WO2017166572A1 - 一种终端及其网络加速方法 - Google Patents

一种终端及其网络加速方法 Download PDF

Info

Publication number
WO2017166572A1
WO2017166572A1 PCT/CN2016/094643 CN2016094643W WO2017166572A1 WO 2017166572 A1 WO2017166572 A1 WO 2017166572A1 CN 2016094643 W CN2016094643 W CN 2016094643W WO 2017166572 A1 WO2017166572 A1 WO 2017166572A1
Authority
WO
WIPO (PCT)
Prior art keywords
wifi
rate
acceleration
interface
network
Prior art date
Application number
PCT/CN2016/094643
Other languages
English (en)
French (fr)
Inventor
车晓东
谭焕清
姚再英
Original Assignee
努比亚技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610352709.7A external-priority patent/CN107295571A/zh
Application filed by 努比亚技术有限公司 filed Critical 努比亚技术有限公司
Publication of WO2017166572A1 publication Critical patent/WO2017166572A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Definitions

  • the present invention relates to the field of communications technologies, and more particularly to a terminal and a network acceleration method thereof.
  • LTE Long Term Evolution
  • MIMO Multi-Input & Multi-Output
  • the terminal can also use the wireless local area network technology such as WIFI for data transmission.
  • WIFI wireless local area network technology
  • the mobile network and the WLAN network cannot be simultaneously used for data transmission.
  • high-definition video, games and other large-volume applications are emerging one after another.
  • the use of a single data channel for data transmission due to the maximum capacity limitation of the data channel, still can not meet the increasing demand for transmission rate of users.
  • the network speed (the rate of the mobile network or the WLAN network) is slow, when speeding up, it is usually simply to release the background resources to accelerate the terminal, or to close some background application pairs.
  • the terminal accelerates, and the effect of acceleration is not obvious, and cannot meet the needs of users.
  • the specific situation of the user's acceleration of the terminal is not clear.
  • the current network acceleration method is not smart enough and flexible.
  • the technical problem to be solved by the embodiments of the present invention is to provide a terminal and a network acceleration method thereof against the above-mentioned defects of the prior art.
  • the first aspect provides a network acceleration method for a terminal, where the terminal includes a WIFI interface and an LTE interface, and the method includes:
  • the data service transmission is performed according to the acceleration mode selected by the user.
  • the method comprises:
  • the acceleration rate when the data service is transmitted and the display acceleration rate are calculated according to the acceleration mode selected by the user.
  • the acceleration rate is calculated based on a preset reference rate
  • the preset reference rate is any one of the following: a maximum rate of the WIFI, a maximum rate of the LTE mobile network, and a maximum rate of the WIFI and the LTE mobile network.
  • the rate of addition is calculated every preset time and the displayed rate of addition is updated.
  • the acceleration mode includes a first acceleration mode and a second acceleration mode
  • the first acceleration mode is that the data service transmission rate is greater than or equal to the rate of the WIFI network or the LTE mobile network for data service transmission;
  • the second acceleration mode is to preferentially utilize the connected WIFI network for data service transmission, and when the signal strength of the WIFI network is lower than a preset threshold, the connected WIFI network and the connected LTE mobile network are used to accelerate the data service.
  • the data service is allocated to the LTE interface and the WIFI interface for transmission according to the preset offload weight.
  • the data service transmission is performed only through the WIFI interface
  • the data service is transmitted through the WIFI interface and the LTE interface.
  • a terminal in a second aspect, includes a WIFI interface and an LTE interface, and the terminal further includes: a processor;
  • the processor is configured to detect whether the WIFI of the terminal and the LTE mobile network are both enabled; if it is detected that both the WIFI and the LTE mobile network are enabled, the data service is transmitted according to the acceleration mode selected by the user.
  • the acceleration mode includes a first acceleration mode and a second acceleration mode
  • the first acceleration mode is that the data service transmission rate is greater than or equal to the rate of the WIFI network or the LTE mobile network for data service transmission;
  • the second acceleration mode is to preferentially utilize the connected WIFI network for data service transmission, and when the signal strength of the WIFI network is lower than a preset threshold, the connected WIFI network and the connected LTE mobile network are used to accelerate the data service.
  • the processor when the first acceleration mode is adopted, the processor is configured to allocate data traffic to the LTE interface and the WIFI interface for transmission according to the preset offload weight.
  • the processor when the second acceleration mode is adopted, is configured to perform data service transmission only through the WIFI interface when the signal strength of the WIFI is higher than the first preset threshold; during the transmission of the data service When the signal strength of the WIFI is lower than the first preset threshold, the data service is transmitted through the WIFI interface and the LTE interface; in the process of transmitting the data service through the WIFI interface and the LTE interface, if the signal strength of the WIFI is higher than the second pre- If the threshold is set, the data service is transmitted only through the WIFI interface.
  • a network acceleration method for another terminal including:
  • the data service is accelerated by using the opened WIFI network and the opened LTE mobile network, and the acceleration rate is displayed on the preset interface.
  • the acceleration rate is calculated based on a preset reference rate
  • the preset reference rate is any one of the following: a maximum rate of the WIFI, a maximum rate of the LTE mobile network, and a maximum rate of the WIFI and the LTE mobile network.
  • the method before the acceleration of the data service by using the opened WIFI network and the opened LTE mobile network, the method further includes:
  • the acceleration mode selection instruction includes an instruction to select a first acceleration mode and an instruction to select a second acceleration mode.
  • the first acceleration mode is that the data service has a transmission rate greater than or equal to a rate at which the WIFI network or the LTE mobile network performs data service transmission.
  • the data service is allocated to the opened WIFI network and the LTE mobile network for transmission according to the preset offload weight.
  • the second acceleration mode is to preferentially utilize the connected WIFI network for data service transmission, and when the signal strength of the WIFI network is lower than a preset threshold, using the connected WIFI network and the connected LTE.
  • the mobile network accelerates data services.
  • another terminal including: a processor;
  • the processor is configured to enable the network acceleration function of the terminal according to the user operation; when the network acceleration function is enabled, the data service is accelerated by using the opened WIFI network and the opened LTE mobile network, and the acceleration rate is displayed to the pre-up Set the interface.
  • the acceleration rate is calculated based on a preset reference rate
  • the preset reference rate is any one of the following: a maximum rate of the WIFI, a maximum rate of the LTE mobile network, and a maximum rate of the WIFI and the LTE mobile network.
  • the processor is further configured to receive an acceleration mode selection command of the user and select according to the acceleration mode before the data service is accelerated by using the enabled WIFI network and the opened LTE mobile network.
  • the instruction uses different acceleration modes to accelerate the data service;
  • the acceleration mode selection instruction includes: an instruction to select a first acceleration mode and an instruction to select a second acceleration mode;
  • the first acceleration mode is that the transmission rate of the data service is greater than or equal to the rate of data service transmission by the WIFI network or the LTE mobile network;
  • the second acceleration mode is to preferentially utilize the connected WIFI network for data service transmission, and when the signal strength of the WIFI network is lower than a preset threshold, the connected WIFI network and the connected LTE mobile network are used for data services. accelerate.
  • the terminal and the network acceleration method of the embodiments of the present invention have the following beneficial effects: real network acceleration using WIFI and LTE can be implemented, acceleration can be performed according to an acceleration mode selected by a user, and specific information of acceleration can also be displayed, such as The acceleration rate and the consumption of mobile network data, etc., improve the intelligence and flexibility of network acceleration and improve the user experience.
  • FIG. 1 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of network access of a terminal 100 according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart 1 of a network acceleration method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the display of a terminal according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a process of detecting an interface rate according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the display of a terminal according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an embodiment of displaying a notification bar according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart diagram of a network acceleration method according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of network switching according to an embodiment of the present invention.
  • FIG. 10 is a second schematic flowchart of a network acceleration method according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal 100 includes an application processor 10, a modem processor 11, a memory 12, a WIFI interface 13, and an LTE interface 14.
  • the LTE interface 14 may include a wireless receiver, transmitter, transceiver, and/or other component that enables the terminal 100 to transmit and/or receive data using the LTE wireless communication protocol.
  • the LTE interface is coupled to an antenna for transmitting signals to cells and other wireless devices configured to use the LTE wireless communication protocol, and receiving signals therefrom.
  • the WIFI interface 13 may include a wireless receiver, transmitter, transceiver, and/or other component that enables the terminal 100 to transmit and/or receive data using a WIFI wireless communication protocol.
  • the WIFI interface is coupled to an antenna for transmitting signals to and receiving communications from modems/routers and/or other wireless devices configured to communicate using the WIFI wireless communication protocol.
  • the application processor 10 is configured to handle complex logical operations and perform task assignments to provide an interactive interface for the user.
  • the application processor 10 is also used to execute an operating system of the terminal 100.
  • the modem processor 11 is used to perform protocol processing, and to perform modulation and demodulation on the transmitted and received communication data.
  • the memory 12 stores software code readable by the application processor 10, which is included to control the application processor 10 to execute functional instructions and the like.
  • FIG. 2 is a schematic diagram of network access of a terminal 100 according to an embodiment of the present invention.
  • Terminal 100 communicates with router 20 via its WIFI interface to communicate with server 22 and/or other networked devices via network 21.
  • Terminal 100 accesses a cell (base station) 23 via its LTE interface, communicates with modem 24 to communicate with server 22 and/or other networked devices via network 21.
  • base station base station
  • the modem 24 can be configured to provide the cell 23 with a wired and/or wireless network connection that is connected to the network 21 via bandwidth.
  • Router 20 can be configured to act as a wireless access point that can provide wireless network connectivity to terminal 100 and/or other devices using one or more WIFI communication protocols.
  • the input output device 15 includes an input unit (eg, a touch screen, a contactless input device, etc.) and a display unit (eg, a display screen).
  • the input unit may generate key input data in accordance with a command input by the user to control various operations of the terminal 100.
  • the input unit allows the user to input various types of information, and may include a keyboard, a touch pad (eg, a touch sensitive component that detects changes in resistance, pressure, capacitance, etc. due to contact), keys, and the like.
  • the display unit can display information processed in the terminal 100. For example, a related user interface (UI) or graphical user interface (GUI) for text messaging, multimedia file downloading, etc. can be displayed.
  • UI related user interface
  • GUI graphical user interface
  • the interface includes two meanings, one is a physical interface, that is, the LTE interface and the WIFI interface shown in FIG. 1; the other is a virtual interface, that is, a virtual interface at the software level. It corresponds to a hardware interface.
  • an operating system may be divided into a kernel layer, a framework layer, and an application layer. Two virtual interfaces can be set at the kernel layer, one for data interaction with the modem processor 11, and then data interaction with the LTE interface 14, so that the relevant data stream can finally pass through the corresponding hardware interface LTE interface through the virtual interface.
  • the referred interface rate, the average rate of the interface, the maximum rate of the interface, and the like refer to the rate of the virtual interface corresponding to the corresponding hardware interface.
  • the corresponding virtual interface can also be set at the application layer, corresponding to the virtual interface and hardware interface of the kernel layer.
  • the terminal in the embodiment of the present invention is configured with an LTE interface and a WIFI interface, and can simultaneously transmit data streams through the LTE interface and the WIFI interface, that is, for the same data stream, A portion of the data stream can be transmitted over the LTE interface while another portion of the data stream is transmitted over the WIFI interface.
  • a network acceleration method includes:
  • the WIFI and the LTE mobile network need to be simultaneously turned on.
  • WIFI transmits data streams through the WIFI interface
  • the mobile network transmits data streams through the LTE interface.
  • the WIFI and the LTE mobile network may be used for network acceleration.
  • the WIFI and the LTE mobile network can be used for data stream transmission.
  • the opening of the WIFI and LTE mobile networks can be done by turning on the corresponding data switches so that both can be used.
  • the data service transmission is performed according to the acceleration mode selected by the user.
  • the "on acceleration" switch button can be operated only when the WIFI and LTE mobile networks are simultaneously turned on.
  • the selectable acceleration modes include: continuous acceleration mode (first acceleration mode) and WLAN weak acceleration (ie, WIFI weak acceleration, second acceleration mode).
  • the data switch of the WIFI and/or the LTE mobile network is automatically turned on, so that the WIFI and the mobile network can be used. Without the user having to manually turn it on.
  • a prompt message may also be popped up ("For example, "turning on acceleration will turn on WIFI and moving data, determining to open?"), and selecting "allow” in the user After the "" button (for example, click the "OK” button), the data switch of the WIFI and / or LTE mobile network is automatically turned on.
  • the description is made in the acceleration mode as the continuous acceleration mode.
  • the acceleration mode selected by the user is the continuous acceleration mode, as long as there is data service, that is, the WIFI and the LTE mobile network are used for data service transmission, the data service transmission rate will be greater than or equal to the WIFI network or the LTE mobile network to separately transmit the data service. The rate of time.
  • the data stream when the continuous acceleration mode is adopted, the data stream is offloaded to the LTE interface and the WIFI interface by using a preset offload weight.
  • the data stream may be allocated to two interfaces for transmission according to a preset split weight.
  • the preset split weight may be a 1:1 split weight (that is, the data stream is equally distributed to two interfaces for transmission), or Other fixed-scale split weights (for example, the ratio of the split weight of the LTE interface to the WIFI interface is 1:3, 2:3, 1:5, 4:3, etc.).
  • the preset offload weights are adjusted according to the link quality of each interface.
  • the link quality here can be: rate, delay, packet loss rate, signal strength, and so on. Since the interface rate reflects the bandwidth of the interface to a certain extent, the interface with a large bandwidth can carry more data streams, so that the data stream is not easily transmitted from the interface with a small bandwidth, resulting in congestion of the interface with small bandwidth, resulting in large delay.
  • the rate is used as a basis for adjusting the weight of the split.
  • step S40 the change in the number of bytes on the interface is detected every predetermined time to calculate the rate of the interface. Specifically, if the rate of an interface is detected for the first time, the number of detected bytes is saved. If the rate of an interface is not detected for the first time, the number of interface bytes obtained is subtracted from the number of interface bytes obtained before, and the obtained difference is divided by the time of two detections. Current rate.
  • the rate of the interface can be the rate of the virtual interface of the kernel layer.
  • step S41 the offload weight of each interface is adjusted in real time according to the interface rate.
  • determining the split weight according to the rate of the interface is as follows:
  • the current real-time rate is assigned to the maximum rate (max_speed).
  • the calculation is performed according to the following formula:
  • the shunt weight of the i-th interface the maximum rate of the i-th interface / (the maximum rate of the first interface + the maximum rate of the second interface + ... + the maximum rate of the i-th interface + ...
  • the foregoing method for calculating the split weight according to the interface rate may adopt other manners, for example, pre-setting the relationship between the rate range and the split weight.
  • the split weight is 20%, and in the second range.
  • the weight of the shunt is 80% and so on.
  • step S2 of the embodiment of the present invention further includes: in the transmission process of the data service, according to the interface Rate, adjust the split weight; and adjust the data stream allocated to each interface based on the adjusted split weight.
  • the to-be-data service when the data service is transmitted, the to-be-data service may be divided into a plurality of data blocks (data streams) of the same size or different sizes to be respectively transmitted through the established multiple links.
  • a 10M-sized APK can be divided into 10 data blocks, each of which has a size of 1M, and each data block is transmitted through a link. Therefore, the offloading in the embodiment of the present invention distributes the data blocks to different interfaces according to the split weights. lose.
  • the transmission of data services can be divided into uploading (sending to the peer) and downloading (receiving from the peer) based on the same principle.
  • the peer end When these data blocks are transmitted to the peer end (server or other networked device) through different interfaces of the terminal 100, the peer end performs data aggregation to obtain complete data.
  • the terminal 100 receives the data service through different interfaces, after the data block transmission of each interface is completed, the aggregation process is performed to obtain complete data.
  • the embodiment of the invention further includes: calculating an acceleration rate when the data service is transmitted according to the acceleration mode selected by the user, and displaying the acceleration rate.
  • the acceleration rate can be calculated based on the preset reference rate.
  • the preset reference rate may be any of the following: the maximum rate of the WIFI, the maximum rate of the LTE mobile network, and the maximum rate of the WIFI and the LTE mobile network.
  • the preset reference rate may also be other values, such as a fixed value, or a value selected among a set of fixed values depending on actual network conditions, and the like.
  • the acceleration rate is calculated every preset time and the displayed acceleration rate is updated.
  • the preset time may be 5 seconds, 10 seconds, or the like.
  • the rate calculation is performed every 5 seconds and the rate of acceleration displayed on the terminal interface is updated.
  • the acceleration rate for display can be iteratively calculated according to equation (1):
  • Acceleration rate for display (first acceleration rate ⁇ first threshold + second acceleration rate) / second threshold value (1)
  • the first threshold and the second threshold are integers greater than 0, and the first threshold plus 1 is equal to the second threshold.
  • the first threshold and the second threshold may be set to 11 and 12, respectively.
  • the rate of addition can be in the form of a percentage.
  • the first acceleration rate is the current display acceleration rate; the second acceleration The rate is the rate of acceleration calculated in real time.
  • formula (1) to obtain the acceleration rate for display can avoid the occurrence of "mutation", for example, a sudden change in network state (the link quality of WIFI network and LTE network fluctuates drastically), then according to formula (1) This causes the display rate to fluctuate drastically, affecting the user experience.
  • the second acceleration rate is directly set to a predetermined value.
  • the initial splitting algorithm may allocate the data stream to the LTE interface.
  • the transmission rate of the WIFI interface is 0, and the maximum rate of the WIFI interface is 0.
  • the second acceleration rate can be set to 60%, and the acceleration rate obtained according to formula (1) is increased by at most 5%.
  • Second acceleration rate ((average rate of WIFI + average rate of LTE - maximum rate of WIFI) / preset reference rate) ⁇ 100% (2)
  • the data stream is successfully allocated to the LTE interface and the WIFI interface according to the offload algorithm, and the maximum transmission rate of the WIFI interface is detected.
  • the second acceleration rate is assigned to -1. This situation shows that the simultaneous use of the LTE mobile network and WIFI does not increase the actual transmission efficiency, which may be due to the quality of the LTE mobile network link, for example, its link quality is poor. In one embodiment of the invention, if the second acceleration rate is -1, then the next iteration is not participated.
  • the average rate of the WIFI interface and the average rate of the LTE interface refers to the average rate over a preset time, for example, the average rate over 5 seconds.
  • the method for detecting the interface rate may be performed in the manner of the foregoing step S41, that is, the interface rate (that is, the rate of the virtual interface on the kernel side) is obtained according to the change of the number of interface bytes. Then, the average rate of the interface can be obtained by adding the multiple interface rates detected within the preset time and then dividing by the preset time.
  • the maximum rate of the WIFI interface refers to the maximum rate of the detected WIFI interface when the WIFI and LTE mobile networks are simultaneously enabled.
  • the maximum rate of the WIFI interface is an iterative value, that is, when the rate of the detected real-time WIFI interface is greater than the historical maximum rate of the WIFI interface, the maximum rate of the WIFI interface is updated to New rate.
  • the method of detecting the maximum rate of the WIFI interface may be confirmed in accordance with the manner of determining the maximum rate in the above step S41.
  • the maximum rate of the WIFI interface is iteratively obtained in the following manner:
  • the preset value for example, 1000
  • the rate of the interface may be the same as in the above steps S40 and S41, that is, the rate of the virtual interface set by the kernel layer, but it may also adopt the rate of the virtual interface set by the application layer.
  • the rate of the virtual interface of the application layer and the virtual interface of the kernel layer should be the same in theory, and therefore will not be described here.
  • some signaling interaction may be performed even if no data download or upload is performed, and if the transmission speed at this time is also Statistics in the acceleration ratio will produce errors. Therefore, when calculating the acceleration rate, the LTE mobile network is considered to be actually transmitting data only when the real-time rate of the LTE mobile network is greater than a preset value (for example, 10 KB/s). The calculation of the acceleration rate is performed according to the various cases and situations described in the formula (1) and the above.
  • the calculated acceleration rate may be displayed in various forms, such as displaying the acceleration rate in a percentage system, displaying the acceleration rate in a dial system plus a dial or adding a column in a percentage system.
  • the way of the graph shows the acceleration rate and so on. Referring to Figure 6, an example showing the rate of increase in percent is shown, which shows the word “127% average acceleration” on the user interface. In order to make the user intuitively understand the acceleration rate brought by the "continuous acceleration” mode. "127%” is calculated according to the calculation method described above.
  • the acceleration rate will be recalculated every preset time (for example, 5 seconds), and in some embodiments, the animation effect may be added to more intuitively display the user.
  • the rate of change process For example, when the acceleration rate is increased from “127%” to "200%", the area illuminated by the dial is increased, and when the acceleration rate "200%” is lowered to "127%", the area illuminated by the dial is performed. Reduced.
  • the data traffic of the used mobile network is also displayed to the interface.
  • Mobile Data 1.1M has been used shows the data traffic of the used mobile network. Therefore, the user can conveniently confirm the process consumption of the mobile network, so that the user can adjust the acceleration mode according to the consumption of the data traffic. For example, when the data traffic exceeds a certain value, the user can turn off the acceleration, or adjust it to WLAN weak acceleration, and so on.
  • the number of bytes of the LTE data interface can be accumulated, and the accumulated traffic is displayed on the interface every preset time.
  • the preset time may be the same as the calculated time of the acceleration rate (for example, 5 seconds), or may be other values, for example, 1 second or shorter, in response to real-time traffic consumption.
  • the data traffic of the mobile network that has been used is the historical cumulative traffic from the start of the acceleration. That is, as long as the "on acceleration" switch is turned on, the accumulation of data traffic consumption of the mobile network is continuously performed, and the accumulated value is displayed on the interface. When the acceleration is turned on and the "on acceleration” is turned off, the statistical flow is cleared. Thereby, the traffic of the mobile network consumed by the user after the acceleration is started can be accurately recorded.
  • statistics may be performed in units of B (bytes), KB (kilobytes), M (megabytes), and the like. Specifically, when the consumption of the traffic is within 1024 B, the statistics are performed in units of B, and the statistics may be accumulated once every 10 B. When the traffic consumption exceeds 1024B and is in the range of 1024 KB, statistics are performed in KB. 1KB is accumulated once. When the flow rate exceeds 1024 KB, the statistics are performed in units of M, and the accumulation can be performed once every 0.01 M.
  • the "notification bar display state" of the interface display is a notification bar for displaying the accelerated related information to the terminal 100.
  • the traffic of the rate-increasing and consumed mobile network is displayed to the notification bar for the user to view.
  • Fig. 7 there is shown a schematic diagram of an embodiment of displaying a notification bar.
  • the notification bar shows "1 Mb/s in acceleration, acceleration 2 Mb/s".
  • the rate of the WIFI (1 Mb/s) and the acceleration rate that is, the rate of LTE (2 Mb/s) are displayed in the notification column.
  • the rate displayed in the notification bar can be the real-time rate.
  • the real-time rate can be obtained according to the above rate detection method, and the accelerated rate can be obtained by superimposing the rates of the two interfaces.
  • the acceleration interface shown in FIG. 6 can be entered.
  • the embodiment of the invention can realize real network acceleration by using WIFI and LTE, can be accelerated according to the acceleration mode selected by the user, and can also display specific information of acceleration, such as speed improvement efficiency and consumption of mobile network data, and the like. , thereby improving the intelligence and flexibility of network acceleration and improving the user experience.
  • the above embodiment 1 describes in detail the network acceleration method and terminal of the "continuous acceleration” mode, which will detail the network acceleration method and terminal of the "WLAN weak acceleration” mode.
  • the foregoing step S2 specifically includes:
  • the offloading weight of the LTE interface can be set to 0, or the radio frequency power supply of the LTE interface can be turned off (the power consumption can also be saved by this method).
  • the data distribution of the two interfaces may be performed by using the offloading algorithm mentioned in the foregoing Embodiment 1, and details are not described herein again.
  • the network acceleration method of this embodiment of the present invention further includes:
  • step S83 After the step S82, if the signal strength of the WIFI is higher than the second preset threshold, the data service is transmitted only through the WIFI interface.
  • the first preset threshold is less than or equal to the second preset threshold.
  • the second preset threshold is greater than the second preset threshold, for example, the first preset threshold is set to -75 dbm and the second predetermined threshold is set to -65 dbm. Also based on the principle of "ping-pong effect", when WIFI After the signal strength is higher than the second preset threshold for a preset duration, the data is switched to the data service only through the WIFI interface.
  • the embodiment of the present invention can perform data service transmission based on the link. Therefore, when switching between the WIFI and the LTE mobile network, the newly created link can be transmitted through the adjusted interface. If a network abnormality occurs (such as a sudden interruption) on an interface, the data flow transmission of the current link may be completed by using a new link and retransmitting the corresponding data stream through another interface.
  • a network abnormality such as a sudden interruption
  • the acceleration rate is set to zero when data traffic is transmitted only through the WIFI interface.
  • the acceleration rate and the display acceleration rate are calculated according to the foregoing Embodiment 1, and details are not described herein again.
  • the WIFI and the LTE mobile network are used for data transmission together, and therefore, the rate of the WIFI interface (average rate, maximum rate, etc.) If the rate of the LTE interface is large, the rate of acceleration will be larger. In this case, the network acceleration will be very obvious, which can greatly improve the user experience.
  • the embodiment of the invention can realize real network acceleration by using WIFI and LTE, can be accelerated according to the acceleration mode selected by the user, and can also display specific information of acceleration, such as speed improvement efficiency and consumption of mobile network data, and the like. , thereby improving the intelligence and flexibility of network acceleration and improving the user experience.
  • a corresponding embodiment of the present invention further provides a terminal, where the processor includes a processor configurable to perform the method steps of the foregoing Embodiments 1 and 2 to implement an acceleration mode selected by the user in both the WIFI and the LTE mobile network. Data service transmission.
  • the processor herein can be the application processor 10 shown in FIG.
  • the terminal of the embodiment of the present invention may adopt the network acceleration side of the above embodiment 1 or 2.
  • the terminal of the embodiment of the present invention may adopt the network acceleration side of the above embodiment 1 or 2.
  • the terminal 100 in the embodiment of the present invention may also be referred to as a mobile device, a terminal, an access terminal, a subscriber unit, and the like.
  • Terminal 100 can be a smart phone, tablet computer, laptop, or other device configured to communicate using LTE and WIFI wireless communication protocols.
  • a network acceleration method includes:
  • WIFI transmits data streams through the WIFI interface
  • the mobile network transmits data streams through the LTE interface.
  • the WIFI and the LTE mobile network can be simultaneously used for network acceleration.
  • the WIFI and the LTE mobile network can be simultaneously used for data stream transmission.
  • the opening of the WIFI and LTE mobile networks can be done by turning on the corresponding data switches so that both can be used.
  • the user can open the network acceleration function of the terminal by touching, clicking the corresponding area, and the like.
  • the network acceleration function can be enabled by sliding the terminal on the left side of the touch screen, the network acceleration function by the preset virtual or physical button, the network acceleration function by clicking the corresponding option in the terminal setting, and the like.
  • the embodiment of the invention does not limit this.
  • the method when the second command is received, if the WIFI network and/or the LTE mobile network of the terminal are not enabled, the WIFI network and/or the LTE mobile network that are not turned on are turned on, and the terminal is opened. Network acceleration. Before the opening of the unenabled WIFI network and/or the LTE mobile network, the method further includes: outputting prompt information for the user to select whether to open the unopened WIFI network and/or the LTE mobile network.
  • the method before the acceleration of the data service by using the opened WIFI network and the opened LTE mobile network, the method further includes: receiving an acceleration mode selection instruction of the user, and adopting different acceleration modes according to the acceleration mode selection instruction. Acceleration of data services.
  • the acceleration mode selection instruction includes an instruction to select the first acceleration mode and an instruction to select the second acceleration mode.
  • the control interface of the network acceleration function may be turned on.
  • the "Enable Acceleration" switch button can be operated only when the WIFI and LTE mobile networks are simultaneously turned on. After the user clicks the switch button to turn on, the network acceleration function is turned on, and the corresponding acceleration mode can be selected: the continuous acceleration mode (the first acceleration mode) and the WLAN weak acceleration (ie, the WIFI weak acceleration, the second acceleration mode).
  • the data switch of the WIFI and/or the LTE mobile network is automatically turned on, so that the WIFI and the mobile network can be used. Without the user having to manually turn it on.
  • a prompt message may also be popped up ("For example, "Turn on acceleration will turn on WIFI and move data, determine open?"), and after the user selects "Allow” ( For example, click the "OK” button to automatically turn on the data switch of the WIFI and / or LTE mobile network.
  • the description is made in the acceleration mode as the continuous acceleration mode.
  • the acceleration mode selected by the user is the continuous acceleration mode, as long as there is data service, that is, the WIFI and the LTE mobile network are used for data service transmission, the data service transmission rate will be greater than or equal to the WIFI network or the LTE mobile network to separately transmit the data service. The rate of time.
  • the data stream when the continuous acceleration mode is adopted, the data stream is offloaded to the LTE interface and the WIFI interface by using a preset offload weight.
  • the data stream can be allocated to two interfaces for transmission according to the preset split weight.
  • the preset split weight can be 1:1.
  • Flow weight that is, the data stream is equally distributed to two interfaces for transmission
  • other fixed-scale split weights for example, the ratio of the split weight of the LTE interface to the WIFI interface is 1:3, 2:3, 1:5, 4) :3 and so on).
  • the preset offload weights are adjusted according to the link quality of each interface.
  • the link quality here can be: rate, delay, packet loss rate, signal strength, and so on. Since the interface rate reflects the bandwidth of the interface to a certain extent, the interface with a large bandwidth can carry more data streams, so that the data stream is not easily transmitted from the interface with a small bandwidth, resulting in congestion of the interface with small bandwidth, resulting in large delay.
  • the rate is used as a basis for adjusting the weight of the split.
  • step S40 the change in the number of bytes on the interface is detected every predetermined time to calculate the rate of the interface. Specifically, if the rate of an interface is detected for the first time, the number of detected bytes is saved. If the rate of an interface is not detected for the first time, the number of interface bytes obtained is subtracted from the number of interface bytes obtained before, and the obtained difference is divided by the time of two detections. Current rate.
  • the rate of the interface can be the rate of the virtual interface of the kernel layer.
  • step S41 the offload weight of each interface is adjusted in real time according to the interface rate.
  • determining the split weight according to the rate of the interface is as follows:
  • the current real-time rate is assigned to the maximum rate (max_speed).
  • the calculation is performed according to the following formula:
  • the shunt weight of the i-th interface the maximum rate of the i-th interface / (the maximum rate of the first interface + the maximum rate of the second interface + ... + the maximum rate of the i-th interface + ...
  • the foregoing method for calculating the split weight according to the interface rate may adopt other manners, for example, pre-setting the relationship between the rate range and the split weight.
  • the split weight is 20%, and in the second range.
  • the weight of the shunt is 80% and so on.
  • step S2 of the embodiment of the present invention further includes: in the transmission process of the data service, according to the interface Rate, adjust the split weight; and adjust the data stream allocated to each interface based on the adjusted split weight.
  • the to-be-data service when the data service is transmitted, the to-be-data service may be divided into a plurality of data blocks (data streams) of the same size or different sizes to be respectively transmitted through the established multiple links.
  • a 10M-sized APK can be divided into 10 data blocks, each of which has a size of 1M, and each data block is transmitted through a link. Therefore, the offloading of the embodiment of the present invention allocates the data blocks to different interfaces according to the split weights for transmission.
  • the transmission of data services can be divided into uploading (sending to the peer) and downloading (receiving from the peer) based on the same principle.
  • the peer end When these data blocks are transmitted to the peer end (server or other networked device) through different interfaces of the terminal 100, the peer end performs data aggregation to obtain complete data.
  • the terminal 100 receives the data service through different interfaces, after the data block transmission of each interface is completed, the aggregation process is performed to obtain complete data.
  • the acceleration rate may be calculated based on a preset reference rate.
  • the preset reference rate may be any of the following: the maximum rate of the WIFI, the maximum rate of the LTE mobile network, and the maximum rate of the WIFI and the LTE mobile network.
  • the preset reference rate may also be other values, such as a fixed value, or a value selected among a set of fixed values depending on actual network conditions, and the like.
  • the acceleration rate is calculated every preset time and the displayed acceleration rate is updated.
  • the preset time may be 5 seconds, 10 seconds, or the like.
  • the rate calculation is performed every 5 seconds and the rate of acceleration displayed on the terminal interface is updated.
  • the acceleration rate for display can be iteratively calculated according to equation (1):
  • Acceleration rate for display (first acceleration rate ⁇ first threshold + second acceleration rate) / second threshold value (1)
  • the first threshold and the second threshold are integers greater than 0, and the first threshold plus 1 is equal to the second threshold.
  • the first threshold and the second threshold may be set to 11 and 12, respectively.
  • the rate of addition can be in the form of a percentage.
  • the first acceleration rate is the current display acceleration rate; the second acceleration rate is the real-time calculated acceleration rate.
  • formula (1) to obtain the acceleration rate for display can avoid the occurrence of "mutation", for example, a sudden change in network state (the link quality of WIFI network and LTE network fluctuates drastically), then according to formula (1) This causes the display rate to fluctuate drastically, affecting the user experience.
  • the second acceleration rate is directly set to a predetermined value.
  • the initial splitting algorithm may allocate the data stream to the LTE interface.
  • the transmission rate of the WIFI interface is 0, and the maximum rate of the WIFI interface is 0.
  • the second acceleration rate can be set to 60%, and the acceleration rate obtained according to formula (1) is increased by at most 5%.
  • Second acceleration rate ((average rate of WIFI + average rate of LTE - maximum rate of WIFI) / preset reference rate) ⁇ 100% (2)
  • the data stream is successfully allocated to the LTE interface and the WIFI interface according to the offload algorithm, and the maximum transmission rate of the WIFI interface is detected.
  • the second acceleration rate is assigned to -1. This situation shows that the simultaneous use of the LTE mobile network and WIFI does not increase the actual transmission efficiency, which may be due to the quality of the LTE mobile network link, for example, its link quality is poor. In one embodiment of the invention, if the second acceleration rate is -1, then the next iteration is not participated.
  • the average rate of the WIFI interface and the average rate of the LTE interface refer to an average rate within a preset time, for example, an average rate within 5 seconds.
  • the method for detecting the interface rate may be performed in the manner of the foregoing step S41, that is, the interface rate (that is, the rate of the virtual interface on the kernel side) is obtained according to the change of the number of interface bytes. Then, the average rate of the interface can be obtained by adding the multiple interface rates detected within the preset time and then dividing by the preset time.
  • the maximum rate of the WIFI interface refers to the maximum rate of the detected WIFI interface when the WIFI and LTE mobile networks are simultaneously enabled.
  • the maximum rate of the WIFI interface is an iterative value, that is, when the rate of the detected real-time WIFI interface is greater than the historical maximum rate of the WIFI interface, the maximum rate of the WIFI interface is updated to New rate.
  • the method of detecting the maximum rate of the WIFI interface may be confirmed in accordance with the manner of determining the maximum rate in the above step S41.
  • the maximum rate of the WIFI interface is iteratively obtained in the following manner:
  • the preset value for example, 1000
  • the rate of the interface may be the same as in the above steps S40 and S41, that is, the rate of the virtual interface set by the kernel layer, but it may also adopt the rate of the virtual interface set by the application layer.
  • the rate of the virtual interface of the application layer and the virtual interface of the kernel layer should be the same in theory, and therefore will not be described here.
  • some signaling interaction may be performed even if no data download or upload is performed, and if the transmission speed at this time is also Statistics in the acceleration ratio will produce errors. Therefore, when calculating the acceleration rate, the LTE mobile network is considered to be actually transmitting data only when the real-time rate of the LTE mobile network is greater than a preset value (for example, 10 KB/s). The calculation of the acceleration rate is performed according to the various cases and situations described in the formula (1) and the above.
  • the real-time rate of the WIFI network and the real-time rate of the LTE mobile network are displayed to the preset interface during the acceleration process.
  • the detection of the real-time rate can be performed in accordance with the above-described step S40.
  • the traffic of the LTE mobile network consumed during the acceleration process is displayed on the preset interface.
  • the third instruction of the user is received, and the network acceleration function of the terminal is ended according to the third instruction, and the traffic of the LTE mobile network is cleared.
  • the preset interface includes a dynamic display area; and the dynamic display area performs dynamic effect display according to the size of the acceleration rate.
  • the preset interface in the embodiment of the present invention includes at least one of the following: an acceleration interface (ie, an interface shown in FIG. 4), a notification bar of the terminal, and a status bar of the terminal.
  • the acceleration rate display and acceleration interface; the preset interface displaying the real-time rate of the WIFI network and the real-time rate of the LTE mobile network is a notification bar of the terminal. It should be understood that the acceleration rate, the real-time rate, the traffic of the LTE mobile network, and the like may be displayed on different interfaces according to specific requirements, so as to facilitate the user's viewing and the like, which is not limited by the embodiment of the present invention.
  • the calculated acceleration rate may be displayed in various forms, such as displaying the acceleration rate in a percentage system, displaying the acceleration rate in a dial system plus a dial or adding a column in a percentage system.
  • the way of the graph shows the acceleration rate and so on. Referring to Figure 6, an example of displaying the rate of increase in percent is shown, showing the words “127% average acceleration” on the user interface to allow the user to intuitively understand the rate of acceleration caused by the "continuous acceleration” mode. "127%” is calculated according to the calculation method described above.
  • the acceleration rate will be recalculated every preset time (for example, 5 seconds), and in some embodiments, the animation effect may be added to more intuitively display the user.
  • the rate of change process For example, when the acceleration rate is increased from “127%” to "200%", the area illuminated by the dial is increased, and when the acceleration rate "200%” is lowered to "127%", the area illuminated by the dial is performed. Reduced.
  • data traffic of a used mobile network is also displayed to the interface.
  • Mobile Data 1.1M has been used shows the data traffic of the used mobile network. Therefore, the user can conveniently confirm the process consumption of the mobile network, so that the user can adjust the acceleration mode according to the consumption of the data traffic. For example, when the data traffic exceeds a certain value, the user can turn off the acceleration, or adjust it to WLAN weak acceleration, and so on.
  • the number of bytes of the LTE data interface can be accumulated, and the accumulated traffic is displayed on the interface every preset time.
  • the preset time may be the same as the calculated time of the acceleration rate (for example, 5 seconds), or may be other values, for example, 1 second or shorter, in response to real-time traffic consumption.
  • the data traffic of the mobile network that has been used is the historical cumulative traffic from the start of the acceleration. That is, as long as the "on acceleration" switch is turned on, the accumulation of data traffic consumption of the mobile network is continuously performed, and the accumulated value is displayed on the interface. When the acceleration is turned on and the "on acceleration” is turned off, the statistical flow is cleared. Thus, accurate recording The user starts the traffic of the mobile network consumed after the acceleration.
  • statistics may be performed in units of B (bytes), KB (kilobytes), M (megabytes), and the like. Specifically, when the consumption of the traffic is within 1024 B, the statistics are performed in units of B, and the statistics may be accumulated once every 10 B. When the flow rate consumption exceeds 1024B and is in the range of 1024 KB, the statistics are performed in units of KB, and can be accumulated once every 1 KB. When the flow rate exceeds 1024 KB, the statistics are performed in units of M, and the accumulation can be performed once every 0.01 M.
  • the "notification bar display state" of the acceleration interface display is a notification bar for displaying the accelerated related information to the terminal 100.
  • the traffic of the rate-increasing and consumed mobile network is displayed to the notification bar for the user to view.
  • Fig. 7 there is shown a schematic diagram of an embodiment of displaying a notification bar.
  • the notification bar shows "1 Mb/s in acceleration, acceleration 2 Mb/s".
  • the real-time rate of WIFI (1 Mb/s) and the acceleration rate that is, the real-time rate of LTE (2 Mb/s) are displayed in the notification bar.
  • the rate displayed in the notification bar can be the real-time rate.
  • the real-time rate can be obtained according to the above rate detection method, and the accelerated rate can be obtained by superimposing the rates of the two interfaces.
  • the acceleration interface shown in FIG. 6 can be entered.
  • the embodiment of the invention can realize real network acceleration by using WIFI and LTE, can be accelerated according to the acceleration mode selected by the user, and can also display specific information of acceleration, such as speed improvement efficiency and consumption of mobile network data, and the like. , thereby improving the intelligence and flexibility of network acceleration and improving the user experience.
  • the above embodiment 1 details the network acceleration method and terminal of the "continuous acceleration” mode, which The embodiment will detail the network acceleration method and terminal of the "WLAN Weak Time Acceleration” mode.
  • the foregoing step S2 specifically includes:
  • the offloading weight of the LTE interface can be set to 0, or the radio frequency power supply of the LTE interface can be turned off (the power consumption can also be saved by this method).
  • the data distribution of the two interfaces may be performed by using the offloading algorithm mentioned in the foregoing Embodiment 1, and details are not described herein again.
  • the network acceleration method of this embodiment of the present invention further includes:
  • step S83 After the step S82, if the signal strength of the WIFI is higher than the second preset threshold, the data service is transmitted only through the WIFI interface.
  • the data service transmission is performed jointly by the WIFI interface and the LTE interface.
  • the switch is switched to transmit only through the WIFI interface, so as to save the user's movement. Network traffic.
  • the first preset threshold is less than or equal to the second preset threshold.
  • the second preset threshold is greater than the second preset threshold, for example, the first preset threshold is set to -75 dbm and the second predetermined threshold is set to -65 dbm.
  • the data is switched to the data service only through the WIFI interface.
  • the embodiment of the present invention can perform data service transmission based on the link. Therefore, when switching between the WIFI and the LTE mobile network, the newly created link can be transmitted through the adjusted interface. If a network abnormality occurs (such as a sudden interruption) on an interface, the data flow transmission of the current link may be completed by using a new link and retransmitting the corresponding data stream through another interface.
  • a network abnormality such as a sudden interruption
  • the acceleration rate is set to zero when data traffic is transmitted only through the WIFI interface.
  • the acceleration rate and the display acceleration rate are calculated according to the foregoing Embodiment 1, and details are not described herein again.
  • the WIFI and the LTE mobile network are used for data transmission together, and therefore, the rate of the WIFI interface (average rate, maximum rate, etc.) If the rate of the LTE interface is large, the rate of acceleration will be larger. In this case, the network acceleration will be very obvious, which can greatly improve the user experience.
  • the embodiment of the invention can realize real network acceleration by using WIFI and LTE, and can be rooted
  • the acceleration mode is selected according to the acceleration mode selected by the user, and the specific information of the acceleration, such as the speed improvement efficiency and the consumption of the mobile network data, can be displayed, thereby improving the intelligence and flexibility of the network acceleration and improving the user experience.
  • a corresponding embodiment of the present invention further provides a terminal, where the processor includes a processor configurable to perform the steps of the methods of the foregoing Embodiments 1 and 2, so that the WIFI and the LTE mobile network are enabled, and the acceleration is selected according to the user.
  • the mode performs data service transmission.
  • the processor herein can be the application processor 10 shown in FIG.
  • the terminal of the embodiment of the present invention may perform the network acceleration by using the network acceleration method of the foregoing embodiment 1 or 2.
  • the specific implementation details may refer to the foregoing description, and details are not described herein again.
  • the terminal 100 in the embodiment of the present invention may also be referred to as a mobile device, a terminal, an access terminal, a subscriber unit, and the like.
  • Terminal 100 can be a smart phone, tablet computer, laptop, or other device configured to communicate using LTE and WIFI wireless communication protocols.
  • Any process or method description in the flowcharts or otherwise described in the embodiments of the invention may be understood to represent code that includes one or more executable instructions for implementing the steps of a particular logical function or process. Modules, segments or portions, and the scope of the embodiments of the invention includes additional implementations, in which the functions may be performed in a substantially simultaneous manner or in an inverse order depending on the functions involved, in the order shown or discussed. This should be understood by those skilled in the art of the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种终端及其网络加速方法,该方法包括:检测终端的WIFI和LTE移动网络是否均已开启;若检测到WIFI和LTE移动网络均已开启,则根据用户选择的加速模式进行数据业务传输。该方法还包括:根据用户操作,开启终端的网络加速功能;当开启网络加速功能时,利用已开启的WIFI网络和已开启的LTE移动网络进行数据业务的加速,并将加速率显示到预设界面上。从而可实现利用WIFI和LTE进行真正的网络加速,可根据用户选择的加速模式进行加速,并且还可以显示加速的具体信息,如速度的提升效率以及移动网络数据的消耗量等等,从而提高了网络加速的智能性和灵活性,提高了用户体验。

Description

一种终端及其网络加速方法 技术领域
本发明涉及通信技术领域,更具体地说,涉及一种终端及其网络加速方法。
背景技术
随着移动通信技术的发展,先进的蜂窝网络(例如,基于LTE标准(长期演进,一些“4G”网络所使用的标准)的网络)正在全世界部署。由于引入了OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)和MIMO(Multi-Input & Multi-Output,多输入多输出)等关键技术,利用LTE标准可显著增加频谱效率和数据传输速率。终端利用蜂窝移动网络进行数据传输(例如,下载和上传)可极大改善用户的上网体验。
另一方面,终端还可利用WIFI等无线局域网技术进行数据传输。
然而,现在的终端在使用过程中,并不能同时利用移动网络和WLAN网络进行数据传输。而随着技术的发展,高清影视、游戏等大流量的应用层出不穷,利用单数据通道进行数据传输,由于数据通道的最大容量限制,仍不能满足用户日益增长的对传输速率的需求。
且现有的终端使用过程中,若是网速(移动网络或WLAN网络的速率)较慢,要进行加速时,通常仅仅是简单的释放后台的资源对终端进行加速,或者是关闭一些后台应用对终端进行加速,加速的效果不明显,不能满足用户的需求。而且用户对终端加速的具体情况也不清楚。显然,现在的网络加速方式不够智能、灵活。
因此,现有技术存在缺陷,需要改进。
发明内容
本发明实施例要解决的技术问题在于,针对现有技术的上述缺陷,提供一种终端及其网络加速方法。
本发明实施例解决其技术问题所采用的技术方案是:
第一方面,提供一种终端的网络加速方法,所述终端包括WIFI接口和LTE接口,所述方法包括:
检测终端的WIFI和LTE移动网络是否均已开启;
若检测到WIFI和LTE移动网络均已开启,则根据用户选择的加速模式进行数据业务传输。
在一个实施例中,所述方法包括:
根据用户选择的加速模式计算进行数据业务传输时的加速率,以及显示加速率。
在一个实施例中,以预设基准速率为基础,计算所述加速率;
所述预设基准速率为以下速率中任一者:WIFI的最大速率、LTE移动网络的最大速率、WIFI和LTE移动网络的最大速率较大者。
在一个实施例中,每隔预设时间,计算所述加速率,并对显示的加速率进行更新。
在一个实施例中,所述加速模式包括第一加速模式和第二加速模式;
其中,第一加速模式为数据业务的传输速率大于或等于WIFI网络或LTE移动网络进行数据业务传输的速率;
第二加速模式为优先利用已连接的WIFI网络进行数据业务传输,并在WIFI网络的信号强度低于预设阈值时,利用已连接的WIFI网络和已连接的LTE移动网络进行数据业务的加速。
在一个实施例中,当采用第一加速模式时,根据预设的分流权重将数据业务分配给LTE接口和WIFI接口进行传输。
在一个实施例中,当采用第二加速模式时,当WIFI的信号强度高于第一预设阈值时,仅通过WIFI接口进行数据业务传输;
在数据业务的传输过程中,当WIFI的信号强度低于第一预设阈值时,通过WIFI接口和LTE接口进行数据业务传输。
第二方面,提供一种终端,所述终端包括WIFI接口和LTE接口,所述终端还包括:处理器;
所述处理器配置为检测终端的WIFI和LTE移动网络是否均已开启;若检测到WIFI和LTE移动网络均已开启,则根据用户选择的加速模式进行数据业务传输。
在一个实施例中,所述加速模式包括第一加速模式和第二加速模式;
其中,第一加速模式为数据业务的传输速率大于或等于WIFI网络或LTE移动网络进行数据业务传输的速率;
第二加速模式为优先利用已连接的WIFI网络进行数据业务传输,并在WIFI网络的信号强度低于预设阈值时,利用已连接的WIFI网络和已连接的LTE移动网络进行数据业务的加速。
在一个实施例中,当采用第一加速模式时,所述处理器配置为根据预设分流权重将数据业务分配给LTE接口和WIFI接口进行传输。
在一个实施例中,当采用第二加速模式时,所述处理器配置为当WIFI的信号强度高于第一预设阈值时,仅通过WIFI接口进行数据业务传输;在数据业务的传输过程中,当WIFI的信号强度低于第一预设阈值时,通过WIFI接口和LTE接口进行数据业务传输;通过WIFI接口和LTE接口进行数据业务传输的过程中,若WIFI的信号强度高于第二预设阈值,则仅通过WIFI接口进行数据业务传输。
第三方面,提供另一种终端的网络加速方法,包括:
根据用户操作,开启终端的网络加速功能;
当开启网络加速功能时,利用已开启的WIFI网络和已开启的LTE移动网络进行数据业务的加速,并将加速率显示到预设界面上。
在一个实施例中,以预设基准速率为基础,计算所述加速率;
所述预设基准速率为以下速率中任一者:WIFI的最大速率、LTE移动网络的最大速率、WIFI和LTE移动网络的最大速率较大者。
在一个实施例中,所述利用已开启的WIFI网络和已开启的LTE移动网络进行数据业务的加速之前还包括:
接收用户的加速模式选择指令,并根据所述加速模式选择指令采用不同的加速模式进行数据业务的加速;
所述加速模式选择指令包括:选择第一加速模式的指令和选择第二加速模式的指令。
在一个实施例中,所述第一加速模式为数据业务的传输速率大于或等于WIFI网络或LTE移动网络进行数据业务传输的速率。
在一个实施例中,选择第一加速模式时,根据预设的分流权重将数据业务分配给已开启的WIFI网络和LTE移动网络进行传输。
在一个实施例中,所述第二加速模式为优先利用已连接的WIFI网络进行数据业务传输,并在WIFI网络的信号强度低于预设阈值时,利用已连接的WIFI网络和已连接的LTE移动网络进行数据业务的加速。
第四方面,提供另一种终端,包括:处理器;
所述处理器配置为根据用户操作,开启终端的网络加速功能;当开启网络加速功能时,利用已开启的WIFI网络和已开启的LTE移动网络进行数据业务的加速,并将加速率显示到预设界面上。
在一个实施例中,以预设基准速率为基础,计算所述加速率;
所述预设基准速率为以下速率中任一者:WIFI的最大速率、LTE移动网络的最大速率、WIFI和LTE移动网络的最大速率较大者。
在一个实施例中,所述处理器还配置为,在利用已开启的WIFI网络和已开启的LTE移动网络进行数据业务的加速之前,接收用户的加速模式选择指令,并根据所述加速模式选择指令采用不同的加速模式进行数据业务的加速;
所述加速模式选择指令包括:选择第一加速模式的指令和选择第二加速模式的指令;
所述第一加速模式为数据业务的传输速率大于或等于WIFI网络或LTE移动网络进行数据业务传输的速率;
所述第二加速模式为优先利用已连接的WIFI网络进行数据业务传输,并在WIFI网络的信号强度低于预设阈值时,利用已连接的WIFI网络和已连接的LTE移动网络进行数据业务的加速。
本发明实施例解决其技术问题所采用的技术方案是:
实施本发明实施例的终端及其网络加速方法,具有以下有益效果:可实现利用WIFI和LTE进行真正的网络加速,可根据用户选择的加速模式进行加速,并且还可以显示加速的具体信息,如加速率以及移动网络数据的消耗量等等,从而提高了网络加速的智能性和灵活性,提高了用户体验。
附图说明
图1是本发明一实施例的终端的结构示意图;
图2是本发明一实施例的终端100的网络接入示意图;
图3是本发明一实施例的网络加速方法的流程示意图一;
图4是本发明一实施例的终端的显示示意图;
图5是本发明一实施例的接口速率的检测流程示意图;
图6是本发明另一实施例的终端的显示示意图;
图7是本发明一实施例的通知栏进行显示的一实施例的示意图;
图8是本发明另一实施例的网络加速方法的流程示意图;
图9是本发明一实施例的网络切换的示意图;
图10为本发明一实施例的网络加速方法的流程示意图二。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
参见图1为本发明一实施例的终端的结构示意图。终端100包括:应用处理器10、调制解调处理器11、存储器12、WIFI接口13和LTE接口14。LTE接口14可以包括使得终端100能够使用LTE无线通信协议来发送和/或接收数据的无线接收机、发射机、收发机和/或其它元件。LTE接口与天线连接,该天线用于发送信号至被配置为使用LTE无线通信协议的小区或其它无线设备,以及接收来自于它们的信号。WIFI接口13可以包括使终端100能够使用WIFI无线通信协议来发送和/或接收数据的无线接收机、发射机、收发机和/或其它元件。WIFI接口与天线连接,该天线用于发送信号至被配置为使用WIFI无线通信协议来进行通信的调制解调器/路由器和/或其它无线设备,以及接收来自于它们的通信。
应用处理器10用于处理复杂的逻辑操作以及进行任务分配,为用户提供交互接口。应用处理器10还用于执行终端100的操作系统。调制解调处理器11用于完成协议处理,以及对收发的通信数据进行调制解调等。
存储器12存储应用处理器10可读、可执行的软件代码,其包含用于控制应用处理器10执行功能指令等等。
参见图2为本发明一实施例的终端100的网络接入示意图。终端100通过其WIFI接口与路由器20通信,以经由网络21与服务器22和/或其它联网的设备进行通信。终端100通过其LTE接口接入小区(基站)23,与调制解调器24通信,以经由网络21与服务器22和/或其它联网的设备进行通信。
调制解调器24可以被配置为为小区23提供经由带宽连接到网络21的有线和/或无线网络连接。
路由器20可以被配置为用作可使用一个或多个WIFI通信协议来提供到终端100和/或其它设备的无线网络连接性的无线接入点。
输入输出设备15包括输入单元(例如,触摸屏、非接触输入装置等等)和显示单元(例如,显示屏)。输入单元可以根据用户输入的命令生成键输入数据以控制终端100的各种操作。输入单元允许用户输入各种类型的信息,并且可以包括键盘、触摸板(例如,检测由于被接触而导致的电阻、压力、电容等等的变化的触敏组件)、按键等等。显示单元可以显示在终端100中处理的信息。例如,可以显示文本消息收发、多媒体文件下载等等相关的用户界面(UI)或图形用户界面(GUI)。
应理解,在本发明的实施例中,接口包含两层含义,一是物理意义上的接口,即图1中所示的LTE接口和WIFI接口;一是虚拟的接口,即软件层面的虚拟接口,其是与硬件接口相对应的,例如,本发明一实施例的操作系统可分为内核层、框架层和应用层。在内核层可设置两个虚拟的接口,一个用于与调制解调器处理器11进行数据交互,进而与LTE接口14进行数据交互,使得相关数据流可经该虚拟的接口最终通过相应的硬件接口LTE接口进行传输;另一个用于与WIFI接口13进行数据交互,使得相关数据流可经该虚拟的接口最终通过相应的硬件接口LTE接口进行传输。因此,在本发明的后续实施例中,所指的接口速率、接口的平均速率、接口的最大速率等等,是指的与相应的硬件接口相对应的虚拟接口的速率。此外,在应用层也可设置相应的虚拟接口,与内核层的虚拟接口和硬件接口相对应。
由上所述,本发明实施例的终端设置有LTE接口和WIFI接口,可支持通过LTE接口和WIFI接口同时进行数据流的传输,即对于同一数据流, 可通过LTE接口传输该数据流的一部分,而通过WIFI接口传输该数据流的另一部分。
基于上述描述的终端,提出本发明以下的实施例。
实施例1
参见图3,本发明该一实施例的网络加速方法包括:
S1、检测终端的WIFI和LTE移动网络是否均已开启。
在本发明的实施例中,进行网络加速时,需同时开启WIFI和LTE移动网络。WIFI即通过WIFI接口传输数据流,移动网络即通过LTE接口传输数据流。在本发明的实施例中,当连接WIFI和移动网络,且开启了网络加速功能时,可使用WIFI和LTE移动网络进行网络加速。
由此,本发明实施例中,当用户同时开启WIFI和移动网络时,可实现使用WIFI和LTE移动网络进行数据流的传输。
应理解,WIFI和LTE移动网络的开启可通过打开相应的数据开关,以使得两者均可使用即可。
S2、若检测到WIFI和LTE移动网络均已开启,则根据用户选择的加速模式进行数据业务传输。
在本发明的一实施例中,参见图4,仅当WIFI和LTE移动网络被同时开启时,才可操作“开启加速”的开关按钮。该开关按钮开启后,可选择的加速模式包括:持续加速模式(第一加速模式)和WLAN弱时加速(即WIFI弱时加速,第二加速模式)。
在本发明的另一些实施例中,当用户开启加速模式时,若没有同时开启WIFI和LTE移动网络,则将自动将WIFI和/或LTE移动网络的数据开关开启,使得WIFI和移动网络可使用,而无需用户手动进行开启。在自动开启WIFI和/或LTE移动网络的数据开关之前,还可弹出提示信息(“例如,“开启加速将会打开WIFI和移动数据,确定打开?”),并在用户选择“允 许”后(例如,点击“确定”按钮),自动将WIFI和/或LTE移动网络的数据开关开启。
在该实施例1中,以加速模式为持续加速模式进行描述。当用户选择的加速模式为持续加速模式时,只要有数据业务,即采用WIFI和LTE移动网络进行数据业务的传输,数据业务的传输速率将大于或等于WIFI网络或LTE移动网络单独进行数据业务传输时的速率。
在一个实施例中,当采用持续加速模式时,采用预设的分流权重,对LTE接口和WIFI接口进行数据流的分流。可以为按照预设的分流权重将数据流分配给两个接口同时进行传输,例如,预设的分流权重可以为1:1的分流权重(即将数据流平均分配给两个接口进行传输)、或其它固定比例的分流权重(例如,LTE接口与WIFI接口的分流权重之比为1:3、2:3、1:5、4:3等等)。
为了更加合理的利用LTE接口和WIFI接口,在一个实施例中,预设的分流权重将根据各接口的链路质量进行调整。这里的链路质量可以是:速率、时延、丢包率、信号强度等等。由于接口速率在一定程度上体现了接口带宽的大小,带宽大的接口可承载更多的数据流,从而不容易出现数据流从带宽小的接口传输,造成带宽小的接口拥塞,导致时延大、丢包率高等状况,本发明的一优先实施例中,采用速率作为分流权重的调整依据。
参见图5,在步骤S40中,每隔预设时间,检测接口上字节数的变化以计算该接口的速率。具体的,若为第一次检测某一接口的速率,则将检测得到的字节数保存。若不是第一次检测某一接口的速率,则将获取得到的接口字节数减去前一次获取得到的接口字节数,得到的差值再除以两次检测的时间即为该接口的当前速率。
在该步骤中,接口的速率可为内核层虚拟的接口的速率。
在步骤S41中,根据接口速率,实时调整各接口的分流权重。
具体的,在本发明的一实施例中,根据接口的速率确定分流权重采用以下方式:
对接口进行测速,并检测接口是否处于拥塞状态,若是,则判断当前的实时速率比之前统计的最大速率(max_speed)是否更小,如果更小,当前实时速率加上一预设值(例如,100KB/s)后是否小于最大速率(max_speed),如果是,则说明网络环境发生了较大的变换,将当前实时速率赋值给最大速率(max_speed);
若接口不处于拥塞状态,且当前实时速率大于max_speed,则将当前实时速率赋值给最大速率(max_speed)。
在本发明的一实施例中,当根据接口的速率计算分流权重时,按照以下公式进行计算:
第i个接口的分流权重=第i个接口的最大速率/(第1个接口的最大速率+第2个接口的最大速率+……+第i个接口的最大速率+……)
应理解,上述按照接口速率计算分流权重还可采用其它的方式,例如,预先设定速率范围与分流权重的关系,当速率在第一范围时,分流权重为20%,而在第二范围时,分流权重为80%等等方式。
由于网络环境是实时变化的,各接口的状态(例如,是否连通状态、速率等)是实时变化的,因此,本发明实施例的步骤S2还包括:在数据业务的传输过程中,根据接口的速率,调整分流权重;并基于调整后的分流权重,调整分配到各接口的数据流。
应理解,本发明的实施例中,在进行数据业务传输时,可将待数据业务划分为多个大小相同或不同的数据块(数据流),以分别通过建立的多条链接进行传输。例如,可将一个10M大小的APK,划分为10个数据块,每个数据块的大小为1M,且每个数据块通过一条链接进行传输。由此,本发明实施例的分流即将这些数据块按照分流权重分配给不同的接口进行传 输。应理解,数据业务的传输可分为上传(发送给对端)和下载(从对端接收)是基于同样的原理。当这些数据块通过终端100的不同的接口传输到对端(服务器或其它联网设备)后,对端进行数据聚合即可得到完整的数据。而当终端100通过不同的接口接收数据业务时,当各个接口的数据块传输完成后,即进行聚合处理以得到完整的数据。
本发明实施例还包括:根据用户选择的加速模式计算进行数据业务传输时的加速率,以及显示加速率。
具体的,可以预设基准速率为基础,计算加速率。预设基准速率可为以下速率中任一者:WIFI的最大速率、LTE移动网络的最大速率、WIFI和LTE移动网络的最大速率较大者。预设基准速率还可为其它值,例如,一固定值,或根据实际网络情况在一组固定值中选择出的值等等。
在本发明的一实施例中,采用以下方式进行加速率的计算:加速率=((WIFI的平均速率+LTE的平均速率-WIFI的最大速率)/预设基准速率)×100%。
为了反应真正的网络加速状态,每隔预设时间,计算加速率,并对显示的加速率进行更新。
在本发明的一个实施例中,预设时间可以为5秒、10秒等。为了增加准确率,在一个实施例中每隔5秒进行一次加速率的计算,并更新终端界面上显示的加速率。
用于显示的加速率可按照式(1)进行迭代计算:
用于显示的加速率=(第一加速率×第一阈值+第二加速率)/第二阈值  式(1)
式(1)中,第一阈值和第二阈值为大于0的整数,且第一阈值加上1等于第二阈值,例如,可将第一阈值和第二阈值分别设为11和12。加速率可采用百分制的形式。其中,第一加速率为当前显示的加速率;第二加速 率为实时计算得到的加速率。
采用式(1)获取用于显示的加速率,可避免“突变”的产生,例如,网络状态突变(WIFI网络和LTE网络的链路质量发生剧烈的波动),则根据式(1)不会使得显示的加速率剧烈的波动,影响用户体验。
在本发明的实施例中,在采用式(1)进行加速率的计算时,可进一步考虑以下情况:
(1)当WIFI接口的最大速率为0时,将第二加速率直接设为预定值。此种情况,是由于初始时,分流算法可能将数据流全部分配到LTE接口,则在初始的一段时间内,WIFI接口的传输速率为0,导致WIFI接口的最大速率为0。例如,在一实施例中,可将第二加速率设为60%,则根据公式(1)得到的加速率最多增加5%。
(2)当(LTE接口的平均速率+WIFI接口的平均速率)>WIFI接口的最大速率时,式(1)中的第二加速率根据式(2)计算:
第二加速率=((WIFI的平均速率+LTE的平均速率-WIFI的最大速率)/预设基准速率)×100%          式(2)
此情况中,已成功根据分流算法将数据流分配到了LTE接口和WIFI接口,WIFI接口的最大传输速率被检测到。
(3)当(LTE接口的平均速率+WIFI接口的平均速率)<=WIFI接口的最大速率时,将第二加速率赋值为-1。此种情况说明,同时使用LTE移动网络和WIFI并没有增加实际的传输效率,这有可能是由于LTE移动网络链路质量导致的,例如,其链路质量很差。在本发明的一个实施例中,若第二加速率为-1,则不参与下一次的迭代。
以下将详细介绍上述的LTE接口的平均速率、WIFI接口的平均速率、WIFI接口的最大速率的检测、迭代等的方法的一示例性实施例:
在本发明的一实施例中,WIFI接口的平均速率和LTE接口的平均速率 是指在预设时间内的平均速率,例如,5秒内的平均速率。具体的,接口速率的检测方法可按照前述的步骤S41的方式进行,即根据接口字节数的变化得到接口速率(即内核侧的虚拟接口的速率)。然后,将预设时间内检测到的多个接口速率相加后再除以预设时间即可得到接口的平均速率。
WIFI接口的最大速率是指在同时开启了WIFI和LTE移动网络时,检测到的WIFI接口的最大速率。在本发明的一个实施例中,WIFI接口的最大速率是一个不断迭代的值,即当检测到的实时的WIFI接口的速率大于WIFI接口的历史最大速率时,将WIFI接口的最大速率进行更新为新的速率。
在一些实施例中,WIFI接口的最大速率的检测方法可按照上述步骤S41中的最大速率的确定方式进行确认。
在另一些实施例中,为了增加准确率和反应真实的网络环境,WIFI接口的最大速率按照以下方式进行迭代获得:
情形1:当在连续的预设时间内(例如,30s),第二加速率为-1,则表明(WIFI接口的平均速率和LTE接口的平均速率)<=WIFI接口的最大速率,此时有可能WIFI接口的最大速率被高估,即终端可能从一个较好的WIFI环境移动到了一个较差的WIFI环境。此时,需要降低WIFI接口的最大速率的估值,因此,将WIFI接口的最大速率设置为WIFI接口的最大速率的二分之一(即当前WIFI接口的最大速率/2后赋值给WIFI接口的最大速率)。应理解,由于本发明中需要将加速率显示在用户界面上,因此,为了保证界面显示时的偏移量,采用“当前WIFI接口的最大速率/2”以快速降低估值。
情形2:当在连续的预设时间内(例如,30秒内),第二加速率趋于无限大(式2中WIFI接口的最大速率趋于0)或高于预设值(例如,1000)时,则WIFI接口的最大速率估值过小,需要增加WIFI接口的最大速率。 此时,若WIFI接口的平均速率大于WIFI接口的最大速率,则将WIFI接口的最大速率设为WIFI接口的平均速率;否则,将WIFI接口的最大速率设为当前WIFI接口的最大速率×预设倍数,例如,WIFI接口的最大速率=当前WIFI接口的最大速率×1.2。
情形3:当加速率小于预设值(例如,1000)且大于0时,认为WIFI接口的最大速率是合理的,此时,若WIFI接口的平均速率>WIFI接口的最大速率,则将WIFI接口的最大速率设为:(当前WIFI接口的最大速率×m+WIFI接口的平均速率)/n。其中,m+1=n,m和n为大于0的整数。例如,可将m设为11,则n设为12。该情形下,对WIFI接口的最大速率的处理是为了避免WIFI接口的速率突变时,导致在界面显示的加速率的剧烈波动,因此采用了此“缓和”的处理方式。
应理解,在计算加速率的过程中,接口的速率可和上述步骤S40和S41中的相同,即采用内核层设置的虚拟接口的速率,但其也可采用应用层设置的虚拟接口的速率。而应用层的虚拟接口和内核层的虚拟接口的速率在理论上应相同,因此,在此不再赘述。
在一些实施例中,当终端100连接上LTE移动网络后,即使不进行任何数据下载或上传,也可能会进行一些信令的交互(或类似的消息传输),若将此时的传输速度也统计在加速比率中,会产生误差。因此,在计算每次加速率时,只有当LTE移动网络的实时速率大于预设值(例如,10KB/s时),才认为LTE移动网络在进行实际的数据传输。即才根据式(1)及上述描述的各种情况和情形进行加速率的计算。
在本发明的实施例中,计算得出的加速率,可以采用多种形式进行加速率的显示,例如,以百分制显示加速率、以百分制加上表盘的方式显示加速率或以百分制加上柱状图的方式显示加速率等等。参见图6,显示了以百分制显示加速率的一个示例,即在用户界面上显示“127%平均加速”的字 样,以使得用户直观的了解“持续加速”模式带来的加速率。“127%”即是根据上述所述的计算方法计算得出的。
由于根据上述的描述,本发明的实施例中,每隔预设时间(例如,5秒)将会重新计算加速率,在一些实施例中,还可增加动画效果,以更加直观的为用户展示加速率的变化过程。例如,当加速率从“127%”增加到“200%”时,将表盘点亮的面积进行增大,当加速率“200%”降低到“127%”时,将表盘点亮的面积进行减小。
参见图6,本发明的一个实施例中,还将已使用的移动网络的数据流量显示到界面上。图6中,“已使用移动数据1.1M”即显示的是已使用的移动网络的数据流量。由此,可方便用户对移动网络的流程消耗进行确认,使得用户可根据数据流量的消耗进行加速模式的调整。例如,当数据流量耗费超过一定值时,用户可关闭加速,或将其调整为WLAN弱时加速等等。
进行移动网络的数据流量的累计时,可以将LTE数据接口的字节数进行累计,并每隔预设时间将累计的流量显示到界面上。预设时间可和加速率的计算的时间相同(例如,5秒),也可为其它的值,例如,1秒或更短,以反应实时的流量消耗。
应理解,在本发明的实施例中,已使用的移动网络的数据流量是从开启加速开始的历史累计流量。即只要“开启加速”的开关被打开,则将持续的进行移动网络的数据流量消耗的累计,并将累计的值显示到界面上。而当开启加速后又关闭了“开启加速”则将统计的流量清零。由此,可准确的记录用户开启加速后消耗的移动网络的流量。
应理解,在统计移动网络的数据流量的消耗时,可以B(字节)、KB(千字节)、M(兆)等为单位进行统计。具体的,当流量的消耗在1024B以内时,以B为单位进行统计,统计时,可每10B进行一次累计。当流量的消耗超过1024B,且在1024KB范围内时,以KB为单位进行统计,可每 1KB进行一次累计。当流量超过1024KB时,以M为单位进行统计,可每0.01M进行一次累计。
参见图6,界面显示的“通知栏显示状态”是用于将加速的相关信息显示到终端100的通知栏。例如,将加速率和消耗的移动网络的流量显示到通知栏,方便用户查看。参见图7所示为通知栏进行显示的一实施例的示意图,通过通知栏显示了“加速中1Mb/s,加速2Mb/s”。在本发明的实施例中,在通知栏中显示的是:WIFI的速率(1Mb/s)、加速速率即LTE的速率(2Mb/s)。也可以将加速前的速率(如WIFI的速率)和加速后的速率(WIFI和LTE移动网络的速率和)进行显示,是用户直观了解速率的改变,提升用户体验。通知栏显示的速率可为实时速率。该实时速率可根据上述的速率检测方法获得,加速后的速率可将两个接口的速率进行叠加获得。
当用户点击通知栏中的“加速中1Mb/s,加速2Mb/s”和/或其相对应的图标时,可进入到图6所示的加速界面。
本发明实施例,可实现利用WIFI和LTE进行真正的网络加速,可根据用户选择的加速模式进行加速,并且还可以显示加速的具体信息,如速度的提升效率以及移动网络数据的消耗量等等,从而提高了网络加速的智能性和灵活性,提高了用户体验。
实施例2
以上的实施例1详细描述了“持续加速”模式的网络加速方法和终端,该实施例将详述“WLAN弱时加速”模式的网络加速方法和终端。
参见图8,当加速模式为“WLAN弱时加速”,即第二加速模式时,上述的步骤S2具体包括:
S81、当WIFI的信号强度高于第一预设阈值时,仅通过WIFI接口进行数据业务传输。
在该步骤中,由于WIFI和LTE移动网络均处于开启状态,当WIFI的 信号强度高于第一预设阈值时,所有的数据流均通过WIFI接口进行传输。例如,当WIFI的信号强度高于第一预设阈值时,可通过将LTE接口的分流权重设置为0,或者关闭LTE接口的射频供电(通过该方式还可起到节省功耗的作用)。
S82、在数据业务的传输过程中,当WIFI的信号强度低于第一预设阈值时,通过WIFI接口和LTE接口进行数据业务传输。
在该步骤中,为了避免类似“乒乓效应”,当WIFI的信号强度低于第一预设阈值一预设时长后,才切换为通过WIFI接口和LTE接口共同进行数据业务的传输。
该步骤中,当通过WIFI接口和LTE接口共同进行数据业务传输时,可采用上述实施例1中提到的分流算法对两个接口进行数据流的分配,在此不再赘述。
在该实施例中,若WIFI的信号强度低于一定值(例如,-120dbm),则其WIFI接口的速率将接近于0,由此,根据分流算法,可将全部的数据流均分配给LTE接口进行传输。继续参见图8,本发明该实施例的网络加速方法还包括:
S83、在步骤S82之后,若WIFI的信号强度高于第二预设阈值,则仅通过WIFI接口进行数据业务传输。
在该步骤中,通过WIFI接口和LTE接口共同进行数据业务传输的过程中,考虑到了WIFI的信号强度再次提高的情况,若WIFI的信号强度从第一预设阈值,提高为高于第二预设阈值,则切换为仅通过WIFI接口进行传输,以为用户节省移动网络的流量。
其中,第一预设阈值小于或等于第二预设阈值。在一个优选的实施例中,第二预设阈值大于第二预设阈值,例如,第一预设阈值设为-75dbm,而第二预设阈值设为-65dbm。同样基于类似“乒乓效应”的原理,当WIFI 的信号强度高于第二预设阈值一预设时长后,才切换为仅通过WIFI接口进行数据业务的传输。
本发明的实施例可基于链接进行数据业务传输,因此,当在WIFI和LTE移动网络间切换时,将新建的链接通过调整后的接口进行传输即可。而若某一接口发生网络异常(如突然中断)等情况,可采用新建链接并通过另一接口重新传输相应的数据流的方式完成当前链接未完成的数据流传输。
在本发明的该实施例中,当仅通过WIFI接口进行数据业务传输时,将加速率设为0。当同时通过WIFI和LTE移动网络进行数据业务传输时,按照上述实施例1,计算加速率和显示加速率,在此不再赘述。
应理解,由于该实施例中,是当WIFI的信号强度低于第一预设阈值时,才使用WIFI和LTE移动网络共同进行数据传输,因此,WIFI接口的速率(平均速率、最大速率等)会较低,若LTE接口的速率较大,则最终得到的加速率会较大,即此种情况下,网络加速将十分明显,可极大的提升用户体验。
本发明实施例,可实现利用WIFI和LTE进行真正的网络加速,可根据用户选择的加速模式进行加速,并且还可以显示加速的具体信息,如速度的提升效率以及移动网络数据的消耗量等等,从而提高了网络加速的智能性和灵活性,提高了用户体验。
应理解,如无特别说明,本发明实施例中的“=”是“赋值于”的含义。
相应的本发明实施例还提供一种终端,其包括一处理器可配置为执行上述实施例1和2的方法步骤,以实现在其WIFI和LTE移动网络均已开启,根据用户选择的加速模式进行数据业务传输。这里的处理器可为图1中所示的应用处理器10。
应理解,本发明实施例的终端可采用上述实施例1或2的网络加速方 法进行网络加速,其具体实现细节可参照上述的描述,在此不再赘述。
本发明实施例中的终端100还可以被称为移动设备、终端、接入终端、用户单元等。终端100可以是智能电话、平板计算机、笔记本电脑、或者被配置为使用LTE和WIFI无线通信协议进行通信的其它设备。
实施例3
参见图10,本发明该一实施例的网络加速方法包括:
S101、根据用户操作,开启终端的网络加速功能。
在本发明的实施例中,进行网络加速时,需同时连接WIFI和LTE移动网络。WIFI即通过WIFI接口传输数据流,移动网络即通过LTE接口传输数据流。在本发明的实施例中,当同时连接WIFI和移动网络,且开启了网络加速功能时,可同时使用WIFI和LTE移动网络进行网络加速。
由此,本发明实施例中,当用户同时开启WIFI和移动网络时,可实现同时使用WIFI和LTE移动网络进行数据流的传输。
应理解,WIFI和LTE移动网络的开启可通过打开相应的数据开关,以使得两者均可使用即可。
在本发明的实施例中,用户可以通过触摸、点击相应的区域等等操作,开启终端的网络加速功能。例如,可通过上下滑动终端的触摸屏左侧边缘开启网络加速功能、通过预设虚拟或实体按键开启网络加速功能、通过点击终端设置中的相应选项开启网络加速功能等等。本发明实施例对此不作限制。
在本发明的一实施例中,当接收到第二指令时,若终端的WIFI网络和/或LTE移动网络未开启,则将未开启的WIFI网络和/或LTE移动网络开启后,开启终端的网络加速功能。将未开启的WIFI网络和/或LTE移动网络开启之前还包括:输出提示信息以供用户选择是否要将未开启的WIFI网络和/或LTE移动网络进行开启。
在一个实施例中,利用已开启的WIFI网络和已开启的LTE移动网络进行数据业务的加速之前还包括:接收用户的加速模式选择指令,并根据所述加速模式选择指令采用不同的加速模式进行数据业务的加速。加速模式选择指令包括:选择第一加速模式的指令和选择第二加速模式的指令。
在本发明的一示例性实施例中,参见图4,当用户输入相应的操作指令后,可开启网络加速功能的控制界面。仅当WIFI和LTE移动网络被同时开启时,才可操作“开启加速”的开关按钮。用户点击该开关按钮开启后,,即开启网络加速功能,并可选择相应的加速模式:持续加速模式(第一加速模式)和WLAN弱时加速(即WIFI弱时加速,第二加速模式)。
在本发明的另一些实施例中,当用户开启加速功能时,若没有同时开启WIFI和LTE移动网络,则将自动将WIFI和/或LTE移动网络的数据开关开启,使得WIFI和移动网络可使用,而无需用户手动进行开启。在自动开启WIFI和/或LTE移动网络的数据开关之前,还可弹出提示信息(“例如,“开启加速将会打开WIFI和移动数据,确定打开?”),并在用户选择“允许”后(例如,点击“确定”按钮),自动将WIFI和/或LTE移动网络的数据开关开启。
S102、当开启网络加速功能时,利用已开启的WIFI网络和已开启的LTE移动网络进行数据业务的加速,并将加速率显示到预设界面上。
在该实施例1中,以加速模式为持续加速模式进行描述。当用户选择的加速模式为持续加速模式时,只要有数据业务,即采用WIFI和LTE移动网络进行数据业务的传输,数据业务的传输速率将大于或等于WIFI网络或LTE移动网络单独进行数据业务传输时的速率。
在一个实施例中,当采用持续加速模式时,采用预设的分流权重,对LTE接口和WIFI接口进行数据流的分流。可以为按照预设的分流权重将数据流分配给两个接口同时进行传输,例如,预设的分流权重可以为1:1的分 流权重(即将数据流平均分配给两个接口进行传输)、或其它固定比例的分流权重(例如,LTE接口与WIFI接口的分流权重之比为1:3、2:3、1:5、4:3等等)。
为了更加合理的利用LTE接口和WIFI接口,在一个实施例中,预设的分流权重将根据各接口的链路质量进行调整。这里的链路质量可以是:速率、时延、丢包率、信号强度等等。由于接口速率在一定程度上体现了接口带宽的大小,带宽大的接口可承载更多的数据流,从而不容易出现数据流从带宽小的接口传输,造成带宽小的接口拥塞,导致时延大、丢包率高等状况,本发明的一优先实施例中,采用速率作为分流权重的调整依据。
参见图5,在步骤S40中,每隔预设时间,检测接口上字节数的变化以计算该接口的速率。具体的,若为第一次检测某一接口的速率,则将检测得到的字节数保存。若不是第一次检测某一接口的速率,则将获取得到的接口字节数减去前一次获取得到的接口字节数,得到的差值再除以两次检测的时间即为该接口的当前速率。
在该步骤中,接口的速率可为内核层虚拟的接口的速率。
在步骤S41中,根据接口速率,实时调整各接口的分流权重。
具体的,在本发明的一实施例中,根据接口的速率确定分流权重采用以下方式:
对接口进行测速,并检测接口是否处于拥塞状态,若是,则判断当前的实时速率比之前统计的最大速率(max_speed)是否更小,如果更小,当前实时速率加上一预设值(例如,100KB/s)后是否小于最大速率(max_speed),如果是,则说明网络环境发生了较大的变换,将当前实时速率赋值给最大速率(max_speed);
若接口不处于拥塞状态,且当前实时速率大于max_speed,则将当前实时速率赋值给最大速率(max_speed)。
在本发明的一实施例中,当根据接口的速率计算分流权重时,按照以下公式进行计算:
第i个接口的分流权重=第i个接口的最大速率/(第1个接口的最大速率+第2个接口的最大速率+……+第i个接口的最大速率+……)
应理解,上述按照接口速率计算分流权重还可采用其它的方式,例如,预先设定速率范围与分流权重的关系,当速率在第一范围时,分流权重为20%,而在第二范围时,分流权重为80%等等方式。
由于网络环境是实时变化的,各接口的状态(例如,是否连通状态、速率等)是实时变化的,因此,本发明实施例的步骤S2还包括:在数据业务的传输过程中,根据接口的速率,调整分流权重;并基于调整后的分流权重,调整分配到各接口的数据流。
应理解,本发明的实施例中,在进行数据业务传输时,可将待数据业务划分为多个大小相同或不同的数据块(数据流),以分别通过建立的多条链接进行传输。例如,可将一个10M大小的APK,划分为10个数据块,每个数据块的大小为1M,且每个数据块通过一条链接进行传输。由此,本发明实施例的分流即将这些数据块按照分流权重分配给不同的接口进行传输。应理解,数据业务的传输可分为上传(发送给对端)和下载(从对端接收)是基于同样的原理。当这些数据块通过终端100的不同的接口传输到对端(服务器或其它联网设备)后,对端进行数据聚合即可得到完整的数据。而当终端100通过不同的接口接收数据业务时,当各个接口的数据块传输完成后,即进行聚合处理以得到完整的数据。
本发明的实施例中,可以预设基准速率为基础,计算加速率。预设基准速率可为以下速率中任一者:WIFI的最大速率、LTE移动网络的最大速率、WIFI和LTE移动网络的最大速率较大者。预设基准速率还可为其它值,例如,一固定值,或根据实际网络情况在一组固定值中选择出的值等等。
在本发明的一实施例中,采用以下方式进行加速率的计算:加速率=((WIFI的平均速率+LTE的平均速率-WIFI的最大速率)/预设基准速率)×100%。
为了反应真正的网络加速状态,每隔预设时间,计算加速率,并对显示的加速率进行更新。
在本发明的一个实施例中,预设时间可以为5秒、10秒等。为了增加准确率,在一个实施例中每隔5秒进行一次加速率的计算,并更新终端界面上显示的加速率。
用于显示的加速率可按照式(1)进行迭代计算:
用于显示的加速率=(第一加速率×第一阈值+第二加速率)/第二阈值  式(1)
式(1)中,第一阈值和第二阈值为大于0的整数,且第一阈值加上1等于第二阈值,例如,可将第一阈值和第二阈值分别设为11和12。加速率可采用百分制的形式。其中,第一加速率为当前显示的加速率;第二加速率为实时计算得到的加速率。
采用式(1)获取用于显示的加速率,可避免“突变”的产生,例如,网络状态突变(WIFI网络和LTE网络的链路质量发生剧烈的波动),则根据式(1)不会使得显示的加速率剧烈的波动,影响用户体验。
在本发明的实施例中,在采用式(1)进行加速率的计算时,可进一步考虑以下情况:
(1)当WIFI接口的最大速率为0时,将第二加速率直接设为预定值。此种情况,是由于初始时,分流算法可能将数据流全部分配到LTE接口,则在初始的一段时间内,WIFI接口的传输速率为0,导致WIFI接口的最大速率为0。例如,在一实施例中,可将第二加速率设为60%,则根据公式(1)得到的加速率最多增加5%。
(2)当(LTE接口的平均速率+WIFI接口的平均速率)>WIFI接口的最大速率时,式(1)中的第二加速率根据式(2)计算:
第二加速率=((WIFI的平均速率+LTE的平均速率-WIFI的最大速率)/预设基准速率)×100%            式(2)
此情况中,已成功根据分流算法将数据流分配到了LTE接口和WIFI接口,WIFI接口的最大传输速率被检测到。
(3)当(LTE接口的平均速率+WIFI接口的平均速率)<=WIFI接口的最大速率时,将第二加速率赋值为-1。此种情况说明,同时使用LTE移动网络和WIFI并没有增加实际的传输效率,这有可能是由于LTE移动网络链路质量导致的,例如,其链路质量很差。在本发明的一个实施例中,若第二加速率为-1,则不参与下一次的迭代。
以下将详细介绍上述的LTE接口的平均速率、WIFI接口的平均速率、WIFI接口的最大速率的检测、迭代等的方法的一示例性实施例:
在本发明的一实施例中,WIFI接口的平均速率和LTE接口的平均速率是指在预设时间内的平均速率,例如,5秒内的平均速率。具体的,接口速率的检测方法可按照前述的步骤S41的方式进行,即根据接口字节数的变化得到接口速率(即内核侧的虚拟接口的速率)。然后,将预设时间内检测到的多个接口速率相加后再除以预设时间即可得到接口的平均速率。
WIFI接口的最大速率是指在同时开启了WIFI和LTE移动网络时,检测到的WIFI接口的最大速率。在本发明的一个实施例中,WIFI接口的最大速率是一个不断迭代的值,即当检测到的实时的WIFI接口的速率大于WIFI接口的历史最大速率时,将WIFI接口的最大速率进行更新为新的速率。
在一些实施例中,WIFI接口的最大速率的检测方法可按照上述步骤S41中的最大速率的确定方式进行确认。
在另一些实施例中,为了增加准确率和反应真实的网络环境,WIFI接口的最大速率按照以下方式进行迭代获得:
情形1:当在连续的预设时间内(例如,30s),第二加速率为-1,则表明(WIFI接口的平均速率和LTE接口的平均速率)<=WIFI接口的最大速率,此时有可能WIFI接口的最大速率被高估,即终端可能从一个较好的WIFI环境移动到了一个较差的WIFI环境。此时,需要降低WIFI接口的最大速率的估值,因此,将WIFI接口的最大速率设置为WIFI接口的最大速率的二分之一(即当前WIFI接口的最大速率/2后赋值给WIFI接口的最大速率)。应理解,由于本发明中需要将加速率显示在用户界面上,因此,为了保证界面显示时的偏移量,采用“当前WIFI接口的最大速率/2”以快速降低估值。
情形2:当在连续的预设时间内(例如,30秒内),第二加速率趋于无限大(式2中WIFI接口的最大速率趋于0)或高于预设值(例如,1000)时,则WIFI接口的最大速率估值过小,需要增加WIFI接口的最大速率。此时,若WIFI接口的平均速率大于WIFI接口的最大速率,则将WIFI接口的最大速率设为WIFI接口的平均速率;否则,将WIFI接口的最大速率设为当前WIFI接口的最大速率×预设倍数,例如,WIFI接口的最大速率=当前WIFI接口的最大速率×1.2。
情形3:当加速率小于预设值(例如,1000)且大于0时,认为WIFI接口的最大速率是合理的,此时,若WIFI接口的平均速率>WIFI接口的最大速率,则将WIFI接口的最大速率设为:(当前WIFI接口的最大速率×m+WIFI接口的平均速率)/n。其中,m+1=n,m和n为大于0的整数。例如,可将m设为11,则n设为12。该情形下,对WIFI接口的最大速率的处理是为了避免WIFI接口的速率突变时,导致在界面显示的加速率的剧烈波动,因此采用了此“缓和”的处理方式。
应理解,在计算加速率的过程中,接口的速率可和上述步骤S40和S41中的相同,即采用内核层设置的虚拟接口的速率,但其也可采用应用层设置的虚拟接口的速率。而应用层的虚拟接口和内核层的虚拟接口的速率在理论上应相同,因此,在此不再赘述。
在一些实施例中,当终端100连接上LTE移动网络后,即使不进行任何数据下载或上传,也可能会进行一些信令的交互(或类似的消息传输),若将此时的传输速度也统计在加速比率中,会产生误差。因此,在计算每次加速率时,只有当LTE移动网络的实时速率大于预设值(例如,10KB/s时),才认为LTE移动网络在进行实际的数据传输。即才根据式(1)及上述描述的各种情况和情形进行加速率的计算。
在本发明的一实施例中,在加速过程中,将WIFI网络的实时速率和LTE移动网络的实时速率显示到预设界面。实时速率的检测可按照上述步骤S40进行。
在本发明的一实施例中,加速过程中消耗的LTE移动网络的流量显示在所述预设界面上。
在本发明的一实施例中,接收用户的第三指令,并根据所述第三指令结束终端的网络加速功能,以及将所述LTE移动网络的流量清零。
在本发明的一实施例中,预设界面包括一动态显示区域;所述动态显示区域根据所述加速率的大小进行动态效果显示。
本发明实施例中的预设界面至少包括以下其中之一:加速界面(即图4所示的界面)、终端的通知栏、终端的状态栏。在一个实施例中,加速率显示与加速界面上;显示WIFI网络的实时速率和LTE移动网络的实时速率的预设界面为终端的通知栏。应理解,可根据具体的需求将加速率、实时速率、LTE移动网络的流量等显示到不同的界面上,以方便用户的查看等,本发明实施例对此不作限制。
在本发明的实施例中,计算得出的加速率,可以采用多种形式进行加速率的显示,例如,以百分制显示加速率、以百分制加上表盘的方式显示加速率或以百分制加上柱状图的方式显示加速率等等。参见图6,显示了以百分制显示加速率的一个示例,即在用户界面上显示“127%平均加速”的字样,以使得用户直观的了解“持续加速”模式带来的加速率。“127%”即是根据上述所述的计算方法计算得出的。
由于根据上述的描述,本发明的实施例中,每隔预设时间(例如,5秒)将会重新计算加速率,在一些实施例中,还可增加动画效果,以更加直观的为用户展示加速率的变化过程。例如,当加速率从“127%”增加到“200%”时,将表盘点亮的面积进行增大,当加速率“200%”降低到“127%”时,将表盘点亮的面积进行减小。
参见图6,本发明的一个示例性实施例中,还将已使用的移动网络的数据流量显示到界面上。图6中,“已使用移动数据1.1M”即显示的是已使用的移动网络的数据流量。由此,可方便用户对移动网络的流程消耗进行确认,使得用户可根据数据流量的消耗进行加速模式的调整。例如,当数据流量耗费超过一定值时,用户可关闭加速,或将其调整为WLAN弱时加速等等。
进行移动网络的数据流量的累计时,可以将LTE数据接口的字节数进行累计,并每隔预设时间将累计的流量显示到界面上。预设时间可和加速率的计算的时间相同(例如,5秒),也可为其它的值,例如,1秒或更短,以反应实时的流量消耗。
应理解,在本发明的实施例中,已使用的移动网络的数据流量是从开启加速开始的历史累计流量。即只要“开启加速”的开关被打开,则将持续的进行移动网络的数据流量消耗的累计,并将累计的值显示到界面上。而当开启加速后又关闭了“开启加速”则将统计的流量清零。由此,可准确的记录 用户开启加速后消耗的移动网络的流量。
应理解,在统计移动网络的数据流量的消耗时,可以B(字节)、KB(千字节)、M(兆)等为单位进行统计。具体的,当流量的消耗在1024B以内时,以B为单位进行统计,统计时,可每10B进行一次累计。当流量的消耗超过1024B,且在1024KB范围内时,以KB为单位进行统计,可每1KB进行一次累计。当流量超过1024KB时,以M为单位进行统计,可每0.01M进行一次累计。
参见图6,在一示例性实施例中,加速界面显示的“通知栏显示状态”是用于将加速的相关信息显示到终端100的通知栏。例如,将加速率和消耗的移动网络的流量显示到通知栏,方便用户查看。参见图7所示为通知栏进行显示的一实施例的示意图,通过通知栏显示了“加速中1Mb/s,加速2Mb/s”。在本发明的实施例中,在通知栏中显示的是:WIFI的实时速率(1Mb/s)、加速速率即LTE的实时速率(2Mb/s)。也可以将加速前的速率(如WIFI的速率)和加速后的速率(WIFI和LTE移动网络的速率和)进行显示,是用户直观了解速率的改变,提升用户体验。通知栏显示的速率可为实时速率。该实时速率可根据上述的速率检测方法获得,加速后的速率可将两个接口的速率进行叠加获得。
当用户点击通知栏中的“加速中1Mb/s,加速2Mb/s”和/或其相对应的图标时,可进入到图6所示的加速界面。
本发明实施例,可实现利用WIFI和LTE进行真正的网络加速,可根据用户选择的加速模式进行加速,并且还可以显示加速的具体信息,如速度的提升效率以及移动网络数据的消耗量等等,从而提高了网络加速的智能性和灵活性,提高了用户体验。
实施例4
以上的实施例1详细描述了“持续加速”模式的网络加速方法和终端,该 实施例将详述“WLAN弱时加速”模式的网络加速方法和终端。
参见图8,当加速模式为“WLAN弱时加速”,即第二加速模式时,上述的步骤S2具体包括:
S81、当WIFI的信号强度高于第一预设阈值时,仅通过WIFI接口进行数据业务传输。
在该步骤中,由于WIFI和LTE移动网络均处于开启状态,当WIFI的信号强度高于第一预设阈值时,所有的数据流均通过WIFI接口进行传输。例如,当WIFI的信号强度高于第一预设阈值时,可通过将LTE接口的分流权重设置为0,或者关闭LTE接口的射频供电(通过该方式还可起到节省功耗的作用)。
S82、在数据业务的传输过程中,当WIFI的信号强度低于第一预设阈值时,通过WIFI接口和LTE接口进行数据业务传输。
在该步骤中,为了避免类似“乒乓效应”,当WIFI的信号强度低于第一预设阈值一预设时长后,才切换为通过WIFI接口和LTE接口共同进行数据业务的传输。
该步骤中,当通过WIFI接口和LTE接口共同进行数据业务传输时,可采用上述实施例1中提到的分流算法对两个接口进行数据流的分配,在此不再赘述。
在该实施例中,若WIFI的信号强度低于一定值(例如,-120dbm),则其WIFI接口的速率将接近于0,由此,根据分流算法,可将全部的数据流均分配给LTE接口进行传输。继续参见图8,本发明该实施例的网络加速方法还包括:
S83、在步骤S82之后,若WIFI的信号强度高于第二预设阈值,则仅通过WIFI接口进行数据业务传输。
在该步骤中,通过WIFI接口和LTE接口共同进行数据业务传输的过 程中,考虑到了WIFI的信号强度再次提高的情况,若WIFI的信号强度从第一预设阈值,提高为高于第二预设阈值,则切换为仅通过WIFI接口进行传输,以为用户节省移动网络的流量。
其中,第一预设阈值小于或等于第二预设阈值。在一个优选的实施例中,第二预设阈值大于第二预设阈值,例如,第一预设阈值设为-75dbm,而第二预设阈值设为-65dbm。同样基于类似“乒乓效应”的原理,当WIFI的信号强度高于第二预设阈值一预设时长后,才切换为仅通过WIFI接口进行数据业务的传输。
本发明的实施例可基于链接进行数据业务传输,因此,当在WIFI和LTE移动网络间切换时,将新建的链接通过调整后的接口进行传输即可。而若某一接口发生网络异常(如突然中断)等情况,可采用新建链接并通过另一接口重新传输相应的数据流的方式完成当前链接未完成的数据流传输。
在本发明的该实施例中,当仅通过WIFI接口进行数据业务传输时,将加速率设为0。当同时通过WIFI和LTE移动网络进行数据业务传输时,按照上述实施例1,计算加速率和显示加速率,在此不再赘述。
应理解,由于该实施例中,是当WIFI的信号强度低于第一预设阈值时,才使用WIFI和LTE移动网络共同进行数据传输,因此,WIFI接口的速率(平均速率、最大速率等)会较低,若LTE接口的速率较大,则最终得到的加速率会较大,即此种情况下,网络加速将十分明显,可极大的提升用户体验。
应理解,在第二加速模式下,除了加速方式不同以外,其它的,例如进行的界面显示、操作等等均和上述实施例1相同,在此不再赘述具体细节。
本发明实施例,可实现利用WIFI和LTE进行真正的网络加速,可根 据用户选择的加速模式进行加速,并且还可以显示加速的具体信息,如速度的提升效率以及移动网络数据的消耗量等等,从而提高了网络加速的智能性和灵活性,提高了用户体验。
应理解,如无特别说明,本发明实施例中的“=”是“赋值于”的含义。
相应的本发明实施例还提供一种终端,其包括一处理器可配置为执行上述实施例1和2的方法各步骤,以实现在其WIFI和LTE移动网络均已开启,根据用户选择的加速模式进行数据业务传输。这里的处理器可为图1中所示的应用处理器10。
应理解,本发明实施例的终端可采用上述实施例1或2的网络加速方法进行网络加速,其具体实现细节可参照上述的描述,在此不再赘述。
本发明实施例中的终端100还可以被称为移动设备、终端、接入终端、用户单元等。终端100可以是智能电话、平板计算机、笔记本电脑、或者被配置为使用LTE和WIFI无线通信协议进行通信的其它设备。
流程图中或在本发明的实施例中以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所述技术领域的技术人员所理解。
出于解释的目的,前面的描述使用了特定的术语,以提供对本发明的透彻理解。然而,对本领域的技术人员来说显而易见的是,为了实践本发明并不需要具体的细节。本发明的具体实施例的前述描述是为了图示和说明的目的而呈现。它们并不意在详尽的或将本发明限于所公开的准确形式。鉴于上面的教义,许多修改和变化是可能的。为了最好地解释本发明的原理及其实际应用而示出并描述了这些实施例,从而使本领域的其他技术人 员能够最好地利用本发明和具有适于预期的特定使用的各种修改的各种实施例。意在本发明的范围由随后的权利要求和其等同物来限定。

Claims (20)

  1. 一种终端的网络加速方法,所述终端包括WIFI接口和LTE接口,所述方法包括:
    检测终端的WIFI和LTE移动网络是否均已开启;
    若检测到WIFI和LTE移动网络均已开启,则根据用户选择的加速模式进行数据业务传输。
  2. 根据权利要1所述的方法,其中,所述方法包括:
    根据用户选择的加速模式计算进行数据业务传输时的加速率,以及显示加速率。
  3. 根据权利要求2所述的方法,其中,以预设基准速率为基础,计算所述加速率;
    所述预设基准速率为以下速率中任一者:WIFI的最大速率、LTE移动网络的最大速率、WIFI和LTE移动网络的最大速率较大者。
  4. 根据权利要求2所述的方法,其中,每隔预设时间,计算所述加速率,并对显示的加速率进行更新。
  5. 根据权利要求1所述的方法,其中,所述加速模式包括第一加速模式和第二加速模式;
    其中,第一加速模式为数据业务的传输速率大于或等于WIFI网络或LTE移动网络进行数据业务传输的速率;
    第二加速模式为优先利用已连接的WIFI网络进行数据业务传输,并在WIFI网络的信号强度低于预设阈值时,利用已连接的WIFI网络和已连接的LTE移动网络进行数据业务的加速。
  6. 根据权利要求5所述的方法,其中,当采用第一加速模式时,根据预设的分流权重将数据业务分配给LTE接口和WIFI接口进行传输。
  7. 根据权利要求5所述的方法,其中,当采用第二加速模式时,当 WIFI的信号强度高于第一预设阈值时,仅通过WIFI接口进行数据业务传输;
    在数据业务的传输过程中,当WIFI的信号强度低于第一预设阈值时,通过WIFI接口和LTE接口进行数据业务传输。
  8. 一种终端,所述终端包括WIFI接口和LTE接口,所述终端还包括:处理器;
    所述处理器配置为检测终端的WIFI和LTE移动网络是否均已开启;若检测到WIFI和LTE移动网络均已开启,则根据用户选择的加速模式进行数据业务传输。
  9. 根据权利要求8所述的终端,其中,所述加速模式包括第一加速模式和第二加速模式;
    其中,第一加速模式为数据业务的传输速率大于或等于WIFI网络或LTE移动网络进行数据业务传输的速率;
    第二加速模式为优先利用已连接的WIFI网络进行数据业务传输,并在WIFI网络的信号强度低于预设阈值时,利用已连接的WIFI网络和已连接的LTE移动网络进行数据业务的加速。
  10. 根据权利要求9所述的终端,其中,当采用第一加速模式时,所述处理器配置为根据预设分流权重将数据业务分配给LTE接口和WIFI接口进行传输。
  11. 根据权利要求9所述的终端,其中,当采用第二加速模式时,所述处理器配置为当WIFI的信号强度高于第一预设阈值时,仅通过WIFI接口进行数据业务传输;在数据业务的传输过程中,当WIFI的信号强度低于第一预设阈值时,通过WIFI接口和LTE接口进行数据业务传输;通过WIFI接口和LTE接口进行数据业务传输的过程中,若WIFI的信号强度高于第二预设阈值,则仅通过WIFI接口进行数据业务传输。
  12. 一种终端的网络加速方法,包括:
    根据用户操作,开启终端的网络加速功能;
    当开启网络加速功能时,利用已开启的WIFI网络和已开启的LTE移动网络进行数据业务的加速,并将加速率显示到预设界面上。
  13. 根据权利要12所述的方法,其中,以预设基准速率为基础,计算所述加速率;
    所述预设基准速率为以下速率中任一者:WIFI的最大速率、LTE移动网络的最大速率、WIFI和LTE移动网络的最大速率较大者。
  14. 根据权利要求12所述的方法,其中,所述利用已开启的WIFI网络和已开启的LTE移动网络进行数据业务的加速之前还包括:
    接收用户的加速模式选择指令,并根据所述加速模式选择指令采用不同的加速模式进行数据业务的加速;
    所述加速模式选择指令包括:选择第一加速模式的指令和选择第二加速模式的指令。
  15. 根据权利要求14所述的方法,其中,所述第一加速模式为数据业务的传输速率大于或等于WIFI网络或LTE移动网络进行数据业务传输的速率。
  16. 根据权利要求15所述的方法,其中,选择第一加速模式时,根据预设的分流权重将数据业务分配给已开启的WIFI网络和LTE移动网络进行传输。
  17. 根据权利要求14所述的方法,其中,所述第二加速模式为优先利用已连接的WIFI网络进行数据业务传输,并在WIFI网络的信号强度低于预设阈值时,利用已连接的WIFI网络和已连接的LTE移动网络进行数据业务的加速。
  18. 一种终端,包括:处理器;
    所述处理器配置为根据用户操作,开启终端的网络加速功能;当开启网络加速功能时,利用已开启的WIFI网络和已开启的LTE移动网络进行数据业务的加速,并将加速率显示到预设界面上。
  19. 根据权利要18所述的终端,其中,以预设基准速率为基础,计算所述加速率;
    所述预设基准速率为以下速率中任一者:WIFI的最大速率、LTE移动网络的最大速率、WIFI和LTE移动网络的最大速率较大者。
  20. 根据权利要求18所述的终端,其中,所述处理器还配置为,在利用已开启的WIFI网络和已开启的LTE移动网络进行数据业务的加速之前,接收用户的加速模式选择指令,并根据所述加速模式选择指令采用不同的加速模式进行数据业务的加速;
    所述加速模式选择指令包括:选择第一加速模式的指令和选择第二加速模式的指令;
    所述第一加速模式为数据业务的传输速率大于或等于WIFI网络或LTE移动网络进行数据业务传输的速率;
    所述第二加速模式为优先利用已连接的WIFI网络进行数据业务传输,并在WIFI网络的信号强度低于预设阈值时,利用已连接的WIFI网络和已连接的LTE移动网络进行数据业务的加速。
PCT/CN2016/094643 2016-04-01 2016-08-11 一种终端及其网络加速方法 WO2017166572A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610202093.5 2016-04-01
CN201610202093 2016-04-01
CN201610352709.7 2016-05-25
CN201610352709.7A CN107295571A (zh) 2016-04-01 2016-05-25 用户设备及其网络提速方法

Publications (1)

Publication Number Publication Date
WO2017166572A1 true WO2017166572A1 (zh) 2017-10-05

Family

ID=59963188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094643 WO2017166572A1 (zh) 2016-04-01 2016-08-11 一种终端及其网络加速方法

Country Status (1)

Country Link
WO (1) WO2017166572A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505014A (zh) * 2019-08-27 2019-11-26 Oppo广东移动通信有限公司 数据传输控制方法及相关产品
CN111148137A (zh) * 2019-12-30 2020-05-12 宇龙计算机通信科技(深圳)有限公司 一种数据的传输方法、装置、存储介质及终端
WO2020164521A1 (zh) * 2019-02-12 2020-08-20 Oppo广东移动通信有限公司 数据包分配方法、装置、移动终端及存储介质
CN112260845A (zh) * 2019-07-05 2021-01-22 腾讯科技(深圳)有限公司 进行数据传输加速的方法和装置
CN115567505A (zh) * 2022-01-10 2023-01-03 荣耀终端有限公司 网络加速效果的显示方法、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631124A (zh) * 2009-06-16 2010-01-20 中兴通讯股份有限公司 数据下载方法和数据下载装置
EP2744260A1 (en) * 2011-09-06 2014-06-18 Huawei Technologies Co., Ltd Data transmission method and device
CN105101438A (zh) * 2015-07-10 2015-11-25 努比亚技术有限公司 多数据通道的数据分配方法及装置
CN105228210A (zh) * 2015-08-25 2016-01-06 努比亚技术有限公司 多通道路由方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631124A (zh) * 2009-06-16 2010-01-20 中兴通讯股份有限公司 数据下载方法和数据下载装置
EP2744260A1 (en) * 2011-09-06 2014-06-18 Huawei Technologies Co., Ltd Data transmission method and device
CN105101438A (zh) * 2015-07-10 2015-11-25 努比亚技术有限公司 多数据通道的数据分配方法及装置
CN105228210A (zh) * 2015-08-25 2016-01-06 努比亚技术有限公司 多通道路由方法及装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164521A1 (zh) * 2019-02-12 2020-08-20 Oppo广东移动通信有限公司 数据包分配方法、装置、移动终端及存储介质
CN112260845A (zh) * 2019-07-05 2021-01-22 腾讯科技(深圳)有限公司 进行数据传输加速的方法和装置
CN112260845B (zh) * 2019-07-05 2022-08-05 腾讯科技(深圳)有限公司 进行数据传输加速的方法和装置
CN110505014A (zh) * 2019-08-27 2019-11-26 Oppo广东移动通信有限公司 数据传输控制方法及相关产品
CN111148137A (zh) * 2019-12-30 2020-05-12 宇龙计算机通信科技(深圳)有限公司 一种数据的传输方法、装置、存储介质及终端
CN111148137B (zh) * 2019-12-30 2023-06-27 宇龙计算机通信科技(深圳)有限公司 一种数据的传输方法、装置、存储介质及终端
CN115567505A (zh) * 2022-01-10 2023-01-03 荣耀终端有限公司 网络加速效果的显示方法、设备和存储介质

Similar Documents

Publication Publication Date Title
WO2017166572A1 (zh) 一种终端及其网络加速方法
US10194290B2 (en) Energy-efficient push/poll notification service
US11757765B2 (en) Intelligent routing of network packets on telecommunication devices
US8966090B2 (en) Method, apparatus and computer program product for providing an indication of device to device communication availability
US11382018B2 (en) Wireless handovers based on device movement
WO2017117968A1 (zh) 数据接口分流方法、装置、终端设备和计算机存储介质
US8908507B2 (en) RAN analytics, control and tuning via multi-protocol, multi-domain, and multi-RAT analysis
US8130655B2 (en) Systems and methods for network congestion management using radio access network congestion indicators
CN109819476B (zh) 一种网络优化方法及终端、存储介质
CN110049505B (zh) 数据传输方法及相关装置
CN109245936A (zh) 控制网络传输时延的方法、服务质量控制实体和通信设备
JP2018509790A (ja) 信頼できる通信のための冗長リンク
CN109120524B (zh) 链路聚合方法及相关设备
CN106851682B (zh) 一种用户设备及其实现数据传输的方法
WO2021103706A1 (zh) 控制数据包发送方法、模型训练方法、装置及系统
WO2016171716A1 (en) Flexible quality of service for inter-base station handovers within wireless network
EP3414938A1 (en) Dynamic network rate control
CN107295574A (zh) 终端及其网络加速控制方法
CN109617802B (zh) 链路聚合实现方法及相关产品
CN104955119A (zh) 一种基于流量的网络切换方法、装置和终端
CN110290552B (zh) 缓存深度的测量方法和装置、存储介质、电子装置
EP3518577B1 (en) Network access entity for providing access to a communication network
CN116846771A (zh) 业务操作方法、装置、终端及可读存储介质
EP3280166A1 (en) Method, system and computer program product for operating a wireless network
CN109587765B (zh) 链路聚合实现方法及相关产品

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896344

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16896344

Country of ref document: EP

Kind code of ref document: A1