WO2020164521A1 - 数据包分配方法、装置、移动终端及存储介质 - Google Patents
数据包分配方法、装置、移动终端及存储介质 Download PDFInfo
- Publication number
- WO2020164521A1 WO2020164521A1 PCT/CN2020/074907 CN2020074907W WO2020164521A1 WO 2020164521 A1 WO2020164521 A1 WO 2020164521A1 CN 2020074907 W CN2020074907 W CN 2020074907W WO 2020164521 A1 WO2020164521 A1 WO 2020164521A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- link
- data link
- wifi
- data
- mobile
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 230000005540 biological transmission Effects 0.000 claims abstract description 95
- 238000004590 computer program Methods 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 9
- 230000007774 longterm Effects 0.000 claims description 4
- 230000006870 function Effects 0.000 description 21
- 238000004891 communication Methods 0.000 description 19
- 238000012545 processing Methods 0.000 description 8
- 230000002776 aggregation Effects 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 230000010267 cellular communication Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 238000013500 data storage Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000009527 percussion Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
- H04W8/24—Transfer of terminal data
Definitions
- This application relates to the field of communication technology, and in particular to a data packet distribution method, device, mobile terminal and storage medium.
- a mobile terminal when surfing the Internet, it can simultaneously turn on the switch of the WiFi network and the switch of the mobile data network. At this time, the mobile terminal will preferentially access the Internet via the WiFi network. If the speed of the WiFi network is slow, the user can manually turn off the switch of the WiFi network and only use the mobile data network to surf the Internet. Although the mobile terminal turns on the switch of the WiFi network and the switch of the mobile data network at the same time, only one of the WiFi network and the mobile data network can be used to surf the Internet at the same time, and the WiFi network and the mobile data network cannot be fully utilized.
- the embodiments of the present application provide a data packet distribution method, device, mobile terminal, and storage medium, which make full use of the data packet sending and receiving capabilities of the WiFi network and the mobile data network.
- an embodiment of the present application provides a data packet distribution method, including:
- the data packets that need to be transmitted are allocated to the WiFi data link and the mobile data link for transmission according to the data packet allocation ratio.
- an embodiment of the present application provides a data packet distribution device, including:
- the detection unit is used to detect the link quality of the WiFi data link and the link quality of the mobile data link;
- a determining unit configured to determine a data packet allocation ratio between the WiFi data link and the mobile data link according to the link quality of the WiFi data link and the link quality of the mobile data link;
- the transmission unit is configured to allocate data packets to be transmitted in the WiFi data link and the mobile data link for transmission according to the data packet allocation ratio.
- an embodiment of the present application provides a mobile terminal, including a processor and a memory, the memory is used to store one or more programs, and the one or more programs are configured to be executed by the processor.
- the program includes instructions for executing the steps in the first aspect of the embodiments of the present application.
- an embodiment of the present application provides a computer-readable storage medium, wherein the foregoing computer-readable storage medium stores a computer program for electronic data exchange, wherein the foregoing computer program enables a computer to execute Some or all of the steps described in one aspect.
- embodiments of the present application provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute Example part or all of the steps described in the first aspect.
- the computer program product may be a software installation package.
- the mobile terminal detects the link quality of the WiFi data link and detects the link quality of the mobile data link; according to the link quality of the WiFi data link and the mobile
- the link quality of the data link determines the data packet allocation ratio between the WiFi data link and the mobile data link; the data packets that need to be transmitted are allocated to the WiFi data link and the mobile data link for transmission according to the data packet allocation ratio.
- the embodiment of the application can determine the allocation ratio of data packets to be transmitted on the two links according to the link quality of the WiFi data link and the link quality of the mobile data link, and can be reasonably allocated to the WiFi data link and mobile data. Data packets are transmitted on the link, making full use of the data packet receiving and sending capabilities of WiFi networks and mobile data networks to improve users' online experience.
- FIG. 1 is a schematic flowchart of a data packet distribution method disclosed in an embodiment of the present application
- FIG. 2 is a schematic flowchart of another data packet distribution method disclosed in an embodiment of the present application.
- FIG. 3 is a schematic flowchart of another data packet distribution method disclosed in an embodiment of the present application.
- FIG. 4 is a schematic structural diagram of a data packet distribution device disclosed in an embodiment of the present application.
- FIG. 5 is a schematic structural diagram of a mobile terminal disclosed in an embodiment of the present application.
- Fig. 6 is a schematic structural diagram of another mobile terminal disclosed in an embodiment of the present application.
- the mobile terminals involved in the embodiments of this application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment (User Equipment, UE), mobile station (Mobile Station, MS), terminal device (terminal device), etc.
- UE User Equipment
- MS Mobile Station
- terminal device terminal device
- FIG. 1 is a schematic flowchart of a data packet distribution method disclosed in an embodiment of the present application. As shown in FIG. 1, the data packet distribution method includes the following steps.
- the mobile terminal detects the link quality of the WiFi data link, and detects the link quality of the mobile data link.
- wireless fidelity which may also be referred to as wifi or Wi-Fi
- the mobile terminal may include a WiFi module (may also be referred to as a WiFi communication module), so that the mobile terminal has a WiFi function.
- the mobile terminal can search for WiFi hotspots and connect to the wireless network through the WiFi hotspots.
- the WiFi data link is a data connection path established between the mobile terminal and the wireless network through the WiFi communication module interface.
- a mobile data link is a data connection path established between a mobile terminal and a wireless network through a cellular communication module interface.
- the cellular communication module interface may be a 3G/4G/5G communication module interface.
- the data packets transmitted in the WiFi data link need to pass through the WiFi hotspot, and the data packets transmitted in the mobile data link need to pass through the base station of the telecom operator.
- the link quality of the WiFi data link can be determined by the uplink and downlink data transmission rate, round trip delay, bit error rate, etc. of the WiFi data link. Among them, the higher the uplink and downlink data transmission rate, the smaller the round trip delay, the lower the bit error rate, and the higher the link quality of the WiFi data link; the lower the uplink and downlink data transmission rate, the greater the round trip delay, and the bit error. The higher the rate, the lower the link quality of the WiFi data link.
- the WiFi data link may include a WiFi uplink data link and a WiFi downlink data link.
- the quality of the WiFi uplink data link can be determined by the uplink data transmission rate, round-trip delay, and bit error rate of the WiFi data link.
- the quality of the WiFi downlink data link can be determined by the downlink data transmission rate, round trip delay, bit error rate, etc. of the WiFi data link.
- the link quality of the mobile data link can be determined by the uplink and downlink data transmission rate, round-trip delay, and bit error rate of the mobile data link. Among them, the higher the uplink and downlink data transmission rate, the smaller the round trip delay, the lower the bit error rate, and the higher the link quality of the mobile data link; the lower the uplink and downlink data transmission rate, the greater the round trip delay, and the bit error. The higher the rate, the lower the link quality of the mobile data link.
- the mobile data link may include a mobile uplink data link and a mobile downlink data link.
- the quality of the mobile uplink data link can be determined by the mobile data link's uplink data transmission rate, round-trip delay, bit error rate, and so on.
- the quality of the mobile downlink data link can be determined by the downlink data transmission rate, round-trip delay, bit error rate, etc. of the mobile data link.
- the bit error rate is an index that measures the accuracy of data transmission within a specified time.
- the bit error rate bit errors in transmission/total number of codes transmitted*100%.
- the mobile terminal may start the intelligent link aggregation function.
- the mobile terminal can also open the WiFi connection and the mobile data connection at the same time.
- link aggregation means that a device can use two or more network ports to surf the Internet at the same time.
- a device can use two or more network ports to surf the Internet at the same time.
- the Smart Link Aggregation (SLA) function refers to the intelligent allocation of users' Internet access requests to different Internet-enabled interfaces (cellular communication module interface, WiFi communication module interface).
- Link aggregation requires at least two or more available networks, so the prerequisite of SLA is to make WiFi and data networks coexist.
- the mobile terminal When the mobile terminal activates the intelligent link aggregation function, the mobile terminal can send a network request to the network to enable the data network, which can enable the mobile terminal to use the WiFi network and mobile at the same time when the WiFi and data network are turned on at the same time. Data network.
- the mobile terminal detecting the link quality of the WiFi data link may specifically include the following steps:
- the mobile terminal measures the data transmission rate, round trip delay, and error rate of the WiFi data link, and determines the link quality of the WiFi data link based on the round trip delay, data transmission rate, and error rate of the WiFi data link;
- the mobile terminal detecting the link quality of the mobile data link may specifically include the following steps:
- the mobile terminal measures the data transmission rate, round trip delay, and bit error rate of the mobile data link, and determines the link quality of the mobile data link based on the round trip delay, data transmission rate, and bit error rate of the mobile data link.
- the mobile terminal determines a data packet allocation ratio between the WiFi data link and the mobile data link according to the link quality of the WiFi data link and the link quality of the mobile data link.
- the link quality of the WiFi data link is better than the link quality of the mobile data link, it is determined that the data packet allocation ratio between the WiFi data link and the mobile data link is greater than 1; If the link quality of the data link is better than the link quality of the WiFi data link, it is determined that the data packet allocation ratio between the WiFi data link and the mobile data link is less than one.
- the link quality of the WiFi data link can be scored based on the uplink and downlink data transmission rate, round-trip delay, and bit error rate of the WiFi data link to obtain the quality score of the WiFi data link.
- the quality score of the mobile data link can also be obtained.
- the mobile terminal may use the ratio of the quality score of the WiFi data link to the quality score of the mobile data link as the data packet allocation ratio between the WiFi data link and the mobile data link.
- the mobile terminal can also determine the quality level of the WiFi data link according to the quality score of the WiFi data link, and determine the quality level of the mobile data link according to the quality score of the mobile data link, according to the quality level of the WiFi data link and the mobile data link
- the quality level of the road determines the data packet allocation ratio between the WiFi data link and the mobile data link. For example, you can set the quality levels of the WiFi data link and mobile data link to five levels: I, II, III, IV, and V, which represent poor, poor, medium, good, and poor link quality. excellent.
- the five grades of I, II, III, IV, and V are respectively divided into quality levels: 0-30, 30-60, 60-80, 80-90, and 90-100.
- the data packet distribution ratio between the WiFi data link and the mobile data link can be determined according to the ratio of the quality level of the WiFi data link to the quality level of the mobile data link. For example, if the link quality of the WiFi data link is level I and the quality level of the mobile data link is level I, the data packet allocation ratio between the WiFi data link and the mobile data link is 1:1; If the link quality of the WiFi data link is level I and the quality level of the mobile data link is level 2, then the data packet allocation ratio between the WiFi data link and the mobile data link is 1:2; if the WiFi data link The link quality of the road is level I and the quality level of the mobile data link is level 3.
- the data packet allocation ratio between the WiFi data link and the mobile data link is 1:3; if the link of the WiFi data link The quality is level I and the quality level of the mobile data link is level 4.
- the data packet allocation ratio between the WiFi data link and the mobile data link is 1:4; if the link quality of the WiFi data link is level I , The quality level of the mobile data link is 5, and the data packet allocation ratio between the WiFi data link and the mobile data link is 1:5.
- the mobile terminal allocates the data packets to be transmitted in the WiFi data link and the mobile data link for transmission according to the data packet allocation ratio.
- the mobile terminal can send uplink data packets and can also receive downlink data packets.
- the data packet that needs to be transmitted can be an uplink data packet or a downlink data packet.
- the mobile terminal can allocate the uplink data packet to the WiFi uplink data link and mobile uplink data link for transmission; for the downlink data packet, the mobile terminal can allocate the downlink data packet to the WiFi downlink data link and mobile downlink Transmission in the data link.
- the data packets that need to be transmitted can be initiated by different services in the mobile terminal.
- the data packets that need to be transmitted can be initiated by any of video services, game services, voice services, and instant messaging services.
- the following steps may also be included:
- the mobile terminal performs WiFi data link marking or mobile data link marking on the data packets that need to be transmitted, obtains the label value of each data packet, establishes a label value routing table, and updates it to the routing node.
- the mobile terminal allocates the data packets that need to be transmitted in the WiFi data link and the mobile data link according to the data packet allocation ratio for transmission, which may specifically include the following steps:
- the mobile terminal In the process of transmitting the data packet to be transmitted, the mobile terminal obtains the tag value of the data packet to be transmitted, and determines the data link corresponding to the data packet to be transmitted according to the tag value routing table in the routing table of each routing node The data packet to be transmitted is allocated to the corresponding data link for transmission.
- the WiFi data link includes a first frequency band WiFi data link and a second frequency band WiFi data link
- step 102 may specifically include the following steps:
- the mobile terminal determines the first frequency band WiFi data link and the second frequency band WiFi data link according to the link quality of the first frequency band WiFi data link, the second frequency band WiFi data link link quality, and the mobile data link link quality The data packet distribution ratio between the road and the mobile data link;
- Step 102 may specifically include the following steps:
- the mobile terminal allocates the data packets to be transmitted in the first frequency band WiFi data link, the second frequency band WiFi data link, and the mobile data link for transmission according to the data packet allocation ratio.
- the first frequency band WiFi data link may be a 2.4G frequency band WiFi data link
- the second frequency band WiFi data link may be a 5G frequency band WiFi data link
- the mobile terminal may include a first WiFi communication module and a second WiFi communication module, and may support simultaneous transmission and reception of signals in two WiFi frequency bands.
- the mobile terminal can allocate the data packets that need to be transmitted among the three data links (the first frequency band WiFi data link, the second frequency band WiFi data link, and the mobile data link) for transmission according to the allocation ratio. It is possible to further utilize the data packet sending and receiving capabilities of the WiFi network and the mobile data network of the two frequency bands at the same time to improve the user's Internet experience.
- the mobile terminal detects the link quality of the WiFi data link, and detects the link quality of the mobile data link, which may specifically include the following steps:
- the mobile terminal measures the maximum data transmission rate of the WiFi data link, measures the maximum data transmission rate of the mobile data link, and determines the WiFi data link based on the maximum data transmission rate of the WiFi data link and the maximum data transmission rate of the mobile data link Link quality and the link quality of the mobile data link.
- the mobile data network is described by taking a Long Term Evolution (LTE) network as an example.
- LTE Long Term Evolution
- the link quality of the WiFi data link and the link quality of the LTE data link can be calculated according to the following formula:
- weigh_wifi represents the link quality of the WiFi data link
- weight_lte represents the link quality of the LTE data link
- max_speed_wifi represents the maximum data transmission rate of the WiFi data link
- max_speed_lte represents the maximum data transmission rate of the LTE data link.
- the sum of the link quality of the WiFi data link and the link quality of the LTE data link is equal to one.
- the mobile terminal can determine the data packet allocation ratio between the WiFi data link and the mobile data link according to the ratio of the link quality of the WiFi data link to the link quality of the mobile data link.
- the link quality of the WiFi data link is 0.3 and the link quality of the LTE data link is 0.7, it is determined that the data packet allocation ratio between the WiFi data link and the mobile data link is 3:7.
- the maximum data transmission rate of the LTE data link and the maximum data transmission rate of the WiFi data link can be corrected by the data increment calculation rate of the WiFi and LTE receiving (rx) interfaces.
- the data increment calculation rate on the wifi and lte receiving (rx) interface is calculated every 1s, and the maximum data transmission rate of the WiFi data link and the maximum data transmission rate of the mobile data link are corrected through the data increment calculation rate. .
- tmp_speed (rx_bytes-last_rx_bytes)/1;
- rx_bytes represents the amount of data received on the wifi and lte receiving interfaces in one second
- last_rx_bytes represents the amount of data received on the wifi and lte receiving interfaces in the last second
- tmp_speed represents the data increment calculation rate
- max_speed_wifi represents the WiFi data link Maximum data transmission rate
- max_speed_lte represents the maximum data transmission rate of the LTE data link.
- the corrected max_speed_wifi is the maximum value of max_speed_wifi and tmp_speed
- the corrected max_speed_lte is the maximum value of max_speed_lte and tmp_speed.
- the maximum data transmission rate of the LTE data link and the maximum data transmission rate of the WiFi data link may be corrected by counting round-trip time (rtt).
- the mobile terminal can calculate the delay on two interfaces (WiFi communication module interface and LTE communication module interface) based on the rtt of the tcp protocol itself, and a data link only calculates the rtt of the first request after the three-way handshake, such as http get, http post's rrt.
- the 3-way handshake refers to the three confirmation processes for TCP to establish a connection.
- the Transmission Control Protocol (tcp) uses the tcp_rtt_estimator function to count rtt and then calculate the timeout retransmission time (Retransmission Timeout, RTO), so the delay calculation is calculated in the tcp_rtt_estimator function.
- the mobile terminal separately determines the current first RTT of the WiFi data link and the current first RTT of the mobile data link, including:
- the mobile terminal determines to run a second RTT of the transmission control protocol TCP;
- the mobile terminal separately obtains the third RTT determined last time by the WiFi communication module and the cellular communication module;
- the mobile terminal determines the current first RTT of the WiFi communication module and the cellular communication module according to the determined second RTT and the acquired third RTT determined last time by the WiFi communication module and the cellular communication module.
- the following formula may be used to calculate the current first RTT of the WiFi data link and the current first RTT of the mobile data link:
- rtt_wifi_1 (rtt_wifi_3+rtt_2)/2
- rtt_lte_1 (rtt_lte_3+rtt_2)/2
- rtt_wifi_1 represents the current first RTT of the WiFi data link
- rtt_2 represents the second RTT running a transmission control protocol TCP
- rtt_wifi_3 represents the last determined third RTT of the WiFi data link
- rtt_lte_1 represents the LTE data link
- the current first RTT, rtt_2 represents the second RTT running a transmission control protocol TCP
- rtt_lte_3 represents the last determined third RTT of the LTE data link.
- the embodiment of the application considers the data transmission rate and the round-trip delay, which can improve the calculation accuracy of the link quality of the WiFi data link and the link quality of the mobile data link.
- the allocation ratio of the data packets to be transmitted on the two links can be determined according to the link quality of the WiFi data link and the link quality of the mobile data link, which can be reasonably allocated between the WiFi data link and the mobile data link.
- Data packets are transmitted on the mobile data link, making full use of the data packet receiving and sending capabilities of WiFi networks and mobile data networks to improve users' online experience.
- FIG. 2 is a schematic flowchart of another data packet distribution method disclosed in an embodiment of the present application.
- FIG. 2 is further optimized on the basis of FIG. 1.
- the data packet distribution method Including the following steps.
- the mobile terminal detects the link quality of the WiFi data link, and detects the link quality of the mobile data link.
- the mobile terminal determines a data packet allocation ratio between the WiFi data link and the mobile data link according to the link quality of the WiFi data link and the link quality of the mobile data link.
- the mobile terminal obtains the type of data packet that needs to be transmitted.
- the mobile terminal allocates the data packet that needs to be transmitted in the WiFi data link and the mobile data link for transmission according to the data packet allocation ratio.
- steps 201, 202, and 204 in the embodiment of the present application reference may be made to the detailed description of step 101 to step 103 shown in FIG. 1, which will not be repeated here.
- the mobile terminal transmits the data packet to be transmitted through the mobile data link.
- a data packet of a designated server type refers to a data packet that does not generate additional traffic charges.
- the types of data packets can include designated server types and non-designated server types.
- the designated server refers to a specific application server. For example, for some traffic-free applications, if the user opens the traffic-free application, the mobile terminal transmits data packets between the application servers corresponding to the traffic-free application. , When the mobile terminal sends data packets to the application server corresponding to the traffic-free application, or when the mobile terminal receives the data packets sent by the application server corresponding to the traffic-free application, the data packets are transmitted through the mobile data link and no extra Therefore, these data packets are transmitted through the mobile data link. For data packets that are not of the specified server type, the data packet allocation strategy shown in Figure 1 is processed.
- the mobile terminal can try Tencent-based applications (such as WeChat, QQ, Tencent News, Tencent Video, QQ Music, Glory of the King, PlayerUnknown's Battlegrounds, etc.) for free. All Tencent-based applications are No additional traffic charges will be generated.
- Tencent-based applications such as WeChat, QQ, Tencent News, Tencent Video, QQ Music, Glory of the King, PlayerUnknown's Battlegrounds, etc.
- the allocation ratio of the data packets to be transmitted on the two links can be determined according to the link quality of the WiFi data link and the link quality of the mobile data link, which can be reasonably allocated between the WiFi data link and the mobile data link.
- Data packets are transmitted on the mobile data link, making full use of the data packet receiving and sending capabilities of the WiFi network and the mobile data network.
- mobile data traffic can be used directly, avoiding the use of offloading strategies for traffic-free applications, and improving users' online experience.
- FIG. 3 is a schematic flowchart of another data packet distribution method disclosed in an embodiment of the present application.
- FIG. 3 is further optimized on the basis of FIG. 1 or FIG. 2.
- the data The packet distribution method includes the following steps.
- the mobile terminal detects the link quality of the WiFi data link, and detects the link quality of the mobile data link.
- the mobile terminal obtains the user type.
- the user type may be determined according to the data package purchased by the user and the user's data usage.
- User types can include flow-sensitive and non-flow-sensitive types. For traffic-sensitive users, they are more cautious about using traffic, and they are more concerned about whether the used traffic exceeds the upper limit of the purchased data package. For non-traffic-sensitive users, the use of traffic is more casual and does not care whether the used traffic exceeds The upper limit of the data package purchased.
- the traffic limit of the data package purchased by the user is lower than a certain threshold (for example, 1G), and the user's historical traffic usage does not exceed the traffic limit of the package, the user can be considered as a traffic-sensitive user. If the data package purchased by the user is an unlimited data package, the user can be considered as a non-traffic sensitive user.
- a certain threshold for example, 1G
- the mobile terminal determines the data packet between the WiFi data link and the mobile data link according to the link quality of the WiFi data link, the link quality of the mobile data link, and the user type. Allocation ratio.
- the previously calculated data packet allocation ratio between the WiFi data link and the mobile data link can be appropriately increased.
- it can be appropriately Reduce or maintain the previously calculated data packet distribution ratio between the WiFi data link and the mobile data link.
- the implementation of this application can readjust the data packet allocation ratio between the WiFi data link and the mobile data link according to the user type, which can save user traffic charges and improve the user's online experience.
- the mobile terminal determines the data packet allocation ratio between the WiFi data link and the mobile data link according to the link quality of the WiFi data link, the link quality of the mobile data link, and the user type, including:
- the mobile terminal determines the initial data packet allocation ratio between the WiFi data link and the mobile data link according to the link quality ratio of the link quality of the WiFi data link to the link quality of the mobile data link;
- the mobile terminal increases the initial data packet allocation ratio between the WiFi data link and the mobile data link to obtain the data packet allocation ratio between the WiFi data link and the mobile data link;
- the mobile terminal reduces the initial data packet allocation ratio between the WiFi data link and the mobile data link to obtain the data packet allocation ratio between the WiFi data link and the mobile data link.
- the implementation of this application can readjust the data packet distribution ratio between the WiFi data link and the mobile data link according to the user type. For flow-sensitive users, it can save user data charges, and for non-traffic-sensitive users, it can improve users' Internet access. Experience.
- the mobile terminal allocates the data packets to be transmitted in the WiFi data link and the mobile data link for transmission according to the data packet allocation ratio.
- steps 301, 303, and 304 in the embodiment of the present application reference may be made to the detailed description of step 101 to step 103 shown in FIG. 1, which will not be repeated here.
- the allocation ratio of the data packets to be transmitted on the two links can be determined according to the link quality of the WiFi data link and the link quality of the mobile data link, which can be reasonably allocated between the WiFi data link and the mobile data link.
- Data packets are transmitted on the mobile data link, making full use of the data packet receiving and sending capabilities of the WiFi network and the mobile data network.
- the data packet distribution ratio between the WiFi data link and the mobile data link can be readjusted according to the user type. For traffic-sensitive users, it can save user traffic charges, and for non-traffic-sensitive users, it can improve the user's Internet experience.
- the mobile terminal includes hardware structures and/or software modules corresponding to each function.
- the present invention can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the present invention.
- the embodiments of the present application may divide the mobile terminal into functional units according to the foregoing method examples.
- each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
- the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
- FIG. 4 is a schematic structural diagram of a data packet distribution device disclosed in an embodiment of the present application.
- the data packet distribution device 400 includes a detection unit 401, a determination unit 402, and a transmission unit 403, wherein:
- the detection unit 401 is used to detect the link quality of the WiFi data link and the link quality of the mobile data link;
- the determining unit 402 is configured to determine the data packet allocation ratio between the WiFi data link and the mobile data link according to the link quality of the WiFi data link and the link quality of the mobile data link;
- the transmission unit 403 is configured to distribute the data packets to be transmitted in the WiFi data link and the mobile data link for transmission according to the data packet allocation ratio.
- the data packet distribution apparatus 400 may further include a first obtaining unit 404.
- the first acquiring unit 404 is configured to acquire the type of data packet that needs to be transmitted;
- the transmission unit 403 is used when the type of the data packet to be transmitted does not belong to the specified server type, and the data packet to be transmitted is allocated to the WiFi data link and the mobile data link for transmission according to the data packet allocation ratio.
- the transmission unit 403 is also used to transmit the data packet to be transmitted through the mobile data link when the type of the data packet to be transmitted belongs to the specified server type.
- the WiFi data link includes a first frequency band WiFi data link and a second frequency band WiFi data link
- the determining unit 402 determines the WiFi data link according to the link quality of the WiFi data link and the link quality of the mobile data link.
- the data packet allocation ratio between the channel and the mobile data link is specifically: according to the link quality of the WiFi data link in the first frequency band, the link quality of the WiFi data link in the second frequency band, and the link quality of the mobile data link Determine the data packet allocation ratio between the first frequency band WiFi data link, the second frequency band WiFi data link and the mobile data link;
- the transmission unit 403 distributes the data packets that need to be transmitted in the WiFi data link and the mobile data link according to the data packet allocation ratio, specifically: the data packets that need to be transmitted are allocated to the first frequency band WiFi data link according to the data packet allocation ratio It is transmitted in the second frequency band WiFi data link and mobile data link.
- the data packet distribution apparatus 400 may further include a second acquiring unit 405.
- the second acquiring unit 405 is configured to acquire the user type
- the determining unit 402 determines the data packet allocation ratio between the WiFi data link and the mobile data link according to the link quality of the WiFi data link and the link quality of the mobile data link, specifically: according to the link of the WiFi data link Quality and the link quality of the mobile data link and the user type determine the data packet allocation ratio between the WiFi data link and the mobile data link.
- the determining unit 402 determines the data packet allocation ratio between the WiFi data link and the mobile data link according to the link quality of the WiFi data link, the link quality of the mobile data link, and the user type, specifically:
- the detection unit 401 detects the link quality of the WiFi data link, specifically: measuring the data transmission rate, round trip delay, and bit error rate of the WiFi data link, based on the round trip delay and data transmission of the WiFi data link Rate and bit error rate determine the link quality of the WiFi data link;
- the detection unit 401 detects the link quality of the mobile data link, specifically: measuring the data transmission rate, round trip delay, and bit error rate of the mobile data link, based on the round trip delay, data transmission rate, and error rate of the mobile data link The rate determines the link quality of the mobile data link.
- Implementing the data packet distribution device shown in Figure 4 can determine the distribution ratio of the data packets that need to be transmitted on the two links according to the link quality of the WiFi data link and the link quality of the mobile data link. Data packets are transmitted on the WiFi data link and mobile data link, making full use of the data packet sending and receiving capabilities of the WiFi network and mobile data network to improve the user's online experience.
- FIG. 5 is a schematic structural diagram of a mobile terminal disclosed in an embodiment of the present application.
- the mobile terminal 500 includes a processor 501 and a memory 502.
- the mobile terminal 500 may also include a bus 503.
- the processor 501 and the memory 502 may be connected to each other through the bus 503.
- the bus 503 may be a peripheral component. Connect the standard (Peripheral Component Interconnect, referred to as PCI) bus or extended industry standard architecture (Extended Industry Standard Architecture, referred to as EISA) bus, etc.
- PCI Peripheral Component Interconnect
- EISA Extended Industry Standard Architecture
- the bus 503 can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used in FIG.
- the mobile terminal 500 may also include an input and output device 504, and the input and output device 504 may include a display screen, such as a liquid crystal display screen.
- the memory 502 is used to store one or more programs containing instructions; the processor 501 is used to call the instructions stored in the memory 502 to execute some or all of the method steps in FIGS. 1 to 3.
- Implementing the mobile terminal shown in Figure 5 can determine the distribution ratio of the data packets that need to be transmitted on the two links according to the link quality of the WiFi data link and the link quality of the mobile data link, which can reasonably allocate the data on the WiFi Data packets are transmitted on the link and mobile data link, making full use of the data packet receiving and sending capabilities of the WiFi network and mobile data network to improve the user's online experience.
- the embodiment of the present application also provides another mobile terminal. As shown in FIG. 6, for ease of description, only the parts related to the embodiment of the present application are shown. For specific technical details that are not disclosed, please refer to the method of the embodiment of the present application. section.
- the mobile terminal can be any terminal device including a mobile phone, a tablet computer, a PDA (Personal Digital Assistant), a POS (Point of Sales, sales terminal), a vehicle-mounted computer, etc. Take the mobile terminal as a mobile phone as an example:
- FIG. 6 shows a block diagram of a part of the structure of a mobile phone related to a mobile terminal provided in an embodiment of the present application.
- a mobile phone includes: a radio frequency (RF) circuit 910, a memory 920, an input unit 930, a display unit 940, a sensor 950, an audio circuit 960, a wireless fidelity (Wireless Fidelity, WiFi) module 970, and a processor 980 , And power supply 990 and other components.
- RF radio frequency
- the RF circuit 910 can be used for receiving and transmitting information.
- the RF circuit 910 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
- the RF circuit 910 can also communicate with the network and other devices through wireless communication.
- the above wireless communication can use any communication standard or protocol, including but not limited to Global System of Mobile Communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division) Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), E-mail, Short Messaging Service (SMS), etc.
- GSM Global System of Mobile Communication
- GPRS General Packet Radio Service
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- LTE Long Term Evolution
- E-mail Short Messaging Service
- the memory 920 can be used to store software programs and modules.
- the processor 980 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 920.
- the memory 920 may mainly include a program storage area and a data storage area.
- the program storage area may store an operating system, an application program required by at least one function, and the like; the data storage area may store data created according to the use of the mobile phone.
- the memory 920 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
- the input unit 930 may be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the mobile phone.
- the input unit 930 may include a fingerprint recognition module 931 and other input devices 932.
- the fingerprint identification module 931 can collect the fingerprint data of the user on it.
- the input unit 930 may also include other input devices 932.
- other input devices 932 may include, but are not limited to, one or more of touch screen, physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, joystick, etc.
- the display unit 940 may be used to display information input by the user or information provided to the user and various menus of the mobile phone.
- the display unit 940 may include a display screen 941.
- the display screen 941 may be configured in the form of a liquid crystal display (LCD), an organic or inorganic light-emitting diode (OLED), etc.
- the mobile phone may also include at least one sensor 950, such as a light sensor, a motion sensor, a pressure sensor, a temperature sensor, and other sensors.
- the light sensor may include an ambient light sensor (also referred to as a light sensor) and a proximity sensor.
- the ambient light sensor can adjust the backlight brightness of the mobile phone according to the brightness of the ambient light, thereby adjusting the brightness of the display screen 941, and the proximity sensor can When the phone is moved to the ear, turn off the display 941 and/or the backlight.
- the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary, and can be used to identify mobile phone posture applications (such as horizontal and vertical screen switching, magnetic force Gauge posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; as for other sensors such as gyroscopes, barometers, hygrometers, thermometers, infrared sensors, etc., which can be configured in mobile phones, I will not repeat them here.
- mobile phone posture applications such as horizontal and vertical screen switching, magnetic force Gauge posture calibration
- vibration recognition related functions such as pedometer, percussion
- other sensors such as gyroscopes, barometers, hygrometers, thermometers, infrared sensors, etc., which can be configured in mobile phones, I will not repeat them here.
- the audio circuit 960, the speaker 961, and the microphone 962 can provide an audio interface between the user and the mobile phone.
- the audio circuit 960 can transmit the electrical signal converted from the received audio data to the speaker 961, which is converted into a sound signal for playback by the speaker 961; on the other hand, the microphone 962 converts the collected sound signal into an electrical signal, and the audio circuit 960 After being received, it is converted into audio data, and then processed by the audio data playback processor 980, and sent to, for example, another mobile phone via the RF circuit 910, or the audio data is played to the memory 920 for further processing.
- WiFi is a short-distance wireless transmission technology.
- the mobile phone can help users send and receive e-mails, browse web pages, and access streaming media through the WiFi module 970. It provides users with wireless broadband Internet access.
- FIG. 6 shows the WiFi module 970, it is understandable that it is not a necessary component of the mobile phone, and can be omitted as needed without changing the essence of the invention.
- the processor 980 is the control center of the mobile phone. It uses various interfaces and lines to connect various parts of the entire mobile phone. It executes by running or executing software programs and/or modules stored in the memory 920, and calling data stored in the memory 920. Various functions and processing data of the mobile phone can be used to monitor the mobile phone as a whole.
- the processor 980 may include one or more processing units; preferably, the processor 980 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc. , The modem processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 980.
- the mobile phone also includes a power source 990 (such as a battery) for supplying power to various components.
- a power source 990 such as a battery
- the power source can be logically connected to the processor 980 through a power management system, so that functions such as charging, discharging, and power management can be managed through the power management system.
- the mobile phone may also include a camera 9100, which is used to capture images and videos, and transmit the captured images and videos to the processor 980 for processing.
- a camera 9100 which is used to capture images and videos, and transmit the captured images and videos to the processor 980 for processing.
- the mobile phone can also be a Bluetooth module, etc., which will not be repeated here.
- the method flow of each step can be implemented based on the structure of the mobile phone.
- An embodiment of the present application also provides a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, and the computer program enables a computer to execute any data packet distribution method described in the above method embodiments. Part or all of the steps.
- the embodiments of the present application also provide a computer program product.
- the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute any of the methods described in the foregoing method embodiments. Part or all of the steps of a data packet distribution method.
- the disclosed device may be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
- the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable memory.
- the technical solution of the present invention essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory, A number of instructions are included to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present invention.
- the aforementioned memory includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other various media that can store program codes.
- the program can be stored in a computer-readable memory, and the memory can include: flash disk , Read-only memory (English: Read-Only Memory, abbreviation: ROM), random access device (English: Random Access Memory, abbreviation: RAM), magnetic disk or optical disc, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Databases & Information Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例公开了一种数据包分配方法、装置、移动终端及存储介质,该方法包括:检测WiFi数据链路的链路质量,检测移动数据链路的链路质量;根据WiFi数据链路的链路质量与移动数据链路的链路质量确定WiFi数据链路和移动数据链路之间的数据包分配比例;将需要传输的数据包按照数据包分配比例分配在WiFi数据链路和移动数据链路中传输。本申请实施例充分利用WiFi网络和移动数据网络的数据包收发能力。
Description
本申请涉及通信技术领域,具体涉及一种数据包分配方法、装置、移动终端及存储介质。
目前,移动终端在上网时,可以同时打开WiFi网络的开关和移动数据网络的开关。此时,移动终端会优先通过WiFi网络进行上网。如果WiFi网络的网速较慢,用户可以手动关闭WiFi网络的开关,仅使用移动数据网络进行上网。移动终端虽然同时打开WiFi网络的开关和移动数据网络的开关,但同一时间只能使用WiFi网络和移动数据网络中的一个进行上网,无法充分利用WiFi网络和移动数据网络。
发明内容
本申请实施例提供了一种数据包分配方法、装置、移动终端及存储介质,充分利用WiFi网络和移动数据网络的数据包收发能力。
第一方面,本申请实施例提供一种数据包分配方法,包括:
检测WiFi数据链路的链路质量,检测移动数据链路的链路质量;
根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述WiFi数据链路和所述移动数据链路之间的数据包分配比例;
将需要传输的数据包按照所述数据包分配比例分配在所述WiFi数据链路和所述移动数据链路中传输。
第二方面,本申请实施例提供了一种数据包分配装置,包括:
检测单元,用于检测WiFi数据链路的链路质量,检测移动数据链路的链路质量;
确定单元,用于根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述WiFi数据链路和所述移动数据链路之间的数据包分配比例;
传输单元,用于将需要传输的数据包按照所述数据包分配比例分配在所述WiFi数据链路和所述移动数据链路中传输。
第三方面,本申请实施例提供一种移动终端,包括处理器、存储器,所述存储器用于存储一个或多个程序,所述一个或多个程序被配置成由所述处理器执行,上述程序包括用于执行本申请实施例第一方面中的步骤的指令。
第四方面,本申请实施例提供了一种计算机可读存储介质,其中,上述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,上述计算机程序使得计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。
第五方面,本申请实施例提供了一种计算机程序产品,其中,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
可以看出,本申请实施例中所描述的数据包分配方法,移动终端检测WiFi数据链路的链路质量,检测移动数据链路的链路质量;根据WiFi数据链路的链路质量与移动数据链路的链路质量确定WiFi数据链路和移动数据链路之间的数据包分配比例;将需要传输的数据包按照数据包分配比例分配在WiFi数据链路和移动数据链路中传输。本申请实施例可以根据WiFi数据链路的链路质量和移动数据链路的链路质量确定需要传输的数据包在两条链路上的分配比例,能够合理分配在WiFi数据链路和移动数据链路上传输数据包,充分利用 WiFi网络和移动数据网络的数据包收发能力,提高用户上网体验。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例公开的一种数据包分配方法的流程示意图;
图2是本申请实施例公开的另一种数据包分配方法的流程示意图;
图3是本申请实施例公开的另一种数据包分配方法的流程示意图;
图4是本申请实施例公开的一种数据包分配装置的结构示意图;
图5是本申请实施例公开的一种移动终端的结构示意图;
图6是本申请实施例公开的又一种移动终端的结构示意图。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例所涉及到的移动终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为移动终端。
下面对本申请实施例进行详细介绍。
请参阅图1,图1是本申请实施例公开的一种数据包分配方法的流程示意图,如图1所示,该数据包分配方法包括如下步骤。
101,移动终端检测WiFi数据链路的链路质量,检测移动数据链路的链路质量。
本申请实施例中,无线保真(WIreless-Fidelity,WiFi),也可以称为wifi、Wi-Fi,是一种无线连接方式。移动终端可以包括WiFi模块(也可以称为WiFi通信模块),以使移动终端具有WiFi功能。移动终端可以搜索WiFi热点,并通过WiFi热点连接无线网络。WiFi数据链路是移动终端和无线网络之间建立的通过WiFi通信模块接口连接的数据连接通路。当移动终端通过WiFi热点上网时,可以不通过移动、联通、电信等运营商网络上网,可以节省流量费。移动数据链路是移动终端和无线网络之间建立的通过蜂窝通信模块接口连接的数据连接通路。蜂窝通信模块接口可以是3G/4G/5G通信模块接口。WiFi数据链路中传输的数据包需要经过WiFi热点,移动数据链路中传输的数据包需要经过电信运营商的基 站。
WiFi数据链路的链路质量可以通过WiFi数据链路的上下行数据传输速率、往返时延、误码率等确定。其中,上下行数据传输速率越高、往返时延越小、误码率越低、该WiFi数据链路的链路质量越高;上下行数据传输速率越低、往返时延越大、误码率越高、该WiFi数据链路的链路质量越低。
WiFi数据链路可以包括WiFi上行数据链路和WiFi下行数据链路。WiFi上行数据链路的质量可以通过WiFi数据链路的上行数据传输速率、往返时延、误码率等确定。WiFi下行数据链路的质量可以通过WiFi数据链路的下行数据传输速率、往返时延、误码率等确定。
移动数据链路的链路质量可以通过移动数据链路的上下行数据传输速率、往返时延、误码率等确定。其中,上下行数据传输速率越高、往返时延越小、误码率越低、该移动数据链路的链路质量越高;上下行数据传输速率越低、往返时延越大、误码率越高、该移动数据链路的链路质量越低。
移动数据链路可以包括移动上行数据链路和移动下行数据链路。移动上行数据链路的质量可以通过移动数据链路的上行数据传输速率、往返时延、误码率等确定。移动下行数据链路的质量可以通过移动数据链路的下行数据传输速率、往返时延、误码率等确定。
误码率,是衡量数据在规定时间内数据传输精确性的指标,误码率=传输中的误码/所传输的总码数*100%。
其中,在执行步骤101之前,移动终端可以启动智能链路聚合功能。移动终端还可以同时打开WiFi连接和移动数据连接。
本申请实施例中,链路聚合,是设备可以同时使用两个或者两个以上的网口同时进行上网,比如,在手机上通过链路聚合,可以同时使用WiFi和数据网络(数据网络,也可以称为移动数据网络)来进行网络访问。智能链路聚合(Smart Link Aggregation,SLA)功能,指的是把用户的上网请求智能的分配到不同的可上网接口(蜂窝通信模块接口、WiFi通信模块接口)上。链路聚合至少需要两个或两个以上的可用网络,所以SLA的前提条件就是要使WiFi和数据网络共存。
移动终端启动智能链路聚合功能时,移动终端可以向网络端发送一个网络请求(network request)来使能数据网络,可以使得移动终端在同时开启WiFi和数据网络时,可以同时使用WiFi网络和移动数据网络。
可选的,移动终端检测WiFi数据链路的链路质量,具体可以包括如下步骤:
移动终端测量WiFi数据链路的数据传输速率、往返时延、误码率,基于WiFi数据链路的往返时延、数据传输速率、误码率确定WiFi数据链路的链路质量;
移动终端检测移动数据链路的链路质量,具体可以包括如下步骤:
移动终端测量移动数据链路的数据传输速率、往返时延、误码率,基于移动数据链路的往返时延、数据传输速率、误码率确定移动数据链路的链路质量。
102,移动终端根据WiFi数据链路的链路质量与移动数据链路的链路质量确定WiFi数据链路和移动数据链路之间的数据包分配比例。
本申请实施例中,如果WiFi数据链路的链路质量要优于移动数据链路的链路质量,则确定WiFi数据链路和移动数据链路之间的数据包分配比例大于1;如果移动数据链路的链路质量要优于WiFi数据链路的链路质量,则确定WiFi数据链路和移动数据链路之间的数据包分配比例小于1。
WiFi数据链路的链路质量可以基于WiFi数据链路的上下行数据传输速率、往返时延、误码率来进行打分,得到WiFi数据链路的质量分。类似的,也可以得到移动数据链路的质量分。移动终端可以将WiFi数据链路的质量分与移动数据链路的质量分的比例作为WiFi数据链路和移动数据链路之间的数据包分配比例。
移动终端也可以根据WiFi数据链路的质量分确定WiFi数据链路的质量等级,根据移动数据链路的质量分确定移动数据链路的质量等级,依据WiFi数据链路的质量等级与移动数据链路的质量等级来确定WiFi数据链路和移动数据链路之间的数据包分配比例。例如,可以设置WiFi数据链路、移动数据链路的质量等级为I级、II级、III级、IV级、V级这五个等级,分别代表链路质量很差、差、中等、良、优。I级、II级、III级、IV级、V级这五个等级分别对应质量分为:0~30、30~60、60~80、80~90、90~100。可以根据WiFi数据链路的质量等级与移动数据链路的质量等级之比来确定WiFi数据链路和移动数据链路之间的数据包分配比例。举例来说,如果WiFi数据链路的链路质量为I级,移动数据链路的质量等级为I级,则WiFi数据链路和移动数据链路之间的数据包分配比例为1:1;如果WiFi数据链路的链路质量为I级,移动数据链路的质量等级为2级,则WiFi数据链路和移动数据链路之间的数据包分配比例为1:2;如果WiFi数据链路的链路质量为I级,移动数据链路的质量等级为3级,则WiFi数据链路和移动数据链路之间的数据包分配比例为1:3;如果WiFi数据链路的链路质量为I级,移动数据链路的质量等级为4级,则WiFi数据链路和移动数据链路之间的数据包分配比例为1:4;如果WiFi数据链路的链路质量为I级,移动数据链路的质量等级为5级,则WiFi数据链路和移动数据链路之间的数据包分配比例为1:5。
103,移动终端将需要传输的数据包按照数据包分配比例分配在WiFi数据链路和移动数据链路中传输。
本申请实施例中,移动终端可以发送上行数据包,也可以接收下行数据包。需要传输的数据包可以是上行数据包,也可以是下行数据包。对于上行数据包,移动终端可以将上行数据包分配在WiFi上行数据链路和移动上行数据链路中传输;对于下行数据包,移动终端可以将下行数据包分配在WiFi下行数据链路和移动下行数据链路中传输。
需要传输的数据包可以是移动终端中不同的业务发起的,比如,需要传输的数据包可以是视频类业务、游戏类业务、语音类业务、即时通讯类业务中的任意一种业务发起的。
移动终端将需要传输的数据包按照数据包分配比例分配在WiFi数据链路和移动数据链路中传输之前,还可以包括如下步骤:
移动终端将需要传输的数据包进行WiFi数据链路标记或移动数据链路标记,得到每个数据包的标记值,并建立标记值路由表,更新至路由节点中。
移动终端将需要传输的数据包按照数据包分配比例分配在WiFi数据链路和移动数据链路中传输,具体可以包括如下步骤:
将需要传输的数据包在传输的过程中,移动终端获取该需要传输的数据包的标记值,依据各个路由节点的路由表中的标记值路由表确定将该需要传输的数据包对应的数据链路,将该需要传输的数据包分配在对应的数据链路中传输。
可选的,WiFi数据链路包括第一频段WiFi数据链路和第二频段WiFi数据链路,步骤102具体可以包括如下步骤:
移动终端根据第一频段WiFi数据链路的链路质量、第二频段WiFi数据链路的链路质量、移动数据链路的链路质量确定第一频段WiFi数据链路、第二频段WiFi数据链路和移动数据链路之间的数据包分配比例;
步骤102具体可以包括如下步骤:
移动终端将需要传输的数据包按照数据包分配比例分配在第一频段WiFi数据链路、第二频段WiFi数据链路和移动数据链路中传输。
本申请实施例中,第一频段WiFi数据链路可以为2.4G频段WiFi数据链路,第二频段WiFi数据链路可以为5G频段WiFi数据链路。移动终端可以包括第一WiFi通信模块和第二WiFi通信模块,可以支持两个WiFi频段的信号的同时收发。移动终端可以将需要传输 的数据包按照分配比例分配在三条数据链路(第一频段WiFi数据链路、第二频段WiFi数据链路和移动数据链路)中传输。可以进一步的同时利用两个频段的WiFi网络和移动数据网络的数据包收发能力,提高用户上网体验。
可选的,步骤101中,移动终端检测WiFi数据链路的链路质量,检测移动数据链路的链路质量,具体可以包括如下步骤:
移动终端测量WiFi数据链路的最大数据传输速率,测量移动数据链路的最大数据传输速率,基于WiFi数据链路的最大数据传输速率、移动数据链路的最大数据传输速率确定WiFi数据链路的链路质量以及移动数据链路的链路质量。
本申请实施例中,移动数据网络以长期演进(Long Term Evolution,LTE)网络为例进行说明。可以按照如下公式计算WiFi数据链路的链路质量以及LTE数据链路的链路质量:
weigh_wifi=max_speed_wifi/(max_speed_wifi+max_speed_lte);
weigh_lte=1-weigh_wifi;
其中,weigh_wifi表示WiFi数据链路的链路质量,weigh_lte表示LTE数据链路的链路质量,max_speed_wifi表示WiFi数据链路的最大数据传输速率,max_speed_lte表示LTE数据链路的最大数据传输速率。WiFi数据链路的链路质量与LTE数据链路的链路质量之和等于1。
移动终端可以根据WiFi数据链路的链路质量与移动数据链路的链路质量之比确定WiFi数据链路和移动数据链路之间的数据包分配比例。
比如,WiFi数据链路的链路质量为0.3,LTE数据链路的链路质量为0.7,则确定WiFi数据链路和移动数据链路之间的数据包分配比例为3:7。
可选的,LTE数据链路的最大数据传输速率以及WiFi数据链路的最大数据传输速率可以通过wifi和lte接收(rx)接口的数据增量计算速率来进行修正。
比如,每隔1s统计wifi和lte接收(rx)接口上的数据增量计算速率,通过数据增量计算速率对WiFi数据链路的最大数据传输速率和移动数据链路的最大数据传输速率进行修正。
tmp_speed=(rx_bytes-last_rx_bytes)/1;
修正后的max_speed_wifi=max(max_speed_wifi,tmp_speed);
修正后的max_speed_lte=max(max_speed_lte,tmp_speed);
其中,rx_bytes表示一秒内wifi和lte接收接口上的数据接收量,last_rx_bytes表示上一秒内wifi和lte接收接口上的数据接收量,tmp_speed表示数据增量计算速率,max_speed_wifi表示WiFi数据链路的最大数据传输速率,max_speed_lte表示LTE数据链路的最大数据传输速率。修正后的max_speed_wifi为max_speed_wifi与tmp_speed中的最大值,修正后的max_speed_lte为max_speed_lte与tmp_speed中的最大值。
可选的,LTE数据链路的最大数据传输速率以及WiFi数据链路的最大数据传输速率可以通过统计往返时延(Round-Trip Time,rtt)来进行修正。
比如,移动终端可以基于tcp协议本身的rtt,来计算两个接口(WiFi通信模块接口和LTE通信模块接口)上的延时,一条数据链接只计算三次握手之后的第一个请求的rtt,比如http get,http post的rrt。3次握手指的是TCP建立连接的3个确认过程。传输控制协议(Transmission Control Protocol,tcp)通过tcp_rtt_estimator函数来统计rtt进而计算超时重传时间(Retransmission Timeout,RTO),所以延时计算在tcp_rtt_estimator函数中计算。
移动终端分别确定WiFi数据链路的当前的第一RTT、移动数据链路的当前的第一RTT,包括:
移动终端确定运行一个传输控制协议TCP的第二RTT;
移动终端分别获取WiFi通信模块和蜂窝通信模块上一次确定的第三RTT;
移动终端根据确定的所述第二RTT和获取的WiFi通信模块和蜂窝通信模块上一次确定的第三RTT确定所述WiFi通信模块和蜂窝通信模块当前的第一RTT。
具体的,可以采用如下公式计算WiFi数据链路的当前的第一RTT、移动数据链路的当前的第一RTT:
rtt_wifi_1=(rtt_wifi_3+rtt_2)/2
rtt_lte_1=(rtt_lte_3+rtt_2)/2
其中,rtt_wifi_1表示WiFi数据链路的当前的第一RTT,rtt_2表示运行一个传输控制协议TCP的第二RTT,rtt_wifi_3表示WiFi数据链路的上一次确定的第三RTT;rtt_lte_1表示LTE数据链路的当前的第一RTT,rtt_2表示运行一个传输控制协议TCP的第二RTT,rtt_lte_3表示LTE数据链路的上一次确定的第三RTT。
本申请实施例考虑了数据传输速率和往返时延,可以提高WiFi数据链路的链路质量与移动数据链路的链路质量的计算准确度。
本申请实施例中,可以根据WiFi数据链路的链路质量和移动数据链路的链路质量确定需要传输的数据包在两条链路上的分配比例,能够合理分配在WiFi数据链路和移动数据链路上传输数据包,充分利用WiFi网络和移动数据网络的数据包收发能力,提高用户上网体验。
请参阅图2,图2是本申请实施例公开的另一种数据包分配方法的流程示意图,图2是在图1的基础上进一步优化得到的,如图2所示,该数据包分配方法包括如下步骤。
201,移动终端检测WiFi数据链路的链路质量,检测移动数据链路的链路质量。
202,移动终端根据WiFi数据链路的链路质量与移动数据链路的链路质量确定WiFi数据链路和移动数据链路之间的数据包分配比例。
203,移动终端获取需要传输的数据包的类型。
204,若需要传输的数据包的类型不属于指定服务器类型,移动终端将需要传输的数据包按照数据包分配比例分配在WiFi数据链路和移动数据链路中传输。
本申请实施例中的步骤201、202和204的具体实施可以参见图1所示的步骤101至步骤103的详细描述,此处不再赘述。
205,若需要传输的数据包的类型属于指定服务器类型,移动终端将需要传输的数据包通过移动数据链路传输。
本申请实施例中,指定服务器类型的数据包,指的是不会产生额外流量资费的数据包。数据包的类型可以包括指定服务器类型和非指定服务器类型。指定服务器指的是特定的应用服务器,比如,对于某些免流量的应用而言,如果用户开启该免流量应用时,则移动终端在该免流量应用对应的应用服务器之间传输数据包,因此,移动终端向该免流量应用对应的应用服务器发送的数据包,或者移动终端接收该免流量应用对应的应用服务器发送的数据包时,由于这些数据包通过移动数据链路传输并不会产生额外的流量资费,因此,这些数据包都通过移动数据链路传输。对于不是指定服务器类型的数据包,则按照图1所示的数据包分配策略进行处理。
举例来说,如果用户购买了腾讯网卡,则移动终端可以免费试用腾讯系应用(比如,微信、QQ、腾讯新闻、腾讯视频、QQ音乐、王者荣耀、绝地求生等),所有的腾讯系应用都不会产生额外的流量资费。
本申请实施例中,可以根据WiFi数据链路的链路质量和移动数据链路的链路质量确定需要传输的数据包在两条链路上的分配比例,能够合理分配在WiFi数据链路和移动数据链路上传输数据包,充分利用WiFi网络和移动数据网络的数据包收发能力。对于指定服务器类型的数据包,由于不会产生额外的资费,则可以直接使用移动数据流量,避免对免流量的应用使用分流策略,提高用户上网体验。
请参阅图3,图3是本申请实施例公开的另一种数据包分配方法的流程示意图,图3是在图1或图2的基础上进一步优化得到的,如图3所示,该数据包分配方法包括如下步骤。
301,移动终端检测WiFi数据链路的链路质量,检测移动数据链路的链路质量。
302,移动终端获取用户类型。
本申请实施例中,用户类型可以包括根据用户购买的流量套餐,用户的流量使用情况来确定。用户类型可以包括流量敏感性和非流量敏感型。对于流量敏感性用户而言,使用流量比较小心翼翼,比较在意已使用的流量是否超过购买的流量套餐的上限,对于非流量敏感型用户而言,使用流量比较随意,不在意已使用的流量是否超过购买的流量套餐的上限。
如果用户购买的流量套餐的流量限额低于一定阈值(比如,1G),并且用户历史流量使用情况中没有出现已使用流量超过套餐的流量限额的情况,则可以认为用户为流量敏感型用户。如果用户购买的流量套餐为不限流量套餐,则可以认为用户为非流量敏感型用户。
303,移动终端根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量、所述用户类型确定所述WiFi数据链路和所述移动数据链路之间的数据包分配比例。
本申请实施例中,对于流量敏感型用户而言,可以适当的调高之前计算的WiFi数据链路和移动数据链路之间的数据包分配比例,对于非流量敏感型用户而言,可以适当的降低或者保持之前计算的WiFi数据链路和移动数据链路之间的数据包分配比例。本申请实施可以根据用户类型来重新调整WiFi数据链路和移动数据链路之间的数据包分配比例,可以节省用户流量资费,提高用户上网体验。
可选的,移动终端根据WiFi数据链路的链路质量与移动数据链路的链路质量、用户类型确定WiFi数据链路和移动数据链路之间的数据包分配比例,包括:
移动终端根据WiFi数据链路的链路质量与移动数据链路的链路质量的链路质量比值确定WiFi数据链路和移动数据链路之间的初始数据包分配比例;
若用户类型为流量敏感型,移动终端提高WiFi数据链路和移动数据链路之间的初始数据包分配比例,得到WiFi数据链路和移动数据链路之间的数据包分配比例;
若用户类型为非流量敏感型,移动终端降低WiFi数据链路和移动数据链路之间的初始数据包分配比例,得到WiFi数据链路和移动数据链路之间的数据包分配比例。
本申请实施可以根据用户类型来重新调整WiFi数据链路和移动数据链路之间的数据包分配比例,对于流量敏感型用户,可以节省用户流量资费,对于非流量敏感型用户,可以提高用户上网体验。
304,移动终端将需要传输的数据包按照数据包分配比例分配在WiFi数据链路和移动数据链路中传输。
本申请实施例中的步骤301、303和304的具体实施可以参见图1所示的步骤101至步骤103的详细描述,此处不再赘述。
本申请实施例中,可以根据WiFi数据链路的链路质量和移动数据链路的链路质量确定需要传输的数据包在两条链路上的分配比例,能够合理分配在WiFi数据链路和移动数据链路上传输数据包,充分利用WiFi网络和移动数据网络的数据包收发能力。可以根据用户类型来重新调整WiFi数据链路和移动数据链路之间的数据包分配比例,对于流量敏感型用户,可以节省用户流量资费,对于非流量敏感型用户,可以提高用户上网体验。
上述主要从方法侧执行过程的角度对本申请实施例的方案进行了介绍。可以理解的是,移动终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是 计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本申请实施例可以根据上述方法示例对移动终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
请参阅图4,图4是本申请实施例公开的一种数据包分配装置的结构示意图。如图4所示,该数据包分配装置400包括检测单元401、确定单元402以及传输单元403,其中:
检测单元401,用于检测WiFi数据链路的链路质量,检测移动数据链路的链路质量;
确定单元402,用于根据WiFi数据链路的链路质量与移动数据链路的链路质量确定WiFi数据链路和移动数据链路之间的数据包分配比例;
传输单元403,用于将需要传输的数据包按照数据包分配比例分配在WiFi数据链路和移动数据链路中传输。
可选的,该数据包分配装置400还可以包括第一获取单元404。
第一获取单元404,用于获取需要传输的数据包的类型;
传输单元403,用在需要传输的数据包的类型不属于指定服务器类型的情况下,将需要传输的数据包按照数据包分配比例分配在WiFi数据链路和移动数据链路中传输。
传输单元403,还用于在需要传输的数据包的类型属于指定服务器类型的情况下,将需要传输的数据包通过移动数据链路传输。
可选的,WiFi数据链路包括第一频段WiFi数据链路和第二频段WiFi数据链路,确定单元402根据WiFi数据链路的链路质量与移动数据链路的链路质量确定WiFi数据链路和移动数据链路之间的数据包分配比例,具体为:根据第一频段WiFi数据链路的链路质量、第二频段WiFi数据链路的链路质量、移动数据链路的链路质量确定第一频段WiFi数据链路、第二频段WiFi数据链路和移动数据链路之间的数据包分配比例;
传输单元403将需要传输的数据包按照数据包分配比例分配在WiFi数据链路和移动数据链路中传输,具体为:将需要传输的数据包按照数据包分配比例分配在第一频段WiFi数据链路、第二频段WiFi数据链路和移动数据链路中传输。
可选的,该数据包分配装置400还可以包括第二获取单元405。
第二获取单元405,用于获取用户类型;
确定单元402根据WiFi数据链路的链路质量与移动数据链路的链路质量确定WiFi数据链路和移动数据链路之间的数据包分配比例,具体为:根据WiFi数据链路的链路质量与移动数据链路的链路质量、用户类型确定WiFi数据链路和移动数据链路之间的数据包分配比例。
可选的,确定单元402根据WiFi数据链路的链路质量与移动数据链路的链路质量、用户类型确定WiFi数据链路和移动数据链路之间的数据包分配比例,具体为:
根据WiFi数据链路的链路质量与移动数据链路的链路质量的链路质量比值确定WiFi数据链路和移动数据链路之间的初始数据包分配比例;
若用户类型为流量敏感型,提高WiFi数据链路和移动数据链路之间的初始数据包分配比例,得到WiFi数据链路和移动数据链路之间的数据包分配比例;
若用户类型为非流量敏感型,降低WiFi数据链路和移动数据链路之间的初始数据包分配比例,得到WiFi数据链路和移动数据链路之间的数据包分配比例。
可选的,检测单元401检测WiFi数据链路的链路质量,具体为:测量WiFi数据链路 的数据传输速率、往返时延、误码率,基于WiFi数据链路的往返时延、数据传输速率、误码率确定WiFi数据链路的链路质量;
检测单元401检测移动数据链路的链路质量,具体为:测量移动数据链路的数据传输速率、往返时延、误码率,基于移动数据链路的往返时延、数据传输速率、误码率确定移动数据链路的链路质量。
实施图4所示的数据包分配装置,可以根据WiFi数据链路的链路质量和移动数据链路的链路质量确定需要传输的数据包在两条链路上的分配比例,能够合理分配在WiFi数据链路和移动数据链路上传输数据包,充分利用WiFi网络和移动数据网络的数据包收发能力,提高用户上网体验。
请参阅图5,图5是本申请实施例公开的一种移动终端的结构示意图。如图5所示,该移动终端500包括处理器501和存储器502,其中,移动终端500还可以包括总线503,处理器501和存储器502可以通过总线503相互连接,总线503可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。总线503可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,移动终端500还可以包括输入输出设备504,输入输出设备504可以包括显示屏,例如液晶显示屏。存储器502用于存储包含指令的一个或多个程序;处理器501用于调用存储在存储器502中的指令执行上述图1至图3中的部分或全部方法步骤。
实施图5所示的移动终端,可以根据WiFi数据链路的链路质量和移动数据链路的链路质量确定需要传输的数据包在两条链路上的分配比例,能够合理分配在WiFi数据链路和移动数据链路上传输数据包,充分利用WiFi网络和移动数据网络的数据包收发能力,提高用户上网体验。
本申请实施例还提供了另一种移动终端,如图6所示,为了便于说明,仅示出了与本申请实施例相关的部分,具体技术细节未揭示的,请参照本申请实施例方法部分。该移动终端可以为包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑等任意终端设备,以移动终端为手机为例:
图6示出的是与本申请实施例提供的移动终端相关的手机的部分结构的框图。参考图6,手机包括:射频(Radio Frequency,RF)电路910、存储器920、输入单元930、显示单元940、传感器950、音频电路960、无线保真(Wireless Fidelity,WiFi)模块970、处理器980、以及电源990等部件。本领域技术人员可以理解,图6中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图6对手机的各个构成部件进行具体的介绍:
RF电路910可用于信息的接收和发送。通常,RF电路910包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路910还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器920可用于存储软件程序以及模块,处理器980通过运行存储在存储器920的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器920可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用 程序等;存储数据区可存储根据手机的使用所创建的数据等。此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元930可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元930可包括指纹识别模组931以及其他输入设备932。指纹识别模组931,可采集用户在其上的指纹数据。除了指纹识别模组931,输入单元930还可以包括其他输入设备932。具体地,其他输入设备932可以包括但不限于触控屏、物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元940可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元940可包括显示屏941,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机或无机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示屏941。
手机还可包括至少一种传感器950,比如光传感器、运动传感器、压力传感器、温度传感器以及其他传感器。具体地,光传感器可包括环境光传感器(也称为光线传感器)及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节手机的背光亮度,进而调节显示屏941的亮度,接近传感器可在手机移动到耳边时,关闭显示屏941和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路960、扬声器961,传声器962可提供用户与手机之间的音频接口。音频电路960可将接收到的音频数据转换后的电信号,传输到扬声器961,由扬声器961转换为声音信号播放;另一方面,传声器962将收集的声音信号转换为电信号,由音频电路960接收后转换为音频数据,再将音频数据播放处理器980处理后,经RF电路910以发送给比如另一手机,或者将音频数据播放至存储器920以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块970可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图6示出了WiFi模块970,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器980是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器920内的软件程序和/或模块,以及调用存储在存储器920内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器980可包括一个或多个处理单元;优选的,处理器980可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器980中。
手机还包括给各个部件供电的电源990(比如电池),优选的,电源可以通过电源管理系统与处理器980逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
手机还可以包括摄像头9100,摄像头9100用于拍摄图像与视频,并将拍摄的图像和视频传输到处理器980进行处理。
手机还可以蓝牙模块等,在此不再赘述。
前述图1~图3所示的实施例中,各步骤方法流程可以基于该手机的结构实现。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数 据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任何一种数据包分配方法的部分或全部步骤。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,该计算机程序可操作来使计算机执行如上述方法实施例中记载的任何一种数据包分配方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (20)
- 一种数据包分配方法,其特征在于,包括:检测WiFi数据链路的链路质量,检测移动数据链路的链路质量;根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述WiFi数据链路和所述移动数据链路之间的数据包分配比例;将需要传输的数据包按照所述数据包分配比例分配在所述WiFi数据链路和所述移动数据链路中传输。
- 根据权利要求1所述的方法,其特征在于,所述将需要传输的数据包按照所述数据包分配比例分配在所述WiFi数据链路和所述移动数据链路中传输之前,所述方法还包括:获取需要传输的数据包的类型;若所述需要传输的数据包的类型不属于指定服务器类型,执行所述将需要传输的数据包按照所述数据包分配比例分配在所述WiFi数据链路和所述移动数据链路中传输的步骤。
- 根据权利要求2所述的方法,其特征在于,所述方法还包括:若所述需要传输的数据包的类型属于指定服务器类型,将所述需要传输的数据包通过所述移动数据链路传输。
- 根据权利要求1~3任一项所述的方法,其特征在于,所述WiFi数据链路包括第一频段WiFi数据链路和第二频段WiFi数据链路,所述根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述WiFi数据链路和所述移动数据链路之间的数据包分配比例,包括:根据所述第一频段WiFi数据链路的链路质量、所述第二频段WiFi数据链路的链路质量、所述移动数据链路的链路质量确定所述第一频段WiFi数据链路、所述第二频段WiFi数据链路和所述移动数据链路之间的数据包分配比例;所述将需要传输的数据包按照所述数据包分配比例分配在所述WiFi数据链路和所述移动数据链路中传输,包括:将需要传输的数据包按照所述数据包分配比例分配在所述第一频段WiFi数据链路、所述第二频段WiFi数据链路和所述移动数据链路中传输。
- 根据权利要求1~3任一项所述的方法,其特征在于,所述根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述WiFi数据链路和所述移动数据链路之间的数据包分配比例之前,所述方法还包括:获取用户类型;所述根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述WiFi数据链路和所述移动数据链路之间的数据包分配比例,包括:根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量、所述用户类型确定所述WiFi数据链路和所述移动数据链路之间的数据包分配比例。
- 根据权利要求5所述的方法,其特征在于,所述根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量、所述用户类型确定所述WiFi数据链路和所述移动数据链路之间的数据包分配比例,包括:根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量的链路质量比值 确定所述WiFi数据链路和所述移动数据链路之间的初始数据包分配比例;若所述用户类型为流量敏感型,提高所述WiFi数据链路和所述移动数据链路之间的初始数据包分配比例,得到所述WiFi数据链路和所述移动数据链路之间的数据包分配比例;若所述用户类型为非流量敏感型,降低所述WiFi数据链路和所述移动数据链路之间的初始数据包分配比例,得到所述WiFi数据链路和所述移动数据链路之间的数据包分配比例。
- 根据权利要求1~6任一项所述的方法,其特征在于,所述检测WiFi数据链路的链路质量,包括:测量所述WiFi数据链路的数据传输速率、往返时延、误码率,基于所述WiFi数据链路的往返时延、数据传输速率、误码率确定所述WiFi数据链路的链路质量;所述检测移动数据链路的链路质量,包括:测量所述移动数据链路的数据传输速率、往返时延、误码率,基于所述移动数据链路的往返时延、数据传输速率、误码率确定所述移动数据链路的链路质量。
- 根据权利要求1所述的方法,其特征在于,所述检测WiFi数据链路的链路质量,检测移动数据链路的链路质量,包括:测量所述WiFi数据链路的最大数据传输速率,测量所述移动数据链路的最大数据传输速率,基于所述WiFi数据链路的最大数据传输速率、所述移动数据链路的最大数据传输速率确定所述WiFi数据链路的链路质量以及所述移动数据链路的链路质量。
- 根据权利要求8所述的方法,其特征在于,所述WiFi数据链路的链路质量以及所述移动数据链路的链路质量按照如下公式计算:weigh_wifi=max_speed_wifi/(max_speed_wifi+max_speed_lte);weigh_lte=1-weigh_wifi;其中,weigh_wifi表示所述WiFi数据链路的链路质量,weigh_lte表示长期演进LTE数据链路的链路质量,max_speed_wifi表示所述WiFi数据链路的最大数据传输速率,max_speed_lte表示所述LTE数据链路的最大数据传输速率;所述WiFi数据链路的链路质量与所述LTE数据链路的链路质量之和等于1。
- 一种数据包分配装置,其特征在于,包括:检测单元,用于检测WiFi数据链路的链路质量,检测移动数据链路的链路质量;确定单元,用于根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述WiFi数据链路和所述移动数据链路之间的数据包分配比例;传输单元,用于将需要传输的数据包按照所述数据包分配比例分配在所述WiFi数据链路和所述移动数据链路中传输。
- 根据权利要求10所述的装置,其特征在于,所述数据包分配装置还包括第一获取单元;所述第一获取单元,用于获取需要传输的数据包的类型;所述传输单元,还用于在所述需要传输的数据包的类型不属于指定服务器类型的情况下,将需要传输的数据包按照所述数据包分配比例分配在所述WiFi数据链路和所述移动数据链路中传输。
- 根据权利要求11所述的装置,其特征在于,所述传输单元,还用于在所述需要传输的数据包的类型属于指定服务器类型的情况下,将所述需要传输的数据包通过所述移动数据链路传输。
- 根据权利要求10~12任一项所述的装置,其特征在于,所述WiFi数据链路包括第一频段WiFi数据链路和第二频段WiFi数据链路,所述确定单元根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述WiFi数据链路和所述移动数据链路之间的数据包分配比例,具体为:根据所述第一频段WiFi数据链路的链路质量、所述第二频段WiFi数据链路的链路质量、所述移动数据链路的链路质量确定所述第一频段WiFi数据链路、所述第二频段WiFi数据链路和所述移动数据链路之间的数据包分配比例;所述传输单元将需要传输的数据包按照所述数据包分配比例分配在所述WiFi数据链路和所述移动数据链路中传输,具体为:将需要传输的数据包按照所述数据包分配比例分配在所述第一频段WiFi数据链路、所述第二频段WiFi数据链路和所述移动数据链路中传输。
- 根据权利要求10~12任一项所述的装置,其特征在于,所述数据包分配装置还包括第二获取单元;所述第二获取单元,用于获取用户类型;所述确定单元根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述WiFi数据链路和所述移动数据链路之间的数据包分配比例,具体为:根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量、所述用户类型确定所述WiFi数据链路和所述移动数据链路之间的数据包分配比例。
- 根据权利要求14所述的装置,其特征在于,所述确定单元根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量、所述用户类型确定所述WiFi数据链路和所述移动数据链路之间的数据包分配比例,具体为:根据所述WiFi数据链路的链路质量与所述移动数据链路的链路质量的链路质量比值确定所述WiFi数据链路和所述移动数据链路之间的初始数据包分配比例;若所述用户类型为流量敏感型,提高所述WiFi数据链路和所述移动数据链路之间的初始数据包分配比例,得到所述WiFi数据链路和所述移动数据链路之间的数据包分配比例;若所述用户类型为非流量敏感型,降低所述WiFi数据链路和所述移动数据链路之间的初始数据包分配比例,得到所述WiFi数据链路和所述移动数据链路之间的数据包分配比例。
- 根据权利要求10~15任一项所述的装置,其特征在于,所述检测单元检测WiFi数据链路的链路质量,具体为:测量所述WiFi数据链路的数据传输速率、往返时延、误码率,基于所述WiFi数据链路的往返时延、数据传输速率、误码率确定所述WiFi数据链路的链路质量;所述检测单元检测移动数据链路的链路质量,具体为:测量所述移动数据链路的数据传输速率、往返时延、误码率,基于所述移动数据链路的往返时延、数据传输速率、误码率确定所述移动数据链路的链路质量。
- 根据权利要求10所述的装置,其特征在于,所述检测单元检测WiFi数据链路的 链路质量,检测移动数据链路的链路质量,具体为:测量所述WiFi数据链路的最大数据传输速率,测量所述移动数据链路的最大数据传输速率,基于所述WiFi数据链路的最大数据传输速率、所述移动数据链路的最大数据传输速率确定所述WiFi数据链路的链路质量以及所述移动数据链路的链路质量。
- 根据权利要求17所述的装置,其特征在于,所述WiFi数据链路的链路质量以及所述移动数据链路的链路质量按照如下公式计算:weigh_wifi=max_speed_wifi/(max_speed_wifi+max_speed_lte);weigh_lte=1-weigh_wifi;其中,weigh_wifi表示所述WiFi数据链路的链路质量,weigh_lte表示长期演进LTE数据链路的链路质量,max_speed_wifi表示所述WiFi数据链路的最大数据传输速率,max_speed_lte表示所述LTE数据链路的最大数据传输速率;所述WiFi数据链路的链路质量与所述LTE数据链路的链路质量之和等于1。
- 一种移动终端,其特征在于,包括处理器以及存储器,所述存储器用于存储一个或多个程序,所述一个或多个程序被配置成由所述处理器执行,所述程序包括用于执行如权利要求1-9任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-9任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910111712.3A CN109862556A (zh) | 2019-02-12 | 2019-02-12 | 数据包分配方法、装置、移动终端及存储介质 |
CN201910111712.3 | 2019-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020164521A1 true WO2020164521A1 (zh) | 2020-08-20 |
Family
ID=66897794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/074907 WO2020164521A1 (zh) | 2019-02-12 | 2020-02-12 | 数据包分配方法、装置、移动终端及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109862556A (zh) |
WO (1) | WO2020164521A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112866390A (zh) * | 2021-01-21 | 2021-05-28 | 视联动力信息技术股份有限公司 | 一种数据传输方法、装置、终端设备和存储介质 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109862556A (zh) * | 2019-02-12 | 2019-06-07 | Oppo广东移动通信有限公司 | 数据包分配方法、装置、移动终端及存储介质 |
CN111132197B (zh) * | 2019-12-24 | 2021-04-06 | 深圳创维数字技术有限公司 | 一种无线mesh双频回传性能优化方法、服务器及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105101438A (zh) * | 2015-07-10 | 2015-11-25 | 努比亚技术有限公司 | 多数据通道的数据分配方法及装置 |
CN106658571A (zh) * | 2017-01-03 | 2017-05-10 | 努比亚技术有限公司 | 一种终端及其网络加速控制方法 |
WO2017166572A1 (zh) * | 2016-04-01 | 2017-10-05 | 努比亚技术有限公司 | 一种终端及其网络加速方法 |
CN107708216A (zh) * | 2017-09-29 | 2018-02-16 | 努比亚技术有限公司 | 数据链路分配方法、移动终端及计算机可读存储介质 |
CN109862556A (zh) * | 2019-02-12 | 2019-06-07 | Oppo广东移动通信有限公司 | 数据包分配方法、装置、移动终端及存储介质 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100433729C (zh) * | 2006-07-25 | 2008-11-12 | 华为技术有限公司 | 一种实现多链路传输的负荷分担的装置和方法 |
CN106034106B (zh) * | 2015-03-10 | 2019-06-25 | 中国电信股份有限公司 | 组网方法、组网管理方法以及装置和系统 |
CN107770814B (zh) * | 2017-09-29 | 2021-06-15 | 努比亚技术有限公司 | 数据链路均衡方法、移动终端及计算机可读存储介质 |
-
2019
- 2019-02-12 CN CN201910111712.3A patent/CN109862556A/zh active Pending
-
2020
- 2020-02-12 WO PCT/CN2020/074907 patent/WO2020164521A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105101438A (zh) * | 2015-07-10 | 2015-11-25 | 努比亚技术有限公司 | 多数据通道的数据分配方法及装置 |
WO2017166572A1 (zh) * | 2016-04-01 | 2017-10-05 | 努比亚技术有限公司 | 一种终端及其网络加速方法 |
CN106658571A (zh) * | 2017-01-03 | 2017-05-10 | 努比亚技术有限公司 | 一种终端及其网络加速控制方法 |
CN107708216A (zh) * | 2017-09-29 | 2018-02-16 | 努比亚技术有限公司 | 数据链路分配方法、移动终端及计算机可读存储介质 |
CN109862556A (zh) * | 2019-02-12 | 2019-06-07 | Oppo广东移动通信有限公司 | 数据包分配方法、装置、移动终端及存储介质 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112866390A (zh) * | 2021-01-21 | 2021-05-28 | 视联动力信息技术股份有限公司 | 一种数据传输方法、装置、终端设备和存储介质 |
CN112866390B (zh) * | 2021-01-21 | 2024-03-29 | 视联动力信息技术股份有限公司 | 一种数据传输方法、装置、终端设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN109862556A (zh) | 2019-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020164520A1 (zh) | 数据包分流方法、装置、移动终端及存储介质 | |
WO2020164475A1 (zh) | 数据分流方法、装置、移动终端及存储介质 | |
CN110036661B (zh) | 一种上行数据传输方法、终端、网络侧设备及系统 | |
CN112004173B (zh) | 蓝牙耳机的切换方法、移动终端及计算机可读存储介质 | |
WO2020164521A1 (zh) | 数据包分配方法、装置、移动终端及存储介质 | |
WO2020143579A1 (zh) | 链路聚合实现方法及相关产品 | |
CN111919505B (zh) | 数据处理方法以及终端 | |
WO2020259446A1 (zh) | 通信控制方法、装置及电子设备 | |
CN111182580A (zh) | 业务传输方法、终端和网络侧设备 | |
JP2022501947A (ja) | リソーススケジューリング方法およびデバイス | |
WO2020224418A1 (zh) | WiFi信道干扰的解决方法及相关产品 | |
CN106793010A (zh) | 一种网络接入方法及设备 | |
CN111800794B (zh) | 解调参考信号位置的确定方法及设备 | |
CN109617802B (zh) | 链路聚合实现方法及相关产品 | |
CN109587260B (zh) | 一种资源获取方法、装置以及系统 | |
TWI678903B (zh) | 一種上行資料傳輸方法及終端 | |
CN112492340B (zh) | 直播音频采集方法、移动终端及计算机可读存储介质 | |
CN111970738B (zh) | 一种网络切换控制方法、设备及计算机可读存储介质 | |
CN112090065B (zh) | 一种网络时延调控方法、设备及计算机可读存储介质 | |
CN108391288B (zh) | 一种优化通信业务质量的方法及移动终端 | |
CN109587765B (zh) | 链路聚合实现方法及相关产品 | |
CN110377359B (zh) | 游戏性能优化方法、移动终端及计算机可读存储介质 | |
CN109644377B (zh) | 一种上行数据传输方法、终端、网络侧设备及系统 | |
CN110475302A (zh) | 一种语音业务处理方法及终端设备 | |
CN114020383B (zh) | 界面显示方法、终端和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20756440 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20756440 Country of ref document: EP Kind code of ref document: A1 |