WO2020164548A1 - 一种骨盆骨折复位智能监控系统 - Google Patents

一种骨盆骨折复位智能监控系统 Download PDF

Info

Publication number
WO2020164548A1
WO2020164548A1 PCT/CN2020/075110 CN2020075110W WO2020164548A1 WO 2020164548 A1 WO2020164548 A1 WO 2020164548A1 CN 2020075110 W CN2020075110 W CN 2020075110W WO 2020164548 A1 WO2020164548 A1 WO 2020164548A1
Authority
WO
WIPO (PCT)
Prior art keywords
pelvic
fracture
patient
data
sample
Prior art date
Application number
PCT/CN2020/075110
Other languages
English (en)
French (fr)
Inventor
陈华
唐佩福
Original Assignee
中国人民解放军总医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军总医院 filed Critical 中国人民解放军总医院
Priority to US17/431,266 priority Critical patent/US11534240B2/en
Priority to JP2021547574A priority patent/JP7240519B2/ja
Publication of WO2020164548A1 publication Critical patent/WO2020164548A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/64Devices extending alongside the bones to be positioned
    • A61B17/6433Devices extending alongside the bones to be positioned specially adapted for use on body parts other than limbs, e.g. trunk or head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/66Alignment, compression or distraction mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • A61B2034/256User interfaces for surgical systems having a database of accessory information, e.g. including context sensitive help or scientific articles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/365Correlation of different images or relation of image positions in respect to the body augmented reality, i.e. correlating a live optical image with another image

Definitions

  • the medical technology field of pelvic reduction of the present invention specifically relates to an intelligent monitoring system for pelvic fracture reduction.
  • Pelvic fracture (or acetabular fracture) is a serious civilian injury and battlefield trauma, with high disability, high mortality, and high incidence. More than half of pelvic fractures are accompanied by complications and multiple injuries, which seriously threaten the wounded and sick. The mortality rate of pelvic fractures that are life-long without soft tissue or internal organ damage is about 10.8%, and the mortality rate of complex pelvic fractures can even reach 30% to 50%.
  • conventional incision surgical treatment methods in the existing treatment technology have many problems.
  • the current standard treatment method usually uses incision surgery to restore and fix. There are problems such as large wounds, heavy bleeding, and difficulty in resetting and fixing.
  • pelvic fracture minimally invasive rapid repair technology has begun to be applied in clinical practice, but the concept of pelvic fracture minimally invasive rapid repair technology has encountered many bottlenecks in the process of clinical application, such as: how to pass without incision and incision How about achieving closed reduction of the fracture, and then completing the stable fixation of the fracture through minimally invasive methods? How to reduce the difficulty of the operation and shorten the operation time? How to advance the fixed time of precise surgery while ensuring the safety of patients? How to minimize radiation exposure to medical staff and patients or directly reduce radiation exposure?
  • the system introduces a sample pelvis to simulate human pelvic fractures. Data and establish a sample fracture model, and then use magnetic navigation and positioning technology to collect the patient's pelvic position information in real time, use mixed reality technology to form an intelligent fracture model for the patient's pelvic fracture state, and then monitor the patient's pelvic reduction in different positions in real time, which can achieve serious displacement Close and accurate reduction of pelvic fractures, while reducing radiation damage to patients and medical staff.
  • An intelligent monitoring system for pelvic fracture reduction including a sample fracture model database, a patient pelvic fracture data acquisition unit, a mixed reality data fusion processing unit, and a reduction situation monitoring unit, the sample fracture model database, a patient pelvic fracture data acquisition unit and reduction situation
  • the monitoring units are all connected to the mixed reality data fusion processing unit.
  • the sample fracture model database stores several sample fracture models based on automatic segmentation algorithms that simulate human pelvic fracture data from the sample pelvis.
  • the patient pelvic fracture data acquisition unit uses The magnetic navigation and positioning technology collects the patient’s pelvic position information in real time and uploads it to the mixed reality data fusion processing unit.
  • the mixed reality data fusion processing unit automatically calls the sample fracture model database and the patient’s pelvic fracture situation according to the patient’s pelvic position information data.
  • the above-mentioned intelligent monitoring system for pelvic fracture reduction further includes a pelvic fracture simulation data acquisition unit, a data processing and analysis unit, and a model establishment unit that are connected in sequence, and the model establishment unit is connected to the sample fracture model database, and the pelvic fracture simulation
  • the data collection unit collects and uses the sample pelvis to simulate human pelvic fracture data, and then the data processing and analysis unit performs automatic analysis and processing based on artificial intelligence technology, and the model establishment unit uses the analyzed and processed fracture simulation data and is based on an automatic segmentation algorithm After establishing several sample fracture models, save all the sample fracture models into the sample fracture model database.
  • the pelvic fracture simulation data collection unit collects fracture simulation data from several angles, including but not limited to photographing, two-dimensional fluoroscopy, or scanning.
  • the sample pelvis includes but not limited to artificial pelvis and animal pelvis. Or the pelvis of the corpse.
  • the patient pelvic fracture data acquisition unit uses the magnetic navigation positioning technology adopted by the magnetic detector close to the surface of the patient's pelvis and combined with the optical tracking technology adopted by the optical locator connected to the magnetic detector to collect the patient's pelvic position information data in real time.
  • the positioning accuracy is not less than 5mm and the positioning angle accuracy is not less than 5°.
  • the patient's pelvic position information data includes, but is not limited to, each bone block in the patient's pelvis, internal plants, peripheral operating rods, and reset frames And the position information data of the operating bed.
  • the mixed reality data fusion processing unit uses mixed reality technology to perform coordinate system matching when matching the patient's pelvic position information data with the sample fracture model, and perform pelvic bone blocks with internal plants, operating rods, reduction frames, and operating tables.
  • the relative position relationship between the matching process is carried out by automatic non-rigid image registration technology.
  • the patient's pelvic fracture data collection unit receives the patient's pelvic position information after the patient's pelvic fracture reduction operation by medical personnel or intelligent robots, and the mixed reality data fusion processing unit also uses automatic diagnosis technology to diagnose the received patient's pelvic fracture Overfitting after reset operation.
  • the mixed reality data fusion processing unit loads the constructed intelligent fracture model for the patient's pelvic fracture state for muscle attachment conditions, and realizes the important human anatomical structure during the implantation of the joystick based on the method of the human tissue bounding box tree. Circumvention of automation.
  • the mixed reality data fusion processing unit is also based on the deep learning of the sample fracture model and the intelligent fracture model Results Real-time intelligent reset clinical path planning.
  • the patient's pelvic fracture data collection unit receives the patient's pelvic position information after the operation of resetting the patient's pelvic fracture by the intelligent mechanical arm loaded with muscle strength.
  • the reset monitoring unit monitors the patient's pelvis position in real time, including pelvic orthographic position, pelvic entrance position, pelvic exit position, obturator oblique position, iliac oblique position, LC-2 full-length image, teardrop image, and closed position.
  • the orifice exit position the iliac entrance position, the emmetrope sacroiliac joint image entrance position, the emmetrope sacroiliac joint image exit position, the emmetrope iliac wing image, the pelvic lateral image ICD line position, and the pelvic lateral image posterior column position.
  • the invention relates to an intelligent monitoring system for pelvic fracture reduction, which is provided with a sample fracture model database, a patient pelvic fracture data acquisition unit, a mixed reality data fusion processing unit and a reset situation monitoring unit, and the sample pelvis is introduced through the sample fracture model database to simulate
  • the human pelvic fracture data is based on an automatic segmentation algorithm to establish a sample fracture model
  • the patient’s pelvic fracture data acquisition unit uses magnetic navigation and positioning technology to collect the patient’s pelvic position information in real time
  • the mixed reality data fusion processing unit uses mixed reality technology to form the patient’s pelvic fracture state
  • the intelligent fracture model and the reset situation monitoring unit monitor the reset situation of the patient’s pelvis in real time, that is to say, prepare various types of fractures on the pelvic model to make it in various possible fracture displacement situations, and realize the displacement through computer simulation.
  • Reposition guide for bone pieces to improve the accuracy of reduction The components work together, combined with automatic segmentation algorithms, magnetic navigation and positioning technology, artificial intelligence technology, and mixed reality technology to realize intelligent monitoring of pelvic fracture reduction. Even if the pelvic fracture is severely displaced, it can be accurately reset, which can meet the requirements of minimally invasive orthopedic surgery. Closed reduction of pelvic fractures meets the comprehensive requirements of minimally invasive orthopedic surgery for its operating space, occupied space, flexibility, load, stability and other performance. And most importantly, there is no need to take X-ray images during the operation, which completely solves the problem that patients and medical staff will suffer radiation damage during the clinical application of the existing fracture and pelvic reduction treatment, and reduce the risk to patients and medical staff. Radiation injury protects the safety of both doctors and patients.
  • the system includes a sample fracture model database, a patient pelvic fracture data collection unit, a mixed reality data fusion processing unit, and a reduction situation monitoring unit, and also includes a pelvic fracture simulation data collection unit and a data processing analysis unit connected in sequence And a model establishment unit, the pelvic fracture simulation data acquisition unit collects data using the sample pelvis to simulate a human pelvic fracture, and then the data processing and analysis unit performs automated analysis and processing based on artificial intelligence technology, and the model establishment unit uses the analysis and processing After the fracture simulation data is established and several sample fracture models are established based on the automatic segmentation algorithm, all the sample fracture models are stored in the sample fracture model database.
  • the pelvic fracture simulation data collection unit collects the fracture simulation data through From several angles including but not limited to taking photos, two-dimensional fluoroscopy or scanning methods, and preferably, the sample pelvis includes but not limited to artificial pelvis, animal pelvis or cadaver pelvis, innovatively using big data analysis and artificial intelligence technology , Modeling is more accurate and reliable.
  • the patient pelvic fracture data acquisition unit collects the patient's pelvic position information data in real time through the magnetic navigation positioning technology adopted by the magnetic detector close to the surface of the patient's pelvis and combined with the optical tracking technology adopted by the optical locator connected to the magnetic detector, Including but not limited to the position information data of each bone block in the patient's pelvis, internal plants, and peripheral operating rods, reduction frames and operating beds, that is, the practice of using only magnetic navigation and positioning technology and optical tracking technology to obtain the patient's pelvic fracture situation makes medical The staff does not need to perform surgery on the patient, only need to implant some internal plants or operating rods into the small wound, and can accurately judge the fracture of the patient, avoiding the problems of large incisions in the previous pelvic reduction surgery and difficult reduction and fixation with blood loss.
  • the mixed reality data fusion processing unit also performs intelligent reset clinical path planning in real time according to the results of deep learning of the sample fracture model and the intelligent fracture model, so as to automatically find the optimal clinical operation path (note that the operation path must be effective for the pelvis Each bone block is unlocked first, and then push-pull displacement operation is performed after unlocking), so that the operation path is shortest to avoid secondary damage caused by large-scale movement, and at the same time, it can effectively avoid important human anatomical structures or tissues such as blood vessels, nerves, and bone blocks. Necessary damage, save operation time and improve the effect of surgical treatment.
  • the patient's pelvic fracture data collection unit receives the patient's pelvic position information after the pelvic fracture reset operation by the intelligent mechanical arm loaded with muscle strength, that is, the intelligent robot uses a muscle-based force loading method to simulate medical staff
  • the operating force of the intelligent robotic arm uses the intelligent robotic arm to simulate the operating force of the medical staff and then performs the surgical operation according to the intelligent reset path, so that the entire surgical process realizes the entire process of intelligent automatic operation.
  • the medical staff can not enter the operating room or only observe occasionally in the operating room Just follow the medical images displayed by the reset situation monitoring unit, which avoids radiation exposure of medical personnel and ensures the safety of medical personnel.
  • the reduction monitoring unit monitors the patient’s pelvic position in real time, including a combination of any three or more of the 14 common positions.
  • the reduction of the patient’s pelvic fracture can be effectively judged, if only one or two
  • the observation result of the individual position is that the reduction is successful and the reduction of the third individual position has not been achieved, then the actual reduction of the three-dimensional pelvis is determined to be unsuccessful. If the observation results of three or more positions are all successful, the three-dimensional pelvis is determined
  • the actual reset is successful, which fully solves the problem of 3D operation space control caused by the lack of information in real-time 2D medical images, and realizes accurate guidance of 3D reset.
  • Figure 1 is a schematic structural diagram of an intelligent monitoring system for pelvic fracture reduction according to the present invention.
  • Figure 2 is a schematic diagram of a preferred structure of an intelligent monitoring system for pelvic fracture reduction according to the present invention.
  • Figures 3 to 5 are respectively the medical images of the three positions of the pelvis entrance position, pelvis exit position, and iliac oblique position displayed by the reduction monitoring unit of the present invention.
  • Fig. 6 is a schematic diagram of the structure of the magnetic detector and the optical positioner in the present invention.
  • Fig. 7 is a simulation diagram of the magnetic detector and the optical positioner displayed by the reset situation monitoring unit of the present invention.
  • 1 Optical positioning ball
  • 2 Magnetic detector
  • the invention relates to an intelligent monitoring system for pelvic fracture reduction.
  • the structure shown in Fig. 1 includes a sample fracture model database, a patient pelvic fracture data acquisition unit, a mixed reality data fusion processing unit, and a reduction situation monitoring unit.
  • the sample fracture model The database, the patient pelvic fracture data collection unit, and the reduction situation monitoring unit are all connected to the mixed reality data fusion processing unit.
  • the sample fracture model database stores data simulated by the sample pelvis of human pelvic fractures, and several sample fractures established based on the automatic segmentation algorithm Model, that is, by preparing or simulating each type of fracture on the sample pelvis (which can be understood as false pelvis, specimen pelvis) to make it in various possible fracture displacement situations, and then fully introduce various pelvic fracture situations
  • the sample pelvic fracture model database can either be a database obtained by instantaneous data collection and modeling, or the original historical database of the called hospital, and the database can exist as a product alone; the patient’s pelvis
  • the fracture data collection unit uses magnetic navigation and positioning technology to collect the patient’s pelvic position information in real time and upload it to the mixed reality data fusion processing unit.
  • the mixed reality data fusion processing unit automatically calls the sample fracture model database according to the patient’s pelvic position information data
  • the reset situation monitoring unit loads and displays the images of the intelligent fracture model in different positions in real time and monitors the reset situation of the patient's pelvis in different positions through multiple monitoring screens, so that the medical staff can observe the dynamic change process in real time. Its diagnostic operation provides a reliable basis.
  • the components of the present invention work cooperatively, combined with automatic segmentation algorithm, magnetic navigation and positioning technology, artificial intelligence technology and mixed reality technology, etc., to realize intelligent monitoring of pelvic fracture reduction, even if severely displaced pelvic fractures can be accurately reset, which can satisfy minimally invasive orthopedics
  • the closed reduction of pelvic fractures required by surgery also meets the comprehensive requirements of minimally invasive orthopedic surgery for its operating space, occupied space, flexibility, load, stability and other performance.
  • there is no need to take X-ray images during the operation which completely solves the problem that patients and medical staff will suffer radiation damage during the clinical application of the existing fracture and pelvic reduction treatment, and reduce the risk to patients and medical staff. Radiation injury protects the safety of both doctors and patients.
  • the preferred structure diagram of the intelligent monitoring system for pelvic fracture reduction of the present invention is shown in Figure 2.
  • the system includes a sample fracture model database, a patient pelvic fracture data acquisition unit, a mixed reality data fusion processing unit, and a reset situation monitoring unit. It includes a pelvic fracture simulation data acquisition unit, a data processing analysis unit, and a model establishment unit that are sequentially connected, the model establishment unit is connected to a sample fracture model database, and the pelvic fracture simulation data acquisition unit collects data using the sample pelvis to simulate a human pelvic fracture Then, the data processing and analysis unit performs automatic analysis and processing based on artificial intelligence technology.
  • the model establishment unit uses the analyzed fracture simulation data and establishes several sample fracture models based on the automatic segmentation algorithm, and then stores all the sample fracture models.
  • the pelvic fracture simulation data collection unit collects fracture simulation data from several angles, including but not limited to photographing, two-dimensional fluoroscopy or scanning.
  • the The sample pelvis includes, but is not limited to, artificial pelvis, animal pelvis or cadaver pelvis.
  • the data processing and analysis unit performs automatic analysis and processing based on artificial intelligence technology, and then the model building unit creates several individuals based on the automatic segmentation algorithm and combined with the fast finite element model meshing method
  • the sample fracture model is then stored in the sample fracture model database, using big data analysis and artificial intelligence technology to make the modeling more accurate and reliable.
  • the patient pelvic fracture data acquisition unit collects the patient's pelvic position information data in real time through the magnetic navigation positioning technology adopted by the magnetic detector close to the surface of the patient's pelvis and combined with the optical tracking technology adopted by the optical locator connected to the magnetic detector,
  • the optical tracking technology also includes 3D motion capture technology.
  • the positioning accuracy is not less than 5mm and the positioning angle accuracy is not less than 5°.
  • the patient's pelvic position information data includes but not limited to each bone block in the patient's pelvis
  • the position information data of the internal plant and the peripheral operating rod, reset frame and operating table are collected in real time through the high-precision magnetic navigation positioning technology and optical tracking technology of the patient's pelvis position information (focus on collecting the patient's bone surface and operating rod, reset
  • the coordinate point collection of the patient’s pelvis fracture data acquisition unit is actually a high-precision optical inertial tracking system; the present invention uses magnetic navigation and positioning technology to collect the patient’s pelvic position information in real time, and the magnetic navigation and positioning technology used It uses the characteristics of magnetism to make spatial positioning judgments for objects, or it uses external factors such as magnetic fields to achieve patient pelvic navigation and control.
  • the principle is the same as the magnetometer, so it is essentially equivalent to using an inertial sensor. Further, it can also be combined
  • the optical tracking technology of the optical positioner realizes light-inertial hybrid navigation and positioning; then the mixed reality data fusion processing unit uses the mixed reality technology to match the patient's pelvic position information data with the sample fracture model, based on the sample fracture model and collect the patient's pelvic position information data , Combined with the three-dimensional bone deformation technology based on the iterative nearest neighbor algorithm (ICP algorithm) to reconstruct the individual patient’s intelligent pelvic fracture model, and the use of magnetic navigation and positioning technology and optical tracking technology to obtain the patient’s pelvic fracture situation makes medical staff There is no need to perform surgery on the patient and only need to implant some internal plants or operating rods into the tiny wound, which can accurately determine the fracture of the patient, avoiding the problems of large pelvic reduction surgery incision, blood loss and multiple reduction and fixation, and the patient is free Suffered from severe pain, the difficulty of the operation was greatly reduced, and the patient's
  • the mixed reality data fusion processing unit uses mixed reality technology to perform coordinate system matching when matching the patient's pelvic position information data with the sample fracture model, and perform pelvic bone blocks with internal plants, operating rods, reduction frames, and operating tables.
  • the relative position relationship between the matching process is carried out by automatic non-rigid image registration technology, that is, the real-time position and relative position relationship of each bone block, internal plant, operating rod, etc.
  • the patient's pelvic fracture data collection unit receives the patient's pelvic position information after the patient's pelvic fracture reduction operation by medical personnel or intelligent robots, and the mixed reality data fusion processing unit also uses automatic diagnosis technology to diagnose the received patient's pelvic fracture
  • the mixed reality data fusion processing unit uses automatic diagnosis technology to diagnose the received patient's pelvic fracture
  • the over-fitting situation after the reduction operation because the data volume of the sample pelvic fracture model created based on the sample pelvis is still limited, so it is easy to cause over-fitting problems in mixed reality processing, and the automatic diagnosis technology can effectively solve the over-fitting Problems and improve the accuracy of mixed reality data fusion.
  • the mixed reality data fusion processing unit loads the constructed intelligent fracture model for the patient's pelvic fracture state with muscle attachment conditions, that is, automatically finds muscles on the individualized intelligent fracture model based on the atlas method or statistical morphological model
  • the stop point and the direction of action are used to load the muscle attachment conditions (understood as human soft tissues, such as skin, muscles, etc.), and based on the method of human tissue bounding box tree to achieve the important human anatomical structures (such as blood vessels, nerves, etc.) Etc.) automatic avoidance to avoid injury to the patient when the operating rod is implanted in the patient.
  • the mixed reality data fusion processing unit is also based on the deep learning of the sample fracture model and the intelligent fracture model Results
  • Real-time intelligent reduction clinical path planning was carried out to automatically find the optimal clinical operation path (note that the operation path must first unlock each bone block of the pelvic fracture, and then push and pull the displacement operation after unlocking), making the operation path the shortest to avoid Large-scale movement causes secondary damage, while effectively avoiding important human anatomical structures or tissues such as blood vessels, nerves, and bones, avoiding unnecessary damage, saving operation time, improving surgical treatment results, and even using intelligent robots to replace medical staff in performing operations
  • it can also be combined with the navigation servo control technology in the magnetic navigation and positioning technology, using real-time bone characteristics (human tissue characteristics) as servo feedback to establish a servo control task, so that the intelligent robot will reset the clinical clinically under the control of the navigation
  • the intelligent robot adopts an intelligent mechanical arm based on a muscle force loading method that simulates the operating force of medical personnel.
  • the patient's pelvic fracture data collection unit receives the intelligent mechanical arm that has been loaded with muscle force to reset the patient's pelvic fracture. After the patient’s pelvic position information.
  • the intelligent robotic arm uses the intelligent robotic arm to simulate the operation strength of the medical staff and then perform the surgical operation according to the intelligent reset path, so that the whole operation process can realize the intelligent automatic operation of the whole process.
  • the medical staff can not enter the operating room or only occasionally observe the reset situation monitoring unit in the operating room.
  • the displayed medical images are sufficient, which avoids the radiation exposure of medical staff and ensures the safety of medical staff.
  • the reset monitoring unit monitors the patient's pelvis position in real time, including pelvic orthographic position, pelvic entrance position, pelvic exit position, obturator oblique position, iliac oblique position, LC-2 full-length image, teardrop image, and closed position.
  • the combination of the above positions, through the real-time observation results of three or more positions, can effectively judge the reduction of the patient's pelvic fracture.
  • Figure 3 to Figure 5 respectively show the intelligent fracture model The medical images of the three positions of the pelvis entry position, pelvic exit position, and iliac oblique position displayed on the reduction monitoring unit. With the progress of the pelvic reduction operation, the medical images of the three positions change dynamically.
  • the medical staff can directly observe the patient's pelvic position reduction monitored by the reset monitoring unit in real time, and carry out the patient's pelvic fracture reduction; the various modules work together to realize the virtual reality navigation multi-position view operation navigation tracking operation, and the pelvic position accuracy is consistent Sexual confirmation.
  • the patient pelvic fracture data collection unit includes a magnetic detector close to the surface of the patient's pelvis and an optical positioner connected to the magnetic detector.
  • the magnetic detector 2 is connected to the optical positioner. 2 is embedded with a gyroscope and/or positioning chip and the lower end of the magnetic detector 2 is connected with an operating rod
  • the optical positioner includes four optical positioning rods uniformly arranged on the four sides of the magnetic detector and the Two of the optical positioning rods are arranged vertically and the other two are arranged horizontally.
  • the top of the optical positioning rod has an optical positioning ball 1.
  • the optical positioning ball 1 preferably uses a metal ball with a diameter of 1 mm and/or a pig cortical bone ball, a metal ball and / Or the pig cortical bone ball has a photosensitive effect and can serve as a basis for optical tracking. Furthermore, after the intelligent fracture model is projected to the reset monitoring unit, the simulated magnetic detector and optical positioner are shown in Figure 7 Therefore, it is possible to fully observe the connection state and relative position relationship between the magnetic detector and the optical positioner and the bone block, and provide guidance for medical staff in the operation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Pathology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgical Instruments (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Instructional Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种骨盆骨折复位智能监控系统,包括样本骨折模型数据库、患者骨盆骨折数据采集单元、复位情况监控单元和混合现实数据融合处理单元,样本骨折模型数据库存储有若干个样本骨折模型,患者骨盆骨折数据采集单元利用磁力导航定位技术实时采集患者骨盆位置信息数据上传至混合现实数据融合处理单元,混合现实数据融合处理单元自动调用样本骨折模型数据库与患者骨盆骨折情况相对应的样本骨折模型并利用混合现实技术将患者骨盆位置信息数据与样本骨折模型进行匹配形成针对患者骨盆骨折状态的智能骨折模型,复位情况监控单元实时加载显示智能骨折模型在不同体位的图像并实时监控患者骨盆不同体位的复位情况,提升治疗效果、减少人员射线照射。

Description

一种骨盆骨折复位智能监控系统 技术领域
本发明骨盆复位的医学技术领域,具体涉及一种骨盆骨折复位智能监控系统。
背景技术
骨盆骨折(或髋臼骨折)是一种严重平民损伤和战场创伤,具有高致残率、高死亡率、高发生率,半数以上的骨盆骨折伴有并发症和多发伤,严重威胁伤病员生命,且未合并软组织或内脏器官损伤的骨盆骨折死亡率约为10.8%,复杂的骨盆骨折死亡率甚至能达到为30%~50%。而现有治疗技术中常规切开的手术治疗方法存在诸多问题,尤其是目前标准治疗方法通常采用切开手术复位修复固定,存在伤口大、出血多、复位固定难度大等问题,很多患者/伤病员在手术中出血达到上万毫升,甚至部分患者/伤病员不能耐受手术的痛苦而离开我们;当然也存在部分患者/伤病员容易因为这些问题而错过手术治疗时机,最终留下终身残疾。
为解决上述情况,国内已有骨盆骨折微创快速修复技术开始在临床中应用,但是骨盆骨折微创快速修复技术理念在临床运用过程中遇到了诸多瓶颈问题比如:如何通过不切开、切小口就实现骨折闭合复位,然后通过微创方式完成骨折的稳定固定呢?如何降低手术难度并缩短手术时间?如何将精确手术固定时间提前、同时保证患者的生命安全?如何最大程度减少放射照射对医务人员和患者的损伤或者直接减少放射照射?
即便是针对上述问题301医院医疗团队已经研究并设计出了骨盆微创闭合复位系统,在二维透视影像监视下进行骨盆闭合复位治疗,其在一定程度上实现了微创手术进行骨折骨盆复位治疗,但是该技术在临床应用时仍然需要患者和医务人员必须始终处于透视环境下(射线照射环境下),也就是患者和医务人员都会受到放射照射(比如透视X射线照射等)进而受到放射照射损伤,因此如何减少放射照射就是目前亟待解决的一大难题。
发明内容
本发明针对现有技术中在骨折骨盆复位治疗的临床应用时患者和医务人员都会受到放射照射损伤等缺陷,提供了一种骨盆骨折复位智能监控系统,该系统引入样本骨盆来模拟人体骨盆骨折的数据并建立样本骨折模型,再利用磁力导航定位技术实时采集患者骨盆位置信息,利用混合现实技术形成针对患者骨盆骨折状态的智能骨折模型进而实时监控患者骨盆的不同体位复位情况,能够实现严重移位骨盆骨折的闭合精准复位、同时降低对患者和医务人员的放射损伤。
本发明的技术方案如下:
一种骨盆骨折复位智能监控系统,包括样本骨折模型数据库、患者骨盆骨折数据采集单元、混合现实数据融合处理单元和复位情况监控单元,所述样本骨折模型数据库、患者骨盆骨折数据采集单元和复位情况监控单元均与混合现实数据融合处理单元相连,所述样本骨折模型数据库存储有由样本骨盆模拟人体骨盆骨折的数据基于自动分割算法建立的若干个样本骨折模型,所述患者骨盆骨折数据采集单元利用磁力导航定位技术实时采集患者骨盆位置信息数据上传至所述混合现实数据融合处理单元,所述混合现实数据融合处理单元根据患者骨盆位置信息数据自动调用所述样本骨折模型数据库中与患者骨盆骨折情况相对应的样本骨折模型并利用混合现实技术将患者骨盆位置信息数据与样本骨折模型进行匹配形成针对患者骨盆骨折状态的智能骨折模型,所述复位情况监控单元实时加载显示智能骨折模型在不同体位的图像并通过多个监控画面分别实时监控患者骨盆不同体位的复位情况。
优选地,上述的骨盆骨折复位智能监控系统,还包括依次相连的骨盆骨折模拟数据采集单元、数据处理分析单元和模型建立单元,所述模型建立单元与样本骨折模型数据库相连,所述骨盆骨折模拟数据采集单元采集利用样本骨盆模拟人体骨盆骨折的数据,再由所述数据处理分析单元基于人工智能技术进行自动化分析处理,所述模型建立单元利用经过分析处理后的骨折模拟数据并基于自动分割算法建立若干个样本骨折模型后将全部样本骨折模型存入样本骨折模型数据库。
优选地,所述骨盆骨折模拟数据采集单元对骨折模拟数据进行采集时是通过从若干角度包括但不限于拍照、二维透视或扫描方式进行,所述样本骨盆包 括但不限于人工骨盆、动物骨盆或尸体骨盆。
优选地,所述患者骨盆骨折数据采集单元通过紧贴患者骨盆表面的磁力探测器采用的磁力导航定位技术并结合连接磁力探测器的光学定位器采用的光学追踪技术实时采集患者骨盆位置信息数据以实现患者骨盆定位,定位位置精度不低于5mm且定位角度精度不低于5°,所述患者骨盆位置信息数据包括但不限于患者骨盆中各骨块、内植物以及外围的操作杆、复位架和手术床的位置信息数据。
优选地,所述混合现实数据融合处理单元利用混合现实技术将患者骨盆位置信息数据与样本骨折模型匹配时进行坐标系匹配以及进行骨盆各骨块分别与内植物、操作杆、复位架、手术床之间相对位置关系的匹配,匹配过程通过自动化非刚性图像配准技术进行。
优选地,所述患者骨盆骨折数据采集单元接收医务人员或智能机器人对患者骨盆骨折复位操作后的患者骨盆位置信息,所述混合现实数据融合处理单元还采用自动诊断技术诊断接收到的患者骨盆骨折复位操作后的过拟合情况。
优选地,所述混合现实数据融合处理单元将构建的针对患者骨盆骨折状态的智能骨折模型进行肌肉附着条件加载,并基于人体组织包围盒树的方法实现操作杆植入过程中对重要人体解剖结构的自动化规避。
优选地,在所述患者骨盆骨折数据采集单元接收智能机器人对患者骨盆骨折复位操作后的患者骨盆位置信息时,所述混合现实数据融合处理单元还根据对样本骨折模型和智能骨折模型深度学习的结果实时进行智能复位临床路径规划。
优选地,所述患者骨盆骨折数据采集单元接收加载了肌肉力量的智能机械臂对患者骨盆骨折复位操作后的患者骨盆位置信息。
优选地,所述复位情况监控单元实时监控患者骨盆的体位包括骨盆正位、骨盆入口位、骨盆出口位、闭孔斜位、髂骨斜位、LC-2全长像、泪滴像、闭孔出口位、髂骨入口位、正视骶髂关节像入口位、正视骶髂关节像出口位、正视髂骨翼像、骨盆侧位像ICD线位、骨盆侧位像后柱位中任意三个以上体位的组合。
本发明的技术效果如下:
本发明涉及了一种骨盆骨折复位智能监控系统,设置了样本骨折模型数据 库、患者骨盆骨折数据采集单元、混合现实数据融合处理单元和复位情况监控单元,通过样本骨折模型数据库引入由样本骨盆来模拟人体骨盆骨折的数据基于自动分割算法建立样本骨折模型,再由患者骨盆骨折数据采集单元利用磁力导航定位技术实时采集患者骨盆位置信息,混合现实数据融合处理单元利用混合现实技术形成针对患者骨盆骨折状态的智能骨折模型进而复位情况监控单元实时监控患者骨盆的不同体位复位情况,也就是说,在骨盆模型上制备各种类型骨折,使其处于各种可能的骨折移位情况,通过计算机模拟实现移位骨块的复位指导,提高复位精度。各组件协同工作,结合自动分割算法、磁力导航定位技术、人工智能技术以及混合现实技术等,实现骨盆骨折复位智能监控,即便严重移位骨盆骨折也能够精准复位,能满足微创骨科手术要求的骨盆骨折闭合复位,同时满足微创骨科手术对其操作空间、占用空间、灵活性、负载、稳定性等性能的综合要求。而且最重要的是,在术中无需拍摄X射线图像,这就完全解决了现有的骨折骨盆复位治疗的临床应用时患者和医务人员都会受到放射照射损伤的问题,降低对患者和医务人员的放射损伤,保护医患双方安全。
优选地,本系统在包括样本骨折模型数据库、患者骨盆骨折数据采集单元、混合现实数据融合处理单元和复位情况监控单元的基础上,还包括依次相连的骨盆骨折模拟数据采集单元、数据处理分析单元和模型建立单元,所述骨盆骨折模拟数据采集单元采集利用样本骨盆模拟人体骨盆骨折的数据,再由所述数据处理分析单元基于人工智能技术进行自动化分析处理,所述模型建立单元利用经过分析处理后的骨折模拟数据并基于自动分割算法建立若干个样本骨折模型后将全部样本骨折模型存入样本骨折模型数据库,进一步优选地,所述骨盆骨折模拟数据采集单元对骨折模拟数据进行采集时是通过从若干角度包括但不限于拍照、二维透视或扫描方式进行,同时优选地,所述样本骨盆包括但不限于人工骨盆、动物骨盆或尸体骨盆,创新性地利用了大数据分析及人工智能技术,建模更加精准可靠。
优选地,所述患者骨盆骨折数据采集单元通过紧贴患者骨盆表面的磁力探测器采用的磁力导航定位技术并结合连接磁力探测器的光学定位器采用的光学追踪技术实时采集患者骨盆位置信息数据,包括但不限于患者骨盆中各骨块、内植物以及外围的操作杆、复位架和手术床的位置信息数据,也就是仅利用磁力导航定位技术和光学追踪技术获得患者骨盆骨折情况的做法使得医务人员不 用对患者开刀只需要微小的创口植入一些内植物或操作杆,就能精准的判断出患者骨折情况,避免了以往骨盆复位手术切口大、失血多复位固定难度大的问题。
优选地,所述混合现实数据融合处理单元还根据对样本骨折模型和智能骨折模型深度学习的结果实时进行智能复位临床路径规划,从而自动找到最优化的临床手术路径(注意手术路径必须对骨盆的各个骨块先进行解锁,解锁后再进行推拉移位操作),使得操作路径最短以避免大范围移动造成二次损伤,同时有效规避血管、神经、骨块等重要人体解剖结构或组织,避免不必要的损伤,节省手术时间,提高手术治疗效果。
优选地,所述患者骨盆骨折数据采集单元接收加载了肌肉力量的智能机械臂对患者骨盆骨折复位操作后的患者骨盆位置信息,也就是说,所述智能机器人采用基于肌肉力量加载方法模拟医务人员操作力度的智能机械臂,利用智能机械臂模拟医务人员的操作力度后根据智能复位路径进行手术操作使得整个手术过程实现全过程智能自动化操作,医务人员可以不用进入手术室或者仅在手术室偶尔观察一下所述复位情况监控单元展示的医学影像即可,避免了医务人员的射线照射,保证了医务人员的安全。
优选地,所述复位情况监控单元实时监控患者骨盆的体位包括常见14个体位中任意三个以上体位的组合,通过实时观察结果,能够有效判断患者骨盆骨折的复位情况,若仅由一个或两个体位的观察结果是复位成功而第三个体位的复位还未实现,则判定该立体骨盆实际复位不成功,若三个或三个以上的体位的观察结果均是复位成功,则判定立体骨盆实际复位成功,该充分解决了实时二维医学影像的信息缺失导致的三维操作空间控制的难题,实现立体复位精确指导。
附图说明
图1为本发明一种骨盆骨折复位智能监控系统的结构示意图。
图2为本发明一种骨盆骨折复位智能监控系统的优选结构示意图。
图3-图5分别为本发明复位情况监控单元展示的骨盆入口位、骨盆出口位以及髂骨斜位三个体位的医学影像。
图6为本发明中磁力探测器和光学定位器的结构示意图。
图7为本发明中复位情况监控单元展示的磁力探测器和光学定位器的模拟图。
图中标号列示如下:
1—光学定位球;2—磁力探测器。
具体实施方式
下面结合附图对本发明进行详细说明。
本发明涉及了一种骨盆骨折复位智能监控系统,如图1所示结构,包括样本骨折模型数据库、患者骨盆骨折数据采集单元、混合现实数据融合处理单元和复位情况监控单元,所述样本骨折模型数据库、患者骨盆骨折数据采集单元和复位情况监控单元均与混合现实数据融合处理单元相连,所述样本骨折模型数据库存储有由样本骨盆模拟人体骨盆骨折的数据基于自动分割算法建立的若干个样本骨折模型,也即能够通过在样本骨盆(可理解为假骨盆、标本骨盆)上制备或模拟各自类型的骨折使其处于各种可能的骨折移位情况,进而充分引入各种各样的骨盆骨折情况,需要说明的是,该样本骨盆骨折模型数据库既可以是即时收集数据并建模得到的数据库,也可以是调用的医院原有的历史数据库,且该数据库可单独作为产品存在;所述患者骨盆骨折数据采集单元利用磁力导航定位技术实时采集患者骨盆位置信息数据上传至所述混合现实数据融合处理单元,所述混合现实数据融合处理单元根据患者骨盆位置信息数据自动调用所述样本骨折模型数据库中与患者骨盆骨折情况相对应的样本骨折模型并利用混合现实技术将患者骨盆位置信息数据与样本骨折模型进行匹配形成针对患者骨盆骨折状态的智能骨折模型,通过计算机模拟实现移位骨块的复位导航进而提高复位精度,所述复位情况监控单元实时加载显示智能骨折模型在不同体位的图像并通过多个监控画面分别实时监控患者骨盆不同体位的复位情况,以便于医务人员实时观察动态变化过程,为其诊断操作提供可靠依据。本发明的各组件协同工作,结合自动分割算法、磁力导航定位技术、人工智能技术以及混合现实技术等,实现骨盆骨折复位智能监控,即便严重移位骨盆骨折也能够精准复位,能满足微创骨科手术要求的骨盆骨折闭合复位,同时满足微创骨科手术对其操作空间、占用空间、灵活性、负载、稳定性等性能的综合要求。而且最重要的是,在术中无需拍摄X射线图像,这就完全解决了现有的骨折骨盆 复位治疗的临床应用时患者和医务人员都会受到放射照射损伤的问题,降低对患者和医务人员的放射损伤,保护医患双方安全。
本发明骨盆骨折复位智能监控系统的优选结构示意图如图2所示,本系统在包括样本骨折模型数据库、患者骨盆骨折数据采集单元、混合现实数据融合处理单元和复位情况监控单元的基础上,还包括依次相连的骨盆骨折模拟数据采集单元、数据处理分析单元和模型建立单元,所述模型建立单元与样本骨折模型数据库相连,所述骨盆骨折模拟数据采集单元采集利用样本骨盆模拟人体骨盆骨折的数据,再由所述数据处理分析单元基于人工智能技术进行自动化分析处理,所述模型建立单元利用经过分析处理后的骨折模拟数据并基于自动分割算法建立若干个样本骨折模型后将全部样本骨折模型存入样本骨折模型数据库,进一步优选地,所述骨盆骨折模拟数据采集单元对骨折模拟数据进行采集时是通过从若干角度包括但不限于拍照、二维透视或扫描方式进行,同时优选地,所述样本骨盆包括但不限于人工骨盆、动物骨盆或尸体骨盆,比如本实施例优选采用对人工骨盆从若干角度进行拍照、二维透视或扫描进而获得多个角度的二维CT影像,或者对于这些二维CT影像进行虚拟投影生成数字影像,再由所述数据处理分析单元基于人工智能技术进行自动化分析处理,进而由模型建立单元基于自动分割算法以及结合快速有限元模型网格划分方法建立若干个个体化的样本骨折模型,然后存入样本骨折模型数据库,利用了大数据分析及人工智能技术,建模更加精准可靠。
优选地,所述患者骨盆骨折数据采集单元通过紧贴患者骨盆表面的磁力探测器采用的磁力导航定位技术并结合连接磁力探测器的光学定位器采用的光学追踪技术实时采集患者骨盆位置信息数据,实现患者骨盆定位,光学追踪技术中还包含3D动作捕捉技术,定位位置精度不低于5mm且定位角度精度不低于5°,所述患者骨盆位置信息数据包括但不限于患者骨盆中各骨块、内植物以及外围的操作杆、复位架和手术床的位置信息数据,通过高精准的磁力导航定位技术与光学追踪技术实时采集患者骨盆的位置信息数据(重点采集患者骨骼表面及操作杆、复位架、手术床等的坐标点集),故患者骨盆骨折数据采集单元实为高精度光学惯性追踪系统;本发明利用磁力导航定位技术实时采集患者骨盆位置信息数据,其所利用的磁力导航定位技术是利用磁的特性对物体做空间定位判断,或者说是利用磁场等外界因素实现患者骨盆导航、以及控制,与磁力计 原理相同,故实质相当于采用了惯性传感器,进一步地,也可以再结合光学定位器的光学追踪技术,实现光惯混合导航定位;然后混合现实数据融合处理单元利用混合现实技术将患者骨盆位置信息数据与样本骨折模型进行匹配,基于样本骨折模型和采集患者骨盆位置信息数据,并结合基于迭代最近邻点算法(ICP算法)的骨骼三维形变技术进而重建出个体化患者的智能骨盆骨折模型,且利用磁力导航定位技术和光学追踪技术获得患者骨盆骨折情况的做法使得医务人员不用对患者开刀只需要微小的创口植入一些内植物或操作杆,就能精准的判断出患者骨折情况,避免了以往骨盆复位手术切口大、失血多复位固定难度大的问题,并且使患者免遭剧痛,手术难度大大降低,患者恢复几率与生活质量也得到了提高和改善。
优选地,所述混合现实数据融合处理单元利用混合现实技术将患者骨盆位置信息数据与样本骨折模型匹配时进行坐标系匹配以及进行骨盆各骨块分别与内植物、操作杆、复位架、手术床之间相对位置关系的匹配,匹配过程通过自动化非刚性图像配准技术进行,也就是匹配过程中会实时计算各骨块、内植物、操作杆等的即时位置以及其相对位置关系,然后进行精准匹配,解决二维影像与三维空间影像的对应问题,且通过以患者骨盆的一个体位影像的镜像映射结果作为患者骨盆移位的复位基准参数,结合其他体位影像的镜像映射结果通过表面配准获得复位空间坐标参数等。
优选地,所述患者骨盆骨折数据采集单元接收医务人员或智能机器人对患者骨盆骨折复位操作后的患者骨盆位置信息,所述混合现实数据融合处理单元还采用自动诊断技术诊断接收到的患者骨盆骨折复位操作后的过拟合情况,因为根据样本骨盆创建的样本骨盆骨折模型的数据量还是有限,所以在混合现实处理时容易造成过拟合问题,而通过自动诊断技术,能够有效解决过拟合问题并提高混合现实数据融合的准确度。
优选地,所述混合现实数据融合处理单元将构建的针对患者骨盆骨折状态的智能骨折模型进行肌肉附着条件加载,也即基于图谱法或统计学形态模型在个体化的智能骨折模型上自动寻找肌肉止点和作用方向进行肌肉附着条件(理解为人体软组织,比如皮肤、肌肉等)的加载,并基于人体组织包围盒树的方法实现操作杆植入过程中对重要人体解剖结构(如血管、神经等)的自动化规避,避免操作杆在患者体内植入时伤害到患者。
优选地,在所述患者骨盆骨折数据采集单元接收智能机器人对患者骨盆骨折复位操作后的患者骨盆位置信息时,所述混合现实数据融合处理单元还根据对样本骨折模型和智能骨折模型深度学习的结果实时进行智能复位临床路径规划,从而自动找到最优化的临床手术路径(注意手术路径必须对骨盆骨折的各个骨块先进行解锁,解锁后再进行推拉移位操作),使得操作路径最短以避免大范围移动造成二次损伤,同时有效规避血管、神经、骨块等重要人体解剖结构或组织,避免不必要的损伤,节省手术时间,提高手术治疗效果,甚至在使用智能机器人代替医务人员进行手术操作时,还能与磁力导航定位技术中的导航伺服控制技术相结合,以实时骨块特征(人体组织特征)作为伺服反馈,建立伺服控制任务,使得智能机器人在导航伺服控制下按照智能复位临床路径进行手术操作,并实时跟踪调整路径直至骨盆复位成功,大大提升了骨盆复位操作的实时性、稳定性、精确性、可靠性和安全性。
优选地,所述智能机器人采用基于肌肉力量加载方法模拟医务人员操作力度的智能机械臂,此时,患者骨盆骨折数据采集单元接收的就是已经加载了肌肉力量的智能机械臂对患者骨盆骨折复位操作后的患者骨盆位置信息。利用智能机械臂模拟医务人员的操作力度后根据智能复位路径进行手术操作使得整个手术过程实现全过程智能自动化操作,医务人员可以不用进入手术室或者仅在手术室偶尔观察一下所述复位情况监控单元展示的医学影像即可,避免了医务人员的射线照射,保证了医务人员的安全。
优选地,所述复位情况监控单元实时监控患者骨盆的体位包括骨盆正位、骨盆入口位、骨盆出口位、闭孔斜位、髂骨斜位、LC-2全长像、泪滴像、闭孔出口位、髂骨入口位、正视骶髂关节像入口位、正视骶髂关节像出口位、正视髂骨翼像、骨盆侧位像ICD线位、骨盆侧位像后柱位中任意三个以上体位的组合,通过三个或三个以上的体位的实时观察结果,能够有效判断患者骨盆骨折的复位情况,若仅由一个或两个体位的观察结果是复位成功而第三个体位的复位还未实现,则判定该立体骨盆实际复位不成功,若三个或三个以上的体位的观察结果均是复位成功,则判定立体骨盆实际复位成功,比如图3-图5分别表示智能骨折模型显示在复位情况监控单元上的骨盆入口位、骨盆出口位以及髂骨斜位三个体位的医学影像,随着骨盆复位手术的进行,三个体位的医学影像随之动态变化,当骨盆入口位、骨盆出口位以及髂骨斜位三个体位的医学影像 均显示骨盆复位成功时,确定患者骨盆实际复位成功,该方案充分解决了实时二维医学影像的信息缺失导致的三维操作空间控制的难题,实现立体复位精确指导,最终还可以再给患者进行一次医学透视以检验智能复位的结果是否真的成功,由此双重保证骨盆复位手术的成功性。医务人员可直接观察由复位情况监控单元实时监控的患者骨盆的体位的复位情况,进行患者骨盆骨折复位;各模块协同工作实现虚拟现实导航多体位视图操作导航追踪操作,并进行骨盆位置精度的一致性确认。
进一步地,患者骨盆骨折数据采集单元包括紧贴患者骨盆表面的磁力探测器以及连接磁力探测器的光学定位器,如图6所示,磁力探测器2与光学定位器相连,所述磁力探测器2内嵌有陀螺仪和/或定位芯片且所述磁力探测器2下端与操作杆相连,所述光学定位器包括依次均匀设置在磁力探测器四个侧面上的四个光学定位杆且所述光学定位杆中两个垂直设置另外两个水平设置,所述光学定位杆顶端具有光学定位球1,所述光学定位球1优选采用直径1mm的金属球和/或猪皮质骨球,金属球和/或猪皮质骨球具有感光效果,能够充当光学追踪的依据点,进一步地,智能骨折模型投射到复位情况监控单元后,其模拟出来的磁力探测器和光学定位器的使用状态如图7所示,由此能够充分地观察到磁力探测器和光学定位器与骨块的连接状态及其相对位置关系,为医务人员的手术操作提供指导依据。
应当指出,以上所述具体实施方式可以使本领域的技术人员更全面地理解本发明创造,但不以任何方式限制本发明创造。因此,尽管本说明书参照附图和实施例对本发明创造已进行了详细的说明,但是,本领域技术人员应当理解,仍然可以对本发明创造进行修改或者等同替换,总之,一切不脱离本发明创造的精神和范围的技术方案及其改进,其均应涵盖在本发明创造专利的保护范围当中。

Claims (10)

  1. 一种骨盆骨折复位智能监控系统,其特征在于,包括样本骨折模型数据库、患者骨盆骨折数据采集单元、混合现实数据融合处理单元和复位情况监控单元,所述样本骨折模型数据库、患者骨盆骨折数据采集单元和复位情况监控单元均与混合现实数据融合处理单元相连,所述样本骨折模型数据库存储有由样本骨盆模拟人体骨盆骨折的数据基于自动分割算法建立的若干个样本骨折模型,所述患者骨盆骨折数据采集单元利用磁力导航定位技术实时采集患者骨盆位置信息数据上传至所述混合现实数据融合处理单元,所述混合现实数据融合处理单元根据患者骨盆位置信息数据自动调用所述样本骨折模型数据库中与患者骨盆骨折情况相对应的样本骨折模型并利用混合现实技术将患者骨盆位置信息数据与样本骨折模型进行匹配形成针对患者骨盆骨折状态的智能骨折模型,所述复位情况监控单元实时加载显示智能骨折模型在不同体位的图像并通过多个监控画面分别实时监控患者骨盆不同体位的复位情况。
  2. 根据权利要求1所述的骨盆骨折复位智能监控系统,其特征在于,还包括依次相连的骨盆骨折模拟数据采集单元、数据处理分析单元和模型建立单元,所述模型建立单元与样本骨折模型数据库相连,所述骨盆骨折模拟数据采集单元采集利用样本骨盆模拟人体骨盆骨折的数据,再由所述数据处理分析单元基于人工智能技术进行自动化分析处理,所述模型建立单元利用经过分析处理后的骨折模拟数据并基于自动分割算法建立若干个样本骨折模型后将全部样本骨折模型存入样本骨折模型数据库。
  3. 根据权利要求2所述的骨盆骨折复位智能监控系统,其特征在于,所述骨盆骨折模拟数据采集单元对骨折模拟数据进行采集时是通过从若干角度包括但不限于拍照、二维透视或扫描方式进行,所述样本骨盆包括但不限于人工骨盆、动物骨盆或尸体骨盆。
  4. 根据权利要求1所述的骨盆骨折复位智能监控系统,其特征在于,所述患者骨盆骨折数据采集单元通过紧贴患者骨盆表面的磁力探测器采用的磁力导航定位技术并结合连接磁力探测器的光学定位器采用的光学追踪技术实时采集患者骨盆位置信息数据以实现患者骨盆定位,定位位置精度不低于5mm且定位角度精度不低于5°,所述患者骨盆位置信息数据包括但不限于患者骨盆中各骨块、内植物以及外围的操作杆、复位架和手术床的位置信息数据。
  5. 根据权利要求4所述的骨盆骨折复位智能监控系统,其特征在于,所述 混合现实数据融合处理单元利用混合现实技术将患者骨盆位置信息数据与样本骨折模型匹配时进行坐标系匹配以及进行骨盆各骨块分别与内植物、操作杆、复位架、手术床之间相对位置关系的匹配,匹配过程通过自动化非刚性图像配准技术进行。
  6. 根据权利要求4所述的骨盆骨折复位智能监控系统,其特征在于,所述患者骨盆骨折数据采集单元接收医务人员或智能机器人对患者骨盆骨折复位操作后的患者骨盆位置信息,所述混合现实数据融合处理单元还采用自动诊断技术诊断接收到的患者骨盆骨折复位操作后的过拟合情况。
  7. 根据权利要求4所述的骨盆骨折复位智能监控系统,其特征在于,所述混合现实数据融合处理单元将构建的针对患者骨盆骨折状态的智能骨折模型进行肌肉附着条件加载,并基于人体组织包围盒树的方法实现操作杆植入过程中对重要人体解剖结构的自动化规避。
  8. 根据权利要求6或7所述的骨盆骨折复位智能监控系统,其特征在于,在所述患者骨盆骨折数据采集单元接收智能机器人对患者骨盆骨折复位操作后的患者骨盆位置信息时,所述混合现实数据融合处理单元还根据对样本骨折模型和智能骨折模型深度学习的结果实时进行智能复位临床路径规划。
  9. 根据权利要求8所述的骨盆骨折复位智能监控系统,其特征在于,所述患者骨盆骨折数据采集单元接收加载了肌肉力量的智能机械臂对患者骨盆骨折复位操作后的患者骨盆位置信息。
  10. 根据权利要求1或2所述的骨盆骨折复位智能监控系统,其特征在于,所述复位情况监控单元实时监控患者骨盆的体位包括骨盆正位、骨盆入口位、骨盆出口位、闭孔斜位、髂骨斜位、LC-2全长像、泪滴像、闭孔出口位、髂骨入口位、正视骶髂关节像入口位、正视骶髂关节像出口位、正视髂骨翼像、骨盆侧位像ICD线位、骨盆侧位像后柱位中任意三个以上体位的组合。
PCT/CN2020/075110 2019-02-15 2020-02-13 一种骨盆骨折复位智能监控系统 WO2020164548A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/431,266 US11534240B2 (en) 2019-02-15 2020-02-13 Intelligent monitoring system for pelvic fracture reduction
JP2021547574A JP7240519B2 (ja) 2019-02-15 2020-02-13 骨盤骨折整復用スマート監視システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910116464.1 2019-02-15
CN201910116464.1A CN109820590B (zh) 2019-02-15 2019-02-15 一种骨盆骨折复位智能监控系统

Publications (1)

Publication Number Publication Date
WO2020164548A1 true WO2020164548A1 (zh) 2020-08-20

Family

ID=66863668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075110 WO2020164548A1 (zh) 2019-02-15 2020-02-13 一种骨盆骨折复位智能监控系统

Country Status (4)

Country Link
US (1) US11534240B2 (zh)
JP (1) JP7240519B2 (zh)
CN (1) CN109820590B (zh)
WO (1) WO2020164548A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109820590B (zh) * 2019-02-15 2024-04-12 中国人民解放军总医院 一种骨盆骨折复位智能监控系统
CN111134841B (zh) * 2020-01-08 2022-04-22 北京天智航医疗科技股份有限公司 髋关节置换术中配准骨盆的方法及配准工具
CN111590584B (zh) * 2020-05-27 2021-12-10 京东方科技集团股份有限公司 安全限位区的确定方法和装置、复位方法和医用机器人
CN113332008B (zh) * 2021-05-24 2022-09-20 汕头大学 一种髋关节置换术中股骨长度的确定方法及系统
CN114948223B (zh) * 2022-05-24 2024-01-23 哈尔滨工业大学 一种机器人辅助骨折复位导航系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140328460A1 (en) * 2013-05-06 2014-11-06 Siemens Aktiengesellschaft Method and device for assisting in the treatment of bone fractures
CN105105841A (zh) * 2015-07-20 2015-12-02 南方医科大学 用于引导骨折内固定钢板植入的导航模板的制备方法
CN105434029A (zh) * 2015-12-31 2016-03-30 常州华森医疗器械有限公司 骨科植入物塑形工艺
WO2018167369A1 (en) * 2017-03-14 2018-09-20 Disior Oy Arrangement and method for optimization of elements used to aid in treatment of musculoskeletal disorders or orthopedic conditions
CN109820590A (zh) * 2019-02-15 2019-05-31 中国人民解放军总医院 一种骨盆骨折复位智能监控系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1638459A2 (en) * 2003-06-11 2006-03-29 Case Western Reserve University Computer-aided-design of skeletal implants
US10095815B2 (en) * 2008-11-19 2018-10-09 Elbit Systems Ltd. System and a method for mapping a magnetic field
US8956393B2 (en) * 2010-07-06 2015-02-17 Luis Edgardo Ramos Maza Devices, systems, and methods for acetabulum repair
US20130033700A1 (en) * 2011-08-05 2013-02-07 Abdelbasset Hallil Radiation dosimeter with localization means and methods
CN202815838U (zh) * 2012-02-10 2013-03-20 中国人民解放军总医院 一种带有影像三维处理装置的消融治疗影像引导设备
ES2776988T3 (es) * 2012-05-23 2020-08-03 Stryker European Holdings I Llc Superposición virtual en 3D como ayuda de reducción para fracturas complejas
KR101433242B1 (ko) 2012-11-16 2014-08-25 경북대학교 산학협력단 정복 시술 로봇 및 그의 구동 제어 방법
EP2821024A1 (en) 2013-07-01 2015-01-07 Advanced Osteotomy Tools - AOT AG Computer assisted surgery apparatus and method of cutting tissue
US10154239B2 (en) * 2014-12-30 2018-12-11 Onpoint Medical, Inc. Image-guided surgery with surface reconstruction and augmented reality visualization
CN104778894B (zh) * 2015-04-28 2017-06-20 关宏刚 一种虚拟仿真正骨手法培训系统及其建立方法
US10991070B2 (en) * 2015-12-18 2021-04-27 OrthoGrid Systems, Inc Method of providing surgical guidance
CN205514867U (zh) * 2016-01-29 2016-08-31 李智 一种适用于计算机辅助导航手术的颌面部骨折复位器
WO2018063528A1 (en) * 2016-08-16 2018-04-05 Insight Medical Systems, Inc. Systems for sensory augmentation in medical procedures
RU2635451C1 (ru) * 2016-08-24 2017-11-13 Общество с ограниченной ответственностью "Малое предприятие научно-производственная фирма "ГАММАМЕД-П" Способ использования оптической медицинской навигационной системы для визуализации и количественной оценки качества репозиции отломков при переломе кости таза
CN107016666B (zh) * 2017-02-28 2020-09-18 四川大学华西医院 基于坐标体系的骨盆ct三维重建的图像后处理方法
CN106806022A (zh) * 2017-03-20 2017-06-09 武汉大学 一种适用于计算机辅助导航手术的磁力异物探测器
CN107088091A (zh) * 2017-06-08 2017-08-25 广州技特电子科技有限公司 一种辅助骨科手术的手术导航系统及导航方法
CN107595406B (zh) * 2017-09-14 2022-03-25 丛海波 骨折闭合复位治疗的电磁导视系统
CN108852511B (zh) * 2018-04-26 2019-06-07 北京罗森博特科技有限公司 骨内植入物最优位置的自动规划方法及装置
JP7466928B2 (ja) * 2018-09-12 2024-04-15 オルソグリッド システムズ ホールディング,エルエルシー 人工知能の術中外科的ガイダンスシステムと使用方法
CN210727852U (zh) * 2019-02-15 2020-06-12 中国人民解放军总医院 一种骨盆骨折复位智能监控系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140328460A1 (en) * 2013-05-06 2014-11-06 Siemens Aktiengesellschaft Method and device for assisting in the treatment of bone fractures
CN105105841A (zh) * 2015-07-20 2015-12-02 南方医科大学 用于引导骨折内固定钢板植入的导航模板的制备方法
CN105434029A (zh) * 2015-12-31 2016-03-30 常州华森医疗器械有限公司 骨科植入物塑形工艺
WO2018167369A1 (en) * 2017-03-14 2018-09-20 Disior Oy Arrangement and method for optimization of elements used to aid in treatment of musculoskeletal disorders or orthopedic conditions
CN109820590A (zh) * 2019-02-15 2019-05-31 中国人民解放军总医院 一种骨盆骨折复位智能监控系统

Also Published As

Publication number Publication date
JP7240519B2 (ja) 2023-03-15
CN109820590B (zh) 2024-04-12
US20220039870A1 (en) 2022-02-10
US11534240B2 (en) 2022-12-27
CN109820590A (zh) 2019-05-31
JP2022524583A (ja) 2022-05-09

Similar Documents

Publication Publication Date Title
WO2020164548A1 (zh) 一种骨盆骨折复位智能监控系统
WO2022126828A1 (zh) 关节置换手术导航系统及方法
JP4815054B2 (ja) 信頼基準システムを利用しない画像指図式ロボット整形外科処置手順を実施するシステムおよび方法
US20140379038A1 (en) System for anatomical reduction of bone fractures
JPH05500911A (ja) 不均質組織内部における局部手術用対話型装置
DE102011106812A1 (de) Registrierung von anatomischen Datensätzen
ES2277087T3 (es) Metodo para representacion con imagenes el movimiento relativo de segmentos esqueleticos.
Mishvelov et al. Computer-assisted surgery: virtual-and augmented-reality displays for navigation during planning and performing surgery on large joints
CN208372085U (zh) 骨折复位设备
CN210727852U (zh) 一种骨盆骨折复位智能监控系统
Fu et al. Indirect visual guided fracture reduction robot based on external markers
JP7478303B1 (ja) Cjfh分類に基づく股関節温存手術治療システム及び装置
Taylor et al. Computer-integrated surgery and medical robotics
CN114159160B (zh) 手术导航方法、装置、电子设备、存储介质
de Geer et al. Registration methods for surgical navigation of the mandible: a systematic review
CN110811830B (zh) 一种基于股骨模型的分析装置及方法
CN114073579A (zh) 手术导航方法、装置、电子设备及存储介质
Torres et al. 3D femur reconstruction using a robotized ultrasound probe
WO2023073517A1 (en) Systems and devices for tracking one or more surgical landmarks
CN115363773A (zh) 基于光学定位导航的骨科手术机器人系统及其控制方法
Ibrahim et al. Robot-assisted for medical surgery: A literature review
Xie et al. A small-scaled intraoperative 3d visualization navigation system for femoral head repair surgery
Wang et al. Comparison analysis of robot-assisted computed tomography navigation system and manual freehand technique in orthopedic surgery
CN110680353B (zh) 一种股骨头完整率的分析装置
Sinh et al. Integration of computer-assisted fracture reduction system and a hybrid 3-DOF-RPS mechanism for assisting the orthopedic surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021547574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20756063

Country of ref document: EP

Kind code of ref document: A1