WO2020168562A1 - 数据的传输方法、装置、设备及存储介质 - Google Patents

数据的传输方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2020168562A1
WO2020168562A1 PCT/CN2019/075932 CN2019075932W WO2020168562A1 WO 2020168562 A1 WO2020168562 A1 WO 2020168562A1 CN 2019075932 W CN2019075932 W CN 2019075932W WO 2020168562 A1 WO2020168562 A1 WO 2020168562A1
Authority
WO
WIPO (PCT)
Prior art keywords
demodulation pilot
retransmission
data
transmission
end device
Prior art date
Application number
PCT/CN2019/075932
Other languages
English (en)
French (fr)
Inventor
徐婧
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980075268.2A priority Critical patent/CN113039736B/zh
Priority to PCT/CN2019/075932 priority patent/WO2020168562A1/zh
Publication of WO2020168562A1 publication Critical patent/WO2020168562A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a data transmission method, device, device, and storage medium.
  • dynamic transmission there are two data transmission methods: dynamic transmission and semi-continuous/semi-static transmission.
  • DCI Downlink Control Information
  • Semi-persistent/semi-static transmission is characterized in that transmission resources and transmission modes are both semi-persistent/semi-statically configured, and no physical layer signaling scheduling is required during transmission.
  • typical semi-persistent/semi-static transmission includes uplink configuration grant (Configured grant) and downlink semi-persistent schedule (Semi-persistent schedule, SPS).
  • the semi-persistent mode refers to the configuration of part of the transmission mode/transmission resource parameters through radio resource control (Radio Resource Control, RRC) signaling.
  • Transmission mode/transmission resources mainly include reference signal configuration, time-frequency domain resource configuration, multi-antenna transmission configuration, hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) process configuration, etc.
  • the RRC signaling mainly includes pusch-ConfigCommon, pusch -Config, ConfiguredGrantConfig (not including the rrc-ConfiguredUplinkGrant part), other transmission methods/transmission resource parameters are configured through DCI, and DCI also has the function of activating/releasing transmission.
  • Retransmission means that in addition to the specific transmission mode, it also includes HARQ process number and new data indicator (NDI) information to ensure repeated transmission of the same data.
  • NDI new data indicator
  • the network device cannot receive the information correctly, so it sends a retransmission DCI signaling to schedule the retransmission of the same HARQ process data.
  • the terminal device For downlink transmission, if the terminal device cannot receive the information correctly, it will feed back a negative answer (Negative ACKnowledgment, NACK) to the network device for data retransmission.
  • NACK Negative ACKnowledgment
  • the HARQ process number of the initial transmission is determined by time domain resources, and the retransmission is indicated by the DCI to indicate the corresponding HARQ process number and the New data indicator is set to ‘1’, which means retransmission.
  • the current semi-static/semi-persistent transmission still relies on DCI, and complete semi-static/semi-persistent transmission cannot be achieved. DCI resources are still reserved and the system efficiency is low.
  • the embodiments of the present application provide a data transmission method, device, equipment, and storage medium, which are used to solve the problem that the current semi-static/semi-persistent transmission still relies on DCI, cannot achieve complete semi-static/semi-persistent transmission, and still needs to be reserved DCI resources and low system efficiency.
  • an embodiment of the present application may provide a data transmission method, and the method includes:
  • the first indication information includes NDI.
  • the first indication information is carried by control information or demodulation pilot.
  • the first indication information is carried by demodulation pilot, the corresponding relationship between demodulation pilot sequence and retransmission/new transmission, or the relationship between demodulation pilot port and retransmission/new transmission The corresponding relationship is agreed in advance.
  • the sending end device includes a terminal device
  • the receiving end device includes a network device
  • the method further includes:
  • Receiving RRC information sent by the receiving end device, where the RRC information is used to configure authorized transmission configuration, and the authorized transmission configuration includes:
  • the method further includes:
  • Receive RRC information sent by the receiving end device where the RRC information is used to configure authorized transmission configuration, and the authorized transmission configuration includes: demodulation pilot sequence and/or demodulation pilot port used for newly transmitted data
  • the method further includes: the terminal device receives the DCI sent by the network device, and activates SPS transmission.
  • embodiments of the present application may provide a data transmission method, the method including:
  • the first indication information includes NDI.
  • the first indication information is carried by control information or demodulation pilot.
  • the first indication information is carried by demodulation pilot, the corresponding relationship between demodulation pilot sequence and retransmission/new transmission, or the relationship between demodulation pilot port and retransmission/new transmission The corresponding relationship is agreed in advance.
  • embodiments of the present application may provide a data transmission device, including:
  • the sending module is configured to send data and first indication information to the receiving end device, where the first indication information is used to indicate whether the transmitted data is a retransmission or a new transmission.
  • embodiments of the present application may provide a data transmission device, including:
  • a receiving module configured to receive data and first indication information sent by a sending end device, where the first indication information is used to indicate whether the transmitted data is a retransmission or a new transmission;
  • the processing module is configured to determine whether the data is retransmitted or newly transmitted according to the first indication information.
  • the embodiments of the present application may provide a sending end device, including:
  • Interface for communication between processor, memory, receiver, transmitter and receiver device
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the data transmission method provided in any one of the first aspect.
  • the foregoing processor may be a chip.
  • embodiments of the present application may provide a receiving end device, including:
  • the interface for communication between the processor, memory, transmitter and the transmitting end device
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the data transmission method provided by any one of the second aspects.
  • the foregoing processor may be a chip.
  • the embodiments of the present application may provide a computer-readable storage medium having computer-executable instructions stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, they are used to implement any of the first aspect. A method of transmitting the provided data.
  • an embodiment of the present application may provide a computer-readable storage medium having a computer-executable instruction stored in the computer-readable storage medium, and when the computer-executable instruction is executed by a processor, it is used to implement any aspect of the second aspect.
  • a method of transmitting the provided data may be provided.
  • an embodiment of the present application provides a program, when the program is executed by a processor, it is used to execute the data transmission method provided in any one of the first aspects.
  • an embodiment of the present application provides a program, when the program is executed by a processor, it is used to execute the data transmission method provided in any one of the second aspects.
  • an embodiment of the present application provides a computer program product, including program instructions, which are used to implement the data transmission method provided in any one of the first aspects.
  • an embodiment of the present application provides a computer program product, including program instructions, which are used to implement the data transmission method provided in any one of the second aspects.
  • an embodiment of the present application provides a chip, which includes a processing module and a communication interface, and the processing module can execute the data transmission method provided in any one of the first aspect.
  • the chip also includes a storage module (eg, memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the first aspect Any data transmission method provided.
  • a storage module eg, memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the first aspect Any data transmission method provided.
  • an embodiment of the present application provides a chip, including a processing module and a communication interface, and the processing module can execute the data transmission method provided in any one of the second aspect.
  • the chip also includes a storage module (eg, memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the second aspect Any data transmission method provided.
  • a storage module eg, memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the second aspect Any data transmission method provided.
  • the sending end device when the sending end device sends data to the receiving end device, it also sends first indication information for indicating whether the data is retransmitted or newly transmitted, so as to The receiving end device determines whether the data is retransmitted or newly transmitted according to the first indication information.
  • the first indication information can be carried by demodulation pilot or control information, without DCI indication, so that data transmission does not need to rely on DCI, which can greatly Reduce the overhead of the downlink control channel and improve the system efficiency.
  • FIG. 1 is a schematic diagram of a communication system applied in an embodiment of this application
  • Embodiment 1 of a data transmission method provided by an embodiment of this application;
  • FIG. 3 is a flowchart of Embodiment 2 of a data transmission method provided by an embodiment of this application;
  • Embodiment 4 is a flowchart of Embodiment 3 of the data transmission method provided by an embodiment of this application;
  • FIG. 5 is a schematic diagram of a downlink SPS transmission example 1 provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of Example 1 of uplink semi-persistent transmission according to an embodiment of the application.
  • FIG. 7 is a schematic diagram of Example 1 of uplink semi-static transmission provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of a PDSCH structure provided by an embodiment of the application.
  • Embodiment 9 is a schematic structural diagram of Embodiment 1 of a data transmission device provided by this application.
  • Embodiment 10 is a schematic structural diagram of Embodiment 2 of a data transmission device provided by this application;
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of a sending end device provided by this application.
  • FIG. 12 is a schematic structural diagram of Embodiment 1 of a receiving end device provided by this application.
  • Configured grant transmission includes two methods: semi-persistent and semi-static.
  • the semi-persistent mode refers to the configuration of part of the transmission mode/transmission resource parameters through radio resource control (Radio Resource Control, RRC) signaling.
  • Transmission mode/transmission resources mainly include reference signal configuration, time-frequency domain resource configuration, multi-antenna transmission configuration, hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) process configuration, etc.
  • the RRC signaling mainly includes pusch-ConfigCommon, pusch -Config, ConfiguredGrantConfig (not including the rrc-ConfiguredUplinkGrant part), other transmission modes/transmission resource parameters are configured through Downlink Control Information (DCI), and DCI also has the function of activating/releasing transmission. Take the following transmission as an example.
  • DCI Downlink Control Information
  • Transmission mode/transmission resources mainly include reference signal configuration, time-frequency domain resource configuration, multi-antenna transmission configuration, HARQ process configuration, etc.
  • the RRC signaling mainly includes pusch-ConfigCommon, pusch-Config, and ConfiguredGrantConfig (including rrc-ConfiguredUplinkGrant part).
  • the retransmission instruction includes the HARQ process number and NDI information to ensure repeated transmission of the same data.
  • the network device cannot receive the information correctly, so it sends a retransmission DCI signaling to schedule the retransmission of the same HARQ process data.
  • the terminal device cannot receive the information correctly, it will feed back NACK to the network device for data retransmission.
  • the HARQ process number of the initial transmission is determined by time domain resources, and the retransmission is indicated by the DCI to indicate the corresponding HARQ process number and the New data indicator is set to ‘1’, which means retransmission. Therefore, the semi-static/semi-persistent transmission in the prior art still relies on DCI, and complete semi-static/semi-persistent transmission cannot be achieved. DCI resources are still reserved, and the system efficiency is low.
  • the embodiments of the present application provide a data transmission method.
  • the demodulation pilot or control information carries identification data to be newly transmitted/retransmitted data, without DCI indication, so that data transmission does not need to rely on DCI. It greatly reduces the overhead of the downlink control channel and improves the system efficiency.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NR NR system evolution system
  • LTE on unlicensed frequency bands LTE-based access to unlicensed spectrum, LTE-U
  • NR NR-based access to unlicensed spectrum, NR-U
  • UMTS Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiMAX Wireless Local Area Networks
  • WLAN Wireless Fidelity
  • WiFi next-generation communication systems or other communication systems, etc.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • FIG. 1 is a schematic diagram of a communication system applied in an embodiment of this application.
  • the communication system 100 may include a network device 110, and the network device 110 may communicate with a terminal device 120 (or called a communication terminal or terminal). device of.
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN public switched telephone networks
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120, that is, the technical solution provided in this application may also be applied to the communication between two terminal devices.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the network device may be an access device, for example, an access device in the NR-U system, such as 5G's New Radio Access Technology (NR) base station (next generation Node B, gNB) ) Or small station, micro station, it can also be relay station, transmission and reception point (Transmission and Reception Point, TRP), road side unit (Road Side Unit, RSU), etc.
  • NR New Radio Access Technology
  • gNB next generation Node B
  • TRP Transmission and Reception Point
  • RSU road side unit
  • Terminal equipment can also be called mobile terminal, user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, user terminal, terminal, wireless communication equipment, user agent or user device .
  • UE user equipment
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • terminal terminal
  • wireless communication equipment user agent or user device
  • it can be smart phones, cellular phones, cordless phones, personal digital assistant (PDA) devices, handheld devices with wireless communication functions, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, etc.
  • the terminal device has an interface for communicating with a network device (for example, a cellular network).
  • a network device for example, a cellular network
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the end that sends data is called the sender device, and the end that receives the data is called the receiver device.
  • the transmitting end device may be a network device, and the receiving end device may be a terminal device, that is, for downlink data transmission; the transmitting end device may also be a terminal device, and the receiving end device may be a network device, that is, For uplink data transmission, this application is not restricted.
  • FIG. 2 is a flowchart of Embodiment 1 of the data transmission method provided by this application. As shown in FIG. 2, the method is applied between a sending end device and a receiving end device.
  • the sending end device may be a network device or a terminal device.
  • the receiving end device may also be a terminal device or a network device, which specifically includes the following steps:
  • S101 Send data and first indication information to the receiving end device, where the first indication information is used to indicate whether the transmitted data is retransmission or new transmission.
  • the receiving end device receives the first indication information and data sent by the sending end device.
  • the sender device first indicates information according to whether the data to be sent is newly transmitted data or retransmitted data, and sends the first instruction information to the receiver device.
  • the first indication information may be NDI or other forms of information, so that the receiving end device can determine whether the data is newly transmitted or retransmitted. What information is specifically used to indicate the application is not limited.
  • the first indication information can be carried at least through control information and demodulation pilots and sent to the receiving end device.
  • the transmission of the first indication information includes at least the following methods:
  • the first indication information is carried by demodulating the pilot.
  • the demodulation pilot is used for data demodulation, and the demodulation pilot usually uses a sequence, such as a pseudo-random sequence.
  • a sequence such as a pseudo-random sequence.
  • ports are introduced.
  • the demodulation pilots of different ports are distinguished in one or more dimensions in the time domain, frequency domain, and code domain. Accordingly, when the demodulation pilot is used to carry the first indication information, the sequence and/or port can be used to distinguish between retransmission and new transmission.
  • the sending end device gives an instruction
  • the receiving end device and the sending end device need to know the sequence and/or port and the new transmission/retransmission in advance.
  • the sequence and/or port and the new transmission/retransmission include the following specific scenarios.
  • the transmitting end device selects an appropriate demodulation pilot sequence for transmission according to the type of data when sending, and the receiving end device determines the type of data according to the demodulation pilot sequence when receiving it.
  • the protocol stipulates the correspondence between the demodulation pilot port configuration and the new transmission or retransmission.
  • the corresponding relationship between the port of the demodulation pilot and the type of data to be transmitted is specified in the protocol, for example, it is specified that port 0 corresponds to new transmission and port 1 corresponds to retransmission.
  • the transmitting end device selects an appropriate demodulation pilot port for transmission according to the protocol, and the receiving end device can determine the type of data to be transmitted according to the demodulation pilot port when receiving.
  • the meaning of the above two schemes is: in order to be able to carry the first indication information indicating whether the data is retransmitted or newly transmitted through the demodulation pilot between the transmitting end device and the receiving end device, the network side needs to send to the terminal side through high-level signaling in advance.
  • the device is configured so that the corresponding relationship between the demodulation pilot sequence and the new transmission/retransmission is stored in the device on the terminal side, or the corresponding relationship between the demodulation pilot port configuration and the new transmission/retransmission, So that in the subsequent data transmission process, the type of data to be transmitted can be determined directly according to the demodulation pilot sequence and port.
  • the first indication information is carried through the control information.
  • the first indication information may be carried in the DCI.
  • the control information and data are coded independently, that is, the control information and the PDSCH channel are coded independently.
  • the first indication information can be carried in UCI.
  • the control information is also coded independently of the PUSCH channel, so that the receiving end device first detects the control information during the receiving process to determine whether the data is heavy. Pass or new pass.
  • S102 Determine whether the data is retransmitted or newly transmitted according to the first indication information.
  • the receiving end device when the receiving end device receives the data and the first indication information, it first determines whether the data type is retransmission or new transmission according to the first indication information.
  • the detection of the demodulation pilot needs to use related calculations to determine the demodulation pilot configuration, and then according to the demodulation pilot configuration and retransmission/new transmission. Correspondence between the two to determine whether the data is retransmitted or new. If the first indication information is carried by control information, the receiving end device directly determines that the data is newly transmitted or retransmitted based on the detection of the control information. Then decode the data to complete the data transmission.
  • the sending end device when the sending end device sends data to the receiving end device, it also sends first indication information for indicating whether the data is retransmitted or newly transmitted, so that the receiving end device can follow the first indication
  • the information determines whether the data is retransmitted or newly transmitted.
  • the first indication information can be carried by demodulation pilot or control information, without DCI indication, so that data transmission does not need to rely on DCI, which can greatly reduce the overhead of the downlink control channel and improve System efficiency.
  • Fig. 3 is a flowchart of the second embodiment of the data transmission method provided by the embodiment of the application. As shown in Fig. 3, on the basis of the above embodiment, if the sending end device is a network device and the receiving end device is a terminal device, then The data transmission method specifically includes the following steps:
  • S201 Send RRC information to the receiving end device, and configure the SPS transmission configuration for the receiving end device;
  • the sending end device is a network device
  • the receiving end device is a terminal device.
  • the network device first needs to send RRC information to the terminal device to complete the configuration of the semi-permanent scheduling transmission process and configure related Resources.
  • the network equipment and terminal equipment in order for the network equipment and terminal equipment to determine whether the data is retransmission or new transmission according to the first indication information during data transmission, they need to know the demodulation pilot sequence/port and the new transmission in advance.
  • the corresponding relationship between retransmissions generally speaking, the corresponding relationship may be agreed in the protocol, or configured by the network device to the terminal device through high-level signaling.
  • the SPS transmission configuration of the RRC type may include: the correspondence between the demodulation pilot sequence and the retransmission/new transmission, or the demodulation pilot Correspondence between frequency port and retransmission/new transmission.
  • S202 Send DCI to the receiving end device to activate SPS transmission.
  • the network device After completing the SPS transmission configuration, the network device sends DCI to the terminal device to activate the SPS transmission.
  • the network device and the terminal device can perform data transmission in a manner of indicating that the data is retransmission/new transmission through the first indication information.
  • the corresponding relationship may also be configured to the terminal device through DCI, that is, the DCI includes: demodulation pilot sequence and retransmission/new Correspondence between transmissions, or between demodulation pilot ports and retransmissions/new transmissions.
  • the meaning of this solution is that the correspondence between demodulation pilot sequence and retransmission/new transmission, or the correspondence between demodulation pilot port and retransmission/new transmission is configured by the RRC information; Alternatively, the correspondence between the demodulation pilot sequence and the retransmission/new transmission, or the correspondence between the demodulation pilot port and the retransmission/new transmission is configured through the DCI.
  • the demodulation pilot sequence and/or demodulation pilot port used for newly transmitted data is configured through the RRC information, and the demodulation pilot used for another data The configuration is determined by the receiving end according to the agreement.
  • the demodulation pilot sequence and/or demodulation pilot port used for newly transmitted data is configured by the DCI, and the demodulation pilot configuration used for the other data is configured by the receiving end according to the protocol. determine.
  • the implementation process of the solution may also include the following steps:
  • S203 Send demodulation pilot configuration information to the receiving end device.
  • the demodulation pilot configuration information includes: the correspondence between the demodulation pilot sequence and the retransmission/new transmission, or the demodulation pilot The corresponding relationship between the port and the retransmission/new transmission; the other is that the demodulation pilot configuration information sent to the receiving end device only includes: the demodulation pilot sequence and/or solution used for the newly transmitted data Tuning the pilot port.
  • the receiving device determines the demodulation pilot configuration used to retransmit the data according to the content agreed in the agreement, so that in the subsequent data transmission process, it can determine that the transmitted data is a retransmission according to the transmitted demodulation pilot configuration /New biography.
  • S204 Send data and first indication information to the receiving end device, where the first indication information is used to indicate whether the transmitted data is retransmission or new transmission.
  • the data sent by the sending end device and the first indication information are received, and the first indication information is used to indicate whether the transmitted data is a retransmission or a new transmission;
  • S205 Determine whether the data is retransmitted or newly transmitted according to the first indication information.
  • FIG. 4 is a flowchart of Embodiment 3 of the data transmission method provided by an embodiment of the application. As shown in Figure 4, on the basis of the foregoing embodiment, if the sending end device is a terminal device and the receiving end device is a network device, then The data transmission method specifically includes the following steps:
  • the authorized transmission configuration may include: demodulating the corresponding relationship between the pilot sequence and retransmission/new transmission, or solving Adjust the correspondence between the pilot port and retransmission/new transmission.
  • the authorized transmission configuration may only include demodulation pilot sequences and/or demodulation pilot ports used for newly transmitted data (or retransmitted data).
  • the terminal device can determine the demodulation pilot sequence and/or solution used for retransmission of data (or newly transmitted data) according to the authorized transmission configuration and the demodulation pilot configuration agreed by the protocol. Tuning the pilot port.
  • the terminal device during the uplink semi-persistent transmission, the terminal device also receives the DCI sent by the network device to activate the authorized transmission.
  • the terminal device in addition to carrying the foregoing correspondence through the RRC transmission authorization configuration, the terminal device may also be configured with the foregoing correspondence through the DCI.
  • S302 Send data and first indication information to the receiving end device, where the first indication information is used to indicate whether the transmitted data is retransmission or new transmission.
  • the data and the first indication information sent by the sending end device are received, and the first indication information is used to indicate whether the transmitted data is retransmission or new transmission.
  • S303 Determine whether the data is retransmitted or newly transmitted according to the first indication information.
  • the core of the data transmission method provided by this application is to indicate newly transmitted data or retransmitted data through the first indication information when sending data, without the need for DCI indication, thereby realizing retransmission. Transmission/new transmission of data does not rely on DCI instructions, thereby improving system efficiency.
  • the following network equipment is a base station as an example. The solution is illustrated through several specific implementations. For example, the application in the uplink and downlink transmission process is described. In this solution, it should be understood that terminal equipment, also called terminal, is The meaning is similar.
  • Fig. 5 is a schematic diagram of a downlink SPS transmission example 1 provided by an embodiment of this application.
  • the first indication information in this example includes NDI information, that is, the NDI information is used to indicate whether the data is retransmitted or newly transmitted. NDI is carried by demodulating pilot information.
  • NDI is carried by demodulating pilot information.
  • Step 1 The terminal receives the RRC configuration SPS configuration (ie SPS-Config).
  • SPS-Config is the same as protocol 38.331.
  • Step 2 The terminal receives the DCI to activate the SPS transmission.
  • Step 3 Transmit data on SPS, that is, the terminal receives data on SPS resources. Based on the detection of the demodulation pilot, the demodulation pilot configuration information is determined, and then it is determined that the data is newly transmitted or retransmitted.
  • the base station sends the first indication information to the terminal in two ways: explicit and implicit.
  • the base station When sending data, the base station only needs to select the appropriate demodulation pilot sequence, and the data can be retransmitted or retransmitted. Send instructions to the terminal.
  • the demodulation pilot sequence is generated based on at least one of the following parameters: 1, n SCID , with
  • the demodulation pilot sequence is
  • the pseudo-random sequence c(i) is defined in protocol 38.211 5.2.1, and the pseudo-random sequence generator is initialized by the following formula:
  • l represents the symbol number in the time slot
  • DCI is format1_1: It is configured by scramblingID0 and scramblingID1 in RRC signaling DMRS-DownlinkConfig.
  • DCI is format1_0: It is configured by scramblingID0 in RRC signaling DMRS-DownlinkConfig.
  • the protocol stipulates the correspondence between the demodulation pilot port configuration and the new transmission/retransmission.
  • the base station When sending data, the base station only needs to select the appropriate demodulation pilot port configuration, and the data can be retransmitted or Send a new instruction to the terminal.
  • the protocol stipulates the correspondence between the demodulation pilot port and the new transmission/retransmission, for example:
  • port 0 corresponds to new transmission and port 1 corresponds to retransmission.
  • the value configured in Antenna port corresponds to new transmission
  • the value configured in Antenna port+1 corresponds to retransmission.
  • the terminal When the base station selects port 0 when transmitting, the terminal can determine that the data is new transmission, and when the base station selects port 1 when transmitting, the terminal can determine that the data is retransmitted.
  • the first indication information is transmitted in an implicit manner, and there is no additional signaling overhead in the data transmission process.
  • Dominant mode includes the mode of multiplexing the NDI domain, take this as an example for explanation
  • the protocol stipulates the initial corresponding relationship between the demodulation pilot sequence configuration and the new transmission/retransmission.
  • the base station indicates the demodulation used through the NDI field when sending data to the terminal Pilot sequence or unused demodulation pilot sequence, so that the terminal can determine whether the data is newly transmitted or retransmitted.
  • NDI can indicate an agreed relationship or an opposite relationship.
  • the so-called related relationship is: it is agreed that the newly transmitted pilot sequence configuration corresponds to the retransmission, and vice versa.
  • the protocol stipulates the initial corresponding relationship between the demodulation pilot port configuration and the new transmission/retransmission.
  • the base station indicates the demodulation pilot used by the NDI field when sending data to the terminal. Frequency port or unused demodulation pilot port, so that the terminal can determine whether the data is newly transmitted or retransmitted.
  • the NDI field indicates the use of an agreed relationship or the opposite relationship. The so-called related relationship is: it is agreed that the newly transmitted pilot port configuration corresponds to the retransmission, and vice versa.
  • this explicit method reuses the existing information domain, increases the flexibility of demodulation pilot sequence or port configuration, differentiates configuration between cells, and reduces inter-cell pilot interference.
  • the detection of the demodulation pilot adopts correlation calculation, and the terminal side uses the possible sequence/port to do the correlation calculation with the received demodulation pilot, the sequence with the highest peak value and/or exceeds a certain threshold/
  • the port configuration is the demodulation pilot configuration.
  • the terminal prioritizes the retransmission of the corresponding pilot configuration for detection. Otherwise, the pilot configuration corresponding to the new transmission is prioritized for detection.
  • the terminal determines that the data is a new transmission/retransmission, and then demodulates to obtain the transmitted data To complete the data transfer.
  • the previous example uses the protocol agreed to determine that both the base station side and the terminal side can determine the correspondence between retransmission or new transmission and demodulation pilot sequences or ports.
  • the protocol agreed to determine that both the base station side and the terminal side can determine the correspondence between retransmission or new transmission and demodulation pilot sequences or ports.
  • it is not only limited to the implementation through the protocol, but can also be configured through the high-level signaling, so that the above-mentioned corresponding relationship can be unified between the terminal and the base station.
  • the following is still in the process shown in FIG. This implementation is introduced.
  • the solution specifically includes:
  • Step 1 The terminal receives the RRC configuration SPS configuration (ie SPS-Config).
  • SPS-Config adds the corresponding relationship between demodulation pilot sequence or port configuration and new transmission/retransmission on the basis of existing content. That is, the SPS-Config includes: the correspondence between the demodulation pilot sequence and the retransmission/new transmission, or the correspondence between the demodulation pilot port and the retransmission/new transmission.
  • the difference between the new transmission/retransmission and the corresponding variable of the demodulation pilot configuration For example: the difference between the new transmission/retransmission and the corresponding variable of the demodulation pilot configuration. Specifically, the difference between the pilot sequence initialization parameter used for newly transmitted data and the pilot sequence initialization parameter used for retransmission data, or the pilot port used for newly transmitted data and the pilot sequence used for retransmission data The difference between the pilot ports.
  • the demodulation pilot configuration corresponding to the new transmission/retransmission.
  • the pilot sequence initialization parameters used for newly transmitted data Pilot sequence initialization parameters used for retransmission of data
  • the pilot port parameter Antenna port gap for NDI a used for the newly transmitted data
  • the pilot port parameter Antenna port gap for NDI b used for the retransmitted data.
  • Step 2 The terminal receives the DCI to activate the SPS transmission.
  • Step 3 The terminal receives data on the SPS resource. Based on the detection of the demodulation pilot, the demodulation pilot configuration information is determined, and then it is determined that the data is newly transmitted or retransmitted.
  • the first indication information (that is, the retransmission indication information) includes two modes: explicit and implicit.
  • demodulation pilot sequence configuration corresponds to new transmission/retransmission based on high-level signaling configuration, that is, when the base station transmits data, it only needs to select the appropriate demodulation pilot sequence, and then the data It is a retransmission or new transmission instruction to the terminal.
  • the demodulation pilot sequence is generated based on at least one of the following parameters: 1, n SCID , with E.g,
  • the demodulation pilot sequence is a
  • the pseudo-random sequence c(i) is defined in 38.211 5.2.1, and the pseudo-random sequence generator is initialized by the following formula:
  • DCI is format1_1: It is configured by scramblingID0 and scramblingID1 in RRC signaling DMRS-DownlinkConfig.
  • the value of is configured by high-level signaling:
  • the base station Based on the correspondence between the demodulation pilot port configuration and the new transmission/retransmission based on the high-level signaling configuration, the base station only needs to select the appropriate demodulation pilot port configuration when sending data, and then the data It is a retransmission or new transmission instruction to the terminal.
  • port 0+Antenna port gap for NDI corresponds to new transmission
  • port 1+Antenna port gap for NDI corresponds to retransmission.
  • the demodulation pilot port used to distinguish between new transmission and retransmission is multiplexed in CDM mode.
  • the terminal When the base station selects port 0 when transmitting, the terminal can determine that the data is new transmission, and when the base station selects port 1 when transmitting, the terminal can determine that the data is retransmitted.
  • the first indication information is transmitted in an implicit manner, and there is no additional signaling overhead in the data transmission process.
  • the high-level configuration contains the initial correspondence between the demodulation pilot sequence configuration and the new transmission/retransmission.
  • the base station transmits data to the terminal through
  • the NDI field indicates the demodulation pilot sequence used or the demodulation pilot sequence not used, so that the terminal can determine whether the data is newly transmitted or retransmitted.
  • NDI may indicate the adoption of an agreed relationship or an opposite relationship.
  • the so-called related relationship is: it is agreed that the newly transmitted pilot configuration corresponds to the retransmission, and vice versa.
  • the high-level configuration contains the initial correspondence between the demodulation pilot port configuration and the new transmission/retransmission.
  • the base station transmits data to the terminal through
  • the NDI field indicates the demodulation pilot port used or the demodulation pilot port not used, so that the terminal can determine whether the data is newly transmitted or retransmitted.
  • the NDI field indicates the use of an agreed relationship or the opposite relationship. The so-called related relationship is: it is agreed that the newly transmitted pilot configuration corresponds to the retransmission, and vice versa.
  • this explicit method reuses the existing information domain, increases the flexibility of demodulation pilot sequence or port configuration, differentiates configuration between cells, and reduces inter-cell pilot interference.
  • the detection of the demodulation pilot adopts correlation calculation, and the terminal side uses the possible sequence/port to do the correlation calculation with the received demodulation pilot, and the sequence/port with the highest peak value and/or exceeds a certain threshold is configured as the demodulation pilot.
  • Frequency configuration typically, when the terminal feeds back NACK, the terminal prioritizes the retransmission of the corresponding pilot configuration for detection. Otherwise, the pilot configuration corresponding to the new transmission is prioritized for detection. Based on the relationship between the demodulation pilot configuration and the new transmission/retransmission, the terminal determines that the data is a new transmission/retransmission for demodulation to complete the data transmission.
  • FIG. 6 is a schematic diagram of the first example of uplink semi-persistent transmission provided by an embodiment of the application.
  • the first indication information in this example includes NDI information, that is, the NDI information is used to indicate whether the data is retransmitted or newly transmitted.
  • the NDI is carried by demodulating pilot information.
  • the specific steps of the solution include:
  • Step 1 The terminal receives the RRC configuration grant (ConfiguredGrantConfig).
  • ConfiguredGrantConfig is the same as the content of the existing agreement 38.331.
  • Step 2 The terminal receives the DCI to activate the ConfiguredGrantConfig transmission.
  • the first indication information includes two modes: explicit and implicit.
  • Step 3 The terminal sends data on the Configured Grant resource. Based on whether the data is new transmission or retransmission, the configuration information of the demodulation pilot is determined, so that the base station can determine whether the data is new transmission or retransmission according to the demodulation pilot configuration information after receiving the data.
  • the terminal device may indicate to the base station that the data is new transmission or retransmission in an implicit or explicit manner, which will be described in detail below.
  • the terminal When sending data, the terminal only needs to select the appropriate demodulation pilot sequence, and the data can be retransmitted or retransmitted.
  • the demodulation pilot sequence is generated based on at least one of the following parameters: 1, n SCID , with E.g,
  • the demodulation pilot sequence is:
  • the pseudo-random sequence c(i) is defined in 38.211 5.2.1, and the pseudo-random sequence generator is initialized by the following formula:
  • n SCID ⁇ 0,1 ⁇ is indicated by the DM-RS sequence initialization field of DCI format 0_1, otherwise (DCI
  • DCI is format0_1: It is configured by scramblingID0 and scramblingID1 in RRC signaling DMRS-DownlinkConfig.
  • DCI is format0_0: It is configured by scramblingID0 in RRC signaling DMRS-DownlinkConfig.
  • the protocol stipulates the corresponding relationship between the demodulation pilot port configuration and the new transmission/retransmission.
  • the terminal When sending data, the terminal only needs to select the appropriate demodulation pilot port configuration, and the data can be retransmitted or The new instructions are sent to the base station.
  • port 0 corresponds to new transmission and port 1 corresponds to retransmission.
  • the base station When the terminal selects port 0 when transmitting, the base station can determine that the data is new transmission, and when the terminal selects port 1 when transmitting, the base station can determine that the data is retransmitted.
  • the first indication information is transmitted in an implicit manner, and there is no additional signaling overhead in the data transmission process.
  • the protocol stipulates the initial corresponding relationship between the demodulation pilot sequence configuration and the new transmission/retransmission.
  • the terminal indicates the demodulation used through the NDI field when sending data to the base station Pilot sequence or unused demodulation pilot sequence, so that the base station can determine whether the data is newly transmitted or retransmitted.
  • the NDI field indicates the use of an agreed relationship or the opposite relationship.
  • the so-called related relationship is: it is agreed that the newly transmitted pilot configuration corresponds to the retransmission, and vice versa.
  • the protocol stipulates the initial corresponding relationship between the demodulation pilot port configuration and the new transmission/retransmission.
  • the terminal indicates the demodulation pilot used through the NDI domain when sending data to the base station Port or unused demodulation pilot port, so that the base station can determine whether the data is new or retransmitted.
  • the NDI field indicates the use of an agreed relationship or the opposite relationship.
  • the so-called related relationship is: it is agreed that the newly transmitted pilot configuration corresponds to the retransmission, and vice versa.
  • the terminal determines the new transmission or retransmission based on the feedback (including implicit and explicit) of the base station.
  • the explicit configuration includes the HARQ-ACK/NACK feedback from the base station.
  • the implicit configuration includes that the base station has no feedback within a time window, indicating that the data transmission is correct.
  • the corresponding relationship between the demodulation pilot sequence configuration and the new transmission/retransmission can be a protocol agreement, or a high-level signaling configuration method can be used, which is similar to the implementation shown in Figure 5 above, and will not be repeated here.
  • this explicit method reuses the existing information domain, increases the flexibility of demodulation pilot sequence or port configuration, differentiates configuration between cells, and reduces inter-cell pilot interference.
  • FIG. 7 is a schematic diagram of the first example of uplink semi-static transmission provided by an embodiment of the application.
  • the first indication information in this example includes NDI information, that is to say, the NDI information is used to indicate whether the data is retransmitted or newly transmitted.
  • the NDI is carried by demodulating pilot information.
  • the specific steps of the solution include:
  • Step 1 The terminal receives the RRC configuration authorization transmission configuration (ConfiguredGrantConfig).
  • ConfiguredGrantConfig is the same as the content of the existing agreement 38.331.
  • Step 2 The terminal sends data on the Configured Grant resource.
  • the configuration information of the demodulation pilot is determined based on the data being new transmission or retransmission and the correspondence between the demodulation pilot configuration and the new transmission/retransmission.
  • the method for determining the correspondence between demodulation pilot configuration and new transmission/retransmission includes:
  • the agreement stipulates the corresponding relationship between the demodulation pilot sequence configuration and the new transmission/retransmission.
  • the terminal When sending data, the terminal only needs to select the appropriate demodulation pilot sequence, and the data can be retransmitted or retransmitted.
  • the demodulation pilot sequence is generated based on at least one of the following parameters: 1, n SCID , with E.g,
  • the demodulation pilot sequence is:
  • the pseudo-random sequence c(i) is defined in 38.211 5.2.1, and the pseudo-random sequence generator is initialized by the following formula:
  • n SCID ⁇ 0,1 ⁇ is indicated by the DM-RS sequence initialization field of DCI format 0_1, otherwise (DCI
  • DCI is format0_1: It is configured by scramblingID0 and scramblingID1 in RRC signaling DMRS-DownlinkConfig.
  • DCI is format0_0: It is configured by scramblingID0 in RRC signaling DMRS-DownlinkConfig.
  • the protocol stipulates the corresponding relationship between the demodulation pilot port configuration and the new transmission/retransmission.
  • the terminal When sending data, the terminal only needs to select the appropriate demodulation pilot port configuration, and the data can be retransmitted or The new instructions are sent to the base station. .
  • port 0 corresponds to new transmission and port 1 corresponds to retransmission.
  • the corresponding relationship between the demodulation pilot sequence configuration and the new transmission/retransmission may be a protocol agreement, or a method of high-level signaling configuration may be adopted, which is similar to the foregoing implementation shown in FIG. 5 and will not be repeated here.
  • this solution also provides a solution for carrying first indication information through control information.
  • the solution specifically includes the following steps:
  • Step 1 The terminal receives the RRC configuration SPS-Config, where the SPS-Config is the same as the content of the existing protocol 38.331.
  • Step 2 The terminal receives the DCI to activate the SPS transmission.
  • the specific implementation of these two steps can refer to the aforementioned examples.
  • Step 3 The terminal receives data on the SPS resource. Based on the detection of control information, it is determined that the data is newly transmitted or retransmitted.
  • FIG. 8 is a schematic diagram of a PDSCH structure provided by an embodiment of the application.
  • the first indication information that is, retransmission indication information
  • the control information channel and the PDSCH channel are coded independently.
  • the control information channel is distributed near the demodulation pilot.
  • the data transmission process does not rely on DCI, which can greatly reduce the overhead of the downlink control channel and improve the system efficiency.
  • the demodulation pilot can be used to carry NDI information for indicating new transmission or retransmission of data, without additional information carriers, reducing channel design and improving transmission efficiency.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a data transmission device provided by this application.
  • the data transmission device 10 includes: a sending module 11, a receiving module 12 and a processing module 13.
  • the sending module 11 is configured to send data and first indication information to the receiving end device, where the first indication information is used to indicate whether the transmitted data is a retransmission or a new transmission.
  • the first indication information includes NDI.
  • the first indication information is carried by control information or demodulation pilot.
  • the first indication information is carried by control information, and the control information and the data are encoded independently.
  • the first indication information is carried by demodulation pilot, the corresponding relationship between demodulation pilot sequence and retransmission/new transmission, or the relationship between demodulation pilot port and retransmission/new transmission The corresponding relationship is agreed in advance.
  • the data transmission device provided in this embodiment is used to implement the technical solution on the sending end device side in any of the foregoing method embodiments.
  • it also sends data indicating whether the data is retransmitted or newly transmitted.
  • the first indication information for the receiving end device can determine whether the data is retransmitted or newly transmitted according to the first indication information.
  • the first indication information can be carried by demodulation pilot or control information without DCI indication, so that the data transmission is not Relying on DCI can greatly reduce the overhead of the downlink control channel and improve system efficiency.
  • the apparatus 10 is a network device, and the receiving end device includes a terminal device.
  • the sending module 11 is further configured to:
  • the first indication information is carried by demodulation pilot, the correspondence between demodulation pilot sequence and retransmission/new transmission, or the correspondence between demodulation pilot port and retransmission/new transmission
  • the relationship is configured through the RRC information
  • the correspondence between the demodulation pilot sequence and the retransmission/new transmission, or the correspondence between the demodulation pilot port and the retransmission/new transmission is configured through the DCI.
  • the first indication information is carried by demodulation pilots, then:
  • the demodulation pilot sequence and/or the demodulation pilot port used for newly transmitted data are configured through the RRC information;
  • the demodulation pilot sequence and/or the demodulation pilot port used for retransmission of data are configured through the RRC information;
  • the demodulation pilot sequence and/or the demodulation pilot port used for newly transmitted data are configured through the DCI;
  • the demodulation pilot sequence and/or the demodulation pilot port used to retransmit the data are configured through the DCI.
  • the first indication information is carried by a demodulation pilot
  • the sending module 11 is further configured to:
  • the demodulation pilot configuration information includes: the correspondence between the demodulation pilot sequence and the retransmission/new transmission, or the demodulation pilot port and the retransmission Correspondence between transmission/new transmission;
  • the demodulation pilot configuration information includes: a demodulation pilot sequence and/or a demodulation pilot port used for newly transmitted data.
  • the apparatus 10 is a terminal device, and the receiving end device includes a network device.
  • the device further includes:
  • the receiving module 12 is configured to receive RRC information sent by the receiving end device, where the RRC information is used to configure authorized transmission configuration, and the authorized transmission configuration includes:
  • the device further includes:
  • the receiving module 12 is configured to receive RRC information sent by the receiving end device, where the RRC information is used to configure authorized transmission configuration, and the authorized transmission configuration includes: demodulation pilot sequence and/or solution used for newly transmitted data Tuning pilot port
  • the processing module 13 is configured to determine a demodulation pilot sequence and/or a demodulation pilot port used for retransmission of data according to the authorized transmission configuration and the demodulation pilot configuration agreed by the protocol.
  • the apparatus 10 may also be a terminal device, and the receiving end device includes a terminal device.
  • the data transmission device provided by any of the foregoing implementation manners is used to implement the technical solution on the sending end device side in any of the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 10 is a schematic structural diagram of Embodiment 2 of a data transmission device provided by this application.
  • the data transmission device 20 includes: a receiving module 21, a processing module 22, and a sending module 23.
  • the receiving module 21 is configured to receive data and first indication information sent by the sending end device, where the first indication information is used to indicate whether the transmitted data is a retransmission or a new transmission;
  • the processing module 22 is configured to determine whether the data is retransmitted or newly transmitted according to the first indication information.
  • the first indication information includes NDI.
  • the first indication information is carried by control information or demodulation pilot.
  • the data and the control information are independently coded.
  • the first indication information is carried by demodulation pilot, the corresponding relationship between demodulation pilot sequence and retransmission/new transmission, or the relationship between demodulation pilot port and retransmission/new transmission The corresponding relationship is agreed in advance.
  • the data transmission apparatus provided in this embodiment is used to implement the technical solution on the receiving end device side in any of the foregoing method embodiments.
  • the sending end device sends data
  • it also sends data indicating whether the data is retransmitted or newly transmitted.
  • the first indication information so that the data transmission device determines whether the data is retransmitted or newly transmitted according to the first indication information.
  • the first indication information can be carried by demodulation pilot or control information, without DCI indication, so that the data transmission There is no need to rely on DCI, which can greatly reduce the overhead of the downlink control channel and improve the system efficiency.
  • the sending end device includes a network device
  • the apparatus 20 includes a terminal device.
  • the receiving module 21 is also used for:
  • the first indication information is carried by demodulation pilot, the correspondence between demodulation pilot sequence and retransmission/new transmission, or the correspondence between demodulation pilot port and retransmission/new transmission
  • the relationship is configured through the RRC information
  • the correspondence between the demodulation pilot sequence and the retransmission/new transmission, or the correspondence between the demodulation pilot port and the retransmission/new transmission is configured through the DCI.
  • the first indication information is carried by demodulation pilots, then:
  • the demodulation pilot sequence and/or the demodulation pilot port used for newly transmitted data are configured through the RRC information;
  • the demodulation pilot sequence and/or the demodulation pilot port used for retransmission of data are configured through the RRC information;
  • the demodulation pilot sequence and/or the demodulation pilot port used for newly transmitted data are configured through the DCI;
  • the demodulation pilot sequence and/or the demodulation pilot port used to retransmit the data are configured through the DCI.
  • the first indication information is carried by demodulation pilots,
  • the receiving module 21 is further configured to receive demodulation pilot configuration information sent by the transmitting end device, where the demodulation pilot configuration information includes: the correspondence between the demodulation pilot sequence and retransmission/new transmission , Or, the corresponding relationship between demodulation pilot port and retransmission/new transmission;
  • the receiving module 21 is further configured to receive demodulation pilot configuration information sent by the transmitting end device, where the demodulation pilot configuration information includes: demodulation pilot sequence and/or demodulation pilot used for newly transmitted data Frequency port
  • the processing module 22 is further configured to determine a demodulation pilot sequence and/or a demodulation pilot port used for retransmission of data according to the demodulation pilot configuration information and the demodulation pilot configuration agreed by the protocol.
  • the sending end device includes a terminal device
  • the apparatus 20 includes a network device.
  • the sending module 23 is configured to send RRC information to the sending end device, where the RRC information is used to configure authorized transmission configuration, and the authorized transmission configuration includes:
  • the sending module 23 is configured to send RRC information to the sending end device, where the RRC information is used to configure an authorized transmission configuration, and the authorized transmission configuration includes: a demodulation pilot sequence used for newly transmitted data and /Or demodulation pilot port.
  • the sending end device includes a terminal device, and the apparatus 20 may also be a terminal device.
  • the data transmission device provided by any of the foregoing implementation manners is used to implement the technical solution on the receiving end device side in any of the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of a sending end device provided by this application. As shown in FIG. 11, the sending end device 30 includes:
  • the interface 35 through which the processor 31, the memory 32, the receiver 33, and the transmitter 34 communicate with the receiving end device;
  • the memory 32 stores computer execution instructions
  • the processor 31 executes the computer-executable instructions stored in the memory, so that the processor 31 executes the technical solution on the sending end device side in any of the foregoing method embodiments.
  • FIG. 12 is a schematic structural diagram of Embodiment 1 of a receiving end device provided by this application. As shown in FIG. 12, the receiving end device 40 includes:
  • the memory 43 stores computer execution instructions
  • the processor 42 executes the computer-executable instructions stored in the memory, so that the processor 42 executes the technical solution on the receiving end device side in any of the foregoing method embodiments.
  • This application also provides a computer-readable storage medium in which computer-executable instructions are stored, and when the computer-executable instructions are executed by a processor, they are used to implement the sending in any one of the foregoing method embodiments.
  • Technical solutions to the equipment side are provided.
  • This application also provides a computer-readable storage medium in which computer-executable instructions are stored, and when the computer-executable instructions are executed by a processor, they are used to implement the receiving end device in any of the foregoing method embodiments Side technical solutions.
  • the embodiment of the present application also provides a program, when the program is executed by the processor, it is used to execute the technical solution on the sending end device side in the foregoing method embodiment.
  • the embodiment of the present application also provides a program, when the program is executed by the processor, it is used to execute the technical solution on the receiving end device side in the foregoing method embodiment.
  • the embodiments of the present application also provide a computer program product, including program instructions, and the program instructions are used to implement the technical solutions on the sending end device side in the foregoing method embodiments.
  • the embodiments of the present application also provide a computer program product, including program instructions, which are used to implement the technical solutions on the receiving end device side in the foregoing method embodiments.
  • An embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution on the sending end device side in the foregoing method embodiment.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the sending end device Side technical solutions.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the sending end device Side technical solutions.
  • An embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution of the receiving end device in the foregoing method embodiment.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the receiving end device Side technical solutions.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the receiving end device Side technical solutions.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the processor can be a central processing unit (English: Central Processing Unit, abbreviated as: CPU), or other general-purpose processors, digital signal processors (English: Digital Signal Processor, Abbreviation: DSP), application specific integrated circuit (English: Application Specific Integrated Circuit, abbreviation: ASIC), etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like. The steps of the method disclosed in this application may be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • All or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a readable memory.
  • the program executes the steps including the foregoing method embodiments; and the foregoing memory (storage medium) includes: read-only memory (English: read-only memory, abbreviated as: ROM), RAM, flash memory, hard disk, Solid state drives, magnetic tapes (English: magnetic tape), floppy disks (English: floppy disk), optical discs (English: optical disc) and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据的传输方法、装置、设备及存储介质,发送端设备在向接收端设备发送数据时,同时发送用于指示该数据是重传还是新传的第一指示信息,以便接收端设备根据该第一指示信息确定数据是重传还是新传可通过解调导频或者控制信息携带该第一指示信息,无需DCI指示,使得数据的传输不需要依赖DCI,可以大幅度减少下行控制信道的开销,提高系统效率。

Description

数据的传输方法、装置、设备及存储介质 技术领域
本申请实施例涉及通信技术,尤其涉及一种数据的传输方法、装置、设备及存储介质。
背景技术
在通信系统中,数据传输方式包括两种:动态传输和半持续/半静态传输。动态传输的特征在于数据传输依赖于物理层信令,例如,可通过下行控制信息(Downlink control information,DCI)调度。半持续/半静态传输的特征在于传输资源和传输方式都是半持续/半静态配置的,传输过程中无需物理层信令的调度。
在5G系统中,典型的半持续/半静态传输包括上行的配置授权(Configured grant)和下行的半永久性调度(Semi-persistent schedule,SPS)。但无论哪种半持续/半静态传输的重传都是动态的,即依赖物理层信令调度。半持续方式指部分传输方式/传输资源参数通过无线资源控制(Radio Resource Control,RRC)信令配置。传输方式/传输资源主要包括参考信号配置,时频域资源配置,多天线传输配置,混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程配置等,其RRC信令主要包括pusch-ConfigCommon,pusch-Config,ConfiguredGrantConfig(不包含rrc-ConfiguredUplinkGrant部分),其他传输方式/传输资源参数通过DCI配置,且DCI还有激活/释放传输的作用。重传指的是除了包含具体的传输方式之外,还包含HARQ process number和新数据指示(New data indicator,NDI)信息,保证同一个数据的重复传输。
现有技术中,对于上行传输,网络设备无法正确接收信息,则发送一个重传DCI信令,调度同一个HARQ进程数据的重传。对于下行传输,终端设备无法正确接收信息,则反馈否定回答(Negative ACKnowledgment,NACK)给网络设备进行数据的重传。对于半持续/半静态传输,初传HARQ process number通过时域资源确定,重传则通过DCI指示对应的HARQ process number且New data indicator设置为‘1’,表示重传。
综上所述,目前的半静态/半持续传输仍然依赖DCI,无法做到完全的半静态/半持续传输,仍然要预留DCI资源,系统效率低。
发明内容
本申请实施例提供一种数据的传输方法、装置、设备及存储介质,用于解决目前的半静态/半持续传输仍然依赖DCI,无法做到完全的半静态/半持续传输,仍然要预留DCI资源,系统效率低的问题。
第一方面,本申请实施例可提供一种数据的传输方法,所述方法包括:
向接收端设备发送数据和第一指示信息,所述第一指示信息用于指示传输的所述数据是重传或者新传。
可选的,所述第一指示信息包括NDI。
可选的,所述第一指示信息通过控制信息或者解调导频携带。
可选的,所述第一指示信息通过解调导频携带,解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系是预先约定的。
在一种具体实现方式中,所述发送端设备包括终端设备,所述接收端设备包括网络设备。
进一步地,所述方法还包括:
接收所述接收端设备发送的RRC信息,所述RRC信息用于配置授权传输配置,所述授权传输配置包括:
解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系。
可选的,所述方法还包括:
接收所述接收端设备发送的RRC信息,所述RRC信息用于配置授权传输配置,所述授权传输配置包括:新传数据所采用的解调导频序列和/或解调导频端口
根据所述解调导频配置信息以及协议约定的解调导频配置,确定重传数据所采用的解调导频序列和/或解调导频端口。
在上述两个方案中,该方法还包括:终端设备接收网络设备发送的DCI,激活SPS传输。
第二方面,本申请实施例可提供一种数据的传输方法,所述方法包括:
接收发送端设备发送的数据和第一指示信息,所述第一指示信息用于指示传输的数据是重传或者新传;
根据所述第一指示信息确定所述数据是重传或者新传。
可选的,所述第一指示信息包括NDI。
可选的,所述第一指示信息通过控制信息或者解调导频携带。
可选的,所述第一指示信息通过解调导频携带,解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系是预先约定的。
第三方面,本申请实施例可提供一种数据的传输装置,包括:
发送模块,用于向接收端设备发送数据和第一指示信息,所述第一指示信息用于指示传输的所述数据是重传或者新传。
第四方面,本申请实施例可提供一种数据的传输装置,包括:
接收模块,用于接收发送端设备发送的数据和第一指示信息,所述第一指示信息用于指示传输的数据是重传或者新传;
处理模块,用于根据所述第一指示信息确定所述数据是重传或者新传。
第五方面,本申请实施例可提供一种发送端设备,包括:
处理器、存储器、接收器、发送器与接收端设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行第一方面任一项提供的数据的传输方法。
可选地,上述处理器可以为芯片。
第六方面,本申请实施例可提供一种接收端设备,包括:
处理器、存储器、发送器与发送端设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行第二方面任一项提供的数据的传输方法。
可选地,上述处理器可以为芯片。
第七方面,本申请实施例可提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现第一方面任一项提供的数据的传输方法。
第八方面,本申请实施例可提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现第二方面任一项提供的数据的传输方法。
第九方面,本申请实施例提供一种程序,当该程序被处理器执行时,用于执行如第一方面任一项提供的数据的传输方法。
第十方面,本申请实施例提供一种程序,当该程序被处理器执行时,用于执行如第二方面任一项提供的数据的传输方法。
第十一方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现如第一方面任一项提供的数据的传输方法。
第十二方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现如第二方面任一项提供的数据的传输方法。
第十三方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行第一方面任一项提供的数据的传输方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第一方面任一项提供的数据的传输方法。
第十四方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行第二方面任一项提供的数据的传输方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第二方面任一项提供的数据的传输方法。
本申请实施例提供的数据的传输方法、装置、设备及存储介质,发送端设备在向接收端设备发送数据时,同时发送用于指示该数据是重传还是新传的第一指示信息,以便接收端设备根据该第一指示信息确定数据是重传还是新传,可通过解调导频或者控制信息携带该第一指示信息,无需DCI指示,使得数据的传输不需要依赖DCI,可以大幅度减少下行控制信道的开销,提高系统效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例应用的通信系统示意图;
图2为本申请实施例提供的数据的传输方法实施例一的流程图;
图3为本申请实施例提供的数据的传输方法实施例二的流程图;
图4为本申请实施例提供的数据的传输方法实施例三的流程图;
图5为本申请实施例提供的下行SPS传输实例一的示意图;
图6为本申请实施例提供的上行半持续传输实例一的示意图;
图7为本申请实施例提供的上行半静态传输实例一的示意图;
图8为本申请实施例提供的一种PDSCH结构示意图;
图9为本申请提供的数据的传输装置实施例一的结构示意图;
图10为本申请提供的数据的传输装置实施例二的结构示意图;
图11为本申请提供的发送端设备实施例一的结构示意图;
图12为本申请提供的接收端设备实施例一的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本 申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
目前来说,Configured grant传输包括半持续和半静态两种方式。
半持续方式指部分传输方式/传输资源参数通过无线资源控制(Radio Resource Control,RRC)信令配置。传输方式/传输资源主要包括参考信号配置,时频域资源配置,多天线传输配置,混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程配置等,其RRC信令主要包括pusch-ConfigCommon,pusch-Config,ConfiguredGrantConfig(不包含rrc-ConfiguredUplinkGrant部分),其他传输方式/传输资源参数通过下行控制信息(Downlink control information,DCI)配置,且DCI还有激活/释放传输的作用。以下行传输为例,当收到一个被CS-RNTI加扰的DCI,且该DCI内的新数据指示(New data indicator,NDI),HARQ process number和Redundancy version被设置为特定的值,则表示激活Configured grant传输。当收到一个被CS-RNTI加扰的DCI,且该DCI内的NDI,HARQ process number和Redundancy version被设置为特定的值,e.g.all‘0’且Modulation and coding scheme和Frequency domain resource assignment被设置为特定的值,e.g.all‘1’,则表示释放Configured grant传输。
半静态传输指所有传输方式/传输资源参数通过RRC信令配置。传输方式/传输资源主要包括参考信号配置,时频域资源配置,多天线传输配置,HARQ进程配置等,其RRC信令主要包括pusch-ConfigCommon,pusch-Config,ConfiguredGrantConfig(包含rrc-ConfiguredUplinkGrant部分)。一旦ConfiguredGrantConfig信令配置完成,Configured grant传输生效。
重传指示除了包含具体的传输方式,e.g.时频域资源,MCS配置等,最重要的是包含HARQ process number和NDI信息,保证同一个数据的重复传输。
目前的技术方案中,对于上行传输,网络设备无法正确接收信息,则发送一个重传DCI信令,调度同一个HARQ进程数据的重传。对于下行传输,终端设备无法正确接收信息,则反馈NACK给网络设备进行数据的重传。对于半持续/半静态传输,初传HARQ process number通过时域资源确定,重传则通过DCI指示对应的HARQ process number且New data indicator设置为‘1’,表示重传。因此,现有技术中的半静态/半持续传输仍然依赖DCI,无法做到完全的半静态/半持续传输,仍然要预留DCI资源,系统效率低。
针对上述问题,本申请实施例提供一种数据的传输方法,通过解调导频或者控制信息携带识别数据是新传/重传的数据,无需DCI指示,使得数据的传输不需要依赖DCI,可 以大幅度减少下行控制信道的开销,提高系统效率。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
图1为本申请实施例应用的一种通信系统示意图,如图1所示,该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持 设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信,即本申请提供的技术方案也可以应用在两个终端设备之间的通信中。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在图1中,网络设备可以是接入设备,例如可以是NR-U系统中的接入设备,例如5G的新无线接入技术(New Radio Access Technology,NR)基站(next generation Node B,gNB)或小站、微站,还可以是中继站、发送和接收点(Transmission and Reception Point,TRP)、路边单元(Road Side Unit,RSU)等。
终端设备也可以称为移动终端、用户设备(User Equipment,简称:UE)、接入终端、用户单元、用户站、移动站、移动台、用户终端、终端、无线通信设备、用户代理或用户装置。具体可以是智能手机、蜂窝电话、无绳电话、个人数字处理(Personal Digital Assistant,简称:PDA)设备、具有无线通信功能的手持设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备等。在本申请实施例中,该终端设备具有与网络设备(例如:蜂窝网络)进行通信的接口。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中发送数据的一端称为发送端设备,接收数据的一端称为接收端设备。以图1示出的通信系统100为例,发送端设备可以是网络设备,接收端设备是终端设备,即进行下行数据传输;发送端设备还可以是终端设备,接收端设备是网络设备,即进行上行数据传输,对此本申请不做限制。
下面通过几个具体实施例对本申请提供的数据的传输方法进行详细的说明。
图2为本申请提供的数据的传输方法实施例一的流程图,如图2所示,该方法应用在发送端设备和接收端设备之间,该发送端设备可以是网络设备或者终端设备,接收端设备也可以是终端设备或者网络设备,具体的包括以下步骤:
S101:向接收端设备发送数据和第一指示信息,第一指示信息用于指示传输的数据是重传或者新传。
相对于发送端设备,接收端设备则接收发送端设备发送的第一指示信息和数据。
在本步骤中,发送端设备根据要发送的数据是新传数据还是重传的数据,第一指示信息,并将该第一指示信息发送给接收端设备。该第一指示信息可以是NDI,也可以是其他形式的信息,能够使接收端设备确定数据是新传还是重传即可,具体采用什么信息去指示本申请不做限制。
在该方案的具体实现中,该第一指示信息至少可以通过控制信息和解调导频携带,发送给接收端设备,对第一指示信息的传输至少包括以下几种方式:
第一种方式,通过解调导频携带第一指示信息。
具体的,解调导频用于数据解调的导频,解调导频通常采用序列,例如伪随机序列。为了支持多个用户复用相同的时频资源,或支持多层数据传输,引入了端口。不同端口的解调导频采用时域,频域和码域中一个或多个维度上区分。据此,使用解调导频携带第一指示信息时,可以采用序列和/或端口来区分重传和新传。
在采用该方式进行具体实现时,当发送端设备进行指示,为了接收端设备根据指示确定新传或重传,接收端设备和发送端设备需要预先知道序列和/或端口与新传/重传之间的 对应关系,因此包括以下几个情况的具体方案。
(1)、协议约定解调导频序列配置与新传或重传之间的对应关系。
其含义是:协议中规定好哪个解调导频序列对应的是新传,哪个解调导频序列对应的是重传;或者协议中约定好满足什么条件的解调导频序列是新传,满足什么条件的解调导频序列对应的是重传。发送端设备在发送时候根据数据的类型,选定合适的解调导频序列进行发送,接收端设备在接收到时候根据解调导频序列确定数据的类型。
(2)、协议约定解调导频端口配置与新传或重传之间的对应关系。
其含义是:协议中规定好解调导频的端口与传输的数据的类型之间的对应关系,例如:规定端口0对应新传,端口1对应重传。发送端设备在确定数据是重传或新传之后,根据协议选择合适的解调导频端口进行传输,接收端设备根据接收时候的解调导频端口则可以确定传输的数据的类型。
(3)、基于高层信令配置的解调导频序列配置与新传/重传之间的对应关系。
(4)、基于高层信令配置的解调导频端口配置与新传/重传之间的对应关系。
上述两个方案含义是:为了能够在发送端设备和接收端设备之间通过解调导频携带指示数据是重传还是新传的第一指示信息,需要网络侧通过高层信令预先向终端侧的设备进行配置,以使终端侧的设备中存储解调导频序列与新传/重传之间的对应关系,或者,解调导频端口配置与新传/重传之间的对应关系,以便后续在数据传输过程中能够直接根据解调导频序列和端口确定出传输的数据的类型。
第二种方式,通过控制信息携带第一指示信息。
在本方案的具体实现中,在下行传输过程中,该第一指示信息可以在DCI中进行携带,一般来说控制信息和数据是独立编码的,即控制信息与PDSCH信道独立编码。在上行传输过程中,该第一指示信息可以在UCI中进行携带,同样的,控制信息也与PUSCH信道独立编码,以使接收端设备在接收过程中,首先对控制信息进行检测确定数据是重传或新传。
S102:根据第一指示信息确定数据是重传或者新传。
在本步骤中,接收端设备接收到数据和第一指示信息时,首先根据第一指示信息确定数据的类型是重传还是新传。
具体的如果该第一指示信息是通过解调导频携带的,解调导频的检测需要采用相关的计算,确定解调导频配置,然后根据解调导频配置与重传/新传之间的对应关系,确定数据是重传或新传。如果该第一指示信息是通过控制信息携带的,接收端设备直接基于控制信息的检测,判定数据为新传或重传。然后对数据进行解码,完成数据的传输。
本实施例提供的数据的传输方法,发送端设备在向接收端设备发送数据时,同时发送用于指示该数据是重传还是新传的第一指示信息,以便接收端设备根据该第一指示信息确定数据是重传还是新传,可通过解调导频或者控制信息携带该第一指示信息,无需DCI指示,使得数据的传输不需要依赖DCI,可以大幅度减少下行控制信道的开销,提高系统效率。
图3为本申请实施例提供的数据的传输方法实施例二的流程图,如图3所示,在上述实施例的基础上,如果发送端设备是网络设备,接收端设备是终端设备,则该数据的传输方法具体包括以下步骤:
S201:向接收端设备发送RRC信息,为接收端设备配置SPS传输配置;
在本步骤中,发送端设备是网络设备,接收端设备是终端设备,则在进行数据传输过程时候,首先网络设备需要向终端设备发送RRC信息,完成半永久性调度传输过程的配置,配置相关的资源。
在该方案的具体实现中,网络设备和终端设备为了能够在数据传输过程中根据第一指示信息的指示确定数据是重传或新传,预先需要知道解调导频序列/端口与新传/重传之间 的对应关系,一般来说,该对应关系可以是协议中约定的,也可以是网络设备通过高层信令配置给终端设备的。
可选的,若该对应关系是通过高层信令配置的,则该RRC种的SPS传输配置中可以包括:解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系。
S202:向接收端设备发送DCI,激活SPS传输。
在本步骤中,在完成SPS传输配置之后,网络设备向终端设备发送DCI激活该SPS传输。
在激活SPS传输之后,则网络设备和终端设备之间可以通过第一指示信息指示数据是重传/新传的方式进行数据传输。
可选的,在该方案的具体实现中,如果RRC信息中没有携带上述对应关系,该对应关系还可以是通过DCI配置给终端设备的,即DCI包括:解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系。
综上可知,该方案的含义是解调导频序列与重传/新传之间的对应关系,或者解调导频端口与重传/新传之间的对应关系通过所述RRC信息配置;或者,解调导频序列与重传/新传之间的对应关系,或者解调导频端口与重传/新传之间的对应关系通过所述DCI进行配置。
在另一种具体实现中,新传数据(或者重传数据)所采用的解调导频序列和/或解调导频端口通过所述RRC信息配置,另一种数据采用的解调导频配置由接收端根据协议自行确定。或者,新传数据(或者重传数据)所采用的解调导频序列和/或解调导频端口通过所述DCI配置,另一种数据采用的解调导频配置由接收端根据协议自行确定。
可选的,在该方案的具体实现中,如果RRC信息中没有携带上述对应关系,那么该方案的实现过程中,还可以包括以下步骤:
S203:向接收端设备发送解调导频配置信息。
在本步骤中,该过程至少有两种实现方式,一种是所述解调导频配置信息包括:解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系;另一种是向所述接收端设备发送的解调导频配置信息中只包括:新传数据所采用的解调导频序列和/或解调导频端口。接收端设备在接收到之后根据协议约定的内容,确定重传数据所采用的解调导频配置,以便在后续数据传输过程中,能够根据传输的解调导频配置确定传输的数据是重传/新传。
S204:向接收端设备发送数据和第一指示信息,第一指示信息用于指示传输的数据是重传或者新传。
对接收端设备来说,则接收发送端设备发送的数据和第一指示信息,第一指示信息用于指示传输的数据是重传或者新传;
S205:根据第一指示信息确定数据是重传或者新传。
上述步骤S204和S205与前述实施例一种的具体实现方式类似,在此不在赘述。
图4为本申请实施例提供的数据的传输方法实施例三的流程图,如图4所示,在上述实施例的基础上,如果发送端设备是终端设备,接收端设备是网络设备,则该数据的传输方法具体包括以下步骤:
301:接收接收端设备发送的RRC信息。
在本步骤中,终端设备需要接收网络设备发送的用来配置授权传输配置的RRC信息,该授权传输配置可以包括:解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系。
在另一种具体实现方式中,该授权传输配置可以只包括新传数据(或重传数据)所采用的解调导频序列和/或解调导频端口。在接收到该授权传输配置之后,终端设备可以根 据所述授权传输配置以及协议约定的解调导频配置,确定重传数据(或新传数据)所采用的解调导频序列和/或解调导频端口。
可选的,在该方案的一种具体实现中,在上行半持续传输过程中,终端设备还接收网络设备发送的DCI,以激活授权传输。可选的,除了通过RRC传输授权配置携带上述对应关系,还可以通过该DCI给终端设备配置上述对应关系。
S302:向接收端设备发送数据和第一指示信息,第一指示信息用于指示传输的数据是重传或者新传。
对接收端设备来说,则接收发送端设备发送的数据和第一指示信息,第一指示信息用于指示传输的数据是重传或者新传。
S303:根据第一指示信息确定数据是重传或者新传。
上述步骤S302和S303前述实施例一种的具体实现方式类似,在此不在赘述。
在上述任一实施例的基础上可知,本申请提供的数据的传输方法的核心是,在发送数据时通过第一指示信息对新传数据或者重传数据进行指示,无需DCI指示,从而实现重传/新传数据都不依赖DCI指示,从而提高系统效率。下面网络设备为基站为例,通过几个具体实现方式对该方案进行举例说明,例如在上行以及下行传输过程中的应用进行说明,在该方案中,应理解终端设备,也称为终端,其含义类似。
图5为本申请实施例提供的下行SPS传输实例一的示意图,如图5所示,该实例中第一指示信息包括NDI信息,也就是说通过NDI信息指示数据是重传还是新传,该NDI通过解调导频信息进行携带,该方案的具体步骤包括:
步骤1:终端接收RRC配置SPS配置(即SPS-Config)。
该步骤中,SPS-Config同协议38.331的内容。
步骤2:终端接收DCI激活SPS传输。
步骤3:在SPS上传输数据,即终端在SPS资源上接收数据。基于解调导频的检测,判定解调导频配置信息,进而确定数据为新传或重传。
具体地,基站向终端发送第一指示信息包括显性和隐性两种方式。
方法(一):隐性方式
(1)、协议约定解调导频序列配置与新传/重传之间的对应关系,基站在数据发送时,只需要选择合适的解调导频序列,则可以将数据是重传或者新传指示给终端。
例如,解调导频序列生成基于如下至少之一的参数获得:l,
Figure PCTCN2019075932-appb-000001
n SCID,
Figure PCTCN2019075932-appb-000002
Figure PCTCN2019075932-appb-000003
例如,解调导频序列为
Figure PCTCN2019075932-appb-000004
其中,伪随机序列c(i)在协议38.211 5.2.1中定义,伪随机序列生成器由如下公式初始化:
Figure PCTCN2019075932-appb-000005
其中:l表示时隙内的符号编号,
Figure PCTCN2019075932-appb-000006
表示帧内的时隙编号,n SCID∈{0,1}由DCI format1_1的DM-RS sequence initialization域指示,否则(DCI format1_0),n SCID=0。
Figure PCTCN2019075932-appb-000007
的取值方式为:
■当DCI为format1_1时:
Figure PCTCN2019075932-appb-000008
Figure PCTCN2019075932-appb-000009
由RRC信令 DMRS-DownlinkConfig中的scramblingID0and scramblingID1分别配置。
■当DCI为format1_0时:
Figure PCTCN2019075932-appb-000010
由RRC信令DMRS-DownlinkConfig中的scramblingID0配置。
Figure PCTCN2019075932-appb-000011
的取值方式为:
■当数据为新传时,
Figure PCTCN2019075932-appb-000012
■当数据为重传时,
Figure PCTCN2019075932-appb-000013
(2)、协议约定解调导频端口配置与新传/重传之间的对应关系,基站在数据发送时,只需要选择合适的解调导频端口配置,则可以将数据是重传或者新传指示给终端。
例如,协议中将解调导频端口与新传/重传之间的对应关系进行约定,例如:
■对于DCI format1_0,端口0对应新传,端口1对应重传。
■对于DCI format1_1,Antenna port配置的值对应新传,Antenna port配置的值+1对应重传。
基站在发送时选择端口0,则终端可以确定数据是新传,基站在发送时选择端口1,则终端可以确定数据是重传。
上述方案中通过隐性的方式进行第一指示信息的传输,在数据传输过程中无额外的信令开销。
方法(二):显性方式(显性方式包括复用NDI域的方式,以此为例进行说明)
(1)、协议约定解调导频序列配置与新传/重传之间的初始对应关系,如前面隐性方式中所述,基站在向终端发送数据时,通过NDI域指示采用的解调导频序列或者没有采用的解调导频序列,从而使得终端能够确定数据是新传或者重传。该方案中,应理解,NDI可以指示约定关系或者相反的关系。所谓相关的关系为:约定对应新传的导频序列配置对应重传,反之亦然。
(2)、协议约定解调导频端口配置与新传/重传之间的初始对应关系,如前面隐性方式所述,基站在向终端发送数据时,通过NDI域指示采用的解调导频端口或者没有采用的解调导频端口,从而使得终端能够确定数据是新传或者重传。NDI域指示采用约定关系或者相反的关系。所谓相关的关系为:约定对应新传的导频端口配置对应重传,反之亦然。
与前述隐性方式不同,该显性方式复用现有信息域,增加解调导频序列或端口配置的灵活性,小区间区别配置,减少小区间导频干扰。
其中,终端在接收数据后,解调导频的检测采用相关计算,终端侧采用可能的序列/端口与接收到的解调导频做相关运算,峰值最高和/或超过某一个门限的序列/端口配置为解调导频配置。典型地,当终端反馈NACK时,终端优先考虑重传对应的导频配置进行检测。否则,优先考虑新传对应的导频配置进行检测,终端基于解调导频配置与新传/重传之间的关系,确定数据为新传/重传,然后再进行解调获取传输的数据,完成数据传输。
在图5所示的实例中,前面的实例是采用协议约定的方式确定基站侧和终端侧均能够确定重传或新传与解调导频序列或者端口之间的对应关系,在本方案的具体实现中,也不仅仅限于通过协议的方式实现,还可以是通过高层信令进行配置,以使终端和基站之间能够统一上述对应关系,下面依然在图5所示的过程中,对该种实现进行介绍。如图5所示,该方案具体包括:
步骤1:终端接收RRC配置SPS配置(即SPS-Config)。
其中SPS-Config在现有内容的基础上增加解调导频序列或端口配置与新传/重传之间 的对应关系。即SPS-Config包括:解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系。
例如:新传/重传与解调导频配置的对应变量之间的差值。具体地,新传数据所采用的的导频序列初始化参数与重传数据所采用的的导频序列初始化参数之间的差值,或者新传数据所采用的导频端口与重传数据所采用的的导频端口之间的差值。
例如,新传/重传对应的解调导频配置。具体地,新传数据所采用的的导频序列初始化参数
Figure PCTCN2019075932-appb-000014
重传数据所采用的的导频序列初始化参数
Figure PCTCN2019075932-appb-000015
或者,新传数据所采用的导频端口参数Antenna port gap for NDI=a,与重传数据所采用的的导频端口参数Antenna port gap for NDI=b。则数据所采用的解调导频端口为Antenna port+Antenna port gap for NDI,其中Antenna port为DCI formot1_1中Antenna port域指示的,或者DCI format1_0调度约定的Antenna port=0。
步骤2:终端接收DCI激活SPS传输。
步骤3:终端在SPS资源上接收数据。基于解调导频的检测,判定解调导频配置信息,进而确定数据为新传或重传。
具体地,第一指示信息(也就是重传指示信息)包括显性和隐性两种方式。
方法(一):隐性方式
(1)、基于高层信令配置的解调导频序列配置与新传/重传之间的对应关系,即基站在数据发送时,只需要选择合适的解调导频序列,则可以将数据是重传或者新传指示给终端。例如,解调导频序列生成基于如下至少之一的参数获得:l,
Figure PCTCN2019075932-appb-000016
n SCID,
Figure PCTCN2019075932-appb-000017
Figure PCTCN2019075932-appb-000018
例如,
解调导频序列为
Figure PCTCN2019075932-appb-000019
其中,伪随机序列c(i)在38.211 5.2.1中定义,伪随机序列生成器由如下公式初始化:
Figure PCTCN2019075932-appb-000020
其中:l时隙内的符号编号,
Figure PCTCN2019075932-appb-000021
帧内的时隙编号,
n SCID∈{0,1}由DCI format1_1的DM-RS sequence initialization域指示,否则(DCI format 1_0),n SCID=0.
Figure PCTCN2019075932-appb-000022
的取值方式为:
■当DCI为format1_1时:
Figure PCTCN2019075932-appb-000023
Figure PCTCN2019075932-appb-000024
由RRC信令DMRS-DownlinkConfig中的scramblingID0and scramblingID1分别配置。
■当DCI为format1_0时:
Figure PCTCN2019075932-appb-000025
由RRC信令DMRS-DownlinkConfig中的scramblingID0配置
Figure PCTCN2019075932-appb-000026
的取值方式由高层信令配置:
■当数据为新传时,
Figure PCTCN2019075932-appb-000027
■当数据为重传时,
Figure PCTCN2019075932-appb-000028
(2)、基于高层信令配置的解调导频端口配置与新传/重传之间的对应关系,基站在数据发送时,只需要选择合适的解调导频端口配置,则可以将数据是重传或者新传指示给终端。
解调导频端口与新传/重传之间的对应关系:
■对于DCI format1_0,端口0+Antenna port gap for NDI对应新传,端口1+Antenna port gap for NDI对应重传。
■对于DCI format1_1,Antenna port+Antenna port gap for NDI(a)配置的值对应新传,Antenna port+Antenna port gap for NDI(b)对应重传。
可选的,用于区别新传和重传的解调导频端口采用CDM方式复用。
基站在发送时选择端口0,则终端可以确定数据是新传,基站在发送时选择端口1,则终端可以确定数据是重传。
上述方案中通过隐性的方式进行第一指示信息的传输,在数据传输过程中无额外的信令开销。
方法(二):显性方式(即复用NDI域)
(1)、高层配置(SPS-Config)中包含解调导频序列配置与新传/重传之间的初始对应关系,如前述隐性方式中的描述,基站在向终端发送数据时,通过NDI域指示采用的解调导频序列或者没有采用的解调导频序列,从而使得终端能够确定数据是新传或者重传。该方案中,应理解,NDI可以指示采用约定关系或者相反的关系。所谓相关的关系为:约定对应新传的导频配置对应重传,反之亦然。
(2)、高层配置(SPS-Config)中包含解调导频端口配置与新传/重传之间的初始对应关系,如前述隐性方式中的描述,基站在向终端发送数据时,通过NDI域指示采用的解调导频端口或者没有采用的解调导频端口,从而使得终端能够确定数据是新传或者重传。NDI域指示采用约定关系或者相反的关系。所谓相关的关系为:约定对应新传的导频配置对应重传,反之亦然。
与前述隐性方式不同,该显性方式复用现有信息域,增加解调导频序列或端口配置的灵活性,小区间区别配置,减少小区间导频干扰。
其中,解调导频的检测采用相关计算,终端侧采用可能的序列/端口与接收到的解调导频做相关运算,峰值最高和/或超过某一个门限的序列/端口配置为解调导频配置。典型地,当终端反馈NACK时,终端优先考虑重传对应的导频配置进行检测。否则,优先考虑新传对应的导频配置进行检测,终端基于解调导频配置与新传/重传之间的关系,确定数据为新传/重传进行解调,完成数据的传输。
图6为本申请实施例提供的上行半持续传输实例一的示意图,如图6所示,该实例中第一指示信息包括NDI信息,也就是说通过NDI信息指示数据是重传还是新传,该NDI通过解调导频信息进行携带,该方案的具体步骤包括:
步骤1:终端接收RRC配置授权(ConfiguredGrantConfig)。
其中ConfiguredGrantConfig同现有协议38.331的内容。
步骤2:终端接收DCI激活ConfiguredGrantConfig传输。具体地,第一指示信息(重传指示信息)包括显性和隐性两种方式。
步骤3:终端在Configured Grant资源上发送数据。基于数据为新传或重传,确定解调导频的配置信息,以使基站在接收到数据之后可以根据解调导频配置信息确定数据是新传或重传。
在上述步骤的具体实现中,终端设备可以通过隐性方式或者显性方式向基站指示数据为新传或重传,下面进行具体描述。
方法一:隐性方式
(1)、协议约定解调导频序列配置与新传/重传之间的对应关系,终端在数据发送时,只需要选择合适的解调导频序列,则可以将数据是重传或者新传指示给基站。例如,解调导频序列生成基于如下至少之一的参数获得:l,
Figure PCTCN2019075932-appb-000029
n SCID,
Figure PCTCN2019075932-appb-000030
Figure PCTCN2019075932-appb-000031
例如,
解调导频序列为:
Figure PCTCN2019075932-appb-000032
其中,伪随机序列c(i)在38.211 5.2.1中定义,伪随机序列生成器由如下公式初始化:
Figure PCTCN2019075932-appb-000033
其中:
l时隙内的符号编号,
Figure PCTCN2019075932-appb-000034
帧内的时隙编号,
n SCID∈{0,1}由DCI format 0_1的DM-RS sequence initialization域指示,否则(DCI
format 0_0),n SCID=0.
Figure PCTCN2019075932-appb-000035
的取值方式为:
■当DCI为format0_1时:
Figure PCTCN2019075932-appb-000036
Figure PCTCN2019075932-appb-000037
由RRC信令DMRS-DownlinkConfig中的scramblingID0and scramblingID1分别配置。
■当DCI为format0_0时:
Figure PCTCN2019075932-appb-000038
由RRC信令DMRS-DownlinkConfig中的scramblingID0配置。
Figure PCTCN2019075932-appb-000039
的取值方式为:
■当数据为新传时,
Figure PCTCN2019075932-appb-000040
■当数据为重传时,
Figure PCTCN2019075932-appb-000041
(2)、协议约定解调导频端口配置与新传/重传之间的对应关系,终端在数据发送时,只需要选择合适的解调导频端口配置,则可以将数据是重传或者新传指示给基站。
解调导频端口与新传/重传之间的对应关系:
■对于DCI format0_0,端口0对应新传,端口1对应重传。
■对于DCI format0_1,Antenna port配置的值对应新传,Antenna port配置的值+1对应重传。
终端在发送时选择端口0,则基站可以确定数据是新传,终端在发送时选择端口1,则基站可以确定数据是重传。
上述方案中通过隐性的方式进行第一指示信息的传输,在数据传输过程中无额外的信令开销。
方法二:显性方式(即复用NDI域)
(1)、协议约定解调导频序列配置与新传/重传之间的初始对应关系,如前述隐性方式中所述,终端在向基站发送数据时,通过NDI域指示采用的解调导频序列或者没有采用的解调导频序列,从而使得基站能够确定数据是新传或者重传。该方案中,应理解,NDI域指示采用约定关系或者相反的关系。所谓相关的关系为:约定对应新传的导频配置对应重传,反之亦然。
(2)、协议约定解调导频端口配置与新传/重传之间的初始对应关系,如隐性方式所述,终端在向基站发送数据时,通过NDI域指示采用的解调导频端口或者没有采用的解调导频端口,从而使得基站能够确定数据是新传或者重传。NDI域指示采用约定关系或者相反的关系。所谓相关的关系为:约定对应新传的导频配置对应重传,反之亦然。
终端基于基站的反馈(包括隐性和显性)确定新传或重传。显性配置包括基站反馈HARQ-ACK/NACK。隐性配置包括基站在一个时间窗内无反馈,表示数据传输正确,。
注意:解调导频序列配置与新传/重传之间的对应关系可以是协议约定,也可以采用高层信令配置的方法,类似于前述图5所示实现方式,在此不在赘述。
与前述隐性方式不同,该显性方式复用现有信息域,增加解调导频序列或端口配置的灵活性,小区间区别配置,减少小区间导频干扰。
图7为本申请实施例提供的上行半静态传输实例一的示意图,如图7所示,该实例中第一指示信息包括NDI信息,也就是说通过NDI信息指示数据是重传还是新传,该NDI通过解调导频信息进行携带,该方案的具体步骤包括:
步骤1:终端接收RRC配置授权传输配置(ConfiguredGrantConfig)。
其中ConfiguredGrantConfig同现有协议38.331的内容。
步骤2:终端在Configured Grant资源上发送数据。基于数据为新传或重传和解调导频配置与新传/重传之间的对应关系确定解调导频的配置信息。
解调导频配置与新传/重传之间的对应关系确定方式包括:
(1):协议约定解调导频序列配置与新传/重传之间的对应关系,终端在数据发送时,只需要选择合适的解调导频序列,则可以将数据是重传或者新传指示给基站。例如,解调导频序列生成基于如下至少之一的参数获得:l,
Figure PCTCN2019075932-appb-000042
n SCID,
Figure PCTCN2019075932-appb-000043
Figure PCTCN2019075932-appb-000044
例如,
解调导频序列为:
Figure PCTCN2019075932-appb-000045
其中,伪随机序列c(i)在38.211 5.2.1中定义,伪随机序列生成器由如下公式初始化:
Figure PCTCN2019075932-appb-000046
其中:
l时隙内的符号编号,
Figure PCTCN2019075932-appb-000047
帧内的时隙编号,
n SCID∈{0,1}由DCI format 0_1的DM-RS sequence initialization域指示,否则(DCI
format 0_0),n SCID=0;
Figure PCTCN2019075932-appb-000048
的取值方式为:
■当DCI为format0_1时:
Figure PCTCN2019075932-appb-000049
Figure PCTCN2019075932-appb-000050
由RRC信令DMRS-DownlinkConfig中的scramblingID0and scramblingID1分别配置。
■当DCI为format0_0时:
Figure PCTCN2019075932-appb-000051
由RRC信令DMRS-DownlinkConfig中的scramblingID0配置。
-
Figure PCTCN2019075932-appb-000052
的取值方式为:
■当数据为新传时,
Figure PCTCN2019075932-appb-000053
■当数据为重传时,
Figure PCTCN2019075932-appb-000054
(2):协议约定解调导频端口配置与新传/重传之间的对应关系,终端在数据发送时,只需要选择合适的解调导频端口配置,则可以将数据是重传或者新传指示给基站。。
解调导频端口与新传/重传之间的对应关系:
■对于DCI format0_0,端口0对应新传,端口1对应重传。
■对于DCI format0_1,Antenna port配置的值对应新传,Antenna port配置的值+1对应重传
解调导频序列配置与新传/重传之间的对应关系可以是协议约定,也可以采用高层信令配置的方法,类似于前述图5所示实现方式,在此不在赘述。
除了前述各个实例中示出的可以通过解调导频以各种方式携带第一指示信息之外,本方案还提供一种通过控制信息携带第一指示信息的方案,该方案具体包括以下步骤:
步骤1:终端接收RRC配置SPS-Config,其中SPS-Config同现有协议38.331的内容。
步骤2:终端接收DCI激活SPS传输。这两个步骤的具体实现可参考前述实例。
步骤3:终端在SPS资源上接收数据。基于control information的检测,判定数据为新传或重传。
具体地,图8为本申请实施例提供的一种PDSCH结构示意图,如图8所示,该方案中的第一指示信息(也就是重传指示信息)通过控制信息(control information)信道承载。Control information信道与PDSCH信道独立编码,典型地,Control information信道分布在解调导频附近。
本申请各个实施例提供的数据的传输方法中,数据传输过程不依赖DCI,可以大幅度减少下行控制信道的开销,提高系统效率。同时在一种具体实现中可以利用解调导频携带用于指示数据新传或重传的NDI信息,无需额外的信息载体,减少信道设计,提高传输效率。
图9为本申请提供的数据的传输装置实施例一的结构示意图。如图9所示,该数据的传输装置10包括:发送模块11、接收模块12以及处理模块13。
发送模块11,用于向接收端设备发送数据和第一指示信息,所述第一指示信息用于指示传输的所述数据是重传或者新传。
可选的,所述第一指示信息包括NDI。
可选的,所述第一指示信息通过控制信息或者解调导频携带。
可选的,所述第一指示信息通过控制信息携带,则所述控制信息与所述数据独立编码。
可选的,所述第一指示信息通过解调导频携带,解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系是预先约定的。
本实施例提供的数据的传输装置,用于执行前述任一方法实施例中发送端设备侧的技术方案,在向接收端设备发送数据时,同时发送用于指示该数据是重传还是新传的第一指示信息,以便接收端设备根据该第一指示信息确定数据是重传还是新传,可通过解调导频或者控制信息携带该第一指示信息,无需DCI指示,使得数据的传输不需要依赖DCI,可以大幅度减少下行控制信道的开销,提高系统效率。
在该方案的具体实现中,所述装置10为网络设备,所述接收端设备包括终端设备。
可选的,所述发送模块11还用于:
向所述接收端设备发送RRC信息,为所述接收端设备配置半永久性调度SPS传输配置;
向所述接收端设备发送下行控制信息DCI,激活SPS传输。
可选的,所述第一指示信息通过解调导频携带,解调导频序列与重传/新传之间的对应关系,或者解调导频端口与重传/新传之间的对应关系通过所述RRC信息配置;
或者,
解调导频序列与重传/新传之间的对应关系,或者解调导频端口与重传/新传之间的对应关系通过所述DCI进行配置。
可选的,所述第一指示信息通过解调导频携带,则:
新传数据所采用的解调导频序列和/或解调导频端口通过所述RRC信息配置;
或者,
重传数据所采用的解调导频序列和/或解调导频端口通过所述RRC信息配置;
或者,
新传数据所采用的解调导频序列和/或解调导频端口通过所述DCI配置;
或者,
重传数据所采用的解调导频序列和/或解调导频端口通过所述DCI配置。
可选的,所述第一指示信息通过解调导频携带,所述发送模块11还用于:
向所述接收端设备发送解调导频配置信息,所述解调导频配置信息包括:解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系;
或者,
向所述接收端设备发送解调导频配置信息,所述解调导频配置信息包括:新传数据所采用的解调导频序列和/或解调导频端口。
可选的,所述装置10为终端设备,所述接收端设备包括网络设备。
可选的,所述装置还包括:
接收模块12,用于接收所述接收端设备发送的RRC信息,所述RRC信息用于配置授权传输配置,所述授权传输配置包括:
解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系。
可选的,所述装置还包括:
接收模块12,用于接收所述接收端设备发送的RRC信息,所述RRC信息用于配置授权传输配置,所述授权传输配置包括:新传数据所采用的解调导频序列和/或解调导频端口
处理模块13,用于根据所述授权传输配置以及协议约定的解调导频配置,确定重传数据所采用的解调导频序列和/或解调导频端口。
可选的,所述装置10还可以是终端设备,所述接收端设备包括终端设备。
前述任一实现方式提供的数据的传输装置,用于执行前述任一方法实施例中发送端设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图10为本申请提供的数据的传输装置实施例二的结构示意图。如图10所示,该数据的传输装置20包括:接收模块21、处理模块22以及发送模块23。
其中,接收模块21,用于接收发送端设备发送的数据和第一指示信息,所述第一指示信息用于指示传输的数据是重传或者新传;
处理模块22,用于根据所述第一指示信息确定所述数据是重传或者新传。
可选的,所述第一指示信息包括NDI。
可选的,所述第一指示信息通过控制信息或者解调导频携带。
可选的,第一指示信息通过控制信息携带时,数据和控制信息是独立编码的。
可选的,所述第一指示信息通过解调导频携带,解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系是预先约定的。
本实施例提供的数据的传输装置,用于执行前述任一方法实施例中接收端设备侧的技术方案,在发送端设备发送数据时,同时发送用于指示该数据是重传还是新传的第一指示信息,以便该数据的传输装置根据该第一指示信息确定数据是重传还是新传,可通过解调导频或者控制信息携带该第一指示信息,无需DCI指示,使得数据的传输不需要依赖DCI,可以大幅度减少下行控制信道的开销,提高系统效率。
在上述方案的基础上,所述发送端设备包括网络设备,所述装置20包括终端设备。
所述接收模块21还用于:
接收所述发送端设备发送的RRC信息,所述RRC信息用于配置半永久性调度SPS 传输配置;
接收所述发送端设备发送的下行控制信息DCI,激活SPS传输。
可选的,所述第一指示信息通过解调导频携带,解调导频序列与重传/新传之间的对应关系,或者解调导频端口与重传/新传之间的对应关系通过所述RRC信息配置;
或者,
解调导频序列与重传/新传之间的对应关系,或者解调导频端口与重传/新传之间的对应关系通过所述DCI进行配置。
可选的,所述第一指示信息通过解调导频携带,则:
新传数据所采用的解调导频序列和/或解调导频端口通过所述RRC信息配置;
或者,
重传数据所采用的解调导频序列和/或解调导频端口通过所述RRC信息配置;
或者,
新传数据所采用的解调导频序列和/或解调导频端口通过所述DCI配置;
或者,
重传数据所采用的解调导频序列和/或解调导频端口通过所述DCI配置。
可选的,所述第一指示信息通过解调导频携带,
则所述接收模块21还用于接收所述发送端设备发送的解调导频配置信息,所述解调导频配置信息包括:解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系;
或者,
所述接收模块21还用于接收所述发送端设备发送的解调导频配置信息,所述解调导频配置信息包括:新传数据所采用的解调导频序列和/或解调导频端口;
所述处理模块22还用于根据所述解调导频配置信息以及协议约定的解调导频配置,确定重传数据所采用的解调导频序列和/或解调导频端口。
可选的,所述发送端设备包括终端设备,所述装置20包括网络设备。
可选的:发送模块23,用于向所述发送端设备发送RRC信息,所述RRC信息用于配置授权传输配置,所述授权传输配置包括:
解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系。
可选的,发送模块23,用于向所述发送端设备发送RRC信息,所述RRC信息用于配置授权传输配置,所述授权传输配置包括:新传数据所采用的解调导频序列和/或解调导频端口。
可选的,所述发送端设备包括终端设备,所述装置20也可以是终端设备。
前述任一实现方式提供的数据的传输装置,用于执行前述任一方法实施例中接收端设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图11为本申请提供的发送端设备实施例一的结构示意图。如图11所示,发送端设备30,包括:
处理器31、存储器32、接收器33、发送器34与接收端设备进行通信的接口35;
所述存储器32存储计算机执行指令;
所述处理器31执行所述存储器存储的计算机执行指令,使得所述处理器31执行如前述任一方法实施例中的发送端设备侧的技术方案。
图12为本申请提供的接收端设备实施例一的结构示意图。如图12所示,该接收端设备40,包括:
处理器42、存储器43、发送器44与发送端设备进行通信的接口45;可选的,该终端设备40还包括接收器41。
所述存储器43存储计算机执行指令;
所述处理器42执行所述存储器存储的计算机执行指令,使得所述处理器42执行如前述任一方法实施例中的接收端设备侧的技术方案。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现第一前述任一方法实施例中发送到管设备侧的技术方案。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中接收端设备侧的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述方法实施例中发送端设备侧的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述方法实施例中接收端设备侧的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述方法实施例中发送端设备侧的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述方法实施例中接收端设备侧的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中发送端设备侧的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行发送端设备侧的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中接收端设备的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行接收端设备侧的技术方案。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述各个设备的具体实现中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,简称:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。

Claims (41)

  1. 一种数据的传输方法,其特征在于,应用于发送端设备,所述方法包括:
    向接收端设备发送数据和第一指示信息,所述第一指示信息用于指示传输的所述数据是重传或者新传。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括新数据指示NDI。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息通过控制信息或者解调导频携带。
  4. 根据权利要求3所述的方法,其特征在于,所述第一指示信息通过控制信息携带,则所述控制信息与所述数据独立编码。
  5. 根据权利要求3所述的方法,其特征在于,所述第一指示信息通过解调导频携带,解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系是预先约定的。
  6. 根据权利要求1至3任一项所述的方法,其特征在于,所述发送端设备包括网络设备,所述接收端设备包括终端设备。
  7. 根据权利要求6所述的方法,其特征在于,所述向接收端设备发送数据和第一指示信息之前,所述方法还包括:
    向所述接收端设备发送无线资源控制RRC信息,为所述接收端设备配置半永久性调度SPS传输配置;
    向所述接收端设备发送下行控制信息DCI,激活SPS传输。
  8. 根据权利要求7所述的方法,其特征在于,所述第一指示信息通过解调导频携带,则:
    解调导频序列与重传/新传之间的对应关系,或者解调导频端口与重传/新传之间的对应关系通过所述RRC信息配置;
    或者,
    解调导频序列与重传/新传之间的对应关系,或者解调导频端口与重传/新传之间的对应关系通过所述DCI进行配置。
  9. 根据权利要求7所述的方法,其特征在于,所述第一指示信息通过解调导频携带,则:
    新传数据所采用的解调导频序列和/或解调导频端口通过所述RRC信息配置;
    或者,
    重传数据所采用的解调导频序列和/或解调导频端口通过所述RRC信息配置;
    或者,
    新传数据所采用的解调导频序列和/或解调导频端口通过所述DCI配置;
    或者,
    重传数据所采用的解调导频序列和/或解调导频端口通过所述DCI配置。
  10. 根据权利要求6或7所述的方法,其特征在于,所述第一指示信息通过解调导频携带,则所述方法还包括:
    向所述接收端设备发送解调导频配置信息,所述解调导频配置信息包括:解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系;
    或者,
    向所述接收端设备发送解调导频配置信息,所述解调导频配置信息包括:新传数据所采用的解调导频序列和/或解调导频端口。
  11. 根据权利要求1至3任一项所述的方法,其特征在于,所述发送端设备包括终端设备,所述接收端设备包括网络设备。
  12. 根据权利要求11所述的方法,其特征在于,所述第一指示信息通过解调导频携带,所述方法还包括:
    接收所述接收端设备发送的RRC信息,所述RRC信息用于配置授权传输配置,所述授权传输配置包括:
    解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系。
  13. 根据权利要求11所述的方法,其特征在于,所述第一指示信息通过解调导频携带,所述方法还包括:
    接收所述接收端设备发送的RRC信息,所述RRC信息用于配置授权传输配置,所述授权传输配置包括:新传数据所采用的解调导频序列和/或解调导频端口;
    根据所述授权传输配置以及协议约定的解调导频配置,确定重传数据所采用的解调导频序列和/或解调导频端口。
  14. 根据权利要求1至3任一项所述的方法,其特征在于,所述发送端设备包括终端设备,所述接收端设备包括终端设备。
  15. 一种数据的传输方法,其特征在于,应用于接收端设备,所述方法包括:
    接收发送端设备发送的数据和第一指示信息,所述第一指示信息用于指示传输的数据是重传或者新传;
    根据所述第一指示信息确定所述数据是重传或者新传。
  16. 根据权利要求15所述的方法,其特征在于,所述第一指示信息包括新数据指示NDI。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第一指示信息通过控制信息或者解调导频携带。
  18. 根据权利要求17所述的方法,其特征在于,所述第一指示信息通过解调导频携带,解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系是预先约定的。
  19. 根据权利要求15至17任一项所述的方法,其特征在于,所述发送端设备包括网络设备,所述接收端设备包括终端设备。
  20. 根据权利要求19所述的方法,其特征在于,所述接收发送端设备发送的数据和第一指示信息之前,所述方法还包括:
    接收所述发送端设备发送的无线资源控制RRC信息,所述RRC信息用于配置半永久性调度SPS传输配置;
    接收所述发送端设备发送的下行控制信息DCI,激活SPS传输。
  21. 根据权利要求20所述的方法,其特征在于,所述第一指示信息通过解调导频携带,则:
    解调导频序列与重传/新传之间的对应关系,或者解调导频端口与重传/新传之间的对应关系通过所述RRC信息配置;
    或者,
    解调导频序列与重传/新传之间的对应关系,或者解调导频端口与重传/新传之间的对应关系通过所述DCI进行配置。
  22. 根据权利要求20所述的方法,其特征在于,所述第一指示信息通过解调导频携带,则:
    新传数据所采用的解调导频序列和/或解调导频端口通过所述RRC信息配置;
    或者,
    重传数据所采用的解调导频序列和/或解调导频端口通过所述RRC信息配置;
    或者,
    新传数据所采用的解调导频序列和/或解调导频端口通过所述DCI配置;
    或者,
    重传数据所采用的解调导频序列和/或解调导频端口通过所述DCI配置。
  23. 根据权利要求19或20所述的方法,其特征在于,所述第一指示信息通过解调导频携带,则所述方法还包括:
    接收所述发送端设备发送的解调导频配置信息,所述解调导频配置信息包括:解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系;
    或者,
    接收所述发送端设备发送的解调导频配置信息,所述解调导频配置信息包括:新传数据所采用的解调导频序列和/或解调导频端口;
    根据所述解调导频配置信息以及协议约定的解调导频配置,确定重传数据所采用的解调导频序列和/或解调导频端口。
  24. 根据权利要求15至17任一项所述的方法,其特征在于,所述发送端设备包括终端设备,所述接收端设备包括网络设备。
  25. 根据权利要求24所述的方法,其特征在于,所述第一指示信息通过解调导频携带,所述方法还包括:
    向所述发送端设备发送RRC信息,所述RRC信息用于配置授权传输配置,所述授权传输配置包括:
    解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系。
  26. 根据权利要求24所述的方法,其特征在于,所述第一指示信息通过解调导频携带,所述方法还包括:
    向所述发送端设备发送RRC信息,所述RRC信息用于配置授权传输配置,所述授权传输配置包括:新传数据所采用的解调导频序列和/或解调导频端口。
  27. 根据权利要求15至17任一项所述的方法,其特征在于,所述发送端设备包括终端设备,所述接收端设备包括终端设备。
  28. 一种数据的传输装置,其特征在于,包括:
    发送模块,用于向接收端设备发送数据和第一指示信息,所述第一指示信息用于指示传输的所述数据是重传或者新传。
  29. 根据权利要求28所述的装置,其特征在于,所述发送模块还用于:
    向所述接收端设备发送RRC信息,为所述接收端设备配置半永久性调度SPS传输配置;
    向所述接收端设备发送下行控制信息DCI,激活SPS传输。
  30. 根据权利要求29所述的装置,其特征在于,所述第一指示信息通过解调导频携带,所述发送模块还用于:
    向所述接收端设备发送解调导频配置信息,所述解调导频配置信息包括:解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系;
    或者,
    向所述接收端设备发送解调导频配置信息,所述解调导频配置信息包括:新传数据所采用的解调导频序列和/或解调导频端口。
  31. 根据权利要求28所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述接收端设备发送的RRC信息,所述RRC信息用于配置授权传输配置,所述授权传输配置包括:
    解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系。
  32. 根据权利要求28所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述接收端设备发送的RRC信息,所述RRC信息用于配置授权传输配置,所述授权传输配置包括:新传数据所采用的解调导频序列和/或解调导频端口
    处理模块,用于根据所述授权传输配置以及协议约定的解调导频配置,确定重传数据所采用的解调导频序列和/或解调导频端口。
  33. 一种数据的传输装置,其特征在于,包括:
    接收模块,用于接收发送端设备发送的数据和第一指示信息,所述第一指示信息用于指示传输的数据是重传或者新传;
    处理模块,用于根据所述第一指示信息确定所述数据是重传或者新传。
  34. 根据权利要求33所述的装置,其特征在于,所述接收模块还用于:
    接收所述发送端设备发送的RRC信息,所述RRC信息用于配置半永久性调度SPS传输配置;
    接收所述发送端设备发送的下行控制信息DCI,激活SPS传输。
  35. 根据权利要求34所述的装置,其特征在于,所述第一指示信息通过解调导频携带,
    则所述接收模块还用于接收所述发送端设备发送的解调导频配置信息,所述解调导频配置信息包括:解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系;
    或者,
    所述接收模块还用于接收所述发送端设备发送的解调导频配置信息,所述解调导频配置信息包括:新传数据所采用的解调导频序列和/或解调导频端口;
    所述处理模块还用于根据所述解调导频配置信息以及协议约定的解调导频配置,确定重传数据所采用的解调导频序列和/或解调导频端口。
  36. 根据权利要求33所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述发送端设备发送RRC信息,所述RRC信息用于配置授权传输配置,所述授权传输配置包括:
    解调导频序列与重传/新传之间的对应关系,或者,解调导频端口与重传/新传之间的对应关系。
  37. 根据权利要求33所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述发送端设备发送RRC信息,所述RRC信息用于配置授权传输配置,所述授权传输配置包括:新传数据所采用的解调导频序列和/或解调导频端口。
  38. 一种发送端设备,其特征在于,包括:
    处理器、存储器、发送器与接收端设备进行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1至14任一项所述的数据的传输方法。
  39. 一种接收端设备,其特征在于,包括:
    处理器、存储器、接收器、发送器与发送端设备进行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求15至27任一项所述的数据的传输方法。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求1至14任一项所述的数据的传输方法。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求15至27任一项所述的数据的传输方法。
PCT/CN2019/075932 2019-02-22 2019-02-22 数据的传输方法、装置、设备及存储介质 WO2020168562A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980075268.2A CN113039736B (zh) 2019-02-22 2019-02-22 数据的传输方法、装置、设备及存储介质
PCT/CN2019/075932 WO2020168562A1 (zh) 2019-02-22 2019-02-22 数据的传输方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075932 WO2020168562A1 (zh) 2019-02-22 2019-02-22 数据的传输方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020168562A1 true WO2020168562A1 (zh) 2020-08-27

Family

ID=72144894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075932 WO2020168562A1 (zh) 2019-02-22 2019-02-22 数据的传输方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN113039736B (zh)
WO (1) WO2020168562A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104301067A (zh) * 2013-07-19 2015-01-21 华为技术有限公司 Dm-rs图样指示方法和装置
CN107113114A (zh) * 2014-12-16 2017-08-29 华为技术有限公司 无线通信系统中的方法和节点
CN107689848A (zh) * 2016-08-05 2018-02-13 中兴通讯股份有限公司 信息指示方法及装置、系统
US20180092071A1 (en) * 2016-09-24 2018-03-29 Ofinno Technologies, Llc Transport block transmission in a wireless device and wireless network

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3122109A4 (en) * 2014-03-20 2018-02-28 Kyocera Corporation Communication control method and user terminal
WO2018107458A1 (zh) * 2016-12-16 2018-06-21 富士通株式会社 用于免授权传输的装置、方法以及通信系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104301067A (zh) * 2013-07-19 2015-01-21 华为技术有限公司 Dm-rs图样指示方法和装置
CN107113114A (zh) * 2014-12-16 2017-08-29 华为技术有限公司 无线通信系统中的方法和节点
CN107689848A (zh) * 2016-08-05 2018-02-13 中兴通讯股份有限公司 信息指示方法及装置、系统
US20180092071A1 (en) * 2016-09-24 2018-03-29 Ofinno Technologies, Llc Transport block transmission in a wireless device and wireless network

Also Published As

Publication number Publication date
CN113039736B (zh) 2022-12-06
CN113039736A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
US11916680B2 (en) Sidelink resource sensing using feedback channels
US10455585B2 (en) Method and apparatus for carrier aggregation
CA2879902C (en) Method and apparatus for use in inter band time division duplexing carrier aggregation
TWI433497B (zh) 混合式自動重送請求時序判定
CN114080773B (zh) 具有不同服务类型的harq-ack码本的sr传输的优先级区分
EP3531757A1 (en) Method and device for sending and receiving transmission timing information
WO2018126872A1 (zh) 请求资源的方法和装置
EP3553986A1 (en) Transmission method, network equipment, and terminal equipment
WO2017132999A1 (zh) 通信方法、终端设备和网络设备
EP4210408A1 (en) Method and device used in node for wireless communication
WO2021207959A1 (zh) 重复传输方法、装置及可读存储介质
WO2023051032A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11540268B2 (en) Single transport block over multiple slots with discontinuous SLIVs
US11736221B2 (en) Overhead parameter for a single transport block over multiple slots
WO2022109836A1 (en) User equipment cooperation
CN114024659B (zh) 数据的传输方法、装置、设备及存储介质
WO2020168562A1 (zh) 数据的传输方法、装置、设备及存储介质
CN117335945A (zh) 一种被用于无线通信的节点中的方法和装置
CN113677032A (zh) 一种被用于无线通信的节点中的方法和装置
CN113949483B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024041465A1 (zh) 通信方法及设备
WO2023000332A1 (zh) 通信方法及装置
WO2021207958A1 (zh) 参考信号处理方法、装置及可读存储介质
WO2018082534A1 (zh) 传输定时信息发送方法、接收方法及装置
EP4238258A1 (en) Delayed semi-persistent scheduling harq-ack with physical uplink channel repetition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915953

Country of ref document: EP

Kind code of ref document: A1