WO2020164520A1 - 数据包分流方法、装置、移动终端及存储介质 - Google Patents

数据包分流方法、装置、移动终端及存储介质 Download PDF

Info

Publication number
WO2020164520A1
WO2020164520A1 PCT/CN2020/074906 CN2020074906W WO2020164520A1 WO 2020164520 A1 WO2020164520 A1 WO 2020164520A1 CN 2020074906 W CN2020074906 W CN 2020074906W WO 2020164520 A1 WO2020164520 A1 WO 2020164520A1
Authority
WO
WIPO (PCT)
Prior art keywords
wifi
data link
link
data
mobile
Prior art date
Application number
PCT/CN2020/074906
Other languages
English (en)
French (fr)
Inventor
黄园
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20755808.1A priority Critical patent/EP3917205A4/en
Publication of WO2020164520A1 publication Critical patent/WO2020164520A1/zh
Priority to US17/387,994 priority patent/US20210360650A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0827Triggering entity
    • H04W28/0838User device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • H04W28/0865Load balancing or load distribution among access entities between base stations of different Radio Access Technologies [RATs], e.g. LTE or WiFi
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0925Management thereof using policies
    • H04W28/0933Management thereof using policies based on load-splitting ratios
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • H04W28/0967Quality of Service [QoS] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • This application relates to the field of communication technology, and in particular to a data packet splitting method, device, mobile terminal and storage medium.
  • a mobile terminal when surfing the Internet, it can simultaneously turn on the switch of the WiFi network and the switch of the mobile data network. At this time, the mobile terminal will preferentially access the Internet via the WiFi network. If the speed of the WiFi network is slow, the user needs to manually turn off the switch of the WiFi network and only use the mobile data network. Although the mobile terminal turns on the switch of the WiFi network and the switch of the mobile data network at the same time, only one of the WiFi network and the mobile data network can be used to surf the Internet at the same time, and the WiFi network and the mobile data network cannot be fully utilized.
  • the embodiments of the application provide a data packet offloading method, device, mobile terminal, and storage medium, which make full use of the data packet sending and receiving capabilities of the WiFi network and the mobile data network.
  • an embodiment of the present application provides a data packet offloading method, including:
  • Detect the link quality of the first WiFi data link detect the link quality of the second WiFi data link, and detect the link quality of the mobile data link;
  • the first WiFi data link and the second WiFi data link are determined according to the link quality of the first WiFi data link, the link quality of the second WiFi data link, and the link quality of the mobile data link.
  • the data packets that need to be transmitted are allocated to the first WiFi data link, the second WiFi data link, and the mobile data link for transmission according to the data packet allocation ratio.
  • an embodiment of the present application provides a data packet distribution device, including:
  • the detection unit is used to detect the link quality of the first WiFi data link, detect the link quality of the second WiFi data link, and detect the link quality of the mobile data link;
  • the determining unit is configured to determine the first WiFi data link according to the link quality of the first WiFi data link, the link quality of the second WiFi data link and the link quality of the mobile data link, The data packet allocation ratio between the second WiFi data link and the mobile data link;
  • the transmission unit is configured to allocate data packets to be transmitted in the first WiFi data link, the second WiFi data link, and the mobile data link for transmission according to the data packet allocation ratio.
  • an embodiment of the present application provides a mobile terminal, including a processor and a memory, the memory is used to store one or more programs, and the one or more programs are configured to be executed by the processor.
  • the program includes instructions for executing the steps in the first aspect of the embodiments of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the foregoing computer-readable storage medium stores a computer program for electronic data exchange, wherein the foregoing computer program enables a computer to execute Some or all of the steps described in one aspect.
  • embodiments of the present application provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute Example part or all of the steps described in the first aspect.
  • the computer program product may be a software installation package.
  • the mobile terminal detects the link quality of the first WiFi data link, detects the link quality of the second WiFi data link, and detects the link of the mobile data link.
  • Road quality determine the first WiFi data link, the second WiFi data link and the mobile data link according to the link quality of the first WiFi data link, the link quality of the second WiFi data link and the link quality of the mobile data link.
  • the data packet allocation ratio between data links are allocated to the first WiFi data link, the second WiFi data link, and the mobile data link for transmission according to the data packet allocation ratio.
  • the embodiment of the application can determine the allocation ratio of data packets to be transmitted on the three links according to the link quality of the first WiFi data link, the link quality of the second WiFi data link, and the link quality of the mobile data link. , Can reasonably distribute data packets on two WiFi data links and one mobile data link, make full use of the data packet receiving and sending capabilities of WiFi network and mobile data network, and improve users' online experience.
  • FIG. 1 is a schematic flowchart of a data packet distribution method disclosed in an embodiment of the present application
  • FIG. 2 is a schematic flowchart of another data packet distribution method disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another data packet distribution method disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another data packet offloading method disclosed in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a data packet distribution device disclosed in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a mobile terminal disclosed in an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another mobile terminal disclosed in an embodiment of the present application.
  • the mobile terminals involved in the embodiments of this application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment (User Equipment, UE), mobile station (Mobile Station, MS), terminal device (terminal device), etc.
  • UE User Equipment
  • MS Mobile Station
  • terminal device terminal device
  • FIG. 1 is a schematic flowchart of a data packet offloading method disclosed in an embodiment of the present application. As shown in FIG. 1, the data packet offloading method includes the following steps.
  • the mobile terminal detects the link quality of the first WiFi data link, detects the link quality of the second WiFi data link, and detects the link quality of the mobile data link.
  • wireless fidelity which may also be referred to as wifi or Wi-Fi
  • the mobile terminal may include a WiFi module (may also be referred to as a WiFi communication module), so that the mobile terminal has a WiFi function.
  • the mobile terminal may include a first WiFi module and a second WiFi module, and may support simultaneous transmission and reception of signals in two WiFi frequency bands.
  • the first WiFi module and the second WiFi module support different frequency bands. For example, the first WiFi module supports the 2.4G (Hz) frequency band, and the second WiFi module supports the 5G (Hz) frequency band; or, the first WiFi module supports the 5G frequency band.
  • Two WiFi module supports 2.4G frequency band.
  • the radio frequency circuit system of the mobile terminal has a dual-band dual-concurrent (DBDC) function and supports 2 ⁇ 2 antennas. Both sets of antennas are equipped with amplifier circuits and power amplifier chips, which can support simultaneous antenna transmission on the hardware circuit. And receive the signal.
  • Both the first WiFi module and the second WiFi module of this application are in Station mode (abbreviated as STA mode), and the first WiFi module and the second WiFi module need to be connected to a WiFi hotspot to access a WiFi network.
  • STA mode Station mode
  • the dual WiFi mode is a mode in which two WiFi modules send and receive data at the same time. In the dual WiFi mode, the first WiFi module and the second WiFi module Work in parallel without interfering with each other.
  • the mobile terminal Before performing step 101, the mobile terminal can search for WiFi hotspots. If two WiFi hotspots of different frequency bands are found, the mobile terminal can respectively connect to two WiFi hotspots of different frequency bands, and connect to the wireless network through two WiFi hotspots of different frequency bands. .
  • the first WiFi data link is a data connection path established between the mobile terminal and the wireless network through the interface of the first WiFi communication module (supporting the first WiFi frequency band).
  • the second WiFi data link is a data connection path established between the mobile terminal and the wireless network through the interface of the second WiFi communication module (supporting the second WiFi frequency band).
  • the first WiFi data link supports data transceiving in the first WiFi frequency band
  • the second WiFi data link supports data transceiving in the second WiFi frequency band.
  • the first WiFi frequency band is different from the second WiFi frequency band, for example, the first WiFi frequency band is a 2.4G frequency band, and the second WiFi frequency band is a 5G frequency band.
  • the mobile terminal surfs the Internet through the first WiFi hotspot or the second WiFi hotspot, it may not go online through the networks of operators such as China Mobile, China Unicom, and China Telecom, which can save data charges.
  • a mobile data link is a data connection path established between a mobile terminal and a wireless network through a cellular communication module interface.
  • the cellular communication module interface may be a 3G/4G/5G communication module interface. Data packets transmitted in the first WiFi data link need to pass through the first WiFi hotspot, data packets transmitted in the second WiFi data link need to pass through the second WiFi hotspot, and data packets transmitted in the mobile data link need to pass through a telecom operator Base station.
  • the link quality of the first WiFi data link can be determined by the uplink and downlink data transmission rate, round trip delay, packet loss rate, bit error rate, etc. of the first WiFi data link.
  • the higher the uplink and downlink data transmission rate the smaller the round trip delay, the lower the packet loss rate, the lower the bit error rate, and the higher the link quality of the first WiFi data link; the lower the uplink and downlink data transmission rate, The greater the round-trip delay, the higher the packet loss rate, and the higher the bit error rate, the lower the link quality of the first WiFi data link.
  • the link quality of the second WiFi data link can be determined by the uplink and downlink data transmission rate, round trip delay, packet loss rate, bit error rate, etc. of the second WiFi data link.
  • the first WiFi data link may include a first WiFi uplink data link and a first WiFi downlink data link.
  • the quality of the first WiFi uplink data link can be determined by the uplink data transmission rate, round trip delay, packet loss rate, bit error rate, etc. of the first WiFi data link.
  • the quality of the first WiFi downlink data link may be determined by the downlink data transmission rate, round trip delay, packet loss rate, bit error rate, etc. of the first WiFi data link.
  • the second WiFi data link may include a second WiFi uplink data link and a second WiFi downlink data link.
  • the link quality of the mobile data link can be determined by the uplink and downlink data transmission rate, round trip delay, packet loss rate, and bit error rate of the mobile data link. Among them, the higher the uplink and downlink data transmission rate, the lower the round-trip delay, the lower the packet loss rate and the bit error rate, the higher the link quality of the mobile data link; the lower the uplink and downlink data transmission rate, the longer the round-trip delay Larger, higher packet loss rate, higher bit error rate, lower link quality of the mobile data link.
  • the mobile data link may include a mobile uplink data link and a mobile downlink data link.
  • the quality of the mobile uplink data link can be determined by the uplink data transmission rate, round-trip delay, packet loss rate, and bit error rate of the mobile data link.
  • the quality of the mobile downlink data link can be determined by the downlink data transmission rate, round-trip delay, packet loss rate, and bit error rate of the mobile data link.
  • the bit error rate is an index that measures the accuracy of data transmission within a specified time.
  • the bit error rate bit errors in transmission/total number of codes transmitted*100%.
  • the packet loss rate is the ratio of the lost part of the data packet to the total number of data packets transmitted.
  • the mobile terminal may start the intelligent link aggregation function.
  • the mobile terminal can also open the WiFi connection and the mobile data connection at the same time.
  • link aggregation means that the device can use two or more network ports to surf the Internet at the same time.
  • two WiFi networks and data networks data Network, also called mobile data network
  • the Smart Link Aggregation (SLA) function refers to the intelligent allocation of users’ Internet access requests to different Internet accessible interfaces (cellular communication module interface, first WiFi communication module interface, and second WiFi communication module interface) on.
  • Link aggregation requires at least two or more available networks, so the prerequisite of SLA is to make WiFi and data networks coexist.
  • the mobile terminal When the mobile terminal activates the intelligent link aggregation function, the mobile terminal can send a network request to the network to enable the data network, which can enable the mobile terminal to use the WiFi network and mobile at the same time when the WiFi and data network are turned on at the same time. Data network.
  • the mobile terminal can simultaneously connect to two vehicle-mounted WiFi hotspots of different frequency bands, and the two vehicle-mounted WiFi hotspots of different frequency bands can be integrated on one device or located on two devices separately.
  • the mobile terminal can also connect to a car WiFi hotspot and a mobile phone WiFi hotspot at the same time, and the frequency bands of the car WiFi hotspot and the mobile phone WiFi hotspot are different.
  • the mobile WiFi hotspot is in soft access point (soft access point, soft AP) mode, which allows at least one external device to access the Internet.
  • car WiFi hotspots, mobile phone WiFi hotspots, and mobile data networks are essentially operator networks (car WiFi hotspots can be turned on by inserting the operator’s SIM card, and mobile phone WiFi hotspots also need to use the SIM card for traffic), Due to the fast moving speed of mobile terminals in the vehicle-mounted scene and the differences in the coverage of base stations of different operators, the network quality of vehicle-mounted WiFi hotspots, mobile WiFi hotspots, and mobile data networks will undergo major changes during the rapid movement of mobile terminals, that is, The link quality of the first WiFi data link, the second WiFi data link, and the mobile data link often changes dynamically.
  • the implementation of the embodiments of the present application can dynamically adjust the data packet allocation ratio of the first WiFi data link, the second WiFi data link, and the mobile data link in a vehicle-mounted scenario, thereby improving the user's Internet experience.
  • the number of operator networks with different data links that the mobile terminal can connect to is as large as possible.
  • the operator network corresponding to the first WiFi data link, the operator network corresponding to the second WiFi data link, and the operator network corresponding to the mobile data link are different.
  • the first WiFi data link corresponds to a mobile operator network
  • the second WiFi data link corresponds to a Unicom operator network
  • the mobile data link corresponds to a telecom operator network. Due to the differences in the coverage of the base stations of different operators, the coverage capabilities of the base stations of different operators can be utilized to the greatest possible extent, thereby reducing the risk of unstable network speed during the Internet access of mobile terminals.
  • the mobile terminal detecting the link quality of the first WiFi data link may specifically include the following steps:
  • the mobile terminal measures the data transmission rate, round trip delay, packet loss rate, and bit error rate of the first WiFi data link, and determines based on the round trip delay, data transmission rate, packet loss rate, and bit error rate of the first WiFi data link The link quality of the first WiFi data link;
  • the mobile terminal detecting the link quality of the second WiFi data link may specifically include the following steps:
  • the mobile terminal measures the data transmission rate, round trip delay, packet loss rate, and bit error rate of the second WiFi data link, and determines based on the round trip delay, data transmission rate, packet loss rate, and bit error rate of the second WiFi data link The link quality of the second WiFi data link;
  • the mobile terminal detecting the link quality of the mobile data link may specifically include the following steps:
  • the mobile terminal measures the data transmission rate, round trip delay, packet loss rate, and bit error rate of the mobile data link, and determines the mobile data link based on the round trip delay, data transmission rate, packet loss rate, and bit error rate of the mobile data link Link quality.
  • the mobile terminal determines the first WiFi data link, the second WiFi data link and the link quality of the mobile data link according to the link quality of the first WiFi data link, the link quality of the second WiFi data link, and the link quality of the mobile data link.
  • the distribution ratio of data packets between mobile data links is a configurable period of time, the time when the first WiFi data link is accessed.
  • the link quality of the first WiFi data link is better than the link quality of the second WiFi data link and the mobile data link, it is determined that the first WiFi data link has the highest proportion of data packets ; If the link quality of the second WiFi data link is better than the link quality of the first WiFi data link and the mobile data link, it is determined that the second WiFi data link has the highest proportion of data packets; if the mobile data link If the link quality of the road is better than that of the first WiFi data link and the second WiFi data link, it is determined that the mobile data link has the highest proportion of data packets.
  • the link quality of the first WiFi data link is 20
  • the link quality of the second WiFi data link is 30, and the link quality of the mobile data link is 50
  • the first WiFi data link is 2:3:5.
  • the link quality of the first WiFi data link can be scored based on the uplink and downlink data transmission rate, round trip delay, packet loss rate, and bit error rate of the first WiFi data link to obtain the quality score of the first WiFi data link. .
  • the quality scores of the second WiFi data link and the mobile data link can also be obtained.
  • the mobile terminal can use the ratio of the quality score of the first WiFi data link, the quality score of the second WiFi data link, and the quality score of the mobile data link as the first WiFi data link, the second WiFi data link, and the mobile data.
  • the distribution ratio of data packets between links can be used.
  • the mobile terminal can also determine the quality level of the first WiFi data link according to the quality score of the first WiFi data link, and determine the quality level of the second WiFi data link according to the quality score of the second WiFi data link.
  • the quality of the road determines the quality level of the mobile data link, and the first WiFi data link, the second WiFi data link, and the mobile data link quality level are used to determine the quality level of the first WiFi data link, The data packet distribution ratio between the second WiFi data link and the mobile data link.
  • the quality levels of the first WiFi data link, the second WiFi data link, and the mobile data link can be set to five levels: level I, level II, level III, level IV, and level V, which respectively represent the link quality Very poor, poor, medium, good, excellent.
  • the five grades of I, II, III, IV, and V are respectively divided into quality levels: 0-30, 30-60, 60-80, 80-90, and 90-100.
  • the first WiFi data link, the second WiFi data link and the mobile data link can be determined according to the quality level of the first WiFi data link, the quality level of the second WiFi data link and the quality level of the mobile data link.
  • the data packet distribution ratio between the roads are examples of the roads.
  • the first WiFi data link The data packet allocation ratio between the second WiFi data link and the mobile data link is 1:1:1; if the link quality of the first WiFi data link is level I, the link of the second WiFi data link The channel quality is level IV, and the quality level of the mobile data link is level II, so the data packet allocation ratio between the first WiFi data link, the second WiFi data link and the mobile data link is 1:4:2.
  • the mobile terminal allocates data packets to be transmitted in the first WiFi data link, the second WiFi data link, and the mobile data link for transmission according to the data packet allocation ratio.
  • the mobile terminal can send uplink data packets and can also receive downlink data packets.
  • the data packet that needs to be transmitted can be an uplink data packet or a downlink data packet.
  • the mobile terminal can allocate the uplink data packet to the first WiFi uplink data link, the second WiFi uplink data link and the mobile uplink data link for transmission; for the downlink data packet, the mobile terminal can transmit the downlink data packet It is allocated for transmission in the first WiFi downlink data link, the second WiFi downlink data link and the mobile downlink data link.
  • the data packets that need to be transmitted can be initiated by different services in the mobile terminal.
  • the data packets that need to be transmitted can be initiated by any of video services, game services, voice services, and instant messaging services.
  • the following steps may be further included:
  • the mobile terminal performs the first WiFi data link mark or the second WiFi data link mark or the mobile data link mark on the data packets that need to be transmitted, and obtains the mark value of each data packet, establishes the mark value routing table, and updates it to the route Node.
  • the mobile terminal allocates the data packets that need to be transmitted in the first WiFi data link, the second WiFi data link, and the mobile data link for transmission according to the data packet allocation ratio, which may specifically include the following steps:
  • the mobile terminal In the process of transmitting the data packet to be transmitted, the mobile terminal obtains the tag value of the data packet to be transmitted, and determines the data link corresponding to the data packet to be transmitted according to the tag value routing table in the routing table of each routing node The data packet to be transmitted is allocated to the corresponding data link for transmission.
  • the mobile terminal detects the link quality of the first WiFi data link, detects the link quality of the second WiFi data link, and detects the link quality of the mobile data link, which may specifically include the following steps:
  • the mobile terminal measures the maximum data transmission rate of the first WiFi data link, measures the maximum data transmission rate of the second WiFi data link, and measures the maximum data transmission rate of the mobile data link, based on the maximum data transmission of the first WiFi data link Rate, the maximum data transmission rate of the second WiFi data link, and the maximum data transmission rate of the mobile data link determine the link quality of the first WiFi data link, the link quality of the second WiFi data link, and the mobile data link Link quality.
  • the mobile data network is described by taking a Long Term Evolution (LTE) network as an example.
  • LTE Long Term Evolution
  • the link quality of the first WiFi data link, the link quality of the second WiFi data link, and the link quality of the LTE data link can be calculated according to the following formula:
  • weigh_wifi_1 max_speed_wifi_1/(max_speed_wifi_1+max_speed_wifi_2+max_speed_lte);
  • weigh_wifi_2 max_speed_wifi_2/(max_speed_wifi_1+max_speed_wifi_2+max_speed_lte);
  • weigh_lte 1-weigh_wifi_1-weigh_wifi_2;
  • weigh_wifi_1 indicates the link quality of the first WiFi data link
  • weigh_wifi_2 indicates the link quality of the second WiFi data link
  • weigh_lte indicates the link quality of the LTE data link
  • max_speed_wifi_1 indicates the maximum data of the first WiFi data link Transmission rate
  • max_speed_wifi_2 represents the maximum data transmission rate of the second WiFi data link
  • max_speed_lte represents the maximum data transmission rate of the LTE data link.
  • the sum of the link quality of the first WiFi data link, the link quality of the second WiFi data link, and the link quality of the LTE data link is equal to one.
  • the mobile terminal can determine the first WiFi data link and the second WiFi data link according to the link quality of the first WiFi data link, the link quality of the second WiFi data link and the link quality of the mobile data link.
  • the data packet distribution ratio between the mobile data link and the mobile data link can be determined.
  • the link quality of the first WiFi data link is 0.3
  • the link quality of the second WiFi data link is 0.5
  • the link quality of the LTE data link is 0.2
  • the maximum data transmission rate of the first WiFi data link, the maximum data transmission rate of the second WiFi data link, and the maximum data transmission rate of the LTE data link can be increased through the data of the wifi and LTE reception (rx) interface. Calculate the rate to make corrections.
  • the data increment calculation rate on the first wifi receiving (rx) interface, the second wifi receiving (rx) interface and the lte receiving (rx) interface are counted every 1s, and the data increment calculation rate is used to calculate the rate of the first WiFi data link
  • the maximum data transmission rate of the channel, the maximum data transmission rate of the second WiFi data link, and the maximum data transmission rate of the mobile data link are corrected.
  • tmp_speed (rx_bytes-last_rx_bytes)/1;
  • rx_bytes represents the amount of data received on the first wifi interface, the second wifi interface, and the LTE receiving interface in one second
  • last_rx_bytes represents the amount of data received on the first wifi interface, the second wifi interface, and the LTE receiving interface in the last second
  • Tmp_speed represents the data increment calculation rate
  • max_speed_wifi_1 represents the maximum data transmission rate of the first WiFi data link
  • max_speed_wifi_2 represents the maximum data transmission rate of the second WiFi data link
  • max_speed_lte represents the maximum data transmission rate of the LTE data link.
  • the corrected max_speed_wifi_1 is the maximum of max_speed_wifi_1 and tmp_speed
  • the corrected max_speed_wifi_2 is the maximum of max_speed_wifi_2 and tmp_speed
  • the corrected max_speed_lte is the maximum of max_speed_lte and tmp_speed.
  • the maximum data transmission rate of the LTE data link, the maximum data transmission rate of the first WiFi data link, and the maximum data transmission rate of the second WiFi data link can be calculated by counting the round-trip time (rtt). ) To make corrections.
  • the mobile terminal can calculate the delay on two interfaces (WiFi communication module interface and LTE communication module interface) based on the rtt of the tcp protocol itself, and a data link only calculates the rtt of the first request after the three-way handshake, such as http get, http post's rrt.
  • the 3-way handshake refers to the three confirmation processes for TCP to establish a connection.
  • the Transmission Control Protocol (tcp) uses the tcp_rtt_estimator() function to count rtt and then calculate the timeout retransmission time (Retransmission Timeout, RTO), so the delay calculation is calculated in the tcp_rtt_estimator() function.
  • the mobile terminal separately determines the current first RTT of the first WiFi data link, the current first RTT of the second WiFi data link, and the current first RTT of the mobile data link, including:
  • the mobile terminal determines to run a second RTT of the transmission control protocol TCP;
  • the mobile terminal separately obtains the third RTT determined last time by the first WiFi communication module, the second WiFi communication module, and the cellular communication module;
  • the mobile terminal determines the first WiFi communication module, the second WiFi communication module, and the third RTT determined last time according to the determined second RTT and the acquired first WiFi communication module, the second WiFi communication module, and the third RTT determined last time by the cellular communication module.
  • the current first RTT of the cellular communication module is the first WiFi communication module, the second WiFi communication module, and the third RTT determined last time according to the determined second RTT and the acquired first WiFi communication module, the second WiFi communication module, and the third RTT determined last time by the cellular communication module.
  • the following formula may be used to calculate the current first RTT of the first WiFi data link, the current first RTT of the second WiFi data link, and the current first RTT of the mobile data link:
  • rtt_wifi_21 (rtt_wifi_23+rtt_2)/2
  • rtt_lte_1 (rtt_lte_3+rtt_2)/2
  • rtt_wifi_11 represents the current first RTT of the first WiFi data link
  • rtt_2 represents the second RTT running a transmission control protocol TCP
  • rtt_wifi_13 represents the last determined third RTT of the first WiFi data link
  • rtt_wifi_21 represents the first 2.
  • the current first RTT of the WiFi data link rtt_2 represents the second RTT running a transmission control protocol TCP, rtt_wifi_23 represents the last determined third RTT of the second WiFi data link; rtt_lte_1 represents the current LTE data link Rtt_2 represents the second RTT running a transmission control protocol TCP, and rtt_lte_3 represents the last determined third RTT of the LTE data link.
  • the embodiment of the application considers the data transmission rate and the round-trip delay, and can improve the calculation accuracy of the link quality of the first WiFi data link, the second WiFi data link, and the link quality of the mobile data link.
  • step 101 to step 103 can be executed periodically, for example, once every 30 seconds and 1 minute later. Steps 101 to 103 can also be executed only when there is a foreground application running.
  • the link quality of the first WiFi data link, the link quality of the second WiFi data link, and the link quality of the mobile data link can be used to determine the data packets to be transmitted on the three links.
  • the allocation ratio can be reasonably allocated to transmit data packets on two WiFi data links and one mobile data link, making full use of the data packet receiving and sending capabilities of the WiFi network and the mobile data network, and improving the user's online experience.
  • Figure 2 is a schematic flowchart of another data packet offloading method disclosed in an embodiment of the present application.
  • Figure 2 is further optimized on the basis of Figure 1.
  • the data packet offloading method Including the following steps.
  • the mobile terminal searches for available WiFi hotspots around.
  • the mobile terminal obtains the working frequency bands of the first WiFi hotspot and the second WiFi hotspot.
  • the mobile terminal connects the first WiFi hotspot and the second WiFi hotspot to establish the first WiFi data link and the second WiFi data link.
  • the mobile terminal can search for available WiFi hotspots around.
  • Available WiFi hotspot refers to the hotspot that can be connected to the wireless network through the WiFi hotspot. For example, if some WiFi hotspots can be searched, but cannot be connected to the wireless network through the WiFi hotspot, these WiFi hotspots can be filtered out.
  • Current WiFi hotspots generally include 2.4G band WiFi hotspots and 5G band WiFi hotspots. If the working frequency bands of the first WiFi hotspot and the second WiFi hotspot do not belong to the same frequency band, it indicates one of the first WiFi hotspot and the second WiFi hotspot It is 2.4G frequency band, and the other is 5G frequency band. Since the mobile terminal includes a first WiFi communication module and a second WiFi communication module, it can support simultaneous transmission and reception of signals in two WiFi frequency bands, and the mobile terminal can connect to two WiFi hotspots in different frequency bands at the same time to establish a WiFi data link in the first frequency band And the WiFi data link of the second frequency band.
  • the mobile terminal detects the link quality of the first WiFi data link, detects the link quality of the second WiFi data link, and detects the link quality of the mobile data link.
  • the mobile terminal determines the first WiFi data link, the second WiFi data link, and the link quality of the mobile data link according to the link quality of the first WiFi data link, the link quality of the second WiFi data link, and the link quality of the mobile data link.
  • the distribution ratio of data packets between mobile data links is not limited to the first WiFi data link, the second WiFi data link, and the link quality of the mobile data link.
  • the mobile terminal allocates the data packets to be transmitted in the first WiFi data link, the second WiFi data link, and the mobile data link for transmission according to the data packet allocation ratio.
  • step 204 to step 206 in the embodiment of the present application, reference may be made to the detailed description of step 101 to step 103 shown in FIG. 1, which will not be repeated here.
  • the mobile terminal determines whether the first WiFi hotspot or the second WiFi hotspot is a dual-band WiFi hotspot;
  • the mobile terminal sends a frequency band switching command to one of the first WiFi hotspot and the second WiFi hotspot, and the frequency band switching command is used to switch the second WiFi hotspot.
  • the mobile terminal connects the first WiFi hotspot and the second WiFi hotspot to establish the first WiFi data link and the second WiFi data link A step of.
  • the dual-band WiFi hotspot refers to a WiFi hotspot that supports two frequency bands. Dual-band WiFi hotspots can switch between the two frequency bands.
  • the dual-band WiFi hotspot can switch the current working frequency band.
  • the previous working frequency band of the dual-band WiFi hotspot was 2.4G
  • now the working frequency band of the dual-band WiFi hotspot can be switched from 2.4G to 5G.
  • step 203 can be continued at this time.
  • one of the two WiFi hotspots may support a dual-band WiFi hotspot
  • the working frequency band of the mobile terminal can be switched, which can intelligently switch the working frequency band of the dual-band WiFi hotspot connected to the mobile terminal, so as to meet the requirement of connecting the mobile terminal to two WiFi hotspots of different frequency bands to realize the function of two WiFi link aggregation.
  • Figure 3 is a schematic flowchart of another data packet offloading method disclosed in an embodiment of the present application.
  • Figure 3 is further optimized on the basis of Figure 1.
  • the data packet offloading method Including the following steps.
  • the mobile terminal detects the link quality of the first WiFi data link, detects the link quality of the second WiFi data link, and detects the link quality of the mobile data link.
  • the mobile terminal determines the first WiFi data link, the second WiFi data link and the link quality of the mobile data link according to the link quality of the first WiFi data link, the link quality of the second WiFi data link, and the link quality of the mobile data link.
  • the distribution ratio of data packets between mobile data links is the first WiFi data link, the second WiFi data link and the link quality of the mobile data link according to the link quality of the first WiFi data link, the link quality of the second WiFi data link, and the link quality of the mobile data link.
  • the mobile terminal obtains the type of data packet that needs to be transmitted.
  • the mobile terminal allocates the data packet to be transmitted in the first WiFi data link, the second WiFi data link, and the mobile data link according to the data packet allocation ratio transmission.
  • the mobile terminal transmits the data packet to be transmitted through the mobile data link.
  • a data packet of a designated server type refers to a data packet that does not generate additional traffic charges.
  • the types of data packets can include designated server types and non-designated server types.
  • the designated server refers to a specific application server. For example, for some traffic-free applications, if the user opens the traffic-free application, the mobile terminal transmits data packets between the application servers corresponding to the traffic-free application. , When the mobile terminal sends data packets to the application server corresponding to the traffic-free application, or when the mobile terminal receives the data packets sent by the application server corresponding to the traffic-free application, the data packets are transmitted through the mobile data link and no extra Therefore, these data packets are transmitted through the mobile data link. For data packets that are not of the specified server type, the data packet allocation strategy shown in Figure 1 is processed.
  • the mobile terminal can try Tencent-based applications (such as WeChat, QQ, Tencent News, Tencent Video, QQ Music, Glory of the King, PlayerUnknown's Battlegrounds, etc.) for free. All Tencent-based applications are No additional traffic charges will be generated.
  • Tencent-based applications such as WeChat, QQ, Tencent News, Tencent Video, QQ Music, Glory of the King, PlayerUnknown's Battlegrounds, etc.
  • the link quality of the first WiFi data link, the link quality of the second WiFi data link, and the link quality of the mobile data link can be used to determine the data packets to be transmitted on the three links.
  • the allocation ratio can be reasonably allocated to transmit data packets on two WiFi data links and one mobile data link, making full use of the data packet receiving and sending capabilities of the WiFi network and the mobile data network.
  • mobile data traffic can be used directly, avoiding the use of offloading strategies for traffic-free applications, and improving users' online experience.
  • FIG. 4 is a schematic flowchart of another data packet distribution method disclosed in an embodiment of the present application.
  • FIG. 4 is further optimized on the basis of FIG. 1, as shown in FIG. 4, the data packet distribution method Including the following steps.
  • the mobile terminal detects the link quality of the first WiFi data link, detects the link quality of the second WiFi data link, and detects the link quality of the mobile data link.
  • the mobile terminal obtains the user type.
  • the user type may be determined according to the data package purchased by the user and the user's data usage.
  • User types can include flow-sensitive and non-flow-sensitive types. For traffic-sensitive users, they are more cautious about using traffic, and they are more concerned about whether the used traffic exceeds the upper limit of the purchased data package. For non-traffic-sensitive users, the use of traffic is more casual and does not care whether the used traffic exceeds The upper limit of the data package purchased.
  • the traffic limit of the data package purchased by the user is lower than a certain threshold (for example, 1G), and the user's historical traffic usage does not exceed the traffic limit of the package, the user can be considered as a traffic-sensitive user. If the data package purchased by the user is an unlimited data package, the user can be considered as a non-traffic sensitive user.
  • a certain threshold for example, 1G
  • the mobile terminal determines the first WiFi data link and the second WiFi data link according to the link quality of the first WiFi data link, the link quality of the second WiFi data link, the link quality of the mobile data link, and the user type.
  • the data packet distribution ratio between the link and the mobile data link is the first WiFi data link and the second WiFi data link according to the link quality of the first WiFi data link, the link quality of the second WiFi data link, the link quality of the mobile data link, and the user type.
  • the previously calculated data packet allocation ratio between the first WiFi data link, the second WiFi data link, and the mobile data link can be increased appropriately.
  • the previously calculated data packet allocation ratio between the first WiFi data link, the second WiFi data link and the mobile data link can be appropriately reduced or maintained.
  • the implementation of this application can readjust the data packet allocation ratio between the first WiFi data link, the second WiFi data link, and the mobile data link according to the user type, which can save user traffic charges and improve user online experience.
  • step 403 may specifically include the following steps:
  • the mobile terminal determines the first WiFi data link and the second WiFi data link according to the link quality of the first WiFi data link, the link quality of the second WiFi data link, the link quality of the mobile data link, and the user type.
  • the mobile terminal increases the initial data packet allocation ratio between the first WiFi data link, the second WiFi data link and the mobile data link to obtain the first WiFi data link and the second WiFi data The data packet distribution ratio between the link and the mobile data link;
  • the mobile terminal reduces the initial data packet allocation ratio between the first WiFi data link, the second WiFi data link and the mobile data link to obtain the first WiFi data link and the second WiFi data link.
  • the data packet distribution ratio between the data link and the mobile data link is not limited
  • the initial data packet allocation ratio refers to the data packet allocation ratio between the first WiFi data link, the second WiFi data link and the mobile data link obtained before considering the user type.
  • the implementation of this application can readjust the data packet allocation ratio between the first WiFi data link, the second WiFi data link, and the mobile data link according to the user type. For traffic-sensitive users, it can save user traffic charges. Traffic-sensitive users can improve users' online experience.
  • the mobile terminal allocates the data packets to be transmitted in the first WiFi data link, the second WiFi data link, and the mobile data link for transmission according to the data packet allocation ratio.
  • steps 401 and 404 in the embodiment of the present application reference may be made to the detailed description of step 101 and step 103 shown in FIG. 1, which will not be repeated here.
  • the link quality of the first WiFi data link, the link quality of the second WiFi data link, and the link quality of the mobile data link can be used to determine the data packets to be transmitted on the three links.
  • the allocation ratio can be reasonably allocated to transmit data packets on two WiFi data links and one mobile data link, making full use of the data packet receiving and sending capabilities of the WiFi network and the mobile data network.
  • the data packet distribution ratio between the first WiFi data link, the second WiFi data link and the mobile data link can be readjusted according to the user type. For traffic-sensitive users, it can save user traffic charges. For non-traffic-sensitive users Users can improve their online experience.
  • the mobile terminal includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the present invention.
  • the embodiment of the present application can divide the mobile terminal into functional units according to the above method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 5 is a schematic structural diagram of a data packet distribution device disclosed in an embodiment of the present application.
  • the data packet distribution device 500 includes a detection unit 501, a determination unit 502, and a transmission unit 503, wherein:
  • the detection unit 501 is configured to detect the link quality of the first WiFi data link, detect the link quality of the second WiFi data link, and detect the link quality of the mobile data link;
  • the determining unit 502 is configured to determine the first WiFi data link and the second WiFi data link according to the link quality of the first WiFi data link, the link quality of the second WiFi data link, and the link quality of the mobile data link The data packet distribution ratio between the road and the mobile data link;
  • the transmission unit 503 is configured to distribute the data packets to be transmitted in the first WiFi data link, the second WiFi data link, and the mobile data link for transmission according to the data packet allocation ratio.
  • the data packet distribution device 500 may further include a searching unit 504, a first obtaining unit 505, and a connection establishing unit 506.
  • the searching unit 504 is used to search for available WiFi hotspots around;
  • the first obtaining unit 505 is configured to obtain the working frequency bands of the first WiFi hotspot and the second WiFi hotspot when the search unit 504 finds that the first WiFi hotspot and the second WiFi hotspot are available WiFi hotspots;
  • the connection establishment unit 506 is configured to connect the first WiFi hotspot and the second WiFi hotspot to establish the first WiFi data link and the second WiFi when the working frequency bands of the first WiFi hotspot and the second WiFi hotspot do not belong to the same frequency band. Data link.
  • the data packet distribution device 500 may further include a sending unit 507.
  • the determining unit 502 is further configured to determine whether the first WiFi hotspot or the second WiFi hotspot is a dual-band WiFi hotspot when the working frequency bands of the first WiFi hotspot and the second WiFi hotspot belong to the same frequency band;
  • the sending unit 507 is configured to send a frequency band switching instruction to one of the first WiFi hotspot and the second WiFi hotspot when at least one of the first WiFi hotspot and the second WiFi hotspot is a dual-band WiFi hotspot,
  • the frequency band switching command is used to switch the working frequency band of a dual-band WiFi hotspot in the first WiFi hotspot and the second WiFi hotspot;
  • the connection establishment unit 506 is further configured to connect the first WiFi hotspot and the second WiFi hotspot to establish the first WiFi data link and the second WiFi data when the working frequency bands of the first WiFi hotspot and the second WiFi hotspot do not belong to the same frequency band. link.
  • the data packet distribution device 500 may further include a second acquiring unit 508.
  • the second acquiring unit 508 is configured to acquire the type of data packet that needs to be transmitted;
  • the transmission unit 503 is also used to allocate the data packets to be transmitted to the first WiFi data link, the second WiFi data link and the second WiFi data link according to the data packet allocation ratio when the type of the data packet to be transmitted does not belong to the specified server type. Transmission in the mobile data link.
  • the transmission unit 503 is also configured to transmit the data packet to be transmitted through the mobile data link when the type of the data packet to be transmitted belongs to the specified server type.
  • the data packet distribution device 500 may further include a third acquiring unit 509.
  • the third obtaining unit 509 is configured to obtain the user type
  • the determining unit 502 determines the first WiFi data link, the second WiFi data link, and the mobile data link according to the link quality of the first WiFi data link, the link quality of the second WiFi data link, and the link quality of the mobile data link.
  • the data packet allocation ratio between the data links is specifically: the first WiFi data link link quality, the second WiFi data link link quality, the mobile data link link quality, and the user type are determined according to the The data packet distribution ratio between a WiFi data link, a second WiFi data link and a mobile data link.
  • the determining unit 502 determines the first WiFi data link and the second WiFi data link according to the link quality of the first WiFi data link, the link quality of the second WiFi data link, the link quality of the mobile data link, and the user type. 2.
  • the data packet distribution ratio between the WiFi data link and the mobile data link specifically:
  • the data packets to be transmitted can be determined according to the link quality of the first WiFi data link, the link quality of the second WiFi data link, and the link quality of the mobile data link.
  • the allocation ratio on the three links can be reasonably allocated to transmit data packets on two WiFi data links and one mobile data link, making full use of the data packet sending and receiving capabilities of WiFi networks and mobile data networks, and improving users' online experience.
  • FIG. 6 is a schematic structural diagram of a mobile terminal disclosed in an embodiment of the present application.
  • the mobile terminal 600 includes a processor 601 and a memory 602.
  • the mobile terminal 600 may also include a bus 603.
  • the processor 601 and the memory 602 may be connected to each other through the bus 603.
  • the bus 603 may be a peripheral component. Connect the standard (Peripheral Component Interconnect, referred to as PCI) bus or extended industry standard architecture (Extended Industry Standard Architecture, referred to as EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 603 can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG.
  • the mobile terminal 600 may also include an input and output device 604, and the input and output device 604 may include a display screen, such as a liquid crystal display screen.
  • the memory 602 is used to store one or more programs containing instructions; the processor 601 is used to call the instructions stored in the memory 602 to execute some or all of the method steps in FIGS. 1 to 4.
  • the distribution ratio on the road can be reasonably distributed to transmit data packets on two WiFi data links and one mobile data link, making full use of the data packet receiving and sending capabilities of WiFi networks and mobile data networks, and improving users' online experience.
  • the embodiment of the present application also provides another mobile terminal, as shown in FIG. 7.
  • the mobile terminal can be any terminal device including a mobile phone, a tablet computer, a PDA (Personal Digital Assistant), a POS (Point of Sales, sales terminal), a vehicle-mounted computer, etc. Take the mobile terminal as a mobile phone as an example:
  • FIG. 7 shows a block diagram of a part of the structure of a mobile phone related to a mobile terminal provided in an embodiment of the present application.
  • the mobile phone includes: a radio frequency (RF) circuit 910, a memory 920, an input unit 930, a display unit 940, a sensor 950, an audio circuit 960, a wireless fidelity (Wireless Fidelity, WiFi) module 970, and a processor 980 , And power supply 990 and other components.
  • RF radio frequency
  • the structure of the mobile phone shown in FIG. 7 does not constitute a limitation on the mobile phone, and may include more or less components than those shown in the figure, or a combination of some components, or different component arrangements.
  • the RF circuit 910 can be used for receiving and transmitting information.
  • the RF circuit 910 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 910 can also communicate with the network and other devices through wireless communication.
  • the above wireless communication can use any communication standard or protocol, including but not limited to Global System of Mobile Communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division) Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), E-mail, Short Messaging Service (SMS), etc.
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • E-mail Short Messaging Service
  • the memory 920 can be used to store software programs and modules.
  • the processor 980 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 920.
  • the memory 920 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function, and the like; the data storage area may store data created according to the use of a mobile phone, etc.
  • the memory 920 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the input unit 930 may be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the mobile phone.
  • the input unit 930 may include a fingerprint recognition module 931 and other input devices 932.
  • the fingerprint identification module 931 can collect the fingerprint data of the user on it.
  • the input unit 930 may also include other input devices 932.
  • other input devices 932 may include, but are not limited to, one or more of touch screen, physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, joystick, etc.
  • the display unit 940 may be used to display information input by the user or information provided to the user and various menus of the mobile phone.
  • the display unit 940 may include a display screen 941.
  • the display screen 941 may be configured in the form of a liquid crystal display (LCD), an organic or inorganic light-emitting diode (OLED), etc.
  • the mobile phone may also include at least one sensor 950, such as a light sensor, a motion sensor, a pressure sensor, a temperature sensor, and other sensors.
  • the light sensor may include an ambient light sensor (also referred to as a light sensor) and a proximity sensor.
  • the ambient light sensor can adjust the backlight brightness of the mobile phone according to the brightness of the ambient light, thereby adjusting the brightness of the display screen 941, and the proximity sensor can When the phone is moved to the ear, turn off the display 941 and/or the backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary, and can be used to identify mobile phone posture applications (such as horizontal and vertical screen switching, magnetic force Gauge posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; as for other sensors such as gyroscopes, barometers, hygrometers, thermometers, infrared sensors, etc., which can be configured in mobile phones, I will not repeat them here.
  • mobile phone posture applications such as horizontal and vertical screen switching, magnetic force Gauge posture calibration
  • vibration recognition related functions such as pedometer, percussion
  • other sensors such as gyroscopes, barometers, hygrometers, thermometers, infrared sensors, etc., which can be configured in mobile phones, I will not repeat them here.
  • the audio circuit 960, the speaker 961, and the microphone 962 can provide an audio interface between the user and the mobile phone.
  • the audio circuit 960 can transmit the electrical signal converted from the received audio data to the speaker 961, which is converted into a sound signal for playback by the speaker 961; on the other hand, the microphone 962 converts the collected sound signal into an electrical signal, and the audio circuit 960 After being received, it is converted into audio data, and then processed by the audio data playback processor 980, and sent to, for example, another mobile phone via the RF circuit 910, or the audio data is played to the memory 920 for further processing.
  • WiFi is a short-distance wireless transmission technology.
  • the mobile phone can help users send and receive e-mails, browse web pages, and access streaming media through the WiFi module 970. It provides users with wireless broadband Internet access.
  • FIG. 7 shows the WiFi module 970, it is understandable that it is not a necessary component of the mobile phone, and can be omitted as needed without changing the essence of the invention.
  • the processor 980 is the control center of the mobile phone. It uses various interfaces and lines to connect various parts of the entire mobile phone. It executes by running or executing software programs and/or modules stored in the memory 920, and calling data stored in the memory 920. Various functions and processing data of the mobile phone can be used to monitor the mobile phone as a whole.
  • the processor 980 may include one or more processing units; preferably, the processor 980 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc. , The modem processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 980.
  • the mobile phone also includes a power source 990 (such as a battery) for supplying power to various components.
  • a power source 990 such as a battery
  • the power source can be logically connected to the processor 980 through a power management system, so that functions such as charging, discharging, and power management can be managed through the power management system.
  • the mobile phone may also include a camera 9100, which is used to capture images and videos, and transmit the captured images and videos to the processor 980 for processing.
  • a camera 9100 which is used to capture images and videos, and transmit the captured images and videos to the processor 980 for processing.
  • the mobile phone can also be a Bluetooth module, etc., which will not be repeated here.
  • An embodiment of the present application also provides a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, and the computer program enables a computer to execute any of the data packet distribution methods described in the above method embodiments. Part or all of the steps.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product includes a non-transitory computer-readable storage medium storing a computer program.
  • the computer program is operable to cause a computer to execute any of the methods described in the foregoing method embodiments. Part or all of the steps of a data packet splitting method.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable memory.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory, A number of instructions are included to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present invention.
  • the aforementioned memory includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other various media that can store program codes.
  • the program can be stored in a computer-readable memory, and the memory can include: flash disk , Read-only memory (English: Read-Only Memory, abbreviation: ROM), random access device (English: Random Access Memory, abbreviation: RAM), magnetic disk or optical disc, etc.

Abstract

本申请实施例公开了一种数据包分流方法、装置、移动终端及存储介质,该方法包括:检测第一WiFi数据链路的链路质量,检测第二WiFi数据链路的链路质量,检测移动数据链路的链路质量;根据所述第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的数据包分配比例;将需要传输的数据包按照所述数据包分配比例分配在所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路中传输。本申请实施例充分利用两个WiFi网络和一个移动数据网络的数据包收发能力。

Description

数据包分流方法、装置、移动终端及存储介质 技术领域
本申请涉及通信技术领域,具体涉及一种数据包分流方法、装置、移动终端及存储介质。
背景技术
目前,移动终端在上网时,可以同时打开WiFi网络的开关和移动数据网络的开关。此时,移动终端会优先通过WiFi网络进行上网。如果WiFi网络的网速较慢,用户需要手动关闭WiFi网络的开关,仅使用移动数据网络。移动终端虽然同时打开WiFi网络的开关和移动数据网络的开关,但同一时间只能使用WiFi网络和移动数据网络中的一个进行上网,无法充分利用WiFi网络和移动数据网络。
发明内容
本申请实施例提供了一种数据包分流方法、装置、移动终端及存储介质,充分利用WiFi网络和移动数据网络的数据包收发能力。
第一方面,本申请实施例提供一种数据包分流方法,包括:
检测第一WiFi数据链路的链路质量,检测第二WiFi数据链路的链路质量,检测移动数据链路的链路质量;
根据所述第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的数据包分配比例;
将需要传输的数据包按照所述数据包分配比例分配在所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路中传输。
第二方面,本申请实施例提供了一种数据包分流装置,包括:
检测单元,用于检测第一WiFi数据链路的链路质量,检测第二WiFi数据链路的链路质量,检测移动数据链路的链路质量;
确定单元,用于根据所述第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的数据包分配比例;
传输单元,用于将需要传输的数据包按照所述数据包分配比例分配在所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路中传输。
第三方面,本申请实施例提供一种移动终端,包括处理器、存储器,所述存储器用于存储一个或多个程序,所述一个或多个程序被配置成由所述处理器执行,上述程序包括用于执行本申请实施例第一方面中的步骤的指令。
第四方面,本申请实施例提供了一种计算机可读存储介质,其中,上述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,上述计算机程序使得计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。
第五方面,本申请实施例提供了一种计算机程序产品,其中,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
可以看出,本申请实施例中所描述的数据包分流方法,移动终端检测第一WiFi数据链路的链路质量,检测第二WiFi数据链路的链路质量,检测移动数据链路的链路质量;根据 第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与移动数据链路的链路质量确定第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例;将需要传输的数据包按照数据包分配比例分配在第一WiFi数据链路、第二WiFi数据链路和移动数据链路中传输。本申请实施例可以根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量和移动数据链路的链路质量确定需要传输的数据包在三条链路上的分配比例,能够合理分配在两条WiFi数据链路和一条移动数据链路上传输数据包,充分利用WiFi网络和移动数据网络的数据包收发能力,提高用户上网体验。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例公开的一种数据包分流方法的流程示意图;
图2是本申请实施例公开的另一种数据包分流方法的流程示意图;
图3是本申请实施例公开的另一种数据包分流方法的流程示意图;
图4是本申请实施例公开的另一种数据包分流方法的流程示意图;
图5是本申请实施例公开的一种数据包分流装置的结构示意图;
图6是本申请实施例公开的一种移动终端的结构示意图;
图7是本申请实施例公开的又一种移动终端的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例所涉及到的移动终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为移动终端。
下面对本申请实施例进行详细介绍。
请参阅图1,图1是本申请实施例公开的一种数据包分流方法的流程示意图,如图1所示,该数据包分流方法包括如下步骤。
101,移动终端检测第一WiFi数据链路的链路质量,检测第二WiFi数据链路的链路质量,检测移动数据链路的链路质量。
本申请实施例中,无线保真(WIreless-Fidelity,WiFi),也可以称为wifi、Wi-Fi,是一种无线连接方式。移动终端可以包括WiFi模块(也可以称为WiFi通信模块),以使移动终端具有WiFi功能。移动终端可以包括第一WiFi模块和第二WiFi模块,可以支持两个WiFi频段的信号的同时收发。第一WiFi模块和第二WiFi模块支持的频段不同,比如,第一WiFi模块支持2.4G(Hz)频段,第二WiFi模块支持5G(Hz)频段;或者,第一WiFi模块支持5G频段,第二WiFi模块支持2.4G频段。
其中,移动终端的射频电路系统具有双频双发(Dual Band Dual Concurrent,DBDC)功能,支持2×2天线,2组天线都配套有放大电路和功放芯片,可以在硬件电路上支持天线同时发射和接收信号。本申请的第一WiFi模块和第二WiFi模块均处于Station模式(简称STA模式),第一WiFi模块和第二WiFi模块需要接入WiFi热点来接入WiFi网络。本申请的第一WiFi模块和第二WiFi模块同时工作时,处于双WiFi模式,双WiFi模式是两个WiFi模块同时收发数据的模式,在双WiFi模式下,第一WiFi模块和第二WiFi模块并行工作,互不干扰。
在执行步骤101之前,移动终端可以搜索WiFi热点,如果搜索到两个不同频段的WiFi热点,则移动终端可以分别连接两个不同频段的WiFi热点,通过两个不同频段的WiFi热点连接到无线网络。
第一WiFi数据链路是移动终端和无线网络之间建立的通过第一WiFi通信模块(支持第一WiFi频段)接口连接的数据连接通路。第二WiFi数据链路是移动终端和无线网络之间建立的通过第二WiFi通信模块(支持第二WiFi频段)接口连接的数据连接通路。第一WiFi数据链路支持第一WiFi频段的数据收发,第二WiFi数据链路支持第二WiFi频段的数据收发。其中,第一WiFi频段与第二WiFi频段不同,比如,第一WiFi频段为2.4G频段,第二WiFi频段为5G频段。
当移动终端通过第一WiFi热点或第二WiFi热点上网时,可以不通过移动、联通、电信等运营商网络上网,可以节省流量费。
移动数据链路是移动终端和无线网络之间建立的通过蜂窝通信模块接口连接的数据连接通路。蜂窝通信模块接口可以是3G/4G/5G通信模块接口。第一WiFi数据链路中传输的数据包需要经过第一WiFi热点,第二WiFi数据链路中传输的数据包需要经过第二WiFi热点,移动数据链路中传输的数据包需要经过电信运营商的基站。
第一WiFi数据链路的链路质量可以通过第一WiFi数据链路的上下行数据传输速率、往返时延、丢包率、误码率等确定。其中,上下行数据传输速率越高、往返时延越小、丢包率越低、误码率越低、该第一WiFi数据链路的链路质量越高;上下行数据传输速率越低、往返时延越大、丢包率越高、误码率越高、该第一WiFi数据链路的链路质量越低。类似的,第二WiFi数据链路的链路质量可以通过第二WiFi数据链路的上下行数据传输速率、往返时延、丢包率、误码率等确定。
第一WiFi数据链路可以包括第一WiFi上行数据链路和第一WiFi下行数据链路。第一WiFi上行数据链路的质量可以通过第一WiFi数据链路的上行数据传输速率、往返时延、丢包率、误码率等确定。第一WiFi下行数据链路的质量可以通过第一WiFi数据链路的下行数据传输速率、往返时延、丢包率、误码率等确定。类似的,第二WiFi数据链路可以包括第二WiFi上行数据链路和第二WiFi下行数据链路。
移动数据链路的链路质量可以通过移动数据链路的上下行数据传输速率、往返时延、丢包率、误码率等确定。其中,上下行数据传输速率越高、往返时延越小、丢包率、误码率越低、该移动数据链路的链路质量越高;上下行数据传输速率越低、往返时延越大、丢包率越高、误码率越高、该移动数据链路的链路质量越低。
移动数据链路可以包括移动上行数据链路和移动下行数据链路。移动上行数据链路的 质量可以通过移动数据链路的上行数据传输速率、往返时延、丢包率、误码率等确定。移动下行数据链路的质量可以通过移动数据链路的下行数据传输速率、往返时延、丢包率、误码率等确定。
误码率,是衡量数据在规定时间内数据传输精确性的指标,误码率=传输中的误码/所传输的总码数*100%。
丢包率,是数据包丢失部分与所传数据包总数的比值。
其中,在执行步骤101之前,移动终端可以启动智能链路聚合功能。移动终端还可以同时打开WiFi连接和移动数据连接。
本申请实施例中,链路聚合,是设备可以同时使用两个或者两个以上的网口同时进行上网,比如,在手机上通过链路聚合,可以同时开启两个WiFi网络和数据网络(数据网络,也可以称为移动数据网络)来进行网络访问。智能链路聚合(Smart Link Aggregation,SLA)功能,指的是把用户的上网请求智能的分配到不同的可上网接口(蜂窝通信模块接口、第一WiFi通信模块接口、第二WiFi通信模块接口)上。链路聚合至少需要两个或两个以上的可用网络,所以SLA的前提条件就是要使WiFi和数据网络共存。
移动终端启动智能链路聚合功能时,移动终端可以向网络端发送一个网络请求(network request)来使能数据网络,可以使得移动终端在同时开启WiFi和数据网络时,可以同时使用WiFi网络和移动数据网络。
本申请可以适用于室内场景,也可以适用于车载场景。对于车载场景,移动终端可以同时连接两个不同频段的车载WiFi热点,这两个不同频段的车载WiFi热点可以集成在一个设备上,也可以分别位于两个设备上。移动终端还可以同时连接一个车载WiFi热点和一个手机WiFi热点,车载WiFi热点和手机WiFi热点的频段不相同。手机WiFi热点处于软接入点(soft access point,soft AP)模式,可以允许至少一个外部设备接入上网。
在车载场景中,车载WiFi热点、手机WiFi热点、移动数据网络本质上都是运营商网络(车载WiFi热点可以通过插入运营商SIM卡来开启热点,手机WiFi热点同样需要使用SIM卡走流量),由于车载场景中移动终端移速较快,不同运营商基站覆盖的差异性,移动终端在快速移动过程中车载WiFi热点、手机WiFi热点、移动数据网络的网络质量会发生较大的变化,也即,第一WiFi数据链路、第二WiFi数据链路、移动数据链路的链路质量往往是动态变化的。实施本申请实施例,可以在车载场景中动态调整第一WiFi数据链路、第二WiFi数据链路、移动数据链路的数据包分配比例,提高用户上网体验。
其中,可以让移动终端连接的不同数据链路的运营商网络的数量尽可能多。第一WiFi数据链路对应的运营商网络、第二WiFi数据链路对应的运营商网络、移动数据链路对应的运营商网络各不相同。比如,第一WiFi数据链路对应移动运营商网络、第二WiFi数据链路对应联通运营商网络、移动数据链路对应电信运营商网络。由于不同运营商基站覆盖的差异性,最大可能的利用不同运营商基站的覆盖能力,从而降低移动终端上网过程中网速不稳定的风险。
可选的,移动终端检测第一WiFi数据链路的链路质量,具体可以包括如下步骤:
移动终端测量第一WiFi数据链路的数据传输速率、往返时延、丢包率、误码率,基于第一WiFi数据链路的往返时延、数据传输速率、丢包率、误码率确定第一WiFi数据链路的链路质量;
移动终端检测第二WiFi数据链路的链路质量,具体可以包括如下步骤:
移动终端测量第二WiFi数据链路的数据传输速率、往返时延、丢包率、误码率,基于第二WiFi数据链路的往返时延、数据传输速率、丢包率、误码率确定第二WiFi数据链路的链路质量;
移动终端检测移动数据链路的链路质量,具体可以包括如下步骤:
移动终端测量移动数据链路的数据传输速率、往返时延、丢包率、误码率,基于移动数据链路的往返时延、数据传输速率、丢包率、误码率确定移动数据链路的链路质量。
102,移动终端根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与移动数据链路的链路质量确定第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例。
本申请实施例中,如果第一WiFi数据链路的链路质量要优于第二WiFi数据链路和移动数据链路的链路质量,则确定第一WiFi数据链路的数据包占比最高;如果第二WiFi数据链路的链路质量要优于第一WiFi数据链路和移动数据链路的链路质量,则确定第二WiFi数据链路的数据包占比最高;如果移动数据链路的链路质量要优于第一WiFi数据链路和第二WiFi数据链路的链路质量,则确定移动数据链路的数据包占比最高。举例来说,如果第一WiFi数据链路的链路质量为20、如果第二WiFi数据链路的链路质量为30、移动数据链路的链路质量为50,则第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例为2:3:5。
第一WiFi数据链路的链路质量可以基于第一WiFi数据链路的上下行数据传输速率、往返时延、丢包率、误码率来进行打分,得到第一WiFi数据链路的质量分。类似的,也可以得到第二WiFi数据链路和移动数据链路的质量分。移动终端可以将第一WiFi数据链路的质量分、第二WiFi数据链路的质量分、移动数据链路的质量分的比例作为第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例。
移动终端也可以根据第一WiFi数据链路的质量分确定第一WiFi数据链路的质量等级,根据第二WiFi数据链路的质量分确定第二WiFi数据链路的质量等级,根据移动数据链路的质量分确定移动数据链路的质量等级,依据第一WiFi数据链路的质量等级、第二WiFi数据链路的质量等级与移动数据链路的质量等级来确定第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例。
例如,可以设置第一WiFi数据链路、第二WiFi数据链路、移动数据链路的质量等级为I级、II级、III级、IV级、V级这五个等级,分别代表链路质量很差、差、中等、良、优。I级、II级、III级、IV级、V级这五个等级分别对应质量分为:0~30、30~60、60~80、80~90、90~100。可以根据第一WiFi数据链路的质量等级、第二WiFi数据链路的质量等级与移动数据链路的质量等级之比来确定第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例。举例来说,如果第一WiFi数据链路的链路质量为I级,第二WiFi数据链路的链路质量为I级,移动数据链路的质量等级为I级,则第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例为1:1:1;如果第一WiFi数据链路的链路质量为I级,第二WiFi数据链路的链路质量为IV级,移动数据链路的质量等级为II级,则第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例为1:4:2。
103,移动终端将需要传输的数据包按照数据包分配比例分配在第一WiFi数据链路、第二WiFi数据链路和移动数据链路中传输。
本申请实施例中,移动终端可以发送上行数据包,也可以接收下行数据包。需要传输的数据包可以是上行数据包,也可以是下行数据包。对于上行数据包,移动终端可以将上行数据包分配在第一WiFi上行数据链路、第二WiFi上行数据链路和移动上行数据链路中传输;对于下行数据包,移动终端可以将下行数据包分配在第一WiFi下行数据链路、第二WiFi下行数据链路和移动下行数据链路中传输。
需要传输的数据包可以是移动终端中不同的业务发起的,比如,需要传输的数据包可以是视频类业务、游戏类业务、语音类业务、即时通讯类业务中的任意一种业务发起的。
移动终端将需要传输的数据包按照数据包分配比例分配在第一WiFi数据链路、第二 WiFi数据链路和移动数据链路中传输之前,还可以包括如下步骤:
移动终端将需要传输的数据包进行第一WiFi数据链路标记或第二WiFi数据链路标记或移动数据链路标记,得到每个数据包的标记值,并建立标记值路由表,更新至路由节点中。
移动终端将需要传输的数据包按照数据包分配比例分配在第一WiFi数据链路、第二WiFi数据链路和移动数据链路中传输,具体可以包括如下步骤:
将需要传输的数据包在传输的过程中,移动终端获取该需要传输的数据包的标记值,依据各个路由节点的路由表中的标记值路由表确定将该需要传输的数据包对应的数据链路,将该需要传输的数据包分配在对应的数据链路中传输。
可选的,步骤101中,移动终端检测第一WiFi数据链路的链路质量,检测第二WiFi数据链路的链路质量,检测移动数据链路的链路质量,具体可以包括如下步骤:
移动终端测量第一WiFi数据链路的最大数据传输速率,测量第二WiFi数据链路的最大数据传输速率,测量移动数据链路的最大数据传输速率,基于第一WiFi数据链路的最大数据传输速率、第二WiFi数据链路的最大数据传输速率、移动数据链路的最大数据传输速率确定第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量以及移动数据链路的链路质量。
本申请实施例中,移动数据网络以长期演进(Long Term Evolution,LTE)网络为例进行说明。可以按照如下公式计算第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量、以及LTE数据链路的链路质量:
weigh_wifi_1=max_speed_wifi_1/(max_speed_wifi_1+max_speed_wifi_2+max_speed_lte);
weigh_wifi_2=max_speed_wifi_2/(max_speed_wifi_1+max_speed_wifi_2+max_speed_lte);
weigh_lte=1-weigh_wifi_1-weigh_wifi_2;
其中,weigh_wifi_1表示第一WiFi数据链路的链路质量,weigh_wifi_2表示第二WiFi数据链路的链路质量,weigh_lte表示LTE数据链路的链路质量,max_speed_wifi_1表示第一WiFi数据链路的最大数据传输速率,max_speed_wifi_2表示第二WiFi数据链路的最大数据传输速率,max_speed_lte表示LTE数据链路的最大数据传输速率。第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与LTE数据链路的链路质量之和等于1。
移动终端可以根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与移动数据链路的链路质量之比确定第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例。
比如,第一WiFi数据链路的链路质量为0.3、第二WiFi数据链路的链路质量为0.5、LTE数据链路的链路质量为0.2,则确定第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例为3:5:2。
可选的,第一WiFi数据链路的最大数据传输速率、第二WiFi数据链路的最大数据传输速率、LTE数据链路的最大数据传输速率可以通过wifi和lte接收(rx)接口的数据增量计算速率来进行修正。
比如,每隔1s统计第一wifi接收(rx)接口、第二wifi接收(rx)接口和lte接收(rx)接口上的数据增量计算速率,通过数据增量计算速率对第一WiFi数据链路的最大数据传输速率、第二WiFi数据链路的最大数据传输速率和移动数据链路的最大数据传输速率进行修正。
tmp_speed=(rx_bytes-last_rx_bytes)/1;
修正后的max_speed_wifi_1=max(max_speed_wifi_1,tmp_speed);
修正后的max_speed_wifi_2=max(max_speed_wifi_2,tmp_speed);
修正后的max_speed_lte=max(max_speed_lte,tmp_speed);
其中,rx_bytes表示一秒内第一wifi接口、第二wifi接口和lte接收接口上的数据接收量,last_rx_bytes表示上一秒内第一wifi接口、第二wifi接口和lte接收接口上的数据接收量,tmp_speed表示数据增量计算速率,max_speed_wifi_1表示第一WiFi数据链路的最大数据传输速率,max_speed_wifi_2表示第二WiFi数据链路的最大数据传输速率,max_speed_lte表示LTE数据链路的最大数据传输速率。修正后的max_speed_wifi_1为max_speed_wifi_1与tmp_speed中的最大值,修正后的max_speed_wifi_2为max_speed_wifi_2与tmp_speed中的最大值,修正后的max_speed_lte为max_speed_lte与tmp_speed中的最大值。
可选的,LTE数据链路的最大数据传输速率、第一WiFi数据链路的最大数据传输速率以及第二WiFi数据链路的最大数据传输速率可以通过统计往返时延(Round-Trip Time,rtt)来进行修正。
比如,移动终端可以基于tcp协议本身的rtt,来计算两个接口(WiFi通信模块接口和LTE通信模块接口)上的延时,一条数据链接只计算三次握手之后的第一个请求的rtt,比如http get,http post的rrt。3次握手指的是TCP建立连接的3个确认过程。传输控制协议(Transmission Control Protocol,tcp)通过tcp_rtt_estimator()函数来统计rtt进而计算超时重传时间(Retransmission Timeout,RTO),所以延时计算在tcp_rtt_estimator()函数中计算。
移动终端分别确定第一WiFi数据链路的当前的第一RTT、第二WiFi数据链路的当前的第一RTT、移动数据链路的当前的第一RTT,包括:
移动终端确定运行一个传输控制协议TCP的第二RTT;
移动终端分别获取第一WiFi通信模块、第二WiFi通信模块和蜂窝通信模块上一次确定的第三RTT;
移动终端根据确定的所述第二RTT和获取的第一WiFi通信模块、第二WiFi通信模块和蜂窝通信模块上一次确定的第三RTT确定所述第一WiFi通信模块、第二WiFi通信模块和蜂窝通信模块当前的第一RTT。
具体的,可以采用如下公式计算第一WiFi数据链路的当前的第一RTT、第二WiFi数据链路的当前的第一RTT、移动数据链路的当前的第一RTT:
rtt_wifi_11=(rtt_wifi_13+rtt_2)/2
rtt_wifi_21=(rtt_wifi_23+rtt_2)/2
rtt_lte_1=(rtt_lte_3+rtt_2)/2
其中,rtt_wifi_11表示第一WiFi数据链路的当前的第一RTT,rtt_2表示运行一个传输控制协议TCP的第二RTT,rtt_wifi_13表示第一WiFi数据链路的上一次确定的第三RTT;rtt_wifi_21表示第二WiFi数据链路的当前的第一RTT,rtt_2表示运行一个传输控制协议TCP的第二RTT,rtt_wifi_23表示第二WiFi数据链路的上一次确定的第三RTT;rtt_lte_1表示LTE数据链路的当前的第一RTT,rtt_2表示运行一个传输控制协议TCP的第二RTT,rtt_lte_3表示LTE数据链路的上一次确定的第三RTT。
本申请实施例考虑了数据传输速率和往返时延,可以提高第一WiFi数据链路、第二WiFi数据链路的链路质量与移动数据链路的链路质量的计算准确度。
其中,步骤101至步骤103可以周期性的执行,比如,每隔30秒、1分钟后执行一次。步骤101至步骤103也可以仅在有前台应用运行时执行。
本申请实施例中,可以根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量和移动数据链路的链路质量确定需要传输的数据包在三条链路上的分配比例,能够 合理分配在两条WiFi数据链路和一条移动数据链路上传输数据包,充分利用WiFi网络和移动数据网络的数据包收发能力,提高用户上网体验。
请参阅图2,图2是本申请实施例公开的另一种数据包分流方法的流程示意图,图2是在图1的基础上进一步优化得到的,如图2所示,该数据包分流方法包括如下步骤。
201,移动终端搜索周围的可用WiFi热点。
202,若搜索到第一WiFi热点、第二WiFi热点为可用WiFi热点,移动终端获取第一WiFi热点和第二WiFi热点的工作频段。
203,若第一WiFi热点和第二WiFi热点的工作频段不属于同一频段,移动终端连接第一WiFi热点和第二WiFi热点,建立第一WiFi数据链路和第二WiFi数据链路。
本申请实施例中,移动终端开启WiFi网络的开关后,移动终端可以搜索周围的可用WiFi热点。可用WiFi热点,指的是可以通过该WiFi热点连接到无线网络的热点。比如,有些WiFi热点可以搜索到,但是无法通过该WiFi热点连接到无线网络,这些WiFi热点就可以过滤掉。
目前的WiFi热点一般包括2.4G频段的WiFi热点和5G频段的WiFi热点,如果第一WiFi热点和第二WiFi热点的工作频段不属于同一频段,则表明第一WiFi热点和第二WiFi热点其中一个为2.4G频段,另一个为5G频段。由于移动终端包括第一WiFi通信模块和第二WiFi通信模块,可以支持两个WiFi频段的信号的同时收发,移动终端可以同时连接两个不同频段的WiFi热点,建立第一频段的WiFi数据链路和第二频段的WiFi数据链路。
204,移动终端检测第一WiFi数据链路的链路质量,检测第二WiFi数据链路的链路质量,检测移动数据链路的链路质量。
205,移动终端根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与移动数据链路的链路质量确定第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例。
206,移动终端将需要传输的数据包按照数据包分配比例分配在第一WiFi数据链路、第二WiFi数据链路和移动数据链路中传输。
本申请实施例中的步骤204至步骤206的具体实施可以参见图1所示的步骤101至步骤103的详细描述,此处不再赘述。
可选的,若第一WiFi热点和第二WiFi热点的工作频段属于同一频段,移动终端确定第一WiFi热点或第二WiFi热点是否为双频段WiFi热点;
若第一WiFi热点与第二WiFi热点中至少一个为双频段WiFi热点,移动终端向第一WiFi热点与第二WiFi热点中的一个双频段WiFi热点发送频段切换指令,频段切换指令用于切换第一WiFi热点与第二WiFi热点中的一个双频段WiFi热点的工作频段;
当第一WiFi热点和第二WiFi热点的工作频段不属于同一频段时,继续执行步骤203中移动终端连接第一WiFi热点和第二WiFi热点,建立第一WiFi数据链路和第二WiFi数据链路的步骤。
本申请实施例中,双频段WiFi热点指的是支持两个频段的WiFi热点。双频段WiFi热点可以在两个频段之间进行切换。
移动终端向第一WiFi热点与第二WiFi热点中的一个双频段WiFi热点发送频段切换指令之后,该双频段WiFi热点可以将当前的工作频段进行切换。比如,该双频段WiFi热点之前的工作频段为2.4G,现在可以将该双频段WiFi热点的工作频段从2.4G切换至5G。
如果该双频段WiFi热点频段切换成功,则第一WiFi热点和第二WiFi热点的工作频段不属于同一频段,此时可以继续执行步骤203。
本申请实施例,可以在移动终端连接的两个WiFi热点的频段相同时,为了满足移动终端支持两条WiFi链路聚合的功能,可以将两个WiFi热点中的其中一个支持双频段的WiFi 热点的工作频段进行切换,可以智能的切换移动终端连接的双频段WiFi热点的工作频段,从而满足移动终端连接两个不同频段的WiFi热点,实现两条WiFi链路聚合的功能。
请参阅图3,图3是本申请实施例公开的另一种数据包分流方法的流程示意图,图3是在图1的基础上进一步优化得到的,如图3所示,该数据包分流方法包括如下步骤。
301,移动终端检测第一WiFi数据链路的链路质量,检测第二WiFi数据链路的链路质量,检测移动数据链路的链路质量。
302,移动终端根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与移动数据链路的链路质量确定第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例。
303,移动终端获取需要传输的数据包的类型。
304,若需要传输的数据包的类型不属于指定服务器类型,移动终端将需要传输的数据包按照数据包分配比例分配在第一WiFi数据链路、第二WiFi数据链路和移动数据链路中传输。
305,若需要传输的数据包的类型属于指定服务器类型,移动终端将需要传输的数据包通过移动数据链路传输。
本申请实施例中,指定服务器类型的数据包,指的是不会产生额外流量资费的数据包。数据包的类型可以包括指定服务器类型和非指定服务器类型。指定服务器指的是特定的应用服务器,比如,对于某些免流量的应用而言,如果用户开启该免流量应用时,则移动终端在该免流量应用对应的应用服务器之间传输数据包,因此,移动终端向该免流量应用对应的应用服务器发送的数据包,或者移动终端接收该免流量应用对应的应用服务器发送的数据包时,由于这些数据包通过移动数据链路传输并不会产生额外的流量资费,因此,这些数据包都通过移动数据链路传输。对于不是指定服务器类型的数据包,则按照图1所示的数据包分配策略进行处理。
举例来说,如果用户购买了腾讯网卡,则移动终端可以免费试用腾讯系应用(比如,微信、QQ、腾讯新闻、腾讯视频、QQ音乐、王者荣耀、绝地求生等),所有的腾讯系应用都不会产生额外的流量资费。
本申请实施例中,可以根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量和移动数据链路的链路质量确定需要传输的数据包在三条链路上的分配比例,能够合理分配在两条WiFi数据链路和一条移动数据链路上传输数据包,充分利用WiFi网络和移动数据网络的数据包收发能力。对于指定服务器类型的数据包,由于不会产生额外的资费,则可以直接使用移动数据流量,避免对免流量的应用使用分流策略,提高用户上网体验。
请参阅图4,图4是本申请实施例公开的另一种数据包分流方法的流程示意图,图4是在图1的基础上进一步优化得到的,如图4所示,该数据包分流方法包括如下步骤。
401,移动终端检测第一WiFi数据链路的链路质量,检测第二WiFi数据链路的链路质量,检测移动数据链路的链路质量。
402,移动终端获取用户类型。
本申请实施例中,用户类型可以包括根据用户购买的流量套餐,用户的流量使用情况来确定。用户类型可以包括流量敏感性和非流量敏感型。对于流量敏感性用户而言,使用流量比较小心翼翼,比较在意已使用的流量是否超过购买的流量套餐的上限,对于非流量敏感型用户而言,使用流量比较随意,不在意已使用的流量是否超过购买的流量套餐的上限。
如果用户购买的流量套餐的流量限额低于一定阈值(比如,1G),并且用户历史流量 使用情况中没有出现已使用流量超过套餐的流量限额的情况,则可以认为用户为流量敏感型用户。如果用户购买的流量套餐为不限流量套餐,则可以认为用户为非流量敏感型用户。
403,移动终端根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量、移动数据链路的链路质量以及用户类型确定第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例。
本申请实施例中,对于流量敏感型用户而言,可以适当的调高之前计算的第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例,对于非流量敏感型用户而言,可以适当的降低或者保持之前计算的第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例。本申请实施可以根据用户类型来重新调整第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例,可以节省用户流量资费,提高用户上网体验。
可选的,步骤403具体可以包括如下步骤:
移动终端根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量、移动数据链路的链路质量以及用户类型确定第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的初始数据包分配比例;
若用户类型为流量敏感型,移动终端提高第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的初始数据包分配比例,得到第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例;
若用户类型为非流量敏感型,移动终端降低第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的初始数据包分配比例,得到第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例。
其中,初始数据包分配比例,指的是没有考虑用户类型之前得到的第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例。
本申请实施可以根据用户类型来重新调整第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例,对于流量敏感型用户,可以节省用户流量资费,对于非流量敏感型用户,可以提高用户上网体验。
404,移动终端将需要传输的数据包按照数据包分配比例分配在第一WiFi数据链路、第二WiFi数据链路和移动数据链路中传输。
本申请实施例中的步骤401、404的具体实施可以参见图1所示的步骤101和步骤103的详细描述,此处不再赘述。
本申请实施例中,可以根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量和移动数据链路的链路质量确定需要传输的数据包在三条链路上的分配比例,能够合理分配在两条WiFi数据链路和一条移动数据链路上传输数据包,充分利用WiFi网络和移动数据网络的数据包收发能力。可以根据用户类型来重新调整第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例,对于流量敏感型用户,可以节省用户流量资费,对于非流量敏感型用户,可以提高用户上网体验。
上述主要从方法侧执行过程的角度对本申请实施例的方案进行了介绍。可以理解的是,移动终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本申请实施例可以根据上述方法示例对移动终端进行功能单元的划分,例如,可以对 应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
请参阅图5,图5是本申请实施例公开的一种数据包分流装置的结构示意图。如图5所示,该数据包分流装置500包括检测单元501、确定单元502以及传输单元503,其中:
检测单元501,用于检测第一WiFi数据链路的链路质量,检测第二WiFi数据链路的链路质量,检测移动数据链路的链路质量;
确定单元502,用于根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与移动数据链路的链路质量确定第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例;
传输单元503,用于将需要传输的数据包按照数据包分配比例分配在第一WiFi数据链路、第二WiFi数据链路和移动数据链路中传输。
可选的,该数据包分流装置500还可以包括搜索单元504、第一获取单元505和连接建立单元506。
搜索单元504,用于搜索周围的可用WiFi热点;
第一获取单元505,用于在搜索单元504搜索到第一WiFi热点、第二WiFi热点为可用WiFi热点的情况下,获取第一WiFi热点和第二WiFi热点的工作频段;
连接建立单元506,用于在第一WiFi热点和第二WiFi热点的工作频段不属于同一频段的情况下,连接第一WiFi热点和第二WiFi热点,建立第一WiFi数据链路和第二WiFi数据链路。
可选的,该数据包分流装置500还可以包括发送单元507。
确定单元502,还用于在第一WiFi热点和第二WiFi热点的工作频段属于同一频段的情况下,确定第一WiFi热点或第二WiFi热点是否为双频段WiFi热点;
发送单元507,用于在第一WiFi热点与第二WiFi热点中至少一个为双频段WiFi热点的情况下,向第一WiFi热点与第二WiFi热点中的一个双频段WiFi热点发送频段切换指令,频段切换指令用于切换第一WiFi热点与第二WiFi热点中的一个双频段WiFi热点的工作频段;
连接建立单元506,还用于当第一WiFi热点和第二WiFi热点的工作频段不属于同一频段时,连接第一WiFi热点和第二WiFi热点,建立第一WiFi数据链路和第二WiFi数据链路。
可选的,该数据包分流装置500还可以包括第二获取单元508。
第二获取单元508,用于获取需要传输的数据包的类型;
传输单元503,还用在需要传输的数据包的类型不属于指定服务器类型的情况下,将需要传输的数据包按照数据包分配比例分配在第一WiFi数据链路、第二WiFi数据链路和移动数据链路中传输。
传输单元503,还用于在需要传输的数据包的类型属于指定服务器类型的情况下,将需要传输的数据包通过移动数据链路传输。
可选的,该数据包分流装置500还可以包括第三获取单元509。
第三获取单元509,用于获取用户类型;
确定单元502根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与移动数据链路的链路质量确定第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例,具体为:根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量、移动数据链路的链路质量以及用户类型确定第一WiFi数据链路、第二WiFi 数据链路和移动数据链路之间的数据包分配比例。
可选的,确定单元502根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量、移动数据链路的链路质量以及用户类型确定第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例,具体为:
根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量、移动数据链路的链路质量以及用户类型确定第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的初始数据包分配比例;
若用户类型为流量敏感型,提高第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的初始数据包分配比例,得到第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例;
若用户类型为非流量敏感型,降低第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的初始数据包分配比例,得到第一WiFi数据链路、第二WiFi数据链路和移动数据链路之间的数据包分配比例。
实施图5所示的数据包分流装置,可以根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量和移动数据链路的链路质量确定需要传输的数据包在三条链路上的分配比例,能够合理分配在两条WiFi数据链路和一条移动数据链路上传输数据包,充分利用WiFi网络和移动数据网络的数据包收发能力,提高用户上网体验。
请参阅图6,图6是本申请实施例公开的一种移动终端的结构示意图。如图6所示,该移动终端600包括处理器601和存储器602,其中,移动终端600还可以包括总线603,处理器601和存储器602可以通过总线603相互连接,总线603可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。总线603可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,移动终端600还可以包括输入输出设备604,输入输出设备604可以包括显示屏,例如液晶显示屏。存储器602用于存储包含指令的一个或多个程序;处理器601用于调用存储在存储器602中的指令执行上述图1至图4中的部分或全部方法步骤。
实施图6所示的移动终端,可以根据第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量和移动数据链路的链路质量确定需要传输的数据包在三条链路上的分配比例,能够合理分配在两条WiFi数据链路和一条移动数据链路上传输数据包,充分利用WiFi网络和移动数据网络的数据包收发能力,提高用户上网体验。
本申请实施例还提供了另一种移动终端,如图7所示,为了便于说明,仅示出了与本申请实施例相关的部分,具体技术细节未揭示的,请参照本申请实施例方法部分。该移动终端可以为包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑等任意终端设备,以移动终端为手机为例:
图7示出的是与本申请实施例提供的移动终端相关的手机的部分结构的框图。参考图7,手机包括:射频(Radio Frequency,RF)电路910、存储器920、输入单元930、显示单元940、传感器950、音频电路960、无线保真(Wireless Fidelity,WiFi)模块970、处理器980、以及电源990等部件。本领域技术人员可以理解,图7中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图7对手机的各个构成部件进行具体的介绍:
RF电路910可用于信息的接收和发送。通常,RF电路910包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路910还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任 一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器920可用于存储软件程序以及模块,处理器980通过运行存储在存储器920的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器920可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据手机的使用所创建的数据等。此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元930可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元930可包括指纹识别模组931以及其他输入设备932。指纹识别模组931,可采集用户在其上的指纹数据。除了指纹识别模组931,输入单元930还可以包括其他输入设备932。具体地,其他输入设备932可以包括但不限于触控屏、物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元940可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元940可包括显示屏941,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机或无机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示屏941。
手机还可包括至少一种传感器950,比如光传感器、运动传感器、压力传感器、温度传感器以及其他传感器。具体地,光传感器可包括环境光传感器(也称为光线传感器)及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节手机的背光亮度,进而调节显示屏941的亮度,接近传感器可在手机移动到耳边时,关闭显示屏941和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路960、扬声器961,传声器962可提供用户与手机之间的音频接口。音频电路960可将接收到的音频数据转换后的电信号,传输到扬声器961,由扬声器961转换为声音信号播放;另一方面,传声器962将收集的声音信号转换为电信号,由音频电路960接收后转换为音频数据,再将音频数据播放处理器980处理后,经RF电路910以发送给比如另一手机,或者将音频数据播放至存储器920以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块970可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图7示出了WiFi模块970,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器980是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器920内的软件程序和/或模块,以及调用存储在存储器920内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器980可包括一个或多个处理单元;优选的,处理器980可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器980中。
手机还包括给各个部件供电的电源990(比如电池),优选的,电源可以通过电源管理系统与处理器980逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
手机还可以包括摄像头9100,摄像头9100用于拍摄图像与视频,并将拍摄的图像和视频传输到处理器980进行处理。
手机还可以蓝牙模块等,在此不再赘述。
前述图1~图4所示的实施例中,各步骤方法流程可以基于该手机的结构实现。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任何一种数据包分流方法的部分或全部步骤。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,该计算机程序可操作来使计算机执行如上述方法实施例中记载的任何一种数据包分流方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (20)

  1. 一种数据包分流方法,其特征在于,包括:
    检测第一WiFi数据链路的链路质量,检测第二WiFi数据链路的链路质量,检测移动数据链路的链路质量;
    根据所述第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的数据包分配比例;
    将需要传输的数据包按照所述数据包分配比例分配在所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路中传输。
  2. 根据权利要求1所述的方法,其特征在于,所述检测第一WiFi数据链路的链路质量,检测第二WiFi数据链路的链路质量,检测移动数据链路的链路质量之前,所述方法还包括:
    搜索周围的可用WiFi热点;
    若搜索到第一WiFi热点、第二WiFi热点为可用WiFi热点,获取所述第一WiFi热点和所述第二WiFi热点的工作频段;
    若所述第一WiFi热点和所述第二WiFi热点的工作频段不属于同一频段,连接所述第一WiFi热点和所述第二WiFi热点,建立所述第一WiFi数据链路和所述第二WiFi数据链路。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    若所述第一WiFi热点和所述第二WiFi热点的工作频段属于同一频段,确定所述第一WiFi热点或所述第二WiFi热点是否为双频段WiFi热点;
    若所述第一WiFi热点与所述第二WiFi热点中至少一个为双频段WiFi热点,向所述第一WiFi热点与所述第二WiFi热点中的一个双频段WiFi热点发送频段切换指令,所述频段切换指令用于切换所述第一WiFi热点与所述第二WiFi热点中的一个双频段WiFi热点的工作频段;
    当所述第一WiFi热点和所述第二WiFi热点的工作频段不属于同一频段时,执行所述连接所述第一WiFi热点和所述第二WiFi热点,建立所述第一WiFi数据链路和所述第二WiFi数据链路步骤。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述将需要传输的数据包按照所述数据包分配比例分配在所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路中传输之前,所述方法还包括:
    获取需要传输的数据包的类型;
    若所述需要传输的数据包的类型不属于指定服务器类型,执行所述将需要传输的数据包按照所述数据包分配比例分配在所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路中传输的步骤。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    若所述需要传输的数据包的类型属于指定服务器类型,将所述需要传输的数据包通过所述移动数据链路传输。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述根据所述第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的数据包分配比例之前,所述方法还包括:
    获取用户类型;
    所述根据所述第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的数据包分配比例,包括:
    根据所述第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量、所述移动数据链路的链路质量以及所述用户类型确定所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的数据包分配比例。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量、所述移动数据链路的链路质量以及所述用户类型确定所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的数据包分配比例,包括:
    根据所述第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量、所述移动数据链路的链路质量以及所述用户类型确定所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的初始数据包分配比例;
    若所述用户类型为流量敏感型,提高所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的初始数据包分配比例,得到所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的数据包分配比例;
    若所述用户类型为非流量敏感型,降低所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的初始数据包分配比例,得到所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的数据包分配比例。
  8. 根据权利要求1所述的方法,其特征在于,所述检测第一WiFi数据链路的链路质量,包括:
    测量所述第一WiFi数据链路的数据传输速率、往返时延、丢包率、误码率,基于所述第一WiFi数据链路的往返时延、数据传输速率、丢包率、误码率确定所述第一WiFi数据链路的链路质量;
    所述检测第二WiFi数据链路的链路质量,包括:
    测量所述第二WiFi数据链路的数据传输速率、往返时延、丢包率、误码率,基于所述第二WiFi数据链路的往返时延、数据传输速率、丢包率、误码率确定所述第二WiFi数据链路的链路质量。
  9. 根据权利要求1所述的方法,其特征在于,所述检测第一WiFi数据链路的链路质量,检测第二WiFi数据链路的链路质量,包括:
    测量所述第一WiFi数据链路的最大数据传输速率,测量所述第二WiFi数据链路的最大数据传输速率,测量所述移动数据链路的最大数据传输速率,基于所述第一WiFi数据链路的最大数据传输速率、所述第二WiFi数据链路的最大数据传输速率、所述移动数据链路的最大数据传输速率确定所述第一WiFi数据链路的链路质量、所述第二WiFi数据链路的链路质量以及所述移动数据链路的链路质量。
  10. 一种数据包分流装置,其特征在于,包括:
    检测单元,用于检测第一WiFi数据链路的链路质量,检测第二WiFi数据链路的链路质量,检测移动数据链路的链路质量;
    确定单元,用于根据所述第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的数据包分配比例;
    传输单元,用于将需要传输的数据包按照所述数据包分配比例分配在所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路中传输。
  11. 根据权利要求10所述的装置,其特征在于,所述数据包分流装置还包括搜索单元、 第一获取单元和连接建立单元;
    所述搜索单元,用于搜索周围的可用WiFi热点;
    所述第一获取单元,用于在所述搜索单元搜索到第一WiFi热点、第二WiFi热点为可用WiFi热点的情况下,获取所述第一WiFi热点和所述第二WiFi热点的工作频段;
    所述连接建立单元,用于在所述第一WiFi热点和所述第二WiFi热点的工作频段不属于同一频段的情况下,连接所述第一WiFi热点和所述第二WiFi热点,建立所述第一WiFi数据链路和所述第二WiFi数据链路。
  12. 根据权利要求11所述的装置,其特征在于,所述数据包分流装置还包括发送单元;
    所述确定单元,还用于在所述第一WiFi热点和所述第二WiFi热点的工作频段属于同一频段的情况下,确定所述第一WiFi热点或所述第二WiFi热点是否为双频段WiFi热点;
    所述发送单元,用于所述第一WiFi热点与所述第二WiFi热点中至少一个为双频段WiFi热点的情况下,向所述第一WiFi热点与所述第二WiFi热点中的一个双频段WiFi热点发送频段切换指令,所述频段切换指令用于切换所述第一WiFi热点与所述第二WiFi热点中的一个双频段WiFi热点的工作频段;
    所述连接建立单元,还用于当所述第一WiFi热点和所述第二WiFi热点的工作频段不属于同一频段时,连接所述第一WiFi热点和所述第二WiFi热点,建立所述第一WiFi数据链路和所述第二WiFi数据链路。
  13. 根据权利要求10~12任一项所述的装置,其特征在于,所述数据包分流装置还包括第二获取单元;
    所述第二获取单元,用于获取需要传输的数据包的类型;
    所述传输单元,还用在所述需要传输的数据包的类型不属于指定服务器类型的情况下,将需要传输的数据包按照所述数据包分配比例分配在所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路中传输。
  14. 根据权利要求13所述的装置,其特征在于,
    所述传输单元,还用于在所述需要传输的数据包的类型属于指定服务器类型的情况下,将所述需要传输的数据包通过所述移动数据链路传输。
  15. 根据权利要求10~14任一项所述的装置,其特征在于,该数据包分流装置还包括第三获取单元;
    所述第三获取单元,用于获取用户类型;
    所述确定单元根据所述第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量与所述移动数据链路的链路质量确定所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的数据包分配比例,具体为:根据所述第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量、所述移动数据链路的链路质量以及所述用户类型确定所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的数据包分配比例。
  16. 根据权利要求15所述的装置,其特征在于,所述确定单元根据所述第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量、所述移动数据链路的链路质量以及所述用户类型确定所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的数据包分配比例,具体为:
    根据所述第一WiFi数据链路的链路质量、第二WiFi数据链路的链路质量、所述移动数据链路的链路质量以及所述用户类型确定所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的初始数据包分配比例;
    若所述用户类型为流量敏感型,提高所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的初始数据包分配比例,得到所述第一WiFi数据链路、所述第 二WiFi数据链路和所述移动数据链路之间的数据包分配比例;
    若所述用户类型为非流量敏感型,降低所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的初始数据包分配比例,得到所述第一WiFi数据链路、所述第二WiFi数据链路和所述移动数据链路之间的数据包分配比例。
  17. 根据权利要求10所述的装置,其特征在于,所述检测单元检测第一WiFi数据链路的链路质量,具体为:
    测量所述第一WiFi数据链路的数据传输速率、往返时延、丢包率、误码率,基于所述第一WiFi数据链路的往返时延、数据传输速率、丢包率、误码率确定所述第一WiFi数据链路的链路质量;
    所述检测单元检测第二WiFi数据链路的链路质量,具体为:
    测量所述第二WiFi数据链路的数据传输速率、往返时延、丢包率、误码率,基于所述第二WiFi数据链路的往返时延、数据传输速率、丢包率、误码率确定所述第二WiFi数据链路的链路质量。
  18. 根据权利要求10所述的装置,其特征在于,所述检测单元检测第一WiFi数据链路的链路质量,检测第二WiFi数据链路的链路质量,具体为:
    测量所述第一WiFi数据链路的最大数据传输速率,测量所述第二WiFi数据链路的最大数据传输速率,测量所述移动数据链路的最大数据传输速率,基于所述第一WiFi数据链路的最大数据传输速率、所述第二WiFi数据链路的最大数据传输速率、所述移动数据链路的最大数据传输速率确定所述第一WiFi数据链路的链路质量、所述第二WiFi数据链路的链路质量以及所述移动数据链路的链路质量。
  19. 一种移动终端,其特征在于,包括处理器以及存储器,所述存储器用于存储一个或多个程序,所述一个或多个程序被配置成由所述处理器执行,所述程序包括用于执行如权利要求1~9任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1~9任一项所述的方法。
PCT/CN2020/074906 2019-02-12 2020-02-12 数据包分流方法、装置、移动终端及存储介质 WO2020164520A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20755808.1A EP3917205A4 (en) 2019-02-12 2020-02-12 METHOD AND DEVICE FOR DISTRIBUTING DATA PACKAGES, MOBILE DEVICES AND STORAGE MEDIA
US17/387,994 US20210360650A1 (en) 2019-02-12 2021-07-28 Packet offloading method, mobile terminal, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910111708.7 2019-02-12
CN201910111708.7A CN109803318B (zh) 2019-02-12 2019-02-12 数据包分流方法、装置、移动终端及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/387,994 Continuation US20210360650A1 (en) 2019-02-12 2021-07-28 Packet offloading method, mobile terminal, and storage medium

Publications (1)

Publication Number Publication Date
WO2020164520A1 true WO2020164520A1 (zh) 2020-08-20

Family

ID=66562123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074906 WO2020164520A1 (zh) 2019-02-12 2020-02-12 数据包分流方法、装置、移动终端及存储介质

Country Status (4)

Country Link
US (1) US20210360650A1 (zh)
EP (1) EP3917205A4 (zh)
CN (1) CN109803318B (zh)
WO (1) WO2020164520A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803325B (zh) * 2019-02-12 2020-12-22 Oppo广东移动通信有限公司 数据分流方法、装置、移动终端及存储介质
CN109803318B (zh) * 2019-02-12 2021-01-22 Oppo广东移动通信有限公司 数据包分流方法、装置、移动终端及存储介质
CN110401938B (zh) * 2019-08-16 2023-04-07 Oppo广东移动通信有限公司 无线高保真Wi-Fi连接控制方法及相关产品
CN114786242B (zh) * 2019-08-21 2023-07-04 Oppo广东移动通信有限公司 无线高保真Wi-Fi接入点选择方法及相关装置
CN112449401B (zh) * 2019-08-31 2022-03-08 Oppo广东移动通信有限公司 WiFi漫游方法、装置、移动终端及存储介质
CN110972095B (zh) * 2019-12-05 2020-11-20 江南大学 一种基于移动终端的医疗大数据信息传输方法及系统
CN113411823B (zh) * 2020-03-17 2023-02-03 卡奥斯工业智能研究院(青岛)有限公司 一种无线通信系统及方法
CN113840313B (zh) * 2020-06-24 2024-02-06 深圳市万普拉斯科技有限公司 移动终端的网络模式控制方法、装置和计算机设备
EP4192109A4 (en) * 2020-07-27 2024-03-27 Nippon Telegraph & Telephone BASE STATION AND TERMINAL
CN112040525B (zh) * 2020-09-24 2023-07-04 展讯通信(上海)有限公司 漫游方法及装置
US11758460B1 (en) * 2021-02-02 2023-09-12 T-Mobile Usa, Inc. Managing local application connectivity in a multi-network environment
US11546239B2 (en) * 2021-03-31 2023-01-03 Versa Networks, Inc. Data packet traffic conditioning with packet striping through lossy data paths
US11683126B2 (en) 2021-03-31 2023-06-20 Versa Networks, Inc. Data packet traffic conditioning through multiple lossy data paths with forward error correction
US11916674B2 (en) 2021-03-31 2024-02-27 Versa Networks, Inc. Data packet traffic conditioning through a lossy data path with forward error correction
CN113784393B (zh) * 2021-05-14 2023-04-07 荣耀终端有限公司 一种峰值下载方法和装置
CN113490291B (zh) * 2021-06-16 2022-05-17 荣耀终端有限公司 数据下载方法、装置和终端设备
US20230089923A1 (en) * 2021-09-22 2023-03-23 Qualcomm Incorporated Physical uplink channel handling based on channel security
US20220116146A1 (en) * 2021-12-23 2022-04-14 Juan Fang Enhanced redundancy over wi-fi for ultra-reliable wireless time-sensitive networking
CN115567505B (zh) * 2022-01-10 2023-06-30 荣耀终端有限公司 网络加速效果的显示方法、设备和存储介质
CN115150217A (zh) * 2022-06-30 2022-10-04 青岛海信移动通信技术股份有限公司 智能家居设备的配网方法、装置及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102905319A (zh) * 2012-10-23 2013-01-30 李文龙 一种数据分流的方法及系统
CN103517323A (zh) * 2012-06-20 2014-01-15 华为技术有限公司 无线异构网络的数据传输方法、分流设备、基站设备
WO2016095423A1 (zh) * 2014-12-16 2016-06-23 中兴通讯股份有限公司 收音机播放频道的更新方法及装置
CN107426781A (zh) * 2017-08-16 2017-12-01 深圳市中兴物联科技有限公司 一种双频WiFi自动切换方法、装置及计算机可读存储介质
CN107770841A (zh) * 2017-09-29 2018-03-06 努比亚技术有限公司 热点连接方法、移动终端和计算机可读存储介质
CN109803318A (zh) * 2019-02-12 2019-05-24 Oppo广东移动通信有限公司 数据包分流方法、装置、移动终端及存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768768B (zh) * 2011-05-06 2016-03-09 深圳市金溢科技股份有限公司 一种智能交通服务系统
US20130137423A1 (en) * 2011-05-27 2013-05-30 Qualcomm Incorporated Allocating access to multiple radio access technologies via a multi-mode access point
CN102647771B (zh) * 2012-04-10 2016-05-25 华为技术有限公司 无线局域网络的发现与选择方法、设备及系统与终端
US9661546B2 (en) * 2014-01-29 2017-05-23 Mediatek Inc. Dynamic offload selection in mobile communication systems
US9832674B2 (en) * 2014-02-18 2017-11-28 Benu Networks, Inc. Cloud controller for self-optimized networks
CN106304091B (zh) * 2015-05-15 2022-06-14 索尼公司 用于未授权频段的频率分配的方法和装置
US9973960B2 (en) * 2016-04-12 2018-05-15 Sooktha Consulting Private Limited Dynamic selection and monitoring of wireless communication interfaces for cellular wireless access data offload in a wireless access network
CN110545281B (zh) * 2016-05-27 2022-01-18 华为技术有限公司 一种接入wifi网络的方法及装置
CN107770814B (zh) * 2017-09-29 2021-06-15 努比亚技术有限公司 数据链路均衡方法、移动终端及计算机可读存储介质
CN107635248A (zh) * 2017-09-29 2018-01-26 努比亚技术有限公司 网络加速方法、移动终端及计算机可读存储介质
CN107708216B (zh) * 2017-09-29 2022-04-22 努比亚技术有限公司 数据链路分配方法、移动终端及计算机可读存储介质
US10716037B2 (en) * 2018-10-11 2020-07-14 International Business Machines Corporation Assessment of machine learning performance with limited test data

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103517323A (zh) * 2012-06-20 2014-01-15 华为技术有限公司 无线异构网络的数据传输方法、分流设备、基站设备
CN102905319A (zh) * 2012-10-23 2013-01-30 李文龙 一种数据分流的方法及系统
WO2016095423A1 (zh) * 2014-12-16 2016-06-23 中兴通讯股份有限公司 收音机播放频道的更新方法及装置
CN107426781A (zh) * 2017-08-16 2017-12-01 深圳市中兴物联科技有限公司 一种双频WiFi自动切换方法、装置及计算机可读存储介质
CN107770841A (zh) * 2017-09-29 2018-03-06 努比亚技术有限公司 热点连接方法、移动终端和计算机可读存储介质
CN109803318A (zh) * 2019-02-12 2019-05-24 Oppo广东移动通信有限公司 数据包分流方法、装置、移动终端及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3917205A4 *

Also Published As

Publication number Publication date
CN109803318B (zh) 2021-01-22
US20210360650A1 (en) 2021-11-18
CN109803318A (zh) 2019-05-24
EP3917205A4 (en) 2022-03-23
EP3917205A1 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
WO2020164520A1 (zh) 数据包分流方法、装置、移动终端及存储介质
WO2020164475A1 (zh) 数据分流方法、装置、移动终端及存储介质
CN110036661B (zh) 一种上行数据传输方法、终端、网络侧设备及系统
WO2020143680A1 (zh) 数据传输方法及相关装置
WO2020207229A1 (zh) 数据传输方法及相关装置
CN113115324B (zh) 一种波束失败恢复请求发送、接收方法、装置及系统
CN112004173B (zh) 蓝牙耳机的切换方法、移动终端及计算机可读存储介质
WO2020164521A1 (zh) 数据包分配方法、装置、移动终端及存储介质
US20220077899A1 (en) Method for communication control and related products
US11546800B2 (en) Data processing method and terminal
CN109144705B (zh) 应用程序管理方法、移动终端及计算机可读存储介质
WO2021036881A1 (zh) WiFi漫游方法、装置、移动终端及存储介质
CN111800794B (zh) 解调参考信号位置的确定方法及设备
CN112954755B (zh) 一种优化网络切换方法、装置及计算机可读存储介质
CN112492340B (zh) 直播音频采集方法、移动终端及计算机可读存储介质
CN111970738B (zh) 一种网络切换控制方法、设备及计算机可读存储介质
CN109644078B (zh) 一种上行数据传输方法、终端、网络侧设备及系统
CN112090065B (zh) 一种网络时延调控方法、设备及计算机可读存储介质
JP7250124B2 (ja) データ処理方法及び機器
CN109587260B (zh) 一种资源获取方法、装置以及系统
US10880839B2 (en) Power control method and link and related product
EP3905788B1 (en) Link aggregation implementation method and related device
CN114423041A (zh) 通信方法、智能终端及存储介质
CN109644377B (zh) 一种上行数据传输方法、终端、网络侧设备及系统
CN108322943B (zh) 一种局域网的分配方法、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020755808

Country of ref document: EP

Effective date: 20210823