • a terminal device receives a downlink data channel or downlink reference signal sent by a network device, the terminal device needs to send feedback information for the downlink data channel or downlink reference signal to the network device, that is, uplink feedback information, for example, The uplink feedback information may be the demodulation result of the downlink data channel or the measurement result of the downlink reference signal. If the transmission of sideline data or sideline reference signal occurs, the terminal device also needs to feed back to the network device feedback information for the sideline data channel or sideline reference signal, that is, sideline feedback information, to assist the network device in resource reconfiguration .
  • the embodiments of the present application provide a method, terminal device, and network device for transmitting information, which can simultaneously send uplink feedback information and side feedback information to the network device.
  • a method for transmitting information includes: a first terminal device obtains uplink feedback information and side feedback information; the first terminal device sends first information to a network device on an uplink channel, The first information is used to indicate the uplink feedback information and the side-line feedback information.
  • a method for transmitting information includes: a first terminal device determines uplink feedback information and side feedback information to be sent to a network device; and the first terminal device transmits information to the network device on different time domain resources.
  • the network device sends the uplink feedback information and the side feedback information.
  • a method for transmitting information includes: if the transmission resources used to transmit uplink feedback information and the transmission resources used to transmit side feedback information overlap in the time domain, the first terminal The device sends the uplink feedback information or the side feedback information to the network device.
  • a method for transmitting information includes: a network device receives first information sent by a first terminal device on an uplink channel, where the first information is used to indicate uplink feedback information and side feedback information.
  • a method for transmitting information includes: a network device sends first configuration information to a first terminal device, where the first configuration information is used to indicate the first configuration information used to transmit the uplink feedback information. Transmission resource; the network device sends second configuration information to the second terminal device, the second configuration information is used to indicate a second transmission resource used to transmit the sideline feedback information, the first transmission resource And the second transmission resource do not overlap in the time domain; the network device receives the uplink feedback information sent by the first terminal device on the first transmission resource and receives the uplink feedback information on the second transmission resource Lateral feedback information sent by the first terminal device.
  • a terminal device which is used to execute the method in the above-mentioned first aspect or its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each implementation manner thereof.
  • a terminal device which is used to execute the method in the second aspect or its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing second aspect or each of its implementation manners.
  • a terminal device which is used to execute the method in the third aspect or its implementation manners.
  • the terminal device includes a functional module for executing the method in the third aspect or its implementation manners.
  • a network device configured to execute the method in the fourth aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing fourth aspect or each implementation manner thereof.
  • a network device is provided, which is used to execute the method in the fifth aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the above fifth aspect or each of its implementation manners.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned second aspect or each of its implementation modes.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the third aspect or its implementation manners.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the fourth aspect or its implementation manners.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned fifth aspect or the method in each implementation manner thereof.
  • a chip is provided for implementing any one of the above-mentioned first to fifth aspects or the method in each of its implementation manners.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the first aspect to the fifth aspect or the implementation manners thereof. method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the above-mentioned first to fifth aspects or the method in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the above-mentioned first to fifth aspects or the method in each implementation manner thereof.
  • a computer program which when run on a computer, causes the computer to execute any one of the first to fifth aspects above or the method in each implementation manner thereof.
  • Fig. 1 is a schematic diagram of a lateral communication system provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a lateral communication system provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of sending uplink feedback information or side feedback information in a car networking system.
  • FIG. 4 is a schematic block diagram of a method for transmitting information provided by an embodiment of the present application.
  • Figures 5a and 5b are schematic diagrams of the resources occupied by HARQ ACK in an embodiment of the present application respectively determined by a puncturing method and a rate matching method.
  • Figures 6a and 6b are schematic diagrams of the resources occupied by the side-row HARQ ACK in an embodiment of the present application respectively determined by a puncturing method and a rate matching method.
  • Figures 7a and 7b are schematic diagrams of the resources occupied by the multiplexed data feedback information in an embodiment of the present application respectively determined by a puncturing method and a rate matching method.
  • FIG. 8 is a schematic diagram of resource distribution of feedback information when PUSCH has no uplink data transmission in an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a method for transmitting information provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a method for transmitting information provided by an embodiment of the present application.
  • FIG. 11 is a sequence diagram of transmitting uplink feedback information and lateral feedback information on different time domain resources in an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a method for transmitting information provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a method for transmitting information provided by an embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a method for transmitting information provided by an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 16 is another schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 17 is another schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 19 is another schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 20 is another schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 21 is another schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 22 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 23 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution LTE
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • NR New Radio
  • 5G System etc.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems based on non-orthogonal multiple access technologies, such as sparse code multiple access (SCMA) systems, low-density signatures (Low Density Signature, LDS) system, etc.
  • SCMA sparse code multiple access
  • LDS Low Density Signature
  • SCMA system and LDS system can also be called other names in the communication field;
  • technical solutions of the embodiments of this application can be applied to multi-carriers using non-orthogonal multiple access technology Transmission systems, such as non-orthogonal multiple access technology Orthogonal Frequency Division Multiplexing (OFDM), Filter Bank Multi-Carrier (FBMC), Generalized Frequency Division Multiplexing (Generalized Frequency Division Multiplexing) Frequency Division Multiplexing (GFDM), Filtered-OFDM (F-OFDM) systems, etc.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FBMC Filter Bank Multi-Carrier
  • Generalized Frequency Division Multiplexing Generalized Frequency Division Multiplexing
  • GFDM Frequency Division Multiplexing
  • F-OFDM Filtered-OFDM
  • the terminal equipment in the embodiments of the present application may refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless Communication equipment, user agent or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile network (Public Land Mobile Network, PLMN) Terminal devices, etc., are not limited in the embodiment of the present application.
  • PLMN Public Land Mobile Network
  • the network equipment in the embodiments of the present application may be equipment used to communicate with terminal equipment.
  • the network equipment may be a base station (Base Transceiver Station, BTS) in GSM or CDMA, or a base station (NodeB, NB) in a WCDMA system. ), it can also be an evolved base station (Evolutional NodeB, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN) scenario, or the network equipment can be Relay stations, access points, in-vehicle devices, wearable devices, network devices in the future 5G network gNB or network devices in the future evolved PLMN network, etc., are not limited in the embodiment of the present application.
  • Figures 1 and 2 are schematic diagrams of an application scenario of an embodiment of the present application.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the wireless communication system may also include other network entities such as Mobile Management Entity (MME), Serving Gateway (S-GW), Packet Data Network Gateway (P-GW), etc.
  • MME Mobile Management Entity
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • the embodiments of the present application are not limited to this.
  • the terminal device 20 and the terminal device 30 may communicate in a device-to-device (D2D) communication mode.
  • D2D device-to-device
  • the terminal device 20 and the terminal device 30 pass through the D2D link, that is, the side link ( Sidelink, SL) communicate directly.
  • Sidelink, SL Sidelink
  • the terminal device 20 and the terminal device 30 directly communicate through a side link.
  • the terminal device 20 and the terminal device 30 communicate through a side link, and their transmission resources are allocated by the network device; in FIG. 2, the terminal device 20 and the terminal device 30 communicate through the side link
  • its transmission resources are independently selected by the terminal equipment, and no network equipment is required to allocate transmission resources.
  • the D2D communication mode can be applied to vehicle to vehicle (Vehicle to Vehicle, V2V) communication or vehicle to other device (Vehicle to Everything, V2X) communication.
  • V2X communication X can generally refer to any device with wireless receiving and sending capabilities, such as but not limited to slow-moving wireless devices, fast-moving vehicle-mounted devices, or network control nodes with wireless transmitting and receiving capabilities.
  • the embodiment of the present application is mainly applied to the scenario of V2X communication, but may also be applied to any other D2D communication scenario, which is not limited in the embodiment of the present application.
  • LTE-V2X is standardized in Release-14 of the 3GPP protocol, and two transmission modes are defined, namely transmission mode 3 (mode 3) and transmission mode 4 (mode 4).
  • the transmission resources of the terminal equipment using transmission mode 3 are allocated by the base station, and the terminal equipment transmits data on the side link according to the resources allocated by the base station; the base station can allocate single transmission resources for the terminal equipment or the terminal
  • the device allocates resources for semi-static transmission. If the terminal device using transmission mode 4 has the listening capability, it transmits data by means of sensing and reservation. If the terminal device does not have the listening capability, the transmission resource is randomly selected from the resource pool.
  • a terminal device with interception capability obtains a set of available resources in the resource pool by means of interception, and the terminal device randomly selects a resource from the set for data transmission. Because the services in the Internet of Vehicles system have periodic characteristics, terminal equipment usually adopts semi-static transmission, that is, after the terminal equipment selects a transmission resource, it will continue to use the resource in multiple transmission cycles, thereby reducing resource repetition. Selection and the probability of resource conflicts. The terminal device will carry the information to reserve resources for the next transmission in the control information of this transmission, so that other terminal devices can determine whether this resource is reserved and used by the terminal device by detecting the control information of the terminal device. The purpose of reducing resource conflicts.
  • mode 1 is the network allocates side link transmission resources for the terminal (similar to mode 3 in LTE-V2X).
  • mode 2 is that the terminal selects the side link transmission resource.
  • mode 2 it also includes but not limited to the following modes:
  • mode 2a The terminal autonomously selects transmission resources (similar to mode 4 in LTE-V2X); for example, the terminal autonomously selects resources from a pre-configured or network-configured resource pool (resources can be selected randomly, or through listening To select resources).
  • the terminal assists other terminals in selecting resources; for example, the first terminal sends auxiliary information to the second terminal.
  • the auxiliary information may include, but is not limited to: available time-frequency resource information, available transmission resource set information, channel measurement information, and Channel quality information (such as Channel State Information (CSI), Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), rank indicator (RI), reference signal Received power (Reference Signal Receiving Power, RSRP), Reference Signal Receiving Quality (RSRQ), Received Signal Strength Indicator (RSSI), path loss information, etc.).
  • CSI Channel State Information
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI reference signal Received power
  • RSRP Reference Signal Receiving Power
  • RSSI Received Signal Strength Indicator
  • mode 2c The terminal selects resources from the transmission resources configured for it; for example, the network configures multiple transmission resources for each terminal. When the terminal has side-line data transmission, select one transmission resource from the multiple transmission resources configured by the network Perform data transfer.
  • the first terminal allocates transmission resources to the second terminal; for example, the first terminal is the group head of group communication, the second terminal is a group member of the group, and the first terminal directly allocates side uplink transmission to the second terminal Time-frequency resources.
  • the terminal device works in mode 1, the side transmission resources of the terminal device are allocated by the network device. If the terminal device receives the downlink data or downlink reference signal sent by the network device, the terminal device needs to send feedback information for the downlink data or downlink reference signal to the network device, that is, uplink feedback information.
  • the uplink feedback information may be downlink data The demodulation result or the measurement result of the downlink reference signal. If the transmission of the sideline data or the sideline reference signal occurs, the terminal device also needs to send feedback information for the sideline data or the sideline reference signal to the network device, that is, the sideline feedback information, to assist the network device in resource reconfiguration.
  • the sending end terminal device sends the side line data or the side line reference signal to the receiving end terminal device
  • the side line feedback information may be that the sending end terminal device sends the side line feedback information obtained from the receiving end terminal device to the network device, or
  • the sideline feedback information may also be the demodulation result of the received sideline data or the measurement result of the received sideline reference signal sent by the receiving end terminal device to the network device.
  • UE1 receives the side row resource allocation information sent by gNB, and sends side row data to UE2 based on this.
  • UE2 sends the demodulation result of the side row data, that is, side row feedback information, to UE1, and UE1 can send it to the network
  • the device sends the side-line feedback information;
  • UE1 can also receive the downlink data sent by the gNB to obtain uplink feedback information, and UE1 can send the uplink feedback information to the network device.
  • the terminal device When the terminal device sends uplink feedback information to the network device, it can be carried by the physical uplink control channel (PUCCH) or the physical uplink shared channel (PUSCH); when the terminal device sends the side line to the network device When the information is fed back, it can also be carried by PUCCH or PUSCH.
  • the terminal device does not support simultaneous transmission of two uplink channels at the same time (for example, simultaneous transmission of two PUCCHs, or simultaneous transmission of two PUSCHs, or simultaneous transmission of PUCCH and PUSCH). Therefore, when a terminal device needs to send both uplink feedback information and side-line feedback information, how to send these two types of feedback information is a problem that needs to be solved.
  • FIG. 4 is a schematic block diagram of a method 100 for transmitting information according to an embodiment of this application. As shown in FIG. 4, the method 100 includes some or all of the following contents:
  • the first terminal device obtains uplink feedback information and sideline feedback information.
  • the first terminal device sends first information to the network device on an uplink channel, where the first information is used to indicate the uplink feedback information and the side feedback information.
  • the uplink feedback information is feedback for downlink data channels or feedback for downlink reference signal measurement.
  • the side-line feedback information is the feedback for the side-line data channel or the feedback for the side-line reference signal measurement.
  • the uplink feedback information may be the demodulation result of the downlink data channel or the measurement result of the downlink reference signal
  • the sideline feedback information may be the demodulation result of the sideline data channel or the measurement result of the sideline reference signal.
  • the uplink feedback information may include at least one of the following information: Hybrid Automatic Repeat Request (HARQ) acknowledgement ACK, HARQ negative acknowledgement NACK, channel state information (CSI), channel Quality Indicator (Channel Quality Indicator, CQI), Precoding Matrix Indicator (Precoding Matrix Indicator, PMI), Rank Indicator (Rank Indicator, RI), Path Loss Information, Beam Information, Reference Signal Receiving Power (RSRP) , Reference Signal Receiving Quality (RSRQ), Received Signal Strength Indicator (RSSI), Channel State Information Reference Signal Resource Indicator (CSI-Reference Signal Resource Indicator, CRI), etc.
  • HARQ Hybrid Automatic Repeat Request
  • CQ Channel Quality Indicator
  • CQ Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • Rank Indicator Rank Indicator
  • Path Loss Information Beam Information
  • RSRP Reference Signal Receiving Power
  • RSSI Received Signal Strength
  • the side row feedback information may include at least one of the following information: side row HARQ ACK, side row HARQ NACK, side row CSI, side row CQI, side row RSRP, side row RSRQ, side row RSSI, side row path loss information, Lateral beam information, lateral PMI, lateral RI and lateral CRI, etc.
  • the first terminal device in the embodiment of the present application may be a sideline data channel or a sender of a sideline reference signal.
  • the first terminal device is UE1 in FIG. 3.
  • the first terminal device may also be a receiving end of a sideline data channel or a sideline reference signal.
  • the first terminal device is UE2 in FIG. 3.
  • the sideline feedback information is sent by the second terminal device to the first terminal device, and the second terminal device is the receiving end of the sideline data channel or the sideline reference signal.
  • the first terminal device may send the sideline data channel and/or the sideline reference signal to the second terminal device, and the second terminal device may demodulate the sideline data channel sent by the first terminal device and/or The sideline reference signal sent by the terminal device is measured, the second terminal device can determine the sideline feedback information according to the demodulation result and/or the measurement result, and the second terminal device can send the sideline feedback information to the first terminal device, And the first terminal device processes the side line feedback information and sends it to the network device.
  • the sideline feedback information is determined by the first terminal device according to the sideline data channel or the sideline reference signal sent by the second terminal device, which is the sideline data channel or The sender of the sideline reference signal. Specifically, the first terminal device receives the sideline data channel and/or the sideline reference signal sent by the second terminal device, the first terminal device demodulates the sideline data channel and/or measures the sideline reference signal, and According to the demodulation result and/or the measurement result, the side-line feedback information is determined, and the first terminal device may also process the side-line feedback information and send it to the network device.
  • the first terminal device may obtain both the uplink feedback information and the side-line feedback information.
  • the first terminal device may jointly process the uplink feedback information and the side-line feedback information to obtain the first information, and then the first terminal The device may send the processed first information to the network device, and indicate the uplink feedback information and the side feedback information to the network device through the first information.
  • the first information may be carried on an uplink channel, for example, may be on a PUCCH or a PUSCH.
  • the first terminal device cascades the information bits of the uplink feedback information and the side feedback information to perform operations such as channel coding, and sends them to the network device through the same PUCCH.
  • the first terminal device may not combine the uplink feedback information and the side-line feedback information, that is, the uplink feedback information and the side-line feedback information are processed independently, and the processed uplink feedback information and the side-line feedback information are processed independently.
  • the feedback information may be carried on the same uplink channel, for example, may be on the same PUCCH or the same PUSCH.
  • the first terminal device performs operations such as channel coding on the uplink feedback information and the sideline feedback information respectively, and sends them to the network device through the same PUSCH, but the uplink feedback information and the sideline feedback information occupy different resources on the PUSCH.
  • the method for transmitting information in the embodiments of the present application by sending the first information indicating both the uplink feedback information and the side-line feedback information on one uplink channel, it is possible to achieve simultaneous uplink feedback and side-line feedback to the network device.
  • the uplink channel is PUCCH. That is, the first terminal device sends the first information on one PUCCH. Specifically, the network device may allocate PUCCH transmission resources for the first terminal device, and instruct to send the first information on the transmission resource, and the first terminal device will carry the first information indicating the uplink feedback information and the sideline feedback information at the same time. PUCCH, and sent to the network device.
  • the first terminal device may use a binding operation and/or a multiplexing operation on the uplink feedback information and the side-line feedback information to generate the first information.
  • performing a binding operation on a piece of information may refer to performing an AND operation on all information bits of the information, which is also called a bit AND operation, and the information bit after binding is 1 bit.
  • the multiplexing operation of multiple pieces of information may refer to the concatenation operation of all the information bits of the multiple pieces of information, or a bit concatenation operation.
  • the concatenated information bits may be the sum of the information bits of the multiple pieces of information.
  • the first terminal device may generate the first information in the following manner.
  • the information bits of the uplink feedback information and the side-line feedback information can be bit-ANDed. Specifically, the information bits of the uplink feedback information and the side feedback information can be concatenated, and all the information bits after the concatenation can be ANDed, or the information bits of the uplink feedback information and the side feedback information can be performed separately. Bit AND operation, and perform bit AND operation on the uplink feedback information and side feedback information bits and the operated bits. This plan does not limit this.
  • the uplink feedback information is N bits
  • the side feedback information is M bits
  • the concatenated N+M bits are ANDed to form 1 bit, which is sent to the network device as the first information.
  • Method 2 Uplink feedback information and side-line feedback information can be cascaded.
  • the uplink feedback information is N bits
  • the side feedback information is M bits. After concatenation, M+N bits are formed, which are sent to the network device as the first information.
  • Manner 3 You can perform AND operations on the information bits of the uplink feedback information and side-line feedback information respectively, and cascade the uplink feedback information and side-line feedback information that have undergone the AND operation.
  • the uplink feedback information is N bits
  • the side-line feedback information is M bits
  • the uplink feedback information and the side-line feedback information after the AND operation are each 1 bit
  • the concatenation forms 2 bits, which are sent to the network device as the first information.
  • Manner 4 You can perform AND operation on the uplink feedback information, and cascade the uplink feedback information after the AND operation and the side row feedback information.
  • the uplink feedback information is N bits
  • the side feedback information is M bits
  • the uplink feedback information after the AND operation is 1 bit, which is concatenated with the side feedback information to form 1+M bits, which are sent to the network device as the first information .
  • Mode 5 You can perform AND operations on the side-line feedback information, and cascade the side-line feedback information after the AND operation and the uplink feedback information.
  • the uplink feedback information is N bits
  • the side feedback information is M bits
  • the side feedback information after the AND operation is 1 bit, which is concatenated with the uplink feedback information to form 1+N bits, which are sent to the network device as the first information .
  • the order of the information bits of the uplink feedback information and the side-line feedback information in the first information is not limited, and the uplink feedback information can be first and the side-line feedback information can be followed; The feedback information comes later, and the side-line feedback information comes first.
  • the network device After the network device receives the first information, it can determine the demodulation result of the downlink data channel or the sideline data channel, or the measurement result of the downlink reference signal or the sideline reference signal according to the first information, and use the feedback information as the data channel Take the feedback information as an example to describe the operations after the network device receives the first information in the above various methods. For example, if it is determined to be HARQ NACK, the network device can consider that the demodulation has failed, and the network device can continue to allocate retransmission resources ; If it is determined to be HARQ ACK, the network device can be considered as a successful demodulation.
  • the network device can reschedule and allocate the retransmission resources. If it is determined to be a Discontinuous Transmission (DTX) state, the network device may consider that the demodulation has failed, and the network device may continue to allocate retransmission resources.
  • DTX Discontinuous Transmission
  • mode 1 if 1 bit of the first information received by the network device indicates HARQ NACK, then the content of the uplink feedback information and side feedback information can be considered HARQ NACK, then the network device can consider the downlink that the first information is for Demodulation of both the data channel and the side-line data channel failed; if 1 bit of the first information received by the network device represents HARQ ACK, the content of the uplink feedback information and side-line feedback information can be considered as HARQ ACK, and the network device can consider it Both the downlink data channel and the side row data channel targeted by the first information are successfully demodulated.
  • each information bit in the uplink feedback information corresponds to a downlink data channel
  • each information bit in the side feedback information corresponds to a side data channel
  • each information bit in the first information corresponds to one
  • the demodulation result of the downlink data channel or a side row data channel if it is HARQ ACK, it means that the corresponding downlink data channel or side row data channel is successfully demodulated; if it is HARQ NACK, it means the corresponding downlink data channel or side row Data channel demodulation failed.
  • each information bit in the uplink feedback information corresponds to a downlink data channel
  • each information bit in the side feedback information corresponds to a side data channel
  • the 2 bits in the first information correspond to all
  • a bit in the first information is HARQ ACK, it means that the downlink data channel or side data channel corresponding to the bit is successfully demodulated; if it is HARQ NACK, it means that Demodulation of the downlink data channel or side data channel corresponding to the bit failed.
  • each information bit in the uplink feedback information corresponds to a downlink data channel, and each information bit in the side feedback information corresponds to a side data channel, then the first or last bit in the first information One bit corresponds to all uplink feedback information, and each other information bit corresponds to a side row data channel.
  • the bit of the uplink feedback information is HARQ ACK, it means that all downlink data channels are demodulated successfully.
  • the uplink feedback information is If the bit of the side row feedback information is HARQ NACK, it means that the demodulation of all the downlink data channels has failed; if the bit of the side row feedback information is HARQ ACK, it means that the side row data channel corresponding to the bit is successfully demodulated. If the bit is HARQ NACK, it means that the demodulation of the side row data channel corresponding to the bit failed.
  • each information bit in the uplink feedback information corresponds to a downlink data channel
  • each information bit in the side feedback information corresponds to a side data channel
  • the first or last bit in the first information One bit corresponds to all side-line feedback information
  • each other information bit corresponds to a downlink data channel.
  • the bit of the side-line feedback information is HARQ ACK
  • the bit of the row feedback information is HARQ NACK, which means that all the side row data channels have failed to be demodulated; if the bit of the uplink feedback information is HARQ ACK, it means that the downlink data channel corresponding to the bit is successfully demodulated.
  • the uplink feedback information The bit of is HARQ NACK, which means that the demodulation of the downlink data channel corresponding to this bit failed.
  • the side-line feedback information may include the first side-line feedback information and the second side-line feedback information, where the first side-line feedback information may be specific to the side-line data channel sent by the first terminal device to the second terminal device /Or the feedback of the sideline reference signal, that is, the first sideline feedback information is sent by the second terminal device to the first terminal device.
  • the second side-line feedback information may be for the feedback of the side-line data channel and/or the side-line reference signal received by the first terminal device from the second terminal device. The demodulation result of the sideline data channel and/or the measurement result of the sideline reference signal.
  • the sideline feedback information may include feedback information for at least one sideline data channel and/or sideline reference signal.
  • the sideline feedback information includes the third sideline feedback information and the fourth sideline feedback information, where the third sideline feedback information is for the sideline data channel and/or between the first terminal device and the second terminal device.
  • Feedback information of the sideline reference signal, and the fourth sideline feedback information is feedback information for the sideline data channel and/or the sideline reference signal between the first terminal device and the third terminal device.
  • the first information may be used to indicate multiple types of feedback information, for example, the first information indicates the foregoing first lateral feedback information and the foregoing second lateral feedback information.
  • the first information indicates uplink feedback information and the foregoing various side feedback information, and for another example, the first information indicates data feedback information and channel feedback information.
  • the embodiments of the present application should not be limited to the first information described herein indicating uplink feedback information and side-line feedback information.
  • the first terminal device as the sending end does not detect the sideline feedback information sent by the second terminal device, or the first terminal device detects that the sideline data channel or the sideline reference sent to the second terminal device
  • the state of the sideline feedback information of the signal is the Discontinuous Transmission (DTX) state
  • the first terminal device sets the sideline feedback information sent to the network device to HARQ NACK.
  • the first terminal device sends the Physical Sidelink Control Channel (PSCCH) and the Physical Sidelink Shared Channel (PSSCH) to the second terminal device. If the second terminal device does not detect the PSCCH, Therefore, the PSSCH will not be detected, and therefore the side feedback information will not be sent to the first terminal device.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • the first terminal device will not detect the side-line feedback information, and it can be considered that the state of the side-line feedback information detected by the first terminal device at this time is the DTX state.
  • the first terminal device can set the side-line feedback information sent to the network device as HARQ NACK, and after the network device receives the side-line feedback information, it can reallocate the side-line transmission resources.
  • the uplink channel is PUSCH. That is, the first terminal device sends the first information on one PUSCH. Specifically, the network device may allocate PUSCH transmission resources to the first terminal device, and instruct to send the first information on the transmission resource, and the first terminal device will carry the first information indicating both the uplink feedback information and the sideline feedback information on the transmission resource. On PUSCH and sent to the network device.
  • the first information occupies the first transmission resource on the PUSCH, and the first transmission resource may be determined in a puncturing manner or a rate matching manner.
  • the size of the first transmission resource may be determined according to the first information, and the starting position of the first transmission resource may also be predefined by a protocol or determined by a network device configuration.
  • the so-called puncturing method means that on PUSCH resources, the resources available for the first information partially overlap with the resources available for the data.
  • the resources that overlap with the first information are included, and the data is adjusted according to the size of the available resources. Perform operations such as encoding and rate matching, but map the first information on the overlapping resource, and not map the data, that is, the first information punctures the data.
  • the data may be mapped to the PUSCH resource first, and the data on the PUSCH resource may be punctured according to the size and location of the resource occupied by the first information, that is, the first information will cover part of the data on the PUSCH resource;
  • the first information is mapped to the PUSCH resource according to the size and location of the resources occupied by the first information, and when data is mapped, the resources already occupied by the first information do not map data.
  • the rate matching method is that on PUSCH resources, the resources available for the first information and the resources available for the data are orthogonal. When calculating the available resources of the data, the resources used by the first information are excluded, and the resources used by the first information are excluded according to the remaining available resources.
  • the size of the data is encoded and rate matched.
  • the first information may be divided into data feedback information and channel feedback information.
  • the resource occupied by the data feedback information can be determined by a puncturing method or a rate matching method
  • the channel feedback information can be determined by a rate matching method.
  • the data feedback information may include at least one of HARQ ACK, HARQ NACK, side-line HARQ ACK, and side-line HARQ NACK.
  • the channel feedback information includes at least one of the following information: CSI, CQI, PMI, RI, path loss information, beam information, RSRP, RSRQ, RSSI, CRI, side CSI, side CQI, side RSRP, side RSRQ, lateral RSSI, lateral path loss information, lateral beam information, lateral PMI and lateral RI.
  • the resource occupied by the data feedback information is determined by puncturing. If the bit sequence of the data feedback information is greater than K bits, the resource occupied by the data feedback information is Determined by rate matching, where K is a positive integer.
  • uplink data, HARQ ACK, and CSI can occupy all resources on PUSCH resources except for Demodulation Reference Signal (DMRS).
  • DMRS Demodulation Reference Signal
  • HARQ ACK occupies resources on the previous or next symbol of the symbol where the DMRS is located.
  • the resource occupied by HARQ ACK is determined by puncturing.
  • the resources occupied by HARQ ACK are determined through rate matching.
  • the resources occupied by CSI are determined by rate matching.
  • the data feedback information may occupy the data on the PUSCH.
  • Orthogonal resources refer to orthogonal resources in the time domain, frequency domain, code domain, or space domain.
  • HARQ ACK and/or HARQ NACK occupies the second transmission resource on the PUSCH
  • side-line HARQ ACK and/or side-line HARQ NACK occupies the third transmission resource on the PUSCH
  • the third transmission resource is an orthogonal resource.
  • uplink data, HARQ ACK, side-row HARQ ACK, CSI, and side-row CSI can occupy all resources on the PUSCH resource except DMRS.
  • the resources occupied by the HARQ ACK and the side-line HARQ ACK are determined by puncturing.
  • the resource occupied by HARQ ACK is determined by puncturing, and the resource occupied by side-line HARQ ACK is determined by rate matching.
  • Side-line HARQ ACK and HARQ ACK use orthogonal resources, and side-line CSI and CSI also use orthogonal resources.
  • the resources occupied by the CSI and the side-line CSI are determined by rate matching.
  • the data feedback information for the downlink data and the data feedback information for the side row data may be processed first, and then according to the size of the processed bit sequence, it is determined that the data feedback information in the first information is punctured.
  • the method is still the rate matching method.
  • the information bits of HARQ ACK and/or HARQ NACK are N
  • the information bits of side-line HARQ ACK and/or HARQ NACK are M
  • HARQ ACK and/or HARQ NACK and side-line HARQ ACK and/or HARQ NACK are graded.
  • the information bits after concatenation are M+N. If the M+N is less than or equal to K, the resource occupied by the data feedback information is determined by puncturing. If the M+N is greater than K, the data feedback information is The occupied resources are determined by rate matching. Among them, K is a positive integer.
  • uplink data, data feedback information after concatenation, CSI, and sideline CSI can occupy all resources on the PUSCH resource except DMRS.
  • the resource occupied by the cascaded data feedback information is determined by punching.
  • the resources occupied by the cascaded data feedback information are determined by rate matching.
  • the resources occupied by the CSI and the side-line CSI are determined by rate matching.
  • the resource occupied by the data feedback information is obtained through puncturing or rate matching.
  • the above-mentioned parameter K may be a parameter predefined by a protocol or a network configuration.
  • K can be 2.
  • the puncturing method is adopted, which does not affect the bit error rate of the data, and the operation is simple.
  • the rate matching method is adopted, and the bit error rate of the data will not increase due to the puncturing of the data.
  • the first information when there is no uplink data transmission on the PUSCH, the first information may occupy all resources on the PUSCH resource except the resources occupied by the DMRS, or the first information may occupy all the resources on the PUSCH resource except All resources except time domain symbols occupied by DMRS.
  • HARQ ACK, side-line HARQ ACK, CSI, and side-line CSI occupy all resources on PUSCH resources except for the time domain symbols occupied by DMRS, while the unoccupied resources on the time domain symbols occupied by DMRS are For free resources.
  • the uplink feedback information and side feedback information in the first information can be transmitted through orthogonal resources on the PUSCH.
  • the uplink feedback information includes HARQ ACK and CSI
  • the side feedback information includes side Line HARQ ACK and side line CSI.
  • the resources occupied by HARQ ACK and CSI are orthogonal to the resources occupied by side-line HARQ ACK and side-line CSI.
  • the data feedback information and channel feedback information in the first information may be transmitted through orthogonal resources on the PUSCH.
  • data feedback information includes HARQ ACK and side-line HARQ ACK
  • channel feedback information includes CSI and side-line CSI.
  • the resources occupied by HARQ ACK and side-line HARQ ACK are the same as those of CSI and side-line CSI. Orthogonal resources.
  • the first terminal device before transmitting the first information, the first terminal device must first determine the transmission resource of the uplink channel that carries the first information.
  • the first terminal device may obtain first configuration information, where the first configuration information is used to indicate a fourth transmission resource used to transmit the uplink feedback information. For example, the network device may allocate transmission resources for transmitting uplink feedback information to the first terminal device. The first terminal device may also obtain second configuration information, where the second configuration information is used to indicate a fifth transmission resource used to transmit the sideline feedback information. For example, the network device may also allocate transmission resources for transmitting side feedback information to the first terminal device. The first terminal device may choose to send the uplink channel carrying the first information on the fourth transmission resource or the fifth transmission resource. Optionally, the first terminal device may select one of the fourth transmission resource or the fifth transmission resource in the time domain sequence as the transmission resource of the uplink channel that carries the first information.
  • the first terminal device may select an earlier transmission resource in the time domain.
  • the first terminal device may select one of them as the transmission resource of the uplink channel carrying the first information according to a sequence of acquiring the first configuration information or the second configuration information.
  • the first terminal device may select the fourth transmission resource to send the uplink channel that carries the first information.
  • the first terminal device may determine the transmission resource of the uplink channel carrying the first information according to the type of the uplink channel.
  • the first terminal device may The fifth transmission resource is selected, and the PUSCH channel carrying the first information is transmitted on the resource.
  • the network device can allocate the first terminal device for transmission of feedback information corresponding to the downlink data or sideline data.
  • Resources that is, the foregoing first configuration information may also be used to indicate a transmission resource used to transmit downlink data, and the foregoing second configuration information may also be used to indicate a transmission resource used to transmit sideline data.
  • the first terminal device may also receive a first Physical Downlink Control Channel (PDCCH) sent by the network device, where the first PDCCH is used to indicate transmission resources used to transmit PSCCH and/or PSSCH, and the first PDCCH also It can be used to indicate the transmission resource used to transmit the sideline feedback information for the PSSCH.
  • PDCH Physical Downlink Control Channel
  • the first terminal device can receive the second PDCCH sent by the network device.
  • the second PDCCH is used to indicate the transmission of the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), and the second PDCCH can also be used to indicate the transmission of the PDSCH.
  • the transmission resource of the uplink feedback information may be different.
  • the first terminal device may not be able to detect the PDCCH, it can be divided into the following scenarios:
  • Scenario 1 The first terminal device detects the first PDCCH but does not detect the second PDCCH. Therefore, the first terminal device sends side feedback information to the network device, but does not send uplink feedback information;
  • Scenario 2 The first terminal device detects the second PDCCH, but does not detect the first PDCCH. Therefore, the first terminal device sends uplink feedback information to the network device, but does not send side feedback information.
  • Scenario 3 The first terminal device does not detect the first PDCCH nor the second PDCCH. Therefore, the first terminal device neither sends uplink feedback information nor sideline feedback information to the network device.
  • Scenario 4 The first terminal device detects both the first PDCCH and the second PDCCH. Therefore, the first terminal device needs the network device to send uplink feedback information and sideline feedback information.
  • the network device naturally does not know whether the first terminal device detects the corresponding PDCCH, and the network device still needs to perform detection on the transmission resource of the feedback information indicated by the PDCCH.
  • the network equipment can first detect according to the situation of sending both the uplink feedback information and the side-line feedback information. If the detection fails, it will be tested according to the situation that only the uplink feedback information or the side-line feedback information is sent. A terminal device does not feed back any information to detect, that is, the corresponding state is the DTX state.
  • the network device may directly allocate the transmission resource of the uplink channel carrying the first information to the first terminal device, without selecting between the two transmission resources.
  • the first terminal device may also obtain third configuration information, where the third configuration information is used to indicate a sixth transmission resource used for transmitting downlink data corresponding to the uplink feedback information or used for transmission
  • the first terminal device may determine the transmission resource of the uplink channel carrying the first information according to the sixth transmission resource or the seventh transmission resource. That is, the sixth transmission resource or the seventh transmission resource can implicitly indicate the transmission resource of the uplink channel.
  • the time domain resource of the uplink channel may be the next time slot of the sixth transmission resource or the seventh transmission resource, and occupy the last two time domain symbols in the time slot.
  • the start position of the frequency domain resource of the uplink channel may be determined by The frequency domain start position of the sixth transmission resource or the seventh transmission resource is determined, and the length of the frequency domain resource may be predefined, or may be the same as the length of the frequency domain resource of the sixth transmission resource or the seventh transmission resource.
  • FIG. 9 is a schematic block diagram of a method 200 for transmitting information according to an embodiment of the application. As shown in FIG. 9, the method 200 includes some or all of the following content:
  • the first terminal device determines uplink feedback information and side-line feedback information to be sent to the network device.
  • S220 The first terminal device sends the uplink feedback information and the side feedback information to the network device on different time domain resources.
  • the uplink feedback information is feedback for downlink data channels or feedback for downlink reference signal measurement.
  • the side-line feedback information is the feedback for the side-line data channel or the feedback for the side-line reference signal measurement.
  • the uplink feedback information may be the demodulation result of the downlink data channel or the measurement result of the downlink reference signal
  • the sideline feedback information may be the demodulation result of the sideline data channel or the measurement result of the sideline reference signal.
  • the uplink feedback information may include at least one of the following information: HARQ ACK, HARQ NACK, CSI, CQI, PMI, RI, path loss information, beam information, RSRP, RSRQ, RSSI, and CRI.
  • the side row feedback information may include at least one of the following information: side row HARQ ACK, side row HARQ NACK, side row CSI, side row CQI, side row RSRP, side row RSRQ, side row RSSI, side row path loss information, Side travel beam information, side travel PMI and side travel RI, etc.
  • the first terminal device in the embodiment of the present application may be a sideline data channel or a sender of a sideline reference signal.
  • the first terminal device is UE1 in FIG. 3.
  • the first terminal device may also be a receiving end of a sideline data channel or a sideline reference signal.
  • the first terminal device is UE2 in FIG. 3.
  • the sideline feedback information is sent by the second terminal device to the first terminal device, and the second terminal device is the receiving end of the sideline data channel or the sideline reference signal.
  • the first terminal device may send the sideline data channel and/or the sideline reference signal to the second terminal device, and the second terminal device may demodulate the sideline data channel sent by the first terminal device and/or The sideline reference signal sent by the terminal device is measured, the second terminal device can determine the sideline feedback information according to the demodulation result and/or the measurement result, and the second terminal device can send the sideline feedback information to the first terminal device, And the first terminal device processes the side line feedback information and sends it to the network device.
  • the sideline feedback information is determined by the first terminal device according to the sideline data channel or the sideline reference signal sent by the second terminal device, which is the sideline data channel or The sender of the sideline reference signal. Specifically, the first terminal device receives the sideline data channel and/or the sideline reference signal sent by the second terminal device, the first terminal device demodulates the sideline data channel and/or measures the sideline reference signal, and According to the demodulation result and/or the measurement result, the side-line feedback information is determined, and the first terminal device may also process the side-line feedback information and send it to the network device.
  • the first terminal device does not expect to send uplink feedback information and side-line feedback information at the same time.
  • the time domain resources of the uplink feedback information and the side-line feedback information may be different through the scheduling of the network equipment, thereby ensuring that the first terminal device sends only one type of feedback information at the same time.
  • the method 300 for transmitting information will be described in detail below with reference to FIG. 10. As shown in FIG. 10, the method 300 includes at least part of the following content:
  • S310: UE1 (side-line data sender) may obtain first configuration information from gNB (network equipment), where the first configuration information is used to indicate a first transmission resource used to transmit uplink feedback information.
  • gNB network equipment
  • S320: UE1 may also obtain second configuration information from the gNB, where the second configuration information is used to indicate a second transmission resource used to transmit side feedback information, and the first transmission resource and the second transmission resource do not overlap in the time domain.
  • the gNB may send downlink data to UE1.
  • UE1 may send uplink feedback information for the downlink data to the gNB on the first transmission resource.
  • UE1 may send sideline data to UE2 (sideline data receiving end).
  • S360 UE2 may send sideline feedback information for the sideline data to UE1.
  • S370: UE1 may send side feedback information to the network device on the second transmission resource.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the network device may allocate transmission resources for feedback information corresponding to the downlink data or sideline data to UE1. That is, the foregoing first configuration information may also be used to indicate a transmission resource used to transmit downlink data, and the foregoing second configuration information may also be used to indicate a transmission resource used to transmit sideline data.
  • UE1 may also receive a first PDCCH sent by a network device. The first PDCCH is used to indicate transmission resources for transmitting PSCCH and/or PSSCH, and the first PDCCH may also be used to indicate transmission of side feedback information for PSSCH. Transmission resources.
  • the UE1 may receive the second PDCCH sent by the network device, the second PDCCH is used to indicate the transmission of the PDSCH, and the second PDCCH may also be used to indicate the transmission resource used to transmit the uplink feedback information for the PDSCH.
  • the first PDCCH and the second PDCCH may be different.
  • the transmission resource for UE2 to send side feedback information to UE1 may be determined in the following manner:
  • One: gNB determines the transmission resource for UE2 to send sideline feedback information to UE1. For example, the gNB may send the allocated transmission resources to UE1, and then UE1 to UE2; for another example, the gNB may directly send the allocated transmission resources to UE2.
  • UE1 can determine the transmission resource for UE2 to send sideline feedback information to UE1.
  • the indication information of the transmission information can be carried by the UE1 through Sidelink Control Information (SCI) or PSSCH, and sent to the UE2.
  • SCI Sidelink Control Information
  • PSSCH PSSCH
  • the time domain resource of the side-line feedback information may be the next time slot of the side-line data transmission resource, and occupy the last two time-domain symbols in the time slot, the starting position of the frequency domain resource and the transmission of the side-line data
  • the start positions of the resources in the frequency domain are the same, and the length of the frequency domain resources may be predefined, or the same as the length of the frequency domain resources of the transmission resources of the side row data.
  • the sideline feedback information sent by UE1 to the network device may be feedback for the sideline data channel or sideline reference signal between UE1 and UE2.
  • the side-line feedback information may include first side-line feedback information and second side-line feedback information, where the first side-line feedback information may be feedback for a side-line data channel or a side-line reference signal sent by UE1 to UE2, That is, the first side row feedback information is sent by UE2 to UE1.
  • the second side-line feedback information may be feedback for the side-line data channel or the side-line reference signal that UE1 receives from UE2, that is, the second side-line feedback information is the demodulation result of the side-line data channel received by UE1 or Obtained from the measurement result of the sideline reference signal. Furthermore, the UE1 jointly sends the side-line feedback information to the network device according to the acquired first side-line feedback information and the second side-line feedback information.
  • the side-line feedback information sent by UE1 to the network device may also include feedback on the side-line data channel or side-line reference signal between UE1 and UE2, and may also include feedback on the side-line data channel between UE1 and UE3 (different from UE2).
  • the side-line data channel or side-line reference signal feedback may also include feedback on the side-line data channel or side-line reference signal feedback.
  • UE1 can send multiple types of feedback information to the network device in different time domains.
  • the first side-line feedback information is sent on the third transmission resource
  • the fourth transmission resource is Sending the above-mentioned second side row feedback information above, the third transmission resource and the fourth transmission resource do not overlap in the time domain.
  • the first side row feedback information is sent on the third transmission resource
  • the second side row feedback information is sent on the fourth transmission resource
  • the uplink feedback information is sent on the fifth transmission resource.
  • the third transmission resource , The fourth transmission resource and the fifth transmission resource do not overlap in the time domain.
  • UE1 sets the side-line feedback information sent to the network device as HARQ NACK. For example, UE1 sends PSCCH and PSSCH to UE2. If UE2 does not detect PSCCH, PSSCH will not be detected, and therefore side feedback information will not be sent to UE1. Then UE1 will not detect the side-line feedback information, and it can be considered that the state of the side-line feedback information detected by UE1 at this time is the DTX state. UE1 can set the side-line feedback information sent to the network device as HARQ NACK, and after the network device receives the side-line feedback information, it can reallocate the side-line transmission resources.
  • the network device allocates the transmission resources for side-line data while also allocating the transmission resources for UE1 to retransmit the side-line data
  • the network device receives the HARQ ACK sent by UE1
  • it can re-allocate and schedule the transmission resources not used by UE1.
  • Retransmit resources If the network device receives the HARQ NACK sent by the UE1, the network device can reallocate the retransmission resources of the side row data for the UE1. If UE1 detects that the status of the side row feedback information of UE2 is the DTX state, UE1 can send HARQ NACK to the network device, and the network device can reallocate the side row data retransmission resources for UE1.
  • the status of the uplink feedback information sent by the UE1 to the network device is similar to the status of the sideline feedback information.
  • UE1 may carry uplink feedback information through PUCCH or PUSCH channel.
  • UE1 may carry side feedback information through PUCCH or PUSCH channel.
  • the network device sends downlink data at time m, and allocates transmission resources at time m+p to send uplink feedback information.
  • the uplink feedback information is feedback information for downlink data at time m; the network device allocates transmission at time n
  • the resource is used for UE1 to send sideline data, and the transmission resource allocated at time n+q is used for UE1 to send sideline feedback information to the network device.
  • the feedback information is feedback information for the sideline data sent by UE1 to UE2.
  • time m+p and n+q are different time, that is, the transmission resource used to send the uplink feedback information and the transmission resource used to send the side feedback information do not overlap in the time domain. Therefore, UE1 only needs to send one type of feedback information at a time.
  • UE1 receives downlink data at time m and sends uplink feedback information for the downlink data at time m+p; UE1 can receive configuration information sent by network equipment, and the configuration information includes scheduling information for transmitting sideline data and The resource allocation information of the side feedback information is sent to the network device.
  • the UE1 sends the sideline data (PSCCH and/or PSSCH) to the UE2 at the transmission resource of the sideline data allocated by the network device (ie, time n), and sends the sideline feedback information to the network device at time n+q.
  • the parameters p and q may be pre-configured by the protocol or configured by the network.
  • the time here is a concept with a time width, for example, the time m can be regarded as the time unit m.
  • FIG. 12 is a schematic block diagram of a method 400 for transmitting information according to an embodiment of this application. As shown in FIG. 12, the method 400 includes some or all of the following content:
  • S410 If the transmission resource used to transmit uplink feedback information and the transmission resource used to transmit side feedback information overlap in the time domain, the first terminal device sends the uplink feedback information or the uplink feedback information to the network device. Sideline feedback information.
  • the uplink feedback information is feedback for downlink data channels or feedback for downlink reference signal measurement.
  • the side-line feedback information is the feedback for the side-line data channel or the feedback for the side-line reference signal measurement.
  • the uplink feedback information may be the demodulation result of the downlink data channel or the measurement result of the downlink reference signal
  • the sideline feedback information may be the demodulation result of the sideline data channel or the measurement result of the sideline reference signal.
  • the uplink feedback information may include at least one of the following information: HARQ ACK, HARQ NACK, CSI, CQI, PMI, RI, path loss information, beam information, RSRP, RSRQ, RSSI, and CRI.
  • the side row feedback information may include at least one of the following information: side row HARQ ACK, side row HARQ NACK, side row CSI, side row CQI, side row RSRP, side row RSRQ, side row RSSI, side row path loss information, Lateral beam information, lateral PMI, lateral RI and lateral CRI, etc.
  • the first terminal device in the embodiment of the present application may be a sideline data channel or a sender of a sideline reference signal.
  • the first terminal device is UE1 in FIG. 3.
  • the first terminal device may also be a receiving end of a sideline data channel or a sideline reference signal.
  • the first terminal device is UE2 in FIG. 3.
  • the sideline feedback information is sent by the second terminal device to the first terminal device, and the second terminal device is the receiving end of the sideline data channel or the sideline reference signal.
  • the first terminal device may send the sideline data channel and/or the sideline reference signal to the second terminal device, and the second terminal device may demodulate the sideline data channel sent by the first terminal device and/or The sideline reference signal sent by the terminal device is measured, the second terminal device can determine the sideline feedback information according to the demodulation result and/or the measurement result, and the second terminal device can send the sideline feedback information to the first terminal device, And the first terminal device processes the side line feedback information and sends it to the network device.
  • the sideline feedback information is determined by the first terminal device according to the sideline data channel or the sideline reference signal sent by the second terminal device, which is the sideline data channel or The sender of the sideline reference signal. Specifically, the first terminal device receives the sideline data channel and/or the sideline reference signal sent by the second terminal device, the first terminal device demodulates the sideline data channel and/or measures the sideline reference signal, and According to the demodulation result and/or the measurement result, the side-line feedback information is determined, and the first terminal device may also process the side-line feedback information and send it to the network device.
  • the network device may allocate a first transmission resource to the first terminal device for sending uplink feedback information, and a second transmission resource for sending side feedback information.
  • the first transmission resource and the second transmission resource are There may be overlap in the time domain, or the first transmission resource and the second transmission resource may be the same transmission resource.
  • the first terminal device decides to send uplink feedback information or side-line feedback information, that is, the first terminal device discards one of the feedback information.
  • the first terminal device may choose to send one type of feedback information among multiple types of feedback information to the network device, and is not limited to selecting among uplink feedback information and side feedback information.
  • one type of side-line feedback information can be selected between the first side-line feedback information and the second side-line feedback information mentioned above, and the other type of side-line feedback information can be discarded.
  • the transmission resource of the row feedback information and the transmission resource used to transmit the second side row feedback information overlap in the time domain.
  • one type of side-line feedback information can be selected between the above-mentioned third side-line feedback information and the fourth side-line feedback information to send, and the other type of side-line feedback information can be discarded.
  • the transmission resource of the side-line feedback information and the transmission resource used to transmit the fourth feedback information overlap in the time domain.
  • the network device can allocate the first terminal device for transmission of feedback information corresponding to the downlink data or sideline data.
  • Resources may also be used to indicate a transmission resource used for transmitting downlink data
  • the above-mentioned second configuration information may also be used to indicate a transmission resource used for transmitting sideline data.
  • the first terminal device may also receive the first PDCCH sent by the network device.
  • the first PDCCH is used to indicate the transmission resource used to transmit the PSCCH and/or PSSCH, and the first PDCCH may also be used to indicate the side used to transmit the PSSCH.
  • the transmission resources of the line feedback information may be different.
  • the first terminal device detects that the sideline data channel or the sideline data channel sent to the second terminal device
  • the state of the sideline feedback information of the line reference signal is the DTX state
  • the first terminal device sets the sideline feedback information sent to the network device to HARQ NACK.
  • the first terminal device sends PSCCH and PSSCH to the second terminal device. If the second terminal device does not detect the PSCCH, it will not detect the PSSCH, and therefore will not send side feedback information to the first terminal device.
  • the first terminal device will not detect the side-line feedback information, and it can be considered that the state of the side-line feedback information detected by the first terminal device at this time is the DTX state.
  • the first terminal device can set the side-line feedback information sent to the network device as HARQ NACK, and after the network device receives the side-line feedback information, it can reallocate the side-line transmission resources.
  • the first terminal device may decide whether to send uplink feedback information or sideline feedback information according to the first criterion. In other words, the first terminal device may decide whether to discard the uplink feedback information or the side feedback information according to the first criterion.
  • the first criterion may be the type of feedback information.
  • the first terminal device only sends side-line feedback information and does not send uplink feedback information.
  • the first terminal device only sends data feedback information, but does not send channel feedback information. If the uplink feedback information includes data feedback information and the side feedback information includes channel feedback information, then the first terminal device sends uplink feedback information instead of sending channel feedback information. Sideline feedback information.
  • the first criterion may be the priority of uplink feedback information and side-line feedback information, or the priority of various types of feedback information.
  • the first terminal device may send feedback information with the highest priority to the network device.
  • the side-line transmission in the Internet of Vehicles is usually a safety-related business, so it has a higher priority.
  • the terminal can only feedback one type of information, the side-line feedback information can be sent first.
  • the first criterion may also be the magnitude relationship between the first attribute of the side row data corresponding to the side row feedback information and the first threshold, or the first attribute of the downlink data corresponding to the uplink feedback information
  • the first attribute may be priority information, time delay information, reliability information, transmission rate information, and communication distance information.
  • the first threshold may be a priority threshold, a delay threshold, a reliability threshold, a transmission rate threshold, and a communication distance threshold.
  • the first attribute is priority information
  • the first threshold is a priority threshold
  • the first terminal device compares the priority of the side row data with the priority threshold, and if the priority value is less than or equal to the priority threshold ( The lower the priority value can be set, the higher the priority.
  • the range of the priority value is [0,7], where 0 means the highest priority, 7 means the lowest priority), then send sideline feedback information , Otherwise send uplink feedback information.
  • the first attribute is delay information
  • the first threshold is a delay threshold. The first terminal device may compare the delay of the side line data with the delay threshold, and if the value of the delay information is greater than or equal to the delay threshold, If the threshold is delayed, the uplink feedback information is sent, otherwise, the side feedback information is sent.
  • the first criterion may also be the time sequence in which the first terminal device receives the downlink data corresponding to the uplink feedback information and the side-line feedback information. For example, if the first terminal device first receives downlink data, it sends uplink feedback information and does not send side-line feedback information; if the first terminal device receives side-line feedback information first, it sends side-line feedback information first, and does not send uplink Feedback.
  • the first terminal device may carry the uplink feedback information through the PUCCH or PUSCH channel.
  • the first terminal device may carry side feedback information through the PUCCH or PUSCH channel.
  • FIG. 13 is a schematic block diagram of a method 500 for transmitting information according to an embodiment of this application. As shown in FIG. 13, the method 500 includes some or all of the following contents:
  • the network device receives first information sent by the first terminal device on an uplink channel, where the first information is used to indicate uplink feedback information and side feedback information.
  • the uplink channel is a physical uplink control channel PUCCH
  • the first information is obtained by comparing the uplink feedback information that has undergone bit AND operation and the side row that has undergone bit AND operation.
  • the feedback information is generated after a bit concatenation operation is performed, or the first information is generated after a bit concatenation operation is performed on the side-line feedback information and the uplink feedback information subjected to the bit AND operation, or the first information
  • One piece of information is generated by performing a bit concatenation operation on the uplink feedback information and the side row feedback information that has undergone a bit AND operation, or the first information is generated by comparing the uplink feedback information and the side row feedback information.
  • the feedback information is generated after performing a bit AND operation, or the first information is generated after performing a bit concatenation operation on the uplink feedback information and the side feedback information.
  • the uplink channel is the physical uplink shared channel PUSCH
  • the first information occupies the first transmission resource on the PUSCH
  • the first transmission resource is punctured or The rate matching method is determined.
  • the first information includes data feedback information. If the bit sequence of the data feedback information is less than or equal to K bits, the resource occupied by the data feedback information is through puncturing. Determined; if the bit sequence of the data feedback information is greater than K bits, the resource occupied by the data feedback information is determined by a rate matching method, where K is a positive integer, and the data feedback information includes a hybrid automatic repeat request HARQ positive acknowledgement ACK/negative acknowledgement NACK and/or side-line HARQ ACK/NACK.
  • the data feedback information includes the HARQ ACK/NACK and the side-line HARQ ACK/NACK, and the bit sequence of the data feedback information is obtained by comparing the HARQ ACK/NACK It is obtained by performing bit concatenation operation or bit AND operation with the side-line HARQ ACK/NACK.
  • the data feedback information includes the HARQ ACK/NACK and the side-line HARQ ACK/NACK, and the HARQ ACK/NACK occupies the second transmission resource on the PUSCH, The side-row HARQ ACK/NACK occupies the third transmission resource on the PUSCH, and the second transmission resource and the third transmission resource are orthogonal resources.
  • the first information includes channel feedback information
  • the resource occupied by the channel feedback information is determined by a rate matching method
  • the channel feedback information includes the following information At least one type of information: channel state information CSI, channel quality indicator CQI, precoding matrix indicator PMI, rank indicator RI, beam information, reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI, path loss information , Channel state information reference signal resource indication CRI, side-line CSI, side-line CQI, side-line PMI, side-line RI, side-line beam information, side-line RSRP, side-line RSRQ, side-line RSSI, side-line path loss information and side-line CRI.
  • the first information includes the uplink feedback information and the side-line feedback information, and the uplink feedback information and the side-line feedback information pass through the orthogonality on the PUSCH. Resource transfer.
  • the first information includes data feedback information and channel feedback information
  • the data feedback information and the channel feedback information are transmitted through orthogonal resources on the PUSCH.
  • the method further includes: the network device sends first configuration information to the first terminal device, where the first configuration information is used to indicate that the uplink feedback is used to transmit A fourth transmission resource of information; the network device sends second configuration information to the first terminal device, where the second configuration information is used to indicate a fifth transmission resource used to transmit the sideline feedback information; the The network device receives the first information carried by the one uplink channel on the fourth transmission resource or the fifth transmission resource.
  • the second configuration information is further used to indicate a transmission resource used to transmit the side row data corresponding to the side row feedback information.
  • the method further includes: the network device sends third configuration information to the first terminal device, where the third configuration information is used to indicate that the uplink feedback is used to transmit The sixth transmission resource of the downlink data corresponding to the information or the seventh transmission resource of the side row data corresponding to the side row feedback information.
  • the uplink feedback information includes at least one of the following information: hybrid automatic repeat request HARQ acknowledgement ACK, HARQ negative acknowledgement NACK, channel state information CSI, channel quality indicator CQI , Precoding matrix indicator PMI, rank indicator RI, path loss information, beam information, reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI and channel state information reference signal resource indicator CRI, and/or
  • the side row feedback information includes at least one of the following information: side row HARQ ACK, side row HARQ NACK, side row CSI, side row CQI, side row beam information, side row RSRP, side row RSRQ, side row RSSI, Lateral road loss information, lateral PMI, lateral RI and lateral CRI.
  • the uplink channel is the physical uplink shared channel PUSCH, there is no uplink data transmission on the PUSCH, and the first information occupies the PUSCH except for the demodulation reference signal DMRS. All resources other than resources, or the first information occupies all resources on the PUSCH except for the time domain symbol where the DMRS is located.
  • FIG. 14 is a schematic block diagram of a method 600 for transmitting information according to an embodiment of this application. As shown in FIG. 14, the method 600 includes some or all of the following content:
  • the network device sends first configuration information to the first terminal device, where the first configuration information is used to indicate a first transmission resource used to transmit the uplink feedback information.
  • the network device sends second configuration information to the second terminal device, where the second configuration information is used to indicate a second transmission resource used to transmit the sideline feedback information, the first transmission resource and The second transmission resource does not overlap in the time domain.
  • the network device receives, on the first transmission resource, the uplink feedback information sent by the first terminal device and receives on the second transmission resource the side feedback information sent by the first terminal device.
  • the second configuration information is further used to indicate a transmission resource used to transmit the side row data corresponding to the side row feedback information.
  • the first transmission resource is a physical uplink control channel PUCCH or a physical uplink shared channel PUSCH
  • the second transmission resource is a PUCCH or a PUSCH.
  • the uplink feedback information includes at least one of the following information: hybrid automatic repeat request HARQ acknowledgement ACK, HARQ negative acknowledgement NACK, channel state information CSI, channel quality indicator CQI , Precoding matrix indicator PMI, rank indicator RI, path loss information, beam information, reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI and channel state information reference signal resource indicator CRI, and/or
  • the side row feedback information includes at least one of the following information: side row HARQ ACK, side row HARQ NACK, side row CSI, side row CQI, side row beam information, side row RSRP, side row RSRQ, side row RSSI, Lateral road loss information, lateral PMI, lateral RI and lateral CRI.
  • the interaction between the network device and the terminal device described by the network device and related characteristics and functions correspond to the related characteristics and functions of the terminal device.
  • the network device sends to the terminal device, and the terminal device receives the corresponding message from the network device.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • FIG. 15 shows a schematic block diagram of a terminal device 700 according to an embodiment of the present application.
  • the terminal device 700 includes:
  • the processing unit 710 is configured to obtain uplink feedback information and side-line feedback information
  • the transceiver unit 720 is configured to send first information to a network device on an uplink channel, where the first information is used to indicate the uplink feedback information and the side feedback information.
  • the uplink channel is a physical uplink control channel PUCCH
  • the processing unit is further configured to: perform a bit-AND operation on the uplink feedback information and the bit-AND operation on the side Bit concatenation operation is performed on row feedback information to generate the first information, or bit concatenation operation is performed on the side row feedback information and the uplink feedback information that has undergone bit AND operation to generate the first information, or Perform a bit concatenation operation on the side row feedback information after the uplink feedback information and the bit AND operation to generate the first information, or perform a bit AND operation on the uplink feedback information and the side row feedback information to generate The first information, or performing a bit concatenation operation on the uplink feedback information and the side-line feedback information to generate the first information.
  • the uplink channel is the physical uplink shared channel PUSCH
  • the first information occupies the first transmission resource on the PUSCH
  • the first transmission resource is punctured or The rate matching method is determined.
  • the first information includes data feedback information. If the bit sequence of the data feedback information is less than or equal to K bits, the resource occupied by the data feedback information is through puncturing. Determined; if the bit sequence of the data feedback information is greater than K bits, the resource occupied by the data feedback information is determined by a rate matching method, where K is a positive integer, and the data feedback information includes a hybrid automatic repeat request HARQ positive acknowledgement ACK/negative acknowledgement NACK and/or side-line HARQ ACK/NACK.
  • the data feedback information includes the HARQ ACK/NACK and the side-line HARQ ACK/NACK, and the bit sequence of the data feedback information is obtained by comparing the HARQ ACK/NACK It is obtained by performing bit concatenation operation or bit AND operation with the side-line HARQ ACK/NACK.
  • the data feedback information includes the HARQ ACK/NACK and the side-line HARQ ACK/NACK, and the HARQ ACK/NACK occupies the second transmission resource on the PUSCH, The side-row HARQ ACK/NACK occupies the third transmission resource on the PUSCH, and the second transmission resource and the third transmission resource are orthogonal resources.
  • the first information includes channel feedback information
  • the resource occupied by the channel feedback information is determined by a rate matching method
  • the channel feedback information includes the following information At least one type of information: channel state information CSI, channel quality indicator CQI, precoding matrix indicator PMI, rank indicator RI, beam information, reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI, path loss information , Channel state information reference signal resource indication CRI, side-line CSI, side-line CQI, side-line PMI, side-line RI, side-line beam information, side-line RSRP, side-line RSRQ, side-line RSSI, side-line path loss information and side-line CRI.
  • the first information includes the uplink feedback information and the side-line feedback information, and the uplink feedback information and the side-line feedback information pass through the orthogonality on the PUSCH. Resource transfer.
  • the first information includes data feedback information and channel feedback information
  • the data feedback information and the channel feedback information are transmitted through orthogonal resources on the PUSCH.
  • the processing unit is further configured to determine the transmission resource of the uplink channel.
  • the transceiving unit is further configured to: obtain first configuration information, where the first configuration information is used to indicate a fourth transmission resource used to transmit the uplink feedback information; 2. Configuration information, where the second configuration information is used to indicate a fifth transmission resource used to transmit the sideline feedback information;
  • the processing unit is specifically configured to determine the fourth transmission resource or the fifth transmission resource as the transmission resource of the uplink channel.
  • the processing unit is specifically configured to: according to the sequence of the fourth transmission resource and the fifth transmission resource in the time domain, combine the fourth transmission resource or the The fifth transmission resource is determined as the transmission resource of the uplink channel.
  • the transceiving unit is further configured to: obtain third configuration information, where the third configuration information is used to indicate a sixth transmission for transmitting the downlink data corresponding to the uplink feedback information Resource or the seventh transmission resource for transmitting the side row data corresponding to the side row feedback information; the processing unit is specifically configured to: determine the transmission of the uplink channel according to the sixth transmission resource or the seventh transmission resource Resources.
  • the second configuration information is further used to indicate a transmission resource used to transmit the side row data corresponding to the side row feedback information.
  • the processing unit is specifically configured to: receive the side feedback information sent by the second terminal device.
  • the processing unit is specifically configured to: if the first terminal device does not detect the side feedback information sent by the second terminal device, or the first terminal device detects The state of the sideline feedback information of the sideline data sent to the second terminal device is a discontinuous transmission DTX state, and the sideline feedback information indicated by the first information is determined as a negative acknowledgement NACK.
  • the processing unit is specifically configured to: receive the sideline reference signal and/or the sideline data sent by the second terminal device; according to the measurement result of the sideline reference signal and/or The demodulation result of the sideline data determines the sideline feedback information.
  • the transceiving unit is further configured to: receive a first physical downlink control channel PDCCH, where the first PDCCH is used to indicate the transmission resource of the side row data corresponding to the side row feedback information ;
  • a second PDCCH is received, where the second PDCCH is used to indicate a transmission resource of downlink data corresponding to the uplink feedback information, and the first PDCCH is different from the second PDCCH.
  • the uplink feedback information includes at least one of the following information: hybrid automatic repeat request HARQ acknowledgement ACK, HARQ negative acknowledgement NACK, channel state information CSI, channel quality indicator CQI , Precoding matrix indicator PMI, rank indicator RI, path loss information, beam information, reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI and channel state information reference signal resource indicator CRI, and/or
  • the side row feedback information includes at least one of the following information: side row HARQ ACK, side row HARQ NACK, side row CSI, side row CQI, side row beam information, side row RSRP, side row RSRQ, side row RSSI, Lateral road loss information, lateral PMI, lateral RI and lateral CRI.
  • the uplink channel is the physical uplink shared channel PUSCH, there is no uplink data transmission on the PUSCH, and the first information occupies the PUSCH except for the demodulation reference signal DMRS. All resources other than resources, or the first information occupies all resources on the PUSCH except for the time domain symbol where the DMRS is located.
  • terminal device 700 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 700 are to implement the terminal device in the method of FIG.
  • the corresponding process of the equipment will not be repeated here.
  • FIG. 16 shows a schematic block diagram of a terminal device 800 according to an embodiment of the present application.
  • the terminal device 800 includes:
  • the processing unit 810 is configured to determine uplink feedback information and side feedback information to be sent to the network device;
  • the transceiving unit 820 is configured to send the uplink feedback information and the side feedback information to the network device on different time domain resources.
  • the transceiving unit is further configured to: obtain first configuration information, where the first configuration information is used to indicate a first transmission resource used to transmit the uplink feedback information; 2. Configuration information, where the second configuration information is used to indicate a second transmission resource used to transmit the sideline feedback information, and the first transmission resource and the second transmission resource do not overlap in the time domain; The transceiving unit is specifically configured to send the uplink feedback information to the network device on the first transmission resource and send the side feedback information to the network device on the second transmission resource.
  • the second configuration information is further used to indicate a transmission resource used to transmit the side row data corresponding to the side row feedback information.
  • the processing unit is specifically configured to: receive the side feedback information sent by the second terminal device.
  • the processing unit is specifically configured to: receive the sideline reference signal and/or the sideline data sent by the second terminal device; according to the measurement result of the sideline reference signal and/or The demodulation result of the sideline data determines the sideline feedback information.
  • the processing unit is specifically configured to: if the first terminal device does not detect the side feedback information sent by the second terminal device, or the first terminal device detects The state of the sideline feedback information of the sideline data sent to the second terminal device is a discontinuous transmission DTX state, and the sideline feedback information sent to the network device is determined as a negative acknowledgement NACK.
  • the first transmission resource is a physical uplink control channel PUCCH or a physical uplink shared channel PUSCH
  • the second transmission resource is a PUCCH or a PUSCH.
  • the uplink feedback information includes at least one of the following information: hybrid automatic repeat request HARQ acknowledgement ACK, HARQ negative acknowledgement NACK, channel state information CSI, channel quality indicator CQI , Precoding matrix indicator PMI, rank indicator RI, path loss information, beam information, reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI and channel state information reference signal resource indicator CRI, and/or
  • the side row feedback information includes at least one of the following information: side row HARQ ACK, side row HARQ NACK, side row CSI, side row CQI, side row beam information, side row RSRP, side row RSRQ, side row RSSI, Lateral road loss information, lateral PMI, lateral RI and lateral CRI.
  • terminal device 800 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 800 are for implementing FIGS. 9 and 10, respectively.
  • the corresponding process of the terminal device in the method will not be repeated here.
  • FIG. 17 shows a schematic block diagram of a terminal device 900 according to an embodiment of the present application.
  • the terminal device 900 includes:
  • the transceiver unit 910 is configured to send the uplink feedback information or the side-line feedback information to the network device if the transmission resources used to transmit the uplink feedback information and the transmission resources used to transmit the side-line feedback information overlap in the time domain. Feedback.
  • the transceiving unit is further configured to: obtain first configuration information, where the first configuration information is used to indicate a first transmission resource used to transmit the uplink feedback information; 2. Configuration information, where the second configuration information is used to indicate a second transmission resource used to transmit the sideline feedback information, and the first transmission resource and the second transmission resource overlap in the time domain;
  • the transceiver unit is specifically configured to send the uplink feedback information on the first transmission resource or send the side feedback information on the second transmission resource.
  • the second configuration information is further used to indicate a transmission resource used to transmit the side row data corresponding to the side row feedback information.
  • the transceiving unit is further configured to: receive the side feedback information sent by the second terminal device.
  • the transceiving unit is further configured to: receive the side-line reference signal and/or the side-line data sent by the second terminal device; the terminal device further includes: a processing unit, configured to: The measurement result of the sideline reference signal and/or the demodulation result of the sideline data determine the sideline feedback information.
  • the terminal device further includes: a processing unit, configured to: if the first terminal device does not detect the side feedback information sent by the second terminal device, or the first terminal device The device detects that the state of the sideline feedback information for the sideline data sent to the second terminal device is a discontinuous transmission DTX state, and determines that the sideline feedback information sent to the network device is a negative response NACK.
  • a processing unit configured to: if the first terminal device does not detect the side feedback information sent by the second terminal device, or the first terminal device The device detects that the state of the sideline feedback information for the sideline data sent to the second terminal device is a discontinuous transmission DTX state, and determines that the sideline feedback information sent to the network device is a negative response NACK.
  • the transceiver unit is specifically configured to send the uplink feedback information or the side feedback information to the network device according to the first criterion.
  • the first criterion includes at least one of the following criteria: the type of feedback information, the first attribute of the side row data corresponding to the side row feedback information and the first The relationship between the magnitude of the threshold and the time sequence of the first terminal device receiving the downlink data corresponding to the uplink feedback information and the side row feedback information.
  • the first attribute includes at least one of the following information: priority information, delay information, reliability information, transmission rate information, and communication distance information.
  • the first threshold is predefined by a protocol, or the first threshold is configured by the network.
  • the first attribute includes priority information
  • the transceiving unit is specifically configured to: if the value of the priority information is greater than or equal to the first threshold, report to the The network device sends the uplink feedback information; or if the value of the priority information is less than or less than or equal to the first threshold, the side-line feedback information is sent to the network device.
  • the first attribute includes delay information
  • the transceiving unit is specifically configured to: if the value of the delay information is greater than or equal to the first threshold, report to the The network device sends the uplink feedback information; or if the value of the delay information is less than or less than or equal to the first threshold, the side-line feedback information is sent to the network device.
  • the first criterion includes the time sequence in which the first terminal device receives the downlink data corresponding to the uplink feedback information and the side row feedback information, and the transceiving unit Specifically used to: if the first terminal device first receives the downlink data, send the uplink feedback information to the network device; or if the first terminal device first receives the side-line feedback information, send The network device sends the sideline feedback information.
  • the first transmission resource is a physical uplink control channel PUCCH or a physical uplink shared channel PUSCH
  • the second transmission resource is a PUCCH or a PUSCH.
  • the uplink feedback information includes at least one of the following information: hybrid automatic repeat request HARQ acknowledgement ACK, HARQ negative acknowledgement NACK, channel state information CSI, channel quality indicator CQI , Precoding matrix indicator PMI, rank indicator RI, path loss information, beam information, reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI and channel state information reference signal resource indicator CRI, and/or
  • the side row feedback information includes at least one of the following information: side row HARQ ACK, side row HARQ NACK, side row CSI, side row CQI, side row beam information, side row RSRP, side row RSRQ, side row RSSI, Lateral road loss information, lateral PMI, lateral RI and lateral CRI.
  • terminal device 900 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 900 are to implement the terminal device in the method of FIG. For the sake of brevity, the corresponding process of the equipment will not be repeated here.
  • FIG. 18 shows a schematic block diagram of a network device 1000 according to an embodiment of the present application.
  • the network device 1000 includes:
  • the transceiver unit 1010 is configured to receive first information sent by a first terminal device on an uplink channel, where the first information is used to indicate uplink feedback information and side-line feedback information.
  • the uplink channel is a physical uplink control channel PUCCH
  • the first information is obtained by comparing the uplink feedback information that has undergone bit AND operation and the side row that has undergone bit AND operation.
  • the feedback information is generated after a bit concatenation operation is performed, or the first information is generated after a bit concatenation operation is performed on the side-line feedback information and the uplink feedback information subjected to the bit AND operation, or the first information
  • One piece of information is generated by performing a bit concatenation operation on the uplink feedback information and the side row feedback information that has undergone a bit AND operation, or the first information is generated by comparing the uplink feedback information and the side row feedback information.
  • the feedback information is generated after performing a bit AND operation, or the first information is generated after performing a bit concatenation operation on the uplink feedback information and the side feedback information.
  • the uplink channel is the physical uplink shared channel PUSCH
  • the first information occupies the first transmission resource on the PUSCH
  • the first transmission resource is punctured or The rate matching method is determined.
  • the first information includes data feedback information. If the bit sequence of the data feedback information is less than or equal to K bits, the resource occupied by the data feedback information is through puncturing. Determined; if the bit sequence of the data feedback information is greater than K bits, the resource occupied by the data feedback information is determined by a rate matching method, where K is a positive integer, and the data feedback information includes a hybrid automatic repeat request HARQ positive acknowledgement ACK/negative acknowledgement NACK and/or side-line HARQ ACK/NACK.
  • the data feedback information includes the HARQ ACK/NACK and the side-line HARQ ACK/NACK, and the bit sequence of the data feedback information is obtained by comparing the HARQ ACK/NACK It is obtained by performing bit concatenation operation or bit AND operation with the side-line HARQ ACK/NACK.
  • the data feedback information includes the HARQ ACK/NACK and the side-line HARQ ACK/NACK, and the HARQ ACK/NACK occupies the second transmission resource on the PUSCH, The side-row HARQ ACK/NACK occupies the third transmission resource on the PUSCH, and the second transmission resource and the third transmission resource are orthogonal resources.
  • the first information includes channel feedback information
  • the resource occupied by the channel feedback information is determined by a rate matching method
  • the channel feedback information includes the following information At least one type of information: channel state information CSI, channel quality indicator CQI, precoding matrix indicator PMI, rank indicator RI, beam information, reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI, path loss information , Channel state information reference signal resource indication CRI, side-line CSI, side-line CQI, side-line PMI, side-line RI, side-line beam information, side-line RSRP, side-line RSRQ, side-line RSSI, side-line path loss information and side-line CRI.
  • the first information includes the uplink feedback information and the side-line feedback information, and the uplink feedback information and the side-line feedback information pass through the orthogonality on the PUSCH. Resource transfer.
  • the first information includes data feedback information and channel feedback information
  • the data feedback information and the channel feedback information are transmitted through orthogonal resources on the PUSCH.
  • the transceiving unit is further configured to: send first configuration information to the first terminal device, where the first configuration information is used to indicate the information used to transmit the uplink feedback information A fourth transmission resource; sending second configuration information to the first terminal device, where the second configuration information is used to indicate a fifth transmission resource used to transmit the sideline feedback information; in the fourth transmission resource or Receiving the first information carried by the one uplink channel on the fifth transmission resource.
  • the second configuration information is further used to indicate a transmission resource used to transmit the side row data corresponding to the side row feedback information.
  • the transceiving unit is further configured to: send third configuration information to the first terminal device, where the third configuration information is used to indicate that the uplink feedback information is used to transmit the corresponding The sixth transmission resource of the downlink data or the seventh transmission resource of the side row data corresponding to the side row feedback information.
  • the uplink feedback information includes at least one of the following information: hybrid automatic repeat request HARQ acknowledgement ACK, HARQ negative acknowledgement NACK, channel state information CSI, channel quality indicator CQI , Precoding matrix indicator PMI, rank indicator RI, path loss information, beam information, reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI and channel state information reference signal resource indicator CRI, and/or
  • the side row feedback information includes at least one of the following information: side row HARQ ACK, side row HARQ NACK, side row CSI, side row CQI, side row beam information, side row RSRP, side row RSRQ, side row RSSI, Lateral road loss information, lateral PMI, lateral RI and lateral CRI.
  • the uplink channel is the physical uplink shared channel PUSCH, there is no uplink data transmission on the PUSCH, and the first information occupies the PUSCH except for the demodulation reference signal DMRS. All resources other than resources, or the first information occupies all resources on the PUSCH except for the time domain symbol where the DMRS is located.
  • the network device 1000 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 1000 are to implement the network in the method of FIG. 13 respectively.
  • the corresponding process of the equipment will not be repeated here.
  • FIG. 19 shows a schematic block diagram of a network device 2000 according to an embodiment of the present application.
  • the network device 2000 includes:
  • the transceiver unit 2010 is configured to send first configuration information to a first terminal device, where the first configuration information is used to indicate a first transmission resource used to transmit the uplink feedback information; and to send a second terminal device to the second terminal device.
  • Configuration information where the second configuration information is used to indicate a second transmission resource used to transmit the side feedback information, and the first transmission resource and the second transmission resource do not overlap in the time domain; and Receiving uplink feedback information sent by the first terminal device on the first transmission resource and receiving side feedback information sent by the first terminal device on the second transmission resource.
  • the second configuration information is further used to indicate a transmission resource used to transmit the side row data corresponding to the side row feedback information.
  • the first transmission resource is a physical uplink control channel PUCCH or a physical uplink shared channel PUSCH
  • the second transmission resource is a PUCCH or a PUSCH.
  • the uplink feedback information includes at least one of the following information: hybrid automatic repeat request HARQ acknowledgement ACK, HARQ negative acknowledgement NACK, channel state information CSI, channel quality indicator CQI , Precoding matrix indicator PMI, rank indicator RI, path loss information, beam information, reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI and channel state information reference signal resource indicator CRI, and/or
  • the side row feedback information includes at least one of the following information: side row HARQ ACK, side row HARQ NACK, side row CSI, side row CQI, side row beam information, side row RSRP, side row RSRQ, side row RSSI, Lateral road loss information, lateral PMI, lateral RI and lateral CRI.
  • the network device 2000 may correspond to the network device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the network device 2000 are to implement the network in the method of FIG. For the sake of brevity, the corresponding process of the equipment will not be repeated here.
  • an embodiment of the present application also provides a terminal device 3000.
  • the terminal device 3000 may be the terminal device 700 in FIG. 15, which can be used to execute the content of the terminal device corresponding to the method 100 in FIG. .
  • the terminal device 3000 may also be the terminal device 800 in FIG. 16, which can be used to execute the content of the terminal device corresponding to the methods 200 and 300 in FIG. 9 and FIG. 10.
  • the terminal device 3000 may also be the terminal device 900 in FIG. 17, which can be used to execute the content of the terminal device corresponding to the method 400 in FIG. 11.
  • the terminal device 3000 shown in FIG. 20 includes a processor 3010, and the processor 3010 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the terminal device 3000 may further include a memory 3020.
  • the processor 3010 may call and run a computer program from the memory 3020 to implement the method in the embodiment of the present application.
  • the memory 3020 may be a separate device independent of the processor 3010, or it may be integrated in the processor 3010.
  • the terminal device 3000 may also include a transceiver 3030, and the processor 3010 may control the transceiver 3030 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 3030 may include a transmitter and a receiver.
  • the transceiver 3030 may further include an antenna, and the number of antennas may be one or more.
  • the terminal device 3000 may be a terminal device of an embodiment of the present application, and the terminal device 3000 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the terminal device 3000 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • details are not described herein again.
  • the processing unit in the terminal device 700/800/900 may be implemented by the processor 3010 in FIG. 20.
  • the transceiver unit in the terminal device 700/800/900 can be implemented by the transceiver 3030 in FIG. 20.
  • an embodiment of the present application also provides a network device 4000.
  • the network device 4000 may be the network device 1000 in FIG. 18, which can be used to execute the content of the network device corresponding to the method 500 in FIG. .
  • the network device 4000 may also be the network device 2000 in FIG. 19, which can be used to execute the content of the network device corresponding to the method 600 in FIG.
  • the network device 4000 shown in FIG. 21 includes a processor 4010, and the processor 4010 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the network device 4000 may further include a memory 4020.
  • the processor 4010 may call and run a computer program from the memory 4020 to implement the method in the embodiment of the present application.
  • the memory 4020 may be a separate device independent of the processor 4010, or it may be integrated in the processor 4010.
  • the network device 4000 may further include a transceiver 4030, and the processor 4010 may control the transceiver 4030 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 4030 may include a transmitter and a receiver.
  • the transceiver 4030 may further include an antenna, and the number of antennas may be one or more.
  • the network device 4000 may be a network device of an embodiment of the present application, and the network device 4000 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the network device 4000 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • details are not described herein again.
  • the processing unit in the network device 1000/2000 may be implemented by the processor 4010 in FIG. 21.
  • the transceiver unit in the network device 1000/2000 may be implemented by the transceiver 4030 in FIG. 21.
  • FIG. 22 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 5000 shown in FIG. 22 includes a processor 5010, and the processor 5010 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 5000 may further include a memory 5020.
  • the processor 5010 may call and run a computer program from the memory 5020 to implement the method in the embodiment of the present application.
  • the memory 5020 may be a separate device independent of the processor 5010, or may be integrated in the processor 5010.
  • the chip 5000 may further include an input interface 5030.
  • the processor 5010 can control the input interface 5030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 5000 may further include an output interface 5040.
  • the processor 5010 can control the output interface 5040 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 23 is a schematic block diagram of a communication system 6000 according to an embodiment of the present application. As shown in FIG. 23, the communication system 6000 includes a network device 6010 and a terminal device 6020.
  • the network device 6010 can be used to implement the corresponding functions implemented by the network device in the above method
  • the terminal device 6020 can be used to implement the corresponding functions implemented by the terminal device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous DRAM (SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the terminal device in the embodiment of this application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of this application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of this application.
  • I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

本申请实施例公开了一种传输信息的方法、终端设备和网络设备。该方法包括:第一终端设备获取上行反馈信息和侧行反馈信息;所述第一终端设备在一个上行信道上向网络设备发送第一信息,所述第一信息用于指示所述上行反馈信息和所述侧行反馈信息。本申请实施例的方法、终端设备和网络设备,可以实现同时向网络设备发送上行反馈信息和侧行反馈信息。

Description

传输信息的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,具体涉及一种传输信息的方法、终端设备和网络设备。
背景技术
在车联网系统中,若终端设备接收到网络设备发送的下行数据信道或下行参考信号,终端设备需要向网络设备发送针对该下行数据信道或下行参考信号的反馈信息,即上行反馈信息,例如,该上行反馈信息可以是下行数据信道的解调结果或者是下行参考信号的测量结果。若发生侧行数据或侧行参考信号的传输,终端设备还需要向网络设备反馈针对该侧行数据信道或侧行参考信号的反馈信息,即侧行反馈信息,以辅助网络设备进行资源重配。
当终端设备既需要向网络设备发送上行反馈信息,又需要向网络设备发送侧行反馈信息时,如何进行这两种反馈信息的发送,目前没有可参考的方案。
发明内容
本申请实施例提供一种传输信息的方法、终端设备和网络设备,能够实现同时向网络设备发送上行反馈信息和侧行反馈信息。
第一方面,提供了一种传输信息的方法,该方法包括:第一终端设备获取上行反馈信息和侧行反馈信息;所述第一终端设备在一个上行信道上向网络设备发送第一信息,所述第一信息用于指示所述上行反馈信息和所述侧行反馈信息。
第二方面,提供了一种传输信息的方法,该方法包括:第一终端设备确定向网络设备发送的上行反馈信息和侧行反馈信息;所述第一终端设备在不同的时域资源上向所述网络设备发送所述上行反馈信息和所述侧行反馈信息。
第三方面,提供了一种传输信息的方法,该方法包括:若用于传输上行反馈信息的传输资源和用于传输侧行反馈信息的传输资源在时域上有重叠,所述第一终端设备向所述网络设备发送所述上行反馈信息或所述侧行反馈信息。
第四方面,提供了一种传输信息的方法,该方法包括:网络设备在一个上行信道上接收第一终端设备发送的第一信息,所述第一信息用于指示上行反馈信息和侧行反馈信息。
第五方面,提供了一种传输信息的方法,该方法包括:网络设备向第一终端设备发送第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第一传输资源;所述网络设备向所述第二终端设备发送第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第二传输资源,所述第一传输资源和所述第二传输资源在时域上不重叠;所述网络设备在所述第一传输资源上接收所述第一终端设备发送的上行反馈信息以及在所述第二传输资源上接收所述第一终端设备发送的侧行反馈信息。
第六方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第七方面,提供了一种终端设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第八方面,提供了一种终端设备,用于执行上述第三方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第三方面或其各实现方式中的方法的功能模块。
第九方面,提供了一种网络设备,用于执行上述第四方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第四方面或其各实现方式中的方法的功能模块。
第十方面,提供了一种网络设备,用于执行上述第五方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第五方面或其各实现方式中的方法的功能模块。
第十一方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第十二方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第十三方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第三方面或其各实现方式中的方法。
第十四方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第四方面或其各实现方式中的方法。
第十五方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处 理器用于调用并运行该存储器中存储的计算机程序,执行上述第五方面或其各实现方式中的方法。
第十六方面,提供了一种芯片,用于实现上述第一方面至第五方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第五方面中的任一方面或其各实现方式中的方法。
第十七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第五方面中的任一方面或其各实现方式中的方法。
第十八方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第五方面中的任一方面或其各实现方式中的方法。
第十九方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第五方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,通过将同时指示上行反馈信息和侧行反馈信息的第一信息在一个上行信道上发送,可以实现同时向网络设备进行上行反馈和侧行反馈。
附图说明
图1是本申请实施例提供的一种侧行通信系统的示意性图。
图2是本申请实施例提供的一种侧行通信系统的示意性图。
图3是车联网系统中上行反馈信息或侧行反馈信息发送的示意图。
图4是本申请实施例提供的传输信息的方法的示意性框图。
图5a和图5b是本申请实施例中HARQ ACK所占的资源分别通过打孔方式和速率匹配方式确定的示意图。
图6a和图6b是本申请实施例中侧行HARQ ACK所占的资源分别通过打孔方式和速率匹配方式确定的示意图。
图7a和图7b是本申请实施例中复用后的数据反馈信息所占的资源分别通过打孔方式和速率匹配方式确定的示意图。
图8是本申请实施例中PUSCH没有上行数据传输时反馈信息的资源分布的示意图。
图9是本申请实施例提供的传输信息的方法的示意性框图。
图10是本申请实施例提供的传输信息的方法的示意性流程图。
图11是本申请实施例中在不同时域资源上传输上行反馈信息和侧行反馈信息的时序图。
图12是本申请实施例提供的传输信息的方法的示意性流程图。
图13是本申请实施例提供的传输信息的方法的示意性流程图。
图14是本申请实施例提供的传输信息的方法的示意性流程图。
图15是本申请实施例提供的终端设备的一种示意性框图。
图16是本申请实施例提供的终端设备的另一种示意性框图。
图17是本申请实施例提供的终端设备的另一种示意性框图。
图18是本申请实施例提供的网络设备的一种示意性框图。
图19是本申请实施例提供的网络设备的另一种示意性框图。
图20是本申请实施例提供的终端设备的另一种示意性框图。
图21是本申请实施例提供的网络设备的另一种示意性框图。
图22是本申请实施例提供的一种芯片的示意性框图。
图23是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进LTE系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、新无线(New Radio,NR)或未来的5G系统等。
特别地,本申请实施例的技术方案可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(Sparse Code Multiple Access,SCMA)系统、低密度签名(Low Density Signature,LDS)系统等,当然SCMA系统和LDS系统在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)、滤波器组多载波(Filter Bank Multi-Carrier,FBMC)、通用频分复用(Generalized Frequency Division Multiplexing,GFDM)、滤波正交频分复用(Filtered-OFDM,F-OFDM)系统等。
本申请实施例中的终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备gNB或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1和图2是本申请实施例的一个应用场景的示意图。图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。此外,该无线通信系统还可以包括移动管理实体(Mobile Management Entity,MME)、服务网关(Serving Gateway,S-GW)、分组数据网络网关(Packet Data Network Gateway,P-GW)等其他网络实体,但本申请实施例不限于此。
具体地,终端设备20和终端设备30可以以设备到设备(Device to Device,D2D)通信模式进行通信,在进行D2D通信时,终端设备20和终端设备30通过D2D链路即侧行链路(Sidelink,SL)直接进行通信。例如图1或者图2所示,终端设备20和终端设备30通过侧行链路直接进行通信。在图1中,终端设备20和终端设备30之间通过侧行链路通信,其传输资源是由网络设备分配的;在图2中,终端设备20和终端设备30之间通过侧行链路通信,其传输资源是由终端设备自主选取的,不需要网络设备分配传输资源。
D2D通信模式可以应用于车对车(Vehicle to Vehicle,V2V)通信或车辆到其他设备(Vehicle to Everything,V2X)通信。在V2X通信中,X可以泛指任何具有无线接收和发送能力的设备,例如但不限于慢速移动的无线装置,快速移动的车载设备,或是具有无线发射接收能力的网络控制节点等。应理解,本申请实施例主要应用于V2X通信的场景,但也可以应用于任意其它D2D通信场景,本申请实施例对此不做任何限定。
在3GPP协议的版本Release-14中对LTE-V2X进行了标准化,定义了两种传输模式,即传输模式3(mode 3)和传输模式4(mode 4)。使用传输模式3的终端设备的传输资源是由基站分配的,终端设备根据基站分配的资源在侧行链路上进行数据的发送;基站可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源。使用传输模式4的终端设备如果具备侦听能力,采用侦听(sensing)和预留(reservation)的方式传输数据,如果终端设备不具备侦听能力,则在资源池中随机选取传输资源。具备侦听能力的终端设备在资源池中通过侦听的方式获取可用的资源集合,终端设备从该集合中随机选取一个资源进行数据传输。由于车联网系统中的业务具有周期性特征,因此终端设备通常采用半静态传输的方式,即终端设备选取一个传输资源后,就会在多个传输周期中持续的使用该资源,从而降低资源重选以及资源冲突的概率。终端设备会在本次传输的控制信息中携带预留下次传输资源的信息,从而使得其他终端设备可以通过检测该终端设备的控制信息判断这块资源是否被该终端设备预留和使用,达到降低资源冲突的目的。
在NR-V2X中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在NR-V2X系统中,引入了多种传输模式,例如,模式1和模式2,其中,模式1是网络为终端分配侧行链路传输资源(类似与LTE-V2X中的mode 3),模式2是终端选取侧行链路传输资源,在模式2下又包括但不限于以下几种模式:
mode 2a:终端自主选取传输资源(类似于LTE-V2X中的mode 4);例如,终端在一个预配置或网络配置的资源池中自主选取资源(可以通过随机的方式选取资源,或者通过侦听的方式选取资源)。
mode 2b:终端辅助其他终端选取资源;例如,第一终端向第二终端发送辅助信息,该辅助信息可以包括但不限于:可用的时频资源信息,可用的传输资源集合信息,信道测量信息和信道质量信息(如信道状态信息(Channel State Information,CSI)、信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、秩指示(rank indication,RI)、参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)、接收信号的强度指示(Received Signal Strength Indicator,RSSI)、路损信息等)。
mode 2c:终端在为其配置的传输资源中选取资源;例如,网络为每个终端配置多个传输资源,当终端有侧行数据传输时,从网络配置的多个传输资源中选择一个传输资源进行数据传输。
mode 2d:第一终端为第二终端分配传输资源;例如,第一终端为组通信的组头,第二终端是该组的组成员,第一终端直接为第二终端分配侧行链路传输的时频资源。
如果终端设备工作在模式1,终端设备的侧行传输资源是网络设备分配的。若终端设备接收到网络设备发送的下行数据或下行参考信号,终端设备需要向网络设备发送针对该下行数据或下行参考信号的反馈信息,即上行反馈信息,例如,该上行反馈信息可以是下行数据的解调结果或者是下行参考信号的测量结果。若发生侧行数据或侧行参考信号的传输,终端设备还需要向网络设备发送针对该侧行数据或侧行参考信号的反馈信息,即侧行反馈信息,以辅助网络设备进行资源重配。例如,发送端终端设备向接收端终端设备发送侧行数据或侧行参考信号,该侧行反馈信息可以是由发送端终端设备向网络设备发送从接收端终端设备获取的侧行反馈信息,或者该侧行反馈信息也可以是由接收端终端设备向网络设备发送的对接收的侧行数据的解调结果或对接收的侧行参考信号的测量结果。如图3所示,UE1接收gNB发送的侧行资源分配信息,并以此向UE2发送侧行数据,UE2将侧行数据的解调结果,即侧行反馈信息发送给UE1,UE1可以向网络设备发送该侧行反馈信息;UE1也可以接收gNB发送的下行数据,并以此获得上行反馈信息,UE1可以向网络设备发送该上行反馈信息。
当终端设备向网络设备发送上行反馈信息时,可以通过物理上行控制信道(Physical Uplink Control Channel,PUCCH)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)承载;当终端设备向网络设备发送侧行反馈信息时,也可以通过PUCCH或PUSCH承载。目前,终端设备不支持在同一时刻同时发送两个上行信道(如,同时发送两个PUCCH,或同时发送两个PUSCH,或同时发送PUCCH和PUSCH)。因此,当终端设备既需要发送上行反馈信息,又需要发送侧行反馈信息时,如何进行这两种反馈信息的发送,是需要解决的问题。
图4为本申请实施例提供的一种传输信息的方法100的示意性框图。如图4所示,该方法100包括以下部分或全部内容:
S110,第一终端设备获取上行反馈信息和侧行反馈信息。
S120,所述第一终端设备在一个上行信道上向网络设备发送第一信息,所述第一信息用于指示所述上行反馈信息和所述侧行反馈信息。
首先,需要说明的是,上行反馈信息是针对下行数据信道的反馈或者是针对下行参考信号测量的反馈。侧行反馈信息则是针对侧行数据信道的反馈或者针对侧行参考信号测量的反馈。具体地,上行反馈信息可以是下行数据信道的解调结果或是下行参考信号的测量结果,侧行反馈信息可以是侧行数据信道的解调结果或是侧行参考信号的测量结果。例如,上行反馈信息可以包括以下信息中的至少一种信息:混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)肯定应答ACK、HARQ否定应答NACK、信道状态信息(Channel State Information,CSI)、信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、秩指示(Rank Indication,RI)、路损信息、波束信息、参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)、接收的信号强度指示(Received Signal Strength Indicator,RSSI)和信道状态信息参考信号资源指示(CSI-Reference Signal Resource Indicator,CRI)等。侧行反馈信息可以包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行波束信息、侧行PMI、侧行RI和侧行CRI等。
另外,本申请实施例中的第一终端设备可以是侧行数据信道或者是侧行参考信号的发送端,例如,第一终端设备为图3中的UE1。该第一终端设备也可以是侧行数据信道或者侧行参考信号的接收端,例如,第一终端设备为图3中的UE2。
若第一终端设备为发送端,则侧行反馈信息是由第二终端设备向第一终端设备发送的,该第二终 端设备为侧行数据信道或者侧行参考信号的接收端。具体地,第一终端设备可以向第二终端设备发送侧行数据信道和/或侧行参考信号,第二终端设备对第一终端设备发送的侧行数据信道进行解调和/或对第一终端设备发送的侧行参考信号进行测量,第二终端设备可以根据解调结果和/或测量结果,确定侧行反馈信息,进而第二终端设备可以向第一终端设备发送该侧行反馈信息,并由第一终端设备对该侧行反馈信息进行处理并向网络设备发送。
若第一终端设备为接收端,则侧行反馈信息是由第一终端设备根据第二终端设备发送的侧行数据信道或侧行参考信号确定的,该第二终端设备为侧行数据信道或侧行参考信号的发送端。具体地,第一终端设备接收第二终端设备发送的侧行数据信道和/或侧行参考信号,第一终端设备对侧行数据信道进行解调和/或对侧行参考信号进行测量,并根据解调结果和/或测量结果,确定侧行反馈信息,第一终端设备还可以对该侧行反馈信息进行处理并向网络设备发送。
具体地,第一终端设备可以既获取到上行反馈信息,又获取到侧行反馈信息,第一终端设备可以将上行反馈信息和侧行反馈信息进行联合处理,得到第一信息,进而第一终端设备可以将经过处理后的第一信息发送给网络设备,通过该第一信息向网络设备指示上行反馈信息和侧行反馈信息。该第一信息可以承载在一个上行信道上,例如可以是一个PUCCH或一个PUSCH上。例如,第一终端设备将上行反馈信息和侧行反馈信息的信息比特级联在一起进行信道编码等操作,并且通过同一PUCCH发送给网络设备。可选地,第一终端设备也可以不对上行反馈信息和侧行反馈信息进行合并处理,也就是说,上行反馈信息和侧行反馈信息进行独立的处理,经过处理后的上行反馈信息和侧行反馈信息可以承载在同一个上行信道上,例如可以是同一个PUCCH或同一个PUSCH上。例如,第一终端设备将上行反馈信息和侧行反馈信息的信息分别进行信道编码等操作,并且通过同一PUSCH发送给网络设备,但是上行反馈信息和侧行反馈信息占用该PUSCH上不同的资源。
因此,本申请实施例的传输信息的方法,通过将同时指示上行反馈信息和侧行反馈信息的第一信息在一个上行信道上发送,可以实现同时向网络设备进行上行反馈和侧行反馈。
可选地,所述上行信道是PUCCH。也就是说,第一终端设备在一个PUCCH上发送第一信息。具体地,网络设备可以为第一终端设备分配PUCCH的传输资源,并且指示在该传输资源上发送第一信息,第一终端设备将同时指示上行反馈信息和侧行反馈信息的第一信息承载在PUCCH上,并且发送给网络设备。
可选地,第一终端设备可以对上行反馈信息和侧行反馈信息采用绑定操作和/或复用操作,生成第一信息。其中,对一个信息进行绑定操作,可以是指对该信息的所有信息比特进行与操作,也称为比特与操作,绑定后的信息比特是1比特。对多个信息进行复用操作,可以是指对该多个信息的所有信息比特进行级联操作,也成比特级联操作,级联后的信息比特可以是多个信息的信息比特之和。
具体地,第一终端设备可以通过以下方式,生成第一信息。
方式一:可以将上行反馈信息和侧行反馈信息的信息比特进行比特与操作。具体的,可以将上行反馈信息和侧行反馈信息的信息比特进行级联,并将级联后的所有信息比特进行与操作,或者,可以分别将上行反馈信息和侧行反馈信息的信息比特进行比特与操作,并将上行反馈信息和侧行反馈信息比特与操作后的比特进行比特与操作。本方案对此不作限定。例如,上行反馈信息为N比特,侧行反馈信息为M比特,对级联后的N+M比特作与操作,形成1比特,作为第一信息向网络设备发送。
方式二:可以将上行反馈信息和侧行反馈信息进行级联。例如,上行反馈信息为N比特,侧行反馈信息为M比特,级联后形成M+N比特,作为第一信息向网络设备发送。
方式三:可以分别对上行反馈信息和侧行反馈信息的信息比特进行与操作,并将经过与操作的上行反馈信息和侧行反馈信息进行级联。例如,上行反馈信息为N比特,侧行反馈信息为M比特,经过与操作的上行反馈信息和侧行反馈信息分别为1比特,级联后形成2比特,作为第一信息向网络设备发送。
方式四:可以对上行反馈信息进行与操作,并对经过与操作的上行反馈信息与侧行反馈信息进行级联。例如,上行反馈信息为N比特,侧行反馈信息为M比特,经过与操作的上行反馈信息为1比特,与侧行反馈信息级联后形成1+M比特,作为第一信息向网络设备发送。
方式五:可以对侧行反馈信息进行与操作,并对经过与操作的侧行反馈信息与上行反馈信息进行级联。例如,上行反馈信息为N比特,侧行反馈信息为M比特,经过与操作的侧行反馈信息为1比特,与上行反馈信息级联后形成1+N比特,作为第一信息向网络设备发送。
应理解,在以上各种方式中,第一信息中的上行反馈信息和侧行反馈信息的信息比特的顺序不限,可以是上行反馈信息在前,侧行反馈信息在后;也可以是上行反馈信息在后,侧行反馈信息在前。
当网络设备接收到第一信息之后,可以根据第一信息确定下行数据信道或侧行数据信道的解调结果,或者下行参考信号或侧行参考信号的测量结果,以反馈信息为针对数据信道的反馈信息为例,分 别描述在以上各种方式中,网络设备接收到该第一信息之后的操作,例如,若确定为HARQ NACK,网络设备可以认为解调失败,网络设备可以继续分配重传资源;若确定为HARQ ACK,网络设备可以认为是解调成功,如果网络设备在前一次分配针对传输资源时还同时分配了重传资源,网络设备可以对该重传资源进行重新调度、分配,若确定为非连续传输(Discontinuous Transmission,DTX)状态,网络设备可以认为解调失败,网络设备可以继续分配重传资源。
在方式一中,若网络设备接收到的第一信息的1比特表示HARQ NACK,则可以认为该上行反馈信息和侧行反馈信息的内容为HARQ NACK,那么网络设备可以认为第一信息针对的下行数据信道和侧行数据信道均解调失败;若网络设备接收到的第一信息的1比特表示HARQ ACK,则可以认为该上行反馈信息和侧行反馈信息的内容为HARQ ACK,网络设备可以认为第一信息针对的下行数据信道和侧行数据信道均解调成功。
在方式二中,若上行反馈信息中的每一个信息比特对应一个下行数据信道,侧行反馈信息中的每一个信息比特对应一个侧行数据信道,那么第一信息中的每一个信息比特对应一个下行数据信道或一个侧行数据信道的解调结果,若为HARQ ACK,则代表对应的下行数据信道或侧行数据信道解调成功;若为HARQ NACK,则代表对应的下行数据信道或侧行数据信道解调失败。
在方式三中,若上行反馈信息中的每一个信息比特对应一个下行数据信道,侧行反馈信息中的每一个信息比特对应一个侧行数据信道,那么第一信息中的2比特分别对应所有的下行数据信道和所有的侧行数据信道,若第一信息中的某个比特为HARQ ACK,则代表该比特对应的下行数据信道或侧行数据信道解调成功;若为HARQ NACK,则代表该比特对应的下行数据信道或侧行数据信道解调失败。
在方式四中,若上行反馈信息中的每一个信息比特对应一个下行数据信道,侧行反馈信息中的每一个信息比特对应一个侧行数据信道,那么第一信息中的第一个比特或者最后一个比特对应了所有的上行反馈信息,而其余每个信息比特则对应一个侧行数据信道,若上行反馈信息的比特位为HARQ ACK,则代表所有的下行数据信道解调成功,若上行反馈信息的比特位为HARQ NACK,则代表所有的下行数据信道解调失败;若侧行反馈信息的比特位为HARQ ACK,则代表该比特对应的侧行数据信道解调成功,若侧行反馈信息的比特位为HARQ NACK,则代表该比特对应的侧行数据信道解调失败。
在方式五中,若上行反馈信息中的每一个信息比特对应一个下行数据信道,侧行反馈信息中的每一个信息比特对应一个侧行数据信道,那么第一信息中的第一个比特或者最后一个比特对应了所有的侧行反馈信息,而其余每个信息比特则对应一个下行数据信道,若侧行反馈信息的比特位为HARQ ACK,则代表所有的侧行数据信道解调成功,若侧行反馈信息的比特位为HARQ NACK,则代表所有的侧行数据信道解调失败;若上行反馈信息的比特位为HARQ ACK,则代表该比特对应的下行数据信道解调成功,若上行反馈信息的比特位为HARQ NACK,则代表该比特对应的下行数据信道解调失败。
可选地,侧行反馈信息可以包括第一侧行反馈信息和第二侧行反馈信息,其中,第一侧行反馈信息可以针对第一终端设备向第二终端设备发送的侧行数据信道和/或侧行参考信号的反馈,也即第一侧行反馈信息是由第二终端设备发送给第一终端设备。第二侧行反馈信息可以针对第一终端设备从第二终端设备接收的侧行数据信道和/或侧行参考信号的反馈,也即第二侧行反馈信息是由第一终端设备根据接收到的侧行数据信道的解调结果和/或侧行参考信号的测量结果得到的。
可选地,侧行反馈信息可以包括针对至少一个侧行数据信道和/或侧行参考信号的反馈信息。例如,侧行反馈信息包括第三侧行反馈信息和第四侧行反馈信息,其中,第三侧行反馈信息是针对第一终端设备和第二终端设备之间的侧行数据信道和/或侧行参考信号的反馈信息,第四侧行反馈信息是针对第一终端设备和第三终端设备之间的侧行数据信道和/侧行参考信号的反馈信息。
应理解,在本申请实施例中,第一信息可以用于指示多种类型的反馈信息,例如,第一信息指示上述第一侧行反馈信息和上述第二侧行反馈信息。再例如,第一信息指示上行反馈信息和上述各种侧行反馈信息,再例如,第一信息指示数据反馈信息和信道反馈信息。本申请实施例应不限于本文中描述的第一信息指示上行反馈信息和侧行反馈信息。
可选地,作为发送端的第一终端设备如果没有检测到第二终端设备发送的侧行反馈信息,或者,第一终端设备检测到针对向第二终端设备发送的侧行数据信道或者侧行参考信号的侧行反馈信息的状态为非连续传输(Discontinuous Transmission,DTX)状态,则第一终端设备将向网络设备发送的侧行反馈信息设置为HARQ NACK。例如,第一终端设备向第二终端设备发送物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)和物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH),如果第二终端设备没有检测到PSCCH,也就不会检测PSSCH,因此也就不会向第一终端 设备发送侧行反馈信息。那么第一终端设备也就不会检测到侧行反馈信息,可以认为此时第一终端设备检测到的侧行反馈信息的状态为DTX状态。第一终端设备可以将向网络设备发送的侧行反馈信息设置为HARQ NACK,当网络设备接收到侧行反馈信息之后,就可以重新分配侧行传输资源。
可选地,所述上行信道是PUSCH。也就是说,第一终端设备在一个PUSCH上发送第一信息。具体地,网络设备可以为第一终端设备分配PUSCH的传输资源,并且指示在该传输资源上发送第一信息,第一终端设备将同时指示上行反馈信息和侧行反馈信息的第一信息承载在PUSCH上,并且发送给网络设备。
可选地,第一信息占用所述PUSCH上的第一传输资源,该第一传输资源可以通过打孔方式或者速率匹配方式确定。该第一传输资源的大小可以根据第一信息确定,该第一传输资源的起始位置还可以通过协议预定义或者网络设备配置确定。所谓打孔方式,即在PUSCH的资源上,第一信息可用的资源和数据可用的资源部分重叠,在计算数据的可用资源时,包括和第一信息重叠的资源,根据可用资源的大小对数据进行编码和速率匹配等操作,但是在该重叠的资源上映射第一信息,不映射数据,即第一信息对数据的打孔。具体的,可以将数据先映射到PUSCH资源上,并根据第一信息所占的资源大小及位置,对PUSCH资源上的数据进行打孔,即第一信息会覆盖掉PUSCH资源上的部分数据;或者,根据第一信息所占的资源大小及位置将第一信息映射到PUSCH资源上,在映射数据时,已经被第一信息占用的资源不映射数据。所述速率匹配方式,即在PUSCH的资源上,第一信息可用的资源和数据可用的资源是正交的,在计算数据的可用资源时,排除掉第一信息使用的资源,根据剩余可用资源的大小对数据进行编码和速率匹配等操作。
可选地,根据上述对上行反馈信息和侧行反馈信息的举例说明,可以将第一信息划分为数据反馈信息和信道反馈信息。其中,数据反馈信息所占据的资源可以通过打孔方式或者速率匹配方式确定,而信道反馈信息可以通过速率匹配方式确定。其中,数据反馈信息可以包括HARQ ACK、HARQ NACK、侧行HARQ ACK以及侧行HARQ NACK中的至少一项。信道反馈信息包括以下信息中的至少一种信息:CSI、CQI、PMI、RI、路损信息、波束信息、RSRP、RSRQ、RSSI、CRI、侧行CSI、侧行CQI、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行波束信息、侧行PMI和侧行RI。
例如,若数据反馈信息的比特序列小于或等于K比特,则数据反馈信息所占据的资源是通过打孔方式确定的,若数据反馈信息的比特序列大于K比特,数据反馈信息所占据的资源是通过速率匹配方式确定的,其中,K为正整数。
参见图5a和图5b,上行数据、HARQ ACK以及CSI可以占据PUSCH资源上除解调参考信号(Demodulation Reference Signal,DMRS)之外的所有资源。优选的,HARQ ACK占用DMRS所在的符号的前一个或者后一个符号上的资源。在图5a中,HARQ ACK所占的资源是通过打孔方式确定的。在图5b中,HARQ ACK所占的资源是通过速率匹配方式确定的。在图5a和图5b中,CSI所占的资源均采用速率匹配方式确定。
当数据反馈信息中既包括针对下行数据的数据反馈信息,又包括针对侧行数据的数据反馈信息时,针对下行数据的数据反馈信息和针对侧行数据的数据反馈信息可以占用所述PUSCH上的正交资源。所谓正交资源,是指时域、或频域、或码域、或空域正交的资源。例如,HARQ ACK和/或HARQ NACK占用所述PUSCH上的第二传输资源,侧行HARQ ACK和/或侧行HARQ NACK占用所述PUSCH上的第三传输资源,所述第二传输资源和所述第三传输资源是正交的资源。
参见图6a和图6b,上行数据、HARQ ACK、侧行HARQ ACK、CSI以及侧行CSI可以占据PUSCH资源上除DMRS之外的所有资源。在图6a中,HARQ ACK和侧行HARQ ACK所占的资源均是通过打孔方式确定的。在图6b中,HARQ ACK所占的资源是通过打孔方式确定的,侧行HARQ ACK所占的资源是通过速率匹配方式确定的。侧行HARQ ACK和HARQ ACK采用正交的资源,侧行CSI与CSI也采用正交的资源。在图6a和图6b中,CSI和侧行CSI所占的资源均采用速率匹配方式确定。
可选地,也可以先对针对下行数据的数据反馈信息和针对侧行数据的数据反馈信息进行处理,然后根据处理后的比特序列的大小,确定第一信息中的数据反馈信息是采用打孔方式还是速率匹配方式。例如,HARQ ACK和/或HARQ NACK的信息比特为N,侧行HARQ ACK和/或HARQ NACK的信息比特为M,将HARQ ACK和/或HARQ NACK与侧行HARQ ACK和/或HARQ NACK进行级联,级联后的信息比特为M+N,如果该M+N小于或等于K,则数据反馈信息所占的资源采用打孔方式确定,如果该M+N大于K,则数据反馈信息所占的资源采用速率匹配方式确定。其中,K为正整数。
参见图7a和图7b,上行数据、经过级联之后的数据反馈信息、CSI以及侧行CSI可以占据PUSCH资源上除DMRS之外的所有资源。在图7a中,级联后的数据反馈信息所占的资源是通过打孔方式确 定的。在图7b中,级联后的数据反馈信息所占的资源是通过速率匹配方式确定的。在图7a和图7b中,CSI和侧行CSI所占的资源均采用速率匹配方式确定。
可选地,也可以对针对下行数据的数据反馈信息和针对侧行数据的数据反馈信息进行上述方式一至方式五中的操作,并根据操作之后的数据反馈信息的比特序列的大小,确定所述数据反馈信息占用的资源是通过打孔方式还是速率匹配方式获得。
可选地,上述参数K可以是协议预定义或者网络配置的参数。例如,K可以是2。在信息比特较小的时候采用打孔方式,不影响数据的误码率,又操作简单。而在信息比特大的时候采用速率匹配方式,不会因为对数据进行打孔造成数据的误码率升高。
可选地,在本申请实施例中,当PUSCH上没有上行数据传输时,第一信息可以占据PUSCH资源上除了DMRS所占的资源之外的所有资源,或者第一信息可以占据PUSCH资源上除了DMRS所占的时域符号之外的所有资源。参见图8,HARQ ACK、侧行HARQ ACK、CSI以及侧行CSI占据了PUSCH资源上除了DMRS所占的时域符号之外的所有资源,而在DMRS所占时域符号上未占用的资源则为空闲资源。
可选地,第一信息中的上行反馈信息和侧行反馈信息可以通过PUSCH上的正交资源传输,如图6a和6b所示,上行反馈信息包括HARQ ACK和CSI,侧行反馈信息包括侧行HARQ ACK和侧行CSI。其中,HARQ ACK和CSI所占的资源与侧行HARQ ACK和侧行CSI所占的资源正交。
可选地,第一信息中的数据反馈信息和信道反馈信息可以通过PUSCH上的正交资源传输。如图6a和6b所示,数据反馈信息包括HARQ ACK和侧行HARQ ACK,信道反馈信息包括CSI和侧行CSI,其中,HARQ ACK和侧行HARQ ACK所占的资源与CSI和侧行CSI所占的资源正交。
可选地,第一终端设备在传输第一信息之前,得先确定承载第一信息的上行信道的传输资源。
在一种可实现的实施例中,第一终端设备可以获取第一配置信息,该第一配置信息用于指示用于传输所述上行反馈信息的第四传输资源。例如,网络设备可以为第一终端设备分配用于传输上行反馈信息的传输资源。第一终端设备还可以获取第二配置信息,该第二配置信息用于指示用于传输所述侧行反馈信息的第五传输资源。例如,网络设备还可以为第一终端设备分配用于传输侧行反馈信息的传输资源。第一终端设备可以选择在第四传输资源上或第五传输资源上发送承载该第一信息的上行信道。可选地,第一终端设备可以根据第四传输资源或第五传输资源在时域上的先后顺序,选择其中的一个作为承载有第一信息的上行信道的传输资源。例如,第一终端设备可以选择时域上较早的传输资源。可选地,第一终端设备可以根据获取第一配置信息或第二配置信息的先后顺序,选择其中的一个作为承载有第一信息的上行信道的传输资源。例如,第一终端设备先获取第一配置信息,则第一终端设备可以选择第四传输资源发送承载该第一信息的上行信道。可选地,第一终端设备可以根据上行信道的类型确定承载该第一信息的上行信道的传输资源。例如,第一配置信息指示第四传输资源,并且在该资源上的上行信道为PUCCH,第二配置信息指示第五传输资源,并且在该资源上的上行信道为PUSCH,则第一终端设备可以选择第五传输资源,并在在该资源上发送承载该第一信息的PUSCH信道。
若反馈信息为数据反馈信息,网络设备在为第一终端设备分配针对下行数据或侧行数据的传输资源的同时,可以向第一终端设备分配与下行数据或侧行数据对应的反馈信息的传输资源。也就是说,上述第一配置信息还可以用于指示用于传输下行数据的传输资源,上述第二配置信息还可以用于指示用于传输侧行数据的传输资源。例如,第一终端设备还可以接收网络设备发送的第一物理下行控制信道(Physical Downlink Control Channel,PDCCH),第一PDCCH用于指示用于传输PSCCH和/或PSSCH的传输资源,第一PDCCH还可以用于指示用于传输针对该PSSCH的侧行反馈信息的传输资源。第一终端设备可以接收网络设备发送的第二PDCCH,第二PDCCH用于指示用于传输物理下行共享信道(Physical Downlink Shared Channel,PDSCH),第二PDCCH还可以用于指示用于传输针对该PDSCH的上行反馈信息的传输资源。其中,第一PDCCH和第二PDCCH可以不同。
考虑到第一终端设备可能检测不到PDCCH的情况,可以分为以下场景:
场景1:第一终端设备检测到第一PDCCH,但没有检测到第二PDCCH,因此,第一终端设备向网络设备发送侧行反馈信息,不发送上行反馈信息;
场景2:第一终端设备检测到第二PDCCH,但没有检测到第一PDCCH,因此,第一终端设备向网络设备发送上行反馈信息,不发送侧行反馈信息。
场景3:第一终端设备没有检测到第一PDCCH,也没有检测到第二PDCCH,因此,第一终端设备既不向网络设备发送上行反馈信息,也不发送侧行反馈信息。
场景4:第一终端设备既检测到第一PDCCH,又检测到第二PDCCH,因此,第一终端设备即需要网络设备发送上行反馈信息,又需要发送侧行反馈信息。
如果第一终端设备未向网络设备发送某种反馈信息,网络设备也自然不知道第一终端设备是否检测到相应的PDCCH,网络设备仍然需要在PDCCH指示的反馈信息的传输资源上进行检测。网络设备可以先按照既发送上行反馈信息,又发送侧行反馈信息的情况去检测,若检测失败,则按照只发送上行反馈信息或侧行反馈信息的情况去检测,若还失败,则按照第一终端设备不反馈任何信息去检测,即相应的状态为DTX状态。
在一种可替代的实施例中,网络设备可以直接为第一终端设备分配承载第一信息的上行信道的传输资源,而不需要在两个传输资源中选择。
在另一种可替代的实施例中,第一终端设备还可以获取第三配置信息,该第三配置信息用于指示用于传输上行反馈信息对应的下行数据的第六传输资源或者用于传输侧行反馈信息对应的侧行数据的第七传输资源,第一终端设备可以根据第六传输资源或第七传输资源,确定承载第一信息的上行信道的传输资源。即第六传输资源或第七传输资源可以隐性指示该上行信道的传输资源。例如,上行信道的时域资源可以是第六传输资源或第七传输资源的下一个时隙,并且占用该时隙中最后两个时域符号,该上行信道的频域资源起始位置可以由第六传输资源或第七传输资源的频域起始位置确定,频域资源的长度可以是预定义的,也可以是跟第六传输资源或第七传输资源的频域资源的长度相同。
图9为本申请实施例提供的一种传输信息的方法200的示意性框图。如图9所示,该方法200包括以下部分或全部内容:
S210,第一终端设备确定向网络设备发送的上行反馈信息和侧行反馈信息;
S220,所述第一终端设备在不同的时域资源上向所述网络设备发送所述上行反馈信息和所述侧行反馈信息。
首先,需要说明的是,上行反馈信息是针对下行数据信道的反馈或者是针对下行参考信号测量的反馈。侧行反馈信息则是针对侧行数据信道的反馈或者针对侧行参考信号测量的反馈。具体地,上行反馈信息可以是下行数据信道的解调结果或是下行参考信号的测量结果,侧行反馈信息可以是侧行数据信道的解调结果或是侧行参考信号的测量结果。例如,上行反馈信息可以包括以下信息中的至少一种信息:HARQ ACK、HARQ NACK、CSI、CQI、PMI、RI、路损信息、波束信息、RSRP、RSRQ、RSSI和CRI等。侧行反馈信息可以包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行波束信息、侧行PMI和侧行RI等。
另外,本申请实施例中的第一终端设备可以是侧行数据信道或者是侧行参考信号的发送端,例如,第一终端设备为图3中的UE1。该第一终端设备也可以是侧行数据信道或者侧行参考信号的接收端,例如,第一终端设备为图3中的UE2。
若第一终端设备为发送端,则侧行反馈信息是由第二终端设备向第一终端设备发送的,该第二终端设备为侧行数据信道或者侧行参考信号的接收端。具体地,第一终端设备可以向第二终端设备发送侧行数据信道和/或侧行参考信号,第二终端设备对第一终端设备发送的侧行数据信道进行解调和/或对第一终端设备发送的侧行参考信号进行测量,第二终端设备可以根据解调结果和/或测量结果,确定侧行反馈信息,进而第二终端设备可以向第一终端设备发送该侧行反馈信息,并由第一终端设备对该侧行反馈信息进行处理并向网络设备发送。
若第一终端设备为接收端,则侧行反馈信息是由第一终端设备根据第二终端设备发送的侧行数据信道或侧行参考信号确定的,该第二终端设备为侧行数据信道或侧行参考信号的发送端。具体地,第一终端设备接收第二终端设备发送的侧行数据信道和/或侧行参考信号,第一终端设备对侧行数据信道进行解调和/或对侧行参考信号进行测量,并根据解调结果和/或测量结果,确定侧行反馈信息,第一终端设备还可以对该侧行反馈信息进行处理并向网络设备发送。
具体地,第一终端设备不期望同时发送上行反馈信息和侧行反馈信息。可以通过网络设备的调度来实现上行反馈信息和侧行反馈信息的时域资源不同,从而保证第一终端设备在同一时刻只发送一种反馈信息。
下面结合图10详细描述本申请实施例的传输信息的方法300。如图10所示,该方法300包括以下至少部分内容:
S310,UE1(侧行数据发送端)可以从gNB(网络设备)获取第一配置信息,第一配置信息用于指示用于传输上行反馈信息的第一传输资源。
S320,UE1还可以从gNB获取第二配置信息,第二配置信息用于指示用于传输侧行反馈信息的第二传输资源,第一传输资源和第二传输资源在时域上不重叠。
S330,gNB可以向UE1发送下行数据。
S340,UE1可以在第一传输资源上向gNB发送针对该下行数据的上行反馈信息。
S350,UE1可以向UE2(侧行数据接收端)发送侧行数据。
S360,UE2可以向UE1发送针对该侧行数据的侧行反馈信息。
S370,UE1可以在第二传输资源上向网络设备发送侧行反馈信息。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可选地,网络设备在为UE1分配针对下行数据或侧行数据的传输资源的同时,可以向UE1分配与下行数据或侧行数据对应的反馈信息的传输资源。也就是说,上述第一配置信息还可以用于指示用于传输下行数据的传输资源,上述第二配置信息还可以用于指示用于传输侧行数据的传输资源。例如,UE1还可以接收网络设备发送的第一PDCCH,第一PDCCH用于指示用于传输PSCCH和/或PSSCH的传输资源,第一PDCCH还可以用于指示用于传输针对PSSCH的侧行反馈信息的传输资源。UE1可以接收网络设备发送的第二PDCCH,第二PDCCH用于指示用于传输PDSCH,第二PDCCH还可以用于指示用于传输针对该PDSCH的上行反馈信息的传输资源。其中,第一PDCCH和第二PDCCH可以不同。
可选地,UE2向UE1发送侧行反馈信息的传输资源可以通过以下方式确定:
其一:gNB确定UE2向UE1发送侧行反馈信息的传输资源。例如,gNB可以将分配的传输资源发送给UE1,UE1再发送给UE2;再例如,gNB可以直接将分配的传输资源发送给UE2。
其二:UE1可以确定UE2向UE1发送侧行反馈信息的传输资源。可以由UE1通过侧行控制信息(Sidelink Control Information,SCI)或PSSCH携带该传输信息的指示信息,并且发送给UE2。
其三:可以根据UE1向UE2发送侧行数据的传输资源隐式指示。例如,侧行反馈信息的时域资源可以为侧行数据的传输资源的下一个时隙,并且占用该时隙中最后两个时域符号,频域资源的起始位置和侧行数据的传输资源的频域起始位置相同,频域资源的长度可以是预定义的,或者是跟侧行数据的传输资源的频域资源的长度相同。
可选地,UE1向网络设备发送的侧行反馈信息可以是针对UE1和UE2之间的侧行数据信道或侧行参考信号的反馈。例如该侧行反馈信息可以包括第一侧行反馈信息和第二侧行反馈信息,其中,第一侧行反馈信息可以是针对UE1向UE2发送的侧行数据信道或者侧行参考信号的反馈,也即第一侧行反馈信息是由UE2发送给UE1的。第二侧行反馈信息可以是针对UE1从UE2接收的侧行数据信道或者侧行参考信号的反馈,也即第二侧行反馈信息是由UE1根据接收到的侧行数据信道的解调结果或侧行参考信号的测量结果得到的。进而UE1根据获取到的第一侧行反馈信息和第二侧行反馈信息,联合向网络设备发送侧行反馈信息。
可选地,UE1向网络设备发送的侧行反馈信息还可以既包括针对UE1和UE2之间的侧行数据信道或侧行参考信号的反馈,还可以包括针对UE1和UE3(与UE2不同)之间的侧行数据信道或侧行参考信号的反馈。
应理解,在本申请实施例中,UE1向网络设备可以在不同时域上发送多种类型的反馈信息,例如,在第三传输资源上发送上述第一侧行反馈信息,在第四传输资源上发送上述第二侧行反馈信息,所述第三传输资源和所述第四传输资源在时域上不重叠。再例如,在第三传输资源上发送上述第一侧行反馈信息,在第四传输资源上发送上述第二侧行反馈信息,在第五传输资源上发送上行反馈信息,所述第三传输资源、所述第四传输资源和所述第五传输资源在时域上均不重叠。
可选地,作为发送端的UE1如果没有检测到UE2发送的侧行反馈信息,或者,UE1检测到针对向UE2发送的侧行数据信道或者侧行参考信号的侧行反馈信息的状态为DTX状态,则UE1将向网络设备发送的侧行反馈信息设置为HARQ NACK。例如,UE1向UE2发送PSCCH和PSSCH,如果UE2没有检测到PSCCH,也就不会检测PSSCH,因此也就不会向UE1发送侧行反馈信息。那么UE1也就不会检测到侧行反馈信息,可以认为此时UE1检测到的侧行反馈信息的状态为DTX状态。UE1可以将向网络设备发送的侧行反馈信息设置为HARQ NACK,当网络设备接收到侧行反馈信息之后,就可以重新分配侧行传输资源。
如果网络设备在分配侧行数据的传输资源时,同时分配了用于UE1重传侧行数据的传输资源,当网络设备接收到UE1发送的HARQ ACK时,可以重新分配、调度没有被UE1使用的重传资源。如果网络设备接收到UE1发送的HARQ NACK,则网络设备可以为UE1重新分配侧行数据的重传资源。如果UE1检测到UE2的侧行反馈信息的状态为DTX状态,UE1可以向网络设备发送HARQ NACK,则网络设备可以为UE1重新分配侧行数据的重传资源。
UE1向网络设备发送的上行反馈信息的状态与侧行反馈信息的状态类似。
可选地,UE1可以通过PUCCH或者PUSCH信道承载上行反馈信息。
可选地,UE1可以通过PUCCH或者PUSCH信道承载侧行反馈信息。
参见图11,网络设备在时刻m发送下行数据,分配时刻m+p的传输资源用于发送上行反馈信息,该上行反馈信息是针对时刻m的下行数据的反馈信息;网络设备分配时刻n的传输资源用于UE1发送侧行数据,分配时刻n+q的传输资源用于UE1向网络设备发送侧行反馈信息,该反馈信息是针对UE1发送给UE2的侧行数据的反馈信息。
其中,时刻m+p和n+q是不同的时刻,即用于发送上行反馈信息的传输资源和发送侧行反馈信息的传输资源在时域上没有重叠。因此,UE1在一个时刻只需要发送一种反馈信息。
UE1是时刻m接收下行数据,在时刻m+p发送针对该下行数据的上行反馈信息;该UE1可以接收网络设备发送的配置信息,该配置信息包括用于传输侧行数据的调度信息以及用于向网络设备发送侧行反馈信息的资源分配信息。UE1在网络设备分配的侧行数据的传输资源(即时刻n)向UE2发送侧行数据(PSCCH和/或PSSCH),并且在时刻n+q向网络设备发送侧行反馈信息。其中,参数p、q可以是协议预配置的或网络配置的。
应理解,此处的时刻是具有时间宽度的概念,例如,时刻m可以认为是时间单元为m。
图12为本申请实施例提供的一种传输信息的方法400的示意性框图。如图12所示,该方法400包括以下部分或全部内容:
S410,若用于传输上行反馈信息的传输资源和用于传输侧行反馈信息的传输资源在时域上有重叠,所述第一终端设备向所述网络设备发送所述上行反馈信息或所述侧行反馈信息。
首先,需要说明的是,上行反馈信息是针对下行数据信道的反馈或者是针对下行参考信号测量的反馈。侧行反馈信息则是针对侧行数据信道的反馈或者针对侧行参考信号测量的反馈。具体地,上行反馈信息可以是下行数据信道的解调结果或是下行参考信号的测量结果,侧行反馈信息可以是侧行数据信道的解调结果或是侧行参考信号的测量结果。例如,上行反馈信息可以包括以下信息中的至少一种信息:HARQ ACK、HARQ NACK、CSI、CQI、PMI、RI、路损信息、波束信息、RSRP、RSRQ、RSSI和CRI等。侧行反馈信息可以包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行波束信息、侧行PMI、侧行RI和侧行CRI等。
另外,本申请实施例中的第一终端设备可以是侧行数据信道或者是侧行参考信号的发送端,例如,第一终端设备为图3中的UE1。该第一终端设备也可以是侧行数据信道或者侧行参考信号的接收端,例如,第一终端设备为图3中的UE2。
若第一终端设备为发送端,则侧行反馈信息是由第二终端设备向第一终端设备发送的,该第二终端设备为侧行数据信道或者侧行参考信号的接收端。具体地,第一终端设备可以向第二终端设备发送侧行数据信道和/或侧行参考信号,第二终端设备对第一终端设备发送的侧行数据信道进行解调和/或对第一终端设备发送的侧行参考信号进行测量,第二终端设备可以根据解调结果和/或测量结果,确定侧行反馈信息,进而第二终端设备可以向第一终端设备发送该侧行反馈信息,并由第一终端设备对该侧行反馈信息进行处理并向网络设备发送。
若第一终端设备为接收端,则侧行反馈信息是由第一终端设备根据第二终端设备发送的侧行数据信道或侧行参考信号确定的,该第二终端设备为侧行数据信道或侧行参考信号的发送端。具体地,第一终端设备接收第二终端设备发送的侧行数据信道和/或侧行参考信号,第一终端设备对侧行数据信道进行解调和/或对侧行参考信号进行测量,并根据解调结果和/或测量结果,确定侧行反馈信息,第一终端设备还可以对该侧行反馈信息进行处理并向网络设备发送。
具体地,网络设备可以向第一终端设备分配第一传输资源用于发送上行反馈信息,分配第二传输资源用于发送侧行反馈信息,所述第一传输资源和所述第二传输资源在时域上可以有重叠,或者所述第一传输资源和所述第二传输资源可以是同一传输资源。第一终端设备决定发送上行反馈信息或者侧行反馈信息,即第一终端设备会丢弃其中一种反馈信息。
应理解,在本申请实施例中,第一终端设备可以选择向网络设备发送多种反馈信息中的一种反馈信息,而不限于是在上行反馈信息和侧行反馈信息之中选择。例如,可以在上文中提到的第一侧行反馈信息和第二侧行反馈信息之间选择一种侧行反馈信息发送,丢弃另一种侧行反馈信息,其中,用于传输第一侧行反馈信息的传输资源和用于传输第二侧行反馈信息的传输资源在时域上有重叠。再例如,可以在上文提到的第三侧行反馈信息和第四侧行反馈信息之间选择一种侧行反馈信息发送,丢弃另一种侧行反馈信息,其中,用于传输第三侧行反馈信息的传输资源与用于传输第四反馈信息的传输资源在时域上有重叠。
若反馈信息为数据反馈信息,网络设备在为第一终端设备分配针对下行数据或侧行数据的传输资源的同时,可以向第一终端设备分配与下行数据或侧行数据对应的反馈信息的传输资源。也就是说,上述第一配置信息还可以用于指示用于传输下行数据的传输资源,上述第二配置信息还可以用于指示 用于传输侧行数据的传输资源。例如,第一终端设备还可以接收网络设备发送的第一PDCCH,第一PDCCH用于指示用于传输PSCCH和/或PSSCH的传输资源,第一PDCCH还可以用于指示用于传输针对PSSCH的侧行反馈信息的传输资源。第一终端设备可以接收网络设备发送的第二PDCCH,第二PDCCH用于指示用于传输PDSCH,第二PDCCH还可以用于指示用于传输针对该PDSCH的上行反馈信息的传输资源。其中,第一PDCCH和第二PDCCH可以不同。
可选地,作为发送端的第一终端设备如果没有检测到第二终端设备发送的侧行反馈信息,换句话说,第一终端设备检测到针对向第二终端设备发送的侧行数据信道或者侧行参考信号的侧行反馈信息的状态为DTX状态,则第一终端设备将向网络设备发送的侧行反馈信息设置为HARQ NACK。例如,第一终端设备向第二终端设备发送PSCCH和PSSCH,如果第二终端设备没有检测到PSCCH,也就不会检测PSSCH,因此也就不会向第一终端设备发送侧行反馈信息。那么第一终端设备也就不会检测到侧行反馈信息,可以认为此时第一终端设备检测到的侧行反馈信息的状态为DTX状态。第一终端设备可以将向网络设备发送的侧行反馈信息设置为HARQ NACK,当网络设备接收到侧行反馈信息之后,就可以重新分配侧行传输资源。
可选地,第一终端设备可以根据第一准则,决定发送上行反馈信息还是侧行反馈信息。换句话说,第一终端设备可以根据第一准则,决定丢弃上行反馈信息还是侧行反馈信息。
可选地,该第一准则可以是反馈信息的类型。例如,第一终端设备只发送侧行反馈信息,不发送上行反馈信息。再例如,第一终端设备只发送数据反馈信息,不发送信道反馈信息,如果上行反馈信息包括数据反馈信息,侧行反馈信息包括信道反馈信息,那么第一终端设备则发送上行反馈信息,不发送侧行反馈信息。
可选地,该第一准则可以是上行反馈信息和侧行反馈信息的优先级,或者是各种类型反馈信息的优先级。例如,第一终端设备可以向网络设备发送优先级最高的反馈信息。在车联网中进行的侧行传输通常是跟安全相关的业务,因此具有更高的优先级,当终端只能反馈一种信息时,可以优先选取发送侧行反馈信息。
可选地,该第一准则还可以是所述侧行反馈信息所对应的侧行数据的第一属性与第一门限的大小关系,或者是所述上行反馈信息对应的下行数据的第一属性与第一门限的大小关系,或者是所述侧行反馈信息所对应的侧行数据的第一属性与所述上行反馈信息对应的下行数据的第一属性的大小关系。该第一属性可以是优先级信息、时延信息、可靠性信息、传输速率信息和通信距离信息。该第一门限可以是优先级门限,时延门限、可靠性门限、传输速率门限和通信距离门限。例如,该第一属性是优先级信息,该第一门限为优先级门限,第一终端设备将侧行数据的优先级与优先级门限比较,如果优先级的值小于或等于该优先级门限(可以设置优先级的值越低则表示优先级越高,例如优先级的值的范围是[0,7],其中,0表示优先级最高,7表示优先级最低),则发送侧行反馈信息,否则发送上行反馈信息。再例如,该第一属性是时延信息,该第一门限为时延门限,第一终端设备可以将侧行数据的时延与时延门限比较,如果时延信息的值大于或等于该时延门限,则发送上行反馈信息,否则发送侧行反馈信息。
可选地,该第一准则还可以是第一终端设备接收到所述上行反馈信息对应的下行数据和所述侧行反馈信息的时间先后顺序。例如,若第一终端设备先接收到下行数据,则发送上行反馈信息,不发送侧行反馈信息;若第一终端设备先接收到侧行反馈信息,则先发送侧行反馈信息,不发送上行反馈信息。
可选地,第一终端设备可以通过PUCCH或者PUSCH信道承载上行反馈信息。
可选地,第一终端设备可以通过PUCCH或者PUSCH信道承载侧行反馈信息。
图13为本申请实施例提供的一种传输信息的方法500的示意性框图。如图13所示,该方法500包括以下部分或全部内容:
S510,网络设备在一个上行信道上接收第一终端设备发送的第一信息,所述第一信息用于指示上行反馈信息和侧行反馈信息。
可选地,在本申请实施例中,所述上行信道为物理上行控制信道PUCCH,所述第一信息是通过对经过比特与操作的所述上行反馈信息和经过比特与操作的所述侧行反馈信息进行比特级联操作之后生成的,或所述第一信息是通过对所述侧行反馈信息和经过比特与操作的所述上行反馈信息进行比特级联操作之后生成的,或所述第一信息是通过对所述上行反馈信息和经过比特与操作的所述侧行反馈信息进行比特级联操作之后生成的,或所述第一信息是通过对所述上行反馈信息和所述侧行反馈信息进行比特与操作之后生成的,或所述第一信息是通过对所述上行反馈信息和所述侧行反馈信息进行比特级联操作之后生成的。
可选地,在本申请实施例中,所述上行信道为物理上行共享信道PUSCH,所述第一信息占用所 述PUSCH上的第一传输资源,所述第一传输资源是通过打孔方式或者速率匹配方式确定的。
可选地,在本申请实施例中,所述第一信息包括数据反馈信息,若所述数据反馈信息的比特序列小于或等于K比特,所述数据反馈信息所占用的资源是通过打孔方式确定的;若所述数据反馈信息的比特序列大于K比特,所述数据反馈信息所占用的资源是通过速率匹配方式确定,其中,K为正整数,所述数据反馈信息包括混合自动重传请求HARQ肯定应答ACK/否定应答NACK和/或侧行HARQ ACK/NACK。
可选地,在本申请实施例中,所述数据反馈信息包括所述HARQ ACK/NACK和所述侧行HARQ ACK/NACK,所述数据反馈信息的比特序列是通过对所述HARQ ACK/NACK与所述侧行HARQ ACK/NACK进行比特级联操作或比特与操作获得的。
可选地,在本申请实施例中,所述数据反馈信息包括所述HARQ ACK/NACK和所述侧行HARQ ACK/NACK,所述HARQ ACK/NACK占用所述PUSCH上的第二传输资源,所述侧行HARQ ACK/NACK占用所述PUSCH上的第三传输资源,所述第二传输资源和所述第三传输资源是正交的资源。
可选地,在本申请实施例中,所述第一信息包括信道反馈信息,所述信道反馈信息所占用的资源是通过速率匹配方式确定的,其中,所述信道反馈信息包括以下信息中的至少一种信息:信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI、路损信息、信道状态信息参考信号资源指示CRI、侧行CSI、侧行CQI、侧行PMI、侧行RI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息和侧行CRI。
可选地,在本申请实施例中,所述第一信息包括所述上行反馈信息和所述侧行反馈信息,所述上行反馈信息和所述侧行反馈信息通过所述PUSCH上的正交资源传输。
可选地,在本申请实施例中,所述第一信息包括数据反馈信息和信道反馈信息,所述数据反馈信息和所述信道反馈信息通过所述PUSCH上的正交资源传输。
可选地,在本申请实施例中,所述方法还包括:所述网络设备向所述第一终端设备发送第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第四传输资源;所述网络设备向所述第一终端设备发送第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第五传输资源;所述网络设备在所述第四传输资源或所述第五传输资源上接收所述一个上行信道承载的所述第一信息。
可选地,在本申请实施例中,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
可选地,在本申请实施例中,所述方法还包括:所述网络设备向所述第一终端设备发送第三配置信息,所述第三配置信息用于指示用于传输所述上行反馈信息对应的下行数据的第六传输资源或传输所述侧行反馈信息对应的侧行数据的第七传输资源。
可选地,在本申请实施例中,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI和信道状态信息参考信号资源指示CRI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI、侧行RI和侧行CRI。
可选地,在本申请实施例中,所述上行信道为物理上行共享信道PUSCH,所述PUSCH上没有上行数据传输,所述第一信息占据所述PUSCH上除了解调参考信号DMRS所占的资源之外的所有资源,或所述第一信息占据所述PUSCH上除了DMRS所在的时域符号之外的所有资源。
图14为本申请实施例提供的一种传输信息的方法600的示意性框图。如图14所示,该方法600包括以下部分或全部内容:
S610,网络设备向第一终端设备发送第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第一传输资源。
S620,所述网络设备向所述第二终端设备发送第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第二传输资源,所述第一传输资源和所述第二传输资源在时域上不重叠。
S630,所述网络设备在所述第一传输资源上接收所述第一终端设备发送的上行反馈信息以及在所述第二传输资源上接收所述第一终端设备发送的侧行反馈信息。
可选地,在本申请实施例中,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
可选地,在本申请实施例中,所述第一传输资源为物理上行控制信道PUCCH或物理上行共享信道PUSCH,和/或所述第二传输资源为PUCCH或PUSCH。
可选地,在本申请实施例中,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI和信道状态信息参考信号资源指示CRI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI、侧行RI和侧行CRI。
应理解,网络设备描述的网络设备与终端设备之间的交互及相关特性、功能等与终端设备的相关特性、功能相应。也就是说,网络设备向终端设备发送什么消息,终端设备从网络设备接收相应的消息。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的传输信息的方法,下面将结合图15至图21,描述根据本申请实施例的传输信息的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图15示出了本申请实施例的终端设备700的示意性框图。如图15所示,该终端设备700包括:
处理单元710,用于获取上行反馈信息和侧行反馈信息;
收发单元720,用于在一个上行信道上向网络设备发送第一信息,所述第一信息用于指示所述上行反馈信息和所述侧行反馈信息。
可选地,在本申请实施例中,所述上行信道为物理上行控制信道PUCCH,所述处理单元还用于:对经过比特与操作的所述上行反馈信息和经过比特与操作的所述侧行反馈信息进行比特级联操作,生成所述第一信息,或对所述侧行反馈信息和经过比特与操作的所述上行反馈信息进行比特级联操作,生成所述第一信息,或对经过所述上行反馈信息和比特与操作的所述侧行反馈信息进行比特级联操作,生成所述第一信息,或对所述上行反馈信息和所述侧行反馈信息进行比特与操作,生成所述第一信息,或对所述上行反馈信息和所述侧行反馈信息进行比特级联操作,生成所述第一信息。
可选地,在本申请实施例中,所述上行信道为物理上行共享信道PUSCH,所述第一信息占用所述PUSCH上的第一传输资源,所述第一传输资源是通过打孔方式或者速率匹配方式确定的。
可选地,在本申请实施例中,所述第一信息包括数据反馈信息,若所述数据反馈信息的比特序列小于或等于K比特,所述数据反馈信息所占用的资源是通过打孔方式确定的;若所述数据反馈信息的比特序列大于K比特,所述数据反馈信息所占用的资源是通过速率匹配方式确定,其中,K为正整数,所述数据反馈信息包括混合自动重传请求HARQ肯定应答ACK/否定应答NACK和/或侧行HARQ ACK/NACK。
可选地,在本申请实施例中,所述数据反馈信息包括所述HARQ ACK/NACK和所述侧行HARQ ACK/NACK,所述数据反馈信息的比特序列是通过对所述HARQ ACK/NACK与所述侧行HARQ ACK/NACK进行比特级联操作或比特与操作获得的。
可选地,在本申请实施例中,所述数据反馈信息包括所述HARQ ACK/NACK和所述侧行HARQ ACK/NACK,所述HARQ ACK/NACK占用所述PUSCH上的第二传输资源,所述侧行HARQ ACK/NACK占用所述PUSCH上的第三传输资源,所述第二传输资源和所述第三传输资源是正交的资源。
可选地,在本申请实施例中,所述第一信息包括信道反馈信息,所述信道反馈信息所占用的资源是通过速率匹配方式确定的,其中,所述信道反馈信息包括以下信息中的至少一种信息:信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI、路损信息、信道状态信息参考信号资源指示CRI、侧行CSI、侧行CQI、侧行PMI、侧行RI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息和侧行CRI。
可选地,在本申请实施例中,所述第一信息包括所述上行反馈信息和所述侧行反馈信息,所述上行反馈信息和所述侧行反馈信息通过所述PUSCH上的正交资源传输。
可选地,在本申请实施例中,所述第一信息包括数据反馈信息和信道反馈信息,所述数据反馈信息和所述信道反馈信息通过所述PUSCH上的正交资源传输。
可选地,在本申请实施例中,所述处理单元还用于:确定所述上行信道的传输资源。
可选地,在本申请实施例中,所述收发单元还用于:获取第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第四传输资源;获取第二配置信息,所述第二配置信息用于指示用 于传输所述侧行反馈信息的第五传输资源;
所述处理单元具体用于:将所述第四传输资源或所述第五传输资源确定为所述上行信道的传输资源。
可选地,在本申请实施例中,所述处理单元具体用于:根据所述第四传输资源和所述第五传输资源在时域上的先后顺序,将所述第四传输资源或所述第五传输资源确定为所述上行信道的传输资源。
可选地,在本申请实施例中,所述收发单元还用于:获取第三配置信息,所述第三配置信息用于指示用于传输所述上行反馈信息对应的下行数据的第六传输资源或传输所述侧行反馈信息对应的侧行数据的第七传输资源;所述处理单元具体用于:根据所述第六传输资源或所述第七传输资源,确定所述上行信道的传输资源。
可选地,在本申请实施例中,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
可选地,在本申请实施例中,所述处理单元具体用于:接收第二终端设备发送的所述侧行反馈信息。
可选地,在本申请实施例中,所述处理单元具体用于:若所述第一终端设备未检测到第二终端设备发送的侧行反馈信息,或所述第一终端设备检测到针对向所述第二终端设备发送的侧行数据的侧行反馈信息的状态是非连续传输DTX状态,将所述第一信息指示的侧行反馈信息确定为否定应答NACK。
可选地,在本申请实施例中,所述处理单元具体用于:接收第二终端设备发送的侧行参考信号和/或侧行数据;根据所述侧行参考信号的测量结果和/或所述侧行数据的解调结果,确定所述侧行反馈信息。
可选地,在本申请实施例中,所述收发单元还用于:接收第一物理下行控制信道PDCCH,所述第一PDCCH用于指示所述侧行反馈信息对应的侧行数据的传输资源;
接收第二PDCCH,所述第二PDCCH用于指示所述上行反馈信息对应的下行数据的传输资源,所述第一PDCCH与所述第二PDCCH不同。
可选地,在本申请实施例中,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI和信道状态信息参考信号资源指示CRI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI、侧行RI和侧行CRI。
可选地,在本申请实施例中,所述上行信道为物理上行共享信道PUSCH,所述PUSCH上没有上行数据传输,所述第一信息占据所述PUSCH上除了解调参考信号DMRS所占的资源之外的所有资源,或所述第一信息占据所述PUSCH上除了DMRS所在的时域符号之外的所有资源。
应理解,根据本申请实施例的终端设备700可对应于本申请方法实施例中的终端设备,并且终端设备700中的各个单元的上述和其它操作和/或功能分别为了实现图4方法中终端设备的相应流程,为了简洁,在此不再赘述。
图16示出了本申请实施例的终端设备800的示意性框图。如图16所示,该终端设备800包括:
处理单元810,用于确定向网络设备发送的上行反馈信息和侧行反馈信息;
收发单元820,用于在不同的时域资源上向所述网络设备发送所述上行反馈信息和所述侧行反馈信息。
可选地,在本申请实施例中,所述收发单元还用于:获取第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第一传输资源;获取第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第二传输资源,所述第一传输资源和所述第二传输资源在时域上不重叠;所述收发单元具体用于:在所述第一传输资源上向所述网络设备发送所述上行反馈信息以及在所述第二传输资源上向所述网络设备发送所述侧行反馈信息。
可选地,在本申请实施例中,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
可选地,在本申请实施例中,所述处理单元具体用于:接收第二终端设备发送的所述侧行反馈信息。
可选地,在本申请实施例中,所述处理单元具体用于:接收第二终端设备发送的侧行参考信号和/或侧行数据;根据所述侧行参考信号的测量结果和/或所述侧行数据的解调结果,确定所述侧行反馈信息。
可选地,在本申请实施例中,所述处理单元具体用于:若所述第一终端设备未检测到第二终端设备发送的侧行反馈信息,或所述第一终端设备检测到针对向所述第二终端设备发送的侧行数据的侧行反馈信息的状态是非连续传输DTX状态,将向所述网络设备发送的侧行反馈信息确定为否定应答NACK。
可选地,在本申请实施例中,所述第一传输资源为物理上行控制信道PUCCH或物理上行共享信道PUSCH,和/或所述第二传输资源为PUCCH或PUSCH。
可选地,在本申请实施例中,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI和信道状态信息参考信号资源指示CRI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI、侧行RI和侧行CRI。
应理解,根据本申请实施例的终端设备800可对应于本申请方法实施例中的终端设备,并且终端设备800中的各个单元的上述和其它操作和/或功能分别为了实现图9和图10方法中终端设备的相应流程,为了简洁,在此不再赘述。
图17示出了本申请实施例的终端设备900的示意性框图。如图17所示,该终端设备900包括:
收发单元910,用于若用于传输上行反馈信息的传输资源和用于传输侧行反馈信息的传输资源在时域上有重叠,向所述网络设备发送所述上行反馈信息或所述侧行反馈信息。
可选地,在本申请实施例中,所述收发单元还用于:获取第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第一传输资源;获取第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第二传输资源,所述第一传输资源和所述第二传输资源在时域上有重叠;所述收发单元具体用于:在所述第一传输资源上发送所述上行反馈信息或在所述第二传输资源上发送所述侧行反馈信息。
可选地,在本申请实施例中,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
可选地,在本申请实施例中,所述收发单元还用于:接收第二终端设备发送的所述侧行反馈信息。
可选地,在本申请实施例中,所述收发单元还用于:接收第二终端设备发送的侧行参考信号和/或侧行数据;所述终端设备还包括:处理单元,用于根据所述侧行参考信号的测量结果和/或所述侧行数据的解调结果,确定所述侧行反馈信息。
可选地,在本申请实施例中,所述终端设备还包括:处理单元,用于若所述第一终端设备未检测到第二终端设备发送的侧行反馈信息,或所述第一终端设备检测到针对向所述第二终端设备发送的侧行数据的侧行反馈信息的状态是非连续传输DTX状态,将向网络设备发送的侧行反馈信息确定为否定应答NACK。
可选地,在本申请实施例中,所述收发单元具体用于:根据第一准则,向所述网络设备发送所述上行反馈信息或和所述侧行反馈信息。
可选地,在本申请实施例中,所述第一准则包括以下准则中的至少一种准则:反馈信息的类型,所述侧行反馈信息所对应的侧行数据的第一属性与第一门限的大小关系,所述第一终端设备接收到所述上行反馈信息对应的下行数据和所述侧行反馈信息的时间先后顺序。
可选地,在本申请实施例中,所述第一属性包括以下信息中的至少一种信息:优先级信息、时延信息、可靠性信息、传输速率信息和通信距离信息。
可选地,在本申请实施例中,所述第一门限是协议预定义的,或所述第一门限是网络配置的。
可选地,在本申请实施例中,所述第一属性包括优先级信息,所述收发单元具体用于:若所述优先级信息的值大于或大于等于所述第一门限,向所述网络设备发送所述上行反馈信息;或若所述优先级信息的值小于或小于等于所述第一门限,向所述网络设备发送所述侧行反馈信息。
可选地,在本申请实施例中,所述第一属性包括时延信息,所述收发单元具体用于:若所述时延信息的值大于或大于等于所述第一门限,向所述网络设备发送所述上行反馈信息;或若所述时延信息的值小于或小于等于所述第一门限,向所述网络设备发送所述侧行反馈信息。
可选地,在本申请实施例中,所述第一准则包括所述第一终端设备接收到所述上行反馈信息对应的下行数据和所述侧行反馈信息的时间先后顺序,所述收发单元具体用于:若所述第一终端设备先接收到所述下行数据,向所述网络设备发送所述上行反馈信息;或若所述第一终端设备先接收到所述侧行反馈信息,向所述网络设备发送所述侧行反馈信息。
可选地,在本申请实施例中,所述第一传输资源为物理上行控制信道PUCCH或物理上行共享信道PUSCH,和/或所述第二传输资源为PUCCH或PUSCH。
可选地,在本申请实施例中,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI和信道状态信息参考信号资源指示CRI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI、侧行RI和侧行CRI。
应理解,根据本申请实施例的终端设备900可对应于本申请方法实施例中的终端设备,并且终端设备900中的各个单元的上述和其它操作和/或功能分别为了实现图12方法中终端设备的相应流程,为了简洁,在此不再赘述。
图18示出了本申请实施例的网络设备1000的示意性框图。如图18所示,该网络设备1000包括:
收发单元1010,用于在一个上行信道上接收第一终端设备发送的第一信息,所述第一信息用于指示上行反馈信息和侧行反馈信息。
可选地,在本申请实施例中,所述上行信道为物理上行控制信道PUCCH,所述第一信息是通过对经过比特与操作的所述上行反馈信息和经过比特与操作的所述侧行反馈信息进行比特级联操作之后生成的,或所述第一信息是通过对所述侧行反馈信息和经过比特与操作的所述上行反馈信息进行比特级联操作之后生成的,或所述第一信息是通过对所述上行反馈信息和经过比特与操作的所述侧行反馈信息进行比特级联操作之后生成的,或所述第一信息是通过对所述上行反馈信息和所述侧行反馈信息进行比特与操作之后生成的,或所述第一信息是通过对所述上行反馈信息和所述侧行反馈信息进行比特级联操作之后生成的。
可选地,在本申请实施例中,所述上行信道为物理上行共享信道PUSCH,所述第一信息占用所述PUSCH上的第一传输资源,所述第一传输资源是通过打孔方式或者速率匹配方式确定的。
可选地,在本申请实施例中,所述第一信息包括数据反馈信息,若所述数据反馈信息的比特序列小于或等于K比特,所述数据反馈信息所占用的资源是通过打孔方式确定的;若所述数据反馈信息的比特序列大于K比特,所述数据反馈信息所占用的资源是通过速率匹配方式确定,其中,K为正整数,所述数据反馈信息包括混合自动重传请求HARQ肯定应答ACK/否定应答NACK和/或侧行HARQ ACK/NACK。
可选地,在本申请实施例中,所述数据反馈信息包括所述HARQ ACK/NACK和所述侧行HARQ ACK/NACK,所述数据反馈信息的比特序列是通过对所述HARQ ACK/NACK与所述侧行HARQ ACK/NACK进行比特级联操作或比特与操作获得的。
可选地,在本申请实施例中,所述数据反馈信息包括所述HARQ ACK/NACK和所述侧行HARQ ACK/NACK,所述HARQ ACK/NACK占用所述PUSCH上的第二传输资源,所述侧行HARQ ACK/NACK占用所述PUSCH上的第三传输资源,所述第二传输资源和所述第三传输资源是正交的资源。
可选地,在本申请实施例中,所述第一信息包括信道反馈信息,所述信道反馈信息所占用的资源是通过速率匹配方式确定的,其中,所述信道反馈信息包括以下信息中的至少一种信息:信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI、路损信息、信道状态信息参考信号资源指示CRI、侧行CSI、侧行CQI、侧行PMI、侧行RI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息和侧行CRI。
可选地,在本申请实施例中,所述第一信息包括所述上行反馈信息和所述侧行反馈信息,所述上行反馈信息和所述侧行反馈信息通过所述PUSCH上的正交资源传输。
可选地,在本申请实施例中,所述第一信息包括数据反馈信息和信道反馈信息,所述数据反馈信息和所述信道反馈信息通过所述PUSCH上的正交资源传输。
可选地,在本申请实施例中,所述收发单元还用于:向所述第一终端设备发送第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第四传输资源;向所述第一终端设备发送第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第五传输资源;在所述第四传输资源或所述第五传输资源上接收所述一个上行信道承载的所述第一信息。
可选地,在本申请实施例中,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
可选地,在本申请实施例中,所述收发单元还用于:向所述第一终端设备发送第三配置信息,所 述第三配置信息用于指示用于传输所述上行反馈信息对应的下行数据的第六传输资源或传输所述侧行反馈信息对应的侧行数据的第七传输资源。
可选地,在本申请实施例中,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI和信道状态信息参考信号资源指示CRI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI、侧行RI和侧行CRI。
可选地,在本申请实施例中,所述上行信道为物理上行共享信道PUSCH,所述PUSCH上没有上行数据传输,所述第一信息占据所述PUSCH上除了解调参考信号DMRS所占的资源之外的所有资源,或所述第一信息占据所述PUSCH上除了DMRS所在的时域符号之外的所有资源。
应理解,根据本申请实施例的网络设备1000可对应于本申请方法实施例中的网络设备,并且网络设备1000中的各个单元的上述和其它操作和/或功能分别为了实现图13方法中网络设备的相应流程,为了简洁,在此不再赘述。
图19示出了本申请实施例的网络设备2000的示意性框图。如图19所示,该网络设备2000包括:
收发单元2010,用于向第一终端设备发送第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第一传输资源;以及向所述第二终端设备发送第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第二传输资源,所述第一传输资源和所述第二传输资源在时域上不重叠;以及在所述第一传输资源上接收所述第一终端设备发送的上行反馈信息以及在所述第二传输资源上接收所述第一终端设备发送的侧行反馈信息。
可选地,在本申请实施例中,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
可选地,在本申请实施例中,所述第一传输资源为物理上行控制信道PUCCH或物理上行共享信道PUSCH,和/或所述第二传输资源为PUCCH或PUSCH。
可选地,在本申请实施例中,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI和信道状态信息参考信号资源指示CRI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI、侧行RI和侧行CRI。
应理解,根据本申请实施例的网络设备2000可对应于本申请方法实施例中的网络设备,并且网络设备2000中的各个单元的上述和其它操作和/或功能分别为了实现图14方法中网络设备的相应流程,为了简洁,在此不再赘述。
如图20所示,本申请实施例还提供了一种终端设备3000,该终端设备3000可以是图15中的终端设备700,其能够用于执行与图4中方法100对应的终端设备的内容。该终端设备3000还可以是图16中的终端设备800,其能够用于执行与图9和图10中方法200和300对应的终端设备的内容。该终端设备3000还可以是图17中的终端设备900,其能够用于执行与图11中方法400对应的终端设备的内容。图20所示的终端设备3000包括处理器3010,处理器3010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图20所示,终端设备3000还可以包括存储器3020。其中,处理器3010可以从存储器3020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器3020可以是独立于处理器3010的一个单独的器件,也可以集成在处理器3010中。
可选地,如图20所示,终端设备3000还可以包括收发器3030,处理器3010可以控制该收发器3030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器3030可以包括发射机和接收机。收发器3030还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该终端设备3000可为本申请实施例的终端设备,并且该终端设备3000可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
一个具体的实施方式中,终端设备700/800/900中的处理单元可以由图20中的处理器3010实现。终端设备700/800/900中的收发单元可以由图20中的收发器3030实现。
如图21所示,本申请实施例还提供了一种网络设备4000,该网络设备4000可以是图18中的网 络设备1000,其能够用于执行与图13中方法500对应的网络设备的内容。该网络设备4000还可以是图19中的网络设备2000,其能够用于执行与图14中方法600对应的网络设备的内容。图21所示的网络设备4000包括处理器4010,处理器4010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图21所示,网络设备4000还可以包括存储器4020。其中,处理器4010可以从存储器4020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器4020可以是独立于处理器4010的一个单独的器件,也可以集成在处理器4010中。
可选地,如图21所示,网络设备4000还可以包括收发器4030,处理器4010可以控制该收发器4030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器4030可以包括发射机和接收机。收发器4030还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该网络设备4000可为本申请实施例的网络设备,并且该网络设备4000可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
一个具体的实施方式中,网络设备1000/2000中的处理单元可以由图21中的处理器4010实现。网络设备1000/2000中的收发单元可以由图21中的收发器4030实现。
图22是本申请实施例的芯片的示意性结构图。图22所示的芯片5000包括处理器5010,处理器5010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图22所示,芯片5000还可以包括存储器5020。其中,处理器5010可以从存储器5020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器5020可以是独立于处理器5010的一个单独的器件,也可以集成在处理器5010中。
可选地,该芯片5000还可以包括输入接口5030。其中,处理器5010可以控制该输入接口5030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片5000还可以包括输出接口5040。其中,处理器5010可以控制该输出接口5040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图23是本申请实施例提供的一种通信系统6000的示意性框图。如图23所示,该通信系统6000包括网络设备6010和终端设备6020。
其中,该网络设备6010可以用于实现上述方法中由网络设备实现的相应的功能,以及该终端设备6020可以用于实现上述方法中由终端设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、 电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请 各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (147)

  1. 一种传输信息的方法,其特征在于,包括:
    第一终端设备获取上行反馈信息和侧行反馈信息;
    所述第一终端设备在一个上行信道上向网络设备发送第一信息,所述第一信息用于指示所述上行反馈信息和所述侧行反馈信息。
  2. 根据权利要求1所述的方法,其特征在于,所述上行信道为物理上行控制信道PUCCH,所述方法还包括:
    所述第一终端设备对经过比特与操作的所述上行反馈信息和经过比特与操作的所述侧行反馈信息进行比特级联操作,生成所述第一信息,或
    所述第一终端设备对所述侧行反馈信息和经过比特与操作的所述上行反馈信息进行比特级联操作,生成所述第一信息,或
    所述第一终端设备对所述上行反馈信息和经过比特与操作的所述侧行反馈信息进行比特级联操作,生成所述第一信息,或
    所述第一终端设备对所述上行反馈信息和所述侧行反馈信息进行比特与操作,生成所述第一信息,或
    所述第一终端设备对所述上行反馈信息和所述侧行反馈信息进行比特级联操作,生成所述第一信息。
  3. 根据权利要求1所述的方法,其特征在于,所述上行信道为物理上行共享信道PUSCH,所述第一信息占用所述PUSCH上的第一传输资源,所述第一传输资源是通过打孔方式或者速率匹配方式确定的。
  4. 根据权利要求3所述的方法,其特征在于,所述第一信息包括数据反馈信息,若所述数据反馈信息的比特序列小于或等于K比特,所述数据反馈信息所占用的资源是通过打孔方式确定的;若所述数据反馈信息的比特序列大于K比特,所述数据反馈信息所占用的资源是通过速率匹配方式确定的,其中,K为正整数,所述数据反馈信息包括混合自动重传请求HARQ肯定应答ACK/否定应答NACK和/或侧行HARQ ACK/NACK。
  5. 根据权利要求4所述的方法,其特征在于,所述数据反馈信息包括所述HARQ ACK/NACK和所述侧行HARQ ACK/NACK,所述数据反馈信息的比特序列是通过对所述HARQ ACK/NACK与所述侧行HARQ ACK/NACK进行比特级联操作或比特与操作获得的。
  6. 根据权利要求4所述的方法,其特征在于,所述数据反馈信息包括所述HARQ ACK/NACK和所述侧行HARQ ACK/NACK,所述HARQ ACK/NACK占用所述PUSCH上的第二传输资源,所述侧行HARQ ACK/NACK占用所述PUSCH上的第三传输资源,所述第二传输资源和所述第三传输资源是正交的资源。
  7. 根据权利要求3至6中任一项所述的方法,其特征在于,所述第一信息包括信道反馈信息,所述信道反馈信息所占用的资源是通过速率匹配方式确定的,其中,所述信道反馈信息包括以下信息中的至少一种信息:信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI、路损信息、信道状态信息参考信号资源指示CRI、侧行CSI、侧行CQI、侧行PMI、侧行RI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息和侧行CRI。
  8. 根据权利要3、4、6和7中任一项所述的方法,其特征在于,所述第一信息包括所述上行反馈信息和所述侧行反馈信息,所述上行反馈信息和所述侧行反馈信息通过所述PUSCH上的正交资源传输。
  9. 根据权利要3至8中任一项所述的方法,其特征在于,所述第一信息包括数据反馈信息和信道反馈信息,所述数据反馈信息和所述信道反馈信息通过所述PUSCH上的正交资源传输。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备确定所述上行信道的传输资源。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备获取第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第四传输资源;
    所述第一终端设备获取第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第五传输资源;
    所述第一终端设备确定所述上行信道的传输资源,包括:
    所述第一终端设备将所述第四传输资源或所述第五传输资源确定为所述上行信道的传输资源。
  12. 根据权利要求11所述的方法,其特征在于,所述第一终端设备将所述第四传输资源或所述第五传输资源确定为所述上行信道的传输资源,包括:
    所述第一终端设备根据所述第四传输资源和所述第五传输资源在时域上的先后顺序,将所述第四传输资源或所述第五传输资源确定为所述上行信道的传输资源。
  13. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备获取第三配置信息,所述第三配置信息用于指示用于传输所述上行反馈信息对应的下行数据的第六传输资源或传输所述侧行反馈信息对应的侧行数据的第七传输资源;
    所述第一终端设备确定所述上行信道的传输资源,包括:
    所述第一终端设备根据所述第六传输资源或所述第七传输资源,确定所述上行信道的传输资源。
  14. 根据权利要求11或12所述的方法,其特征在于,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第一终端设备获取侧行反馈信息,包括:
    所述第一终端设备接收第二终端设备发送的所述侧行反馈信息。
  16. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第一终端设备获取侧行反馈信息,包括:
    若所述第一终端设备未检测到第二终端设备发送的侧行反馈信息,或所述第一终端设备检测到针对向所述第二终端设备发送的侧行数据的侧行反馈信息的状态是非连续传输DTX状态,所述第一终端设备将所述第一信息指示的侧行反馈信息确定为否定应答NACK。
  17. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第一终端设备获取侧行反馈信息,包括:
    所述第一终端设备接收第二终端设备发送的侧行参考信号和/或侧行数据;
    所述第一终端设备根据所述侧行参考信号的测量结果和/或所述侧行数据的解调结果,确定所述侧行反馈信息。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收第一物理下行控制信道PDCCH,所述第一PDCCH用于指示所述侧行反馈信息对应的侧行数据的传输资源;
    所述第二终端设备接收第二PDCCH,所述第二PDCCH用于指示所述上行反馈信息对应的下行数据的传输资源,所述第一PDCCH与所述第二PDCCH不同。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI和信道状态信息参考信号资源指示CRI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI、侧行RI和侧行CRI。
  20. 根据权利要求1所述的方法,其特征在于,所述上行信道为物理上行共享信道PUSCH,所述PUSCH上没有上行数据传输,所述第一信息占据所述PUSCH上除了解调参考信号DMRS所占的资源之外的所有资源,或所述第一信息占据所述PUSCH上除了DMRS所在的时域符号之外的所有资源。
  21. 一种传输信息的方法,其特征在于,包括:
    第一终端设备确定向网络设备发送的上行反馈信息和侧行反馈信息;
    所述第一终端设备在不同的时域资源上向所述网络设备发送所述上行反馈信息和所述侧行反馈信息。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备获取第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第一传输资源;
    所述第一终端设备获取第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第二传输资源,所述第一传输资源和所述第二传输资源在时域上不重叠;
    所述第一终端设备在不同的时域资源上向所述网络设备发送所述上行反馈信息和所述侧行反馈信息,包括:
    所述第一终端设备在所述第一传输资源上向所述网络设备发送所述上行反馈信息以及在所述第二传输资源上向所述网络设备发送所述侧行反馈信息。
  23. 根据权利要求22所述的方法,其特征在于,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述第一终端设备确定向网络设备发送的侧行反馈信息,包括:
    所述第一终端设备接收第二终端设备发送的所述侧行反馈信息。
  25. 根据权利要求21至23中任一项所述的方法,其特征在于,所述第一终端设备确定向网络设备发送的侧行反馈信息,包括:
    所述第一终端设备接收第二终端设备发送的侧行参考信号和/或侧行数据;
    所述第一终端设备根据所述侧行参考信号的测量结果和/或所述侧行数据的解调结果,确定所述侧行反馈信息。
  26. 根据权利要求21至23中任一项所述的方法,其特征在于,所述第一终端设备确定向网络设备发送的侧行反馈信息,包括:
    若所述第一终端设备未检测到第二终端设备发送的侧行反馈信息,或所述第一终端设备检测到针对向所述第二终端设备发送的侧行数据的侧行反馈信息的状态是非连续传输DTX状态,所述第一终端设备将向所述网络设备发送的侧行反馈信息确定为否定应答NACK。
  27. 根据权利要求22或23所述的方法,其特征在于,所述第一传输资源为物理上行控制信道PUCCH或物理上行共享信道PUSCH,和/或所述第二传输资源为PUCCH或PUSCH。
  28. 根据权利要求21至27中任一项所述的方法,其特征在于,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI和信道状态信息参考信号资源指示CRI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI、侧行RI和侧行CRI。
  29. 一种传输信号的方法,其特征在于,包括:
    若用于传输上行反馈信息的传输资源和用于传输侧行反馈信息的传输资源在时域上有重叠,所述第一终端设备向所述网络设备发送所述上行反馈信息或所述侧行反馈信息。
  30. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备获取第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第一传输资源;
    所述第一终端设备获取第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第二传输资源,所述第一传输资源和所述第二传输资源在时域上有重叠;
    所述第一终端设备向所述网络设备发送所述上行反馈信息或所述侧行反馈信息,包括:
    所述第一终端设备在所述第一传输资源上发送所述上行反馈信息或在所述第二传输资源上发送所述侧行反馈信息。
  31. 根据权利要求30所述的方法,其特征在于,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
  32. 根据权利要求29至31中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收第二终端设备发送的所述侧行反馈信息。
  33. 根据权利要求29至31中任一项所述的方法,其特征在于,所述方法包括:
    所述第一终端设备接收第二终端设备发送的侧行参考信号和/或侧行数据;
    所述第一终端设备根据所述侧行参考信号的测量结果和/或所述侧行数据的解调结果,确定所述侧行反馈信息。
  34. 根据权利要求29至31中任一项所述的方法,其特征在于,所述方法还包括:
    若所述第一终端设备未检测到第二终端设备发送的侧行反馈信息,或所述第一终端设备检测到针对向所述第二终端设备发送的侧行数据的侧行反馈信息的状态是非连续传输DTX状态,所述第一终端设备将向网络设备发送的侧行反馈信息确定为否定应答NACK。
  35. 根据权利要求29至34中任一项所述的方法,其特征在于,所述第一终端设备向所述网络设备发送所述上行反馈信息或所述侧行反馈信息,包括:
    所述第一终端设备根据第一准则,向所述网络设备发送所述上行反馈信息或所述侧行反馈信息。
  36. 根据权利要求35所述的方法,其特征在于,所述第一准则包括以下准则中的至少一种准则:反馈信息的类型,所述侧行反馈信息对应的侧行数据的第一属性与第一门限的大小关系,所述第一终端设备接收到所述上行反馈信息对应的下行数据和所述侧行反馈信息的时间先后顺序。
  37. 根据权利要求36所述的方法,其特征在于,所述第一属性包括以下信息中的至少一种信息:优先级信息、时延信息、可靠性信息、传输速率信息和通信距离信息。
  38. 根据权利要求36或37所述的方法,其特征在于,所述第一门限是协议预定义的,或所述第一门限是网络配置的。
  39. 根据权利要求36或37所述的方法,其特征在于,所述第一属性包括优先级信息,所述第一终端设备根据第一准则,向所述网络设备发送所述上行反馈信息或所述侧行反馈信息,包括:
    若所述优先级信息的值大于或大于等于所述第一门限,所述第一终端设备向所述网络设备发送所述上行反馈信息;或
    若所述优先级信息的值小于或小于等于所述第一门限,所述第一终端设备向所述网络设备发送所述侧行反馈信息。
  40. 根据权利要求36或37所述的方法,其特征在于,所述第一属性包括时延信息,所述第一终端设备根据第一准则,向所述网络设备发送所述上行反馈信息或所述侧行反馈信息,包括:
    若所述时延信息的值大于或大于等于所述第一门限,所述第一终端设备向所述网络设备发送所述上行反馈信息;或
    若所述时延信息的值小于或小于等于所述第一门限,所述第一终端设备向所述网络设备发送所述侧行反馈信息。
  41. 根据权利要求35或36所述的方法,其特征在于,所述第一准则包括所述第一终端设备接收到所述上行反馈信息对应的下行数据和所述侧行反馈信息的时间先后顺序,所述第一终端设备根据第一准则,向所述网络设备发送所述上行反馈信息和所述侧行反馈信息中的一种信息,包括:
    若所述第一终端设备先接收到所述下行数据,所述第一终端设备向所述网络设备发送所述上行反馈信息;或
    若所述第一终端设备先接收到所述侧行反馈信息,所述第一终端设备向所述网络设备发送所述侧行反馈信息。
  42. 根据权利要求30或31所述的方法,其特征在于,所述第一传输资源为物理上行控制信道PUCCH或物理上行共享信道PUSCH,和/或所述第二传输资源为PUCCH或PUSCH。
  43. 根据权利要求29至42中任一项所述的方法,其特征在于,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI、信道状态信息参考信号资源指示CRI;和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行波束信息、侧行PMI、侧行RI、侧行CQI和侧行CRI。
  44. 一种传输信息的方法,其特征在于,包括:
    网络设备在一个上行信道上接收第一终端设备发送的第一信息,所述第一信息用于指示上行反馈信息和侧行反馈信息。
  45. 根据权利要求44所述的方法,其特征在于,所述上行信道为物理上行控制信道PUCCH,所述第一信息是通过对经过比特与操作的所述上行反馈信息和经过比特与操作的所述侧行反馈信息进行比特级联操作之后生成的,或所述第一信息是通过对所述侧行反馈信息和经过比特与操作的所述上行反馈信息进行比特级联操作之后生成的,或所述第一信息是通过对所述上行反馈信息和经过比特与操作的所述侧行反馈信息进行比特级联操作之后生成的,或所述第一信息是通过对所述上行反馈信息和所述侧行反馈信息进行比特与操作之后生成的,或所述第一信息是通过对所述上行反馈信息和所述侧行反馈信息进行比特级联操作之后生成的。
  46. 根据权利要求44所述的方法,其特征在于,所述上行信道为物理上行共享信道PUSCH,所述第一信息占用所述PUSCH上的第一传输资源,所述第一传输资源是通过打孔方式或者速率匹配方式确定的。
  47. 根据权利要求46所述的方法,其特征在于,所述第一信息包括数据反馈信息,若所述数据反馈信息的比特序列小于或等于K比特,所述数据反馈信息所占用的资源是通过打孔方式确定的;若所述数据反馈信息的比特序列大于K比特,所述数据反馈信息所占用的资源是通过速率匹配方式确定的,其中,K为正整数,所述数据反馈信息包括混合自动重传请求HARQ肯定应答ACK/否定应答 NACK和/或侧行HARQ ACK/NACK。
  48. 根据权利要求47所述的方法,其特征在于,所述数据反馈信息包括所述HARQ ACK/NACK和所述侧行HARQ ACK/NACK,所述数据反馈信息的比特序列是通过对所述HARQ ACK/NACK与所述侧行HARQ ACK/NACK进行比特级联操作或比特与操作获得的。
  49. 根据权利要求47所述的方法,其特征在于,所述数据反馈信息包括所述HARQ ACK/NACK和所述侧行HARQ ACK/NACK,所述HARQ ACK/NACK占用所述PUSCH上的第二传输资源,所述侧行HARQ ACK/NACK占用所述PUSCH上的第三传输资源,所述第二传输资源和所述第三传输资源是正交的资源。
  50. 根据权利要求46至49中任一项所述的方法,其特征在于,所述第一信息包括信道反馈信息,所述信道反馈信息所占用的资源是通过速率匹配方式确定的,其中,所述信道反馈信息包括以下信息中的至少一种信息:信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI、路损信息、信道状态信息参考信号资源指示CRI、侧行CSI、侧行CQI、侧行PMI、侧行RI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息和侧行CRI。
  51. 根据权利要46、47、49和50中任一项所述的方法,其特征在于,所述第一信息包括所述上行反馈信息和所述侧行反馈信息,所述上行反馈信息和所述侧行反馈信息通过所述PUSCH上的正交资源传输。
  52. 根据权利要求46至51中任一项所述的方法,其特征在于,所述第一信息包括数据反馈信息和信道反馈信息,所述数据反馈信息和所述信道反馈信息通过所述PUSCH上的正交资源传输。
  53. 根据权利要求44至52中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述第一终端设备发送第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第四传输资源;
    所述网络设备向所述第一终端设备发送第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第五传输资源;
    所述网络设备在所述第四传输资源或所述第五传输资源上接收所述一个上行信道承载的所述第一信息。
  54. 根据权利要求53所述的方法,其特征在于,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
  55. 根据权利要求44至54中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述第一终端设备发送第三配置信息,所述第三配置信息用于指示用于传输所述上行反馈信息对应的下行数据的第六传输资源或传输所述侧行反馈信息对应的侧行数据的第七传输资源。
  56. 根据权利要求44至55中任一项所述的方法,其特征在于,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI和侧行RI。
  57. 根据权利要求44所述的方法,其特征在于,所述上行信道为物理上行共享信道PUSCH,所述PUSCH上没有上行数据传输,所述第一信息占据所述PUSCH上除了解调参考信号DMRS所占的资源之外的所有资源,或所述第一信息占据所述PUSCH上除了DMRS所在的时域符号之外的所有资源。
  58. 一种传输信息的方法,其特征在于,包括:
    网络设备向第一终端设备发送第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第一传输资源;
    所述网络设备向所述第二终端设备发送第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第二传输资源,所述第一传输资源和所述第二传输资源在时域上不重叠;
    所述网络设备在所述第一传输资源上接收所述第一终端设备发送的上行反馈信息以及在所述第二传输资源上接收所述第一终端设备发送的侧行反馈信息。
  59. 根据权利要求58所述的方法,其特征在于,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
  60. 根据权利要求58或59所述的方法,其特征在于,所述第一传输资源为物理上行控制信道 PUCCH或物理上行共享信道PUSCH,和/或所述第二传输资源为PUCCH或PUSCH。
  61. 根据权利要求58至60中任一项所述的方法,其特征在于,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI和信道状态信息参考信号资源指示CRI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI、侧行RI和侧行CRI。
  62. 一种终端设备,其特征在于,所述终端设备为第一终端设备,所述终端设备包括:
    处理单元,用于获取上行反馈信息和侧行反馈信息;
    收发单元,用于在一个上行信道上向网络设备发送第一信息,所述第一信息用于指示所述上行反馈信息和所述侧行反馈信息。
  63. 根据权利要求62所述的终端设备,其特征在于,所述上行信道为物理上行控制信道PUCCH,所述处理单元还用于:
    对经过比特与操作的所述上行反馈信息和经过比特与操作的所述侧行反馈信息进行比特级联操作,生成所述第一信息,或
    对所述侧行反馈信息和经过比特与操作的所述上行反馈信息进行比特级联操作,生成所述第一信息,或
    对所述上行反馈信息和经过比特与操作的所述侧行反馈信息进行比特级联操作,生成所述第一信息,或
    对所述上行反馈信息和所述侧行反馈信息进行比特与操作,生成所述第一信息,或
    对所述上行反馈信息和所述侧行反馈信息进行比特级联操作,生成所述第一信息。
  64. 根据权利要求62所述的终端设备,其特征在于,所述上行信道为物理上行共享信道PUSCH,所述第一信息占用所述PUSCH上的第一传输资源,所述第一传输资源是通过打孔方式或者速率匹配方式确定的。
  65. 根据权利要求64所述的终端设备,其特征在于,所述第一信息包括数据反馈信息,若所述数据反馈信息的比特序列小于或等于K比特,所述数据反馈信息所占用的资源是通过打孔方式确定的;若所述数据反馈信息的比特序列大于K比特,所述数据反馈信息所占用的资源是通过速率匹配方式确定的,其中,K为正整数,所述数据反馈信息包括混合自动重传请求HARQ肯定应答ACK/否定应答NACK和/或侧行HARQ ACK/NACK。
  66. 根据权利要求65所述的终端设备,其特征在于,所述数据反馈信息包括所述HARQ ACK/NACK和所述侧行HARQ ACK/NACK,所述数据反馈信息的比特序列是通过对所述HARQ ACK/NACK与所述侧行HARQ ACK/NACK进行比特级联操作或比特与操作获得的。
  67. 根据权利要求65所述的终端设备,其特征在于,所述数据反馈信息包括所述HARQ ACK/NACK和所述侧行HARQ ACK/NACK,所述HARQ ACK/NACK占用所述PUSCH上的第二传输资源,所述侧行HARQ ACK/NACK占用所述PUSCH上的第三传输资源,所述第二传输资源和所述第三传输资源是正交的资源。
  68. 根据权利要求64至67中任一项所述的终端设备,其特征在于,所述第一信息包括信道反馈信息,所述信道反馈信息所占用的资源是通过速率匹配方式确定的,其中,所述信道反馈信息包括以下信息中的至少一种信息:信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI、路损信息、信道状态信息参考信号资源指示CRI、侧行CSI、侧行CQI、侧行PMI、侧行RI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息和侧行CRI。
  69. 根据权利要64、65、67和68中任一项所述的终端设备,其特征在于,所述第一信息包括所述上行反馈信息和所述侧行反馈信息,所述上行反馈信息和所述侧行反馈信息通过所述PUSCH上的正交资源传输。
  70. 根据权利要求64至69中任一项所述的终端设备,其特征在于,所述第一信息包括数据反馈信息和信道反馈信息,所述数据反馈信息和所述信道反馈信息通过所述PUSCH上的正交资源传输。
  71. 根据权利要求62至70中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    确定所述上行信道的传输资源。
  72. 根据权利要求71所述的终端设备,其特征在于,所述收发单元还用于:
    获取第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第四传输资源;
    获取第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第五传输资源;
    所述处理单元具体用于:
    将所述第四传输资源或所述第五传输资源确定为所述上行信道的传输资源。
  73. 根据权利要求72所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述第四传输资源和所述第五传输资源在时域上的先后顺序,将所述第四传输资源或所述第五传输资源确定为所述上行信道的传输资源。
  74. 根据权利要求71所述的终端设备,其特征在于,所述收发单元还用于:
    获取第三配置信息,所述第三配置信息用于指示用于传输所述上行反馈信息对应的下行数据的第六传输资源或传输所述侧行反馈信息对应的侧行数据的第七传输资源;
    所述处理单元具体用于:
    根据所述第六传输资源或所述第七传输资源,确定所述上行信道的传输资源。
  75. 根据权利要求72或73所述的终端设备,其特征在于,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
  76. 根据权利要求62至75中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    接收第二终端设备发送的所述侧行反馈信息。
  77. 根据权利要求62至75中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    若所述第一终端设备未检测到第二终端设备发送的侧行反馈信息,或所述第一终端设备检测到针对向所述第二终端设备发送的侧行数据的侧行反馈信息的状态是非连续传输DTX状态,将所述第一信息指示的侧行反馈信息确定为否定应答NACK。
  78. 根据权利要求62至75中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    接收第二终端设备发送的侧行参考信号和/或侧行数据;
    根据所述侧行参考信号的测量结果和/或所述侧行数据的解调结果,确定所述侧行反馈信息。
  79. 根据权利要求62至78中任一项所述的终端设备,其特征在于,所述收发单元还用于:
    接收第一物理下行控制信道PDCCH,所述第一PDCCH用于指示所述侧行反馈信息对应的侧行数据的传输资源;
    接收第二PDCCH,所述第二PDCCH用于指示所述上行反馈信息对应的下行数据的传输资源,所述第一PDCCH与所述第二PDCCH不同。
  80. 根据权利要求62至79中任一项所述的终端设备,其特征在于,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI和信道状态信息参考信号资源指示CRI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI、侧行RI和侧行CRI。
  81. 根据权利要求62所述的终端设备,其特征在于,所述上行信道为物理上行共享信道PUSCH,所述PUSCH上没有上行数据传输,所述第一信息占据所述PUSCH上除了解调参考信号DMRS所占的资源之外的所有资源,或所述第一信息占据所述PUSCH上除了DMRS所在的时域符号之外的所有资源。
  82. 一种终端设备,其特征在于,所述终端设备为第一终端设备,所述终端设备包括:
    处理单元,用于确定向网络设备发送的上行反馈信息和侧行反馈信息;
    收发单元,用于在不同的时域资源上向所述网络设备发送所述上行反馈信息和所述侧行反馈信息。
  83. 根据权利要求82所述的终端设备,其特征在于,所述收发单元还用于:
    获取第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第一传输资源;
    获取第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第二传输资源,所述第一传输资源和所述第二传输资源在时域上不重叠;
    所述收发单元具体用于:
    在所述第一传输资源上向所述网络设备发送所述上行反馈信息以及在所述第二传输资源上向所述网络设备发送所述侧行反馈信息。
  84. 根据权利要求83所述的终端设备,其特征在于,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
  85. 根据权利要求82至84中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    接收第二终端设备发送的所述侧行反馈信息。
  86. 根据权利要求82至84中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    接收第二终端设备发送的侧行参考信号或侧行数据;
    根据所述侧行参考信号的测量结果或所述侧行数据的解调结果,确定所述侧行反馈信息。
  87. 根据权利要求82至84中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    若所述第一终端设备未检测到第二终端设备发送的侧行反馈信息,或所述第一终端设备检测到针对向所述第二终端设备发送的侧行数据的侧行反馈信息的状态是非连续传输DTX状态,将向所述网络设备发送的侧行反馈信息确定为否定应答NACK。
  88. 根据权利要求83或84所述的终端设备,其特征在于,所述第一传输资源为物理上行控制信道PUCCH或物理上行共享信道PUSCH,和/或所述第二传输资源为PUCCH或PUSCH。
  89. 根据权利要求82至88中任一项所述的终端设备,其特征在于,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI和信道状态信息参考信号资源指示CRI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI、侧行RI和侧行CRI。
  90. 一种终端设备,其特征在于,所述终端设备为第一终端设备,所述终端设备包括:
    收发单元,用于若用于传输上行反馈信息的传输资源和用于传输侧行反馈信息的传输资源在时域上有重叠,向所述网络设备发送所述上行反馈信息或所述侧行反馈信息。
  91. 根据权利要求90所述的终端设备,其特征在于,所述收发单元还用于:
    获取第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第一传输资源;
    获取第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第二传输资源,所述第一传输资源和所述第二传输资源在时域上有重叠;
    所述收发单元具体用于:
    在所述第一传输资源上发送所述上行反馈信息或在所述第二传输资源上发送所述侧行反馈信息。
  92. 根据权利要求91所述的终端设备,其特征在于,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
  93. 根据权利要求90至92中任一项所述的终端设备,其特征在于,所述收发单元还用于:
    接收第二终端设备发送的所述侧行反馈信息。
  94. 根据权利要求90至92中任一项所述的终端设备,其特征在于,所述收发单元还用于:
    接收第二终端设备发送的侧行参考信号和/或侧行数据;
    所述终端设备还包括:
    处理单元,用于根据所述侧行参考信号的测量结果和/或所述侧行数据的解调结果,确定所述侧行反馈信息。
  95. 根据权利要求90至92中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    处理单元,用于若所述第一终端设备未检测到第二终端设备发送的侧行反馈信息,或所述第一终端设备检测到针对向所述第二终端设备发送的侧行数据的侧行反馈信息的状态是非连续传输DTX状态,将向网络设备发送的侧行反馈信息确定为否定应答NACK。
  96. 根据权利要求90至95中任一项所述的终端设备,其特征在于,所述收发单元具体用于:
    根据第一准则,向所述网络设备发送所述上行反馈信息或所述侧行反馈信息。
  97. 根据权利要求96所述的终端设备,其特征在于,所述第一准则包括以下准则中的至少一种准则:反馈信息的类型,所述侧行反馈信息对应的侧行数据的第一属性与第一门限的大小关系,所述第一终端设备接收到所述上行反馈信息对应的下行数据和所述侧行反馈信息的时间先后顺序。
  98. 根据权利要求97所述的终端设备,其特征在于,所述第一属性包括以下信息中的至少一种信息:优先级信息、时延信息、可靠性信息、传输速率信息和通信距离信息。
  99. 根据权利要求97或98所述的终端设备,其特征在于,所述第一门限是协议预定义的,或所述第一门限是网络配置的。
  100. 根据权利要求97或98所述的终端设备,其特征在于,所述第一属性包括优先级信息,所述收发单元具体用于:
    若所述优先级信息的值大于或大于等于所述第一门限,向所述网络设备发送所述上行反馈信息;或
    若所述优先级信息的值小于或小于等于所述第一门限,向所述网络设备发送所述侧行反馈信息。
  101. 根据权利要求97或98所述的终端设备,其特征在于,所述第一属性包括时延信息,所述收发单元具体用于:
    若所述时延信息的值大于或大于等于所述第一门限,向所述网络设备发送所述上行反馈信息;或
    若所述时延信息的值小于或小于等于所述第一门限,向所述网络设备发送所述侧行反馈信息。
  102. 根据权利要求96或97所述的终端设备,其特征在于,所述第一准则包括所述第一终端设备接收到所述上行反馈信息对应的下行数据和所述侧行反馈信息的时间先后顺序,所述收发单元具体用于:
    若所述第一终端设备先接收到所述下行数据,向所述网络设备发送所述上行反馈信息;或
    若所述第一终端设备先接收到所述侧行反馈信息,向所述网络设备发送所述侧行反馈信息。
  103. 根据权利要求91或92所述的终端设备,其特征在于,所述第一传输资源为物理上行控制信道PUCCH或物理上行共享信道PUSCH,和/或所述第二传输资源为PUCCH或PUSCH。
  104. 根据权利要求90至103中任一项所述的终端设备,其特征在于,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI和信道状态信息参考信号资源指示CRI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI、侧行RI和侧行CRI。
  105. 一种网络设备,其特征在于,所述网络设备包括:
    收发单元,用于在一个上行信道上接收第一终端设备发送的第一信息,所述第一信息用于指示上行反馈信息和侧行反馈信息。
  106. 根据权利要求105所述的网络设备,其特征在于,所述上行信道为物理上行控制信道PUCCH,所述第一信息是通过对经过比特与操作的所述上行反馈信息和经过比特与操作的所述侧行反馈信息进行比特级联操作之后生成的,或所述第一信息是通过对所述侧行反馈信息和经过比特与操作的所述上行反馈信息进行比特级联操作之后生成的,或所述第一信息是通过对所述上行反馈信息和经过比特与操作的所述侧行反馈信息进行比特级联操作之后生成的,或所述第一信息是通过对所述上行反馈信息和所述侧行反馈信息进行比特与操作之后生成的,或所述第一信息是通过对所述上行反馈信息和所述侧行反馈信息进行比特级联操作之后生成的。
  107. 根据权利要求105所述的网络设备,其特征在于,所述上行信道为物理上行共享信道PUSCH,所述第一信息占用所述PUSCH上的第一传输资源,所述第一传输资源是通过打孔方式或者速率匹配方式确定的。
  108. 根据权利要求107所述的网络设备,其特征在于,所述第一信息包括数据反馈信息,若所述数据反馈信息的比特序列小于或等于K比特,所述数据反馈信息所占用的资源是通过打孔方式确定的;若所述数据反馈信息的比特序列大于K比特,所述数据反馈信息所占用的资源是通过速率匹配方式确定的,其中,K为正整数,所述数据反馈信息包括混合自动重传请求HARQ肯定应答ACK/否定应答NACK和/或侧行HARQ ACK/NACK。
  109. 根据权利要求108所述的网络设备,其特征在于,所述数据反馈信息包括所述HARQ ACK/NACK和所述侧行HARQ ACK/NACK,所述数据反馈信息的比特序列是通过对所述HARQ ACK/NACK与所述侧行HARQ ACK/NACK进行比特级联操作或比特与操作获得的。
  110. 根据权利要求108所述的网络设备,其特征在于,所述数据反馈信息包括所述HARQ ACK/NACK和所述侧行HARQ ACK/NACK,所述HARQ ACK/NACK占用所述PUSCH上的第二传输资源,所述侧行HARQ ACK/NACK占用所述PUSCH上的第三传输资源,所述第二传输资源和所述第三传输资源是正交的资源。
  111. 根据权利要求107至110中任一项所述的网络设备,其特征在于,所述第一信息包括信道反馈信息,所述信道反馈信息所占用的资源是通过速率匹配方式确定的,其中,所述信道反馈信息包括以下信息中的至少一种信息:信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI、路损信息、信道状态信息参考信号资源指示CRI、侧行CSI、侧行CQI、侧行PMI、侧行RI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息和侧行CRI。
  112. 根据权利要求107、108、110和111中任一项所述的网络设备,其特征在于,所述第一信息包括所述上行反馈信息和所述侧行反馈信息,所述上行反馈信息和所述侧行反馈信息通过所述 PUSCH上的正交资源传输。
  113. 根据权利要求107至112中任一项所述的网络设备,其特征在于,所述第一信息包括数据反馈信息和信道反馈信息,所述数据反馈信息和所述信道反馈信息通过所述PUSCH上的正交资源传输。
  114. 根据权利要求105至113中任一项所述的网络设备,其特征在于,所述收发单元还用于:
    向所述第一终端设备发送第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第四传输资源;
    向所述第一终端设备发送第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第五传输资源;
    在所述第四传输资源或所述第五传输资源上接收所述一个上行信道承载的所述第一信息。
  115. 根据权利要求114所述的网络设备,其特征在于,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
  116. 根据权利要求105至115中任一项所述的网络设备,其特征在于,所述收发单元还用于:
    向所述第一终端设备发送第三配置信息,所述第三配置信息用于指示用于传输所述上行反馈信息对应的下行数据的第六传输资源或传输所述侧行反馈信息对应的侧行数据的第七传输资源。
  117. 根据权利要求105至116中任一项所述的网络设备,其特征在于,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI和信道状态信息参考信号资源指示CRI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI、侧行RI和侧行CRI。
  118. 根据权利要求105所述的网络设备,其特征在于,所述上行信道为物理上行共享信道PUSCH,所述PUSCH上没有上行数据传输,所述第一信息占据所述PUSCH上除了解调参考信号DMRS所占的资源之外的所有资源,或所述第一信息占据所述PUSCH上除了DMRS所在的时域符号之外的所有资源。
  119. 一种网络设备,其特征在于,所述网络设备包括:
    收发单元,用于向第一终端设备发送第一配置信息,所述第一配置信息用于指示用于传输所述上行反馈信息的第一传输资源;以及
    向所述第二终端设备发送第二配置信息,所述第二配置信息用于指示用于传输所述侧行反馈信息的第二传输资源,所述第一传输资源和所述第二传输资源在时域上不重叠;以及
    在所述第一传输资源上接收所述第一终端设备发送的上行反馈信息以及在所述第二传输资源上接收所述第一终端设备发送的侧行反馈信息。
  120. 根据权利要求119所述的网络设备,其特征在于,所述第二配置信息还用于指示用于传输所述侧行反馈信息对应的侧行数据的传输资源。
  121. 根据权利要求119或120所述的网络设备,其特征在于,所述第一传输资源为物理上行控制信道PUCCH或物理上行共享信道PUSCH,和/或所述第二传输资源为PUCCH或PUSCH。
  122. 根据权利要求119至121中任一项所述的网络设备,其特征在于,所述上行反馈信息包括以下信息中的至少一种信息:混合自动重传请求HARQ肯定应答ACK、HARQ否定应答NACK、信道状态信息CSI、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、路损信息、波束信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收的信号强度指示RSSI和信道状态信息参考信号资源指示CRI,和/或所述侧行反馈信息包括以下信息中的至少一种信息:侧行HARQ ACK、侧行HARQ NACK、侧行CSI、侧行CQI、侧行波束信息、侧行RSRP、侧行RSRQ、侧行RSSI、侧行路损信息、侧行PMI、侧行RI和侧行CRI。
  123. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至20中任一项所述的方法。
  124. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求21至28中任一项所述的方法。
  125. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求29至43中任一项所述的 方法。
  126. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求44至57中任一项所述的方法。
  127. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求58至61中任一项所述的方法。
  128. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至20中任一项所述的方法。
  129. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求21至28中任一项所述的方法。
  130. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求29至43中任一项所述的方法。
  131. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求44至57中任一项所述的方法。
  132. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求58至61中任一项所述的方法。
  133. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至20中任一项所述的方法。
  134. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求21至28中任一项所述的方法。
  135. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求29至43中任一项所述的方法。
  136. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求44至57中任一项所述的方法。
  137. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求58至61中任一项所述的方法。
  138. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至20中任一项所述的方法。
  139. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求21至28中任一项所述的方法。
  140. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求29至43中任一项所述的方法。
  141. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求44至57中任一项所述的方法。
  142. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求58至61中任一项所述的方法。
  143. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至20中任一项所述的方法。
  144. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求21至28中任一项所述的方法。
  145. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求29至43中任一项所述的方法。
  146. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求44至57中任一项所述的方法。
  147. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求58至61中任一项所述的方法。
PCT/CN2019/075958 2019-02-22 2019-02-22 传输信息的方法、终端设备和网络设备 WO2020168574A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/CN2019/075958 WO2020168574A1 (zh) 2019-02-22 2019-02-22 传输信息的方法、终端设备和网络设备
CN202111076395.XA CN113783663B (zh) 2019-02-22 2019-02-22 传输信息的方法、终端设备和网络设备
CN201980089562.9A CN113316906A (zh) 2019-02-22 2019-02-22 传输信息的方法、终端设备和网络设备
BR112021016569A BR112021016569A2 (pt) 2019-02-22 2019-02-22 Método de transmissão de informações, dispositivo terminal e dispositivo de rede
EP19915834.6A EP3920446A4 (en) 2019-02-22 2019-02-22 INFORMATION TRANSMISSION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CA3131039A CA3131039A1 (en) 2019-02-22 2019-02-22 Information transmission method, terminal device, and network device
JP2021549576A JP7412437B2 (ja) 2019-02-22 2019-02-22 情報伝送方法、端末デバイス及びネットワークデバイス
US17/408,373 US11647503B2 (en) 2019-02-22 2021-08-21 Information transmission method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075958 WO2020168574A1 (zh) 2019-02-22 2019-02-22 传输信息的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/408,373 Continuation US11647503B2 (en) 2019-02-22 2021-08-21 Information transmission method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2020168574A1 true WO2020168574A1 (zh) 2020-08-27

Family

ID=72143658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075958 WO2020168574A1 (zh) 2019-02-22 2019-02-22 传输信息的方法、终端设备和网络设备

Country Status (7)

Country Link
US (1) US11647503B2 (zh)
EP (1) EP3920446A4 (zh)
JP (1) JP7412437B2 (zh)
CN (2) CN113316906A (zh)
BR (1) BR112021016569A2 (zh)
CA (1) CA3131039A1 (zh)
WO (1) WO2020168574A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022226991A1 (zh) * 2021-04-30 2022-11-03 华为技术有限公司 一种资源指示方法、装置及系统
EP4266607A1 (en) 2022-04-21 2023-10-25 Continental Automotive Technologies GmbH Re-transmission of a transmitted concatenation packet by a sending device, especially a base station device or a terminal device of a telecommunication network

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171669A1 (ko) * 2019-02-24 2020-08-27 엘지전자 주식회사 무선통신시스템에서 사이드 링크 단말이 채널 상태보고에 관련된 신호를 송수신하는 방법 및 장치
CN110536445A (zh) * 2019-04-30 2019-12-03 中兴通讯股份有限公司 Ue信息的报告方法、车辆网资源配置方法及装置
WO2020261350A1 (ja) * 2019-06-24 2020-12-30 株式会社Nttドコモ 端末及び通信方法
US11910429B2 (en) * 2019-10-30 2024-02-20 Qualcomm Incorporated Feedback reporting for sidelink
CN110945826B (zh) * 2019-11-08 2023-02-17 北京小米移动软件有限公司 反馈方法、反馈装置及存储介质
US11937277B2 (en) * 2019-12-20 2024-03-19 Qualcomm Incorporated Concurrent sidelink and uplink transmission
US20230101382A1 (en) * 2021-09-27 2023-03-30 Qualcomm Incorporated Precoding for sidelink communications
WO2023142122A1 (zh) * 2022-01-30 2023-08-03 Oppo广东移动通信有限公司 通信方法、装置、终端设备、芯片、介质、产品及程序

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559165A (zh) * 2015-09-24 2017-04-05 华为技术有限公司 一种反馈信道状态信息的方法及设备
CN108347313A (zh) * 2017-01-24 2018-07-31 华为技术有限公司 反馈方法及用户设备
CN108631952A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种反馈信息传输方法、终端设备和接入网设备
CN108809545A (zh) * 2017-05-04 2018-11-13 华为技术有限公司 传输上行控制信息的方法和装置
CN109302220A (zh) * 2017-07-25 2019-02-01 华为技术有限公司 用于数据传输的方法、装置和系统
CN109309518A (zh) * 2017-07-26 2019-02-05 华为技术有限公司 用于数据传输的方法、装置和系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10455587B2 (en) * 2014-12-05 2019-10-22 Lg Electronics Inc. Method and apparatus for terminal to transmit and receive signal using sidelinks between devices
US11082994B2 (en) * 2016-04-01 2021-08-03 Lg Electronics Inc. Method for V2X communication performed by means of terminal in wireless communication system and terminal using same
US10779308B2 (en) 2016-08-11 2020-09-15 Qualcomm Incorporated Priority based resource selection in a device-to-device communication system
EP3605981B1 (en) 2017-03-23 2021-09-22 NTT DoCoMo, Inc. User terminal and wireless communication method
US11943652B2 (en) * 2018-06-28 2024-03-26 Interdigital Patent Holdings, Inc. Prioritization procedures for NR V2X sidelink shared channel data transmission
CN111385862B (zh) * 2018-12-29 2021-08-13 华为技术有限公司 一种功率控制方法及装置
CN109792594B (zh) * 2018-12-29 2022-05-20 北京小米移动软件有限公司 直连通信的数据传输方法、装置、设备及系统
US20210105126A1 (en) * 2019-10-02 2021-04-08 Comcast Cable Communications, Llc Feedback for Wireless Communications
WO2021120031A1 (en) * 2019-12-18 2021-06-24 Mediatek Singapore Pte. Ltd. Methods and apparatus of transmission prioritization between uplink and sidelink
US11770835B2 (en) * 2020-02-28 2023-09-26 Qualcomm Incorporated Sidelink and uplink prioritized cancellation
US20220103303A1 (en) * 2020-09-25 2022-03-31 Qualcomm Incorporated Type 3 hybrid automatic repeat request codebook for sidelink

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559165A (zh) * 2015-09-24 2017-04-05 华为技术有限公司 一种反馈信道状态信息的方法及设备
CN108347313A (zh) * 2017-01-24 2018-07-31 华为技术有限公司 反馈方法及用户设备
CN108631952A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种反馈信息传输方法、终端设备和接入网设备
CN108809545A (zh) * 2017-05-04 2018-11-13 华为技术有限公司 传输上行控制信息的方法和装置
CN109302220A (zh) * 2017-07-25 2019-02-01 华为技术有限公司 用于数据传输的方法、装置和系统
CN109309518A (zh) * 2017-07-26 2019-02-05 华为技术有限公司 用于数据传输的方法、装置和系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3920446A4 *
SPREADTRUM COMMUNICATIONS: "Consideration on physical layer procedures", 3GPP DRAFT; R1-1813075_CONSIDERATION ON PHYSICAL LAYER PROCEDURES_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; France, XP051555058 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022226991A1 (zh) * 2021-04-30 2022-11-03 华为技术有限公司 一种资源指示方法、装置及系统
EP4266607A1 (en) 2022-04-21 2023-10-25 Continental Automotive Technologies GmbH Re-transmission of a transmitted concatenation packet by a sending device, especially a base station device or a terminal device of a telecommunication network
WO2023202816A1 (en) 2022-04-21 2023-10-26 Continental Automotive Technologies GmbH Re-transmission of a transmitted concatenation packet by a sending device, especially a base station device or a terminal device of a telecommunication network

Also Published As

Publication number Publication date
JP2022525732A (ja) 2022-05-19
CN113316906A (zh) 2021-08-27
EP3920446A4 (en) 2022-03-02
CA3131039A1 (en) 2020-08-27
US11647503B2 (en) 2023-05-09
EP3920446A1 (en) 2021-12-08
US20210385845A1 (en) 2021-12-09
BR112021016569A2 (pt) 2021-11-03
CN113783663B (zh) 2023-06-09
CN113783663A (zh) 2021-12-10
JP7412437B2 (ja) 2024-01-12

Similar Documents

Publication Publication Date Title
WO2020168574A1 (zh) 传输信息的方法、终端设备和网络设备
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
WO2021008056A1 (zh) 用于传输侧行数据的方法、终端设备和网络设备
WO2020143065A1 (zh) 侧行通信的方法、终端设备和网络设备
US20220046698A1 (en) Wireless communication method, terminal device and network device
WO2020029199A1 (zh) 传输信息的方法、终端设备和网络设备
WO2020191636A1 (zh) 通信方法、终端设备和网络设备
TWI744346B (zh) 傳輸反饋信息的方法、終端設備和基站
WO2021134796A1 (zh) 无线通信的方法和终端设备
WO2021003620A1 (zh) 下行信号传输的方法和设备
CN114710839B (zh) 无线通信方法和终端设备
WO2020252708A1 (zh) 无线通信方法、终端设备和网络设备
WO2020191778A1 (zh) 重传资源配置方法、设备、芯片及计算机程序
TW202017404A (zh) 一種訊息傳輸方法、設備及存儲媒介
WO2020143062A1 (zh) 无线通信方法和终端
WO2021203392A1 (zh) 边链路传输方法以及装置
WO2020103028A1 (zh) 一种传输数据的方法和终端设备
US20210258961A1 (en) Data transmission method and device
WO2019028965A1 (zh) 传输数据的方法和装置
WO2020029558A1 (zh) 反馈信息的方法、终端、芯片和存储介质
WO2021092923A1 (zh) 无线通信方法、终端设备和网络设备
WO2020215218A1 (zh) 用于传输侧行数据的方法和终端设备
CN111885715B (zh) 信道传输方法及相关设备
WO2020155183A1 (zh) 无线通信方法、网络设备和终端设备
US20240080846A1 (en) Method for transmitting control information and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3131039

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021549576

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021016569

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019915834

Country of ref document: EP

Effective date: 20210903

ENP Entry into the national phase

Ref document number: 112021016569

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210820