WO2020166458A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2020166458A1
WO2020166458A1 PCT/JP2020/004412 JP2020004412W WO2020166458A1 WO 2020166458 A1 WO2020166458 A1 WO 2020166458A1 JP 2020004412 W JP2020004412 W JP 2020004412W WO 2020166458 A1 WO2020166458 A1 WO 2020166458A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
sub
virtual image
display
pixel group
Prior art date
Application number
PCT/JP2020/004412
Other languages
English (en)
French (fr)
Inventor
正章 加邉
健夫 小糸
知球 中岡
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to CN202080013733.2A priority Critical patent/CN113453939A/zh
Publication of WO2020166458A1 publication Critical patent/WO2020166458A1/ja
Priority to US17/400,261 priority patent/US20210373329A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/361Reproducing mixed stereoscopic images; Reproducing mixed monoscopic and stereoscopic images, e.g. a stereoscopic image overlay window on a monoscopic image background
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/32Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers characterised by the geometry of the parallax barriers, e.g. staggered barriers, slanted parallax arrays or parallax arrays of varying shape or size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/123Optical louvre elements, e.g. for directional light blocking

Definitions

  • the embodiment of the present invention relates to a display device.
  • a head-up display that reflects information on the projection surface of the windshield of an automobile or the like to display information within the driver's field of view.
  • the HUD makes the driver perceive a virtual image at a position, for example, about 4 meters ahead of the windshield.
  • the driver can visually recognize route guidance, emergency information, and the like without having to move his or her line of sight greatly, which improves safety during driving.
  • HUD may be equipped with a display device capable of displaying a three-dimensional image.
  • a display device capable of displaying a three-dimensional image.
  • the right eye of the user needs to perceive the right eye image
  • the left eye of the user needs to perceive the left eye image.
  • methods for achieving this include a method in which a user wears special glasses such as polarized glasses and shutter glasses, and a method in which a display device is provided with a light control element such as a barrier or a lenticular lens.
  • a method of providing a light control element on the display device is used so that the driver does not need to wear glasses or the like that may hinder driving.
  • a method of providing a light control element on the display device is used so that the driver does not need to wear glasses or the like that may hinder driving.
  • the method of providing the light control element in the display device may reduce the resolution of the virtual image perceived by the user.
  • the problem to be solved by the present invention is to provide a display device capable of improving the display quality of a virtual image.
  • the display device includes a display unit, a light control element, a projection surface, at least one of one or more mirrors and one or more lenses.
  • the display unit includes a sub-pixel group arranged in a first direction and a second direction orthogonal to the first direction, the display unit including a first sub-pixel group in the sub-pixel group. One region and a second region including a second subpixel group of the subpixel group are included.
  • the light control element overlaps the first region.
  • An image displayed by the display unit is projected on the projection surface. At least one of the one or more mirrors and the one or more lenses is for projecting the image on the projection surface.
  • a virtual image perceived by the user looking at the projection surface corresponds to the first region and is a first virtual image perceived as a stereoscopic virtual image, and a virtual image corresponding to the second region and is perceived as a planar virtual image. And a second virtual image.
  • FIG. 1 is a diagram schematically showing a display device according to an embodiment.
  • FIG. 2 is a diagram showing an example of a virtual image formed by the display device of the same embodiment.
  • FIG. 3 is a cross-sectional view showing a configuration example of a display provided in the display device of the same embodiment.
  • FIG. 4 is a plan view showing a configuration example of a display panel and a light control element in the display of FIG.
  • FIG. 5 is a plan view showing another configuration example of the display panel and the light control element in the display of FIG.
  • FIG. 6 is a sectional view showing a configuration example of a display panel and a light control element in the display of FIG.
  • FIG. 7 is a plan view showing a configuration example of the light control element in the display of FIG. FIG.
  • FIG. 8 is a diagram showing a first arrangement example of images for subpixel groups arranged on the display panel in the display of FIG.
  • FIG. 9 is a diagram showing a second arrangement example of an image for a sub-pixel group arranged on the display panel in the display of FIG.
  • FIG. 10 is a diagram showing a third arrangement example of an image for a subpixel group arranged on the display panel in the display of FIG.
  • FIG. 11 is a diagram showing a fourth arrangement example of images for sub-pixel groups arranged on the display panel in the display of FIG.
  • FIG. 1 is a diagram schematically showing a display device according to this embodiment.
  • This display device is, for example, a head-up display (HUD) 1.
  • the HUD 1 causes a user to perceive a virtual image formed by projecting an image on a projection surface.
  • the X H direction and the Y H direction are orthogonal to each other, and the Z H direction is orthogonal to the X H direction and the Y H direction. ..
  • the X H direction corresponds to the horizontal direction with respect to the viewpoint VP of the user
  • the Y H direction corresponds to the vertical direction with respect to the viewpoint VP
  • the Z H direction corresponds to the depth direction with respect to the viewpoint VP.
  • observing the X H -Y H plane defined by the X H direction and the Y H direction from the viewpoint VP is also referred to as planar view.
  • the HUD 1 includes a display 2, one or more mirrors M1 and M2, and a projection plane PS.
  • the display 2 displays an image based on the display signal acquired or generated by the display 2 on the screen.
  • the one or more mirrors M1 and M2 include, for example, a plane mirror M1 and a concave mirror M2.
  • the image displayed on the screen of the display 2 is projected on the projection surface PS via the plane mirror M1 and the concave mirror M2. More specifically, the light rays forming the displayed image are reflected and condensed by the plane mirror M1 and the concave mirror M2, and projected on the projection surface PS.
  • the concave mirror M2 has a vertical radius of curvature of 730 mm, for example, and can reflect light rays so as to enlarge the image.
  • the projection plane PS is, for example, the inner surface of the windshield of an automobile, and the radius of curvature in the horizontal direction is, for example, 1700 mm.
  • the projected image is reflected by the projection surface PS toward the user (driver) having the viewpoint VP, and is a virtual image at a position farther than the projection surface PS with respect to the user (for example, a position several meters away from the projection surface PS).
  • V is formed. That is, the user perceives the virtual image V at a position farther than the projection plane PS.
  • the one or more mirrors M1 and M2 constituting the HUD1 may be two concave mirrors. Further, not only the plane mirror and the concave mirror, but other optical members such as a half mirror and a Fresnel mirror can be selected. Instead of one or more mirrors M1, M2, or in addition to one or more mirrors M1, M2, one or more lenses may be used. Further, the projection surface PS may be a transparent reflector installed in front of the driver instead of the windshield. The image displayed on the screen of the display 2 is reflected and condensed by the plane mirror M1 and the concave mirror M2, and projected on this reflector.
  • Display 2 can display a three-dimensional image and a two-dimensional image.
  • the display 2 can display a three-dimensional image means that a plurality of images corresponding to a plurality of viewpoints are displayed on the display 2 and a user who views the display 2 captures images of the two viewpoints with both eyes. , That it can perceive a three-dimensional image.
  • a light control element such as a barrier or a lenticular lens is arranged on a part of the screen of the display 2.
  • the light control element is emitted from the display 2 so that the pixel group for the right eye displayed on the screen of the display 2 is perceived by the right eye of the user and the displayed pixel group for the left eye is perceived by the left eye of the user. Control the rays of light. This allows the user to perceive a three-dimensional image.
  • a virtual image V1 that is perceived by the user as a stereoscopic virtual image is formed.
  • a virtual image V2 that is perceived by the user as a planar virtual image is formed.
  • the virtual image V2 is formed as a plane parallel to the X H -Y H plane, for example.
  • the virtual image V1 corresponding to the three-dimensional image is perceived by the user in the range from the depth position za to the depth position zc with respect to the viewpoint VP.
  • the virtual image V2 corresponding to the two-dimensional image is perceived by the user at the specific depth position zb with respect to the viewpoint VP.
  • the user perceives the virtual image V1 as a stereoscopic virtual image and the virtual image V2 as a planar virtual image.
  • FIG. 1 shows an example in which the depth position zb at which the virtual image V2 is perceived is within the range from the depth position za at which the virtual image V1 is perceived to the depth position zc. It may be at a position closer to the viewpoint VP than this range (that is, a position before the depth position za) with respect to the VP, or at a position further back than the depth position zc.
  • the resolution of the image perceived by the user is lower than the resolution of the display.
  • the resolution of the image perceived by the user is half the resolution of the display.
  • the display 2 is provided with the first area for three-dimensional display on which the light control element is superimposed and the second area on which the light control element is not superimposed. Then, for example, an image in which it is preferable to obtain a feeling of depth is displayed in the first region, and an image in which the reduction in resolution is not preferable is displayed in the second region.
  • the user looking at the projection surface PS perceives a three-dimensional virtual image corresponding to the image displayed in the first area and perceives a planar virtual image corresponding to the image displayed in the second area. Thereby, the display quality of the virtual image perceived by the user can be improved.
  • FIG. 2 shows an example of the virtual image V that the user perceives from the viewpoint VP.
  • an image here, an arrow
  • an image in which the reduction in resolution is not preferable or an image which does not need to be three-dimensionally formed is the virtual image V2. It is formed flat.
  • the image in which the reduction in resolution is not preferable is an image whose visibility is reduced when the resolution is reduced, such as an image including characters, symbols, marks, signs (for example, traffic signs). As shown in FIG.
  • the mark 201 that prompts the user to wear a seat belt and the character string 202 that warns the user that a vehicle is approaching are images in which the reduction in resolution is unfavorable, and are flat as a virtual image V2 in which the resolution does not decline. Formed.
  • a virtual image V1 formed three-dimensionally may be arranged on the upper side and a virtual image V2 formed planarly on the lower side may be arranged for the user.
  • the driver has a characteristic of moving the line of sight to the upper part of the windshield (projection plane PS) when trying to look far away, and moving the line of sight to the lower part of the windshield when trying to look closer.
  • the virtual image V2 which can be formed closer to the virtual image V1, near the bottom of the virtual image V1, this characteristic can be applied.
  • FIG. 3 is a cross-sectional view showing a configuration example of the display 2.
  • the X D direction and the Y D direction are orthogonal to each other, and the Z D direction is orthogonal to the X D direction and the Y D direction.
  • the X D direction and the Y D direction are parallel to the main surface of the substrate forming the display 2, and the Z D direction is orthogonal to the main surface. That, Z D direction corresponds to the thickness direction of the display 2.
  • the display 2 includes a display panel 10, a light control element 20, and a lighting device 30.
  • the display panel 10 is, for example, a liquid crystal panel.
  • the display panel 10 includes a first substrate 11 and a second substrate 12.
  • the second substrate 12 is located on the first substrate 11.
  • the direction from the first substrate 11 to the second substrate 12 is referred to as “upper side” (or simply upper side), and the direction from the second substrate 12 to the first substrate 11 is “lower side” (or Simply below).
  • the second member above the first member” and the “second member below the first member” are used, the second member may be in contact with the first member or may be separated from the first member. May be.
  • the light control element 20 is located on the display panel 10.
  • the light control element 20 includes a plurality of light control units as described later.
  • the light control element 20 is fixed to the display panel 10 by the transparent resin 40.
  • the lighting device 30 is located below the display panel 10.
  • the first polarizing plate 51 is adhered to the lower surface 11B of the first substrate 11.
  • the second polarizing plate 52 is adhered to the upper surface 20A of the light control element 20.
  • the second polarizing plate 52 may be adhered to the upper surface 12A of the second substrate 12 or the lower surface 20B of the light control element 20.
  • the light control element 20 may be located between the first polarizing plate 51 and the first substrate 11 or between the lighting device 30 and the first polarizing plate 51.
  • the light control element 20 may be incorporated in the display panel 10.
  • the display panel 10 is not limited to the liquid crystal panel, and may be a self-luminous display panel having an organic electroluminescence display element, a ⁇ LED or the like, or an electronic paper type display panel having an electrophoretic element or the like.
  • the display panel 10 is, for example, a transmissive display panel that displays an image by selectively transmitting light from the back surface side of the first substrate 11.
  • the display panel 10 may be a reflective display panel that displays an image by selectively reflecting the light from the front surface side of the second substrate 12, or has a transmissive display function and a reflective display function. It may be a display panel.
  • the lighting device 30 may be omitted, or the lighting device 30 may be located on the display panel 10.
  • FIG. 4 is a plan view showing a configuration example of the display panel 10 and the light control element 20.
  • the display panel 10 includes a display unit DA in a portion where the first substrate 11 and the second substrate 12 overlap each other.
  • Display unit DA includes a X D direction, the X D perpendicular to the direction Y D direction and the sub-pixel group SP arranged in a matrix form.
  • the subpixel group SP includes a red subpixel SPR that displays red, a green subpixel SPG that displays green, and a blue subpixel SPB that displays blue.
  • a light shield called a black matrix BM1 is provided in a region of the display section DA where the sub-pixel group SP is not arranged. That is, the black matrix BM1 is arranged between the sub-pixels SP and in the peripheral portion of the surface of the display panel 10.
  • the black matrix preferably has an optical density (OD value) of 3 or more.
  • the black matrix may be a light absorber or a light reflector.
  • the black matrix may be formed of a metal material such as a compound containing chromium, molybdenum, or silver, or may be formed of a black resin material.
  • one subpixel may be simply referred to as a subpixel SP when the color of the subpixel is not specified.
  • the X D direction may be referred to as a horizontal direction
  • the Y D direction may be referred to as a vertical direction.
  • Each sub-pixel SP has a rectangular shape with the same size.
  • Each sub-pixel SP has a width W SP in X D direction, has a height H SP to Y D direction. The height H SP is larger than the width W SP , for example.
  • Each sub-pixel SP has a parallelogram shape, it may be inclined at a specific angle (e.g., 4 16 ° or less angle than °) with respect to Y D direction.
  • the plurality of sub-pixels SP arranged in the X D direction form a “row”, and the plurality of sub-pixels SP arranged in the Y D direction form a “column”.
  • the two sub-pixels SP adjacent to each other in the XD direction may display different colors.
  • Two adjacent sub-pixels SP in the YD direction can display the same color.
  • the height H SP is n times the width W SP .
  • n is a natural number of 2 or more. In the example shown in FIG. 4, n is 3. Therefore, the height H SP is three times the width W SP .
  • the display area DA includes a first area DA1 including a first subpixel group SP1 of the subpixel groups SP included in the display area DA and a first area DA1 including a second subpixel group SP2 of the subpixel group SP. Two areas DA2 are provided.
  • the light control element 20 indicated by hatching overlaps the first area DA1.
  • the light control element 20 is not superposed on the second area DA2. That is, the light control element 20 is superposed on the subpixel group SP1 in the range 1A, whereas the light control element 20 is not superposed on the subpixel group SP2 in the range 1B.
  • the first area DA1 is used as an area for displaying a three-dimensional image. Therefore, the first sub-pixel group SP1 in the first area DA1 includes a plurality of images for displaying a plurality of images corresponding to a plurality of viewpoints. It includes a sub-pixel group.
  • the second area DA2 is used as an area for displaying a two-dimensional image, and thus the second sub-pixel group SP2 in the second area DA2 is used for displaying an image of one viewpoint.
  • the first subpixel group SP1 in the first area DA1 is said to include a plurality of subpixel groups that respectively display a plurality of images from a plurality of viewpoints for allowing the user to perceive the stereoscopic virtual image V1.
  • the second sub-pixel group SP2 in the second area DA2 displays an image of one viewpoint for making the user perceive the planar virtual image V2.
  • one or more rows of sub-pixel groups SP1 in the first area DA1 closest to the boundary with the second area DA2 may be replaced with the black matrix BM2. That is, the display panel 10 includes the black matrixes BM1 and BM2 (first light shields) in the third area in the first area DA1 which is in contact with the second area DA2. In the range 1C corresponding to the third region, the light control element 20 is superposed on the black matrices BM1 and BM2.
  • the light control element 20 may include a black matrix (second light shield) that is superimposed on the black matrices BM1 and BM2 in the third region.
  • FIG. 6 is a cross-sectional view showing a configuration example of the display panel 10 and the light control element 20.
  • FIG. 6A corresponds to a cross-sectional view of a position where the first subpixel group SP1 is arranged within the range 1A, and the light control element 20 is superposed on the display panel 10.
  • a first subpixel group SP1 and a black matrix BM1 are arranged on the upper surface of the display panel 10.
  • the black matrix BM1 is arranged between the sub-pixels and in the peripheral portion of the upper surface of the display panel 10.
  • the light control element 20 includes a base material 21 and a plurality of light regulating bodies 22.
  • the base material 21 is a transparent substrate such as glass or resin.
  • the light regulator 22 limits the light rays that pass through itself, and functions as a light controller.
  • the light restrictor 22 includes, for example, a light shield 23 that overlaps a plurality of sub-pixels SP arranged in the XD direction, and an opening 24 that overlaps at least one sub-pixel SP.
  • the plurality of light shields 23 are arranged in the XD direction at intervals corresponding to the width of the opening 24.
  • the light shield 23 preferably has an optical density (OD value) of 3 or more.
  • the light shield 23 may be a light absorber or a light reflector.
  • the light shield 23 may be formed of a metal material such as a compound containing chromium, molybdenum, or silver, or may be formed of a black resin material. In this embodiment, for example, an emulsion mask is used as the light regulator 22.
  • the light shield 23 has a width W23 in the X D direction, and the opening 24 has a width W 24 in the X D direction.
  • the width W22 of one light regulating body 22, that is, the pitch of the light regulating bodies 22 arranged in the X D direction corresponds to the sum of the width W23 and the width W24.
  • the width W23 of the light shield 23 is larger than the width W24 of the opening 24.
  • the two light restrictors 22 arranged in the XD direction are overlapped with the plurality of sub-pixels SP.
  • Two openings 24 that are adjacent to each other with the light shield 23 interposed therebetween are overlapped with, for example, the sub-pixels SP of different colors.
  • the opening 24 located on the left side of FIG. 6A overlaps the red sub-pixel SPR
  • the opening 24 located on the right side of FIG. 6A overlaps the blue sub-pixel SPB.
  • the width W24 of the opening 24 may be larger than, equal to, or smaller than the width W SP of the sub-pixel SP. If the width W24 is smaller than the width W SP, it is possible to reduce the number of rays passing through the aperture 24, thereby improving the resolution of viewing the image to be. On the other hand, it is desirable that the width W24 be substantially equal to the width W SP from the viewpoint of suppressing a decrease in the brightness of the visually recognized image. Moreover, one opening 24 may be overlapped with a plurality of sub-pixels SP.
  • the light control element 20 may be provided with another type of light control body capable of controlling the light rays emitted from each of the sub-pixels SP, instead of the plurality of light control bodies 22, for example, a plurality of light control bodies.
  • a lens may be provided.
  • FIG. 6B corresponds to a cross-sectional view of a position where the sub-pixel group SP2 is arranged in the range 1B, and the light control element 20 is not superimposed on the display panel 10.
  • the structure of the display panel 10 is similar to that of FIG.
  • FIG. 6C corresponds to a cross-sectional view of the range 1C, and the light control element 20 is superposed on the display panel 10 on which the black matrices BM1 and BM2 are arranged.
  • a black matrix may be arranged instead of the light restrictor 22 in the light control element 20 in the range 1C.
  • the black matrix may be arranged instead of the light restrictor 22 without disposing the black matrix BM2 on the upper surface of the display panel 10 of the range 1C.
  • the portion where the light control element 20 is superimposed on the display panel 10 having the black matrix BM1 arranged on the upper surface has the same cross-sectional view as the range 1C.
  • FIG. 7 is a plan view showing a more specific configuration example of the light control element 20.
  • the plurality of light restrictors 22 are arranged in the XD direction.
  • the light blocking body 23 and the opening 24 that form the light regulating body 22 extend in an oblique direction different from the X D direction and the Y D direction.
  • Each of the light blocking member 23 has a pair of edges E23 arranged in the X D direction. The pair of edges E23 are parallel to each other. Opening 24 is located between the mutually facing edges E23 light shield 23 adjacent to X D direction.
  • the light restricting body 22 is superposed on the display unit DA and linearly extends over a plurality of rows of sub-pixels.
  • Light control member 22, each of the light shielding bodies 23 and the opening 24 is inclined at an angle ⁇ with respect to Y D direction.
  • the sub-pixel group SP includes a plurality of images corresponding to a plurality of viewpoints for allowing the user to perceive a stereoscopic virtual image V1 (or an image) and a planar virtual image V2 (or an image) at a specific depth position.
  • An image from one viewpoint for the user to perceive is displayed.
  • the number of the plurality of viewpoints may be any number as long as it is two or more. The greater the number of viewpoints, the lower the possibility that the perceived virtual image will collapse even if the user moves the viewpoints.
  • the first image, the second image, and the third image corresponding to the four viewpoints VP1, VP2, VP3, and VP4 are set as the plurality of images corresponding to the plurality of viewpoints for making the user perceive the three-dimensional virtual image V1.
  • the case where an image and a fourth image are used will be illustrated.
  • one certain scene (object) is captured from the first viewpoint VP1, the second viewpoint VP2, the third viewpoint VP3, and the fourth viewpoint VP4, respectively. It is an image obtained in some cases.
  • the 0th image is used as an image of one viewpoint for making the user perceive the planar virtual image V2 at a specific depth position.
  • the display unit DA is provided with a first area DA1 on which the first to fourth images are displayed and a second area DA2 on which the 0th image is displayed.
  • the light control element 20 is superposed on the first area DA1, while the light control element 20 is not superposed on the second area DA2.
  • Each of the first to fourth images has, for example, the same resolution as the first area DA1.
  • the 0th image has the same resolution as that of the second area DA2, for example.
  • FIG. 8 shows an image to be displayed on each sub-pixel SP in the display unit DA.
  • the number of the image partially displayed on the sub-pixel SP is shown.
  • the displayed image is the first image, it is “1”, if it is the second image, it is “2”, if it is the third image, it is “3”, if it is the fourth image, it is “4”, and 0th.
  • “0” is shown in the area representing each sub-pixel SP.
  • sub-pixel groups 801, 802, 803, 804 are used to display parts of the first to fourth images corresponding to the four viewpoints VP1, VP2, VP3, VP4, respectively. ..
  • Four sub-pixel group 801, 802, 803, and 804 are arranged in order in the X D direction.
  • Each sub-pixel group 801, 802, 803, and 804, for example, lined with five sub-pixels for X D direction, are lined up three sub-pixels from one for Y D direction.
  • the light rays emitted from the sub-pixel group 801 pass through the opening 24 between the two light shields 23 and reach the first viewpoint VP1. Therefore, the subpixel group 801 is used to display a part of the first image corresponding to the first viewpoint VP1. A part of the first image corresponding to the position of the subpixel group 801 in the first area DA1 is displayed in the subpixel group 801.
  • the light rays emitted from the sub-pixel group 802 pass through the opening 24 between the two light shields 23 and reach the second viewpoint VP2. Therefore, the subpixel group 802 is used to display a part of the second image corresponding to the second viewpoint VP2.
  • the sub-pixel group 802 displays a part of the second image corresponding to the position of the sub-pixel group 802 in the first area DA1.
  • the light rays emitted from the sub-pixel group 803 pass through the openings 24 between the light shields 23 and reach the third viewpoint VP3. Therefore, the subpixel group 803 is used to display a part of the third image corresponding to the third viewpoint VP3. A part of the third image corresponding to the position of the subpixel group 803 in the first area DA1 is displayed in the subpixel group 803.
  • the light rays emitted from the sub-pixel group 804 pass through the openings 24 between the light shields 23 and reach the fourth viewpoint VP4. Therefore, the sub-pixel group 804 is used to display a part of the fourth image corresponding to the fourth viewpoint VP4.
  • the sub-pixel group 804 displays a part of the fourth image corresponding to the position of the sub-pixel group 804 in the first area DA1.
  • the first area DA1 similarly to the sub-pixel groups 801, 801, 803 and 804, which image is displayed in each sub-pixel SP1 can be determined. Therefore, in the first area DA1, some of the four images corresponding to the four viewpoints VP1, VP2, VP3, and VP4 are arranged in a specific pattern in the X D direction and the Y D direction.
  • the user can perceive the three-dimensional virtual image V1 by the light rays emitted from the first area DA1 in the following cases, for example.
  • (1) When the light ray emitted from the sub-pixel group 801 to the first viewpoint VP1 is captured by the right eye and the light ray emitted from the sub-pixel group 802 to the second viewpoint VP2 is captured by the left eye
  • (2) When the light ray emitted from the sub-pixel group 802 to the second viewpoint VP2 is captured by the right eye, and the light ray emitted from the sub-pixel group 803 to the third viewpoint VP3 is captured by the left eye.
  • the sub-pixel group SP1 in the first area DA1 is distributed to display the first to fourth images. Then, a part of the first to fourth images is displayed on the distributed sub-pixel group SP1.
  • the resolution of each of the first to fourth images displayed is about 1 ⁇ 4 of the resolution of the first area DA1. Therefore, at each of the viewpoints VP1, VP2, VP3, and VP4, the resolution of the virtual image V1 perceived by the light rays emitted from the first area DA1 becomes about 1/4 of the resolution of the display performance of the first area DA1 and decreases. To do.
  • the sub-pixel group SP in the second area DA2 is used to display the 0th image.
  • the sub-pixel group SP in the second area DA2 not the part of the 0th image but the entire 0th image may be displayed. Since the light control element 20 is not superimposed on the second area DA2, the light rays emitted from the sub-pixel group SP in the second area DA2 reach any of the viewpoints VP1, VP2, VP3, VP4. Therefore, at each of the viewpoints VP1, VP2, VP3, and VP4, the resolution of the virtual image V2 perceived by the light beam emitted from the second area DA2 is the same as the resolution of the second area DA2 and does not decrease.
  • an image including a character, a symbol, etc., in which the decrease in resolution is not preferable is displayed using the sub-pixel group SP in the second area DA2.
  • the corresponding virtual image V2 can be perceived by the user without reducing the visibility.
  • the display 2 displays the 0th image and a part of the 1st to 4th images by using the subpixel group SP under the control according to this display signal.
  • the display signal can be generated by another information processing device or the like and input to the display 2.
  • the display signal may be a broadcast signal.
  • the display 2 comprises at least a communication device for receiving the display signal.
  • the display signal may be generated using a circuit such as a processor in the display 2.
  • a plurality of images (for example, first to fourth images) of a plurality of viewpoints displayed by using the first subpixel group SP1 are displayed on the light control element 20 and the mirror M1. , M2, and the image of one viewpoint (for example, the 0th image) displayed using the second sub-pixel group SP2 is projected via the mirrors M1 and M2.
  • the viewpoint VP of the HUD 1 includes the viewpoint VP R of the right eye and the viewpoint VP L of the left eye of the user.
  • the viewpoint VP R of the right eye the first light beam emitted from the sub-pixel group SP1 in which a certain image (for example, the first image) is displayed in the first area DA1 and passed through the opening 24 is reflected by the mirrors M1, M2 and It arrives via the projection plane PS.
  • the viewpoint VP L of the left eye the second light ray emitted from the sub-pixel group SP1 in which another image (for example, the second image) is displayed in the first area DA1 and passed through the opening 24 is reflected by the mirrors M1 and M2.
  • the projection plane PS the projection plane PS.
  • the third light ray emitted from the sub-pixel group SP2 in the second area DA2 in which the 0th image is displayed passes through the mirrors M1 and M2 and the projection surface PS. Reach.
  • the user can perceive the three-dimensional virtual image V1 by capturing the first light ray with the right eye and the second light ray with the left eye, and can perceive the planar virtual image V2 by capturing the third light ray with both eyes. That is, the user can perceive the virtual image V1 corresponding to the image for which a feeling of depth is preferably obtained, and the virtual image V2 corresponding to the image including characters, symbols, and the like for which the reduction in resolution is not preferable. Therefore, the display quality of the virtual image V formed in the HUD 1 can be improved.
  • the light control element 20 is overlapped with a part of the first area DA1 depending on the assembly accuracy of the display panel 10 and the light control element 20.
  • the light control element 20 does not exist, or the light control element 20 overlaps with a part of the second area DA2. In such a case, the light rays emitted from the respective areas DA1 and DA2 may be perceived from an unintended viewpoint.
  • the one or more rows of sub-pixel groups SP1 in the first area DA1 that are closest to the boundary with the second area DA2 may be replaced with the black matrix BM2.
  • the portion of the black matrix BM2 is not used for displaying the first to fourth images, the light control element 20 is not superposed on the sub-pixel group SP1 of one or more rows. Even in this case, it is possible to prevent the user from perceiving an unintended virtual image.
  • a 0th image for displaying the planar virtual image V2 to the user is displayed. May be done. For example, as shown in FIG. 10, one or more rows of sub-pixel groups SP1 in the first area DA1 closest to the boundary with the second area DA2 display the 0th image for perceiving the planar virtual image V2. Can be used for.
  • the light control element 20 is not superimposed on the sub-pixel group SP1 of one or more rows, a part of the first to fourth images displayed using the sub-pixel group SP1 is perceived by the user as it is. That is, any two images for each viewpoint are not perceived by the user's right and left eyes, respectively, but a part of the displayed first to fourth images is perceived by both eyes of the user. Therefore, the virtual image of unintended contents is perceived by the user.
  • the intended virtual image V can be perceived by the user, and the influence on the visibility by the user is reduced.
  • FIG. 11 shows another example showing which image is displayed on the sub-pixel group SP in the display unit DA.
  • the first image and the second image respectively corresponding to the two viewpoints VP1 and VP2 are used as the plurality of images corresponding to the plurality of viewpoints for allowing the user to perceive the three-dimensional virtual image V1 (or image).
  • the first image and the second image are images obtained when a certain scene is imaged from the first viewpoint VP1 and the second viewpoint VP2, respectively.
  • the 0th image is used as an image of one viewpoint for making the user perceive the planar virtual image V2 at a specific depth position.
  • the display unit DA is provided with a first area DA1 in which either the first or second image is displayed and a second area DA2 in which the 0th image is displayed.
  • the light control element 20 is superposed on the first area DA1, while the light control element 20 is not superposed on the second area DA2.
  • Each of the first and second images has the same resolution as that of the first area DA1, for example.
  • the 0th image has the same resolution as that of the second area DA2, for example.
  • two subpixel groups 111 and 112 are used to display a part of the first and second images corresponding to the two viewpoints VP1 and VP2, respectively.
  • Two sub-pixel group 111 and 112 are arranged in order in the X D direction.
  • Each sub-pixel group 111, for example, X D sequence are 10 sub-pixels with respect to the direction, they are lined up three sub-pixels from one for Y D direction.
  • the light rays emitted from the sub-pixel group 111 pass through the opening 24 between the two light shields 23 and reach the first viewpoint VP1. Therefore, the sub-pixel group 111 is used to display a part of the first image corresponding to the first viewpoint VP1.
  • the sub-pixel group 111 displays a part of the first image corresponding to the position of the sub-pixel group 111 in the first area DA1.
  • the light rays emitted from the sub-pixel group 112 pass through the opening 24 between the two light shields 23 and reach the second viewpoint VP2. Therefore, the subpixel group 112 is used to display a part of the second image corresponding to the second viewpoint VP2.
  • the sub-pixel group 112 displays a part of the second image corresponding to the position of the sub-pixel group 112 in the first area DA1.
  • the first area DA1 similarly to the sub-pixel groups 111 and 112, it is possible to determine which image is displayed in each sub-pixel SP1. Therefore, in the first area DA1, a part of the two images corresponding to the two viewpoints VP1 and VP2 are arranged in the X D direction and the Y D direction in a specific pattern.
  • the user perceives a stereoscopic virtual image V1 by the light rays emitted from the first area DA1 when the light ray emitted to the first viewpoint VP1 is captured by the right eye and the light ray emitted to the second viewpoint VP2 is captured by the left eye. it can.
  • the sub-pixel group SP1 in the first area DA1 is distributed to display the first and second images. Then, a part of the first and second images is displayed on the distributed sub-pixel group SP1. Due to this distribution, the resolution of each of the first and second images displayed is approximately 1 ⁇ 2 of the resolution of the first area DA1. Therefore, at each of the viewpoints VP1 and VP2, the resolution of the virtual image V1 perceived by the light beam emitted from the first area DA1 becomes about half the resolution of the display performance of the first area DA1 and decreases.
  • the subpixel group SP2 in the second area DA2 is used to display the 0th image.
  • the sub-pixel group SP2 in the second area DA2 may display the entire 0th image instead of a part of the 0th image. Since the light control element 20 is not overlapped on the second area DA2, the light rays emitted from the sub-pixel group SP2 in the second area DA2 reach both viewpoints VP1 and VP2. Therefore, at each of the viewpoints VP1 and VP2, the resolution of the virtual image V2 perceived by the light beam emitted from the second area DA2 is the same as the resolution of the second area DA2 and does not decrease.
  • an image including characters, symbols, and the like whose resolution is not desired to be reduced is displayed by using the sub-pixel group SP2 in the second area DA2 so that the corresponding virtual image V2 can be displayed to the user without reducing the visibility. Can be perceived.
  • the display 2 displays the 0th image and a part of the 1st and 2nd images by using the subpixel group SP under the control according to this display signal.
  • the viewpoint VP of the HUD 1 shown in FIG. 1 includes the viewpoint VP R of the user's right eye and the viewpoint VP L of the left eye in more detail.
  • the right eye viewpoint VP R emitted from the sub-pixel group SP1 in which the first image in the first region DA1 is displayed, the first light beam passing through the aperture 24, through the mirror M1, M2 and the projection surface PS To reach.
  • the second light ray emitted from the sub-pixel group SP1 in which the second image in the first area DA1 is displayed and passing through the opening 24 is passed through the mirrors M1 and M2 and the projection surface PS. To reach.
  • the third light ray emitted from the sub-pixel group SP2 in the second area DA2 in which the 0th image is displayed passes through the mirrors M1 and M2 and the projection surface PS. Reach.
  • the user can perceive the three-dimensional virtual image V1 by capturing the first light ray with the right eye and the second light ray with the left eye, and can perceive the planar virtual image V2 by capturing the third light ray with both eyes. That is, the user can perceive the virtual image V1 corresponding to the image for which a feeling of depth is preferably obtained, and the virtual image V2 corresponding to the image including characters, symbols, and the like for which the reduction in resolution is not preferable. Therefore, the display quality of the virtual image V formed in the HUD 1 can be improved.
  • the display quality of the virtual image can be improved.
  • the present invention is not limited to the above-described embodiments themselves, and constituent elements can be modified and embodied without departing from the scope of the invention at the stage of carrying out the invention. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in each embodiment. For example, some constituent elements may be deleted from all the constituent elements shown in each embodiment. Furthermore, the constituent elements of different embodiments may be combined appropriately.
  • a display unit including a second region including a second subpixel group; A light control element overlapping the first region; A projection surface onto which the image displayed by the display unit is projected, At least one of one or more mirrors and one or more lenses for projecting the image onto the projection surface; A virtual image perceived by the user looking at the projection surface corresponds to the first region and is a first virtual image perceived as a stereoscopic virtual image, and a virtual image corresponding to the second region and is perceived as a planar virtual image.
  • a display device including a second virtual image.
  • the display device includes a first light shield in a third region in the first region, which is in contact with the second region.
  • the light control element further includes a second light shield that overlaps the first light shield.
  • the display unit further displays an image for making the user perceive a planar virtual image by using a part of the first sub-pixel group adjacent to the second sub-pixel group, (1) to The display device according to any one of (4).
  • the second virtual image is perceived by the user at a first depth position, The display device according to (1) or (2), wherein the first virtual image is perceived by the user in a range from a second depth position to a third depth position.
  • the display device wherein the range includes the first depth position.
  • the display device includes a plurality of sub-pixel groups that respectively display a plurality of images at a plurality of viewpoints for causing the user to perceive the stereoscopic virtual image.
  • the display device includes a plurality of sub-pixel groups that respectively display a plurality of images at a plurality of viewpoints for causing the user to perceive the stereoscopic virtual image.
  • the display device wherein the second sub-pixel group displays an image from one viewpoint for allowing the user to perceive the planar virtual image.
  • a plurality of images of a plurality of viewpoints displayed using the first sub-pixel group are projected on the projection surface via the light control element, and are displayed using the second sub-pixel group.
  • the display device in which an image from one viewpoint is projected.
  • SYMBOLS 1 Head-up display (HUD), 2... Display, VP... Viewpoint, M1... Plane mirror, M2... Concave mirror, PS... Projection plane, V, V1, V2... Virtual image, 10... Display panel, 20... Light control element , 30... Illuminating device, 40... Transparent resin, 11... First substrate, 12... Second substrate, 22... Light regulating body, 23... Shading body, 24... Opening, 51... First polarizing plate, 52... Second polarized light Plate, DA... Display unit, DA1... First area, DA2... Second area, SP, SP1, SP2... Sub-pixel, BM1, BM2... Black matrix.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Instrument Panels (AREA)

Abstract

本実施形態の目的は、虚像の表示品位を向上できる表示装置を提供することにある。 本実施形態の表示装置は、表示部と、光制御素子と、投影面と、1つ以上のミラーと1つ以上のレンズの少なくとも一方と、を具備する。表示部は、第1方向と、前記第1方向に直交する第2方向とに並んだ副画素群を備える表示部であって、前記副画素群の内の第1副画素群を含む第1領域と前記副画素群の内の第2副画素群を含む第2領域とを含む。光制御素子は、前記第1領域に重畳する。投影面は、前記表示部によって表示される画像が投影される。前記1つ以上のミラーと1つ以上のレンズの少なくとも一方は、前記画像を前記投影面に投影するためのものである。前記投影面を見るユーザによって知覚される虚像は、前記第1領域に対応し、立体的な虚像として知覚される第1虚像と、前記第2領域に対応し、平面的な虚像として知覚される第2虚像とを含む。

Description

表示装置
 本発明の実施形態は、表示装置に関する。
 近年、自動車のフロントガラス等の投影面に映像を反射させてドライバーの視野内に情報を表示するヘッドアップディスプレイ(HUD)が普及しつつある。HUDはドライバーに対して、例えばフロントガラスから4メートルほど先の位置に虚像を知覚させる。これによりドライバーは視線を大きく動かすことなく経路案内や緊急情報等を視認できるので、運転時の安全性が向上する。
 HUDは三次元画像を表示可能な表示装置を備えることがある。ユーザ(視聴者)に三次元画像を知覚させるためには、ユーザの右目で右目用の画像が知覚され、左目で左目用の画像が知覚される必要がある。これを実現するための方法として例えば、ユーザが偏光眼鏡やシャッター眼鏡等の特殊な眼鏡を装着する方法と、表示装置にバリアやレンチキュラーレンズ等の光制御素子を設ける方法とがある。
 例えば車載のHUDに三次元画像を表示可能な表示装置が設けられる場合には、運転の妨げとなり得る眼鏡等をドライバーが装着する必要がないように、表示装置に光制御素子を設ける方法が用いられることが好ましい。
特開2001-251403号公報
 しかし、表示装置に光制御素子を設ける方法では、ユーザによって知覚される虚像の解像度が低下する場合がある。
 本発明が解決しようとする課題は、虚像の表示品位を向上できる表示装置を提供することである。
 本実施形態によれば、表示装置は、表示部と、光制御素子と、投影面と、1つ以上のミラーと1つ以上のレンズの少なくとも一方とを具備する。前記表示部は、第1方向と、前記第1方向に直交する第2方向とに並んだ副画素群を備える表示部であって、前記副画素群の内の第1副画素群を含む第1領域と前記副画素群の内の第2副画素群を含む第2領域とを含む。前記光制御素子は、前記第1領域に重畳する。前記投影面は、前記表示部によって表示される画像が投影される。前記1つ以上のミラーと1つ以上のレンズの少なくとも一方は、前記画像を前記投影面に投影するためのものである。前記投影面を見るユーザによって知覚される虚像は、前記第1領域に対応し、立体的な虚像として知覚される第1虚像と、前記第2領域に対応し、平面的な虚像として知覚される第2虚像とを含む。
 本実施形態によれば、虚像の表示品位を向上できる表示装置を提供することができる。
図1は、実施形態に係る表示装置を概略的に示す図である。 図2は、同実施形態の表示装置によって形成される虚像の例を示す図である。 図3は、同実施形態の表示装置に設けられるディスプレイの構成例を示す断面図である。 図4は、図3のディスプレイ内の表示パネルおよび光制御素子の一構成例を示す平面図である。 図5は、図3のディスプレイ内の表示パネルおよび光制御素子の別の一構成例を示す平面図である。 図6は、図3のディスプレイ内の表示パネルおよび光制御素子の一構成例を示す断面図である。 図7は、図3のディスプレイ内の光制御素子の一構成例を示す平面図である。 図8は、図3のディスプレイ内の表示パネルに配置された副画素群に対する画像の第1配置例を示す図である。 図9は、図3のディスプレイ内の表示パネルに配置された副画素群に対する画像の第2配置例を示す図である。 図10は、図3のディスプレイ内の表示パネルに配置された副画素群に対する画像の第3配置例を示す図である。 図11は、図3のディスプレイ内の表示パネルに配置された副画素群に対する画像の第4配置例を示す図である。
 以下、いくつかの実施形態について、図面を参照しながら説明する。なお、開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は、説明をより明確にするため、実際の態様に比べて、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同一または類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を適宜省略することがある。
 図1は本実施形態に係る表示装置を概略的に示す図である。この表示装置は、例えばヘッドアップディスプレイ(HUD)1である。HUD1は、画像が投影面に投影されることにより形成される虚像をユーザに知覚させる。
 図1に示すように、表示装置の構成を説明するために規定する座標系において、X方向およびY方向は互いに直交し、Z方向はX方向およびY方向と直交している。X方向はユーザの視点VPに対する水平方向に相当し、Y方向は視点VPに対する垂直方向に相当し、Z方向は視点VPに対する奥行き方向に相当する。また、視点VPからX方向およびY方向によって規定されるX-Y平面を観察することを平面視とも称する。
 HUD1は、ディスプレイ2と、1つ以上のミラーM1,M2と、投影面PSとを備える。ディスプレイ2は、ディスプレイ2によって取得または生成される表示信号に基づく画像を画面に表示する。1つ以上のミラーM1,M2は、例えば平面ミラーM1と凹面ミラーM2とを含む。
 ディスプレイ2の画面に表示された画像は、平面ミラーM1および凹面ミラーM2を介して、投影面PSに投影される。より具体的には、表示された画像を構成する光線が平面ミラーM1および凹面ミラーM2により反射、集光され、投影面PSに投影される。また凹面ミラーM2は、例えば垂直方向の曲率半径が730mmであり、画像を拡大するように光線を反射し得る。
 投影面PSは、例えば自動車のフロントガラスの内面であり、水平方向の曲率半径が例えば1700mmである。投影された画像は、投影面PSによって、視点VPを有するユーザ(ドライバー)側に反射され、ユーザに対して投影面PSよりも遠い位置(例えば、投影面PSから数メートル先の位置)に虚像Vを形成する。つまり、ユーザは投影面PSよりも遠い位置に虚像Vを知覚する。
 HUD1を構成する1つ以上のミラーM1,M2は2つの凹面ミラーであってもよい。また、平面ミラーおよび凹面ミラーに限らず、ハーフミラー、フレネルミラー等の他の光学部材が選択可能である。1つ以上のミラーM1,M2の代わりに、あるいは1つ以上のミラーM1,M2に加えて、1つ以上のレンズが用いられてもよい。また、投影面PSはフロントガラスではなく、ドライバーの前方に設置される透明な反射板であってもよい。ディスプレイ2の画面に表示された画像は、平面ミラーM1および凹面ミラーM2により反射、集光され、この反射板に投影される。
 ディスプレイ2は三次元画像および二次元画像を表示可能である。ディスプレイ2が三次元画像を表示可能であるとは、ディスプレイ2に複数の視点に対応する複数の画像が表示され、当該ディスプレイ2を見るユーザが、両目で2つの視点の画像をそれぞれ捉えることにより、立体的な画像を知覚できることを云う。
 三次元画像を表示するために、ディスプレイ2の画面の一部にはバリアやレンチキュラーレンズ等の光制御素子が配置されている。光制御素子は、ディスプレイ2の画面に表示される右目用の画素群がユーザの右目で知覚され、表示される左目用の画素群がユーザの左目で知覚されるように、ディスプレイ2から出射される光線を制御する。これによりユーザは三次元画像を知覚できる。
 ディスプレイ2によって三次元画像が表示され、ミラーM1,M2を介して投影面PSに投影される場合、ユーザによって立体的な虚像として知覚される虚像V1が形成される。一方、ディスプレイ2によって二次元画像が表示され、ミラーM1,M2を介して投影面PSに投影される場合、ユーザによって平面的な虚像として知覚される虚像V2が形成される。虚像V2は、例えばX-Y平面と平行な平面として形成される。
 例えば図1に示すように、三次元画像に対応する虚像V1は、ユーザによって、視点VPに対して奥行き位置zaから奥行き位置zcまでの範囲に知覚される。また二次元画像に対応する虚像V2は、ユーザによって、視点VPに対して特定の奥行き位置zbに知覚される。これによりユーザは、虚像V1を立体的な虚像として知覚し、虚像V2を平面的な虚像として知覚する。
 図1では、虚像V2が知覚される奥行き位置zbが、虚像V1が知覚される奥行き位置zaから奥行き位置zcまでの範囲内にある例が示されているが、奥行き位置zbは、ユーザの視点VPに対して、この範囲よりも視点VPに近い位置(すなわち奥行き位置zaよりも手前の位置)であってもよいし、奥行き位置zcよりもさらに奥の位置であってもよい。
 ところで、光制御素子が配置されたディスプレイ(すなわち、表示パネルに光制御素子が重畳されたディスプレイ)では、当該ディスプレイが有する解像度よりも、ユーザによって知覚される画像の解像度は低くなる。例えば、ディスプレイに右目用と左目用の2視点の画像が表示される場合、ユーザによって知覚される画像の解像度は、ディスプレイの解像度の半分になる。
 しかし、例えば自動車に設置されるHUDでは、視認性の低下、すなわち解像度の低下が好ましくない情報が表示され得る。このような情報は、できるだけ高い解像度で表示されることが望ましい。
 そのため本実施形態では、ディスプレイ2に、光制御素子が重畳される三次元表示のための第1領域と、光制御素子が重畳されない第2領域とを設ける。そして例えば、奥行き感が得られることが好ましい画像が第1領域に表示され、解像度の低下が好ましくない画像が第2領域に表示される。投影面PSを見るユーザは、第1領域に表示された画像に対応する立体的な虚像を知覚すると共に、第2領域に表示された画像に対応する平面的な虚像を知覚する。これにより、ユーザによって知覚される虚像の表示品位を向上できる。
 図2は、ユーザが視点VPで知覚する虚像Vの例を示す。虚像Vでは、奥行き感が得られることが好ましい画像(ここでは矢印)が虚像V1として立体的に形成され、解像度の低下が好ましくない画像や立体的に形成される必要がない画像が虚像V2として平面的に形成される。解像度の低下が好ましくない画像とは、例えば、文字、記号、マーク、標識(例えば交通標識)等を含む画像のような、解像度が低下した場合に視認性が低下する画像である。図2に示すように、ユーザにシートベルトの装着を促すマーク201や、ユーザに車の接近を警告する文字列202は、解像度の低下が好ましくない画像であり、解像度が低下しない虚像V2として平面的に形成される。
 虚像Vでは、ユーザに対して、上部に立体的に形成される虚像V1が配置され、下部に平面的に形成される虚像V2が配置されてもよい。ドライバーは、遠くを見ようとするときにフロントガラス(投影面PS)の上部に視線を移動し、近くを見ようとするときにフロントガラスの下部に視線を移動する特性を有する。虚像V1と比較して近くに形成され得る虚像V2が、虚像V1の下部に配置されることにより、この特性に適応できる。
 図3はディスプレイ2の構成例を示す断面図である。ディスプレイ2の構成を説明するために規定する座標系において、X方向およびY方向は互いに直交し、Z方向はX方向およびY方向と直交している。X方向およびY方向はディスプレイ2を構成する基板の主面と平行であり、Z方向は当該主面に直交する。つまり、Z方向はディスプレイ2の厚さ方向に相当する。
 ディスプレイ2は、表示パネル10と光制御素子20と照明装置30とを備える。表示パネル10は、例えば液晶パネルである。表示パネル10は、第1基板11および第2基板12を備えている。第2基板12は、第1基板11の上に位置している。なお、ここでは、第1基板11から第2基板12に向かう方向を「上側」(あるいは、単に上)と称し、第2基板12から第1基板11に向かう方向を「下側」(あるいは、単に下)と称する。「第1部材の上の第2部材」および「第1部材の下の第2部材」とした場合、第2部材は、第1部材に接していてもよいし、第1部材から離間していてもよい。
 光制御素子20は表示パネル10の上に位置する。光制御素子20は、後述するように複数の光制御部を備える。光制御素子20は透明樹脂40により表示パネル10に固定される。
 照明装置30は表示パネル10の下に位置する。第1偏光板51は第1基板11の下面11Bに接着されている。第2偏光板52は光制御素子20の上面20Aに接着されている。第2偏光板52は第2基板12の上面12Aに接着されてもよいし、光制御素子20の下面20Bに接着されてもよい。また光制御素子20は、第1偏光板51と第1基板11との間に、あるいは照明装置30と第1偏光板51との間に、位置していてもよい。また光制御素子20は、表示パネル10に内蔵されていてもよい。
 なお表示パネル10は、液晶パネルに限らず、有機エレクトロルミネッセンス表示素子やμLED等を有する自発光型の表示パネル、電気泳動素子等を有する電子ペーパ型の表示パネルであってもよい。
 表示パネル10は、例えば第1基板11の背面側からの光を選択的に透過させることで画像を表示する透過型の表示パネルである。なお、表示パネル10は、第2基板12の前面側からの光を選択的に反射させることで画像を表示する反射型の表示パネルであってもよいし、透過表示機能および反射表示機能を備える表示パネルであってもよい。表示パネル10が反射型の表示パネルである場合、照明装置30が省略されてもよいし、照明装置30が表示パネル10の上に位置していてもよい。
 図4は表示パネル10および光制御素子20の一構成例を示す平面図である。表示パネル10は、第1基板11と第2基板12とが重畳する部分に表示部DAを備えている。
 表示部DAは、X方向と、X方向に直交するY方向とにマトリクス状に並んだ副画素群SPを備える。一例として副画素群SPは、赤色を表示する赤副画素SPRと、緑色を表示する緑副画素SPGと、青色を表示する青副画素SPBとで構成される。また、表示部DAの内、副画素群SPが配置されていない領域には、ブラックマトリクスBM1と称される遮光体が設けられている。つまりブラックマトリクスBM1は、副画素SP間と表示パネル10表面の周縁部とに配置されている。
 ブラックマトリクスは、その光学濃度(OD値)が3以上であることが望ましい。ブラックマトリクスは光吸収体であってもよいし、光反射体であってもよい。ブラックマトリクスは、クロム、モリブデン、あるいは銀を含む化合物などの金属材料によって形成されてもよいし、黒色の樹脂材料によって形成されてもよい。
 以下の説明では、副画素の色を特定しない場合に、1つの副画素を単に副画素SPと称することがある。また、X方向を水平方向と称し、Y方向を垂直方向と称する場合がある。各副画素SPは同一のサイズの長方形の形状を有している。各副画素SPは、X方向に幅WSPを有し、Y方向に高さHSPを有する。高さHSPは、例えば幅WSPよりも大きい。なお、各副画素SPは平行四辺形の形状を有し、Y方向に対して特定の角度(例えば4°以上16°以下の角度)で傾いていてもよい。X方向に並んだ複数の副画素SPは「行」を構成し、Y方向に並んだ複数の副画素SPは「列」を構成する。
 X方向に隣接する2つの副画素SPは互いに異なる色を表示し得る。Y方向に隣接する2つの副画素SPは同一の色を表示し得る。図4に示す例では、X方向に赤副画素SPR、緑副画素SPG、青副画素SPBの順に複数の副画素が並び、またY方向に同一色の複数の副画素SPが並んでいる。
 例えば、n色の副画素がX方向に並び、これらn個の副画素のセットがX方向に並んでいる場合、高さHSPは幅WSPのn倍である。nは2以上の自然数である。図4に示した例では、nは3である。したがって、高さHSPは幅WSPの3倍である。
 表示部DAには、表示部DA内に含まれる副画素群SPの内の第1副画素群SP1を含む第1領域DA1と、副画素群SPの内の第2副画素群SP2を含む第2領域DA2とが設けられる。第1領域DA1には斜線で示される光制御素子20が重畳する。一方、第2領域DA2には光制御素子20が重畳していない。つまり、範囲1Aでは副画素群SP1上に光制御素子20が重畳しているのに対して、範囲1Bでは副画素群SP2上に光制御素子20が重畳していない。
 第1領域DA1は三次元画像を表示するための領域として用いられ、したがって第1領域DA1内の第1副画素群SP1は、複数の視点に対応する複数の画像をそれぞれ表示するための複数の副画素群を含む。第2領域DA2は二次元画像を表示するための領域として用いられ、したがって第2領域DA2内の第2副画素群SP2は1つの視点の画像を表示するために用いられる。
 あるいはHUD1において、第1領域DA1内の第1副画素群SP1は、立体的な虚像V1をユーザに知覚させるための複数の視点の複数の画像をそれぞれ表示する複数の副画素群を含むと云える。また第2領域DA2内の第2副画素群SP2は、平面的な虚像V2をユーザに知覚させるための1つの視点の画像を表示すると云える。
 なお図5に示すように、第2領域DA2との境界に最も近い、第1領域DA1内の1行以上の副画素群SP1が、ブラックマトリクスBM2に置き換えられてもよい。つまり表示パネル10は、第2領域DA2に接する、第1領域DA1内の第3領域にブラックマトリクスBM1,BM2(第1遮光体)を備えている。この第3領域に対応する範囲1Cでは、ブラックマトリクスBM1,BM2上に光制御素子20が重畳している。なお、光制御素子20は、第3領域のブラックマトリクスBM1,BM2に重畳するブラックマトリクス(第2遮光体)を備えていてもよい。
 図6は表示パネル10および光制御素子20の一構成例を示す断面図である。 
 図6(A)は、範囲1Aの内の第1副画素群SP1が配置された位置の断面図に相当し、表示パネル10上に光制御素子20が重畳している。表示パネル10の上面には第1副画素群SP1とブラックマトリクスBM1とが配置されている。ブラックマトリクスBM1は、副画素間と、表示パネル10上面の周縁部とに配置されている。
 光制御素子20は基材21と複数の光規制体22とを備える。基材21はガラス、樹脂等の透明基板である。光規制体22は、自身を透過する光線を制限するものであり、光制御部として機能する。光規制体22は、例えば、X方向に並んだ複数の副画素SPに重畳する遮光体23と、少なくとも1つの副画素SPに重畳する開口24とを備える。換言すると、複数の遮光体23は、開口24の幅に相当する間隔をおいてX方向に並んでいる。
 遮光体23は、その光学濃度(OD値)が3以上であることが望ましい。遮光体23は光吸収体であってもよいし、光反射体であってもよい。遮光体23は、クロム、モリブデン、あるいは銀を含む化合物などの金属材料によって形成されてもよいし、黒色の樹脂材料によって形成されてもよい。本実施形態では、例えば光規制体22としてエマルジョンマスクが用いられる。
 遮光体23はX方向に幅W23を有し、開口24はX方向に幅W24を有している。1つの光規制体22の幅W22は、すなわちX方向に並んだ光規制体22のピッチは、幅W23と幅W24との和に相当する。
 遮光体23の幅W23は開口24の幅W24よりも大きい。X方向に並んだ2つの光規制体22は複数の副画素SPに重畳している。遮光体23を挟んで隣り合う2つの開口24は、例えば、互いに異なる色の副画素SPに重畳する。例えば、図6(A)の左側に位置する開口24は赤副画素SPRに重畳し、図6(A)の右側に位置する開口24は青副画素SPBに重畳している。
 開口24の幅W24は、副画素SPの幅WSPよりも大きくてもよいし、同等であってもよいし、小さくてもよい。幅W24が幅WSPよりも小さい場合、開口24を透過する光線の数を低減することができ、視認される画像の解像度を向上できる。一方で、視認される画像の輝度低下を抑制する観点では、幅W24は幅WSPとほぼ等しくなることが望ましい。また、1つの開口24は複数の副画素SPに重畳してもよい。
 なお光制御素子20には、複数の光規制体22の代わりに、副画素SPの各々から出射される光線を制御可能な別の種類の光制御体が設けられていてもよく、例えば複数のレンズが設けられていてもよい。
 図6(B)は、範囲1Bの内の副画素群SP2が配置された位置の断面図に相当し、表示パネル10上に光制御素子20が重畳していない。表示パネル10の構成については、図6(A)と同様である。
 図6(C)は、範囲1Cの断面図に相当し、上面にブラックマトリクスBM1,BM2が配置された表示パネル10上に光制御素子20が重畳している。なお、範囲1Cの光制御素子20には、光規制体22の代わりにブラックマトリクスが配置されてもよい。あるいは、範囲1Cの表示パネル10上面にブラックマトリクスBM2を配置することなく、範囲1Cの光制御素子20において、光規制体22の代わりにブラックマトリクスが配置されてもよい。
 なお範囲1Aにおいても、上面にブラックマトリクスBM1が配置された表示パネル10上に光制御素子20が重畳されている部分については、範囲1Cと同様の断面図になる。
 図7は光制御素子20のより具体的な構成例を示す平面図である。光制御素子20において、複数の光規制体22はX方向に並んでいる。光規制体22を構成する遮光体23および開口24は、X方向およびY方向とは異なる斜め方向に延出している。遮光体23の各々は、X方向に並んだ一対のエッジE23を有している。一対のエッジE23は平行である。開口24は、X方向に隣接する遮光体23の互いに向かい合うエッジE23の間に位置する。
 光規制体22は、表示部DAに重畳し、副画素の複数の行に跨って直線的に延出している。光規制体22、遮光体23および開口24のそれぞれは、Y方向に対して角度θで傾いている。
 図8から図10を参照して、表示部DA内の副画素群SPを用いて表示される画像について説明する。副画素群SPには、立体的な虚像V1(あるいは画像)をユーザに知覚させるための複数の視点に対応する複数の画像と、特定の奥行き位置にある平面的な虚像V2(あるいは画像)をユーザに知覚させるための1つの視点の画像とが表示される。この複数の視点の数は、2つ以上であればいくつであってもよい。視点の数が多いほど、ユーザが視点を移動したとしても、知覚される虚像が破綻する可能性は低くなる。
 ここでは、立体的な虚像V1をユーザに知覚させるための複数の視点に対応する複数の画像として、4つの視点VP1,VP2,VP3,VP4にそれぞれ対応する第1画像、第2画像、第3画像、および第4画像が用いられる場合を例示する。第1画像、第2画像、第3画像、および第4画像は、ある1つのシーン(オブジェクト)を第1視点VP1、第2視点VP2、第3視点VP3、および第4視点VP4からそれぞれ撮像した場合に得られる画像である。また、ユーザに特定の奥行き位置にある平面的な虚像V2を知覚させるための1つの視点の画像として、第0画像が用いられる。
 表示部DAには、第1~第4画像が表示される第1領域DA1と、第0画像が表示される第2領域DA2とが設けられている。そして、第1領域DA1には光制御素子20が重畳されている一方、第2領域DA2には光制御素子20が重畳されていない。第1~第4画像の各々は、例えば第1領域DA1と同一の解像度を有している。第0画像は、例えば第2領域DA2と同一の解像度を有している。
 図8は、表示部DA内の各副画素SPに表示されるべき画像を示している。各副画素SPを表す領域には、当該副画素SPにその一部が表示される画像の番号が示されている。ここでは、表示される画像が第1画像であれば“1”、第2画像であれば“2”、第3画像であれば“3”、第4画像であれば“4”、第0画像であれば“0”が、各副画素SPを表す領域に示されている。
 第1領域DA1では、例えば4つの副画素群801,802,803,804を用いて、4つの視点VP1,VP2,VP3,VP4に対応する第1~第4画像の一部がそれぞれ表示される。4つの副画素群801,802,803,804は、X方向に順に並んでいる。各副画素群801,802,803,804では、例えば、X方向に対して5個の副画素が並び、Y方向に対して1個から3個の副画素が並んでいる。
 副画素群801から出射される光線は、2つの遮光体23間の開口24を通過して第1視点VP1に到達する。そのため、副画素群801は、第1視点VP1に対応する第1画像の一部を表示するために用いられる。副画素群801には、第1領域DA1内での副画素群801の位置に対応する、第1画像内の一部が表示される。
 副画素群802から出射される光線は、2つの遮光体23間の開口24を通過して第2視点VP2に到達する。そのため、副画素群802は、第2視点VP2に対応する第2画像の一部を表示するために用いられる。副画素群802には、第1領域DA1内での副画素群802の位置に対応する、第2画像内の一部が表示される。
 副画素群803から出射される光線は、遮光体23間の開口24を通過して第3視点VP3に到達する。そのため、副画素群803は、第3視点VP3に対応する第3画像の一部を表示するために用いられる。副画素群803には、第1領域DA1内での副画素群803の位置に対応する、第3画像内の一部が表示される。
 また、副画素群804から出射される光線は、遮光体23間の開口24を通過して第4視点VP4に到達する。そのため、副画素群804は、第4視点VP4に対応する第4画像の一部を表示するために用いられる。副画素群804には、第1領域DA1内での副画素群804の位置に対応する、第4画像内の一部が表示される。
 第1領域DA1では、上記の副画素群801,801,803,804と同様にして、各副画素SP1にいずれの画像が表示されるかが決定され得る。したがって第1領域DA1では、4つの視点VP1,VP2,VP3,VP4に対応する4つの画像の一部が、X方向およびY方向に特定のパターンで配置される。
 ユーザは、例えば以下の場合に、第1領域DA1から出射される光線により立体的な虚像V1を知覚できる。 
 (1)副画素群801から第1視点VP1に出射される光線を右目で、副画素群802から第2視点VP2に出射される光線を左目で捉えた場合 
 (2)副画素群802から第2視点VP2に出射される光線を右目で、副画素群803から第3視点VP3に出射される光線を左目で捉えた場合 
 (3)副画素群803から第3視点VP3に出射される光線を右目で、副画素群804から第4視点VP4に出射される光線を左目で捉えた場合
 このように図8に示す例では、ある番号の視点(例えば第1視点VP1)に出射される光線を右目で、当該番号より1つ大きい番号の視点(例えば第2視点VP2)に出射される光線を左目で捉えることにより、ユーザが立体的な虚像を適切に知覚できる。
 上述したように、第1領域DA1内の副画素群SP1は第1~第4画像を表示するために分配される。そして、分配された副画素群SP1には第1~第4画像の一部が表示される。この分配により、表示される第1~第4画像の各々の解像度は第1領域DA1の解像度の約1/4になる。そのため、各視点VP1,VP2,VP3,VP4において、第1領域DA1から出射された光線により知覚される虚像V1の解像度は、第1領域DA1の表示性能の解像度の約1/4になり、低下する。
 また、第2領域DA2内の副画素群SPは、第0画像を表示するために用いられる。第2領域DA2内の副画素群SPには、第0画像の一部ではなく、第0画像の全体が表示され得る。第2領域DA2上には光制御素子20が重畳されていないので、第2領域DA2内の副画素群SPから出射される光線は、いずれの視点VP1,VP2,VP3,VP4にも到達する。したがって、各視点VP1,VP2,VP3,VP4において、第2領域DA2から出射された光線により知覚される虚像V2の解像度は、第2領域DA2の解像度と同一であり、低下しない。そのため、文字、記号等を含む、解像度の低下が好ましくない画像は、第2領域DA2内の副画素群SPを用いて表示する。これにより、対応する虚像V2を、視認性を低下させることなくユーザに知覚させることができる。
 ディスプレイ2には、表示部DA内の副画素群SPが、図8に示したようなレイアウトで、第0画像と第1~第4画像の一部とを表示するように構成された表示信号が入力される。ディスプレイ2はこの表示信号に従った制御により、副画素群SPを用いて第0画像と第1~第4画像の一部とを表示する。
 表示信号は別の情報処理装置等によって生成され、ディスプレイ2に入力され得る。また表示信号は放送信号であってもよい。このような場合、ディスプレイ2は少なくとも表示信号を受信するための通信デバイスを備えている。なお、表示信号はディスプレイ2内のプロセッサ等の回路を用いて生成されてもよい。
 図1に示したHUD1の投影面PSには、第1副画素群SP1を用いて表示された複数の視点の複数の画像(例えば第1~第4画像)が、光制御素子20とミラーM1,M2とを介して投影され、第2副画素群SP2を用いて表示された1つの視点の画像(例えば第0画像)がミラーM1,M2を介して投影される。
 HUD1の視点VPは、より詳しくはユーザの右目の視点VPと左目の視点VPとを含む。右目の視点VPには、第1領域DA1内の、ある画像(例えば第1画像)が表示された副画素群SP1から出射され、開口24を通過した第1光線が、ミラーM1,M2および投影面PSを介して到達する。左目の視点VPには、第1領域DA1内の、別の画像(例えば第2画像)が表示された副画素群SP1から出射され、開口24を通過した第2光線が、ミラーM1,M2および投影面PSを介して到達する。さらに、これら2つの視点VP,VPには、第0画像が表示された第2領域DA2内の副画素群SP2から出射された第3光線が、ミラーM1,M2および投影面PSを介して到達する。
 ユーザは右目で第1光線を捉え、且つ左目で第2光線を捉えることによって、立体的な虚像V1を知覚できると共に、両目で第3光線を捉えることによって平面的な虚像V2を知覚できる。つまりユーザは、奥行き感が得られることが好ましい画像に対応する虚像V1と、解像度の低下が好ましくない文字や記号等を含む画像に対応する虚像V2とを知覚できる。したがって、HUD1において形成される虚像Vの表示品位を向上できる。
 なお、第1領域DA1と第2領域DA2との境界付近では、表示パネル10および光制御素子20の組み立ての精度等によっては、例えば第1領域DA1の一部に光制御素子20が重畳していなかったり、第2領域DA2の一部に光制御素子20が重畳していたりする場合がある。このような場合、各領域DA1,DA2から出射される光線が、意図しない視点で知覚される可能性がある。
 そのため、図5を参照して上述したように、第2領域DA2との境界に最も近い、第1領域DA1内の1行以上の副画素群SP1はブラックマトリクスBM2に置き換えられてもよい。この場合、図9に示すように、ブラックマトリクスBM2の部分は第1~第4画像の表示に用いられないので、この1行以上の副画素群SP1にたとえ光制御素子20が重畳していなかったとしても、意図しない虚像がユーザに知覚されることを回避できる。
 また、第2領域DA2内の副画素群SP2に近接する、第1領域DA1内の副画素群SP1の一部を用いて、平面的な虚像V2をユーザに知覚させるための第0画像が表示されてもよい。例えば図10に示すように、第2領域DA2との境界に最も近い、第1領域DA1内の1行以上の副画素群SP1が、平面的な虚像V2を知覚させるための第0画像の表示に用いられ得る。
 この1行以上の副画素群SP1に光制御素子20が重畳していない場合、この副画素群SP1を用いて表示された第1~第4画像の一部はそのままユーザに知覚される。つまり、視点毎のいずれか2つの画像がユーザの右目および左目にそれぞれ知覚されずに、表示された第1~第4画像の一部がユーザの両目で知覚される。したがって、意図しない内容の虚像がユーザに知覚される。
 これに対して、第0画像の一部が、光制御素子20が重畳していない1行以上の副画素群SP1を用いて表示される場合、ユーザに知覚される虚像の解像度は低下するものの、その虚像から知覚(認識)される内容は変化しない。したがって、この1行以上の副画素群SP1にたとえ光制御素子20が重畳していなかったとしても、意図しない画像がユーザに知覚されることを回避できる。
 以上により、表示パネル10および光制御素子20の組み立ての精度が低い場合等にも、意図した虚像Vをユーザに知覚させることができ、ユーザによる視認性への影響が軽減される。
 また図11は、表示部DA内の副画素群SPにいずれの画像が表示されるかを示す別の例を示す。ここでは、立体的な虚像V1(あるいは画像)をユーザに知覚させるための複数の視点に対応する複数の画像として、2つの視点VP1,VP2にそれぞれ対応する第1画像および第2画像が用いられている。第1画像および第2画像は、ある1つのシーンを第1視点VP1および第2視点VP2からそれぞれ撮像した場合に得られる画像である。また、特定の奥行き位置にある平面的な虚像V2をユーザに知覚させるための1つの視点の画像として、第0画像が用いられる。
 表示部DAには、第1および第2画像のいずれかが表示される第1領域DA1と、第0画像が表示される第2領域DA2とが設けられている。そして、第1領域DA1には光制御素子20が重畳されている一方、第2領域DA2には光制御素子20が重畳されていない。第1および第2画像の各々は、例えば第1領域DA1と同一の解像度を有している。第0画像は、例えば第2領域DA2と同一の解像度を有している。
 第1領域DA1では、例えば2つの副画素群111,112を用いて、2つの視点VP1,VP2に対応する第1および第2画像の一部がそれぞれ表示される。2つの副画素群111,112は、X方向に順に並んでいる。各副画素群111,112では、例えば、X方向に対して10個の副画素が並び、Y方向に対して1個から3個の副画素が並んでいる。
 副画素群111から出射される光線は、2つの遮光体23間の開口24を通過して第1視点VP1に到達する。そのため、副画素群111は、第1視点VP1に対応する第1画像の一部を表示するために用いられる。副画素群111には、第1領域DA1内での副画素群111の位置に対応する、第1画像内の一部が表示される。
 また、副画素群112から出射される光線は、2つの遮光体23間の開口24を通過して第2視点VP2に到達する。そのため、副画素群112は、第2視点VP2に対応する第2画像の一部を表示するために用いられる。副画素群112には、第1領域DA1内での副画素群112の位置に対応する、第2画像内の一部が表示される。
 第1領域DA1では、上記の副画素群111,112と同様にして、各副画素SP1にいずれの画像が表示されるかが決定され得る。したがって第1領域DA1では、2つの視点VP1,VP2に対応する2つの画像の一部が、X方向およびY方向に特定のパターンで配置される。
 ユーザは、第1視点VP1に出射される光線を右目で、第2視点VP2に出射される光線を左目で捉えた場合に、第1領域DA1から出射される光線により立体的な虚像V1を知覚できる。
 上述したように、第1領域DA1内の副画素群SP1は第1および第2画像を表示するために分配される。そして、分配された副画素群SP1には第1および第2画像の一部が表示される。この分配により、表示される第1および第2画像の各々の解像度は第1領域DA1の解像度の約1/2になる。そのため、各視点VP1,VP2において、第1領域DA1から出射された光線により知覚される虚像V1の解像度は、第1領域DA1の表示性能の解像度の約1/2になり、低下する。
 また、第2領域DA2内の副画素群SP2は、第0画像を表示するために用いられる。第2領域DA2内の副画素群SP2には、第0画像の一部ではなく、第0画像の全体が表示され得る。第2領域DA2上には光制御素子20が重畳されていないので、第2領域DA2内の副画素群SP2から出射される光線は、いずれの視点VP1,VP2にも到達する。したがって、各視点VP1,VP2において、第2領域DA2から出射された光線により知覚される虚像V2の解像度は、第2領域DA2の解像度と同一であり、低下しない。そのため、文字、記号等を含む解像度の低下が好ましくない画像は、第2領域DA2内の副画素群SP2を用いて表示することにより、対応する虚像V2を、視認性を低下させることなくユーザに知覚させることができる。
 ディスプレイ2には、表示部DA内の副画素群SPが、図11に示したようなレイアウトで、第0画像と第1および第2画像の一部とを表示するように構成された表示信号が入力される。ディスプレイ2はこの表示信号に従った制御により、副画素群SPを用いて第0画像と第1および第2画像の一部とを表示する。
 上述したように、図1に示したHUD1の視点VPは、より詳しくはユーザの右目の視点VPと左目の視点VPとを含む。右目の視点VPには、第1領域DA1内の第1画像が表示された副画素群SP1から出射され、開口24を通過した第1光線が、ミラーM1,M2および投影面PSを介して到達する。左目の視点VPには、第1領域DA1内の第2画像が表示された副画素群SP1から出射され、開口24を通過した第2光線が、ミラーM1,M2および投影面PSを介して到達する。さらに、これら2つの視点VP,VPには、第0画像が表示された第2領域DA2内の副画素群SP2から出射された第3光線が、ミラーM1,M2および投影面PSを介して到達する。
 ユーザは右目で第1光線を捉え、且つ左目で第2光線を捉えることによって、立体的な虚像V1を知覚できると共に、両目で第3光線を捉えることによって平面的な虚像V2を知覚できる。つまりユーザは、奥行き感が得られることが好ましい画像に対応する虚像V1と、解像度の低下が好ましくない文字や記号等を含む画像に対応する虚像V2とを知覚できる。したがって、HUD1において形成される虚像Vの表示品位を向上できる。
 なお、第1領域DA1に2視点の第1および第2画像を表示する場合にも、図9および図10を参照して上述した、第1領域DA1と第2領域DA2との境界付近に関して変形した構成を適用できる。
 以上説明したように、本実施形態によれば、虚像の表示品位を向上できる。
 なお、この発明は、上記各実施形態そのものに限定されるものではなく、その実施の段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、各実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、各実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
 本明細書にて開示した構成から得られる表示装置の一例を以下に付記する。 
(1) 
 第1方向と、前記第1方向に直交する第2方向とに並んだ副画素群を備え、前記副画素群の内の第1副画素群を含む第1領域と前記副画素群の内の第2副画素群を含む第2領域とを含む表示部と、 
 前記第1領域に重畳する光制御素子と、 
 前記表示部によって表示される画像が投影される投影面と、
 前記画像を前記投影面に投影するための1つ以上のミラーと1つ以上のレンズの少なくとも一方と、を具備し、 
 前記投影面を見るユーザによって知覚される虚像は、前記第1領域に対応し、立体的な虚像として知覚される第1虚像と、前記第2領域に対応し、平面的な虚像として知覚される第2虚像とを含む、表示装置。 
(2) 
 前記虚像は、前記ユーザに対して、上部に前記第1虚像を含み、下部に前記第2虚像を含む、(1)記載の表示装置。 
(3) 
 前記表示部は、前記第2領域に接する、前記第1領域内の第3領域に第1遮光体を備える、(1)または(2)記載の表示装置。 
(4) 
 前記光制御素子は、前記第1遮光体に重畳する第2遮光体をさらに備える、(3)記載の表示装置。 
(5) 
 前記表示部は、さらに、前記第2副画素群に近接する前記第1副画素群の一部を用いて、平面的な虚像を前記ユーザに知覚させるための画像を表示する、(1)乃至(4)のいずれか一項に記載の表示装置。 
(6) 
 前記第2虚像は、前記ユーザによって第1奥行き位置に知覚され、 
 前記第1虚像は、前記ユーザによって第2奥行き位置から第3奥行き位置までの範囲に知覚される、(1)または(2)記載の表示装置。 
(7) 
 前記範囲は、前記第1奥行き位置を含む、(6)記載の表示装置。 
(8) 
 前記第1奥行き位置は、前記範囲よりも前記ユーザの視点に近い位置である、(6)記載の表示装置。 
(9) 
 前記第1副画素群は、前記立体的な虚像を前記ユーザに知覚させるための複数の視点の複数の画像をそれぞれ表示する複数の副画素群を含み、 
 前記第2副画素群は、前記平面的な虚像を前記ユーザに知覚させるための1つの視点の画像を表示する、(1)記載の表示装置。 
(10) 
 前記投影面には、前記第1副画素群を用いて表示された複数の視点の複数の画像が、前記光制御素子を介して投影され、前記第2副画素群を用いて表示された1つの視点の画像が投影される、(1)記載の表示装置。
 1…ヘッドアップディスプレイ(HUD)、2…ディスプレイ、VP…視点、M1…平面ミラー、M2…凹面ミラー、PS…投影面、V,V1,V2…虚像、10…表示パネル、20…光制御素子、30…照明装置、40…透明樹脂、11…第1基板、12…第2基板、22…光規制体、23…遮光体、24…開口、51…第1偏光板、52…第2偏光板、DA…表示部、DA1…第1領域、DA2…第2領域、SP,SP1,SP2…副画素、BM1,BM2…ブラックマトリクス。

Claims (10)

  1.  第1方向と、前記第1方向に直交する第2方向とに並んだ副画素群を備え、前記副画素群の内の第1副画素群を含む第1領域と前記副画素群の内の第2副画素群を含む第2領域とを含む表示部と、
     前記第1領域に重畳する光制御素子と、
     前記表示部によって表示される画像が投影される投影面と、
     前記画像を前記投影面に投影するための1つ以上のミラーと1つ以上のレンズの少なくとも一方と、を具備し、
     前記投影面を見るユーザによって知覚される虚像は、前記第1領域に対応し、立体的な虚像として知覚される第1虚像と、前記第2領域に対応し、平面的な虚像として知覚される第2虚像とを含む、表示装置。
  2.  前記虚像は、前記ユーザに対して、上部に前記第1虚像を含み、下部に前記第2虚像を含む、請求項1記載の表示装置。
  3.  前記表示部は、前記第2領域に接する、前記第1領域内の第3領域に第1遮光体を備える、請求項1または請求項2記載の表示装置。
  4.  前記光制御素子は、前記第1遮光体に重畳する第2遮光体をさらに備える、請求項3記載の表示装置。
  5.  前記表示部は、さらに、前記第2副画素群に近接する前記第1副画素群の一部を用いて、平面的な虚像を前記ユーザに知覚させるための画像を表示する、請求項1乃至請求項4のいずれか一項に記載の表示装置。
  6.  前記第2虚像は、前記ユーザによって第1奥行き位置に知覚され、
     前記第1虚像は、前記ユーザによって第2奥行き位置から第3奥行き位置までの範囲に知覚される、請求項1または請求項2記載の表示装置。
  7.  前記範囲は、前記第1奥行き位置を含む、請求項6記載の表示装置。
  8.  前記第1奥行き位置は、前記範囲よりも前記ユーザの視点に近い位置である、請求項6記載の表示装置。
  9.  前記第1副画素群は、前記立体的な虚像を前記ユーザに知覚させるための複数の視点の複数の画像をそれぞれ表示する複数の副画素群を含み、
     前記第2副画素群は、前記平面的な虚像を前記ユーザに知覚させるための1つの視点の画像を表示する、請求項1記載の表示装置。
  10.  前記投影面には、前記第1副画素群を用いて表示された複数の視点の複数の画像が、前記光制御素子を介して投影され、前記第2副画素群を用いて表示された1つの視点の画像が投影される、請求項1記載の表示装置。
PCT/JP2020/004412 2019-02-12 2020-02-05 表示装置 WO2020166458A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080013733.2A CN113453939A (zh) 2019-02-12 2020-02-05 显示装置
US17/400,261 US20210373329A1 (en) 2019-02-12 2021-08-12 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-022752 2019-02-12
JP2019022752A JP7317517B2 (ja) 2019-02-12 2019-02-12 表示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/400,261 Continuation US20210373329A1 (en) 2019-02-12 2021-08-12 Display device

Publications (1)

Publication Number Publication Date
WO2020166458A1 true WO2020166458A1 (ja) 2020-08-20

Family

ID=72044686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004412 WO2020166458A1 (ja) 2019-02-12 2020-02-05 表示装置

Country Status (4)

Country Link
US (1) US20210373329A1 (ja)
JP (2) JP7317517B2 (ja)
CN (1) CN113453939A (ja)
WO (1) WO2020166458A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136610A1 (ja) * 2013-03-08 2014-09-12 シャープ株式会社 立体表示装置
US20150264341A1 (en) * 2009-12-31 2015-09-17 Broadcom Corporation Communication infrastructure including simultaneous video pathways for multi-viewer support
JP2018202927A (ja) * 2017-05-31 2018-12-27 日本精機株式会社 ヘッドアップディスプレイ装置
JP2019015823A (ja) * 2017-07-05 2019-01-31 京セラ株式会社 3次元投影装置、3次元投影システム、および移動体
JP2019062532A (ja) * 2017-09-25 2019-04-18 三星電子株式会社Samsung Electronics Co.,Ltd. 映像レンダリング方法及び装置
WO2019225400A1 (ja) * 2018-05-23 2019-11-28 京セラ株式会社 画像表示装置、画像表示システム、ヘッドアップディスプレイおよび移動体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193340A (ja) 2009-02-20 2010-09-02 Fujifilm Corp 表示装置および方法
JP2012186653A (ja) 2011-03-04 2012-09-27 Toshiba Corp 画像表示装置、方法およびプログラム
JP2013231745A (ja) * 2012-04-27 2013-11-14 Sharp Corp 立体表示装置
KR102071693B1 (ko) 2014-02-07 2020-01-30 엘지전자 주식회사 헤드 업 디스플레이 장치
JP6304628B2 (ja) 2014-05-12 2018-04-04 パナソニックIpマネジメント株式会社 表示装置および表示方法
JP2015215505A (ja) 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 表示装置、および表示方法
EP3206075A1 (en) * 2016-02-10 2017-08-16 Ricoh Company, Ltd. Image display apparatus and image display method
KR101899981B1 (ko) * 2016-12-02 2018-09-19 엘지전자 주식회사 차량용 헤드 업 디스플레이
JP6924637B2 (ja) 2017-07-05 2021-08-25 京セラ株式会社 3次元表示装置、3次元表示システム、移動体、および3次元表示方法
JP2020072405A (ja) 2018-10-31 2020-05-07 京セラ株式会社 画像表示装置、画像表示システム、及び移動体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150264341A1 (en) * 2009-12-31 2015-09-17 Broadcom Corporation Communication infrastructure including simultaneous video pathways for multi-viewer support
WO2014136610A1 (ja) * 2013-03-08 2014-09-12 シャープ株式会社 立体表示装置
JP2018202927A (ja) * 2017-05-31 2018-12-27 日本精機株式会社 ヘッドアップディスプレイ装置
JP2019015823A (ja) * 2017-07-05 2019-01-31 京セラ株式会社 3次元投影装置、3次元投影システム、および移動体
JP2019062532A (ja) * 2017-09-25 2019-04-18 三星電子株式会社Samsung Electronics Co.,Ltd. 映像レンダリング方法及び装置
WO2019225400A1 (ja) * 2018-05-23 2019-11-28 京セラ株式会社 画像表示装置、画像表示システム、ヘッドアップディスプレイおよび移動体

Also Published As

Publication number Publication date
US20210373329A1 (en) 2021-12-02
JP7456050B2 (ja) 2024-03-26
JP2020134535A (ja) 2020-08-31
JP2023153133A (ja) 2023-10-17
CN113453939A (zh) 2021-09-28
JP7317517B2 (ja) 2023-07-31

Similar Documents

Publication Publication Date Title
JP6791058B2 (ja) 立体表示装置
US8144079B2 (en) Multiple-viewer multiple-view display and display controller
US7705844B2 (en) Image display device, portable terminal device, display panel and image display method using the same
US20060215018A1 (en) Image display apparatus
JP5405624B2 (ja) マルチビュー指向性表示装置
CN101331776B (zh) 显示设备
KR100845378B1 (ko) 멀티뷰 방향성 디스플레이 및 이를 위한 시차 광학 장치
US10816818B2 (en) Display device
JP2006309178A (ja) 画像表示装置
JP2006235116A (ja) 立体表示装置
JP2002209162A (ja) 投影装置
JP6105531B2 (ja) 車両用投影表示装置
JP5027829B2 (ja) 画像表示装置
JP7110125B2 (ja) 表示装置
WO2020166458A1 (ja) 表示装置
US11054641B2 (en) Image generating device for screen and head-up display
WO2022163728A1 (ja) 3次元表示装置
JP3852935B2 (ja) 立体画像表示装置
JP7127415B2 (ja) 虚像表示装置
GB2428129A (en) A multiple-view directional display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755797

Country of ref document: EP

Kind code of ref document: A1